
Björn Brandenburg
Real-Time Systems Group

Introduction to Multiprocessor
Real-Time Systems

WS 2012/2013

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Three Kinds of Multiprocessors

2

I/O coproc.

500 MHz

500 MHz

FPU

2 GHz

FPU

2 GHz

FPU

2 GHz

FPU

Proc. 1 Proc. 2 Proc. 3

Identical

Uniform
Heterogeneous

2 GHz

FPU

1 GHz

FPU

Unrelated
Heterogeneous

1 GHz

FPU

3 GHz

large cache

identical:
➡ all processors have equal speed and capabilities
uniform heterogeneous (or homogenous):
➡ all processors have equal capabilities
➡ but different speeds
unrelated heterogenous:
➡ no regular relation assumed
➡ tasks may not be able to execute on all processors

We consider only identical
multiprocessors in this class.

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

What makes multiprocessor
scheduling hard?

3

“Few of the results obtained for a single processor
generalize directly to the multiple processor case;

bringing in additional processors adds a new
dimension to the scheduling problem. The simple fact
that a task can use only one processor even when
several processors are free at the same time adds a

surprising amount of difficulty to the scheduling of
multiple processors.” [emphasis added]

LIU, C. L. (1969). Scheduling algorithms for multiprocessors in a hard real-time
environment. In JPL Space Programs Summary, vol. 37-60. JPL, Pasadena, CA, 28–31.

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Scheduling Approaches

Partitioned Scheduling
➡ task statically assigned to cores
➡ One ready queue per core
➡ uniprocessor scheduler on each core

4

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

J1

J2

J3

J4

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

Global Scheduling
➡ jobs migrate freely
➡ All cores serve shared ready queue
➡ requires new schedulability analysis

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Global Scheduling — Dhall Effect
Uniprocessor Utilization Bounds
➡ EDF = 1
➡ Rate-Monotonic (RM) = ln 2

Question: What are the utilization bounds on a multiprocessor?
➡ Notation: m is the number of processors
➡ Intuition: would like to fully utilize all processors!

Guesses?
➡ Global EDF = ?
➡ Global RM = ?

5

Dhall, S. and Liu, C. (1978). On a real-time scheduling problem. Operations Research, 26(1):127– 140.

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Dhall Effect — Illustration
A Difficult Task Set
➡ m + 1 tasks
➡ First m tasks — (Ti for 1 ≤ i ≤ m):
‣Period = 1
‣WCET: 2ε

➡ Last task Tm+1
‣Period = 1 + ε
‣WCET = 1

6

release

completion

deadline

scheduled on processor 1

scheduled on processor 2

1 + ε0 time12ε

T1

T2

T3

Total utilization?

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Dhall Effect — Implications

Utilization Bounds
➡ For ε ➞ 0, the utilization bound approaches 1.
➡ Adding processors makes no difference!

Global vs. Partitioned Scheduling
➡ Partitioned scheduling is easier to implement.
➡ Dhall Effect shows limitation of global EDF and RM scheduling.
➡ Researchers lost interest in global scheduling for ~25 years.

Since late 1990ies…
➡ It’s a limitation of EDF and RM, not global scheduling in general.
➡ Much recent work on global scheduling.

7 MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Partitioned Scheduling

Reduction to m uniprocessor problems
➡ Assign each task statically to one processor
➡ Use uniprocessor scheduler on each core
‣Either fixed-priority (P-FP) scheduling or EDF (P-EDF)

Find task mapping such that
➡ No processor is over-utilized
➡ Each partition is schedulable
‣ trivial for implicit deadlines & EDF

8

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Connection to Bin Packing

9

Bin packing optimization problem
Given a bin capacity V and a set of n items x1,…,xn

with sizes a1,…,an, assign each item to a bin such that
the number of bins is minimized.

Bin packing decision problem
Given a number of bins B, a bin capacity V, and a

set of n items x1,…,xn with sizes a1,…,an, does there
exist a packing of x1,…,xn that fits into B bins?

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Bin-Packing Reduction

1) Normalize sizes a1,…,an and capacityV
➡ assume unit-speed processors

2) Create an implicit-deadline sporadic task Ti for each item xi
➡ with utilization ui = ai / V
➡ Pick period arbitrarily, scale WCET appropriately

3) Is the resulting task set feasible under P-EDF on B processors?
➡ Hence, finding a valid partitioning is NP-hard.

10

Bin packing decision problem
Given a number of bins B, a bin capacity V, and a

set of n items x1,…,xn with sizes a1,…,an, does there
exist a packing of x1,…,xn that fits into B bins?

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Upper Utilization Bound

A difficult-to-partition task set
➡ m + 1 tasks
➡ For each Ti for 1 ≤ i ≤ m + 1:
‣Period = 2
‣WCET: 1 + ε
‣Utilization: (1 + ε) / 2

Partitioning not possible
➡ Any two tasks together over-utilize a single processor by ε!
➡ Total utilization = (m + 1) · (1 + ε) / 2

11

Andersson, B., Baruah, S., and Jonsson, J. (2001). Static-priority scheduling on multiprocessors.
In Proceedings of the 22nd IEEE Real-Time Systems Symposium, pages 193–202.

Theorem: there exist task sets with utilizations
arbitrarily close to (m+1)/2 that cannot be partitioned.

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Partitioning in Practice (I)

12

Bottom line: heuristics work well most of the time (for independent tasks).

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Partitioning in Practice (II)

13

Bottom line: larger number of tasks ➔ easier to partition.
MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Improving Upon Partitioning

Worst-Case Loss
➡ Partitioning may cause almost up to 50% utilization loss!
➡ For pathological task sets, the system is half-idle!
➡ It gets much more difficult for non-independent task sets
‣Locks, precedence, etc.

Can’t we do better?
➡ Can we achieve a utilization bound of m?
➡ Avoid offline assignment phase?
➡ Global scheduling…

14

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Global Scheduling
General Approach
➡ At each point in time, assign each job a priority
➡ At any point in time, schedule the m highest-priority jobs

Implementation
➡ Conceptually a globally shared ready queue
➡ Actual implementation can differ
➡ efficient & correct: ongoing research

Challenges
➡ migrations require coordination
➡ cache affinity
➡ lock contention
➡ e.g., see Linux

15

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

J1

J2

J3

J4

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Classification of Scheduling Policies
Task-Level Fixed-Priority (FP) Scheduler (static priorities)
➡ Each task is assigned a fixed priority
➡ All jobs (of a task) have the same priority
➡ Example: Rate-Monotonic Scheduling

Job-Level Fixed-Priority (JLFP) Scheduler (dynamic priorities)
➡ The priority of each task changes over time.
➡ The priority of a job does not change.
➡ Example: EDF

Job-Level Dynamic-Priority (JLDP) Scheduler
➡ No restrictions.
➡ The priority of each job changes over time.
➡ Priorities are a function of time, job identity,

and system state.

16

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Unknown Critical Instant

17

Critical Instant
➡ Job release time such that response time is maximized.
➡ Exists unless system is over-loaded.

Uniprocessor
➡ Liu & Layland: synchronous release sequence yields worst-

case response-times
‣synchronous: all tasks release a job at time 0
‣assuming constrained deadlines and no deadline misses

Multiprocessors
➡ No general critical instant is known!
➡ It is not necessarily the synchronous release sequence.
➡ A G-EDF example…

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Unknown Critical Instant

18

The synchronous release sequence is not always the worst case!

release

completion

deadline

scheduled on processor 1

scheduled on processor 2

20151050 time

T1

T2

T3

T4

T5

release

completion

deadline

scheduled on processor 1

scheduled on processor 2

20151050 time

T1

T2

T3

T4

T5

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Non-Optimality of Global EDF

Uniprocessor
➡ EDF is optimal

Multiprocessor
➡ G-EDF is not optimal (w.r.t. meeting deadlines)
➡ Key problem: sequentiality of tasks
‣Two processors available for T5, but it can only use one.

19

release

completion

deadline

scheduled on processor 1

scheduled on processor 2

20151050 time

T1

T2

T3

T4

T5

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Non-Optimality of G-JLFP Scheduling

Any Job-Level Fixed-Priority Scheduling Policy is not optimal
➡ Example: two processors, three tasks
‣Period 15, WCET = 10
‣synchronous release at time 0

➡ One of the three jobs is scheduled last under any JLFP policy
‣Deadline miss inevitable!

20

release

completion

deadline

scheduled on processor 1

scheduled on processor 2

20151050
time

T1

T2

T3

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Global JLDP Example

21

release

completion

deadline

scheduled on processor 1

scheduled on processor 2

20151050
time

T1

T2

T3

release

completion

deadline

scheduled on processor 1

scheduled on processor 2

20151050
time

T1

T2

T3

G-JLFP

G-JLDP

job priority changes

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Optimal Multiprocessor Scheduling

22

release

completion

deadline

scheduled on processor 1

scheduled on processor 2

20151050 time

T1

T2

T3

T4

T5 G-EDF

G-EDF is a JLFP Policy
➡ Can (pseudo-)deadlines be used to schedule correctly?
➡ Yes, but deadlines alone are not enough.
‣Need to break jobs into “smaller pieces”.
‣Need appropriate tie-breaking rules.

➡ PD2

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Optimal Multiprocessor Scheduling

23

release

completion

deadline

scheduled on processor 1

scheduled on processor 2

20151050 time

T1

T2

T3

T4

T5

release

completion

deadline

scheduled on processor 1

scheduled on processor 2

20151050 time

T1

T2

T3

T4

T5

G-EDF

Pfair / PD2

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Optimal Multiprocessor Scheduling

24

release

completion

deadline

scheduled on processor 1

scheduled on processor 2

20151050 time

T1

T2

T3

T4

T5

Pfair
➡ Notion of “fair share of processor”
➡ If a schedule is pfair, then no implicit deadline will be missed.

PD2

➡ Constructs a pfair schedule.
➡ Splits jobs into unit-sized subtasks

‣ Each subtask has its own deadline
➡ Uses two deadline tie-breaking rules

Pfair / PD2

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

PD2 Illustration

25

group deadline
(if past window)

release

completion

deadline

scheduled on processor 1

scheduled on processor 2

pfair window

1050 time

T1

T2

T3

T4

T5

1

21 3

2

1

4

3

5

4

21

1

6

2

5 6

1

7

3

6

1
2

3

4

5

1
2

1

1

1

2

3

6

1
2

3

4
5

7

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Optimal Online Scheduling of Sporadic
Tasks with Arbitrary Deadlines

26

Is it possible to extend Pfair/PD2 to support arbitrary deadlines?

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Optimal Online Scheduling of Sporadic
Tasks with Arbitrary Deadlines

27

Theorem: there does not exist an online scheduler that
optimally schedules sporadic tasks with constrained deadlines.

Fisher, Goossens, Baruah (2010), Optimal online multiprocessor scheduling of sporadic real-time tasks is impossible. Real-Time Systems, volume 45, pp 26-71.

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Non-Existence of Optimal Online
Schedulers for General Sporadic Tasks

28

Task WCET Deadline Period

T1

T2

T3

T4

T5

T6

2 2 5

1 1 5

1 2 6

2 4 100

2 6 100

4 8 100

1050 time

T1

T2

T3

T4

T5

T6

which job goes next?

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

1050 time

T1

T2

T3

T4

T5

T6

Non-Existence of Optimal Online
Schedulers for General Sporadic Tasks

29

Task WCET Deadline Period

T1

T2

T3

T4

T5

T6

2 2 5

1 1 5

1 2 6

2 4 100

2 6 100

4 8 100

If T5 goes first, then T6 can miss its deadline.

New jobs at time 6.

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

1050 time

T1

T2

T3

T4

T5

T6

Non-Existence of Optimal Online
Schedulers for General Sporadic Tasks

30

Task WCET Deadline Period

T1

T2

T3

T4

T5

T6

2 2 5

1 1 5

1 2 6

2 4 100

2 6 100

4 8 100

If T6 goes first, then T5 can miss its deadline.

New jobs at time 5.

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

1050 time

T1

T2

T3

T4

T5

T6

Non-Existence of Optimal Online
Schedulers for General Sporadic Tasks

31

If T6 goes first, then T5 can miss its deadline.

1050 time

T1

T2

T3

T4

T5

T6

If T5 goes first, then T6 can miss its deadline.

The task set is feasible, but correct decision requires knowledge of future arrivals!

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Clustered Scheduling

32

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling
Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

J1

J2

J3

J4

global scheduling
Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

partitioned scheduling

A hybrid / generalization of global and partitioned scheduling.

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Clustered Scheduling

33

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling
Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

J1

J2

J3

J4

global scheduling
Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

partitioned scheduling

larger clusters = higher overheads

smaller clusters = harder bin packing instance

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Semi-Partitioned Scheduling

Partition first
➡ Assign each task statically to a processor if possible
➡ Keep track which tasks could not be assigned (if any)
➡ Details vary according to specific semi-partitioned algorithm

Split remaining tasks across multiple processors
➡ Split each unassigned task into multiple “portions” or “chunks”
➡ Distribute portions/chunks among multiple processors
‣E.g., split each job into subjobs with precedence constraints
‣Alternatively, do not migrate jobs, but vary a task’s processor
assignment over time (soft real-time)

34

another generalization partitioned scheduling

MPI-SWS

Real-time Scheduling and Synchronization Seminar

Brandenburg

Summary
Approaches
➡ Partitioned
➡ Global
➡ Hybrid
‣Clustered
‣Semi-Partitioned

35

Priorities
➡ Task-Level Fixed Priority
➡ Job-Level Fixed Priority
➡ Job-Level Dynamic

Priority

Optimal Online Scheduling
➡ Implicit deadlines: requires global job-level

dynamic priority scheduler
➡ Constrained deadlines: does not exist
➡ Arbitrary deadlines: does not exist

