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THIS PAPER IN A NUTSHELL

Independent and

Wepropose o .
p p .................................................. Identlca”y dlstrlbuted

> First fully formal definitions of pET and pWCET ;
> Adequacy property capturing the notion of "lID upper bound on pET"
> Prove that our proposal of pWCET is adequate in this sense

What exactly is
pWCET? And how does

. . . . it relate to pET?
We formalized our proposal with the Coq proof assistant v,

- Semantics of stochastic real-time systems
> Definitions of pET, pWCET, and the adequacy property
- Machine-checked proof that pWCET is adequate

Probabilistic Worst-Case

Execution Time (pWCET) .
The Coq Proof Assistant Probabilistic
h oL Execution Time (pET)
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Worst-Case Executio"n THE BlG PlCTURE

Time (WCET) ™. o, |
To get the predictions right, we need: ) .
> Model with the right specification..~ st
> E.g., model must include WCETs to allow (classical) - g
response-time analysis
- Predictions
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- Optimistic WCET bound == Wrong predictions %;} 0
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Worst-Case Execution THE BlG PlCTURE
Time (WCET) ™. o, |

To get the predictions right, we need: ) .
> Model with the right specification..~ osnor

> E.g., model must include WCETs to allow (classical)
response-time analysis

A

- Correct model derivation W ST
o L e
- Optimistic WCET bound == Wrong predictions %%} 0

> Correct analysis
- Flawed analysis == Wrong predictions

Interpretation of common models is pretty
straightforward in the deterministic case
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SPECIFICATIONS ARE LESS OBVIOUS IN THE STOCHASTIC CASE
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SPECIFICATIONS ARE LESS OBVIOUS IN THE STOCHASTIC CASE

O
/o =

To get the predictions right, we need: )

> Model with the right specification
> E£.g., model mustinclude WEEs 22? to allow

(ehassteat probabilistic) response-time analysis

Specifications of stochastic RTSs
are much less straightforward
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THE CASE FOR STOCHASTIC RTS

Stochastic real-time systems
> Model of RTSs, where workload parameters are modelled stochastically
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THE CASE FOR STOCHASTIC RTS

Stochastic real-time systems
> Model of RTSs, where workload parameters are modelled stochastically

Question 14 For the most time-critical functions in the system, roughly how fre-
quently can the deadline of a function be missed without causing a system failure.

Pros: (n = 101)

> Most systems can tolerate deadline misses
—> Want to take advantage of this

g#lore often than 1 in 10

1in 10 to 1 in 100
\ I'in 100 to 1 in 10000
Wiz 10000 to 1 in 1 million -
lin1m b0 1 in 1 billion

Never

I do not know 35%

I I I
20%  40%  60% 80%  100% [1]
M

. : S : :
[1] Akesson, Benny, et al. "A comprehensive survey of industry practice in real-time systems.
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THE CASE FOR STOCHASTIC RTS

Stochastic real-time systems
> Model of RTSs, where workload parameters are modelled stochastically

Question 14 For the most time-critical functions in the system, roughly how fre-
quently can the deadline of a function be missed without causing a system failure.

Pros: (n = 101)

> Most systems can tolerate deadline misses
—> Want to take advantage of this

gflore often than 1 in 10

1in 10 to 1 in 100
~ 1in 100 to 1 in 10000 -
N 10000 to 1 in 1 million

> Allows answering quantitative questions Lin 1 gl i 1 billion

Never

I do not know 35%

| I |
20%  40%  60%  80% 100% [1]
;—'_'—W

[1] Akesson, Benny, et al. "A comprehensive survey of industry practice in real-time systems."
[2] Rivas, Juan M., et al. "Calculating latencies in an engine management system using response time analysis with MAST."
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THE CASE FOR STOCHASTIC RTS

Stochastic real-time systems
> Model of RTSs, where workload parameters are modelled stochastically

Question 14 For the most time-critical functions in the system, roughly how fre-
quently can the deadline of a function be missed without causing a system failure.

Pros: (n = 101)

> Most systems can tolerate deadline misses
—> Want to take advantage of this

gflore often than 11in 10
1in 10 to 1 in 100
1 in 100 to 1 in 10000 -

&2 10000 to 1 in 1 million

> Allows answering quantitative questions i 1 a1 il

Never

I do not know - 35%

I I I
20%  40%  60%  80%  100% [1]
M

> Enables analysis of transiently overloaded systems
> Ubiquitous in practice
> E.g., FMIV Challenge 2016

‘The total utilization
1 — , of that system goes above 100%. Using response time analysis
e in such situation automatically yields unbounded (infinite)

worst-case I'CSEOIISC times. IZI
R

[1] Akesson, Benny, et al. "A comprehensive survey of industry practice in real-time systems."
[2] Rivas, Juan M., et al. "Calculating latencies in an engine management system using response time analysis with MAST."
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Probabilistic Execution Times (pETs)
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Probabilistic Execution Times (pETs) are dependent!
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THE PROBLEM OF STOCHASTIC RTS: DEPENDENCY

Probabilistic Execution Times (pETs) are dependent! ) 155
A Model of ;
......................................... the system
;' i}o&‘ .
» Image processing: Two consecutive frames &
might take similar amounts of compute ©
( ) )
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A Model of ;
......................................... the system
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» Image processing: Two consecutive frames
might take similar amounts of compute
» Behavior of a prior job influences ‘ w
the state of the cache pET

Ground-t’l’r’uth behavior
of jobs in the system
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Q: Can we disregard dependency

and continue anyway? .. .
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THE PROBLEM OF STOCHASTIC RTS: DEPENDENCY

{00

Probabilistic Execution Times (pETs) are dependent!
> Tia etal. 1995: computation times are not independent [1] Modelof 3,
> |gnoring this fact may lead to incorrect bounds

| “Unfortunately, the computation times
of individual requests are not statistically independent. [... ]
As a consequence, the probability of meeting deadlines thus

computed may be overly optimistic.”
' pET

Q: Can we disregard dependency

and continue anyway? .. .

A: No, the results can be optimistic

[1] Tia, T-S., et al. "Probabilistic performance guarantee for real-time tasks with varying computation times."
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THE PROBLEM OF STOCHASTIC RTS: DEPENDENCY

{0

Probabilistic Execution Times (pETs) are dependent!
> Tia etal. 1995: computation times are not independent [1] Modelot 3,
> [gnoring this fact may lead to incorrect bounds

| “Unfortunately, the computation times
of individual requests are not statistically independent. |[... ]
As a consequence, the probability of meeting deadlines thus

computed may be overly optimistic.”
| pET

> Limits the application of probability theory tools L )
> E.g., convolution is not applicable

Q: Can we disregard dependency

and continue anyway? .. .

A: No, the results can be optimistic

[1] Tia, T-S., et al. "Probabilistic performance guarantee for real-time tasks with varying computation times."
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PROBABILISTIC WORST-CASE EXECUTION TIME (pWCET)

pPET Predictions

[1]

We note that the actual execution times for a sequence of jobs of a task, which exercise the same
or different paths, may well show strong correlations and dependences. It is the modelling of the)
@xecution times via an appropriate pWCET distribution which enables probabilistic independence]
to be assumed. (This is similar to the conventional case of a single WCET which can similarly be

used in this way, even though the actual execution times of different jobs have strong dependences).

[1] Davis, Robert Ian, and Liliana Cucu-Grosjean. "A survey of probabilistic schedulability analysis techniques for real-time systems."
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PROBABILISTIC WORST-CASE EXECUTION TIME (pWCET)

Predictions

[1]

We note that the actual execution times for a sequence of jobs of a task, which exer"é-:__ise the same
or different paths, may well show strong correlations and dependences. It is the modelling of the

Iﬁdependentand
identically distributed ‘

9 execution times via an appropriate pWCET distribution which enables probabilistic independence
to be assumed. (This is similar to the conventional case of a single WCET which can similarly be

used in this way, even though the actual execution times of different jobs have strong deRendences).

[1] Davis, Robert Ian, and Liliana Cucu-Grosjean. "A survey of probabilistic schedulability analysis techniques for real-time systems."
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PROBABILISTIC WORST-CASE EXECUTION TIME (pWCET)
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> Unlocks powerful probability theory techniques
- Such as convolution, Chernoff bound, etc.

pET Predictions

* |
* |
) 00.#... )
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[1]

We note that the actual execution times for a sequence of jobs of a task, which exer"é-:_ise the same

y or different paths, may well show strong correlations and dependences. It is the modéllz'ng of the
9 execution times via an appropriate pWCET distribution which enables probabilistic independence
to be assumed. (This is similar to the conventional case of a single WCET which can similarly be

used in this way, even though the actual execution times of different jobs have strong deRendences).

Iﬁdependentand
identically distributed

[1] Davis, Robert Ian, and Liliana Cucu-Grosjean. "A survey of probabilistic schedulability analysis techniques for real-time systems."
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PROBABILISTIC WORST-CASE EXECUTION TIME (pWCET)
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> Unlocks powerful probability theory techniques
- Such as convolution, Chernoff bound, etc.

> ....but when exactly is 7 ) _‘ )
_ C Con ET Predictions
a pWCET distribution "appropriate"? . i
.....l‘.“““ k ) .....""'-----......... \ )

[1]

We note that the actual f..Execution times for a sequence of jobs of a task, which exer"é-:_ise the same

y or different paths, may WeH show strong correlations and dependences. It is the modéllz'ng of the
9 execution times via an( appropriate]pWCET distribution which enables probabilistic independence
to be assumed. (This is similar to the conventional case of a single WCET which can similarly be

used in this way, even though the actual execution times of different jobs have strong deRendenceS).

Iﬁdependentand
identically distributed

[1] Davis, Robert Ian, and Liliana Cucu-Grosjean. "A survey of probabilistic schedulability analysis techniques for real-time systems."
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THE STATE-OF-THE-ART pWCET DEFINITION

» Definition 2. The probabilistic Worst-Case Ezecution Time (pWCET) distribution for a task is
[the least upper bound, in the sense of the greater than or equal to operator > (defined below)], on
the execution time distribution of the jobs of the task for every valid scenario of operation, where
a scenario of operation is defined as an infinitely repeating sequence of input states (including
both input values and software state variables) and initial hardware states that characterise a

feasible way in which recurrent execution of the task may occur. [1 ]
e S —

[1] Davis, Robert Ian, and Liliana Cucu-Grosjean. "A survey of probabilistic schedulability analysis techniques for real-time systems."
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THE STATE-OF-THE-ART pWCET DEFINITIO

» Definition 2. The probabilistic Worst-Case Ezxecution Time (pWCET) Jmty ' a task is
@;he least upper bound, in the sense of the greater than or equal to opera £ '
the execution time distribution of the jobs of the task for every valid [scen | where
a scenario of operation is defined as an infinitely repeating sequence of input states (including
both input values and software state variables) and initial hardware states that characterise a
feasible way in which recurrent execution of the task may occur. [1]

—

Side note: dominance relation <
> Proposed by Diaz et al. in 2004 [ 2]

- Partial order on random variables

- Similar to stochastic dominance

R
.
.
.
PR
e®
«®
“
I“‘
’’’’’’
""""""""
---------------
------------------------------------------------------------------

| | |
[1] Davis, Robert lan, and Liliana Cucu-Grosjean. "A survey of probabilistic schedulability analysis techmques for real-time systems." 10 25 30 35
[2] Diaz, Jose Luis, et al. "Pessimism in the stochastic analysis of real-time systems: Concept and applications."
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THE STATE-OF-THE-ART pWCET DEFINITION

» Definition 2. The probabilistic Worst-Case Ezecution Time (pWCET) distribution for a task is
[the least upper bound, in the sense of the greater than or equal to operator > (defined below)], on
the execution time distribution of the jobs of the task for every valid scenario of operation, where
a scenario of operation is defined as an infinitely repeating sequence of input states (including
both input values and software state variables) and initial hardware states that characterise a

feasible way in which recurrent execution of the task may occur. [1]
e — e S EEEEEEE——————%»
Pros

> (Gives the right intuition
> |dentifies that "scenario of operation"
is the key notion

[1] Davis, Robert Ian, and Liliana Cucu-Grosjean. "A survey of probabilistic schedulability analysis techniques for real-time systems."
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PWCET DEFINITION IS OPEN TO INTERPRETATION

» Definition 2. @‘he probabilistic Worst-Case Execution Time (pWCET) distributionjfor a task is
@;he least upper bound, in the sense of the greater than or equal to operator > (defined below)) on
the execution time distribution of the jobs of the task for every valid [scenario of operation], where
a scenario of operation is defined as an infinitely repeating sequence of input states (including
both input values and software state variables) and initial hardware states that characterise a

feasible way in which recurrent execution of the task may occur. [1]
L

Pros Cons

> Gives the right intuition - Open to interpretation €&

> |dentifies that "scenario of operation” > Key aspects are stated in prose only
is the key notion > Not suitable for formal verification

[1] Davis, Robert Ian, and Liliana Cucu-Grosjean. "A survey of probabilistic schedulability analysis techniques for real-time systems."
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PWCET DEFINITION IS OPEN TO INTERPRETATION

» Definition 2. @he probabilistic Worst-Case Execution Time (pWCET) distributionjfor a task is
@;he least upper bound, in the sense of the greater than or equal to operator > (defined below)} on
the execution time distribution of the jobs of the task for every valid [scenario of operatio@, where
a scenario of operation is defined as an infinitely repeating sequence of input states (including
both input values and software state variables) and initial hardware states that characterise a

feasible way in which recurrent execution of the task may occur. [1]
S

Pros Cons

> Gives the right intuition > Open to interpretation &

> |dentifies that "scenario of operation” > Key aspects are stated in prose only
is the key notion > Not suitable for formal verification

-> Does not necessarily enable 1ID-based analyses

[1] Davis, Robert Ian, and Liliana Cucu-Grosjean. "A survey of probabilistic schedulability analysis techniques for real-time systems."
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SOTA pWCET DOES NOT ENABLE IID ANALYSIS

Already noted in [ 1]

[1] Davis, Robert Ian, and Liliana Cucu-Grosjean. "A survey of probabilistic timing analysis techniques for real-time systems."
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SOTA pWCET DOES NOT ENABLE IID ANALYSIS

Already noted in [ 1]

A toy system: |

- Time-predictable hardware

> System has four states

> State cycling through its four possible values
> Small variability in each of the states

> Starts with random state

[1] Davis, Robert Ian, and Liliana Cucu-Grosjean. "A survey of probabilistic timing analysis techniques for real-time systems."
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SOTA pWCET DOES NOT ENABLE IID ANALYSIS

- Resulting pET distribution: [1]

Atoy system: " 10£2 202 30+2 40+2
- Time-predictable hardware 1/4 1/4 1/4 1/4

=>
>ystem has four states | > Valid pWCET distribution: [1]
> State cycling through its four possible values " 99 3 4
> Small variability in each of the states (1/4 1/4 1/4 1/4)
> Starts with random state

Already noted in [ 1]

[1] Davis, Robert Ian, and Liliana Cucu-Grosjean. "A survey of probabilistic timing analysis techniques for real-time systems."
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SOTA pWCET DOES NOT ENABLE IID ANALYSIS

- Resulting pET distribution: [1]

Atoy system: " 10£2 202 30+2 40+2
- Time-predictable hardware 1/4 1/4 1/4 1/4

=>
>ystem has four states | > Valid pWCET distribution: [1]
> State cycling through its four possible values " 99 3 4
> Small variability in each of the states (1/4 1/4 1/4 1/4)
> Starts with random state

Already noted in [ 1]

Except that .... . ' - 92' 1
> —
> Smallest workload of four consecutive jobs: _;p -
> (10-2)+(20-2)+(30—-2)+ (40 —2) =92

[1] Davis, Robert Ian, and Liliana Cucu-Grosjean. "A survey of probabilistic timing analysis techniques for real-time systems."
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A toy system: |

SOTA pWCET DOES NOT ENABLE IID ANALYSIS

- Resulting pET distribution: [1]

10£2 202 30x2 40x2
1/4 1/4 1/4 1/4

Already noted in [ 1]

> Time-predictable hardware
> System has four states | > Valid pWCET distribution: [1]
> State cycling through its four possible values " 99 3 4

> Small variability in each of the states (1/4 1/4 1/4 1/4)

> Starts with random state

Except that.... : :
> Smallest workload of four consecutive jobs: g _;pETZ =1
> (10-2)+(20—-2)+ (30 —2) + (40 — 2) = '

> Sum of four pWCETs is insufficient:

> E.g., 12+ 12 + 12 + 12 = 48 has nonzero probablllty

p ZpWCETZ92 <1

[1] Davis, Robert Ian, and Liliana Cucu-Grosjean. "A survey of probabilistic timing analysis techniques for real-time systems."
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A toy system: |

SOTA pWCET DOES NOT ENABLE IID ANALYSIS

- Resulting pET distribution: [1]

(1012 20+2 30+2 4012)

- Time-predictable hardware 1/4 1/4 1/4 1/4

> System has four states

, | | > Valid p\K] di@yibution: [1]
> State cycling through its four possible values " No 1
> Small variability in each of the states (1/4 1/4) Not "appropriate" for
- Starts with random state IID-based analysis
Except that .... ' '
L p T > 92
> Smallest workload of four consecutive jobs: _;p _

> (10-2)+(20—-2)+ (30 —2) + (40 —2) =
> Sum of four pWCETs is insufficient:
> E.g., 12+ 12 + 12 + 12 = 48 has nonzero probablllty

p Z pWCET > 92

[1] Davis, Robert Ian, and Liliana Cucu-Grosjean. "A survey of probabilistic timing analysis techniques for real-time systems."
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SOTA pWCET DOES NOT ENABLE IID ANALYSIS
- Resulting pET distribution: [1]

A toy system: |

> Time-predictable
> System has four
> State cycling th
- Small variability |
> Starts with rando

[1] Davis, Robert Ian, an

d Liliana Cucu-Grosjean.

"A surve

y of probabilistic timing ana

102 20x2

S0, what is "appropriate” pWCET?

> (10-2)+(20—-2)+ (30 —2) + (40 —2) =
> Sum of four pWCETs is insufficient:

Already noted in [ 7]

302 40x£2
1/4

"appropriate" for
-based analysis

P | ) pET > 92
4 _

p Z pWCET > 92

> E.g., 12+ 12 + 12 + 12 = 48 has nonzero probablllty
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AXIOMATIC pWCET

[1] Davis, Robert Ian, and Liliana Cucu-Grosjean. "A survey of probabilistic schedulability analysis techniques for real-time systems."

MPI-SWS Sergey Bozhko, Filip Markovi¢, Georg von der Briiggen, and Bjérn Brandenburg



What Really is pWCET? A Rigorous Axiomatic Proposal

» Definition 2. The probabilistic Worst-Case Ezecution Time (pWCET) distribution for a task is
the least upper bound, in the sense of the greater than or equal to operator > (defined below), on
the execution time distribution of the jobs of the task for every valid scenario of operation, where
a scenario of operation is defined as an infinitely repeating sequence of input states (including
both input values and software state variables) and initial hardware states that characterise a
feasible way in which recurrent execution of the task may occur. [1 ]
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» Definition 2. The probabilistic Worst-Case Ezecution Time (pWCET) distribution for a task is
the least upper bound, in the sense of the greater than or equal to operator > (defined below), on
the execution time distribution of the jobs of the task for every valid scenario of operation, where
a scenario of operation is defined as an infinitely repeating sequence of input states (including
both input values and software state variables) and initial hardware states that characterise a
feasible way in which recurrent execution of the task may occur. [1 ]

AXIOMATIC pWCET

Def. 7 (¥).
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» Definition 2. The probabilistic Worst-Case Ezecutier—Time (pWCEB distribution for a task is
the least upper bound, in the sense of the geeater than or equal to operator > (defined below), on
the execution time distribution of the“jobs of the task for every valid scenario of operation, where
a scenario of operation is defined as an infinitely repeating sequence of input states (including
both input values and softwéare state variables) and initial hardware states that characterise a

feasible way in which regdrrent execution of the task may occur. [1]

AXIOMATIC pWCET

Def. 7 (¥). A monotonically increasing function F;: W —

[0, 1] with F;(0) = 0 and lim;_,, F;(t) = 1)is an axiomatic

pWCET for a task 7; if

[1] Davis, Robert Ian, and Liliana Cucu-Grosjean. "A survey of probabilistic schedulability analysis techniques for real-time systems."
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Def. 7 (¥). A monotonically increasing function F;: W —

a scenario of operation is defi
both input values and softwére state variables) and initial hardware states that characterise a

feasible way in which regdfrrent execution of the task may occur.

» Definition 2. The probabilistic Worst-Case Ezecutier—Time (pWCEB distribution for a task is
the least upper bound, in the sense of the geeater than or equal to operator > (defined below), on
the execution time distribution of the“jobs of the task for every valid scenario of operation, where
ed as an infinitely repeating sequence of input states (including

[1]

AXIOMATIC pWCET

pWCET for a task T; 1f, for every J € 7; and every fixe

_infinite, disjoint cover of all positive-probability elements of {).

[0,1] with F;(0) = 0 and lim;,c F5(t) = 1is an %Deﬁ 4 (¥). A partition S £ {S,}, is any finite, or countably
va

sequence £ € =, there exists a partition G (Def. 4) sdch that

N R i

[1] Davis, Robert Ian, and Liliana Cucu-Grosjean. "A survey of probabilistic schedulability analysis techniques for real-time systems."
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» Definition 2. The probabilistic Worst-Case Ezecutier—Time (pWCEB distribution for a task is
the least upper bound, in the sense of the gee@ter than or equal to operator = (defined below), on
the execution time distribution of the-fobs of the task for every valid scenario of operation, where
a scenario of operation is defined as an infinitely repeating sequence of input states (including
both input values and softwére state variables) and initial hardware states that characterise a
feasible way in which regirrent execution of the task may occur. [1]

AXIOMATIC pWCET

Def. 7 (¥). A monotonically increasing function F;: W —

[0, 1] with F;(0) = 0 and lim¢_,o F3(t) = 1is an %Deﬁ 4 (¥). A partition S £ {S,}, is any finite, or countably
va

pWCET for a task 7; i, for every J € 7; and every fixg infinite, disjoint cover of all positive-probability elements of 2.
sequence £ € =, there exists a partition G (Def. 4) sdch that

2) @" GS-dominates Cy w.r.t. € (Def. 6)] /\_' Def. 6 (). [ Given a job J € J, a fixed arrival sequence &, and]
S ——— “a partition &, a function F': W — [0, 1] S-dominates Cy iff
[VSI € G s.th. IP[SZ /\f] > 0: ]F[CJlSl /\f] = FJ

[1] Davis, Robert Ian, and Liliana Cucu-Grosjean. "A survey of probabilistic schedulability analysis techniques for real-time systems."
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» Definition 2. The probabilistic Worst-Case Erecutier—Time (pW distribution for a task is
the least upper bound, in the sense of the geeater than or equal to operator > (defined below), on
the execution time distribution of the~jobs of the task for every valid scenario of operation, where
a scenario of operation is defined as an infinitely repeating sequence of input states (including
both input values and softwére state variables) and initial hardware states that characterise a
feasible way in which regArrent execution of the task may occur. [1 ]

AXIOMATIC pWCET

Def. 7 (¥). A monotonically increasing function F;: W —

0, 1] with F;(0) = 0 and limy—, o0 Fi (t) = Lis an axiomay Def. 4 (¥). A partition G = {S,}, is any finite, or countably
pWCET for a tj‘Sk 7; if, for every J € 7; and every fixgg-rrival infinite, disjoint cover of all positive-probability elements of .
sequence £ € Z, there exists a partition G (Def. 4) sdch that S ——e —

C is partition-independent w.r.t. £ and S (Def. 5), and

2) F; G-dominates Cj w.r.t. £ (Def. 6) /—\_' Def. 6 (¥). Given ajob J € J, a fixed arrival sequence £, and
‘-——-—-——';‘"‘" a partition G, a function F': W — [0, 1| G-dominates C iff
Def. 5 Gi bJ e fixed al d
e (#). Given a jo J, a fixed arriv Sequence§ an VS, € S sth. PIS; A€] > 0: F[Cs1Si A€ < F.

a partition G, job J’s pET is partition-independent w.r.t. G iff,
for any set G C J with J € GG and any fixed cost vector C,:

VS, € G s.th. P[S; A €] > 0:
IP[CJ =c; AVJ € G: Cy :EJ/|SlAf]
:IP’[C,] = 5J|Sl /\5] -IP[VJ’E G:Cjy = 5J/|Sl /\5]

D S e e SRR
[1] Davis, Robert Ian, and Liliana Cucu-Grosjean. "A survey of probabilistic schedulability analysis techniques for real-time systems."
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» Definition 2. The probabilistic Worst-Case Erecutier—Time (pW distribution for a task is
the least upper bound, in the sense of the geeater than or equal to operator > (defined below), on
the execution time distribution of the~fobs of the task for every valid scenario of operation, where
a scenario of operation is defined as an infinitely repeating sequence of input states (including
both input values and softyé4re state variables) and initial hardware states that characterise a
feasible way in which regArrent execution of the task may occur. [1 ]

AXIOMATIC pWCET

Def. 7 (¥). A monotonically increasing function F;: W —

0, 1] with F;(0) = 0 and limy—, o0 Fi (t) = Lis an axiomay Def. 4 (¥). A partition S £ {S,}, is any finite, or countably
pWCET for a tj’Sk 7; if, for every J € 7; and every fixgg-rrival infinite, disjoint cover of all positive-probability elements of .
sequence £ € Z, there exists a partition G (Def. 4) sdch that e —-e ———

C is partition-independent w.r.t. £ and S (Def. 5), and

2) F, G-dominates Cj w.rt. & (Def 6) /—\_' Def. 6 (%). Given ajob J € J, a fixed arrival sequence £, and

“-——--'——";""" a partition G, a function F': W — [0, 1| G-dominates C iff
Def. 5 Gi b.J fixed al d
e (®). Givenajob J € ], a fixed arriv. sequence§ an VS € & s.th. P[S; AE] > 0: FC,S A€ < F

a partition G, job J’s pET is partition-independent w.r.t. G iff,

for any set G C J with J € G and any fixed cost vector C,: L‘?

VS, € G s.th. P[S; A €] > 0:
IP[CJ =c; AVJ € G: Cy ZEJ/|SZ/\f]
ZIP’[CJ = 5J|Sl /\5] -]P’[VJ’E G:Cy = 8J/|Sl /\ﬁ]

et e ————RE
[1] Davis, Robert Ian, and Liliana Cucu-Grosjean. "A survey of probabilistic schedulability analysis techniques for real-time systems."
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» Definition 2. The probabilistic Worst-Case Erecutser—Time (p WO distribution for a task is
the least upper bound, in the sense of the geeater than or equal to operator > (defined below), on
the execution time distribution of the~fobs of the task for every valid scenario of operation, where
a scenario of operation is defined as an infinitely repeating sequence of input states (including
both input values and softyé4re state variables) and initial hardware states that characterise a
feasible way in which regArrent execution of the task may occur. [1 ]

AXIOMATIC pWCET

Def. 7 (¥). A monotonically increasing function F;: W —

0, 1] with F;(0) = 0 and limy—, o0 Fi (t) = Lis an axiomay Def. 4 (¥). A partition S £ {S,}, is any finite, or countably
pWCET for a t_aSk 7; if, for every J € 7; and every fixgg-rrival infinite, disjoint cover of all positive-probability elements of .
sequence £ € Z, there exists a partition G| (Def. 4) sdch that —_— —_

C is partition-independent w.r.t. £ and S (Def. 5), and

2) F, G-dominates Cj w.rt. & (Def 6) /—\_' Def. 6 (%). Given ajob J € J, a fixed arrival sequence £, and

‘-——--——';""ﬁ a partition G, a function F': W — [0, 1| G-dominates C iff
Def. 5 . Gi bJ €, afixed al , and
e (#). Given a jo J, a fixed arriv sequence§ an VS € & s.th. P[S; AE] > 0: FCS A€ < F

a partition G, job J’s pET is partition-independent w.r.t. G iff, _
for any set G C J with J € GG and any fixed cost vector C,:

VS, € & s.th. P[S; A €] > 0: Axiomatic pWCET: scenario of
P[Cs =& AVJ' € G: Cyr = Cyr|S) A E] w operation must ensure that jobs'
ZP[CJ=5J|SI/\§]-]P’[VJ,€ G:Cyr =EJ/|Sl/\§]. .

I A R pETs become independent

[1] Davis, Robert Ian, and Liliana Cucu-Grosjean. "A survey of probabilistic schedulability analysis techniques for real-time systems."
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ADEQUACY: FORMAL BASIS FOR IID REASONING

How do we know that an IID-based analysis that uses
axiomatic pWCET will obtain a sound bound?
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ADEQUACY: FORMAL BASIS FOR IID REASONING

Probabilistic

| How do we know that an IID-based analysis that uses
Response Time (pRT)

axiomatic pWCET will obtain a sound bound?
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ADEQUACY: FORMAL BASIS FOR IID REASONING

Probabilistic How do we know that an 1ID-based analysis that uses
Response Time (pRT) _ . . . |
: axiomatic pWCET will obtain a sound bound?  pRTotJ; ; obtained by any
; valid IID-based analysis
..... ’ - using axiomatic pWCET
Intuitively, we want to prove: % :
""""""" 5 "Ground-trutHApRT is <-bounded Ead L]
by pRT derived via pWCETs :
Ground-truth
pRT of J; ;
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ADEQUACY: FORMAL BASIS FOR IID REASONING

Probabilistic How do we know that an IID-based analysis that uses
Response Time (pRT) . , , , .
: axiomatic pWCET will obtain a sound bound?  pRTotJ; ; obtained by any
; valid IID-based analysis
..... ’ - using axiomatic pWCET
Intuitively, we want to prove: . < :
""""""" 5 "Ground-trutHApRT is <-bounded Ead L =
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Formal statement is surprisingly | PRTof J;
tricky and involves the notion of ... y .
"replacement"” of pETs with pWCETs PET
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AXIOMATIC pWCET IS ADEQUATE

Theorem (paraphrased). Consider a job J; ;. Let &£, ; be the
pRT o J; ;in the initial system and %l*] be the pRTof J; ;ina
simplified system obtained via pWCET F;. Then &, ; < 9?;*]
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AXIOMATIC pWCET IS ADEQUATE

Theorem (paraphrased). Consider a job J; ;. Let &£, ; be the
pRT o J; ;in the initial system and %f] be the pRTof J; ;ina
simplified system obtained via pWCET F;. Then &, ; < R,

é 2 )

1. Use axiomatic pWCET to construct a "copy" of the initial
. system, where pETs are replaced with job costs that are,

by construction, IID and have distribution F,
2. Prove that pRT ', in the simplified system

stochastically dominates the original pRT %, ;
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AXIOMATIC pWCET IS ADEQUATE

vvvvv
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Theorem (paraphrased). Consider a job J; ;. Let R ;bethe —
pRT o J; ;in the initial system and R be the pRT of J;jina
simplified system obtained via pWCET F;. Then &, ; < R,

A ’ ’

Hint.
1. Use axiomatic pWCET to construct a "copy" of the initial
system, where pETs are replaced with job costs that are,

by construction, IID and have distribution F,
2. Prove that pRT ', in the simplified system

stochastically dominates the original pRT %, ;
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AXIOMATIC pWCET IS ADEQUATE
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ection StepByStepPribg.

Theorem (paraphrased). Consider a job J; ;. Let &£, ; be the
pRT o J; ;in the initial system and %f be the pRTof J; ;ina

simplified system obtained via pWCET F;. Then & ; < R

- Hint:
1. Use axiomatic pWCET to construct a "copy" of the initial
system, where pETs are replaced with job costs that are,

by construction, IID and have distribution F,
2. Prove that pRT ', in the simplified system

stochastically dominates the original pRT %, ;

Step-by-step Proof of Theorem 1

In the following, we present the proof of Theorem 1 in the above-cited paper. Due to the
length of the proof and the nature of Coq, we cannot start this section with the statement
of the theorem. Instead, we will first prove many "stepping stone" lemmas and then
combine them together to obtain a complete proof. Readers who would like to see the final
statement of the theorem first are referred to section ProofOfTheoreml.
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AXIOMATIC pWCET IS ADEQUATE

(* *)

Pro:
From prosa.model Require Import processor.ideal.

[€3 ProBsa *)

From probsa.util Require Export misc bigop_inf.

From probsa.probability Require Export pred law_of_total prob.

From probsa.rt.model Require Export task events axiomatic_pWCET scheduler rt_monotonic.
From probsa.rt.analysis Require Export pETs_to_pWCETs partition_transfer.

(x SSReflect *)
From mathcomp Require Import finfun.

(* Main *)

In this file, we prove Theorem 1 presented in the paper "What really is pWCET? A
Rigorous Axiomatic Definition of pWCET" by Bozhko et al. (RTSS'23).

Step-by-step Proof of Theorem 1

In the following, we present the proof of Theorem 1 in the above-cited paper. Due to the
length of the proof and the nature of Cog, we cannot start this section with the statement
of the theorem. Instead, we will first prove many "stepping stone" lemmas and then
combine them together to obtain a complete proof. Readers who would like to see the final
statement of the theore first are referred to section Proof0fTheorend.

[ ] [ ] Section StepByStepProof.
In this section, we demonstrate a step-by-step proof of the main claim (Theorem 1 from
the paper). It s important to note that Cog’s preferred method of proof s a "bottom-u
[ ] [ [ o approach, while most humans are prefer following a top-down derivation. In other words,
[} ) in Coq it is easier to present proofs in the following way: first simple facts are proven, then

one can use these simple facts to construct more sophisticated facts, then even more
sophisticated ones, and so on untilthe final goal is reached. Yet, a reasonable question for
, , a human would be "where is this going?"

Therefore, we adopt a more paper-like approach in which we present the proof as a series
of implications: C -+ Goa, B - C, A - B. This allows us to begin with the final goal
(assuming that some facts are given) and then gradually work our way towards the "leafs”
of the overall argument pertaining to specific details.

[ ) [ ) [ ] [ ) [ ] Assume horizon defines (an upper bound on) the termination time of the system. If
horizon = None, the system does not necessarily terminate. Note, however, that in either
case our proof assumes there to be a finite number of jobs for technical reasons. As the
horizon can be chosen to be arbitrarily large (the proof does not depend on its magnitude),

(] L) ° ° ° ] ©.g., hundreds of even thousands of years, assuming the existence of a finite horizon is
not unreasonable for a computing system.

, , Variable horizon : option instant.

Consider any type of tasks with a notion of pWCET...

Context {Task : TaskType}
{pWCET_pnf : ProbWCET Task}.

.and their jobs.
[ ] L] L] L] ° Context {Job : finType}
{job_task : JobTask Job Task}.
Consider a response-time monotonic scheduling algorithm Z, where response-time
[} ° L] ° ° monotonic means the following: assuming that all arrival times are fixed, an increase of
° ° the execution cost of any job cannot cause a decrease in the response time of any job.
I

Recall that Z receives two vectors: a vector of arrival times A and a vector of job costs C.

Variable T : @schedulerAC Job.
, ’ Hypothesis H_rt_monotonic : rt_monotonic_scheduler horizon .

For brevity, let sched denote the probabilistic schedule generated by Z for a given
systems.

Let sched S := compute_pr_schedule g (job_arrival := 4_of S) (job_cost := €_of S).

As before, consider four parameters that describe a system under analysis: a sample
space 0, a measure y, job arrival times <7, and job execution costs .

Variable 0 : countType.
Variable p : measure 0.

Variable 4 : JobArrivalRV Job Q y.
Variable € : JobCostRV Job @ pi.

Let us use these parameters to construct a systen S.
Let S := {| Qof :

i uoof 1= p; Aof i eof :=€ [}

Next, we assume that the aforementioned pWCET is an axiomatic pWCET. That s, for
any job j and any arrival sequence £, there exists a partition of  into positive-probability
events such that both partition dominance and partition independence are satisfied.

]
| ]
| |
]
| ]
-
]
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Hypothesis H_axiomatic_pHCET :

axiomatic_pWCET (u_of S) (job_arrival := 4_of S) (job_cost := €_of S).

Suppose we use the construction replace_job_pET presented in probsa/rt

() /analysis/pETs_to_pWCETS to replace the execution cost of given job j_rep. Let S
denote the resulting system.
. Variable j_rep : Job.
Let ' Treplace_job_pET j_rep S.
[ ] For convenience, let tsk denote j's task...

Let tsk := job_task j_rep.

..and let j_tsk denote the measure induced by pWCET.
Let p_tsk :=

match pWCET_pmf with
| Build_ProbWCET pWCET nonneg suml -
{1 pnf CET tsk;

1. Use axiomatic pWCET to construct a "copy" of the initial

Variables (j : Job) (r : duration).
Finally, let Exc denote the event that j's response time exceeds r time units in system S

Let Exc := A w : 0_of S, exceeds (response_time
(job_arrival := A_of S) (job_cost := €_of S)
(5ched S) horizonj w)

system, where pETs are replaced with job costs that are,

(job_arrival := 4_of S') (job_cost :=
(sched S') horizon j w)

r.

The remainder of this file serves for the most part to relate the probability of Exc with the
probability of Exc*, namely to establish that P<_of S>{ [ Exc 1} s P<j_of §'>{[ Exc"
1%

by construction, 11D and have distribution £

Consider a partition Epart of the sample space 0_of S of system S into events
corresponding to different arrival sequences.

Let Epart := partition_on_§ .

Here Epart is an (indexed) set of events, where an £i-th event denoted as Epart<{£i}
represents a subset of 0 where the arrival sequence is equal to £1.

[ ] [ ] [ ] [ ] (Readers focused on technical detail may be interested in noting that the indices of
partition Epart are arrival sequences themselves. This detail may be safely skipped over
by more casual readers.)

As discussed in the paper, one can transfer the partition Epart to the system S’ and
P [ ] [ denote it as Epart . For further details see the function

partition_transfer.extend_partition.
l Let Epart’ := extend_partition S Epart j_rep.
, Partitions Epart and Epart " are so similar that one can prove equivalence. For example,

two indices £iand £ that are "pickle equivalent' can be shown to be identical. (Pickle
equivalence is a very strong notion of equivalence; one can intuitively view it simply as an
equality between two elements of similar types; for further details see
util.bigop_inf.pickle_bij.)
Remark £i_eq &' :
V (Ei : I Epart) (Ei' : I Epart'),
U= EQ.

stochastically dominates the original pRT % . -

So, assuming that for any two elements of partitions £1 : I Epartand i’ : I Epart’
that are "pickle"-equivalent, it holds that P{ [ Exc1 n Epart<{gi} 1} sP{[ Exc2n
, Epart'<{€i'} 1}, ..
Hypothesis H_ineq  partitioned :
V (i : I Epart) (€' : I Epart') (EEQU : pickle_bij i £i'),
Pep_of S>{[ Exc n Eparta{€i} 1} = P<p_of S'>{[ Exc' n Epart'<{§i'} 1}.

... we can show that P<p_of S>{[ Excl ]} sP<p_of S'>{[ Exc2 1}. Or, in other
words, we reduced the lemma statement to the hypothesis statement.
Lemna transformation_is_pRT_monotone_stepl :
P<p_of S>{[ Exc 1} = P<pof S'>{[ Exc' I}.

End Stepl.

Step 2

Now, we know that if we have the inequality with partitions on arrival sequences
H_ineq_E_partitioned, then we are done. But how do we prove such an inequality? In
the next step, we prove the required inequality by introducing a new hypothesis from
which it can be established. We then continue in this manner until reaching a hypothesis
that is easy enough to prove without introducing new hypotheses.
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AXIOMATIC pWCET IS ADEQUATE

PSU_OT 5>{1 EXC 1} = P<P_OT S'>{1 EXC" |}.

End Stepl.
(x Prosa *)
From prosa.model Require Import processor.ideal. Step 2
[£3 ProBsa *)

From probsa.util Require Export misc bigop_inf p . - - .
Fron probsa.probabi'ity Require Export pred Taw_of_total_prob. Now, we know that if we have the inequality with partitions on arrival sequences

From probsa.rt.model Require Export task events axiomatic_pWCET scheduler rt_monoten H_ineq_£_ partitioned, then we are done. But how do we prove such an inequality? In

From probsa. rt.analysis Require Export PETS.fo PHCETS partition transfer. the next step, we prove the required inequality by introducing a new hypothesis from
which it can be established. We then continue in this manner until reaching a hypothesis

(* SSReflect ) e Shensr %

From mathcomp Require Inport finfun. 'y enough to prove without introducing new hypotheses.

(x Main 3 In the second step, we replace the partition over all arrival sequences with an event
L ) ) encoding one arrival sequence.
In this file, we prove Theorem 1 presented in the paper "What really is pWCET? A
Rigorous Axiomatic Definition of pWCET" by Bozhko et al. (RTSS'23). Section Step2.

First, let us state the premise of our hypothesis H_ineq_£_partitioned.
Step-by-step Proof of Theorem 1
Again, consider a partition Epar-t of the sample space of system S into events

In the following, we present the proof of Theorem 1 in the above-cited paper. Due to the corresponding to different arrival sequences...
length of the proof and the nature of Cog, we cannot start this section with the statement Let gpart
of the theorem. Instead, we will first prove many "stepping stone" lemmas and then

combine them together to obtain a complete proof. Readers who would like to see the final
statement of the theore first are referred to section Proof0fTheorend.

partition_on_§ .

...and Epart to system S* and denote it as Epart .

one can use these simple facts to construct more sophisticated facts, then even more
sophisticated ones, and so on untilthe final goal is reached. Yet, a reasonable question for

As already discussed, pickle-equivalence is quite strong and we can show that both
indices £ and Ei correspond to the same arrival sequence £. Because of the way

L] o Section StepByStepProof. Let Epart’ := extend_partition S Epart j_rep.
In this section, we demonstrate a step-by-step proof of the main claim (Theorem 1 from Consider a pair of arbitrary pickle-equivalent elements £1.and £1'.
the paper). It s important to note that Cog’s preferred method of proo s a "bottom-u Variables (Ei : T Epart) (Ei' : I Epart’
o ° e e approach, while most humans are prefer following a top-down derivation. In other words, Hopatnests Eequiveiance | pickie by t1 k.
[ ° in Coq itis easier to present proofs in the following way: first simple facts are proven, then

, , a human would be "where is this going?" partitions on arrival sequences are constructed, we can extract an arrival sequence by
’ - ) unpacking a partition.
Therefore, we adopt a more paper-like approach in which we present the proof as a series !
of implications: C -+ Goa, B - C, A - B. This allows us to begin with the final goal Variable € : arrival_sequence Jol

(assuming that some facts are given) and then gradually work our way towards the "leafs" Hypothesis H_part_unpack £ : mateh §1 with exist § IN = € end = €.

of the overall argument pertaining to specific details.
Instead of clunky indices £1 : T Epart and £1' : T Epart’, we will use "plain"

° ° ° ° ° Assume horizon defines (an upper bound on) the termination time of the system. If =l e e e i e e I T
horizon =None, the system does not necessarily terminate. Note, however, that in either respeciively.
case our proof assumes there to be a finite number of jobs for technical reasons. As the Let 1 12 1, srrsea 0 = ) < pred ot 5
horizon can be chosen to be arbitrarly large (the proof does not depend on its magnitude), Let £, 1= (hu, o) & TSN L red (Lot 5.
° ° . . ° ° &.g., hundreds of even thousands of years, assuming the existence of a finite horizon is et & 0, artseq (proji § j_rep ] == €] : pred (0o
Dotunreaschablelfona computing Systsn During this step, we replace indices with predicates.

, , Variable horizon : option instant. Hypothesis H_ineq_E_fi)

Pep_of S>{T £F 1) > o P<u of S>{[ Exc n £f 1} = P<u_of $'>{[ Exc' n Ef' ]}.
Consider any type of tasks with a notion of pWCET... Lemma transformation_is_pRT_monotone_step!

simplified system obtained via pWCET F.. Then &%

P )

< R

Hint.
1. Use axiomatic pWCET to construct a "copy" of the initial
system, where pETs are replaced with job costs that are,

by construction, IID and have distribution £

*
2. Prove that pRT %1]

]
| ]
| |
]
| ]
-
]
"

in the simplified system

stochastically dominates the original pRT % . -

o

Context (Task TaskType}
{pWCET_pmf : ProbWCET Task}.

..and their jobs.
Context {Job + finType}
b_task : JobTask Job Task}.

Consider a response-time monotonic scheduling algorithm Z, where response-time
monotonic means the following: assuming that all arrival times are fixed, an increase of
the execution cost of any job cannot cause a decrease in the response time of any job.
Recall that £ receives two vectors: a vector of arrival times A and a vector of job costs C.

Variable ¢ : @schedulerAc Job.
Hypothesis H_rt_monotonic : rt_monotonic_scheduler horizon Z.

For brevity, let sched denote the probabilistic schedule generated by Z for a given
systems.

Let sched S := compute_pr_schedule g (job_arrival := 4_of S) (job_cost := €_of S|

As before, consider four parameters that describe a system under analysis: a sample
space 0, a measure |1, job arrival times &, and job execution costs &.

Variable 0 : countType.

Variable j : measure

Variable 4 : JnhArrwalRV Job Q p.

Variable € : JobCostRV Job @ ji.

Let us use these parameters to construct a systen S.
Let S := {| Qof :

Next, we assume that the aforementioned pWCET is an axiomatic pWCET. That s, for
any job j and any arrival sequence £, there exists a partition of  into positive-probability
events such that both partition dominance and partition independence are satisfied.

Hypothesis H_axiomatic_pHCET :

axiomatic_PHCET (i_of S) (job_arrival := 4_of ) (job_cost i= €_of S).

Suppose we use the construction replace_job_pET presented in probsa/rt
/analysis/pETs_to_pCETs to replace the execution cost of given job j _rep. Let S*
denote the resulting syslem.

Variable j_ rep
Let's* p\a:e )ub PET j_rep S.

For convenience, let tsk denote j's task...
Let tsk := job_task j_rep.

...and let u_tsk denote the measure induced by pHCET.

Let p_tsk :=

match pchT onf with
WCET prET nonneg suml -

Next, consider an arbitrary job j of any task and a duration r.
Variables (j : Job) (r : duration).

Finally, let Exc denote the event that j's response time exceeds r time units in system S

Let Exc := A w : 0_of S, exceeds (response_time
(jobarrival := 4_0f S) (jobcost := €_of S)
(schéd S) horizonj o

and let Exc' denote the event that j's response time exceeds r time units in system

S
Let Exc'

Aw: 0of S', exceeds (response_time
(job_arrival := A_of s ) (job_cost :=
(sched S*) horizon j )

r.

The remainder of this file serves for the most part to relate the probability of Exc with the
probability of Exc ', namely to establish that P<_of S>{ [ Exc 1} s P<j_of §'>{[ Exc'
1%

Step 1

Now we are ready to start the proof. First, we do a case analysis on all possible arrival
sequences.

Section Stepl.

Consider a partition Epart of the sample space 0_of S of system S into events
corresponding to different arrival sequences.

Let Epart := partition_on_§ .

Here Epart is an (indexed) set of events, where an £i-th event denoted as Epart<{£i}
represents a subset of 0 where the arrival sequence is equal to £1.

(Readers focused on technical detail may be interested in noting that the indices of
partition Epart are arrival sequences themselves. This detail may be safely skipped over
by more casual readers.)

As discussed in the paper, one can transfer the partition Epart to the system S’ and
denote it as Epart . For further details see the function
partition_transfer.extend_partition.

Let Epart’ := extend_partition S Epart j_rep.

Partitions Epart and Epart " are so similar that one can prove equivalence. For example,
two indices £iand £ that are "pickle equivalent' can be shown to be identical. (Pickle
equivalence is a very strong notion of equivalence; one can intuitively view it simply as an
equality between two elements of similar types; for further details see
util, bigop_inf.pickle bij)
Rema rk Ei_e
Ei: I {part) (5;' : I Epart'),
plckle bij £i Ei' - Ei = Ei'.

Now, recall that we present the proof in a top-down (C - Goa) fashion, starting with the
overall theorem.

So, assuming that for any two elements of partitions £i : T Epartand £i' : I Epart’
that are "pickle™-equivalent, it holds that P{ [ Exc1 n Epart<{£i} 1} =P{[ Exc2n
Epart'<{€i'} 1},
Hynu(h251s H, meq E_narntmned :
V (Ei: I Epart) (£i' : I Epart’') (EEQU : pickle bij £i Ei'
Pep_of S3{[ Exc n Eparta{gi} 1} = P<p_of S'>{["Exc' n Epart <{gi'} 1}

.. we can show that P<p_of S>{[ Exc1 ]} sP<p_of S'>{[ Exc2 ]}. Or, in other
words, we reduced the lemma statement to the hypothesis statement.

Lemna transformation_is_pRT_monotone_stepl :
P<p_of S>{[ Exc 1} = P<pof S'>{[ Exc' I}.

End Stepl.

Step 2

Now, we know that if we have the inequality with partitions on arrival sequences
H_ineq_E_partitioned, then we are done. But how do we prove such an |nequall(y7 In
the next step, we prove the required inequality by introducing a new hypothesi

which it can be established. We then continue in this manner until reaching a nypo(hesis

that is easy enough to prove without introducing new hypotheses.

P<p_of S>{[ Exc n Eparta(Ei} 1} = P<p_ o St exet gpart'<{€i'} 1}.
End Step2.

Step 3

Now, we can forget about Epart and Epart and use £, £, and Ef* instead. Notice that
here we use £ to denote the deterministic arrival sequence. Predicates &f and £f '
denote events that result in £ in systems S and S, respectively.

Variable € : arrival_seque
Let (A w, arr_seq

£) ; preg (a.of 5),
(A w, arr_seq (pm]l H ] rep u]

€) : pred (0_of S').

Let Ef'

Without loss of generality, we can assume that £ appears with positive probability
(otherwise the LHS of the inequality from Step 2 is equal to 0).

Hypothesis H_E_pos_prob : P<y>{[ £f 1} > 0.

In this step, we introduce a partition (that guarantees partition-independence and partition-
dominance) of the probability space by exploiting H_axiomatic_pWCET, the assumption
of axiomatic pWCET.

Section Step3.

Consider some countable type T and define a family of predicates part : I - pred 0.
Consider an index Pi : i and assume that part P has positive probabilty. Note that
part might depend on Ef.

Next, let us assume the following: we have an event S := part Pi in system S such that
the event ensures (1) the validity of the pWCET bound and (2) the partition-independence
of job j_rep.

Let us define ST's twin Sf' w := ST (proj1w) in'S* (recall that proj 1 simply retums the
first component of a tuple).

With this, let us assume that the inequality that now includes Sf and ST holds:

P<p_of S>{[ (Exc1n&f) nSf ]} sP<p_of S'>{[ (Exc2n§f') nSf' 1}.

Hypothesis H_ineq0_part :
V¥ (I : countType) (part : I -+ pred 0) (Pi: I) (p : PosProb u (Ef n part Pi)),
:= part Pi : pred (0_of S) in
(A w, Sf (proj15 j_rep w)) : pred (a_of S') in

tet sf'

v (x:
r<u>{[ ndf\ta (e j_rep) | &f n Sf 1}(x) = pWCET_cdf (job_task j_rep) x) -

(¥ (¢ : Job - option work) (jobs : seq Job),
Jzrep \notin jobs -
Pops{[ e_fix ¢ [::
S etix ¢

repl n e_fix C jobs | Ef n
P<p_of S>{[ (Exc n £f) n Sf 1} = P<u_of S'>{[ (Exc' n Ef') n Sf' ]},

Then, we can prove the inequality that we assumed in the previous step (Step2). Notice
that in order to apply the conclusion of H_ineq_0_part, we need to provide al the
premises of the hypothesis. In particular, we have to present a countable type with a
family of predicates where every event ensures partition-independence and partition-
dominance.

This is possible only because we assumed that the given pWCET satisfies our axiomatic
PWCET definition. Again, essentially, we prove that we can reduce the lemma to the
hypothesis using the properties ensured by axiomatic pWCET.

Lemna transformation_is_pRT_monotone_step.
P<p_of S>{[ Exc n §f 1} = P<p_of S St Exc n & 1k

End Step3.

Step 4

As before, now we need to prove the inequality we assumed in the previous step. For this,

let us introduce all premises of the assumed inequality as variables and hypotheses.
Variable (Idx : countType) (part : Idx - pred @) (Pi : Idx).

= part Pi : pred (0_of S).
(A'w, Sf (proj1 5 j_rep w)) : pred (n_of S').

Variable pl : PosProb (u_of S) (Ef n Sf).
Variable p2 : PosProb (u_of ') (Ef' n Sf').

Hypothesis H_pHCET. bounds_cond.cdf
e hat), Fu ([ 0dFTED (€ J_rep) | EF n ST 1}(x) = PHCET_cdf (job_task j_rep) x.

Hypnthes)s . cond_independence :
v (c ~ option work) (jobs : seq Job),
j_rep \notm jobs -
Pep>{[ e_fix € [:
= Pep>{[€_fix ¢

_rep] n e_fix ¢ jobs | Ef n Sf 1}
j_rep] | EF n ST 1} x Pew>{[ €_fix ¢ jobs | Ef n Sf 1}

In this step, we transform our inequality by moving £f n Sf and £f' n S to the
conditional part.

Section Stepd.
First, note that both £f n Sf and ' n S' have the same probability. This is due to the

fact that our transformation does not change the probabiliies of arrival sequences or
partitions.

Remark Ef_and_Sf_eq_prol
Pey_of 5>{[ Ef n Sf i L pauof S0 EF 0 5 1

As before, we show that one can reduce the inequality stated in the lemma to the
statement stated in the hypothesis. In other words, we can indeed condition on £ n S
and £F* n Sf*. Then, both of them cancel out, since the probability is equal.
Hypothesis W ineq_conditional
Beuof S-{T Exc | Bf n ST 1} = Ppof §'>{[ Exc' | EF* n ST 1}

Lemma transformation_is_pRT_monotone_stepd :
Pep_of S>{[ Exc n Ef 1 ST 1} = P of §'>{[ Exc’ n Ef' n SF* 1}.
End Stepd.

Step 5

For simplicity, let us introduce a few local names for functions extracting cost vectors. For
example, given w \in 0_of S, compute_costs returns a vector of all costs fixed for this
specific evolution .

Let compute_costs (w : 0_of S)
Let compute_costs' (u : 0_of S')

job. compute_costs w (job_cost
job. compute_costs w (job_cost

€ of S).
€_of 5').

For simplicity, let 5 denote a function that computes the response time of any job for
given fixed vectors A and C.

Let ® := schedulerAC_to_rtac horizon Z.

In this step, we replace events Exc and Exc with events A u = exceeds (% A
(compute_costs ) j) r, where the arrival times are fixed to be a specific vector of
arrival times. Note that previously we had a general random variable describing the
response-time distribution, but now we have algorithm 2 instead.

Section Steps.

Note that here we assume that we are given any vector A describing job arrivals without
restriction that it must agree with €. Inside of the proof, we indeed construct A as a
transformation of £; however, for further proofs, it is not relevant, so we just forget this
information and use a generic function Job - option instant.
Hypothes)s H_ineq_algorithmic_® :

¥ (A : Job -~ option instant),

P<u_nf S>{[ A , exceeds (R A (compute_costs w) j r | E,f n Sf

= P<pof S'>{[ A w, exceeds (R A (compute_costs’ u rEe n st 1k

The inequality involving Exc and Exc " is implied by the inequality involving &2.

1}
j_rep] | EF n ST 1} x IP<|J>([ c fix € jobs | Ef n S 1}) ~
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in the simplified system

stochastically dominates the original pRT % . -
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(* Prosa *)
From prosa.model Require Import processor.ideal.

(* ProBsa *)
From probsa.util Require Export misc bigop_inf
rom probsa. probability Require Export pred law_of_total_prob.

From probsa.rt.model Require Export task events axiomatic_pWCET scheduler rt_monotol
From probsa. rt.analysis Require Export PETS.fo PHCETS partition transfer.

(* SSReflect )
From mathcomp Require Import finfun.

(* Main *)

In this file, we prove Theorem 1 presented in the paper "What really is pWCET? A
Rigorous Axiomatic Definition of pWCET" by Bozhko et al. (RTSS'23).

Step-by-step Proof of Theorem 1

In the following, we present the proof of Theorem 1 in the above-cited paper. Due to the
length of the proof and the nature of Cog, we cannot start this section with the statement
of the theorem. Instead, we will first prove many "stepping stone" lemmas and then
combine them together to obtain a complete proof. Readers who would like to see the final
statement of the theore first are referred to section Proof0fTheorend.

Section StepByStepProof.

In this section, we demonstrate a step-by-step proof of the main claim (Theorem 1 from
the paper). Itis important to note that Cog's preferred method of proof is a "bottom-uj
approach, while most humans are prefer following a top-down derivation. In other words,
in Coq it easier to present proofs in the following way: frst simple facts are proven, then
one can use these simple facts to construct more sophisticated facts, then even more
sophisticated ones, and so on untilthe final goal is reached. Yet, a reasonable question for
ahuman would be "where is this going?"

Therefore, we adopt a more paper-like approach in which we present the proof as a series
of implications: C -+ Goa, B - C, A - B. This allows us to begin with the final goal
(assuming that some facts are given) and then gradually work our way towards the "leafs”
of the overall argument pertaining to specific details.

Assume horizon defines (an upper bound on) the termination time of the system. If
horizon = None, the system does not necessarily terminate. Note, however, that in either
case our proof assumes there to be  finite number of jobs for technical reasons. As the
horizon can be chosen to be arbitrarily large (the proof does not depend on its magnitude),
©.g., hundreds of even thousands of years, assuming the existence of a finite horizon is
not unreasonable for a computing system.

Variable horizon : option instant.

Consider any type of tasks with a notion of pWCET...

Context (Task TaskType}
{pWCET_pmf : ProbWCET Task}.

..and their jobs.

Context (Job : finType}
b_task : JobTask Job Task}.

Consider a response-time monotonic scheduling algorithm Z, where response-time
monotonic means the following: assuming that all arrival times are fixed, an increase of
the execution cost of any job cannot cause a decrease in the response time of any job.
Recall that £ receives two vectors: a vector of arrival times A and a vector of job costs C.

Variable T : @schedulerAC Job.
Hypothesis H_rt_monotonic : rt_monotonic_scheduler horizon Z.

For brevity, let sched denote the probabilistic schedule generated by Z for a given
systems.

Let sched S := compute_pr_schedule g (job_arrival := 4_of S) (job_cost := €_of S|

As before, consider four parameters that describe a system under analysis: a sample
space 0, a measure |1, job arrival times &, and job execution costs &.

Variable 0 : countType.

Variable u : measure

Variable 4 : JnhArrwalRV Job Q p.

Variable € : JobCostRV Job Q u.

Let us use these parameters to construct a systen S.
Let S := {| Qof :

Next, we assume that the aforementioned pWCET is an axiomatic pWCET. That s, for
any job j and any arrival sequence £, there exists a partition of  into positive-probability
events such that both partition dominance and partition independence are satisfied.

Hypothesis H_axiomatic_pHCET :

axiomatic_PHCET (i_of S) (job_arrival := 4_of ) (job_cost i= €_of S).

Suppose we use the construction replace_job_pET presented in probsa/rt
/analysis/pETs_to_pCETs to replace the execution cost of given job j _rep. Let S*
denote the resulting syslem.

Variable j_ rep
Let's* p\a:e )ub PET j_rep S.

For convenience, let tsk denote j's task...
Let tsk := job_task j_rep.

...and let u_tsk denote the measure induced by pHCET.

Let p_tsk :=

match pchT pat with
WCET prET nonneg suml -

Next, consider an arbitrary job j of any task and a duration r.
Variables (j : Job) (r : duration).

Finally, let Exc denote the event that j's response time exceeds r time units in system S

Let Exc := A w : 0_of S, exceeds (response_time
(jobarrival := 4_0f S) (jobcost := €_of S)
(schéd S) horizonj o

and let Exc' denote the event that j's response time exceeds r time units in system

S
Let Exc'

Aw: 0of S', exceeds (response_time
(job_arrival := A_of s ) (job_cost :=
(sched S*) horizon j )

r.

The remainder of this file serves for the most part to relate the probability of Exc with the
probability of Exc ', namely to establish that P<_of S>{ [ Exc 1} s P<j_of §'>{[ Exc'
1%

Step 1

Now we are ready to start the proof. First, we do a case analysis on all possible arrival
sequences.

Section Stepl.

Consider a partition Epart of the sample space 0_of S of system S into events
corresponding to different arrival sequences.

Let Epart := partition_on_§ .

Here Epart is an (indexed) set of events, where an £i-th event denoted as Epart<{£i}
represents a subset of 0 where the arrival sequence is equal to £1.

(Readers focused on technical detail may be interested in noting that the indices of
partition Epart are arrival sequences themselves. This detail may be safely skipped over
by more casual readers.)

As discussed in the paper, one can transfer the partition Epart to the system S’ and
denote it as Epart . For further details see the function
partition_transfer.extend_partition.

Let Epart’ := extend_partition S Epart j_rep.

Partitions Epart and Epart " are so similar that one can prove equivalence. For example,
two indices £iand £ that are "pickle equivalent' can be shown to be identical. (Pickle
equivalence is a very strong notion of equivalence; one can intuitively view it simply as an
equality between two elements of similar types; for further details see
util, bigop_inf.pickle bij)
Rema rk Ei_e
Ei: I {part) (5;' : I Epart'),
plckle bij €i €i' - &i = Ei'.

Now, recall that we present the proof in a top-down (C - Goa) fashion, starting with the
overall theorem.

So, assuming that for any two elements of partitions £i : T Epartand £i' : I Epart’
that are "pickle™-equivalent, it holds that P{ [ Exc1 n Epart<{£i} 1} =P{[ Exc2n
Epart'<{€i'} 1},
Hypu(hesls H, meq E_narntmned :
(€i : I Epart) (&i' : I Epart') (EQU : pickle bij £i Ei'
Pep_of S3{[ Exc n Eparta{gi} 1} = P<p_of S'>{["Exc' n Epart <{gi'} 1}

.. we can show that P<p_of S>{[ Exc1 ]} sP<p_of S'>{[ Exc2 ]}. Or, in other
words, we reduced the lemma statement to the hypothesis statement.

Lemna transformation_is_pRT_monotone_stepl :
P<p_of S>{[ Exc 1} = P<pof S'>{[ Exc' I}.

End Stepl.

Step 2

Now, we know that if we have the inequality with partitions on arrival sequences
H_ineq_E_partitioned, then we are done. But how do we prove such an |nequall(y7 In
the next step, we prove the required inequality by introducing a new hypothesi

which it can be established. We then continue in this manner until reaching a hypomesis

that is easy enough to prove without introducing new hypotheses.

AXIOMATIC pWCET IS ADEQUATE

PSP_OT 5>{1 EXC 1} = P<P_OT 5°>{1 EXC' I},

End Stepl.

Step 2

Now, we know that if we have the inequality with partitions on arrival sequences
H_ineq_£_partitioned, then we are done. But how do we prove such an inequality? In
the next step, we prove the required inequality by introducing a new hypothesis from
which it can be established. We then continue in this manner until reaching a hypothesis
that is easy enough to prove without introducing new hypotheses.

In the second step, we replace the partition over all arrival sequences with an event
encoding one arrival sequence.

Section Step2.
First, let us state the premise of our hypothesis H_ineq_£_partitioned.

Again, consider a partition Epart of the sample space of system S into events
corresponding to different arrival sequences...

Let Epart := partition_on_§ .
...and Epart to system S* and denote itas Epart .
Let Epart’ := extend_partition S Epart j_rep.

Consider a pair of arbitrary pickle-equivalent elements £1 and £i".

Variables (i : I Epart) (Ei' : I Epart’
Hypothesis € equivalence : pickle_bij 51 31N

As already discussed, pickle-equivalence is quite strong and we can show that both
indices £ and Ei correspond to the same arrival sequence £. Because of the way
partitions on arrival sequences are constructed, we can extract an arrival sequence by
unpacking a partition.

Variable € : arrival_sequence Jo

Hypothesis H_part_unpack_E : match Ei with exist £ IN » € end = E.

Instead of clunky indices £1 : T Epart and £1' : T Epart’, we will use "plain"
predicates Ef and Ef* that correspond to a fixed arrival sequence £ in S and S,
respectively.

Let Ef
Let Ef'

(A w, arr_seq w = ) : pred (ﬂu
(A w, arr_seq (proj1 s; rep w) == Ei : pred (0_of S').

During this step, we replace indices with predicates.

Hypothesis H_ineq_§_fi)
P<p_of S>{T &f 1 > o P<u of S>{[ Exc n &f 1} = P<p_of S'>{[ Exc' n &f' 1}.

Lemna transformation_is_pRT_monotone_step:
P<p_of S>{[ Exc n Epart<(Ei} 1} = Pp_ uf R gpart'<{€i'} 1}.

End Step2.

Step 3

Now, we can forget about Epart and Epart and use £, £, and Ef* instead. Notice that
here we use £ to denote the deterministic arrival sequence. Predicates &f and £f '
denote events that result in £ in systems S and S, respectively.

Varisble £ : arrival_seque
Let (A w, arr_seq 6 :p red (00
(A w, arr_seq (pm]l H ] rep u]

s).
€) : pred (0_of S').

Let Ef'

Without loss of generality, we can assume that £ appears with positive probability
(otherwise the LHS of the inequality from Step 2 is equal to 0).

Hypothesis H_E_pos_prob : P<y>{[ £f 1} > 0.

In this step, we introduce a partition (that guarantees partition-independence and partition-
dominance) of the probability space by exploiting H_axiomatic_pWCET, the assumption
of axiomatic pWCET.

Section Step3.

Consider some countable type T and define a family of predicates part : I - pred 0.
Consider an index Pi : i and assume that part P has positive probabilty. Note that
part might depend on Ef.
Next, let us assume the following: we have an event S := part Pi in system S such that
the event ensures (1) the validity of the pWCET bound and (2) the partition-independence
of job j_rep.
Let us define ST's twin Sf' w := ST (proj1w) in'S* (recall that proj 1 simply retums the
first component of a tuple).
With this, let us assume that the inequality that now includes S and Sf* holds:
P<p_of S>{[ (Exc1n&f) nSf ]} sP<p_of S'>{[ (Exc2n§f') nSf' 1}.
Hyputhes)s H_ineq_0_part :
¥ (I : countType) (part : I - pred Q) (Pi: I) (p : PosProb p (Ef n part Pi)),

part Pi : pred (0_of S) in
(A w, Sf (proj15 j_rep w)) : pred (a_of S') in

tet sf'

v (x:
r<u>{[ ndf\ta (e j_rep) | &f n Sf 1}(x) = PWCET_cdf (job_task j_rep) x) =

(¥ (¢ : Job - option work) (jobs : seq Job),
Jzrep \notin jobs -
Pops{[ e_fix ¢ [::
S etix ¢

rep] n e_fix ¢ jobs | Ef n 1}
j_repl |Ef n ST 1} x IP<|J>([ : fix € jobs | £f n Sf 1K

Pep_of S>{[ (Exc n &f) n ST 1} = P<u_of S'>{[ (Exc' n Ef*) n Sf' 1}

Then, we can prove the inequality that we assumed in the previous step (Step2). Notice
that in order to apply the conclusion of H_ineq_0_part, we need to provide al the
premises of the hypothesis. In particular, we have to present a countable type with a
family of predicates where every event ensures partition-independence and parttion-
dominance.

This is possible only because we assumed that the given pWCET satisfies our axiomatic
PWCET definition. Again, essentially, we prove that we can reduce the lemma to the
hypothesis using the properties ensured by axiomatic pWCET.

Lemna transformation_is_pRT_monotone_step.
P<p_of S>{[ Exc n §f 1} = P<p_of S St Exc n & 1k

End Step3.

Step 4

As before, now we need to prove the inequality we assumed in the previous step. For this,

let us introduce all premises of the assumed inequality as variables and hypotheses.
Variable (Idx : countType) (part : Idx - pred @) (Pi : Idx).

= part Pi : pred (0_of S).
(A'w, Sf (proj1 5 j_rep w)) : pred (n_of S').

Variable pl : PosProb (u_of S) (Ef n Sf).
Variable p2 : PosProb (u_of ') (Ef' n Sf').

Hypothesis H_pHCET. bounds_cond.cdf
B hat), Fu ([ 0dfTEo ( J_rep) | EF n ST 1}(x) = PHCET_cdf (job_task j_rep) X

Hypnthes)s . cond_independence :
v (c ~ option work) (jobs : seq Job),
j_rep \notm jobs -
Pep>{[ e_fix € [:
= Pep>{[€_fix ¢

_rep] n e_fix ¢ jobs | Ef n Sf 1}
j_rep] | EF n ST 1} x Pew>{[ €_fix ¢ jobs | Ef n Sf 1}

In this step, we transform our inequality by moving £f n Sf and £f' n S to the
conditional part.

Section Stepd.

First, note that both £ n Sf and £f* n Sf' have the same probability. This is due to the
fact that our transformation does not change the probabiliies of arrival sequences or
partitions.

Remark Ef_and_Sf_eq_prol
Pey_of 5>{[ Ef n Sf i L pauof S0 EF 0 5 1

As before, we show that one can reduce the inequality stated in the lemma to the
statement stated in the hypothesis. In other words, we can indeed condition on £ n S
and £F* n Sf*. Then, both of them cancel out, since the probability is equal.
Hypothesis W ineq_conditional
Beuof S-{T Exc | Bf n ST 1} = Ppof §'>{[ Exc' | EF* n ST 1}
Lemma transformation_is_pRT_monotone_ste]

epd :
Pep_of S>{[ Exc n Ef 1 ST 1} = P of §'>{[ Exc’ n Ef' n SF* 1}.
End Stepd.

Step 5

For simplicity, let s introduce a few local names for functions extracting cost vectors. For
example, given  \in 0_of S, compute_costs returns a vector of all costs fixed for this
specific evolution u.

job. compute_costs w (job_cost
job. compute_costs w (job_cost

€ of S).

Let compute_costs (w : 0_of S)
[ ©_of '),

Let compute_costs' (u : O_of §')

For simplicity, let 5 denote a function that computes the response time of any job for
given fixed vectors A and C.

Let ® := schedulerAC_to_rtac horizon Z.

In this step, we replace events Exc and Exc with events A u = exceeds (% A
(compute_costs ) j) r, where the arrival times are fixed to be a specific vector of
arrival times. Note that previously we had a general random variable describing the
response-time distribution, but now we have algorithm 2 instead.

Section Steps.

Note that here we assume that we are given any vector A describing job arrivals without
restriction that it must agree with €. Inside of the proof, we indeed construct A as a
transformation of £; however, for further proofs, it is not relevant, so we just forget this
information and use a generic function Job - option instant.
Hypothes)s H_ineq_algorithmic_® :

¥ (A : Job -~ option instant),

P<u_nf S>{[ A , exceeds (R A (compute_costs w) j r | E,f n Sf

= P<pof S'>{[ A w, exceeds (R A (compute_costs’ u rEe n st 1k

The inequality involving Exc and Exc " is implied by the inequality involving &2.

Step 6

Assume that we are given a list of job arrivals.
Variable (A : Job - option instant).

For technical reasons, we need to distinguish between jobs costs operating in a
probabilistic space with a measure j1_of S (i_of S*) and the ones operating with the
restricted measure restrict (u_of S) (Ef nSf) (and restrict (u_of $*) (Ef' n
SF)).

Recall that a partition of the probability space must take measures into account (to satisfy
certain assumptions). Since we restrict 0_of S to a subset that satisfies predicate £f n ST
(and a subset of 0_of S that satisfies predicate £ n Sf'), we have to adapt some of
the notions to these new measures.

Let ur
Let pr'

estrict (_of S) (Ef n Sf) : measure (0_of S).
:= restrict (j_of §') (Ef' n Sf') : measure (o_of S').

Next, we define random variables, which are the same as those introduced earlier, except
for the measure (ur instead of p and pr* instead of u'.

Let er j
Let er'’j :

mkRvar ur (€ of S j).
mkRvar ur' (€_of §' j).

Similarly, we need to provide a new notion of projection that accounts for the restricted
measure.

pefinition proju :
V (w:0of §'), (EF' nSf') w -~ (Ef n Sf) (proj1 s j_rep ).

Now, we want to fix the job costs of all jobs except j_rep (recall that j_rep s the job for
which we want to replace pET with pWCET). For this, again, we introduce partitioning of 0
into subsets, each containing a unique job cost assignment (and the job cost of j _rep is
left unspecified).

Let CSpart

partition_on_€s (job_cost := er) ur (rem j_rep (enum Job)).
Let CSpart'

extend_partition’ S j_rep (Ef n ) cspart (£f' n Sf') proju.

In the next step, we introduce CSpart<{Cs} and CSpart ' <{Cs '} into the inequality.
They ensure that the costs of all jobs (except j_rep) are fixed.

Section Step6.

Assume that the inequality holds when conditioned on job-cost paritions (excluding
j_rep),
Hypothesis W_ineq_costs_partitioncd :
¥ (Cs : I CSpart) (Cs™ : I CSpart') (CSEQU : pickle_bij Cs Cs'),
|P<u_of s>{[
(A w, exceeds (® A (compute_costs ) j) r)
n CSpartq(CS) | &f n SF 1F
< Pey_of §'>{[
(X w, exceeds (® A cnmpute costs' w) §) r)
n CSpart'<{Cs'} | &f' n 1}

... then we can derive the inequality also without conditioning on costs.
Lenma transformation_is_pRT_monotone_step6 :
P<p_of S>{[ )\ w, exceeds (® A (compute_costs w) j) r | &f n Sf 1}
= P<p_of S'>{[ A w, exceeds (® A (compute_costs' w) j) r | §f' n Sf' J}.

End Stepé.

Step 7

As before, we now proceed to derive the premise of the prior step.

To this end, consider two equivalent events corresponding to the same setting of job costs
in the two systems.

Variable (Cs : I CSpart) (Cs' : I CSpart') (CSEQU : pickle_bij Cs Cs').

Consider two partitions of 0_of S and 0_of S into cost of all jobs except j_rep.

Let Cpart :
Let Cpart

artition_on_ ur (job_cost
= partition_on_e ur' (job_cos:

Similarly to how we replaced job arrivals with A, we can do a similar trick to replace job
costs with a vector C. However, what do we do with the cost of the unspecified job
j_rep? First, we can perform another round of partitioning and apply the law of total
Probability (LTP) on the remaining job cost (note that we get a new sum

3 [=]_{c<-optionwork} ... in the inequalty). Second, we can update C with the
specified value of j_rep 5 A (update C j_rep c) j. For now, we replace only the LHS.

Section Step7.

Note that on the LHS of the below hypothesis, we now have the following term:
3 []_{c<-option work} P<p_of S>{[ exceeds (% A (update C j_repc) j) r&&
(Cspart<{Cs} & Cparta{c}) | §f nSf1}.

An important result of this transformation is that now exceeds (% A (update C j_rep
©) j) ris aboolean value (trueffalse) and event CSpart<{Cs} & Cpart<{c} defines a
subset of 0_of S such that aljob costs are fixed.

To extract a vector of job costs from the partition CSpart<{Cs}, we find one v €
CSpart<{Cs} and compute the vector of costs for this w. The resulting vector of costs will
agree with the jobs in the system, given CSpart<{Cs} is true.
Note that we use the construction update C j_rep c to update the cost of job j_rep in
vector C with a new value c. This is a way to define the notion of "reassembling" two job-
cost-fixing vectors used in the paper.

Hypothesls H_ineq_cost_partitioned :

),

CSpartq{CS} wo
et € := (fun j » €_of S j wo) in

3] (c<—uptinn work}
Pey S>{[ A w,
-lee exceeds (z A (update € j_rep ©) §) r,

| €f n Sf 1}
< Pep_of §'>{[
(A w, exceeds (R A (compute_costs' w) j) r)
n CSpart <<c b
| &' n

As before, we show that the prior step's premise follows from the hypothesis introduced
here; that s, how the premise of Step 6 follows from the premise of Step 7.

Lemma transfcmatmn _is_pRT_monotone_stej
P<p_of S>{

<_0 [ (A w, exceeds (% A (compute_costs @) j) r) n CSpart<(Cs} | Ef n Sf 1}
= Pau_of S'>{[ (A u, exceeds (% A (compute_costs' w) j) r) n CSpart'<{Cs'} | &f' n Sf' I}

End Step7.

Step 8

We can prove that there is at least one o that satisfies the current partition
CSpart<{Cs} wo. We can use wo to compute C. Such a cost assignment agrees with
CSpart<{Cs} because wo satisfies the initial predicate.

Variable wo : 0_o

Hypothesis H_uo_ m & (CspartalCs) vo.
(fun j =~ €of S j : Job - option work.

Similarly to Step 7, which focused on the LHS, we now replace the RHS.
Section Steps.

Notice that both sides now have all costs fully fixed.

Hypothesis H_ineq_cost_partitioned :
3 2] {c<-option vork}
Peu_of S>([ A u,
{6 exceeds ( A (update ¢ j_rep ) J) r,
Copartaics} o
ta{c} 0] J zf n st}
= i[w] (c< option wur

18 exceeds (% & (update ¢ j_rep ) ) r,
Cspart'<{Cs'}
Cpart'a{c} o] | Ef' n st}

From the above hypothesis, we can obtain the premise of Step 7.

Lenma_transformation_is_pRT_monotone_step8 :
3 l=]_{c<— nptmn work}
Pep_of S>{[ A
[&& exceeds (= A (upda(e Cj_repc)j)r,
CSpart<{Cs} u
Cparta{c} wl | {f nsfl}
< Pep_of S'>{[
* 9, exceeds (® A (cnmpute costs' @) 3) r)
n CSpart'<{Cs'} | Ef' n ).

End Steps.

Step 9

Let us define a random variable following the pWCET distribution. This random variable
describes j_rep's cost after its pET has been replaced. For more details, see the file
rt/analysis/pETs_to_pWCETs and specifically the transformation
replace_job_pET. Recall that ju_tsk is the measure induced by the given pWCET
distribution.

Let €_pWCET :

nkRvar u_tsk Some.

Finally, we can use the independence property H_cond_independence to factorize the
LHS. At the same time, we can factorize the RHS just by construction.

Section Step9.

On the technical side, this is a pretty involved proof. However, intuitively we simply apply
the partition-independence property of 5. Note that the probability of CSpart<{Cs} u &&
% j_rep w== c factors into two probabilities: CSpart<{Cs} and € j_rep == c.

Remark LHS_factorization :
3 [=]_{c<-option nat}
1[ exceeds (® A (update € j_rep ) j) r]
x Pap_of S>{[ A &, (c5part<(cs) @) s.& (e j_repw==c) | & nsf I}
= J[»]_{c<-option nat:
1[ exceeds (® A (update € j_rep c) j

x (P<p_of S>{[CSpart<{Cs} | &f n st ]) x P<p_of S>{[ € j_rep (=) c | &f n Sf 1}).

Next, we show that the probability part of the RHS can be factorized into two terms:
P<p>{[ CSpart<{Cs} | £f n Sf]} and P<p_tsk>{[ fun cw - Some cw == c ] }. Note
that the first factor is no longer a probability with respectto S* ~— it s a probability with
respect to 5. For the second term, it is a probability over the probability space described in
the file pETs_to_pWCETs.

Remark RHS_factorization :
3l

c<-option work}
1[exceeds (ye A (update € j_rep c) j
x P<p_of S'>{[ A w, CSpart’<{Cs’ } u && (Cpart'<{c} w) | Ef' n Sf'1}

= 5[] _{c<= nptmn worl
Ilexceeds (& A (update ¢ j_re
< bsin1 Csparta(Csy | €7 st 1} x lP<u_tsx>u €_PHCET (=) c 1}).

As usual, let us state a new premise.
Hypothesis H_ineq_introduce_independence :

3[=]_{c<-option work}
Ilexceeds (% A (update C j_rep c

< (B0t S>(1 Cpartalcar | EF R 1} x Pep_of S>{[ € j_rep (=) ¢ | &f n Sf 1})

< 3[=]_{c<-option worl
Ilexceeds (® A (update € j_rep c
x (P<p_of S>{[ CSpartq(Cs) | &f n Sf ]) x Pep_tsk>{[ €_pWCET (=) ¢ 1}).

From the preceding factorized inequality, we can derive the premise of the previous step.

Lenma_transformation_is_pRT_monotone_step9 :
3 [=]_{c<-option work}
Peu_of S>([ A u,
(8§ exceeds (% A (update € j_rep c) j) r,
CSparta{Cs} w
Cparta{c} ]
< 5[] {c<—option work

w6
| &f nSf 1}
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1. Use axiomatic pWCET to construct a "copy" of the initial
system, where pETs are replaced with job costs that are,

by construction, IID and have distribution £
2. Prove that pRT # *.

in the simplified system

stochastically dominates the original pRT % . -

o

(* Prosa *)
From prosa.model Require Import processor.ideal.

(x ProBsa *)
From probsa.util Require Export misc bigop_inf

rom probsa. probability Require Export pred law_of_total_prob.

From probsa.rt.model Require Export task events axiomatic_pWCET scheduler rt_monotof
From probsa. rt.analysis Require Export PETS.fo PHCETS partition transfer.

(x SSReflect *)
From mathcomp Require Import finfun.

(* Main *)

In this file, we prove Theorem 1 presented in the paper "What really is pWCET? A
Rigorous Axiomatic Definition of pWCET" by Bozhko et al. (RTSS'23).

Step-by-step Proof of Theorem 1

In the following, we present the proof of Theorem 1 in the above-cited paper. Due to the
length of the proof and the nature of Cog, we cannot start this section with the statement
of the theorem. Instead, we will first prove many "stepping stone" lemmas and then
combine them together to obtain a complete proof. Readers who would like to see the final
statement of the theore first are referred to section Proof0fTheorend.

Section StepByStepProof.

In this section, we demonstrate a step-by-step proof of the main claim (Theorem 1 from
the paper). Itis important to note that Cog's preferred method of proof is a "bottom-uj
approach, while most humans are prefer following a top-down derivation. In other words,
in Coq it easier to present proofs in the following way: frst simple facts are proven, then
one can use these simple facts to construct more sophisticated facts, then even more
sophisticated ones, and so on untilthe final goal is reached. Yet, a reasonable question for
ahuman would be "where is this going?"

Therefore, we adopt a more paper-like approach in which we present the proof as a series
of implications: C -+ Goa, B - C, A - B. This allows us to begin with the final goal
(assuming that some facts are given) and then gradually work our way towards the "leafs”
of the overall argument pertaining to specific details.

Assume horizon defines (an upper bound on) the termination time of the system. If
horizon = None, the system does not necessarily terminate. Note, however, that in either
case our proof assumes there to be  finite number of jobs for technical reasons. As the
horizon can be chosen to be arbitrarily large (the proof does not depend on its magnitude),
©.g., hundreds of even thousands of years, assuming the existence of a finite horizon is
not unreasonable for a computing system.

Variable horizon : option instant.

Consider any type of tasks with a notion of pWCET...

Context (Task TaskType}
{pWCET_pmf : ProbWCET Task}.

..and their jobs.

Context (Job : finType}
b_task : JobTask Job Task}.

Consider a response-time monotonic scheduling algorithm Z, where response-time
monotonic means the following: assuming that all arrival times are fixed, an increase of
the execution cost of any job cannot cause a decrease in the response time of any job.
Recall that £ receives two vectors: a vector of arrival times A and a vector of job costs C.

Variable T : @schedulerAC Job.
Hypothesis H_rt_monotonic : rt_monotonic_scheduler horizon Z.

For brevity, let sched denote the probabilistic schedule generated by Z for a given
systems.

Let sched S := compute_pr_schedule g (job_arrival := 4_of S) (job_cost := €_of S|

As before, consider four parameters that describe a system under analysis: a sample
space 0, a measure |1, job arrival times &, and job execution costs &.

Variable 0 : countType.

Variable u : measure

Variable 4 : JnhArrwalRV Job Q p.

Variable € : JobCostRV Job Q u.

Let us use these parameters to construct a systen S.
Let S := {| Qof :

Next, we assume that the aforementioned pWCET is an axiomatic pWCET. That s, for
any job j and any arrival sequence £, there exists a partition of  into positive-probability
events such that both partition dominance and partition independence are satisfied.

Hypothesis H_axiomatic_pHCET :

axiomatic_PHCET (i_of S) (job_arrival := 4_of ) (job_cost i= €_of S).

Suppose we use the construction replace_job_pET presented in probsa/rt
/analysis/pETs_to_pCETs to replace the execution cost of given job j _rep. Let S*
denote the resulting syslem.

Variable j_ rep
Let's* p\a:e )ub PET j_rep S.

For convenience, let tsk denote j's task...
Let tsk := job_task j_rep.

...and let u_tsk denote the measure induced by pHCET.

Let p_tsk :=

match pchT pat with
WCET prET nonneg suml -

Next, consider an arbitrary job j of any task and a duration r.
Variables (j : Job) (r : duration).

Finally, let Exc denote the event that j's response time exceeds r time units in system S

Let Exc := A w : 0_of S, exceeds (response_time
(jobarrival := 4_0f S) (jobcost := €_of S)
(schéd S) horizonj o

and let Exc' denote the event that j's response time exceeds r time units in system

S
Let Exc'

Aw: 0of S', exceeds (response_time
(job_arrival := A_of s ) (job_cost :=
(sched S*) horizon j )

r.

The remainder of this file serves for the most part to relate the probability of Exc with the
probability of Exc ', namely to establish that P<_of S>{ [ Exc 1} s P<j_of §'>{[ Exc'
1%

Step 1

Now we are ready to start the proof. First, we do a case analysis on all possible arrival
sequences.

Section Stepl.

Consider a partition Epart of the sample space 0_of S of system S into events
corresponding to different arrival sequences.

Let Epart := partition_on_§ .

Here Epart is an (indexed) set of events, where an £i-th event denoted as Epart<{£i}
represents a subset of 0 where the arrival sequence is equal to £1.

(Readers focused on technical detail may be interested in noting that the indices of
partition Epart are arrival sequences themselves. This detail may be safely skipped over
by more casual readers.)

As discussed in the paper, one can transfer the partition Epart to the system S’ and
denote it as Epart . For further details see the function
partition_transfer.extend_partition.

Let Epart’ := extend_partition S Epart j_rep.

Partitions Epart and Epart " are so similar that one can prove equivalence. For example,
two indices £iand £ that are "pickle equivalent' can be shown to be identical. (Pickle
equivalence is a very strong notion of equivalence; one can intuitively view it simply as an
equality between two elements of similar types; for further details see
util, bigop_inf.pickle bij)
Rema rk Ei_e
Ei: I {part) (5;' : I Epart'),
plckle bij €i €i' - &i = Ei'.

Now, recall that we present the proof in a top-down (C - Goa) fashion, starting with the
overall theorem.

So, assuming that for any two elements of partitions £i : T Epartand £i' : I Epart’
that are "pickle™-equivalent, it holds that P{ [ Exc1 n Epart<{£i} 1} =P{[ Exc2n
Epart'<{€i'} 1},
Hypu(hesls H, meq E_narntmned :
(€i : I Epart) (&i' : I Epart') (EQU : pickle bij £i Ei'
Pep_of S3{[ Exc n Eparta{gi} 1} = P<p_of S'>{["Exc' n Epart <{gi'} 1}

.. we can show that P<p_of S>{[ Exc1 ]} sP<p_of S'>{[ Exc2 ]}. Or, in other
words, we reduced the lemma statement to the hypothesis statement.

Lemna transformation_is_pRT_monotone_stepl :
P<p_of S>{[ Exc 1} = P<pof S'>{[ Exc' I}.

End Stepl.

Step 2

Now, we know that if we have the inequality with partitions on arrival sequences
H_ineq_E_partitioned, then we are done. But how do we prove such an |nequall(y7 In
the next step, we prove the required inequality by introducing a new hypothesi

which it can be established. We then continue in this manner until reaching a hypomesis
that is easy enough to prove without introducing new hypotheses.
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PSP_OT 5>{1 EXC 1} = P<P_OT 5°>{1 EXC' I},

End Stepl.

Step 2

Now, we know that if we have the inequality with partitions on arrival sequences
H_ineq_£_partitioned, then we are done. But how do we prove such an inequality? In
the next step, we prove the required inequality by introducing a new hypothesis from
which it can be established. We then continue in this manner until reaching a hypothesis
that is easy enough to prove without introducing new hypotheses.

In the second step, we replace the partition over all arrival sequences with an event
encoding one arrival sequence.

Section Step2.
First, let us state the premise of our hypothesis H_ineq_£_partitioned.

Again, consider a partition Epart of the sample space of system S into events
corresponding to different arrival sequences...

Let Epart := partition_on_§ .
...and Epart to system S* and denote itas Epart .
Let Epart’ := extend_partition S Epart j_rep.

Consider a pair of arbitrary pickle-equivalent elements £1 and £i".

Variables (i : I Epart) (Ei' : I Epart’
Hypothesis € equivalence : pickle_bij 51 31N

As already discussed, pickle-equivalence is quite strong and we can show that both
indices £ and Ei correspond to the same arrival sequence £. Because of the way
partitions on arrival sequences are constructed, we can extract an arrival sequence by
unpacking a partition.

Variable € : arrival_sequence Jo

Hypothesis H_part_unpack_E : match Ei with exist £ IN » € end = E.

Instead of clunky indices £1 : T Epart and £1' : T Epart’, we will use "plain"
predicates Ef and Ef* that correspond to a fixed arrival sequence £ in S and S,
respectively.

Let Ef
Let Ef'

(A w, arr_seq w = ) : pred (ﬂu
(A w, arr_seq (proj1 s; rep w) == Ei : pred (0_of S').

During this step, we replace indices with predicates.

Hypothesis H_ineq_§_fi)
P<p_of S>{T &f 1 > o P<u of S>{[ Exc n &f 1} = P<p_of S'>{[ Exc' n &f' 1}.

Lemna transformation_is_pRT_monotone_step:
P<p_of S>{[ Exc n Epart<(Ei} 1} = Pp_ uf R gpart'<{€i'} 1}.

End Step2.

Step 3

Now, we can forget about Epart and Epart and use £, £, and Ef* instead. Notice that
here we use £ to denote the deterministic arrival sequence. Predicates &f and £f '
denote events that result in £ in systems S and S, respectively.

Varisble £ : arrival_seque
Let (A w, arr_seq 6 :p red (00
(A w, arr_seq (pm]l H ] rep u]

s).
€) : pred (0_of S').

Let Ef'

Without loss of generality, we can assume that £ appears with positive probability
(otherwise the LHS of the inequality from Step 2 is equal to 0).

Hypothesis H_E_pos_prob : P<y>{[ £f 1} > 0.

In this step, we introduce a partition (that guarantees partition-independence and partition-
dominance) of the probability space by exploiting H_axiomatic_pWCET, the assumption
of axiomatic pWCET.

Section Step3.

Consider some countable type T and define a family of predicates part : I - pred 0.
Consider an index Pi : i and assume that part P has positive probabilty. Note that
part might depend on Ef.
Next, let us assume the following: we have an event S := part Pi in system S such that
the event ensures (1) the validity of the pWCET bound and (2) the partition-independence
of job j_rep.
Let us define ST's twin Sf' w := ST (proj1w) in'S* (recall that proj 1 simply retums the
first component of a tuple).
With this, let us assume that the inequality that now includes S and Sf* holds:
P<p_of S>{[ (Exc1n&f) nSf ]} sP<p_of S'>{[ (Exc2n§f') nSf' 1}.
Hyputhes)s H_ineq_0_part :
¥ (I : countType) (part : I - pred Q) (Pi: I) (p : PosProb p (Ef n part Pi)),

part Pi : pred (0_of S) in
(A w, Sf (proj15 j_rep w)) : pred (a_of S') in

tet sf'

v (x:
r<u>{[ ndf\ta (e j_rep) | &f n Sf 1}(x) = PWCET_cdf (job_task j_rep) x) =

(¥ (¢ : Job - option work) (jobs : seq Job),
Jzrep \notin jobs -
Pops{[ e_fix ¢ [::
S etix ¢

rep] n e_fix ¢ jobs | Ef n 1}
j_repl |Ef n ST 1} x IP<|J>([ : fix € jobs | £f n Sf 1K

Pep_of S>{[ (Exc n &f) n ST 1} = P<u_of S'>{[ (Exc' n Ef*) n Sf' 1}

Then, we can prove the inequality that we assumed in the previous step (Step2). Notice
that in order to apply the conclusion of H_ineq_0_part, we need to provide al the
premises of the hypothesis. In particular, we have to present a countable type with a
family of predicates where every event ensures partition-independence and parttion-
dominance.

This is possible only because we assumed that the given pWCET satisfies our axiomatic
PWCET definition. Again, essentially, we prove that we can reduce the lemma to the
hypothesis using the properties ensured by axiomatic pWCET.

Lemna transformation_is_pRT_monotone_step.
P<p_of S>{[ Exc n §f 1} = P<p_of S St Exc n & 1k

End Step3.

Step 4

As before, now we need to prove the inequality we assumed in the previous step. For this,

let us introduce all premises of the assumed inequality as variables and hypotheses.
Variable (Idx : countType) (part : Idx - pred @) (Pi : Idx).

= part Pi : pred (0_of S).
(A'w, Sf (proj1 5 j_rep w)) : pred (n_of S').

Variable pl : PosProb (u_of S) (Ef n Sf).
Variable p2 : PosProb (u_of ') (Ef' n Sf').

Hypothesis H_pHCET. bounds_cond.cdf
B hat), Fu ([ 0dfTEo ( J_rep) | EF n ST 1}(x) = PHCET_cdf (job_task j_rep) X

Hypnthes)s . cond_independence :
v (c ~ option work) (jobs : seq Job),
j_rep \notm jobs -
Pep>{[ e_fix € [:
= Pep>{[€_fix ¢

_rep] n e_fix ¢ jobs | Ef n Sf 1}
j_rep] | EF n ST 1} x Pew>{[ €_fix ¢ jobs | Ef n Sf 1}

In this step, we transform our inequality by moving £f n Sf and £f' n S to the
conditional part.

Section Stepd.

First, note that both £ n Sf and £f* n Sf' have the same probability. This is due to the
fact that our transformation does not change the probabiliies of arrival sequences or
partitions.

Remark Ef_and_Sf_eq_prol
Pey_of 5>{[ Ef n Sf i L pauof S0 EF 0 5 1

As before, we show that one can reduce the inequality stated in the lemma to the
statement stated in the hypothesis. In other words, we can indeed condition on £ n S
and £F* n Sf*. Then, both of them cancel out, since the probability is equal.
Hypothesis W ineq_conditional
Beuof S-{T Exc | Bf n ST 1} = Ppof §'>{[ Exc' | EF* n ST 1}
Lemma transformation_is_pRT_monotone_ste]

epd :
Pep_of S>{[ Exc n Ef 1 ST 1} = P of §'>{[ Exc’ n Ef' n SF* 1}.
End Stepd.

Step 5

For simplicity, let s introduce a few local names for functions extracting cost vectors. For
example, given  \in 0_of S, compute_costs returns a vector of all costs fixed for this
specific evolution u.

job. compute_costs w (job_cost
job. compute_costs w (job_cost

€ of S).

Let compute_costs (w : 0_of S)
[ ©_of '),

Let compute_costs' (u : O_of §')

For simplicity, let 5 denote a function that computes the response time of any job for
given fixed vectors A and C.

Let ® := schedulerAC_to_rtac horizon Z.

In this step, we replace events Exc and Exc with events A u = exceeds (% A
(compute_costs ) j) r, where the arrival times are fixed to be a specific vector of
arrival times. Note that previously we had a general random variable describing the
response-time distribution, but now we have algorithm 2 instead.

Section Steps.

Note that here we assume that we are given any vector A describing job arrivals without
restriction that it must agree with €. Inside of the proof, we indeed construct A as a
transformation of £; however, for further proofs, it is not relevant, so we just forget this
information and use a generic function Job - option instant.
Hypothes)s H_ineq_algorithmic_® :

¥ (A : Job -~ option instant),

P<u_nf S>{[ A , exceeds (R A (compute_costs w) j r | E,f n Sf

= P<pof S'>{[ A w, exceeds (R A (compute_costs’ u rEe n st 1k

The inequality involving Exc and Exc " is implied by the inequality involving &2.

Step 6

Assume that we are given a list of job arrivals.
Variable (A : Job - option instant).

For technical reasons, we need to distinguish between jobs costs operating in a
probabilistic space with a measure j1_of S (i_of S*) and the ones operating with the
restricted measure restrict (u_of S) (Ef nSf) (and restrict (u_of $*) (Ef' n
SF)).

Recall that a partition of the probability space must take measures into account (to satisfy
certain assumptions). Since we restrict 0_of S to a subset that satisfies predicate £f n ST
(and a subset of 0_of S that satisfies predicate £ n Sf'), we have to adapt some of
the notions to these new measures.

Let ur
Let pr'

estrict (_of S) (Ef n Sf) : measure (0_of S).
:= restrict (j_of §') (Ef' n Sf') : measure (o_of S').

Next, we define random variables, which are the same as those introduced earlier, except
for the measure (ur instead of p and pr* instead of u'.

Let er j
Let er'’j :

mkRvar ur (€ of S j).
mkRvar ur' (€_of §' j).

Similarly, we need to provide a new notion of projection that accounts for the restricted
measure.

pefinition proju :
V (w:0of §'), (EF' nSf') w -~ (Ef n Sf) (proj1 s j_rep ).

Now, we want to fix the job costs of all jobs except j_rep (recall that j_rep s the job for
which we want to replace pET with pWCET). For this, again, we introduce partitioning of 0
into subsets, each containing a unique job cost assignment (and the job cost of j _rep is
left unspecified).

Let CSpart
Let CSpart'

partition_on_€s (job_cost := er) ur (rem j_rep (enum Job)).
extend_partition’ S j_rep (Ef n &1) Copatt (Er' 0 ST proju.

In the next step, we introduce CSpart<{Cs} and CSpart ' <{Cs '} into the inequality.
They ensure that the costs of all jobs (except j_rep) are fixed.

Section Step6.

Assume that the inequality holds when conditioned on job-cost paritions (excluding
j_rep),
Hypothesis W_ineq_costs_partitioncd :
¥ (Cs : I CSpart) (Cs™ : I CSpart') (CSEQU : pickle_bij Cs Cs'),
|P<u_of s>{[
(A w, exceeds (® A (compute_costs ) j) r)
n CSpartq(CS) | &f n SF 1F
< Pey_of §'>{[
(X w, exceeds (® A cnmpute costs' w) §) r)
n CSpart'<{Cs'} | &f' n 1}

... then we can derive the inequality also without conditioning on costs.
Lenma transformation_is_pRT_monotone_step6 :
P<p_of S>{[ )\ w, exceeds (® A (compute_costs w) j) r | &f n Sf 1}
= P<p_of S'>{[ A w, exceeds (® A (compute_costs' w) j) r | §f' n Sf' J}.

End Stepé.

Step 7

As before, we now proceed to derive the premise of the prior step.

To this end, consider two equivalent events corresponding to the same setting of job costs
in the two systems.

Variable (Cs : I CSpart) (Cs' : I CSpart') (CSEQU : pickle_bij Cs Cs').

Consider two partitions of 0_of S and 0_of S into cost of all jobs except j_rep.

Let Cpart :
Let Cpart

artition_on_ ur (job_cost
= partition_on_e ur' (job_cos:

Similarly to how we replaced job arrivals with A, we can do a similar trick to replace job
costs with a vector C. However, what do we do with the cost of the unspecified job
j_rep? First, we can perform another round of partitioning and apply the law of total
Probability (LTP) on the remaining job cost (note that we get a new sum

3 [=]_{c<-optionwork} ... in the inequalty). Second, we can update C with the
specified value of j_rep 5 A (update C j_rep c) j. For now, we replace only the LHS.

Section Step7.

Note that on the LHS of the below hypothesis, we now have the following term:
3 []_{c<-option work} P<p_of S>{[ exceeds (% A (update C j_repc) j) r&&
(Cspart<{Cs} & Cparta{c}) | §f nSf1}.

An important result of this transformation is that now exceeds (% A (update C j_rep
©) j) ris aboolean value (trueffalse) and event CSpart<{Cs} & Cpart<{c} defines a
subset of 0_of S such that aljob costs are fixed.

To extract a vector of job costs from the partition CSpart<{Cs}, we find one v €
CSpart<{Cs} and compute the vector of costs for this w. The resulting vector of costs will
agree with the jobs in the system, given CSpart<{Cs} is true.
Note that we use the construction update C j_rep c to update the cost of job j_rep in
vector C with a new value c. This is a way to define the notion of "reassembling" two job-
cost-fixing vectors used in the paper.

Hypothesls H_ineq_cost_partitioned :

),

CSpartq{CS} wo
et € := (fun j » €_of S j wo) in

3] (c<—uptinn work}
Pey S>{[ A w,
-lee exceeds (z A (update € j_rep ©) §) r,

| €f n Sf 1}
< Pep_of §'>{[
(A w, exceeds (R A (compute_costs' w) j) r)
n CSpart <<c b
| &' n

As before, we show that the prior step's premise follows from the hypothesis introduced
here; that i, how the premise of Step 6 follows from the premise of Step 7.
Lemma transfcmatmn _is_pRT_monotone_stej
Pep_of S>{[ (A u, exceeds (% A (compute_costs w) j) r) n CSpart<(Cs} | &f n Sf ]
= Papof 5'>{[ (A u, exceeds (% A (compute_costs' ) j) r) n CSpart'<{Cs'} | &ft

End Step7.

Step 8

We can prove that there is at least one o that satisfies the current partition
CSpart<{Cs} wo. We can use wo to compute C. Such a cost assignment agrees with
CSpart<{Cs} because wo satisfies the initial predicate.

Variable wo : 0_o

Hypothesis H_uo_ m & (CspartalCs) vo.
(fun j =~ €of S j : Job - option work.

Similarly to Step 7, which focused on the LHS, we now replace the RHS.
Section Steps.

Notice that both sides now have all costs fully fixed.

Hypothesis H_ineq_cost_partitioned :
3 2] {c<-option vork}
Peu_of S>([ A u,
{6 exceeds ( A (update ¢ j_rep ) J) r,
Copartaics} o
ta{c} 0] J zf n st}
= i[w] (c< option wur

18 exceeds (% & (update ¢ j_rep ) ) r,
Cspart'<{Cs'}
Cpart'a{c} o] | Ef' n st}

From the above hypothesis, we can obtain the premise of Step 7.

Lenma_transformation_is_pRT_monotone_step8 :
3 l=]_{c<— nptmn work}
Pep_of S>{[ A
[&& exceeds (= A (upda(e Cj_repc)j)r,
CSpart<{Cs} u
Cparta{c} wl | {f nsfl}
< Pep_of S'>{[
* 9, exceeds (® A (cnmpute costs' @) 3) r)
n CSpart'<{Cs'} | Ef' n ).

End Steps.

Step 9

Let us define a random variable following the pWCET distribution. This random variable
describes j_rep's cost after its pET has been replaced. For more details, see the file
rt/analysis/pETs_to_pWCETs and specifically the transformation
replace_job_pET. Recall that ju_tsk is the measure induced by the given pWCET
distribution.

Let €_pWCET :

nkRvar u_tsk Some.

Finally, we can use the independence property H_cond_independence to factorize the
LHS. At the same time, we can factorize the RHS just by construction.

Section Step9.

On the technical side, this is a pretty involved proof. However, intuitively we simply apply
the partition-independence property of 5. Note that the probability of CSpart<{Cs} u &&
% j_rep w == c factors into two probabilities: CSpart<{Cs} and ¥ j_rep == c.
Remark LHS_factorization :
3 [=]_{c<-option nat}
1[ exceeds (& A (update ¢ j_rep c) j) rl
x P of 21 A b (CSpartH(Cs} @) % (e j_repw==c) | £ n S I}
= j[»]_{c<-option nat.
I[ exceeds (R A (update € j_rep c) j
x (epof Su{[Cspartaics} T & o 57 ]) x P<p_of S>{[ € j_rep (=) c | &Ef n SF

Next, we show that the probability part of the RHS can be factorized into two terms:
P<p>{[ CSpart<{Cs} | §f n Sf1} and P<p_tsk>{[ fun cw = Some cw==c ]}. Note
that the first factor is no longer a probability with respect to S * -~ it is a probability with
respect to 5. For the second term, it is a probability over the probability space described in
the file pETs_to_pWCETs.

Remark RHS_factorization :
3l

c<-option work}
1[exceeds (ye A (update € j_rep c) j
x P<p_of S'>{[ A w, CSpart’<{Cs’ } u && (Cpart'<{c} w) | Ef' n Sf'1}

= 5[] _{c<= nptmn worl
Ilexceeds (& A (update ¢ j_re
< bsin1 Csparta(Csy | €7 st 1} x lP<u_tsx>u €_PHCET (=) c 1}).

As usual, let us state a new premise.

Hypothesis H_ineq_introduce_independence :
3[=]_{c<-option work}
Ilexceeds (® A (update C j_rep c
< (B0t S>(1 Cpartalcar | EF R 1} x Pep_of S>{[ € j_rep (=) ¢ | &f n Sf
< 3[=]_{c<-option worl
Ilexceeds (R A (update € j_rep c
<(Paot s»{1 Cipartalcsy | &1 " 1) x Pep_tsk>{[ €_pWCET (=) c 1}).

From the preceding factorized inequality, we can derive the premise of the previous step.

Lenma_transformation_is_pRT_monotone_step9 :
3 [=]_{c<-option work}
Peu_of S>([ A u,
(8§ exceeds (% A (update € j_rep c) j) r,
CSparta{Cs} w
Cparta{c} ]
< 5[] {c<—option work

w6
| &f nSf 1}

“Ilexceeds (% A (update ¢ j_rep c)
x (P<p_of S>{[ CSparta{Cs} | &f n Sf ]) x P<y_tsk>{[ €_pWCET (=) c I}).

From the preceding factorized inequality, we can derive the premise of the previous step.

Lenna_transformation_is_pRT_monotone_stepd :
3 [»]_{c<-option work
Pa_of S>([ A u,
[8& exceeds (® A (update € j_rep c) j) r,
CSpartaiCs) v &
Cpart<{c} ] S B0 S 1}
= H~l (c<—09t10n work
f S'>{[ A

W,
Ts exceeds (% A (update € j_rep c) j) r,
CSpart'<{Cs'} w &
(Cpart'<{c} w)] | &F* n Sf* T}

End Stepd.

Step 10

In this step, we remove P<_of S>{[ CSpart<{Cs} | £f nSf ]} on the LHS and
P<p_of S>{[ CSpart<{Cs} | £f n Sf' 1} onthe RHS.

Section Stepl0.

Let us assume that we can prove the following inequality, where P<i_of S>{[
CSpart<{Cs} | £ n Sf ]} on both sides cancel out, ...

Hypothesis H_ineq_without_other_costs :
3 [=]_{c<-option work
Ilexceeds (R A (update € j_rep c) j) r] x P<p_of S>{[ € j_rep (=) ¢ | &f n Sf ]}
= J[=]_{c<-option worl
Ilexceeds (R A (update C j_rep c) j) rl x P<p_tsk>{[ €_pWCET (=) c I}.

.. then we can easily arrive at the preceding step's premise.
Lenma_transformation_is_pRT_monotone_step10:

3 [»]_{c<-option wnrk}

Ilexceeds (R A (update C j_rep c) j)
x (Pep_of S>{[ CSpartq{Cs) | &f n sf ]) x P<p_of S>{[ € j_rep (=) c | &f n Sf 1})
< 3[»]_{c<-option work}
Ilexceeds (R A (update C j_rep c)

« (beu_of S-(1 Coparta{car | &f n sf ]) x P<p_tsk>{[ €_pWCET (=) c 1}).

End Step1o.

Step 11

We have successfully removed constraints on job costs of jobs that are not equal to
j_rep. Depending on the cost of j_rep, we can still get different behavior. In this section,
we do a case analysis on the "critical” value of the cost of j_rep.

Section Stepll.

There are three possibilities: (1) whatever cost of job j_rep we pick, the response time of
job j never exceeds r, (2) whatever cost of job j _rep we pick, the response time of job j
always exceeds r, and (3) there is some critical value c@ such that j's response time will
exceed r if and only if j_rep's job cost s larger than r.

Lenma_cost_causing_exceedance_of_r
(* 3 %) (3 (co : upnon work), V. (c : option work),
is_true (co (<) c) - exceeds (% A (update € j_rep ) j) r)
v (¥ 27%) (¥ (c : option work), exceeds (® A (update € j_rep c) j) r)
v (x 1) (¥ (c : option work), -~ exceeds (® A (update C j_rep c) j) r).

Note that case (1) is easy since the inequality reduces to @ < 0.

Remark jobs_rt_never_exceeds_r

(¥ c i option work, - exceeds (® A (update € j_rep c) j) r) =
3 [=]_{c<-option work
Ilexceeds (.’R A (update cj_repc)j)rl

x P<p>{[ € j_rep (=) c | &f n Sf I}
= J[»]_{c<-option work}

Ilexceeds (% A (update C j_rep c) j) rl

x P<p_tsk>{[ €_pWCET (=) c 1}.

Note that case (2) is easy since the inequality reduces to 1 = 1.

Remark jobs_rt_always_exceeds_r

(¥ c i option work, exceeds (:u A (update € j_rep c) j) r) -
3[=]_{c<-option work
Ilexceeds (.’R A (update ¢ j_rep ) j) r]

x P<p>{[ € j_rep (=) ¢ | &f n Sf I}
= J[»]_{c<-option work}

Ilexceeds (R A (update € j_rep c) j) rl

x P<p_tsk>{[ €_pWCET (=) ¢ 1}.

Case (3) is interesting; so let us assume that c@ is the critical value, after which the
response time of job j will exceed .

However, then I [exceeds (5 A (update C j_rep c) j) r] can be transformed into c0
(<) c. We use the fancy (<) to account for the fact that both costs can be L.

Nypothesxs H_ineq_c0@_causes_exceedance :
¥ (co : option bork)

c0 (<) c) « exceeds (R A (update C j_rep c
z[ml " e nptmn work} 1[co (<) c] x P<y_of S>{[ € j_rep (= » c i zf n st 1}y
= y[=]_{c<-option work} I[c@ (<) c] x Pau_tsk>{[ €_PWCET (=) c 1}.

Given the hypothesis, we can prove the prior step's premise.
Lenma_transformation_is_pRT_monotone_step1l :
3 [=]_{c<-option work}
Ilexceeds (R A (update C j_rep c) j) rl x P<pof S >{[ € j_rep (=) c | &f n SfI}
= J[»]_{c<-option work}
I[exceeds (R A (update € j_rep c) j) rl x P<p_tsk>{[ €_pWCET (=) c 1}.

End Stepll.

Step 12

Let us now assume that there is a cost c@ (of job j _rep) with the property that any cost
strictly higher causes j to have a response time larger than r.
Variable c@ : option work.

Hypothesis H_co_causes_exceedance :
¢, is_trie (cO (<) c) « exceeds (% A (update € j_rep c) j) r.

Note that 3_{c} I[c0 < c] P{X= c } is equivalent to P{X > c0}. We use this property to
simplify I[. ... on both sides.
Section Stepl2.
Assuming that the following |nequal||y. which is very similar to our initial assumption
H_pWCET_bounds_cond_cdf, ..
Nypo(hes)s H_almost_pWCET_bounds_cond_cdf

of S >{[ (e j_rep) (<= ali e
H_tsk>{[ €_pWCET (<=) c0 1}.

.. we can prove the inequality assumed in the previous step.
Lenma_transformation_is_pRT i munctane _stepl2 :
[=]_{c <- option nat} I[c@ ol x Pay_of $>{ e]rep()c\ifnsf])
= J[=]_{c <~ option nat} I[ce (<) c] x Pep_tsk>{[ €_pWCET (=) c

End Stepl2.

Step 13
In the last step, we exploit the top-level assumption H_pWCET_bounds_cond_cdf to
finish the proof.
Section Step13.
Notice that the following statement is very close to the pWCET guarantee
H_pWCET_bounds_cond_cdf.
Lemma transfamauan is, pRT mnnctcne _stepl3 :

P<p_of S>{[ € j_rep (<=) <@ | R 1} =
Pep_tsk>{[ B WJCET (<=) (D

Also, note that we did not make any new assumptions in this section; hence, we are done.

End Stepl3.
End StepByStepProof.

Statement and Proof of Theorem 1

Now we can combine all the steps to prove that a single job cost can be replaced with the
corresponding pWCET while preserving response-time monotonicity (Theorem 1 in the
paper).

Section Proof0fTheoreml.

Assume horizon defines the termination time of the system. If horizon = None, the
system does not terminate; however, as discussed at the beginning of the file, we assume
afinite number of jobs in either case.

Variable horizon : option instant.

Consider any type of tasks with a notion of pWCET.
Context {Task : TaskType}
{pWCET_pmf : ProbWCET Task}.
Note that the arrivals and costs are determined by the system, which is defined next.
Context (Joh + finType}
b_task : JobTask Job Task}.

Consider a response-time monotonic scheduling algorithm , where response-time
monotonic means the following: assuming that all arrival times are fixed, an increase of
the execution cost of any job cannot cause a decrease of the response time of any job.
Recall that £ receives two vectors: a vector of arrival times A and a vector of job costs C.

Variable T : @schedulerAC Job.

Hypothesis H_rt_monotonic : rt_monotonic_scheduler horizon .

Let sched denote a schedule generated by 7.

Let sched S := compute_pr_schedule { (job_arrival := 4_of S) (job_cost := €_of S).

Let S be an arbitrary system ...
Variable S : @system Job.

...and let j _rep be a job whose cost we want to replace.
Variable j_rep : Job.

Let S* be the system where we replace j _rep's cost with the corresponding pWCET via
replace_job_pET.

Let S' := replace_job_pET j_rep S.

Consider an arbitrary job j ..
Variable j : Job.

..and its response times j and % ' in schedules sched S and sched S, respectively.

Let ®j A_of S) (job_cost := €_of S) horizon j.
Let ®j* Aot ') (Job_cost := e_of S') horizon j.

response_time (sched S) (job_arrival
response_time (sched 5') (job_arrival

If pWCET satisfies our notion of axiomatic pWCET, ...
Hypothesis H_axiomatic_pHCET :
axiomatic_pWCET (u_of S) (job_arrival := 4_of S) (job_cost := €_of S).

.. then the response-time distribution of job  in schedule sched  is <-bounded by the
response-time distribution of job § in schedule sched S°. Thatis, ®] < ®j *.

Lenma prob_rt_monotonic_axiomatic_pWCET_replace_pET :
R} < R

End Proof0fTheorenl.
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(x Prosa *)
From prosa.model Require Import processor.ideal.

(x ProBsa *)
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(x SSReflect *)
From mathcomp Require Import finfun.

(* Main *)

In this file, we prove Theorem 1 presented in the paper "What really is pWCET? A
Rigorous Axiomatic Definition of pWCET" by Bozhko et al. (RTSS'23).

Step-by-step Proof of Theorem 1

In the following, we present the proof of Theorem 1 in the above-cited paper. Due to the
length of the proof and the nature of Cog, we cannot start this section with the statement
of the theorem. Instead, we will first prove many "stepping stone" lemmas and then
combine them together to obtain a complete proof. Readers who would like to see the final
statement of the theore first are referred to section Proof0fTheorend.

Section StepByStepProof.

In this section, we demonstrate a step-by-step proof of the main claim (Theorem 1 from
the paper). Itis important to note that Cog's preferred method of proof is a "bottom-uj
approach, while most humans are prefer following a top-down derivation. In other words,
in Coq it easier to present proofs in the following way: frst simple facts are proven, then
one can use these simple facts to construct more sophisticated facts, then even more
sophisticated ones, and so on untilthe final goal is reached. Yet, a reasonable question for
ahuman would be "where is this going?"

Therefore, we adopt a more paper-like approach in which we present the proof as a series
of implications: C -+ Goa, B - C, A - B. This allows us to begin with the final goal
(assuming that some facts are given) and then gradually work our way towards the "leafs”
of the overall argument pertaining to specific details.

Assume horizon defines (an upper bound on) the termination time of the system. If
horizon = None, the system does not necessarily terminate. Note, however, that in either
case our proof assumes there to be  finite number of jobs for technical reasons. As the
horizon can be chosen to be arbitrarily large (the proof does not depend on its magnitude),
©.g., hundreds of even thousands of years, assuming the existence of a finite horizon is
not unreasonable for a computing system.

Variable horizon : option instant.

Consider any type of tasks with a notion of pWCET...

Context gTask TaskTy,

pe}
_pmf : ProbWCET Task}.

..and their jobs.

Context (Joh : finType}
b_task : JobTask Job Task}.

Consider a response-time monotonic scheduling algorithm Z, where response-time
monotonic means the following: assuming that all arrival times are fixed, an increase of
the execution cost of any job cannot cause a decrease in the response time of any job.
Recall that £ receives two vectors: a vector of arrival times A and a vector of job costs C.

Variable T : @schedulerAC Job.
Hypothesis H_rt_monotonic : rt_monotonic_scheduler horizon Z.

For brevity, let sched denote the probabilistic schedule generated by Z for a given
systems.

Let sched S := compute_pr_schedule g (job_arrival := 4_of S) (job_cost := €_of S)

As before, consider four parameters that describe a system under analysis: a sample
space 0, a measure |1, job arrival times &, and job execution costs &.

Variable 0 : countType.
Variable p : measure 0.

Variable 4 : JobArrivalRV Job Q y.
Variable € : JobCostRV Job @ pi.

Let us use these parameters to construct a systen S.
Let S := {| Qof : W_of i= u; Aof i= A; €_of i= € |}

Next, we assume that the aforementioned pWCET is an axiomatic pWCET. That s, for
any job j and any arrival sequence £, there exists a partition of  into positive-probability
events such that both partition dominance and partition independence are satisfied.

Hypothesis H_axiomatic_pHCET :

axiomatic_PHCET (i_of S) (job_arrival := 4_of ) (job_cost i= €_of S).

Suppose we use the construction replace_job_pET presented in probsa/rt
/analysis/pETs_to_pCETs to replace the execution cost of given job j _rep. Let S*
denote the resulting syslem.

Vanable j_ rep
s p\a:e jnb PET j_rep S.

For convenience, let tsk denote j's task...

Let tsk := job_task j_rep.

...and let u_tsk denote the measure induced by pHCET.
Let p_tsk :=
match pchT pat with
WCET prET nonneg suml -
tsk;

Next, consider an arbitrary job j of any task and a duration r.

Variables (j : Job) (r : duration).

Finally, let Exc denote the event that j's response time exceeds r time units in system S

Let Exc := A w : 0_of S, exceeds (response_time

{job_sFrival 1= 4ot S) (job_cost = ¢_of S
(5ched S) horizonj w)

and let Exc' denote the event that j's response time exceeds r time units in system

S
Let Exc'

Aw:0_of S', exceeds (response_time
(Jobarrival i= 4.of 51} (fob_cost 1=
(Lenaa’ s horizon s @)

r.

The remainder of this file serves for the most part to relate the probability of Exc with the
probability of Exc ', namely to establish that P<_of S>{ [ Exc 1} s P<j_of §'>{[ Exc’
13

Step 1
Now we are ready to start the proof. First, we do a case analysis on all possible arrival
sequences.

Section Stepl.

art of the sample space 0_of S of system S into events
corresponding to al sequences.

Let Epart := partition_on ¥

Here Epart is an (indexed) set of events, where an £ i
represents a subset of 0 where the arrival sequence is equal to £1-

ted as Eparta{€i}

(Readers focused on technical detail may be interested in noting that the indices o
partition Epart are arrival sequences themselves. This detail may be safely skipped over
by more casual readers.)

As discussed in the paper, one can transfer the parlmon Epart to the system S' and
denote it as Epart . For further details see the functior
partition_transfer.extend_partition.

Let Epart’ := extend_partition S Epart j_rep.

Partitions Epart and Epart " are so similar that one can prove equivalence. For example,
two indices £iand £ that are "pickle equivalent' can be shown to be identical. (Pickle
equivalence is a very strong notion of equivalence; one can intuitively view it simply as an
equality between two elements of similar types; for further details see

util.bigop_inf.pickle_bij.)
i_eq €' :
(€1 : T Epart'),

pickle_bY N

Now, recall that we present the proof in a top-down (C - Go: ith the
overall theorem.
So, assuming that for any two elements of partitions £i : T Epart and £1' : T Epart’

that are "pickle™-equivalent, it holds that P{ [ Exc1 n Epart<{£i} 1} =P{[ Exc2n
Epart'<{gi'} 1},
Hypu(hesls H, meq E_parnuone
(€5 : 1 Epart) T4’ : T Epart’) (EEQU : pickle bij Ei E1'
Pep_of S3{[ Exc n Eparta{gi} 1} = P<p_of S'>{["Exc' n {part <{gi'} 1}

.. we can show that P<p_of S>{[ Exc1 ]} sP<p_of S'>{[ Exc2 ]}. Or, in other
words, we reduced the lemma statement to the hypothesis statement.

Lemna transformation_is_pRT_monotone_stepl :
P<p_of S>{[ Exc 1} = P<pof S'>{[ Exc' I}.

End Stepl.

lgt*!lllllllllllllllllllllllll

have the inequality with partitions on arrival sequences

/

MPI-SWS

__1neq_t

PSP_OT 5>{1 EXC 1} = P<P_OT 5°>{1 EXC' I},

End Stepl.

Step 2

Now, we know that if we have the inequality with partitions on arrival sequences
H_ineq_£_partitioned, then we are done. But how do we prove such an inequality? In
the next step, we prove the required inequality by introducing a new hypothesis from
which it can be established. We then continue in this manner until reaching a hypothesis
that is easy enough to prove without introducing new hypotheses.

In the second step, we replace the partition over all arrival sequences with an event
encoding one arrival sequence.

Section Step2.
First, let us state the premise of our hypothesis H_ineq_£_partitioned.

Again, consider a partition Epart of the sample space of system S into events
corresponding to different arrival sequences...

Let Epart := partition_on_§ p.

...and Epart to system S* and denote it as Epart .
Let Epart’ := extend_partition S Epart j_rep.

Consider a pair of arbitrary pickle-equivalent elements £1 and £i".

Variables (i : I Epart) (Ei' : I Epart’
Hypothesis € equivalence : pickle_bij E) 31N

As already discussed, pickle-equivalence is quite strong and we can show that both
indices £ and Ei correspond to the same arrival sequence £. Because of the way
partitions on arrival sequences are constructed, we can extract an arrival sequence by
unpacking a partition.
Variable £ :
Hypothesis H_part_unpack_E :

arrival_sequence Jo
mech £i with exist § IN = € end = E.

Instead of clunky indices £1 : T Epart and £1' : T Epart’, we will use "plain"
predicates Ef and Ef* that correspond to a fixed arrival sequence £ in S and S,

respectively.
Let EF 1= O w, arrseq u = £) : pred (Dof 5),
Let £+ T= (n"0, "ar7-seq (proj1 & J.rep u) == &) : pred (o_of §').

During this step, we replace indices with predicates.
Hypothesis H_ineq_g_fi)

a0t ST & 1 0 = y<u of S>{[ Exc n Ef 1} = P<p_of S'>{[ Exc' n Ef* I}.

Lemna transformation_is_pRT_monotone_step:
P<p_of S>{[ Exc n Epart<(Ei} 1} = Pp_ uf R gpart'<{€i'} 1}.

End Step2.

Step 3

Now, we can forget about Epart and Epart* and use &, £f, and £f* instead. Notice that
here we use £ to denote the deterministic arrival sequence. Predicates £f and f '
denote events that result in £ in systems S and S ', respectively.
Variable £ : arrival _sequer
Let Ef (A w, arr_seq E)' dmu
(26, arF seq (proj1 § §.rep u

s).
€) : pred (0_of S').

Let Ef'

Without loss of generality, we can assume that £ appears with positive probability
(otherwise the LHS of the inequality from Step 2 is equal to 0).

Hypothesis H_E_pos_prob : P<u>{[ Ef 1} > 0.
In this step, we introduce a partition (that guarantees partition-independence and partition-
dominance) of the probability space by exploiting H_axiomatic_pWCET, the assumption
of axiomatic pWCET.

Section Step3.

Consider some countable type T and define a family of predicates part : I - pred 0.
Consider an index Pi : i and assume that part P has positive probabilty. Note that
part might depend on Ef.
Next, let us assume the following: we have an event S := part Pi in system S such that
the event ensures (1) the validity of the pWCET bound and (2) the partition-independence
of job j_rep.
Let us define ST's twin Sf' w := ST (proj1w) in'S* (recall that proj 1 simply retums the
first component of a tuple).
With this, let us assume that the inequality that now includes S and Sf* holds:
P<p_of S>{[ (Exc1n&f) nSf ]} sP<p_of S'>{[ (Exc2n§f') nSf' 1}.
Hypothes)s H_ineq_0_part :
¥ (I : countType) (part : I - pred Q) (Pi: I) (p :

part Pi : pred (0_of S) in
(A w, sf (proj15 j_rep w))

PosProb u (Ef n part Pi)),

tet sf'

: pred (Q_of S') in

v (x:
l><u>{l ndf\ta (e j_rep) | &f n Sf 1}(x) = PWCET_cdf (job_task j_rep) x) =

(¥ (¢ : Job ~ option work) (jobs :
Jzrep \notin jobs -
Pep>{[ e_fix € [::
S etix ¢

seq Job),

rep] n e_fix ¢ jobs | Ef n 1}
j_repl |Ef n ST 1} x |p<p>([ : fix € jobs | £f n Sf 1K

Pep_of S>{[ (Exc n &f) n ST 1} = P<u_of S'>{[ (Exc' n Ef*) n Sf' 1}

Then, we can prove the inequality that we assumed in the previous step (Step2). Notice
that in order to apply the conclusion of H_ineq_0_part, we need to provide al the
premises of the hypothesis. In particular, we have to present a countable type with a
family of predicates where every event ensures partition-independence and parttion-
dominance.

This is possible only because we assumed that the given pWCET satisfies our axiomatic
PWCET definition. Again, essentially, we prove that we can reduce the lemma to the
hypothesis using the properties ensured by axiomatic pWCET.

Lemna transformation_is_pRT_monotone_step.
P<p_of S>{[ Exc n §f 1} = P<p_of S St Exc n & 1k

End Step3.

Step 4

As before, now we need to prove the inequality we assumed in the previous step. For this,
let us introduce all premises of the assumed inequality as variables and hypotheses.
Variable (Idx : countType) (part : Idx - pred @) (Pi : Idx).

i:pred (n_of S).
(A'w, Sf (proj1 5 j_rep w))

: pred (0_of S').

Variable p1 :
Variable p2 :

PosProb (u_of S) (Ef n Sf).
PosProb (p of S') (Ef' n Sf').

Hypothes1s H.oHCET_bounds_cond.cdf
¥ (x 1 nat), F<p>{[ odflte (€ j_ rep) | €F n S 1}(x) = pWCET_cdf (job_task j_rep) X,
Hypnthes)s . cond_independence :
v (c "~ option work) (jobs :
j_rep \notm jobs -
Pep>{[ e_fix € [:
= Pep>{[€_fix ¢

seq Job),

_rep] n e_fix ¢ jobs | Ef n Sf 1}
j_rep] | EF n ST 1} x Pew>{[ €_fix ¢ jobs | Ef n Sf 1}

In this step, we transform our inequality by moving £f n Sf and £f' n S to the
conditional part.

Section Stepd.

First, note that both £f n Sf and ' n S' have the same probability. This is due to the
fact that our transformation does not change the probabilities of arrival sequences or
partions.
Remark ¢ and_S{_eq_prol
S>{[&f n 5f i L pauof S0 EF 0 5 1

As before, we sh
statement stated in the hypol
and ' n Sf'. Then, both of them car

Hypothesis H_ineq_conditional
P<p_of S>{T Exc | &f n Sf s

in reduce the inequality stated in the lemma to the
rwords we can indeed condition on £f n Sf
the probabillty is equal.

< Pap_of $'>{[ ExC
Lemna transformation_is_pRT_monotone_stepd :

Pep_of S>{[ Exc n Ef 1 ST 1} = Py of §'>{[ Exc’ n Ef' n SF* 1}.
End Stepd.

Step 5

For simplicity, let us introduce a few local names for functions extracting cost vectors. For
example, given w \in 0_of S, compute_costs returns a vector of all costs fixed for this
specific evolution w.

Let compute_costs (u :
onpute_costs' (u 3

0_of 5)
0_of 5')

job. compute_costs w (job_cost
job. compute_costs w (job_cost

€ of S).
€_of 5').

For simplicity, let 5 den
given fixed vectors A and C.

utes the response time of any job for

Let ® := schedulerAC_to_rtac horizon Z.

Step 6

Assume that we are given a list of job arrivals.
Variable (A : Job - option instant).

For technical reasons, we need to distinguish between jobs costs operating in a
probabilistic space with a measure u_of S (u_of S*) and the ones operating with the
restricted measure restrict (u_of S) (Ef nSf) (and restrict (u_of $*) (Ef' n
SF)).

Recall that a partition of the probability space must take measures into account (to satisfy
certain assumptions). Since we restrict 0_of S to a subset that satisfies predicate £f n ST
(and a subset of 0_of S that satisfies predicate £ n Sf'), we have to adapt some of
the notions to these new measures.
Let pr
Let pr'

estrict (u_of S) (Ef n Sf) : measure (0_of S).
:= restrict (j_of §') (Ef' n Sf') : measure (o_of S').

Next, we define random variables, which are the same as those introduced earlier, except
for the measure (ur instead of p and ur* instead of u

Let er j
Let er'’j :

mkRvar ur (€ of S j).
mkRvar ur' (€_of §' j).

Similarly, we need to provide a new notion of projection that accounts for the restricted
measure.

pefinition proju :
V¥ (w:0o0f §'),

(Ef* n SF') w = (EF n SF) (proj1 S j_rep w).
Now, we want to fix the job costs of all jobs except j_rep (recall that j_rep s the job for
which we want to replace pET with pWCET). For this, again, we introduce partitioning of 0
into subsets, each containing a unique job cost assignment (and the job cost of j _rep is
left unspecified).

Let CSpart
Let CSpart'

partition_on_es (job_cost := er) ur (rem j_rep (enum Job)).
extend_partition' S j_rep (Ef (1 CSpart (Ef' n Sf') proja.

In the next step, we introduce CSpart<{Cs} and CSpart ' <{Cs '} into the inequality.
They ensure that the costs of all jobs (except j_rep) are fixed.

Section Step6.

Assume that the inequality holds when conditioned on job-cost partitions (excluding
j_rep),

Hypothesis W_ineq_costs_partitioncd :
¥ (Cs : I CSpart) (Cs™ : I CSpart') (CSEQU :
|P<u_of s>([

(A w, exceeds (® A (compute_costs ) j) r)
n CSpartq(CS) | &f n SF 1F
< Pey_of §'>{[
(X w, exceeds (® A (cnmpute costs' w) 3) r)
n CSpart'<{Cs'} | &f' n 1}

pickle_bij Cs Cs'),

... then we can derive the inequality also without conditioning on costs.
Lenma transformation_is_pRT_monotone_step6 :
P<p_of S>{[ )\ w, exceeds (® A (compute_costs w) j) r | &f n Sf 1}
= P<p_of S'>{[ A w, exceeds (® A (compute_costs' w) j) r | §f' n Sf' J}.

End Stepé.

Step 7

As before, we now proceed to derive the premise of the prior step.
To this end, consider two equivalent events corresponding to the same setting of job costs
in the two systems.

Variable (Cs : I CSpart) (Cs"

: I CSpart') (CSEQU : pickle_bij Cs Cs').

Consider two partitions of 0_of S and 0_of S into cost of all jobs except j_rep.

Let Cpart :
Let Cpart

artition_on_ ur (job_cost
= partition_on_e ur' (job_cos:

r) j_rej
er') j_rep.

Similarly to how we replaced job arrivals with A, we can do a similar trick to replace job
costs with a vector C. However, what do we do with the cost of the unspecified job
j_rep? First, we can perform another round of partitioning and apply the law of total
Probability (LTP) on the remaining job cost (note that we get a new sum

3 [=]_{c<-optionwork} ... in the inequalty). Second, we can update C with the
specified value of j_rep 5 A (update C j_rep c) j. For now, we replace only the LHS.

Section Step7.

Note that on the LHS of the below hypothesis, we now have the following term:
3 []_{c<-option work} P<p_of S>{[ exceeds (% A (update C j_repc) j) r&&
(CSpart<{Cs} & Cparta{c})| Ef nSf]1}.

An important result of this transformation is that now exceeds (% A (update C j_rep
©) j) ris aboolean value (trueffalse) and event CSpart<{Cs} & Cpart<{c} defines a
subset of 0_of S such that aljob costs are fixed.

To extract a vector of job costs from the partition CSpart<{Cs}, we find one w €
CSpart<{Cs} and compute the vector of costs for this w. The resulting vector of costs will
agree with the jobs in the system, given CSpart<{Cs} is true.

Note that we use the construction update C j_rep c to update the cost of job j_rep in
Vector C with a new value c. This is a way to define the notion of "reassembling" two job-
cost-ixing vectors used in the paper.

Hypothesis H_ineq_cost_partitioned :
N

cs;zarm(Cs) wo
€ := (fun j = €_of S j wo) in

3] (c<~untinn work}
Pey S>{[ A w,
-lee exceeds (z A (update € j_rep ©) §) r,

| €f n Sf 1}
< Pep_of §'>{[
(A w, exceeds (® A (compute_costs’ ) j) r)
n CSpart <«{cs'}
| &' n 1.
As before, we show that the prior step's premise follows from the hypothesis introduced
here; that i, how the premise of Step 6 follows from the premise of Step 7.
Lenma transfcmatmn is_pRT_monotone_stej
P<p_of S>{

<)o [ (A w, exceeds (% A (compute_costs w) j) r) n CSpart<{Cs} | Ef n Sf ]
= Papof 5'>{[ (A u, exceeds (% A (compute_costs' ) j) r) n CSpart'<{Cs'} | &ft

End Step7.

Step 8

We can prove that there is at least one o that satisfies the current partition
CSpart<{Cs} wo. We can use wo to compute C. Such a cost assignment agrees with
CSpart<{Cs} because wo satisfies the initial predicate.

Variable wo : 0_o

Hypothes is H_uo s SSspartaics) uo
(fun j = €_0f S j wo) : Job - option work.

Similarly to Step 7, which focused on the LHS, we now replace the RHS.
Section Steps.

Notice that both sides now have all costs fully fixed.

Hypothesis H_ineq_cost_partitioned :
3 2] {c<-option vork}
Peu_of S>([ A u,
{6 exceeds ( A (update ¢ j_rep ) J) r,
Copartaics} o
ta{c} 0] J zf n st}
= i[m] (c< option wur

18 exceeds (% & (update ¢ j_rep ) ) r,
Cspart'<{Cs'}
Cpart'a{c} o] | Ef' n st}

From the above hypothesis, we can obtain the premise of Step 7.

Lenma_transformation_is_pRT_monotone_step8 :
S ] _{c<—t _option » work)
Pep_of S>{[ A
[&& exceeds (= A (upda(e Cj_repc)j)r,
CSpart<{Cs} u
Cparta{c} w] | Ef n sf ]}
< Pep_of S'>{[
(A w, exceeds (® A (cnmpute costs' @) 3) r)
n CSpart'<{Cs'} | &f' n 1}

End Steps.

Step 9

Let us define a random variable following the pWCET distribution. This random variable
describes j_rep's cost after its pET has been replaced. For more details, see the file
rt/analysis/pETs_to_pWCETs and specifically the transformation
replace_job_pET. Recall that ju_tsk is the measure induced by the given pWCET
distribution.

Let €_pWCET :

nkRvar u_tsk Some.

Finally, we can use the independence property H_cond_independence to factorize the
LHS. At the same time, we can factorize the RHS just by construction.

Section Step9.

On the technical side, this is a pretty involved proof. However, intuitively we simply apply
the partition-independence property of 5. Note that the probability of CSpart<{Cs} w &&
€ j_rep w == c factors into two probabilities: CSpart<{Cs} and € j_rep == c.

Remark LHS_factorization :

[=]_ {c< —option nat}
ds(JlA(udte:]rec rl
([ A o (c5part<(Cs) @) s.& (e j_repw==c) | £ n S I}

Cj_ rep c) J) rl
13 x Pep_of S>{[ € j_rep (=) c | &f n SF

ctorized into two terms:

eds (

x (P<p_of S>{[CSpar:
Next, we show that the probabilty part of the
P<p>{[ CSpart<{Cs} | £f n Sf]} and P<p_tsk>{[ fui
that the first factor is no longer a probability with respectto S* -~ tis
respect to 5. For the second term, it is a probability over the probability space
the file pETs_to_pWCETs.

Remark RHS_factorization :
3l

c<-option work}
1[exceeds (ye A (update € j_rep c

In this step, we replace events Exc and Exc with events A u = exceeds (% A
(compute_costs ) j) r, where the arrival times are fixed to be a specific vector of
arrival times. Note that previously we had a general random variable describing the
response-time distribution, but now we have algorithm 2 instead.

Section Steps.

Note that here we assume that we are given any vector A describing job arrivals without
restriction that it must agree with €. Inside of the proof, we indeed construct A as a
transformation of £; however, for further proofs, it is not relevant, so we just forget this
"l iog ar eneric Vur\ tion Job - option instant.

W T e

Hypothesis i_ineq .. SEEEEEEEEEEE RN EEE
v ( Job - option 1nstant) 1
£ f

the next step, we prove the required inequality by introducing a new hypothesis from
which it can be established. We then continue in this manner until reaching a hypothesis

that is easy enough to prove without introducing new hypotheses.
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= P<p_of S'>

exceeds e

x P<p_of S'>{[ A w, CSpart'<{Cs’ } u && (Cpart'a{c} w) | EFf* n SF'1}
3 [=] {c< optmn worl

s (% A (update C j_rep c
Cs} | §f n Sf ]} x |P<u_(sk>([ C_pWCET (=) ¢ J}).
As usual, let us state a new premise-

Hypothesis H_ineq_introduce_
3 l=]_{c<-option work)

“Ilexceeds (% A (update ¢ j_rep c
x (P<p_of S>{[ CSpart«{Cs} | Ef n Sf ]) x P<y_tsk>{[ €_pWCET (=) c I}).

From the preceding factorized inequality, we can derive the premise of the previous step.

Lenna_transformation_is_pRT_monotone_stepd :
3 [=]_{c<-option work]
Pa_of S>([ A u,
[8& exceeds (® A (update € j_rep c) j) r,
CSparteiCs) v
Cpart<{c} ] S B0 S 1}
= 3[e]_{c<-option work
f S'>([ Aw,
Tas exceeds (% A (update € j_rep c) §) r,
Cspart'<{Cs'} v &
(Cpart'<{c} w)] | &' n Sf' 1}

End Stepd.

Step 10

In this step, we remove P<_of S>{[ CSpart<{Cs} | £f nSf ]} on the LHS and
P<p_of S>{[ CSpart<{Cs} | £f n Sf' 1} onthe RHS.

Section Stepl0.

Let us assume that we can prove the following inequality, where P<i_of S>{[
CSpart<{Cs} | £ n Sf ]} on both sides cancel out, ...

Hypothesis H_ineq_without_other_costs :
3 [=]_{c<-option work
Ilexceeds (R A (update € j_rep c) j) r] x P<p_of S>{[ € j_rep (=) ¢ | &f n Sf ]}
= J[=]_{c<-option worl
Ilexceeds (® A (update € j_rep c) j) r] x P<p_tsk>{[ €_pWCET (=) c ]}.

.. then we can easily arrive at the preceding step's premise.
Lenma_transformation_is_pRT_monotone_step10:

3 [»]_{c<-option wnrk}

Ilexceeds (R A (update C j_rep c) j) rl
x (Pep_of S>{[ CSpar <{Cs} | §f n'Sf 1} x P<p_of S>{[ € j_rep (=) c | &f n Sf ]})
< J[»]_{c<-option work}
Ilexceeds (R A (update C j_rep c)

« (beu_of S-(1 Coparta{car | &f n Sf ]) x Pap_tsk={[ €_pWCET (=) c 1}).

End Step1o.

Step 11

We have successfully removed constraints on job costs of jobs that are not equal to
j_rep. Depending on the cost of j_rep, we can still get different behavior. In this section,
we do a case analysis on the "critical” value of the cost of j_rep.

Section Stepll.

There are three possibilities: (1) whatever cost of job j_rep we pick, the response time of
job j never exceeds r, (2) whatever cost of job j _rep we pick, the response time of job j
always exceeds r, and (3) there is some critical value c@ such that j's response time will
exceed r if and only if j_rep's job cost s larger than r.

Lenma_cost_causing_exceedance_of_r
(x 3 %) 13 (co : option work), V (c : option work),
is_true (c0 (<) c) « exceeds (® A (update € j_rep c) j) r)
v (¥ 27%) (¥ (c : option work), exceeds (® A (update € j_rep c) j) r)
v (x 1) (¥ (c : option work), -~ exceeds (® A (update C j_rep c) j) r).

Note that case (1) is easy since the inequality reduces to @ < 0.

Remark jobs_rt_never_exceeds_r

(¥ ¢ : option work, - exceeds (® A (update € j_rep ) j) r) =
3 [=]_{c<-option work
1lexceeds (.’R A (update cj_! reD c) 1) rl

x Pap>{[ € j_rep (=) c | EF
= J[»]_{c<-option work}

Ilexceeds (% A (update ¢ j_rep c) j) r

x Pe_tsk={[ €_pWCET (=) C 1}.

Note that case (2) is easy since the inequality reduces to 1 = 1.

Remark jobs_rt_always_exceeds_r

(¥ c i option work, exceeds (Jl A (update € j_rep c) j) r) -
3[=]_{c<-option work
I[exceeds (.’R A (update ¢ j_rep ) j) r]

x P<p>{[ € j_rep (=) ¢ | &f n Sf I}
= J[»]_{c<-option work}

Ilexceeds (% A (update ¢ j_rep c) j) rl

x P<p_tsk>{[ €_pWCET (=) ¢ 1}.

Case (3) is interesting; so let us assume that c@ is the critical value, after which the
response time of job j will exceed .

However, then I [exceeds (5 A (update C j_rep c) j) r] can be transformed into c0
(<) c. We use the fancy (<) to account for the fact that both costs can be L.

NypntheS)s H_ineq_c0@_causes_exceedance :
¥ (co : option wark)

c) « exceeds (R A (update C j_rep c
z[ml " e nptmn wnrk} [c0 (<) c] x P<y_of S>{[ € j_rep (= » c i zf n st 1}y
= 3[=]_{c<-option work} I[c@ (<) c] x P<p_tsk>{[ €_pWCET (=) c

Given the hypothesis, we can prove the prior step's premise.
Lenna_transformation_is_pRT_monotone_stepll :
3 [=]_{c<-option work}
Tlexceeds (R A (update € j_rep c) j) r] x P<pof S >{[ € j_rep (=) c | &F n SfI}
= J[»]_{c<-option work}

I[exceeds (R A (update € j_rep c) j) rl x P<p_tsk>{[ €_pWCET (=) c 1}.

End Stepll.

Step 12

Let us now assume that there is a cost c@ (of job j _rep) with the property that any cost
strictly higher causes j to have a response time larger than r.
Variable c@ : option work.

Hypothesis H_co_causes_exceedance :
¢, is_trie (cO (<) c) « exceeds (% A (update € j_rep c) j) r.

Note that 3_{c} I[c0 < c] P{X= c } is equivalent to P{X > c0}. We use this property to
simplify I[. ... on both sides.
Section Stepl2.
Assuming that the following |nequal||y, which is very similar to our initial assumption
H_pWCET_bounds_cond_cdf, ..
Mypo(hes)s H_almost_pWCET_bounds_cond_cdf

of S>{T (e j_rep) (<= ali e
B tskod[ o_PACET (<) <o 1)

.. we can prove the inequality assumed in the previous step.
Lenma_transformation_is_pRT i munctane _stepl2 :
[=]_{c <- option nat} I[c@ (<) c] x P<u_of S>{[ € j_rep (=) c \ Efnsf])
= J[»]_{c <~ option nat} I[c@ (<) c] x P<u_tsk>{[ €_pWCET (=) c

End Stepl2.

Step 13

In the last step, we exploit the top-level assumption H_pWCET_bounds_cond_cdf to
finish the proof.

Section Stepl3.

Notice that the following statement is very close to the pWCET guarantee
H_pWCET_bounds_cond_cdf.
Lemma transfamatmn is pRT mnnctcne ._stepl3 :

P<p_of S>{[ € j_rep (<=) <@ | R 1} =
Pep_tsk>{[ B DWCET (<=) (D

Also, note that we did not make any new assumptions in this section; hence, we are done.

End Stepl3.
End StepByStepProof.

Statement and Proof of Theorem 1

Now we can combine all the steps to prove that a single job cost can be replaced with the
corresponding pWCET while preserving response-time monotonicity (Theorem 1 in the
paper).

Section Proof0fTheoreml.

Assume horizon defines the termination time of the system. If horizon = None, the
system does not terminate; however, as discussed at the beginning of the file, we assume
afinite number of jobs in either case.

Variable horizon : option instant.

Consider any type of tasks with a notion of pWCET.
Context {Task : TaskType}
{pWCET_pmf : ProbWCET Task}.
Note that the arrivals and costs are determined by the system, which is defined next.
Context (Joh + finType}
b_task : JobTask Job Task}.

Consider a response-time monotonic scheduling algorithm , where response-time
monotonic means the following: assuming that all arrival times are fixed, an increase of
the execution cost of any job cannot cause a decrease of the response time of any job.
Recall that £ receives two vectors: a vector of arrival times A and a vector of job costs C.

Variable T : @schedulerAC Job.
Hypothesis H_rt_monotonic : rt_monotonic_scheduler horizon .
Let sched denote a schedule generated by .

Let sched S := compute_pr_schedule { (job_arrival := 4_of S) (job_cost := €_of S).

Let S be an arbitrary system ...

Variable S : @system Job.

...and let j _rep be a job whose cost we want to replace.
Variable j_rep : Job.

LetS' be the system where we replace j_rep's cost with the corresponding pWCET via
replace_job_pET.

eplace_job_pET j_rep S.

Consider an arbitrary jot
Variable j : Job.

...and its response times j and %] ' in schedules sched S

Let ®j
Let )"

', respectively.
response_tine (sched S) (job_arrival ;= 4_of
response_time (sched 5')"(job_arrival

of S) horizon j.
o

S) (job
A_of S' i (job_co: ) horizon j.

Ilexceeds (® A (update C j_rep c
< (B0t S>(1 Cpartalcar | EF R 1) x Pep_of S>{[ € j_rep (=) ¢ | &f n Sf
< 3[=]_{c<-option worl
Ilexceeds (R A (update € j_rep c
<(Paot s»{1 Cipartalcsy | &1 " 1) x Pep_tsk>{[ €_pWCET (=) c 1}).

From the preceding factorized inequality, we can derive the premise of the previous step.

A A Y e ey EEEEEEEm

It PWCET satisfies our notion of axiomatic pWCET, ...
Hypothesis H_axiomatic_pWCET :
axiomatic_pWCET (p_of S) (job_arrival := 4_of S) (job_cost := €_of S).
.. then the response-time distribution of job  in schedule sched  is <-bounded by the
response-time distribution of job § in schedule sched S°. Thatis, ®] < ®j *.
O magokon igna enlace_ps'r
RO R Emn

The inequality involving Exc and Exc " is implied by the inequality involving &2.

CSpart<{Cs} v &
Cparta{c} w] | €f n S 1}

< 5[] {c<—option work
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FORMAL SPECIFICATION AND PROOFS

Clickable links to Coq specification

> Each definition, lemma, and proof step is accompanied by a link to the

corresponding Coq specification

The LHS and RHS of the inequality can be simplified to
P[C, > colé A Si| and P¢[C;, > col, respectively. Using the
fact that Pla > b < Plc>d| <= Pla<b] > Plc < d],
we transform the inequality to obtain (¥):

P[Cs, < col€ A S1) > Py[Cy, < col.

Finally, by construction (Def. 10), Py [€JO < ¢o| = Fi(cp).
Hence, we end up with P[C;, < ¢ol€ A Si] > Fi(co), which
follows (%) from partition-dominance (Def. 6).

‘R

Step 13

In the last step, we exploit the top-level assumption H_pWCET_bounds_cond_cdf to
finish the proof.

Section Stepl3.

Notice that the following statement is very close to the pWCET guarantee
H_pWCET_bounds_cond_cdf.

Lemma transformation_is_pRT_monotone_stepl3 :
P<p_of S>{[ € j_rep (<=) c@ | E&f n ST 1} =
P<p_tsk>{[ €_pWCET (<=) c@ ]}.

Also, note that we did not make any new assumptions in this section; hence, we are done.

End Stepl3.
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fact that Pla > b < Plc>d] < Pla<b] > Plc <d],

Finally, by construction (Def. 10), Py [EJO < ¢o| = Fi(cp).

Step 13

In the last step, we exploit the top-level assumption H_pWCET_bounds_cond_cdf to
finish the proof.

Section Stepl3.

Notice that the following statement is very close to the pWCET guarantee
H_pWCET_bounds_cond_cdf.

Lemma transformation_is_pRT_monotone_stepl3 :
P<p_of S>{[ € j_rep (<=) c@ | E&f n ST 1} =
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Also, note that we did not make any new assumptions in this section; hence, we are done.
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CONCLUSION AND FUTURE WORK

What we did:

- First fully formal definitions of pETand pWCET

> Adequacy property: formalization of "safe IID upper bound on pET"
> Prove that o.ur pWCET proposal is adequate The Cog Proof Assistant
- All mechanized with COq - cog.inria.fr
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WHY AXIOMATIC pWCET?

Def. 7 (¥). A monotonically increasing function F;: W —
0, 1] with F;(0) = 0 and lim;_,, F;(t) = 1 is|an axiomatic
pWCET for a task T; if, for every J € 7; and every fixed arrival

Theorem (paraphrased). Consider a job J; ;. Let &£, ; be the

: oy * : sequence £ € Z, there exists a partition G (Def. 4) such that
oRT of Ji,j in the initial system and %i, .be the pRT of Ji,j ina 1) C, is partition-independent w.r.t. € and & (Def. 5), and
: e : . 2) F; G-dominates Cj w.r.t. £ (Def. 6).
simplified system obtained via pWCET . Then R, ; < R, 2 O oAt € L e, O —
A ’ ’

lllllllllllllllllllllllllllllllllll

Hint:
1. Use axiomatic pWCET to construct a "copy" of the initial
E system, where pETs are replaced with job costs that are, Weakest precondition for
by construction, 11D and have distribution F which we could find a proof of
2. Prove that pRT %l*] in the simplified system the adequacy property

stochastically dominates the original pRT %, ;
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TWO TYPES OF pWCET
Dominance pWCET | 7] Confidence pWCET | 2]
> F, W — [0,1] > F, W — [0,1]
- Given ¢, F(c) defines a bound on probability = Given ¢, F(c) defines a bound on probability
of a job of task 7; to have cost exceeding ¢ that WCET of task z; does not exceed ¢
a ) 4 A
If F.(50) = 0.999, then out of If F.(50) = 0.999, no job is expected
100,000 jobs, at most 100 jobs are to have cost greater than SO and we are
expected to have cost greater than S0 99.9% confident about it
\_ / \_ %

[1] Davis, Robert I., et al. "Analysis of probabilistic cache related pre-emption delays."
[2] Edgar, Stewart, and Alan Burns. "Statistical analysis of WCET for scheduling."
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