
A Linear Logic of Authorization and Knowledge⋆

Deepak Garg, Lujo Bauer, Kevin D. Bowers,
Frank Pfenning and Michael K. Reiter

Carnegie Mellon University

Abstract. We propose a logic for specifying security policies at a very
high level of abstraction. The logic accommodates the subjective nature
of affirmations for authorization and knowledge without compromising
the objective nature of logical inference. In order to accurately model
consumable authorizations and resources, we construct our logic as a
modal enrichment of linear logic. We show that the logic satisfies cut
elimination, which is a proof-theoretic expression of its soundness. We
also demonstrate that the logic is amenable to meta-reasoning about
specifications expressed in it through several examples.

1 Introduction

In this paper we develop a logic for specifying security properties of distributed
systems at a very high level of abstraction. One of the difficulties in this domain
is that security specifications, by nature, depend on individuals’ intent as well
as their state of knowledge. In addition to logical inference regarding the truth
of propositions, we therefore also need to reason with affirmations of principals
(to express intent), and knowledge of principals. In addition, we often need to
capture changes of state, such as transfer of money or goods, which is most easily
expressed in linear logic. We therefore arrive at a linear logic with additional
modal operators for affirmation and knowledge, indexed by principals. We believe
the combination of linearity with modalities such as affirmation and knowledge
is an original contribution of this paper with some new insights, such as how
to model possession of consumable resources as linear knowledge, or single-use
authorizations as linear affirmations.

We show that our logic satisfies cut elimination, which is a proof-theoretic ex-
pression of its soundness. Moreover, the cut elimination theorem shows that the
various components of the logic are orthogonal and, for example, there is a co-
herent subsystem containing only affirmations and not knowledge. We illustrate
our logic through two examples. The first concerns a student registration system
and demonstrates how to represent use-once authorizations, but avoids the use
of knowledge. The second is a specification of monetary instruments which em-
ploys affirmations expressing authorization and knowledge to model possession

⋆ This work is supported by grants N0014-04-1-0724 of the Office of Naval Research,
DAAD19-02-1-0389 of the Army Research Office and CNS-0433540 of the National
Science Foundation.

of resources. In both examples we show how to exploit the formal foundation
of our logic in order to reason about properties of specifications expressed in it.
In the student registration example we show that various constraints, such as
the maximal number of credits a student can sign up for, are respected. In the
monetary examples, we verify balance conditions on the total amount of money
in the bank or under the control of principals. These meta-theoretic analyses rely
again on cut elimination and a somewhat deeper property, namely completeness
of focusing.

While beyond the scope of the present paper, some prior work on proof-
carrying authorization [7, 8] suggests that fragments of our logic would be a
suitable basis for policy enforcement in a distributed architecture.

We now present the logic in two steps, first reviewing affirmation as developed
in [14] in the new context of linearity. We then add possession and knowledge,
followed by a brief sketch of the meta-theory of our logic and the examples. We
conclude with additional related work and future plans.

2 A Constructive Linear Logic of Affirmation

When designing a new specification logic, we have to consider the range of prop-
erties we would like to express. First, we realize that we need standard logical
connectives such as conjunction and implication. These are concerned with the
truth of propositions, which is therefore our first judgment, A true. We also need
reasoning from hypotheses, so our basic judgment form is a hypothetical judg-
ment. One might say that this constitutes the objective part of the logic since
everyone agrees on the laws of logical reasoning and therefore on the meaning
of the connectives.

Second, we need a way for principals to express their intent, such as who may
access some information they have. We call this judgment affirmation, written as
K affirms A (principal K affirms proposition A). The affirmation of a proposition
does not imply its truth, otherwise everyone could give themselves access to any
resource simply by affirming this. For example, a principal may affirm that she
has access to a certain file on the disk. This is an expression of her intent; in
truth she will not have access to the file unless the security policy allows it. On
the other hand, if A is true then all principals are willing to affirm A since we
assume principals are rational and can verify evidence for A.

In an implementation, we imagine affirmations can be established in two
ways: cryptographically via certificates containing A signed by K, and logically
via a deduction proving that A is true. The combination of signed certificates
and logical proofs is the foundation of proof-carrying authorization [6, 7].

We would like to go a step further and allow affirmations that may be used
only once. For example, a personal check for $10 from K made out to L can be
seen as an affirmation that K is prepared to pay L the sum of $10. However, this
affirmation can be used by L only once; L cannot be allowed to cash the check
multiple times. In logical terms this means that the certificate is linear, and that
our logic will be an enrichment of linear logic. Linear logic is characterized by a

2

linear hypothetical judgment where each linear assumption must be used exactly
once and therefore represents a consumable resource. Of course, we also still need
assumptions whose use is unrestricted for reusable certificates. From the point
of view of linear logic, these assumptions are of the form A valid, because their
proof cannot depend on any linear resources.

Putting these observations together, we obtain the judgment forms

Γ ; ∆ =⇒ A true

Γ ; ∆ =⇒ K affirms A

where ∆ consists of linear (use-once) hypotheses A true and Γ consists of un-
restricted (reusable) hypotheses A valid. It turns out that we do not need to
explicitly consider conclusions of the form A valid or hypotheses of the form
K affirms A because they can always be eliminated.

The first set of rules just captures the nature of the hypothetical judgments.
Because A true or A valid can always be inferred from their position in the
sequent, we will generally abbreviate these judgments to just A. The short-hand
γ stands for judgments we consider on the right, which are either A true or
K affirms A.

Γ ; A =⇒ A
(init)

Γ, A; ∆, A =⇒ γ

Γ, A; ∆ =⇒ γ
(copy)

Next, the rules pertaining to the affirmation judgment. Because we do not con-
sider hypotheses of the form K affirms A, there is only one rule which states that
any principal K is prepared to affirm any true proposition.

Γ ; ∆ =⇒ A

Γ ; ∆ =⇒ K affirms A
(affirms)

Next, we internalize affirmation as a propositional modal operator so that we
can combine affirmations with logical connectives such as implication. We write
〈K〉A for the proposition that internalizes K affirms A. In a sequent calculus
connectives are characterized by left and right rules.

Γ ; ∆ =⇒ K affirms A

Γ ; ∆ =⇒ 〈K〉A
(〈〉R)

Γ ; ∆, A =⇒ K affirms C

Γ ; ∆, 〈K〉A =⇒ K affirms C
(〈〉L)

While the right rule is straightforward, the left rule is key to understanding the
modal nature of affirmation. Observe that in order to apply the left rule to 〈K〉A,
the succedent of the sequent must be an affirmation by the same principal K.
This means we can move from the truth of 〈K〉A to the truth of A, but only if
we are reasoning about the affirmations of K. This captures that K is rational.

3 Possession and Knowledge

The next step is to introduce knowledge into our logic. We are not aware of any
attempts to combine epistemic logic with linear logic, so we believe this to be a
contribution of this paper of independent interest.

3

One assumption commonly made about knowledge is that it is monotonic:
we may learn more, for example, by inference, but we do not forget. Then what
is “linear knowledge”? Returning to the usual interpretation of linear logic, we
consider a linear assumption A true as a resource that may be consumed in a
proof. Then linear knowledge is nothing but possession of a resource that may
be consumed in a proof. We therefore write K has A for the new judgment of
possession which is linear. It turns out we can always eliminate possession in the
succedent of a sequent, so there is only one judgmental rule.

Γ ; ∆, A =⇒ γ

Γ ; ∆, K has A =⇒ γ
(has)

Informally, it states that if K possesses A then A may be used a resource. We
have to take care, however, to make sure that other principals cannot steal the
resource.

We internalize possession as a proposition, [K]A, expressing that it is true
that K possesses A. The hypothetical nature of sequents means that a proposi-
tion [K]A in the succedent expresses potential possession, where a proof corre-
sponds to a plan to achieve this position. For example, the sequent

·; K has (B ⊸ A), K has B =⇒ [K]A

could be read as: If K has a means to transform a resource B into a resource
A, and K also has resource B, then it is true that K can obtain resource A. Of
course, resources B and B ⊸ A would be consumed in the process of obtaining
A, since those resources are linear.

The right rule expresses that, in order to show that K could obtain resource
A, we have to show that resource A can be obtained using only the resources
in Γ and ∆ that K possesses and no others. This requires a restriction operator
that removes from a context ∆ all assumptions that are not of the form K has

A, and similarly for the unrestricted context. In comparison, the left rule for
[K]A is straightforward, just transforming the proposition to the corresponding
judgment.

Γ |K ; ∆|K =⇒ A

Γ ; ∆|K =⇒ [K]A
([]R)

Γ ; ∆, K has A =⇒ γ

Γ ; ∆, [K]A =⇒ γ
([]L)

The restriction operator on linear assumptions1 is defined formally as

(·)|K = ·
(∆, K has A)|K = ∆|K , K has A

(∆, L has A)|K = ∆|K for L 6= K

(∆, A true)|K = ∆|K

This means in the []R rule above, the linear context in the premise and the
conclusion must contain only assumptions of the form K has B for the given K

but possibly distinct B.

1 The corresponding operator on unrestricted assumptions Γ is given below.

4

We also need more traditional knowledge of propositions, subject to unre-
stricted reuse. We write this judgment as K knows A. By its nature, it belongs
in the context Γ . Again, knowledge is only required in assumptions so we have
only one rule pertaining directly to the judgment. It allows us to infer the truth
of A given K’s knowledge of A. Of course, the converse must be prohibited.

Γ, K knows A; ∆, A =⇒ γ

Γ, K knows A; ∆ =⇒ γ
(knows)

Internalizing knowledge in the same way as possession, keeping in mind its un-
restricted nature, we obtain the following two rules.

Γ |K ; · =⇒ A

Γ ; · =⇒ [[K]]A
([[]]R)

Γ, K knows A; ∆ =⇒ γ

Γ ; ∆, [[K]]A =⇒ γ
([[]]L)

The first expresses that K can obtain knowledge of A if it follows by logical
reasoning from the knowledge that K already has and no other assumptions.
Formally, restriction is defined as follows.

(·)|K = ·
(Γ, K knows A)|K = Γ |K , K knows A

(Γ, L knows A)|K = Γ |K for L 6= K

(Γ, A valid)|K = Γ |K

This concludes our introduction to the basic logic, omitting only the standard
connectives, both linear and non-linear. A description of the these may be found
in [11]. We assume that the first-order universal quantifier is included because
we need it to encode the examples in section 5. All results of the next section
extend to the first-order case easily.

4 Cut Elimination

In a sequent calculus the connectives are explained via their right and left rules.
Since propositions are always decomposed in such rules when read from the
conclusion to the premises, we are justified in saying that the meaning of propo-
sitions is determined by their proofs, but only if the underlying interpretation of
the sequent as a hypothetical judgment is respected. This is the contents of two
important theorems: the admissibility of cut and the identity principle. Admis-
sibility of cut expresses that we can always eliminate an assumption A true if we
can supply a proof of A true. The identity principle states that we only need the
(init) rule Γ ; A =⇒ A for the case where A is atomic. To prove these we need
to state them in a more general form to account for the other judgments in our
logic. Other properties, such as weakening and contraction for the unrestricted
context are immediate and we don’t state them explicitly.

5

Theorem 1 (Admissibility of cut).

1. If Γ ; ∆ =⇒ A and Γ ; ∆′, A =⇒ γ then Γ ; ∆′, ∆ =⇒ γ.
2. If Γ ; · =⇒ A and Γ, A; ∆′ =⇒ γ then Γ ; ∆′ =⇒ γ.
3. If Γ ; ∆ =⇒ K affirms A and Γ ; ∆′, A =⇒ K affirms C then Γ ; ∆, ∆′ =⇒

K affirms C.
4. If Γ |K ; ∆|K =⇒ A and Γ ; ∆′, K has A =⇒ γ then Γ ; ∆′, ∆|K =⇒ γ.
5. If Γ |K ; · =⇒ A and Γ, K knows A; ∆′ =⇒ γ then Γ ; ∆′ =⇒ γ.

Proof. By nested induction, first on the structure of the cut formula A and then
on the size of the two given derivations, as in [18, 11].

Theorem 2 (Identity). In the sequent calculus where initial sequents are re-
stricted to atomic propositions, Γ ; A =⇒ A for any proposition A.

Proof. By induction on the structure of A.

5 Examples and Reasoning About Policies

We present two examples of security policies expressed in our logic using linear
authorization and knowledge. The first one uses linear authorizations to describe
a university course registration system. In the second example, we use linear
knowledge and authorizations to represent a system of monetary instruments
like checks, promissory notes and bank accounts. We reason about interesting
properties of these systems (like correctness with respect to a given specification)
using the logic. Some of the methods used for reasoning can be generalized
beyond these examples. We return to this point briefly at the end of the section.

5.1 Course Registration

This example describes a university registration system using linear authoriza-
tions. Some of the authorizations in this example may be replaced by linear
possessions, but we do not do this to keep the example simple. We assume
two main principals: a calendar which authorizes free time slots available for
students, and a registrar who controls the entire registration process. The fol-
lowing table lists the predicates we use along with their intuitive meanings.

slot(S, T) Student S is free during time slot T

credits(S, R) Student S may register for R more credits in the
semester

registered(S, C, R, T) Student S is registered in course C for R credits in
time slot T

seats(C, N) There are N more seats available in course C

course(C, R, T) Course C is worth R credits and runs in time slot T

We wish to enforce three conditions during registration:

1. No student registers for more than a stipulated number of credits.

6

2. A student does not register for two courses that use the same time slot.

3. A maximum registration limit for each course is respected.

In the logic, linear authorizations are represented as assumptions of the form
〈K〉A in the linear context ∆. Authorizations meant for unrestricted use are rep-
resented as assumptions of the same form in the context Γ . In an implementa-
tion, these assumptions are substituted by certificates signed by the authorizing
principals.

We assume that at the beginning of the semester a number of certificates are
issued by the registrar and the calendar, i.e., we assume that a number of autho-
rization assumptions are present in our context when we start reasoning. These
are the following. For each student S there is one linear certificate of the form
〈registrar〉credits(S, R) issued by the registrar. This certificate mentions the
maximum number of credits R that the student is permitted to take during the
semester. For each possible time slot T , each student S gets one certificate of
the form 〈calendar〉slot(S, T) from the calendar. This entitles the student to
register for some course in time slot T .

For each course C, the registrar issues a linear certificate of the form
〈registrar〉seats(C, N), that specifies the number of seats N in the course.
The registrar also issues one unrestricted certificate for each course C. This cer-
tificate specifies the number of credits R the course is worth, and the time slot
T in which it runs. It has the form 〈registrar〉course(C, R, T).

Now we state the policy rule governing registration in courses. The rule is
universally quantified over the terms S, N , R, R′, C and T .

reg : 〈registrar〉course(C, R, T) ⊃
〈registrar〉seats(C, N) ⊸

〈registrar〉credits(S, R′) ⊸

(N ≥ 1) ⊃ (R′ ≥ R) ⊃
〈calendar〉slot(S, T) ⊸

(〈registrar〉registered(S, C, R, T) ⊗
〈registrar〉credits(S, R′ − R) ⊗
〈registrar〉seats(C, N − 1))

Intuitively, this rule says the following: if course C, worth R credits and
running in time slot T , has at least one seat available, and student S can reg-
ister for at least R more credits during the semester and is free during time
slot T , then S may register for the course C. The rule consumes the credential
〈registrar〉credits(S, R′), replacing it with a similar credential that decre-
ments R′ by the number R of credits that the course is worth. This enforces
condition (1) above. The rule also consumes S’s time slot credential correspond-
ing to the course’s time slot T to prevent her from registering in another course
that runs in the same slot. This enforces condition (2). Condition (3) is en-
forced because the rule replaces the credential 〈registrar〉seats(C, N) with
〈registrar〉seats(C, N − 1). This reduces the number of seats available in the
course by one.

7

Observe that there is no condition in the rule that represents intent of stu-
dent S to register for course C. This is because we are interested in expressing
only the security aspects of the system in the logic. If this rule were to be im-
plemented, say using a protocol, it would be necessary to ensure that the rule is
used only when student S is actually willing to register for the course C.

Atomicity in policy implementation. In any realistic implementation of the
above policy, it is essential that the policy rule reg be used atomically, i.e., in
any application of the rule, all its pre-conditions be satisfied simultaneously.2

This is significant due to linearity, because proving some pre-conditions of the
rule may utilize linear resources, and a partial application of the rule may result
in a situation where linear resources are incorrectly consumed.

A simple example illustrates this point. Suppose a student S wishes to register
for course C worth R credits in time slot T and the following hold: (a) the course
has a seat (there is a certificate 〈registrar〉seats(C, N), where N ≥ 1), (b)
the student S has sufficient number of available credits (she has a certificate
〈registrar〉credits(S, R′) where R′ ≥ R), and (c) S does not have the required
time slot certificate 〈calendar〉slot(S, T). If we were to permit non-atomic use
of the policy rule, we could consume the linear certificates mentioned in (a) and
(b) to conclude the following:

〈calendar〉slot(S, T) ⊸

(〈registrar〉registered(S, C, R, T) ⊗
〈registrar〉credits(S, R′ − R) ⊗
〈registrar〉seats(C, N − 1))

However, since the student does not have the required time slot certificate
〈calendar〉slot(S, T), we cannot proceed any further. At this point, the system
is stuck in an inconsistent state because two linear certificates mentioning the
number of seats in course C and student S’s available credits have been con-
sumed. No student can register in course C now, and S cannot register for any
other course. Thus it is essential that the policy rule above (and in general, any
policy rule that uses linear resources), be enforced atomically in an implemen-
tation.

Atomicity in the logic. If we can enforce atomicity of policy rules at the level
of the logic itself, we can reason more faithfully about the consequences of poli-
cies using the logic. In particular, we can prove useful invariance properties of
the system as it evolves under a particular policy. Since atomicity is an artifact
of the implementation, the method used to enforce it in the logic should not
affect logical consequence or provability in the logic. One such method is focus-
ing [5], which is a proof search technique that combines a number of inference
steps atomically without affecting provability. A detailed description of focusing
is beyond the scope of this paper. In the following we present it only to the
extent that is appropriate for our purpose. We convert each policy rule into a
derived inference rule, which we add to the logic. Atomicity is forced implicitly

2 The pre-conditions of a rule A1 ⊸ . . . An ⊸ B are A1, . . . , An.

8

by the inference rule. For example, the rule reg can be converted to the following
inference rule.

Γ ; · =⇒ 〈registrar〉course(C, R, T)

Γ ; ∆1 =⇒ 〈registrar〉seats(C, N)

Γ ;∆2 =⇒ 〈registrar〉credits(S, R′)

Γ ; · =⇒ N ≥ 1

Γ ; · =⇒ R′ ≥ R

Γ ; ∆3 =⇒ 〈calendar〉slot(S, T)

Γ ; ∆4, 〈registrar〉registered(S, C, R, T),
〈registrar〉credits(S, R′ − R), 〈registrar〉seats(C, N − 1)

=⇒ γ

(reg)
Γ ;∆1∆2∆3∆4 =⇒ γ

Read bottom up, the rule says that we can conclude γ using the linear re-
sources ∆1∆2∆3∆4, if we can prove the preconditions of the rule reg using ∆1,
∆2 and ∆3, and use ∆4 and the three authorizations produced by reg to prove
γ. This is exactly the behavior of the rule reg if it were implemented atomically.

System states and steps. We now formalize a notion of system state and
state transition (step) for our example. Once we have these definitions we can
prove that certain properties of system states are invariant under steps. These
properties can be used to establish that the policy satisfies the three conditions
mentioned at the beginning of the example. Informally, a state of the system is
a pair of contexts Γ ; ∆ that contains only those authorizations that are relevant
to our example.

Definition 2 (State) A state of the system is a pair of contexts Γ ; ∆, satisfying
the following conditions.

1. All assumptions in Γ have the form 〈registrar〉course(C, R, T).
2. All assumptions in ∆ have one of the forms 〈registrar〉credits(S, R),

〈calendar〉slot(S, T), 〈registrar〉registered(S, C, R, T) or
〈registrar〉seats(C, N).

3. For each student S, ∆ has exactly one assumption of the form
〈registrar〉credits(S, R).

4. For each student S and each time slot T , there is at most one assumption
of one of the following forms in ∆: 〈calendar〉slot(S, T) and
〈registrar〉registered(S, C, R, T).

5. For each course C, there is exactly one assumption of the form
〈registrar〉course(C, R, T) in Γ and one assumption of the form
〈registrar〉seats(C, N) in ∆.

6. For each student S and each course C, there is at most one assumption of
the form 〈registrar〉registered(S, C, R, T) in ∆.

Next, we define a state change, or step of the system. This notion is closely
related to a similar idea from multi-set rewriting [10].

Definition 3 (Step) We say that the pair of contexts Γ ; ∆ steps to the pair
Γ ′; ∆′ (written Γ ; ∆ −→ Γ ′; ∆′), if there is a derivation of Γ ; ∆ =⇒ γ from

9

Γ ; ∆′ =⇒ γ that is parametric in the conclusion γ, i.e., there is a derivation of
the following form that is correct for every γ.

Γ ′; ∆′ =⇒ γ

...
Γ ; ∆ =⇒ γ

By definition, −→ is a transitive relation and −→∗=−→. The following lemma
characterizes −→ in terms of smaller inferences.

Lemma 1 (Characterization of steps). Let Γ ; ∆ be a state, i.e., it satisfies
all conditions in definition 2. Suppose Γ ; ∆ −→ Γ ′; ∆′. Then Γ = Γ ′ and the
corresponding derivation from definition 3 must have the following form (for
some n ≥ 0).

. . .

. . . Γ ;∆′ =⇒ γ
(reg)

Γ ;∆n =⇒ γ

...
Γ ;∆1 =⇒ γ

(reg)
Γ ; ∆ =⇒ γ

Further, the pairs Γ ; ∆i and Γ ; ∆′ are states of the system, i.e., they satisfy the
conditions in definition 2.

Proof. The proof of this lemma follows by observing that if we reason backwards
from the sequent Γ ; ∆ =⇒ γ, then the only rule that applies is reg. This is
because γ is parametric (so no right rule applies). Further, we assumed that
Γ ; ∆ is a state, and hence the only assumptions are of the form 〈K〉A, and so
no left rule applies either because the form of γ is unknown. This argument can
now be repeated. �

Lemma 1 provides us an induction principle for reasoning with steps. We can
induct on the number of (reg) rules in the derivation mentioned in the lemma.
Using this method we can prove the following correctness proposition.

Property 1 (Correctness of the policy) Suppose Γ ; ∆ is a state and
Γ ; ∆ −→ Γ ; ∆′. Then the following hold.

1. For each student S, the sum of all credits R in authorizations of the form
〈registrar〉credits(S, R) and 〈registrar〉registered(S, C, R, T) in the
context ∆ is the same the corresponding sum in ∆′.

2. For every time slot T , and every student S, there is at most one authorization
of the form 〈registrar〉registered(S, C, R, T) in ∆ and ∆′.

3. For each course C, the sum of N in the (unique) certificate of the form
〈registrar〉seats(C, N) and the number of certificates of the form
〈registrar〉registered(S, C, R, T) in the context ∆ is the same as the cor-
responding sum in ∆′.

10

Proof. (1) and (3) follow by induction on the number of (reg) rules in the
derivation corresponding to Γ ; ∆ −→ Γ ; ∆′ from lemma 1. (2) follows from the
fact that Γ ; ∆′ must be a state (lemma 1) and that each state satisfies clause 4
of definition 2. �

Observe that if we start from a state Γ ; ∆ which has no assumptions of
the form 〈registrar〉registered(S, C, R, T), then the three statements of the
above proposition imply the three correctness conditions mentioned at the be-
ginning of the example for the state Γ ; ∆′. This formally proves that the policy
implemented by the rule reg is correct with respect to those conditions.

5.2 Monetary Instruments

We describe a monetary system involving bank accounts, checks, promissory
notes and tradeable items in our logic. In addition to linear authorizations, this
example uses linear possessions to represent various monetary resources in the
hands of principals. We use an approach similar to the previous example. First
we describe the system in our logic using specific predicates and policy rules.
Then we convert the policy rules to inference rules in order to force atomicity.
Next, we define a notion of state and step for the system. Finally, we characterize
steps in a manner analogous to lemma 1, and use this to prove two properties of
the monetary system. The first property says that the total amount of money in
the system remains unchanged as the system evolves. The second property says
that the net assets of every principal remain constant.

We assume the existence of at least two principals, the bank and a credit
company cc. We assume that every principal has an account in the bank. We
represent account balances of principals as assumptions of linear possession: the
assumption bank has balance(K, N) represents the fact that K has N dollars
in her bank account. In particular, the bank maintains its own account. This is
represented as bank has balance(bank, N).

A check for amount N is represented by the proposition check(N).3 A check
is useful only when signed by a principal, who promises to pay the correspond-
ing amount to its bearer, and possessed by some other principal who can use
it. A check for N dollars signed by K, and possessed by K ′ is represented as
K ′

has 〈K〉check(N). Observe the difference in the use of affirmation and knowl-
edge here: K’s signature on the check is represented using an affirmation, which
corresponds realistically to the fact that the check is an intent of payment made
by K, whereas the fact that K ′ holds the check is represented using linear pos-
session.

A promissory note of amount N signed by principal K and possessed by
principal K ′ is represented by the assumption K ′

has 〈K〉iou(N). The difference
between a promissory note and check is that a check can be cashed at a bank
whereas a promissory note cannot be. We assume that the credit company holds

3 In order to keep the representation simple, we do not write the beneficiary of the
check as an explicit argument in the predicate check.

11

ax1 : [L]〈K〉check(N) ⊸ [bank]balance(K, N1) ⊸

[bank]balance(L, N2) ⊸ (N1 ≥ N) ⊃
([bank]balance(K, N1 − N) ⊗ [bank]balance(L, N2 + N))

ax2 : [bank]balance(K, N1) ⊸ [bank]balance(bank, N2) ⊸ (N1 ≥ N) ⊃
([bank]balance(K, N1 − N) ⊗
[K]〈bank〉check(N) ⊗
[bank]balance(bank, N2 + N))

ax3 : [cc]〈K〉iou(N) ⊸ ([cc]〈K〉iou(N + N ′) ⊗ [K]〈cc〉check(N ′))

ax4 : [L]〈M〉check(N) ⊸ [K]item(N) ⊸ ([L]item(N) ⊗ [K]〈M〉check(N))

ax5 : [K]〈L〉check(N) ⊸ [cc]〈K〉iou(N ′) ⊸ (N ′ ≥ N) ⊃
([cc]〈K〉iou(N ′ − N) ⊗ [cc]〈L〉check(N))

ax6 : [K]〈K〉check(N)

Fig. 1. Rules for the monetary system in section 5.2

one promissory note of the form cc has 〈K〉iou(N), for each principal K. The
amount N may be zero if K does not owe the credit company anything. Finally,
we have tradeable items in the system. An item of value N possessed by K is
represented as K has item(N).

Various possible transactions in the system are represented by the rules ax1-
ax6 shown in figure 1. These rules are universally quantified over terms in up-
percase. (ax1) says that if a principal L has a check for amount N signed by K,
she may take it to the bank and get it cashed. In the process, the bank incre-
ments L’s balance by N and decrements K’s balance by the same amount. (ax2)
permits a principal K having account balance at least N to obtain a banker’s
check for that amount. The bank transfers the amount N from K’s account to
its own and gives K a signed check for the same amount. (ax3) says that the
credit company is willing to sign checks for principals by taking promissory notes
from them.

If a principal K possesses an item worth N , she can sell it to L, provided
L can produce a check for the same amount. This is represented by (ax4). The
check moves from L to K during the transaction. (ax5) permits a principal K

to pay the credit company using a check. (ax6) says that any principal K may
sign a check for any amount N .

As with our last example, we convert each of these policy rules to an inference
rule, which we add to our logic. For brevity, we omit an explicit description of
the rules. We proceed to define the notion of state and step for our system. In
this example there are no unrestricted resources; therefore we omit the context
Γ from our definitions.

Definition 4 (State) A state of the system is a context ∆ satisfying the fol-
lowing conditions.

12

1. ∆ contains assumptions of the following forms only: (a) bank has balance(K, N),
(b) cc has 〈K〉iou(N), (c) K has 〈L〉check(N), and (d) K has item(N).

2. For each principal K, there is exactly one assumption of each of the following
forms in ∆: bank has balance(K, N), and cc has 〈K〉iou(N).

The definition of a transition step is similar to that in the previous example.

Definition 5 (Step) We say that the context ∆ steps to ∆′ (written ∆ −→ ∆′)
if there is a derivation of ·; ∆ =⇒ γ from the assumption ·; ∆′ =⇒ γ that is
parametric in the conclusion γ.

Now we state a characterization lemma for steps, similar to lemma 1.

Lemma 2 (Characterization of steps). Suppose ∆ is a state, i.e., it satisfies
the conditions in definition 4. Let ∆ −→ ∆′. Then the corresponding derivation
from definition 5 has the following form, where each rule marked (∗) is an in-
ference rule derived from one of the policy rules (ax1)-(ax6).

. . .

. . . ·; ∆′ =⇒ γ
(∗)

·; ∆n =⇒ γ

...
·; ∆1 =⇒ γ

(∗)
·; ∆ =⇒ γ

Further, ∆i and ∆′ are states of the system, i.e., they satisfy the conditions in
definition 4.

As before, this lemma gives us an induction principle for steps. Using that
we can prove the property shown below. The first statement in the property says
that the total amount of money in the system (as measured by the sum of the
bank balances of all principals) remains constant. The second statement says
that the net assets of every principal remain the same as the system evolves.

Property 2 (Consistency) Let ∆ be a state, and ∆ −→ ∆′. Then the follow-
ing hold.

1. The sum of all N such that bank has balance(K, N) exists in ∆, is the same
as the corresponding sum for ∆′.

2. For each principal K, the sum of amounts N in all assumptions of the form
bank has balance(K, N), K has 〈L〉check(N) and K has item(N) minus
the sum of amounts N in assumptions of the form L has 〈K〉check(N) and
cc has 〈K〉iou(N) is the same for both ∆ and ∆′.

Proof. By induction on the number of rules marked (∗) in the derivation corre-
sponding to ∆ −→ ∆′ from lemma 2. �

13

Generic description of atomicity and steps. In reasoning about the policies
expressed in the two examples above, we used a number of similar concepts. In
each case we had: (a) inference rules derived from policy rules to force atomicity,
(b) notion of state, (c) notion of step, and (d) correctness conditions that are
invariant across steps (properties 1 and 2). Of these, the definition of state and
correctness are specific to a given policy and hard to generalize, but we can
describe atomicity and step for all policies expressible in the logic in a generic
manner by building a logic programming language based on our logic. We discuss
this briefly.

Our enforcement of atomicity using inference rules is based on focusing. The
notion of step relates quite naturally to the idea of forward chaining from proof
search. Focusing and forward chaining can be combined systematically to build a
logic programming language based on our logic. In such a language, proof search
would proceed through interleaving phases of goal directed backward search and
forward chaining. For policies expressed in the language, the notions of atomicity
and step arise from the semantics of proof search. Technically, such a language
requires a new lax modality to separate the two phases of proof search. Prior
experience with the language LolliMon [17] suggests that this is feasible and can
be implemented in practice.

6 Related Work

Our logic combines three major concepts: affirmation, knowledge, and linearity.
As far as we are aware, this is the first time that a linear logic of affirmation and
knowledge has been proposed and investigated. From the security perspective,
affirmations are used for authorization, knowledge to specify the intended flow
of information, linear affirmations for use-once credentials, and linear knowledge
for possession of consumable resources. In prior work, two of the authors have
developed the (non-linear) logic of affirmations for authorization [14], which is
a small fragment of what is presented here. The use of linearity for single-use
credentials together with an enforcement mechanism was first proposed by four
of the authors [8], but the underlying logic was not fully developed and its
properties not investigated. Furthermore, this logic was lacking a treatment of
possession and knowledge.

The study of authorization by logical means was initiated by Abadi et al. [4].
Their logic was classical, presented in an axiomatic style and studied through a
Kripke semantics. No proof-theory or meta-theoretic properties like cut elimina-
tion were described. Subsequently, a number of authorization logics have been
studied and implemented [13, 9, 16, 15, 12, 19]. None of these logics is linear or
provides proof-theoretic explanation of the logical operators. Further pointers
on this line of work can be found in a survey by Abadi [2], who has also recently
reformulated a (non-linear) constructive authorization logic [1] based on DCC [3]
which is quite similar to a fragment of the logic given here.

The concepts of possession and knowledge are related to the K-operator
from epistemic logics (see [20] for a survey of epistemic logics), which describes

14

knowledge held by individuals and is similar to our operator [[K]]A. As far as
we are aware, the study of epistemic logics and its operators has been restricted
almost exclusively to the classical setting. Simultaneous use of knowledge and
linearity described in this paper to represent resources held by principals also
appears to be new.

We believe that the proof-carrying authorization (PCA) [6, 7] architecture
can be extended to implement policies expressed in some fragments of the pro-
posed logic. The main new problem is enforcement of single use and atomicity
of operations. Prior work in this direction indicates that contract signing proto-
cols can be used for doing this effectively [8]. We do not believe it possible to
implement the entire logic in a proof-carrying architecture because a proof of
authorization may depend on private knowledge held by individuals, and ver-
ifying such a proof could result in a breach of security. Therefore, in order to
effectively implement this logic using PCA, we have to restrict ourselves to cer-
tain fragments, for example, where authorizations made by any principal do not
depend on knowledge held by others.

7 Conclusion

We have presented a new constructive linear logic that develops the logical con-
cepts of affirmation and knowledge from judgmental principles. The logic yields
a clean proof theory and an analysis of meanings of the connectives from proof
rules. We have shown that the logic satisfies cut elimination and demonstrated
that policies expressed in the logic are amenable to meta-theoretic analysis re-
garding their correctness. We believe that this logic is a good foundation for
expressing policies involving linear authorizations and resources held by princi-
pals.

There are several avenues for future work besides those mentioned with the
related work. One is to construct and implement a logic programming language
based on this logic, as mentioned at the end of section 5. Another avenue for
future work is to study non-interference properties for the logic, along the lines
of [14]. These properties permit administrators to explore the consequences of
their policies by showing that certain forms of assumptions cannot affect prov-
ability of certain other forms of conclusions. A third direction is to extend the
logic with explicit constructs for distribution of knowledge on physical sites to
reason about networked security systems at a slightly lower level of abstraction.

References

1. Mart́ın Abadi. Personal communication.
2. Mart́ın Abadi. Logic in access control. In Proceedings of the 18th Annual Sympo-

sium on Logic in Computer Science (LICS’03), pages 228–233, Ottawa, Canada,
June 2003. IEEE Computer Society Press.

3. Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core calcu-
lus of dependency. In Conference Record of the 26th Sympoisum on Principles Of

15

Programming Languages (POPL’99), pages 147–160, San Antonio, Texas, January
1999. ACM Press.

4. Mart́ın Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A calculus
for access control in distributed systems. ACM Transactions on Programming
Languages and Systems, 15(4):706–734, October 1993.

5. Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Jour-
nal of Logic and Computation, 2(3):297–347, 1992.

6. Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. In
G. Tsudik, editor, Proceedings of the 6th Conference on Computer and Communi-
cations Security, pages 52–62, Singapore, November 1999. ACM Press.

7. Lujo Bauer. Access Control for the Web via Proof-Carrying Authorization. PhD
thesis, Princeton University, November 2003.

8. Lujo Bauer, Kevin D. Bowers, Frank Pfenning, and Michael K. Reiter. Consumable
credentials in logic-based access control. Technical Report CMU-CYLAB-06-002,
Carnegie Mellon University, February 2006.

9. Elisa Bertino, Barbara Catania, Elena Ferrari, and Paolo Perlasca. A logical frame-
work for reasoning about access control models. ACM Trans. Inf. Syst. Secur.,
6(1):71–127, 2003.

10. Stefano Bistarelli, Iliano Cervesato, Gabriele Lenzini, and Fabio Martinelli. Re-
lating Multiset Rewriting and Process Algebras for Security Protocol Analysis.
Journal of Computer Security, 13:3–47, February 2005.

11. Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning. A judgmental
analysis of linear logic. Submitted. Extended version available as Technical Report
CMU-CS-03-131R, December 2003.

12. Jason Crampton, George Loizou, and Greg O’ Shea. A logic of access control. The
Computer Journal, 44(1):137–149, 2001.

13. John DeTreville. Binder, a logic-based security language. In M.Abadi and
S.Bellovin, editors, Proceedings of the 2002 Symposium on Security and Privacy
(S&P’02), pages 105–113, Berkeley, California, May 2002. IEEE Computer Society
Press.

14. Deepak Garg and Frank Pfenning. Non-interference in constructive authorization
logic. In Proceedings of the 19th IEEE Computer Security Foundations Workshop
(CSFW 19). IEEE Computer Society Press, 2006. To appear.

15. Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. Delegation logic: A
logic-based approach to distributed authorization. ACM Trans. Inf. Syst. Secur.,
6(1):128–171, 2003.

16. Ninghui Li and John C. Mitchell. Datalog with constraints: A foundation for
trust management languages. In PADL ’03: Proceedings of the 5th International
Symposium on Practical Aspects of Declarative Languages, pages 58–73. Springer-
Verlag, 2003.

17. Pablo López, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Monadic concur-
rent linear logic programming. In Proceedings of the 7th International Symposium
on Principles and Practice of Declarative Programming (PPDP’05), Lisbon, Por-
tugal, 2005.

18. Frank Pfenning. Structural cut elimination I. Intuitionistic and classical logic.
Information and Computation, 157(1/2):84–141, March 2000.

19. Harald Rueß and Natarajan Shankar. Introducing Cyberlogic. In Proceedings
of the 3rd Annual High Confidence Software and Systems Conference, Baltimore,
Maryland, April 2003.

20. W. van der Hoek and R. Verbrugge. Epistemic logic: A survey. Game Theory and
Applications, 8:53–94, 2002.

16

