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Abstract. Fragments of first-order temporal logic are useful for repre-
senting many practical privacy and security policies. Past work has pro-
posed two strategies for checking event trace (audit log) compliance with
policies: online monitoring and offline audit. Although online monitor-
ing is space- and time-efficient, existing techniques insist that satisfying
instances of all subformulas of the policy be amenable to caching, which
limits expressiveness when some subformulas have infinite support. In
contrast, offline audit is brute force and can handle more policies but is
not as efficient. This paper proposes a new online monitoring algorithm
that caches satisfying instances when it can, and falls back to the brute
force search when it cannot. Our key technical insight is a new flow- and
time-sensitive static check of variable groundedness, called the temporal

mode check, which determines subformulas for which such caching is fea-
sible and those for which it is not and, hence, guides our algorithm. We
prove the correctness of our algorithm and evaluate its performance over
synthetic traces and realistic policies.

Keywords: Mode checking, runtime monitoring, metric first-order tem-
poral logic, privacy policy.

1 Introduction

Many organizations routinely collect sensitive personal information like medical
and financial records to carry out business operations and to provide services
to clients. These organizations must handle sensitive information in compliance
with applicable privacy legislation like the Health Insurance Portability and
Accountability Act (HIPAA) [1] and the Gramm-Leach-Bliley Act (GLBA) [2].
Violations attract substantial monetary and even criminal penalties [3]. Hence,
developing mechanisms and automatic tools to check privacy policy compliance
in organizations is an important problem.

The overarching goal of this paper is to improve the state of the art in
checking whether an event trace or audit log, which records relevant events of an
organization’s data handling operations, is compliant with a given privacy policy.
At a high-level, this problem can be approached in two different ways. First,
logs may be recorded and compliance may be checked offline, when demanded
by an audit authority. Alternatively, an online program may monitor privacy-
relevant events, check them against the prevailing privacy policy and report



violations on the fly. Both approaches have been considered in literature: An
algorithm for offline compliance checking has been proposed by a subset of the
authors [4], whereas online monitoring has been the subject of extensive work
by other researchers [5–11].

These two lines of work have two common features. First, they both assume
that privacy policies are represented in first-order temporal logic, extended with
explicit time. Such extensions have been demonstrated adequate for representing
the privacy requirements of both HIPAA and GLBA [12]. Second, to ensure that
only finitely many instances of quantifiers are tested during compliance checking,
both lines of work use static policy checks to restrict the syntax of the logic. The
specific static checks vary, but always rely on assumptions about finiteness of
predicates provided by the policy designer. Some work, e.g. [5, 8–11], is based
on the safe-range check [5], which requires syntactic subformulas to have finite
support independent of each other; other work, e.g. [4, 7], is based on the mode
check from logic programming [13–15], which is more general and can propagate
variable groundedness information across subformulas.

Both lines of work have their relative advantages and disadvantages. An
online monitor can cache policy-relevant information from logs on the fly (in
so-called summary structures) and discard the remaining log immediately. This
saves space. It also saves time because the summary structures are organized
according to the policy formula so lookups are quicker than scans of the log in the
offline method. However, online monitoring algorithms proposed so far require
that all subformulas of the policy formula be amenable to caching. Furthermore,
many real policies, including several privacy requirements of HIPAA and GLBA,
are not amenable to such caching. In contrast, the offline algorithm proposed in
our prior work [4] uses brute force search over a stored log. This is inefficient
when compared to an online monitor, but it can handle all privacy requirements
of HIPAA and GLBA. In this work, we combine the space- and time-efficiency of
online monitoring with the generality of offline monitoring: We extend existing
work in online monitoring [5] for privacy policy violations with a brute force
search fallback based on offline audit for subformulas that are not amenable to
caching. Like the work of Basin et al. [5], our work uses policies written in metric
first-order temporal logic (MFOTL) [16].

Our key technical innovation is what we call the temporal mode check, a new
static check on formulas to ensure finiteness of quantifier instantiation in our al-
gorithm. Like a standard mode check, the temporal mode check is flow-sensitive:
It can propagate variable groundedness information across subformulas. Addi-
tionally, the temporal mode check is time-sensitive: It conservatively approxi-
mates whether the grounding substitution for a variable comes from the future or
the past. This allows us to classify all subformulas into those for which we build
summary structures during online monitoring (we call such formulas buildable
or B-formulas) and those for which we do not build summary structures and,
hence, use brute force search.

As an example, consider the formula ∃x, y, z.(p(x) ∧q(x, y) ∧r(x, z)),
which means that in all states, there exist x, y, z such that p(x) holds and in



some past states q(x, y) and r(x, z) hold. Assume that p and q are finite predi-
cates and that r is infinite, but given a ground value for its first argument, the
second argument has finite computable support. One possible efficient strategy
for monitoring this formula is to build summary structures for p and q and in
each state where an x satisfying p exists, to quickly lookup the summary struc-
ture for q to find a past state and a y such that q(x, y) holds, and to scan the
log brute force to find a past state and z such that r(x, z) holds. Note that
doing so requires marking p and q as B-formulas, but r as not a B-formula

(because z can be computed only after x is known, but x is known from satisfac-
tion of p, which happens in the future of r). Unlike the safe-range check or the
standard mode check, our new temporal mode check captures this information
correctly and our monitoring algorithm, précis, implements this strategy. No
existing work on online monitoring can handle this formula because r cannot be
summarized [5–11]. The work on offline checking can handle this formula [4], it
does not build summary structures and is needlessly inefficient on q.

We prove the correctness of précis over formulas that pass the temporal
mode check and analyze its asymptotic complexity. We also empirically evaluate
the performance of précis on synthetically generated traces, with respect to
privacy policies derived from HIPAA and GLBA. The goal of our experiment is to
demonstrate that incrementally maintaining summary structures for B-formulas

of the policy can improve the performance of policy compliance checking relative
to a baseline of pure brute force search. This baseline algorithm is very similar
to the offline monitoring algorithm of [4], called reduce. In our experiments, we
observe marked improvements in running time over reduce, e.g., up to 2.5x-6.5x
speedup for HIPAA and up to 1.5x speed for GLBA, even with very conservative
(unfavorable) assumptions about disk access. Even though these speedups are
not universal (online monitoring optimistically constructs summary structures
and if those structures are not used later then computation is wasted), they do
indicate that temporal mode checking and our monitoring algorithm could have
substantial practical benefit for privacy policy compliance.

Due to space restrictions, we defer the correctness proof of précis and several
other details to a technical report [17].

2 Policy Specification Logic

Our policy specification logic, GMP, is a fragment of MFOTL [16, 18] with
restricted universal quantifiers. The syntax of GMP is shown below.
(Policy formula) ϕ ::= p(t) | ⊤ | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ∃x.ϕ | ∀x.(ϕ1 → ϕ2)

ϕ1 S Iϕ2 |Iϕ | Iϕ | Iϕ | ϕ1 U Iϕ2 |Iϕ | Iϕ | Iϕ

The letter t denotes terms, which are constants or variables (x, y, etc.).
Bold-faced roman letters like t denote sequences or vectors. Policy formulas are
denoted by ϕ, α, and β. Universal quantifiers have a restricted form ∀x.ϕ1 → ϕ2.
A guard [19] ϕ1 is required as explained further in Section 3.

Policy formulas include both past temporal operators (, , S , ) and
future temporal operators (, , U , ). Each temporal operator has an as-
sociated time interval I of the form [lo, hi], where lo, hi ∈ N and lo ≤ hi. The



interval selects a sub-part of the trace in which the immediate subformula is
interpreted. For example, [2,6]ϕ means that at some point between 2 and 6
time units in the past, ϕ holds. For past temporal operators, we allow the higher
limit (hi) of I to be ∞. We omit the interval when it is [0, ∞]. Policies must
be future-bounded: both limits (lo and hi) of intervals associated with future
temporal operators must be finite. GMP is not closed under negation due to
the absence of the duals of operators S and U . However, these operators do
not arise in the practical privacy policies we have investigated.

Formulas are interpreted over a timed event trace (or, log) L. Given a possibly-
infinite domain of terms D, each element of L—the ith element is denoted Li—
maps each ground atom p(t) for t ∈ D to either true or false. Each position Li

is associated with a time stamp, τi ∈ N, which is used to interpret intervals in
formulas. We use τ to represent the sequence of time stamps, each of which is a
natural number. For any arbitrary i, j ∈ N with i > j, τi > τj (monotonicity).
The environment η maps free variables to values in D. Given an execution trace
L and a time stamp-sequence τ , a position i ∈ N in the trace, an environment
η, and a formula ϕ, we write L, τ, i, η |= ϕ to mean that ϕ is satisfied in the ith
position of L with respect to η and τ . The definition of |= is standard and can
be found in the technical report [17].
Example policy. The following GMP formula represents a privacy rule from
clause §6802(a) of the U.S. privacy law GLBA [2]. It states that a financial
institution can disclose to a non-affiliated third party any non-public personal
information (e.g., name, SSN) if such financial institution provides (within 30
days) or has provided, to the consumer, a notice of the disclosure.
∀p1, p2, q, m, t, u, d. ( send(p−

1 , p−
2 , m−) ∧ contains(m+, q−, t−) ∧ info(m+, d−, u−)→

inrole(p−
1 , institution+) ∧ nonAffiliate(p+

2 , p+
1 ) ∧ consumerOf(q−, p+

1 ) ∧ attrIn(t, npi)
∧(∃m1.send(p−

1 , q−, m−
1 ) ∧ noticeOfDisclosure(m+

1 , p+
1 , p+

2 , q+, t+)) )∨
[0,30]∃m2.send(p−

1 , q−, m−
2 ) ∧ noticeOfDisclosure(m+

2 , p+
1 , p+

2 , q+, t+) )

3 Temporal Mode Checking

We review mode-checking and provide an overview of our key insight, temporal
mode-checking. Then, we define temporal mode-checking for GMP formally.

Mode-checking. Consider a predicate addLessEq(x, y, a), meaning x + y ≤ a,
where x, y, and a range over N. If we are given ground values for x and a, then
the number of substitutions for y for which addLessEq(x, y, a) holds is finite. In
this case, we may say that addLessEq’s argument position 1 and 3 are input po-
sitions (denoted by ‘+’) and argument position 2 is an output position (denoted
by ‘−’), denoted addLessEq(x+, y−, a+). Such a specification of inputs and out-
puts is called a mode-specification. The meaning of a mode-specification for a
predicate is that if we are given ground values for arguments in the input posi-
tions, then the number of substitutions for the variables in the output positions
that result in a satisfied relation is finite. For instance, addLessEq(x+, y+, a−)
is not a valid mode-specification. Mode analysis (or mode-checking) lifts input-
output specifications on predicates to input-output specification on formulas. It



is commonly formalized as a judgment χin ⊢ ϕ : χout, which states that given
a grounding substitution for variables in χin, there is at most a finite set of
substitutions for variables in χout that could together satisfy ϕ. For instance,
consider the formula ϕ ≡ p(x) ∧ q(x, y). Given the mode-specification p(x−) and
q(x+, y−) and a left-to-right evaluation order for conjunction, ϕ passes mode
analysis with χin = {} and χout = {x, y}. Mode analysis guides an algorithm to
obtaining satisfying substitutions. In our example, we first obtain substitutions
for x that satisfy p(x). Then, we plug ground values for x in q(x, y) to get sub-
stitutions for y. However, if the mode-specification is p(x+) and q(x+, y−), then
ϕ will fail mode analysis unless x is already ground (i.e., x ∈ χin).

Mode analysis can be used to identify universally quantified formulas whose
truth is finitely checkable. We only need to restrict universal quantifiers to the
form ∀x.(ϕ1 → ϕ2), and require that x be in the output of ϕ1 and that ϕ2 be
well-moded (x may be in its input). To check that ∀x.(ϕ1 → ϕ2) is true, we first
find the values of x that satisfy ϕ1. This is a finite set because x is in the output
of ϕ1. We then check that for each of these x’s, ϕ2 is satisfied.

Overview of temporal mode-checking. Consider the policy ϕp ≡ p(x−) ∧
q(x+, y−) and consider the following obvious but inefficient way to monitor
it: We wait for p(x) to hold for some x, then we look back in the trace to find a
position where q(x, y) holds for some y. This is mode-compliant (we only check q

with its input x ground) but requires us to traverse the trace backward whenever
p(x) holds for some x, which can be slow.

Ideally, we would like to incrementally build a summary structure forq(x, y)
containing all the substitutions for x and y for which the formula holds as the
monitor processes each new trace event. When we see p(x), we could quickly look
through the summary structure to check whether a relation of the form q(x, y)
for the specific x and any y exists. However, note that building such a struc-
ture may be impossible here. Why? The mode-specification q(x+, y−) tells us
only that we will obtain a finite set of satisfying substitutions when x is already
ground. However, in this example, the ground x comes from p, which holds in the
future of q, so the summary structure may be infinite and, hence, unbuildable.
In contrast, if the mode-specification of q is q(x−, y−), then we can build the
summary structure because, independent of whether or not x is ground, only
a finite number of substitutions can satisfy q. In this example, we would label
q(x, y) buildable or a B-formula when the mode-specification is q(x−, y−) and
a non-B-formula when the mode-specification is q(x+, y−).

With conventional mode analysis, ϕp is well-moded under both mode-specifi-
cations of q. Consequently, in order to decide whether ϕp is a B-formula, we
need a refined analysis which takes into account the fact that, with the mode-
specification q(x+, y−), information about grounding of x flows backward in time
from p to q and, hence, q(x, y) is not a B-formula. This is precisely what
our temporal mode-check accomplishes: It tracks whether an input substitution
comes from the past/current state, or from the future. By doing so, it provides
enough information to determine which subformulas are B-formulas.



χC ⊢B ϕ : χO ∀k ∈ I(p).fv(tk) ⊆ χC χO =
⋃

j∈O(p)

fv(tj)

χC ⊢B p(t1, . . . , tn) : χO

B-PRE

χC ⊢B ϕ1 : χ1 χC ∪ χ1 ⊢B ϕ2 : χ2 χO = χ1 ∪ χ2

χC ⊢B ϕ1 ∧ ϕ2 : χO

B-AND

{} ⊢B ϕ2 : χ1 χ1 ⊢B ϕ1 : χ2 χO = χ1

χC ⊢B ϕ1 S Iϕ2 : χO

B-SINCE

χC , χF ⊢ ϕ : χO

∀k ∈ I(p).fv(tk) ⊆ (χC ∪ χF ) χO =
⋃

j∈O(p)

fv(tj)

χC , χF ⊢ p(t1, . . . , tn) : χO

PRE

{} ⊢B ϕ2 : χ1 χ1, χC ∪ χF ⊢ ϕ1 : χ2 χO = χ1

χC , χF ⊢ ϕ1 S Iϕ2 : χO

SINCE-1

χC ⊢B ϕ2 : χ1 χC , χF ∪ χ1 ⊢ ϕ1 : χ2 χO = χ1

χC , χF ⊢ ϕ1 U Iϕ2 : χO

UNTIL-1

χC , χF ⊢ ϕ1 : χ1 {x} ⊆ χ1

fv(ϕ1) ⊆ χC ∪ χF ∪ {x} fv(ϕ2) ⊆ (χC ∪ χ1 ∪ χF )
χC , χF ∪ χ1 ⊢ ϕ2 : χ2

χC , χF ⊢ ∀x.(ϕ1 → ϕ2) : {}
UNIV-1

Fig. 1: Selected rules of temporal mode-checking

Formally, our temporal mode-checking has two judgments: χC ⊢B ϕ : χO

and χC , χF ⊢ ϕ : χO. The first judgment assumes that substitutions for χC are
available from the past or at the current time point; any subformula satisfying
such a judgment is labeled as a B-formula. The second judgment assumes that
substitutions for χC are available from the past or at current time point, but
those for χF will be available in future. A formula satisfying such a judgment is
not a B-formula but can be handled by brute force search. Our implementation
of temporal mode analysis first tries to check a formula by the first judgment,
and falls back to the second when it fails. The formal rules for mode analysis
(described later) allow for both possibilities but do not prescribe a preference.
At the top-level, ϕ is well-moded if {}, {} ⊢ ϕ : χO for some χO.

To keep things simple, we do not build summary structures for future for-
mulas such as α U Iβ, and do not allow future formulas in the judgment form
χC ⊢B ϕ : χO (however, we do build summary structures for nested past-
subformulas of future formulas). To check α U Iβ, we wait until the upper limit
of I is exceeded and then search backward. As an optimization, one may build
conservative summary structures for future formulas, as in some prior work [5].



Recognizing B-formulas. We list selected rules of temporal mode-checking in
Figure 1. Rule B-Pre, which applies to an atom p(t1, . . . , tn), checks that all
variables in input positions of p are in χC . The output χO is the set of variables
in output positions of p. (I(p) and O(p) are the sets of input and output positions
of p, respectively.) The rule for conjunctions ϕ1 ∧ ϕ2 first checks ϕ1 and then
checks ϕ2, propagating variables in the output of ϕ1 to the input of ϕ2. These
two rules are standard in mode-checking. The new, interesting rule is B-Since

for the formula ϕ1 S Iϕ2. Since structures for ϕ1 and ϕ2 could be built at time
points earlier than the current time, the premise simply ignores the input χC .
The first premise of B-since checks ϕ2 with an empty input. Based on the
semantics of temporal logic, ϕ1 needs to be true on the trace after ϕ2, so all
variables ground by ϕ2 (i.e., χ1) are available as “current” input in ϕ1. As an
example, {} ⊢B ⊤ S q(x−, y−) : {x, y}.

Temporal mode-checking judgement. In the mode-checking judgment χC ,

χF ⊢ ϕ : χO, we separate the set of input variables for which substitutions are
available at the current time point or from the past (χC) from the set of variables
for which substitutions are available from the future (χF ). The distinction is
needed because sub-derivations of the form χ′

C ⊢B ϕ′ : χ′
O should be passed

only the former variables as input.

Rule Pre for atoms checks that variables in input positions are in the union of
χC and χF . There are four rules for ϕ1 S Iϕ2, accounting for the buildability/non-
buildability of each of the two subformulas. We show only one of these four rules,
Since-1, which applies when ϕ2 is a B-formula but ϕ1 is not. In this case, ϕ2

will be evaluated (for creating the summary structure) at time points earlier than
ϕ1 S ϕ2 and, therefore, cannot use variables in χC or χF as input (see Figure 2).
When checking ϕ1, variables in the output of ϕ2 (called χ1), χC and χF are all
inputs, but those in χC or χF come from the future. The entire formula is not
a B-formula as ϕ1 is not.

Similarly, there are four rules for ϕ1 U Iϕ2, of which we show only one, Until-

1. This rule applies when ϕ2 is a B-formula, but ϕ1 is not. Its first premise checks
that ϕ2 is a B-formula with input χC . Our algorithm checks ϕ1 only when ϕ2 is
true, so the outputs χ1 of ϕ2 are available as input for ϕ1. In checking ϕ1, both
χ1 and χF may come from the future.

The first premise of rule UNIV-1 checks that the guard ϕ1 is well-moded
with some output χ1. The second premise, {x} ⊆ χ1, ensures that the guard
ϕ1 can be satisfied only for a finite number of substitutions for x, which is
necessary to feasibly check ϕ2. The third premise, fv(ϕ1) ⊆ (χC ∪ χF ∪ {x}),

ϕ2 ϕ1 ϕ1 ϕ1 S Iϕ2 Current time

χC

χF

χ1

χ1

χ1

Time

Fig. 2: Example: Temporal information in mode checking ϕ1 S Iϕ2



ensures that no variables other than x are additionally grounded by checking ϕ1.
The fourth premise, fv(ϕ2) ⊆ (χC ∪ χF ∪ χ1), ensures that all free variables in
ϕ2 are already grounded by the time ϕ2 needs to be checked. The final premise
ensures the well-modedness of ϕ2. The third and fourth premises are technical
conditions, needed for the soundness of our algorithm.

4 Runtime Monitoring Algorithm

Our policy compliance algorithm précis takes as input a well-moded GMP
policy ϕ, monitors the system trace as it grows, builds summary structures for
nested B-formulas and reports a violation as soon as it is detected.

We write σ to denote a substitution, a finite map from variables to values
in the domain D. The identity substitution is denoted • and σ⊥ represents an
invalid substitution. For instance, the result of joining (✶) two substitutions σ1

and σ2 that do not agree on the values of shared variables is σ⊥. We say that
σ′ extends σ, written σ′ ≥ σ, if the domain of σ′ is a superset of the domain
of σ and they agree on mappings of variables that are in the domain of σ. We
summarize relevant algorithmic functions below.

précis(ϕ) is the top-level function (Algorithm 1).
checkCompliance(L, i, τ, π, ϕ) checks whether events in the ith position of the

trace L satisfy ϕ, given the algorithm’s internal state π and the time stamps
τ . State π contains up-to-date summary structures for all B-formulas of ϕ.

uSS(L, i, τ, π, ϕ) incrementally updates summary structures for B-formula ϕ

when log position i is seen. It assumes that the input π is up-to-date w.r.t.
earlier log positions and it returns the state with the updated summary
structure for ϕ. (uSS abbreviates updateSummaryStructures).

sat(L, i, τ, p(t), σ) returns the set of all substitutions σ1 for free variables in
p(t) that make p(t)σ1 true in the ith position of L, given σ that grounds
variables in the input positions of p. Here, σ1 ≥ σ.

ips(L, i, τ, π, σ, ϕ) generalizes sat from atomic predicates to policy formulas. It
takes the state π as an input to look up summary structures when B-formulas

are encountered.

Top-level monitoring algorithm. Algorithm 1 (précis), the top-level mon-
itoring process, uses two pointers to log entries: curPtr points to the last entry
in the log L, and evalPtr points to the position at which we next check whether
ϕ is satisfied. Naturally, curPtr ≥ evalPtr . The gap between these two pointers
is determined by the intervals occurring in future temporal operators in ϕ. For
example, with the policy[lo,hi]β, β can be evaluated at log position i only after
a position j ≥ i with τj −τi ≥ hi has been observed. We define a simple function
∆(ϕ) that computes a coarse but finite upper bound on the maximum time the
monitor needs to wait before ϕ can be evaluated (see [17] for details).

The algorithm précis first initializes relevant data structures and labels
B-formulas using mode analysis (lines 1-2). The main body of the précis is
a trace-event triggered loop. In each iteration of the loop, précis: (1) updates
the summary structures in π based on the newly available log entries (lines 6-7),



Algorithm 1 The précis algorithm

Require: A GMP policy ϕ

1: π ← ∅; curPtr ← 0; evalPtr ← 0; L ← ∅; τ ← ∅;
2: Mode-check ϕ. Label all B-formulas of ϕ.

3: while (true) do

4: Wait until new events are available

5: Extend L and τ with new entries

6: for all (B-formulas ϕs of ϕ in ascending formula size) do

7: π ← uSS(L, curPtr , τ, π, ϕs) //update summary structures

8: while (evalPtr ≤ curPtr) do

9: if (τcurPtr − τevalPtr ≥ ∆(ϕ)) then

10: tV al← checkCompliance(L, evalPtr , τ, π, ϕ)
11: if tV al = false then

12: Report violation on L position evalPtr

13: evalPtr ← evalPtr + 1
14: else

15: break
16: curPtr ← curPtr + 1

and (2) evaluates the policy at positions where it can be fully evaluated, i.e.,
where the difference between the entry’s time point and the current time point
(curP tr) exceeds the maximum delay ∆(ϕ). Step (1) uses the function uSS and
step (2) uses the function checkCompliance. checkCompliance is a wrapper for
ips that calls ips with • as the input substitution. If ips returns an empty set
of satisfying substitutions, checkCompliance returns false, signaling a violation
at the current time point, else it returns true.

Finding substitutions for policy formulas. The recursive function ips re-
turns the set of substitutions that satisfy a formula at a given log position, given
a substitution for the formula’s input variables. Selected clauses of the definition
of ips are shown in Figure 3. When the formula is an atom, ips invokes sat,
an abstract wrapper around specific implementations of predicates. When the
policy is a universally quantified formula, ips is called on the guard ϕ1 to find
the guard’s satisfying substitutions Σ1. Then, ips is called to check that ϕ2 is
true for all substitutions in Σ1. If the latter fails, ips returns the empty set of
substitutions to signal a violation, else it returns {σin}.

When a B-formula α S Iβ is encountered, all its satisfying substitutions have
already been computed and stored in π. Therefore, ips simply finds these substi-
tutions in π (expression π.A(α S Iβ)(i).IR), and discards those that are inconsis-
tent with σin by performing a join (✶). For the non-B-formula α S Iβ, ips calls
itself recursively on the sub-formulas α and β, and computes the substitutions
brute force.

Incrementally updating summary structures. We explain how we update
summary structures for formulas of the form ϕ1 S Iϕ2 here. Updates for Iϕ,
Iϕ, and Iϕ are similar and can be found in the technical report [17].



ips(L, i, τ, π, σin, p(t)) = sat(L, i, τ, p(t), σin)

ips(L, i, τ, π, σin,

∀x.(ϕ1 → ϕ2))
=

let Σ1 ← ips(L, i, τ, π, σin, ϕ1)

return

{

∅ if ∃σc ∈ Σ1.(ips(L, i, τ, π, σc, ϕ2) = ∅)

{σin} otherwise

ips(L, i, τ, π, σin, αS Iβ) =



























































If αS Iβ is a B-formula then

return σin ✶ π.A(αS Iβ)(i).IR

Else

let Sβ ← {〈σ, k〉|k = max l.((0 ≤ l ≤ i) ∧ ((τi − τl) ∈ I)

∧σ ∈ ips(L, l, τ, π, σin, β))}

SR1
← {σ|〈σ, i〉 ∈ Sβ ∧ 0 ∈ I}

SR2
← {⊲⊳σα

l 6= σ⊥|∃〈σβ , k〉 ∈ Sβ .k < i∧

∀l.(k < l ≤ i→ σα
l ∈ ips(L, l, τ, π, σβ , ϕ1))}

return SR1
∪ SR2

Fig. 3: Definition of the ips function, selected clauses

For each B-formula of the form α S [lo,hi]β, we build three structures: Sβ ,
Sα, and IR. The structure Sβ contains a set of pairs of form 〈σ, k〉 in which
σ represents a substitution and k ∈ N is a position in L. Each pair of form
〈σ, k〉 ∈ Sβ represents that for all σ′ ≥ σ, the formula βσ′ is true at position
k of L. The structure Sα contains a set of pairs of form 〈σ, k〉, each of which
represents that for all σ′ ≥ σ the formula ασ′ has been true from position k

until the current position in L. The structure IR contains a set of substitutions,
which make (α S [lo,hi]β) true in the current position of L. We use IRi (similarly
for other structures too) to represent the structure IR at position i of L. We

also assume S
(−1)
β , S

(−1)
α , and IR(−1) to be empty (the same applies for other

structures too). We show here how the structures Sβ and IR are updated. We
defer the description of update of Sα to the technical report [17].

To update the structure Sβ , we first calculate the set Σβ of substitutions that
make β true at i by calling ips. Pairing all these substitutions with the position
i yields Sβ

new. Next, we compute the set Sβ
remove of all old 〈σ, k〉 pairs that do not

satisfy the interval constraint [lo, hi] (i.e., for which τi − τk > hi). The updated
structure S

i
β is then obtained by taking a union of Sβ

new and the old structure

S
(i−1)
β , and removing all the pairs in the set Sβ

remove.

Σβ ← ips(L, i, τ, π, •, β) Sβ
remove ← {〈σ, k〉 | 〈σ, k〉 ∈ S

(i−1)
β ∧ (τi − τk) > hi}

Sβ
new ← {〈σ, i〉 | σ ∈ Σβ} S

i
β ← (S

(i−1)
β ∪ Sβ

new) \ Sβ
remove

To compute the summary structure IR for α S Iβ at i, we first compute the
set SR1

of all substitutions for which the formula β is true in the ith position
and the interval constraint is respected by the position i. Then we compute SR2

as the join σ ✶ σ1 of substitutions σ for which β was satisfied at some prior



position k, and substitutions σ1 for which α is true from position k + 1 to i. The
updated structure IRi is the union of SR1

and SR2
.

SR1
← {σ | 〈σ, i〉 ∈ S

i
β ∧ 0 ∈ [lo, hi]}

SR2
← {σ ✶ σ1 | ∃k, j.〈σ, k〉 ∈ S

i
β ∧ (k 6= i) ∧ (τi − τk ∈ [lo, hi]) ∧ 〈σ1, j〉 ∈ S

i
α∧

(j ≤ (k + 1)) ∧ σ ✶ σ1 6= σ⊥}
IRi ← SR1

∪ SR2

Optimizations. When all temporal sub-formulas of ϕ are B-formulas, curPtr
and evalPtr proceed in synchronization and only the summary structure for
position curPtr needs to be maintained. When ϕ contains future temporal for-
mulas but all past temporal sub-formulas of ϕ are B-formulas, then we need to
maintain only the summary structures for positions in [evalPtr , curPtr ], but the
rest of the log can be discarded immediately. When ϕ contains at least one past
temporal subformula that is not a B-formula we need to store the slice of the
trace that contains all predicates in that non-B-formula.

The following theorem states that on well-moded policies, précis terminates
and is correct. The theorem requires that the internal state π be strongly con-
sistent at curP tr with respect to the log L, time stamp sequence τ , and policy
ϕ. Strong consistency means that the state π contains sound and complete sub-
stitutions for all B-formulas of ϕ for all trace positions in [0, curP tr] (see [17]).

Theorem 1 (Correctness of précis). For all GMP policies ϕ, for all evalP tr,
curP tr ∈ N, for all traces L, for all time stamp sequences τ , for all internal
states π, for all empty environments η0 such that (1) π is strongly consistent
at curP tr with respect to L, τ , and ϕ, (2) curP tr ≥ evalP tr and τcurPtr −
τevalPtr ≥ ∆(ϕ), and (3) {}, {} ⊢ ϕ : χO where χO ⊆ fv(ϕ), it is the case that
checkCompliance(L, evalP tr, τ, π, ϕ) terminates and if checkCompliance(L, ev-
alP tr, τ , π, ϕ) = tV al, then (tV al = true) ↔ ∃σ.(L, τ, evalP tr, η0 |= ϕσ).

Proof. By induction on the policy formula ϕ (see [17]).

Complexity of précis. The runtime complexity of one iteration of précis for
a given policy ϕ is |ϕ| × (complexity of the uSS function) + (complexity of ips

function), where |ϕ| is the policy size. We first analyze the runtime complexity of
ips. Suppose the maximum number of substitutions returned by a single call to
sat (for any position in the trace) is F and the maximum time required by sat

to produce one substitution is A. The worst case runtime of ips occurs when
all subformulas of ϕ are non-B-formulas of the form ϕ1 S ϕ2 and in that case
the complexity is O((A × F × L)O(|ϕ|)) where L denotes the length of the trace.
uSS is invoked only for B-formulas. From the definition of mode-checking, all
sub-formulas of a B-formula are also B-formulas. This property of B-formulas

ensures that when uSS calls ips, the worst case behavior of ips is not encoun-
tered. The overall complexity of uSS is O(|ϕ|× (A×F)O(|ϕ|)). Thus, the runtime
complexity of each iteration of the précis function is O((A × F × L)O(|ϕ|)).

5 Implementation and Evaluation

This section reports an experimental evaluation of the précis algorithm. All
measurements were made on a 2.67GHz Intel Xeon CPU X5650 running Debian



GNU/Linux 7 (Linux kernel 3.2.48.1.amd64-smp) on 48GB RAM, of which at
most 2.2GB is used in our experiments. We store traces in a SQLite database.
Each n-ary predicate is represented by a n+1 column table whose first n columns
store arguments that make the predicate true on the trace and the last column
stores the trace position where the predicate is true. We index each table by
the columns corresponding to input positions of the predicate. We experiment
with randomly generated synthetic traces. Given a GMP policy and a target
trace length, at each trace point, our synthetic trace generator randomly decides
whether to generate a policy-compliant action or a policy violating action. For
a compliant action, it recursively traverses the syntax of the policy and creates
trace actions to satisfy the policy. Disjunctive choices are resolved randomly.
Non-compliant actions are handled dually. The source code and traces used in
the experiments are available from the authors’ homepages.

Our goal is to demonstrate that incrementally maintaining summary struc-
tures for B-formulas can improve the performance of policy compliance check-
ing. Our baseline for comparison is a variant of précis that does not use any
summary structures and, hence, checks temporal operators by brute force scan-
ning. This baseline algorithm is very similar to the reduce algorithm of prior
work [4] and, indeed, in the sequel we refer to our baseline as reduce. For the
experimental results reported here, we deliberately hold traces in an in-memory
SQLite database. This choice is conservative; using a disk-backed database im-
proves précis’ performance relative to reduce because reduce accesses the
database more intensively (our technical report contains comparative evalua-
tion using a disk-backed database and confirms this claim [17]). Another goal of
our experiment is to identify how précis scales when larger summary structures
must be maintained. Accordingly, we vary the upper bound hi in intervals [lo, hi]
in past temporal operators.

We experiment with two privacy policies that contain selected clauses of
HIPAA and GLBA, respectively. As précis and reduce check compliance of
non-B-formulas similarly, to demonstrate the utility of building summary struc-
tures, we ensure that the policies contain B-formulas (in our HIPAA policy, 7
out of 8 past temporal formulas are B-formulas; for GLBA the number is 4
out of 9). Our technical report [17] lists the policies we used. Figure 4 show our
evaluation times for the HIPAA privacy policy for the following upper bounds
on the past temporal operators: 100, 1000, 3000, and ∞. Points along the x-axis
are the size of the trace and also the number of privacy-critical events checked.
The y-axis represents the average monitoring time per event. We plot four curves
for each bound: (1) The time taken by précis, (2) The time taken by reduce,
(3) The time spent by précis in building and accessing summary structures for
B-formulas, and (4) The time spent by reduce in evaluating B-formulas. For
all trace positions i ∈ N, τi+1 − τi = 1.

The difference between (1) and (3), and (2) and (4) is similar at all trace
lengths because it is the time spent on non-buildable parts of the policy, which
is similar in précis and reduce. For the policy considered here, reduce spends
most time on B-formulas, so construction of summary structures improves per-



Fig. 4: Experimental results (HIPAA)

formance. For trace lengths greater than the bound, the curves flatten out, as
expected. As the bound increases, the average execution time for reduce in-
creases as the algorithm has to look back further on the trace, and so does the
relative advantage of précis. Overall, précis achieves a speedup up of 2.5x-
6.5x over reduce after the curves flatten out in the HIPAA policy. The results
for GLBA, not shown here but discussed in our technical report [17] are similar,
with speedups of 1.25x to 1.5x. The technical report also describes the amount
of memory needed to store summary structures in précis. Briefly, this number
grows proportional to the minimum of trace length and policy bound. The max-
imum we observe (for trace length 13000 and bound ∞) is 2.2 GB, which is very
reasonable. This can be further improved by compression.



Algorithms Incomplete
states allowed?

Mode of operation
Summary structures
(past formulas)

Summary structures
(future formulas)

précis no online yes no

reduce [4] yes offline no no

Chomicki [8, 9]
no online yes noKrukow et al. [10]

Bauer et al. [11]
Basin et al. [5, 7] no online yes yes

Basin et al. [6] yes online yes yes

Bauer et al. [20] no online (automata)* (automata)*

Table 1: Comparison of design choices in précis and prior work using first-
order temporal logic for privacy compliance. *Automata-based approaches have
no explicit notion of summary structures.

6 Related Work

Runtime monitoring of propositional linear temporal logic (pLTL) formulas [21],
regular expressions, finite automata, and other equivalent variants has been stud-
ied in literature extensively [22–48]. However, pLTL and its variants are not suf-
ficient to capture the privacy requirements of legislation like HIPAA and GLBA.
To address this limitation, many logics and languages have been proposed for
specifying privacy policies. Some examples are P3P [49, 50], EPAL [51, 52], Pri-
vacy APIs [53], LPU [54, 55], past-only fragment of first-order temporal logic
(FOTL) [10,11], predLTL [56], pLogic [57], PrivacyLFP [12], MFOTL [5–7], the
guarded fragment of first-order logic with explicit time [4], and P-RBAC [58].
Our policy language, GMP, is more expressive than many existing policy lan-
guages such as LPU [54,55], P3P [49,50], EPAL [51,52], and P-RBAC [58].

In Table 1, we summarize design choices in précis and other existing work on
privacy policy compliance checking using first-order temporal logics. The column
“Incomplete states allowed?” indicates whether the work can handle some form
of incompleteness in observation about states. Our own prior work [4] presents
the algorithm reduce that checks compliance of a mode-checked fragment of
FOL policies with respect to potentially incomplete logs. This paper makes the
mode check time-aware and adds summary structures to reduce, but we assume
that our event traces have complete information in all observed states.

Bauer et al. [11] present a compliance-checking algorithm for the (non-metric)
past fragment of FOTL. GMP can handle both past and future (metric) tem-
poral operators. However, Bauer et al. allow counting operators, arbitrary com-
putable functions, and partial observability of events, which we do not allow.
They allow a somewhat simplified guarded universal quantification where the
guard is a single predicate. In GMP, we allow the guard of the universal quan-
tification to be a complex GMP formula. For instance, the following formula
cannot be expressed in the language proposed by Bauer et al. but GMP mode
checks it: ∀x, y. (q(x+, y+) S p(x−, y−)) → r(x+, y+). Moreover, Bauer et al. only
consider closed formulas and also assume that each predicate argument position
is output. We do not insist on these restrictions. In further development, Bauer et
al. [20], propose an automata-based, incomplete monitoring algorithm for a frag-



ment of FOTL called LTLFO. They consider non-safety policies (unbounded
future operators), which we do not consider.

Basin et al. [5] present a runtime monitoring algorithm for a fragment of
MFOTL. Our summary structures are directly inspired by this work and the
work of Chomicki [8, 9]. We improve expressiveness through the possibility of
brute force search similar to [4], when subformulas are not amenable to summa-
rization. Basin et al. build summary structures for future operators, which we do
not (such structures can be added to our monitoring algorithm). In subsequent
work, Basin et al. [6] extend their runtime monitoring algorithm to handle in-
complete logs and inconsistent logs using a three-valued logic, which we do not
consider. In more recent work, Basin et al. [7] extend the monitoring algorithm
to handle aggregation operators and function symbols, which GMP does not
include. These extensions are orthogonal to our work.

Our temporal mode check directly extends mode checking from [4] by adding
time-sensitivity, although the setting is different— [4] is based on first-order logic
with an explicit theory of linear time whereas we work with MFOTL. The added
time-sensitivity allows us to classify subformulas into those that can be summa-
rized and those that must be brute forced. Some prior work, e.g. [5–11], is based
on the safe-range check instead of the mode check. The safe-range check is less
expressive than a mode check. For example, the safe-range check does not accept
the formula q(x+, y+, z−) S p(x−, y−), but our temporal mode check does (how-
ever, the safe-range check will accept the formula q(x−, y−, z−) S p(x−, y−)).
More recent work [7] uses a static check intermediate in expressiveness between
the safe-range check and a full-blown mode check.

7 Conclusion

We have presented a privacy policy compliance-checking algorithm for a frag-
ment of MFOTL. The fragment is characterized by a novel temporal mode-check,
which, like a conventional mode-check, ensures that only finitely many instantia-
tions of quantifiers are tested but is, additionally, time-aware and can determine
which subformulas of the policy are amenable to construction of summary struc-
tures. Using information from the temporal mode-check, our algorithm précis

performs best-effort runtime monitoring, falling back to brute force search when
summary structures cannot be constructed. Empirical evaluation shows that
summary structures improve performance significantly, compared to a baseline
without them.
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order properties with aggregations. In Legay, A., Bensalem, S., eds.: Runtime
Verification. Volume 8174 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2013) 40–58

8. Chomicki, J.: Efficient checking of temporal integrity constraints using bounded
history encoding. ACM Trans. Database Syst. 20(2) (June 1995) 149–186
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23. Büchi, J.R.: On a Decision Method in Restricted Second-Order Arithmetic. In:
International Congress on Logic, Methodology, and Philosophy of Science, Stanford
University Press (1962) 1–11
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