Introduction to Multiprocessor
Real-Time Systems

WS 2012/2013

] Max
Planck
@ Institute Bjorn Brandenburg
for Real-Time Systems Group

Software Systems

Real-time Scheduling and Synchronization Seminar

What makes multiprocessor
scheduling hard?

“Few of the results obtained for a single processor
generalize directly to the multiple processor case;
bringing in additional processors adds a new
dimension to the scheduling problem. The simple fact
that a task can use only one processor even when
several processors are free at the same time adds a
surprising amount of difficulty to the scheduling of
multiple processors.” [emphasis added]

LIU, C. L. (1969). Scheduling algorithms for multipr in a hard real-ti
environment. In JPL Space Programs Summary, vol. 37-60. JPL, Pasadena, CA, 28-31.

MPI-SW$S Brandenburg 3

Realtime Scheduling and Synchronization Seminar

Three Kinds of Multiprocessors

Proc. 1 Proc. 2 Proc. 3
. 2 GH. 2 GH 2 GH.
Identical i i i
FPU FPU FPU
Uniform 2 GHz 1 GHz 500 MHz
Heterogeneous
FPU FPU FPU
Unrelated 1GHz 3 GHz 500 MHz
Heterogeneous FPU large cache 1/0 coproc.

identical:
= all processors have equal speed and capabilities

uniform heterogeneous (or homogenous):
= all processors have equal capabilities
= but different speeds

unrelated heterogenous:

= no regular relation assumed We consider only identical

= tasks may not be able to execute on all processors multiprocessors in this class.

MPI-SWS Brandenburg 2

Real-time Scheduling and Synchronization Seminar

Scheduling Approaches

|

Partitioned Scheduling
= task statically assigned to cores = jobs migrate freely

= One ready queue per core = All cores serve shared ready queue
= uniprocessor scheduler on each core = requires new schedulability analysis

Global Scheduling

MPI-SWS Brandenburg 4

Global Scheduling — Dhall Effect Dhall Effect — Illustration

Uniprocessor Utilization Bounds A Difficult Task Set
- EDF = 1 = m + 1tasks
= Rate-Monotonic (RM) = In 2 = First mtasks — (Tifor 1 =i =m):
» Period = 1
»WCET: 2¢ Total utilization?

= Last task T+
Question: What are the utilization bounds on a multiprocessor? »Period=1+¢

= Notation: m is the number of processors »WCET = 1
= Intuition: would like to fully utilize all processors!

T3] [i -lr Dscheduled on processor 1
Guesses? T2 t j- l -scheduled on proc-essorZ
- G|Oba| EDF = 17 Tl j l Trelease L'deudlme
- GIObaI RM = 9 | | | | ime Tcompletlon
0 2¢ 1 T+e
Dhall, S. and Liu, C. (1978). On a real-time scheduling problem. Operations Research, 26(1):127— 140.
MPI-SWS Brandenburg 5 MPI-SWS Brandenburg 6
Dhall Effect — Implications Partitioned Scheduling

Utilization Bounds Reduction to m unior r broblem

= For £ — 0, the utilization bound approaches 1. ‘eAuq 10 oht Uklpt otges”sot problems

= Adding processors makes no difference! Ssign each task statically 10 one processor

= Use uniprocessor scheduler on each core

Global vs. Partitioned Scheduling » Either fixed-priority (P-FP) scheduling or EDF (P-EDF)

= Partitioned scheduling is easier to implement. Find task m in h that

= Dhall Effect shows limitation of global EDF and RM scheduling. - No :foceszgf:s % ‘f:rcuti" :e g

- R rchers lost interest in global scheduling for ~2 rs. o A

esearchers lost interest in global scheduling for ~25 years ~ Each partition is schedulable

Since late 1990ies... »trivial for implicit deadlines & EDF

= It’s a limitation of EDF and RM, not global scheduling in general.

= Much recent work on global scheduling.

MPI-SW$S Brandenburg 7 MPI-SWS Brandenburg 8

Realtime Scheduling and Synchronization Seminar

Connection to Bin Packing

Bin packing decision problem
Given a number of bins B, a bin capacity V, and a
set of n items x1i,...,xn with sizes ai,...,an, does there
exist a packing of xi,...,xn that fits into B bins?

Bin packing optimization problem

Given a bin capacity V and a set of n items x1,...,Xn
with sizes as,...,an, assign each item to a bin such that
the number of bins is minimized.

MPI-SWS Brandenburg

Real-time Scheduling and Synchronization Seminar

Upper Utilization Bound

Theorem: there exist task sets with utilizations
arbitrarily close to (m+1)/2 that cannot be partitioned.

Andersson, B., Baruah, S., and Jonsson, J. (2001). Static-priority scheduling on multiprocessors.
In Proceedings of the 22nd IEEE Real-Time Systems Symposium, pages 193-202.

A difficult-to-partition task set
= m + 1tasks

= Foreach Tifor Tsism+1:
» Period =
»WCET: 1 +¢
» Utilization: (1 +)/

Partitioning not possible
= Any two tasks together over-utilize a single processor by &!
= Total utilizaton=(m+1) - (1 +¢)/

MPI-SW$S Brandenburg

Realtime Scheduling and Synchronization Seminar

Bin-Packing Reduction

Bin packing decision problem
Given a number of bins B, a bin capacity V, and a
set of n items x1,...,Xn With sizes au,...,an, does there
exist a packing of xi,...,xn that fits into B bins?

1) Normalize sizes aj,...,an» and capacity V
= assume unit-speed processors

2) Create an implicit-deadline sporadic task T;for each item x;
= with utilization uj=a;/V
= Pick period arbitrarily, scale WCET appropriately

3) Is the resulting task set feasible under P-EDF on B processors?
= Hence, finding a valid partitioning is NP-hard.

MPI-SWS Brandenburg

Real-time Scheduling and Synchronization Seminar

Partitioning in Practice (1)

binpacking heuristcs comparison (P-EDF), using Emberson et al. (2010) tasks
for m=16, periods=logunif, tasks-per-core=3, and tasks=48

total utilization

next-fit-decreasing
first-fit-decreasing - - -
best-fit-decreasing «««-----

worst-fit-decreasing —-—--
almost-worst-firt-decreasing —--—-
any-heuristic-decreasing

MPI-SWS Brandenburg

% 1 T

[2] *‘t-.\ N

3 v

8 o081/ \\ 1
)

8 06 .
>

3

5 04 B
12}

o 02 - 4
c

K]

§ 0r I I I I I | 1 1]
- 8 9 10 11 12 13 14 15 16

Bottom line: heuristics work well most of the time (for independent tasks).

12

Realtime Scheduling and Synchronization Seminar

fraction of schedulable task sets

MPI-SW$S

Partitioning in Practice (ll)

difficulty of binpacking (P-EDF), using Emberson et al. (2010) tasks
with m=16, and periods=logunif

0.8 -

0.6 -

0.4

0.2 -

N
L L L L L L L |
8 9 10 11 12 13 14 15 16
total utilization

tasks-per-core=1.5, n=24
tasks-per-core=2, n=32 - - -
tasks-per-core=3, n=48 --------

tasks-per-core=5, n=80 —-—--
tasks-per-core=7, n=112 —--—-
tasks-per-core=10, n=160

Bottom line: larger number of tasks = easier to partition.

Brandenburg

Real-time Scheduling and Synchronization Seminar

MPI-SWS

Global Scheduling

General Approach
= At , assign each job a priority
= At any point in time, schedule the m highest-priority jobs

Implementation

= Conceptually a globally shared ready queue

= Actual implementation can differ
= efficient & correct: ongoing research v

Challenges @ @ @ @

= migrations require coordination

= cache affinity e e
= |ock contention
“

= e.g., see Linux

Brandenburg

Realtime Scheduling and Synchronization Seminar

Improving Upon Partitioning

Worst-Case Loss
= Partitioning may cause almost up to 50% utilization loss!
= For pathological task sets, the system is half-idle!
= It gets much more difficult for non-independent task sets
» Locks, precedence, etc.

Can’t we do better?

= Can we achieve a utilization bound of m?
= Avoid offline assignment phase?

= Global scheduling...

MPI-SWS Brandenburg

Real-time Scheduling and Synchronization Seminar

Classification of Scheduling Policies

Task-Level Fixed-Priority (FP) Scheduler (static priorities)
= Each task is assigned a fixed priority

= All jobs (of a task) have the same priority

= Example: Rate-Monotonic Scheduling

Job-Level Fixed-Priority (JLFP) Scheduler (dynamic priorities)
= The priority of each task changes over time.

= The priority of a job does not change.

= Example: EDF

Job-Level Dynamic-Priority (JLDP) Scheduler

= No restrictions.

= The priority of each job changes over time.

= Priorities are a function of time, job identity,
and system state.

MPI-SWS Brandenburg

Realtime Scheduling and Synchronization Seminar

MPI-SW$S

Real-time Scheduling and Synchronization Seminar

Unknown Ceritical Instant

Critical Instant
= Job release time such that response time is maximized.
= Exists unless system is over-loaded.

Uniprocessor

= Liu & Layland: synchronous release sequence yields worst-
case response-times
» synchronous: all tasks release a job at time 0
» assuming constrained deadlines and no deadline misses

Multiprocessors

= No general critical instant is known!

= |t is not necessarily the synchronous release sequence.
= A G-EDF example...

Brandenburg

Non-Optimality of Global EDF

7| = —
Ty | == |
T I:lschsduled on processor 1
T3 HI T j [scheduled on processor 2
T2 1 j- Treleuse ldeudline
1I||||I||||I||||I||||I T complatin
0 10 15 20 > fime
Uniprocessor
= EDF is optimal
Multiprocessor
= G-EDF is not optimal (w.r.t. meeting deadlines)
= Key problem: sequentiality of tasks
» Two processors available for Ts, but it can only use one.
MPI-SW$S Brandenburg

Realtime Scheduling and Synchronization Seminar

T5
T,
13
T
T

T5
T
T3
T,
T

MPI-SWS

Unknown Ceritical Instant

= —
| ¢
= =
[|
| | | l | |
I 1 [l —|
[— l
= H |
= |
(]I)llllgllll]}ollllllsllllzlo

time

time

I:lscheduled on processor 1

- scheduled on processor 2
l deadline

T release

T completion

I:lscheduled on processor 1

- scheduled on processor 2
l deadline

T release

T completion

The synchronous release sequence is not always the worst case!

Brandenburg

Non-Optimality of G-JLFP Scheduling

MPI-SWS

» Period 15, WCET =10
» synchronous release at time 0

» Deadline miss inevitable!

Brandenburg

1
Tsl [
T
T2 |
T
Tl |
N T T Y T T T A T A M I
0 10 15 20

Dscheduled on processor 1

-schsdulsd on processor 2
T release L deadline

T completion

Any Job-Level Fixed-Priority Scheduling Policy is not optimal
= Example: two processors, three tasks

= One of the three jobs is scheduled last under any JLFP policy

20

Realtime Scheduling and Synchronization Seminar

Global JLDP Example
[scheduled on processor 1
T I TI [scheduled on processor 2
T i 1 release lAdeudline
1 | { | GeLFp L T—=
(I)l|||é||||1I0||||1I5||||2I0|||| time
job priority changes
* [Jscheduled on processor 1
T : [scheduled on processor 2
Tl | 4 f release | deadline
7| | i G-JLDP oo
(I)l|||5I||||1I0||||1I5||||2I0|||| time
MPI-SWS Brandenburg

Real-time Scheduling and Synchronization Seminar

Optimal Multiprocessor Scheduling

7| b= ——1 G-EDF
T | ===
7‘3 HIV j I:lscheduled on processor 1
! - scheduled on processor 2
;? 1 j j- l T release l deadline
T Y Y Y fime T complefn
0 5 10 15 20
7| mmm m =m = | Pfair/PD?2
) = H |
T3] d d l E scheduled on processor 1
scheduled on processor 2
T2 t I El d T l Treleuse l deadline
Tl [] |:| [| l Tcomplelion
(I)||||5I||||]IO||||]I||||I fime
MPI-SW$S Brandenburg

23

Realtime Scheduling and Synchronization Seminar

Optimal Multiprocessor Scheduling

7| == —1 G-EDF
Ty | ==
T3 Ij- j l I:lscheduled on processor 1
- scheduled on processor 2
Ty |
Trelecse ldecdline
(41 IR —
letion
T T T Y A A A) T comp
0 5 10 15 20 > fime

G-EDF is a JLFP Policy
= Can (pseudo-)deadlines be used to schedule correctly?
= Yes, but deadlines alone are not enough.

» Need to break jobs into “smaller pieces”.

-

MPI-SWS

» Need appropriate tie-breaking rules.
PD2

Brandenburg

Real-time Scheduling and Synchronization Seminar

Optimal Multiprocessor Scheduling

Pfair
= Notion of “fair share of processor”
= If a schedule is , then no implicit deadline will be missed.

PD2

= Constructs a schedule.

= Splits jobs into unit-sized subtasks
» Each subtask has its own deadline

= Uses two deadline tie-breaking rules

7| mmm m =m = | Pfair/PD?2

T |

T3 I d ‘:l d l Eschedulsd on processor 1
scheduled on processor 2

T2 t I El d T l Treleuse ldeudline

Tl I | |:| I ! l Tcomplevion

(I)||||5I||||]I0||||]I||||I fime
MPI-SWS Brandenburg

24

Realtime Scheduling and Synchronization Seminar Realtime Scheduling and Synchronization Seminar

L PD? lllustration Optimal Online Scheduling of Sporadic
At
e Tasks with Arbitrary Deadlines
T5 l Dscheduladon processor 1
‘ 2 Ip—q -scheduled on processor 2
T4 El d l Trelease
) ldeadline
e Is it possible to extend Pfair/PD? to support arbitrary deadlines?
T3 1 lIT d | Tcompleﬁon
, = pfair window
T | m I |
—f A
R~ *
=t
r oEm |
(I)||||5I||||]Io||ﬁme

MPI-SWS Brandenburg 25 MPI-SWS Brandenburg 26
Real-time Scheduling and Synchronization Seminar Real-time Scheduling and Synchronization Seminar

Optimal Online Scheduling of Sporadic Non-Existence of Optimal Online
Tasks with Arbitrary Deadlines Schedulers for General Sporadic Tasks

Iwhich job goes next?l

Task |WCET|Deadline| Period | 16 I 7 l
T; 2 2 5 T5 I l

|

|

Theorem: there does not exist an online scheduler that

optimally schedules sporadic tasks with constrained deadlines. 2 1 1 S Ty :T
Fisher, Goossens, Baruah (2010), Optimal online multiprocessor scheduling of sporadic real-time tasks is impossible. Real-Time Systems, volume 45, pp 26-71. T3 1 2 6 T3 |:
Ty 2 4 100 e lj
Ts 2 6 100
Te | 4 8 100 | 11 I:T
0||||5I||||]I0>ﬁme

MPI-SW$S Brandenburg 27 MPI-SWS Brandenburg 28

Realtime Scheduling and Synchronization Seminar

Realtime Scheduling and Synchronization Seminar

Non-Existence of Optimal Online
Schedulers for General Sporadic Tasks
I If Ts goes first, then Ts can miss its deadline. |
A v
Task |WCET|Deadline| Period | 16 1 l:I
| o2 | 2 s | || om
T, | 1 1 5 T, { 1
e B E
T: 2 6 100 = lj: lj:
Ts 4 8 w00 | 1 ¥:T | l:T |
[Y O R > fime
0 5 T 10
I New jobs at time 6. |

Real-time Scheduling and Synchronization Seminar

Non-Existence of Optimal Online
Schedulers for General Sporadic Tasks

I If Ts goes first, then Ts can miss its deadline. | I If Te goes first, then Ts can miss its deadline. |

Non-Existence of Optimal Online
Schedulers for General Sporadic Tasks
I If Ts goes first, then Ts can miss its deadline. |
A
Task |WCET|Deadline| Period | 16 1 [l d
T 2 2 5 15 Y] lj
T, | 1 1 5 T, { T
Ts 1 2 6 Ty ‘ IZ
t ot e Two] 2 H
Ts 4 8 w00 | 1 !jL 1:T
o||||5|||||1|o>“"‘e
A
I New jobs at time 5. |
MPI-SWS Brandenburg 30

MPI-SWS

0l e Tj 7 | IZI:Ile

T { I j T5 } | lj

n | e | = n |

15]j H 13 H H

. ll;]{ L1 F]{ | -Tl FJ{ | ll;]{ | |

Brandenburg

The task set is feasible, but correct decision requires knowledge of future arrivals!

31

Real-time Scheduling and Synchronization Seminar

Clustered Scheduling

A hybrid / generalization of global and partitioned scheduling.

.

(i (&)
—

global scheduling

;

partitioned scheduling clustered scheduling

MPI-SWS

Brandenburg 32

Realtime Scheduling and Synchronization Seminar

' Clustered Scheduling
= harder bin packing instance
larger clusters SN
:
e @ e O
() (i) () ()

artitioned schedulin clustered schedulin lobal schedulin

MPI-SWS Brandenburg kk}

Real-time Scheduling and Synchronization Seminar

Summary
Approaches Priorities
= Partitioned = Task-Level Fixed Priority
= Global = Job-Level Fixed Priority
= Hybrid = Job-Level Dynamic
» Clustered Priority

» Semi-Partitioned

Optimal Online Scheduling

= Implicit deadlines: requires global job-level
dynamic priority scheduler

= Constrained deadlines: does not exist

= Arbitrary deadlines: does not exist

MPI-SW$S Brandenburg 35

Realtime Scheduling and Synchronization Seminar

Semi-Partitioned Scheduling

another generalization partitioned scheduling

Partition first

= Assign each task statically to a processor if possible

= Keep track which tasks could not be assigned (if any)

= Details vary according to specific algorithm

Split remaining tasks across multiple processors
= Split each unassigned task into multiple “portions” or “chunks”
- portions/chunks among multiple processors
» E.g., split each job into subjobs with precedence constraints
» Alternatively, do not migrate jobs, but vary a task’s processor
assignment over time (soft real-time)

MPI-SWS Brandenburg

