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A wide class of 

non-work conserving 
scheduling algorithms

Release jitter

Uniprocessor

Exact best-case and 

worst-case response time

Our
analysis

Non-preemptive jobs
(or periodic tasks)

Fixed-job priority 
scheduling algorithms

Execution time 
variation

Exact schedulability 
analysis

Hard or soft timing 
constraints 

EDF
Fixed priority

CW-EDF [Nasri16]
Precautious-RM [Nasri14]

And tardiness 
bound

Bounded 
jitter

release

Bounded variation

execution deadline

“An exact and sustainable schedulability 
analysis for non-preemptive scheduling”
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Inevitable
(where preemption is not 

supported by the 
platform/network)

Improves timing  

predictability

Examples
• GPU device
• Hardware accelerators
• CAN bus

Low 
overhead

• A more accurate estimation of
worst-case execution-time (WCET)

• More predictable cache

Simplifies 
system 
design

• Control systems are
sensitive to I/O delay
and preemptions

• Simpler resource 
management policies

• Grants exclusive 
resource access

• Reduces context switches
• Avoids intra-task cache-related preemption delays (CRPD)

Improves 
QoS
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Most of NPS policies are not sustainable
(w.r.t. execution time variation, release jitter, etc.)

Pessimistic for
periodic tasksSchedulability analyses for 

sporadic tasks 
[Jeffay91, Tindel94, Davis07]

Not very 
scalable

Not applicable to 
arbitrary job sets

Simulation-based schedulability 
tests cannot be used

Existing schedulability analyses based 
on model checking, timed automata, 

abstraction refinements, etc.

[Sun97, Baker07, Guan07, Bonifaci10, 
Burmyakov15, Stigge15]

Existing analyses are not 
enough

Existing analyses are not 
efficient

Many non-work-conserving scheduling algorithms 
do NOT have a schedulability analysis yet

No solution yet
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An efficient, exact, general 

schedulability analysis

THAT includes 

a wide class of scheduling algorithms and task models

Image is from http://theyoungprofessionalgroup.com
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 Main idea: 

Searching all possible schedules efficiently and accurately

 Constructing the search graph

 Evaluation

 Conclusion
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𝜏1
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schedulable

Values are integer.
Scheduling algorithm: Non-preemptive fixed-priority (NP-FP)
A schedule is an assignment of execution intervals to the jobs.

Period Task Execution time

𝜏3
𝜏2
𝜏1

30
30
10

13
8
2

One schedule 

Both existing tests for sporadic tasks reject
this task set [Jeffay91, Davis07]

𝑱𝟏,𝟏 𝑱𝟐,𝟏 𝑱𝟏,𝟐 𝑱𝟑,𝟏 𝑱𝟏,𝟑One job ordering

Non-preemptive fixed-priority scheduling 
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Values are integer.
Scheduling algorithm: NP-FP
A schedule is an assignment of execution intervals to the tasks.

Only two 
different job orderings 

More than 100 
different schedules 

Not schedulable

𝑱𝟏,𝟏 𝑱𝟐,𝟏

𝑱𝟏,𝟐
𝑱𝟑,𝟏 𝑱𝟏,𝟑

𝑱𝟑,𝟏
𝑱𝟏,𝟐 𝑱𝟏,𝟑

Period Task
Execution time

𝜏3
𝜏2
𝜏1

30
30
10

[3, 13]
[7, 8]
[1, 2]

Min Max Release jitter

15
0
0

0 10 20 30

𝝉𝟏

𝝉𝟐

𝝉𝟑

2

13

8

2 2

A graph of job orderings

0 10 20 30

𝝉𝟏

𝝉𝟐

𝝉𝟑

13

2 2
Missed

2

7
Deadline miss
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Is there a way to use 
job-ordering abstraction

to analyze schedulability?

How to efficiently
find all 

job orderings?

Research question

How to identify 
timing violations in 
the resulting graph?

There are fewer permissible 
job orderings than schedules

Observation

For an exact analysis, we need to consider 
all possible execution scenarios

Due to scheduling 
anomalies

How to abstract 
schedules in a graph 

of job orderings?



10
10

2

13
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0 10 20 30

𝝉𝟏

𝝉𝟐

𝝉𝟑

0 10 20 30
𝝉𝟏

𝝉𝟐

𝝉𝟑
13

2 2
Missed

2

7

[8, 10]

[11, 22] [12, 26]

[14, 25] [21, 27]

[21, 26]

[0, 0] [1, 2]

[11, 12]𝑱𝟏,𝟏 𝑱𝟐,𝟏

𝑱𝟏,𝟐
𝑱𝟑,𝟏 𝑱𝟏,𝟑

𝑱𝟑,𝟏
𝑱𝟏,𝟐 𝑱𝟏,𝟑

Earliest 
finish time

Latest 
finish time

Knowing when a job 
misses its deadline

Requirement

Encode the earliest and 
latest finish time of a job

Solution

Check if the latest finish time is 
not larger than the deadline 

Verification of schedulability

Deadline o𝐟 𝑱𝟏,𝟐
is at time 20

Period Task
Execution time

𝜏3
𝜏2
𝜏1

10
30
30

[3, 13]
[7, 8]
[1, 2]

Min Max Jitter

15
0
0

Each path shows a job ordering
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 Main idea: Searching all possible execution scenarios efficiently and accurately

 Constructing the search graph

 Evaluation

 Conclusion
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𝐽4

𝐽4
𝐽3

𝐽2

start

No

Yes

Create the first vertex 𝑣1 with 
interval [0, 0]

Is there a path that 
can be expanded?

Select the shortest path 𝑃

Find eligible jobs 

end

Report deadline misses

Merge any two paths that 
share the same 

set of jobs

For each eligible job, find the
earliest and latest finish time

and add them to 𝑷

Sort the jobs according to their 
priorities (scheduling policy)

𝑣1

[0, 0]

𝐽4

𝐽3

𝐽1

𝐽2

[1, 2]

[6, 9]

[4, 8]

[3, 8]

𝐽3
𝐽2

𝐽1

𝐽1

𝐽2

𝐽1

[5, 11]

[5,10 ]

[… ]

[… ]

[… ]

[… ]

𝐽4

𝐽1
𝐽2

𝐽3

𝐽4
𝐽1

𝐽3

𝐽2

𝐽2
𝐽1

𝐽1

𝐽2

𝐽3

[… ]

[… ]

[… ]

initialization

Breadth-first 
search

Grow

Shrink

Fixed-job-priority 
scheduling algorithm

Job set

Merge two paths if they have the same set of jobs 
and their final intervals intersect

The graph grows 
more slowly
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start

Create the first vertex 𝑣1 with 
interval [0, 0]

Sort the jobs according to their 
priorities (scheduling policy)

𝐽1
𝑡1

No

Yes

Is there a path that 
can be expanded?

Select the shortest path 𝑃

Find eligible jobs 

end

Report deadline misses

Merge any two paths that 
share the same 

set of jobs

For each eligible job, find the
earliest and latest finish time

and add them to 𝑷

An eligible job for path 𝑃 is a job that can be 
scheduled after 𝑃 in at least one execution scenario 

High

P
ri

o
ri

ty
Low

𝑣𝑗
𝐽4

𝐽1 𝑣𝑗+1

… 𝑣𝑖

𝑒𝑖 , 𝑙𝑖

𝐽3
𝑣1

Path 𝑃

𝒆𝒊 = the earliest finish time of path 𝑃

𝒍𝒊 = the latest finish time of path 𝑃

𝐽4
𝑡4

𝐽2
𝑡2

time

𝐽3
𝑒𝑖 𝑙𝑖
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“Eligibility conditions” are 
necessary and sufficient

The “final interval” of each is exact: 
For any time 𝑡 in the interval, there must be an 

execution scenario that ends at 𝑡

Final intervals remain “exact” after 

merging process

In our work, we have proved these properties for 
• Fixed-job-priority scheduling algorithms 
• Tasks with release jitter and execution time variation
• Hard and soft timing constraints
• Work-conserving and non-work-conserving scheduling algorithms 

No

Yes

Is there a path that 
can be expanded?

Select the shortest path 𝑃

Find eligible jobs 

end

Report deadline misses

Merge any two paths that 
share the same 

set of jobs

For each eligible job, find the
earliest and latest finish time

and add them to 𝑷

start

Create the first vertex 𝑣1 with 
interval [0, 0]

Sort the jobs according to their 
priorities (scheduling policy)
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Define eligibility 
conditions

Define how to obtain 
the final intervals

Prove the aforementioned 
properties
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 Main idea: Searching all possible execution scenarios efficiently and accurately

 Constructing the search graph

 Evaluation

 Conclusion

Image from https://searchengineland.com/answer-box-experiment-journey-known-unknown-factors-270948
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 Is our analysis effective? 
◦ Does it actually improve the accuracy of schedulability analysis?

◦ What is our achievement for non-work-conserving scheduling policies? 

 Is our analysis efficient?
◦ How fast is the analysis?
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Covered in the 
presentation

Covered in the 
presentation

Covered in the 
presentation

[Kramer15]    S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive benchmark for free,” in WATERS, 2015.
Note: only task sets that pass the necessary schedulability condition of non-preemptive scheduling were considered. 

Synthetic task sets 

No jitter 

Small jitter
(up to 100 microseconds)  

• Variable parameter: maximum number 
of jobs in a hyperperiod

• Periods are from [1, 1000]ms with log-
uniform distribution

• Up to 50% runtime variation in the 
execution time

• 10 tasks per task set

• Variable parameter: utilization

• Generate runnables according to 
[Kramer15] until the given utilization 
is reached

• Pack a random number of runnables
together to build a task

• Up to 30 tasks per task set 
Large jitter

(up to 20% of the period)  

Automotive benchmark 
task sets [Kramer15]

To evaluate the effectiveness 
in a realistic setup and different utilization values

To evaluate the efficiency 
when there are a large number of jobs
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Many task sets do not pass the test
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NP-FP classic test

Task sets in this experiment have up to 35 tasks and 3500 jobs

Automotive 
benchmark, no jitter
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Still, many task sets 
are not schedulable
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NP-FP classic test This paper: NP-EDF

This paper: NP-FP

About 40% more 
schedulable task sets 

are found

Are these task sets not 
schedulable by any algorithm?

Automotive 
benchmark, no jitter
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NP-FP classic test This paper: NP-EDF This paper: NP-FP

This paper: Precautious-RM This paper: CW-EDF+

Automotive 
benchmark, no jitter

Non-work-conserving 
policies 
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Synthetic tasks
Small jitter
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this paper: P-RM this paper: CW-EDF+

About 30 minutes

(per hyperperiod)
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 Main idea: Searching all possible execution scenarios efficiently and accurately

 Constructing the search graph

 Evaluation

 Conclusion

Image from http://zworth.net/
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An efficient, exact, and general schedulability 
analysis for a wide class of scheduling algorithms

Goal

Constructing a precise abstraction of 
all possible schedules

Solution

Building a schedule-abstraction graph 
based on job ordering

Method

An efficient merge technique to 
defer the state-space explosion

Key idea
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A Framework to Construct Customized 
Harmonic Periods for RTS

Global and semi-
Partitioned scheduling 

Shared 
resources

Multiprocessor
systems

Our 
analysis

Precedence 
Constraints

Preemptive and limited 
preemptive scheduling

Parallelizing 
the analysis framework 
to make it even faster

Integration with timing 
analysis frameworks
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Thank you

MAX PLANCK INSTITUTE
FOR SOFTWARE SYSTEMS

Release jitter

Uniprocessor A wide class of 

non-work conserving 
scheduling algorithms

Our
analysis

Non-preemptive job set
(or periodic tasks)

Fixed-job priority 
scheduling algorithms

Execution time 
variation

Exact best-case and worst-
case response timeHard or soft timing 

constraints 

Source code available at
https://people.mpi-sws.org/~bbb/papers/details/rtss17/index.html

https://people.mpi-sws.org/~bbb/papers/details/rtss17/index.html

