
Mitra Nasri* Bjӧrn B. Brandenburg

Max Planck Institute for Software Systems (MPI-SWS)

Germany

RTSS, December 2017

MAX PLANCK INSTITUTE
FOR SOFTWARE SYSTEMS

2

A wide class of

non-work conserving
scheduling algorithms

Release jitter

Uniprocessor

Exact best-case and

worst-case response time

Our
analysis

Non-preemptive jobs
(or periodic tasks)

Fixed-job priority
scheduling algorithms

Execution time
variation

Exact schedulability
analysis

Hard or soft timing
constraints

EDF
Fixed priority

CW-EDF [Nasri16]
Precautious-RM [Nasri14]

And tardiness
bound

Bounded
jitter

release

Bounded variation

execution deadline

“An exact and sustainable schedulability
analysis for non-preemptive scheduling”

3

Inevitable
(where preemption is not

supported by the
platform/network)

Improves timing

predictability

Examples
• GPU device
• Hardware accelerators
• CAN bus

Low
overhead

• A more accurate estimation of
worst-case execution-time (WCET)

• More predictable cache

Simplifies
system
design

• Control systems are
sensitive to I/O delay
and preemptions

• Simpler resource
management policies

• Grants exclusive
resource access

• Reduces context switches
• Avoids intra-task cache-related preemption delays (CRPD)

Improves
QoS

4

Most of NPS policies are not sustainable
(w.r.t. execution time variation, release jitter, etc.)

Pessimistic for
periodic tasksSchedulability analyses for

sporadic tasks
[Jeffay91, Tindel94, Davis07]

Not very
scalable

Not applicable to
arbitrary job sets

Simulation-based schedulability
tests cannot be used

Existing schedulability analyses based
on model checking, timed automata,

abstraction refinements, etc.

[Sun97, Baker07, Guan07, Bonifaci10,
Burmyakov15, Stigge15]

Existing analyses are not
enough

Existing analyses are not
efficient

Many non-work-conserving scheduling algorithms
do NOT have a schedulability analysis yet

No solution yet

5

An efficient, exact, general

schedulability analysis

THAT includes

a wide class of scheduling algorithms and task models

Image is from http://theyoungprofessionalgroup.com

66

 Main idea:

Searching all possible schedules efficiently and accurately

 Constructing the search graph

 Evaluation

 Conclusion

7

2

13

8

2 2

0 10 20 30
𝜏1

𝜏2

𝜏3

schedulable

Values are integer.
Scheduling algorithm: Non-preemptive fixed-priority (NP-FP)
A schedule is an assignment of execution intervals to the jobs.

Period Task Execution time

𝜏3
𝜏2
𝜏1

30
30
10

13
8
2

One schedule

Both existing tests for sporadic tasks reject
this task set [Jeffay91, Davis07]

𝑱𝟏,𝟏 𝑱𝟐,𝟏 𝑱𝟏,𝟐 𝑱𝟑,𝟏 𝑱𝟏,𝟑One job ordering

Non-preemptive fixed-priority scheduling

8

Values are integer.
Scheduling algorithm: NP-FP
A schedule is an assignment of execution intervals to the tasks.

Only two
different job orderings

More than 100
different schedules

Not schedulable

𝑱𝟏,𝟏 𝑱𝟐,𝟏

𝑱𝟏,𝟐
𝑱𝟑,𝟏 𝑱𝟏,𝟑

𝑱𝟑,𝟏
𝑱𝟏,𝟐 𝑱𝟏,𝟑

Period Task
Execution time

𝜏3
𝜏2
𝜏1

30
30
10

[3, 13]
[7, 8]
[1, 2]

Min Max Release jitter

15
0
0

0 10 20 30

𝝉𝟏

𝝉𝟐

𝝉𝟑

2

13

8

2 2

A graph of job orderings

0 10 20 30

𝝉𝟏

𝝉𝟐

𝝉𝟑

13

2 2
Missed

2

7
Deadline miss

9

Is there a way to use
job-ordering abstraction

to analyze schedulability?

How to efficiently
find all

job orderings?

Research question

How to identify
timing violations in
the resulting graph?

There are fewer permissible
job orderings than schedules

Observation

For an exact analysis, we need to consider
all possible execution scenarios

Due to scheduling
anomalies

How to abstract
schedules in a graph

of job orderings?

10
10

2

13

8

2 2

0 10 20 30

𝝉𝟏

𝝉𝟐

𝝉𝟑

0 10 20 30
𝝉𝟏

𝝉𝟐

𝝉𝟑
13

2 2
Missed

2

7

[8, 10]

[11, 22] [12, 26]

[14, 25] [21, 27]

[21, 26]

[0, 0] [1, 2]

[11, 12]𝑱𝟏,𝟏 𝑱𝟐,𝟏

𝑱𝟏,𝟐
𝑱𝟑,𝟏 𝑱𝟏,𝟑

𝑱𝟑,𝟏
𝑱𝟏,𝟐 𝑱𝟏,𝟑

Earliest
finish time

Latest
finish time

Knowing when a job
misses its deadline

Requirement

Encode the earliest and
latest finish time of a job

Solution

Check if the latest finish time is
not larger than the deadline

Verification of schedulability

Deadline o𝐟 𝑱𝟏,𝟐
is at time 20

Period Task
Execution time

𝜏3
𝜏2
𝜏1

10
30
30

[3, 13]
[7, 8]
[1, 2]

Min Max Jitter

15
0
0

Each path shows a job ordering

1111

 Main idea: Searching all possible execution scenarios efficiently and accurately

 Constructing the search graph

 Evaluation

 Conclusion

12
12

𝐽4

𝐽4
𝐽3

𝐽2

start

No

Yes

Create the first vertex 𝑣1 with
interval [0, 0]

Is there a path that
can be expanded?

Select the shortest path 𝑃

Find eligible jobs

end

Report deadline misses

Merge any two paths that
share the same

set of jobs

For each eligible job, find the
earliest and latest finish time

and add them to 𝑷

Sort the jobs according to their
priorities (scheduling policy)

𝑣1

[0, 0]

𝐽4

𝐽3

𝐽1

𝐽2

[1, 2]

[6, 9]

[4, 8]

[3, 8]

𝐽3
𝐽2

𝐽1

𝐽1

𝐽2

𝐽1

[5, 11]

[5,10]

[…]

[…]

[…]

[…]

𝐽4

𝐽1
𝐽2

𝐽3

𝐽4
𝐽1

𝐽3

𝐽2

𝐽2
𝐽1

𝐽1

𝐽2

𝐽3

[…]

[…]

[…]

initialization

Breadth-first
search

Grow

Shrink

Fixed-job-priority
scheduling algorithm

Job set

Merge two paths if they have the same set of jobs
and their final intervals intersect

The graph grows
more slowly

13
13

start

Create the first vertex 𝑣1 with
interval [0, 0]

Sort the jobs according to their
priorities (scheduling policy)

𝐽1
𝑡1

No

Yes

Is there a path that
can be expanded?

Select the shortest path 𝑃

Find eligible jobs

end

Report deadline misses

Merge any two paths that
share the same

set of jobs

For each eligible job, find the
earliest and latest finish time

and add them to 𝑷

An eligible job for path 𝑃 is a job that can be
scheduled after 𝑃 in at least one execution scenario

High

P
ri

o
ri

ty
Low

𝑣𝑗
𝐽4

𝐽1 𝑣𝑗+1

… 𝑣𝑖

𝑒𝑖 , 𝑙𝑖

𝐽3
𝑣1

Path 𝑃

𝒆𝒊 = the earliest finish time of path 𝑃

𝒍𝒊 = the latest finish time of path 𝑃

𝐽4
𝑡4

𝐽2
𝑡2

time

𝐽3
𝑒𝑖 𝑙𝑖

14

“Eligibility conditions” are
necessary and sufficient

The “final interval” of each is exact:
For any time 𝑡 in the interval, there must be an

execution scenario that ends at 𝑡

Final intervals remain “exact” after

merging process

In our work, we have proved these properties for
• Fixed-job-priority scheduling algorithms
• Tasks with release jitter and execution time variation
• Hard and soft timing constraints
• Work-conserving and non-work-conserving scheduling algorithms

No

Yes

Is there a path that
can be expanded?

Select the shortest path 𝑃

Find eligible jobs

end

Report deadline misses

Merge any two paths that
share the same

set of jobs

For each eligible job, find the
earliest and latest finish time

and add them to 𝑷

start

Create the first vertex 𝑣1 with
interval [0, 0]

Sort the jobs according to their
priorities (scheduling policy)

15

Define eligibility
conditions

Define how to obtain
the final intervals

Prove the aforementioned
properties

1616

 Main idea: Searching all possible execution scenarios efficiently and accurately

 Constructing the search graph

 Evaluation

 Conclusion

Image from https://searchengineland.com/answer-box-experiment-journey-known-unknown-factors-270948

17

 Is our analysis effective?
◦ Does it actually improve the accuracy of schedulability analysis?

◦ What is our achievement for non-work-conserving scheduling policies?

 Is our analysis efficient?
◦ How fast is the analysis?

18

Covered in the
presentation

Covered in the
presentation

Covered in the
presentation

[Kramer15] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive benchmark for free,” in WATERS, 2015.
Note: only task sets that pass the necessary schedulability condition of non-preemptive scheduling were considered.

Synthetic task sets

No jitter

Small jitter
(up to 100 microseconds)

• Variable parameter: maximum number
of jobs in a hyperperiod

• Periods are from [1, 1000]ms with log-
uniform distribution

• Up to 50% runtime variation in the
execution time

• 10 tasks per task set

• Variable parameter: utilization

• Generate runnables according to
[Kramer15] until the given utilization
is reached

• Pack a random number of runnables
together to build a task

• Up to 30 tasks per task set
Large jitter

(up to 20% of the period)

Automotive benchmark
task sets [Kramer15]

To evaluate the effectiveness
in a realistic setup and different utilization values

To evaluate the efficiency
when there are a large number of jobs

19

Many task sets do not pass the test

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

sc
h

e
d

u
la

b
ili

ty
 r

at
io

utilization

NP-FP classic test

Task sets in this experiment have up to 35 tasks and 3500 jobs

Automotive
benchmark, no jitter

20

Still, many task sets
are not schedulable

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

sc
h

e
d

u
la

b
ili

ty
 r

at
io

utilization

NP-FP classic test This paper: NP-EDF

This paper: NP-FP

About 40% more
schedulable task sets

are found

Are these task sets not
schedulable by any algorithm?

Automotive
benchmark, no jitter

21

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

sc
h

e
d

u
la

b
ili

ty
 r

at
io

utilization

NP-FP classic test This paper: NP-EDF This paper: NP-FP

This paper: Precautious-RM This paper: CW-EDF+

Automotive
benchmark, no jitter

Non-work-conserving
policies

22

0.31

3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
P

U
 t

im
e

 (
se

c)

Utilization

This paper: NP-EDF This paper: NP-FP

This paper: Precautious-RM This paper: CW-EDF+

No jitter Large jitter

554

5,472

0

1,000

2,000

3,000

4,000

5,000

6,000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
P

U
 t

im
e

 (
se

c)

utilization

About 1.5 hours

Automotive benchmark

23

Synthetic tasks
Small jitter

89

1,865

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

10,000 20,000 30,000 40,000 50,000 100,000

C
P

U
 t

im
e

 (
se

c)

maximum number of jobs

this paper: NP-EDF this paper: NP-FP

this paper: P-RM this paper: CW-EDF+

About 30 minutes

(per hyperperiod)

2424

 Main idea: Searching all possible execution scenarios efficiently and accurately

 Constructing the search graph

 Evaluation

 Conclusion

Image from http://zworth.net/

25

An efficient, exact, and general schedulability
analysis for a wide class of scheduling algorithms

Goal

Constructing a precise abstraction of
all possible schedules

Solution

Building a schedule-abstraction graph
based on job ordering

Method

An efficient merge technique to
defer the state-space explosion

Key idea

26
26 of 25

A Framework to Construct Customized
Harmonic Periods for RTS

Global and semi-
Partitioned scheduling

Shared
resources

Multiprocessor
systems

Our
analysis

Precedence
Constraints

Preemptive and limited
preemptive scheduling

Parallelizing
the analysis framework
to make it even faster

Integration with timing
analysis frameworks

27

Thank you

MAX PLANCK INSTITUTE
FOR SOFTWARE SYSTEMS

Release jitter

Uniprocessor A wide class of

non-work conserving
scheduling algorithms

Our
analysis

Non-preemptive job set
(or periodic tasks)

Fixed-job priority
scheduling algorithms

Execution time
variation

Exact best-case and worst-
case response timeHard or soft timing

constraints

Source code available at
https://people.mpi-sws.org/~bbb/papers/details/rtss17/index.html

https://people.mpi-sws.org/~bbb/papers/details/rtss17/index.html

