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Three Kinds of Multiprocessors
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identical:
➡ all processors have equal speed and capabilities
uniform heterogeneous (or homogenous):
➡ all processors have equal capabilities
➡ but different speeds
unrelated heterogenous:
➡ no regular relation assumed
➡ tasks may not be able to execute on all processors

We consider only identical 
multiprocessors in this class.
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What makes multiprocessor 
scheduling hard?
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“Few of the results obtained for a single processor 
generalize directly to the multiple processor case; 

bringing in additional processors adds a new 
dimension to the scheduling problem. The simple fact 
that a task can use only one processor even when 
several processors are free at the same time adds a 

surprising amount of difficulty to the scheduling of 
multiple processors.”    [emphasis added]

LIU, C. L. (1969). Scheduling algorithms for multiprocessors in a hard real-time 
environment. In JPL Space Programs Summary, vol. 37-60. JPL, Pasadena, CA, 28–31.
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Scheduling Approaches

Partitioned Scheduling
➡ task statically assigned to cores
➡ One ready queue per core
➡ uniprocessor scheduler on each core
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Global Scheduling
➡ jobs migrate freely
➡ All cores serve shared ready queue
➡ requires new schedulability analysis
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Global Scheduling — Dhall Effect
Uniprocessor Utilization Bounds
➡ EDF = 1
➡ Rate-Monotonic (RM) = ln 2

Question: What are the utilization bounds on a multiprocessor?
➡ Notation: m is the number of processors
➡ Intuition: would like to fully utilize all processors!

Guesses?
➡ Global EDF = ?
➡ Global RM = ?
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Dhall, S. and Liu, C. (1978). On a real-time scheduling problem. Operations Research, 26(1):127– 140.
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Dhall Effect — Illustration
A Difficult Task Set
➡ m + 1 tasks
➡ First m tasks — (Ti  for 1 ≤ i ≤ m):
‣Period = 1
‣WCET: 2ε

➡ Last task Tm+1
‣Period = 1 + ε 
‣WCET = 1

6

release

completion

deadline

scheduled on processor 1

scheduled on processor 2

1 + ε0 time12ε

T1

T2

T3

Total utilization?

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Dhall Effect — Implications

Utilization Bounds
➡ For ε ➞ 0, the utilization bound approaches 1.
➡ Adding processors makes no difference!

Global vs. Partitioned Scheduling
➡ Partitioned scheduling is easier to implement.
➡ Dhall Effect shows limitation of global EDF and RM scheduling.
➡ Researchers lost interest in global scheduling for ~25 years.

Since late 1990ies…
➡ It’s a limitation of EDF and RM, not global scheduling in general.
➡ Much recent work on global scheduling.
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Partitioned Scheduling

Reduction to m uniprocessor problems
➡ Assign each task statically to one processor
➡ Use uniprocessor scheduler on each core
‣Either fixed-priority (P-FP) scheduling or EDF (P-EDF)

Find task mapping such that
➡ No processor is over-utilized
➡ Each partition is schedulable
‣ trivial for implicit deadlines & EDF
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Connection to Bin Packing
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Bin packing optimization problem
Given a bin capacity V and a set of n items x1,…,xn 

with sizes a1,…,an, assign each item to a bin such that 
the number of bins is minimized.

Bin packing decision problem
Given a number of bins B, a bin capacity V, and a 

set of n items x1,…,xn with sizes a1,…,an, does there 
exist a packing of x1,…,xn that fits into B bins?
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Bin-Packing Reduction

1) Normalize sizes a1,…,an and capacityV
➡ assume unit-speed processors

2) Create an implicit-deadline sporadic task Ti for each item xi
➡ with utilization ui = ai / V
➡ Pick period arbitrarily, scale WCET appropriately

3) Is the resulting task set feasible under P-EDF on B processors?
➡ Hence, finding a valid partitioning is NP-hard.
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Bin packing decision problem
Given a number of bins B, a bin capacity V, and a 

set of n items x1,…,xn with sizes a1,…,an, does there 
exist a packing of x1,…,xn that fits into B bins?
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Upper Utilization Bound

A difficult-to-partition task set
➡ m + 1 tasks
➡ For each Ti  for 1 ≤ i ≤ m + 1:
‣Period = 2
‣WCET: 1 + ε
‣Utilization: (1 + ε) / 2

Partitioning not possible
➡ Any two tasks together over-utilize a single processor by ε!
➡ Total utilization = (m + 1) · (1 + ε) / 2
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Andersson, B., Baruah, S., and Jonsson, J. (2001). Static-priority scheduling on multiprocessors.
In Proceedings of the 22nd IEEE Real-Time Systems Symposium, pages 193–202.

Theorem: there exist task sets with utilizations 
arbitrarily close to (m+1)/2 that cannot be partitioned.
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Partitioning in Practice (I)
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Bottom line: heuristics work well most of the time (for independent tasks). 
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Partitioning in Practice (II)
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Bottom line: larger number of tasks ➔ easier to partition. 
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Improving Upon Partitioning

Worst-Case Loss
➡ Partitioning may cause almost up to 50% utilization loss!
➡ For pathological task sets, the system is half-idle!
➡ It gets much more difficult for non-independent task sets
‣Locks, precedence, etc.

Can’t we do better?
➡ Can we achieve a utilization bound of m?
➡ Avoid offline assignment phase?
➡ Global scheduling…
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Global Scheduling
General Approach
➡ At each point in time, assign each job a priority
➡ At any point in time, schedule the m highest-priority jobs

Implementation
➡ Conceptually a globally shared ready queue
➡ Actual implementation can differ
➡ efficient & correct: ongoing research

Challenges
➡ migrations require coordination
➡ cache affinity
➡ lock contention
➡ e.g., see Linux
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Classification of Scheduling Policies
Task-Level Fixed-Priority (FP) Scheduler (static priorities)
➡ Each task is assigned a fixed priority
➡ All jobs (of a task) have the same priority
➡ Example: Rate-Monotonic Scheduling

Job-Level Fixed-Priority (JLFP) Scheduler (dynamic priorities)
➡ The priority of each task changes over time.
➡ The priority of a job does not change.
➡ Example: EDF

Job-Level Dynamic-Priority (JLDP) Scheduler
➡ No restrictions.
➡ The priority of each job changes over time.
➡ Priorities are a function of time, job identity,

and system state.
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Unknown Critical Instant
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Critical Instant
➡ Job release time such that response time is maximized.
➡ Exists unless system is over-loaded.

Uniprocessor
➡ Liu & Layland: synchronous release sequence yields worst-

case response-times
‣synchronous: all tasks release a job at time 0
‣assuming constrained deadlines and no deadline misses

Multiprocessors
➡ No general critical instant is known!
➡ It is not necessarily the synchronous release sequence.
➡ A G-EDF example…
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Unknown Critical Instant
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The synchronous release sequence is not always the worst case!
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Non-Optimality of Global EDF

Uniprocessor
➡ EDF is optimal

Multiprocessor
➡ G-EDF is not optimal (w.r.t. meeting deadlines)
➡ Key problem: sequentiality of tasks
‣Two processors available for T5, but it can only use one.
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Non-Optimality of G-JLFP Scheduling

Any Job-Level Fixed-Priority Scheduling Policy is not optimal
➡ Example: two processors, three tasks
‣Period 15, WCET = 10
‣synchronous release at time 0

➡ One of the three jobs is scheduled last under any JLFP policy
‣Deadline miss inevitable!
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Global JLDP Example

21

release

completion

deadline

scheduled on processor 1

scheduled on processor 2

20151050
time

T1

T2

T3

release

completion

deadline

scheduled on processor 1

scheduled on processor 2

20151050
time

T1

T2

T3

G-JLFP

G-JLDP

job priority changes

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Optimal Multiprocessor Scheduling
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G-EDF is a JLFP Policy
➡ Can (pseudo-)deadlines be used to schedule correctly?
➡ Yes, but deadlines alone are not enough.
‣Need to break jobs into “smaller pieces”.
‣Need appropriate tie-breaking rules.

➡ PD2
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Optimal Multiprocessor Scheduling
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Pfair / PD2
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Optimal Multiprocessor Scheduling
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Pfair
➡ Notion of “fair share of processor”
➡ If a schedule is pfair, then no implicit deadline will be missed.

PD2

➡ Constructs a pfair schedule.
➡ Splits jobs into unit-sized subtasks

‣  Each subtask has its own deadline
➡ Uses two deadline tie-breaking rules

Pfair / PD2
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PD2 Illustration
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Optimal Online Scheduling of Sporadic 
Tasks with Arbitrary Deadlines
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Is it possible to extend Pfair/PD2 to support arbitrary deadlines?
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Optimal Online Scheduling of Sporadic 
Tasks with Arbitrary Deadlines
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Theorem: there does not exist an online scheduler that
optimally schedules sporadic tasks with constrained deadlines.

Fisher, Goossens, Baruah (2010), Optimal online multiprocessor scheduling of sporadic real-time tasks is impossible. Real-Time Systems, volume 45, pp 26-71.
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Non-Existence of Optimal Online 
Schedulers for General Sporadic Tasks
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which job goes next?
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Non-Existence of Optimal Online 
Schedulers for General Sporadic Tasks
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If T5 goes first, then T6 can miss its deadline.

New jobs at time 6.
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Non-Existence of Optimal Online 
Schedulers for General Sporadic Tasks
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If T6 goes first, then T5 can miss its deadline.

New jobs at time 5.
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Non-Existence of Optimal Online 
Schedulers for General Sporadic Tasks
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If T6 goes first, then T5 can miss its deadline.
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If T5 goes first, then T6 can miss its deadline.

The task set is feasible, but correct decision requires knowledge of future arrivals!
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Clustered Scheduling
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partitioned scheduling

A hybrid / generalization of global and partitioned scheduling.
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Clustered Scheduling
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partitioned scheduling

larger clusters = higher overheads

smaller clusters = harder bin packing instance
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Semi-Partitioned Scheduling

Partition first
➡ Assign each task statically to a processor if possible
➡ Keep track which tasks could not be assigned (if any)
➡ Details vary according to specific semi-partitioned algorithm

Split remaining tasks across multiple processors
➡ Split each unassigned task into multiple “portions” or “chunks”
➡ Distribute portions/chunks among multiple processors
‣E.g., split each job into subjobs with precedence constraints
‣Alternatively, do not migrate jobs, but vary a task’s processor 
assignment over time (soft real-time)
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another generalization partitioned scheduling
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Summary
Approaches
➡ Partitioned
➡ Global
➡ Hybrid
‣Clustered
‣Semi-Partitioned
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Priorities
➡ Task-Level Fixed Priority
➡ Job-Level Fixed Priority
➡ Job-Level Dynamic 

Priority

Optimal Online Scheduling
➡ Implicit deadlines: requires global job-level 

dynamic priority scheduler
➡ Constrained deadlines: does not exist
➡ Arbitrary deadlines: does not exist


