Real-Time Replica Consistency over Ethernet with Reliability Bounds

Arpan Gujarati, Sergey Bozhko, and Björn B. Brandenburg

MAX PLANCK INSTITUTE FOR SOFTWARE SYSTEMS

Environmentally-induced transient faults

- Harsh environments
 - Robots operating under hard radiation
 - Industrial systems near high-power machinery
 - Electric motors, spark plugs inside automobiles

Environmentally-induced transient faults

- Harsh environments
 - Robots operating under hard radiation
 - Industrial systems near high-power machinery
 - Electric motors, spark plugs inside automobiles
- **Bit-flips** in registers, buffers, networks

Environmentally-induced transient faults

- Harsh environments
 - Robots operating under hard radiation
 - Industrial systems near high-power machinery
 - Electric motors, spark plugs inside automobiles
- **Bit-flips** in registers, buffers, networks

* Mancuso. "Next-generation safety-critical systems on multi-core platforms." PhD thesis, UIUC (2017)

Arpan Gujarati (MPI-SWS)

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

➡ One bit-flip in a 1 MB SRAM every 10¹² hours of operation ➡ 0.5 billion cars with an average daily operation time of 5% About 5000 cars are affected by a bit-flip every day

- Transmission errors
 - ➡ Faults on the network
- Omission errors
 - Fault-induced kernel panics, hangs
- Incorrect computation errors
 - ➡ Faults in memory buffers
- Inconsistent broadcast errors
 - Faults in systems connected over point-to-point networks like Ethernet

- Transmission errors
 - ➡ Faults on the network
- Omission errors
 - Fault-induced kernel panics, hangs
- Incorrect computation errors ➡ Faults in memory buffers
- Inconsistent broadcast errors
 - Faults in systems connected over point-to-point networks like Ethernet

- Transmission errors ➡ Faults on the network
- Omissior Fault-induced errors are random events ➡ Fault-in
 - Cannot be predicted in advance Incorrec
 - Faults in memory puncted
- Inconsistent broadcast errors
 - Faults in systems connected over point-to-point networks like Ethernet

- Transmission errors
 - Faults on the network
- Omission errors
 - Fault-induced kernel panics, hangs
- Incorrect computation errors
 - ➡ Faults in memory buffers
- Inconsistent broadcast errors
 - Faults in systems connected over point-to-point networks like Ethernet

Checksums and retransmissions

Dual Modular Redundancy (DMR)

ECC Memory + **Triple Modular Redundancy (TMR)**

Byzantine Fault Tolerance (BFT)

- Transmission errors ➡ Faults on the network
- Omission errors Fault-induced kernel panics, hangs
- Incorrect computation errors ► Faults in memory buffers
- Inconsistent broadcast errors
 - Faults in systems connected over point-to-point networks like Ethernet

Checksums and retransmissions

Dual Modular Redundancy (DMR)

ECC Memory + **Triple Modular Redundancy (TMR)**

Byzantine Fault Tolerance (BFT)

Transmission errors Faults on the network

Omission errors

- Fault-induced kernel panics, hangs
- Incorrect computation errors ► Faults in memory buffers
- Inconsistent broadcast errors
 - Faults in systems connected over point-to-point networks like Ethernet

Checksums and retransmissions

Dual Modular Redundancy (DMR)

ECC Memory + Triple Modular Redundancy (TMR)

Byzantine Fault Tolerance (BFT)

- Transmission errors ➡ Faults on the netw
- Industry: Omission errors Fault-induced kernel p SWaP-C
- Incorrect computation Size, Weight, and Power ... plus Cost Faults in memory buffers
- Inconsistent broadcast errors
 - Faults in systems connected over point-to-point networks like Ethernet

Checksums and retransmissions Dual Modular Redundancy (DMR) ECC Memory + **Triple Modular Redundancy (TMR) Byzantine Fault Tolerance (BFT)**

• Transmission errors

Real-time Industry: requirements

Fault-induced kernel p SWaP-C

- Incorrect computation Size, Weight, and Power ... plus Cost Faults in memory buffers
- Inconsistent broadcast errors
 - Faults in systems connected over point-to-point networks like Ethernet

Checksums and retransmissions Dual Modular Redundancy (DMR) ECC Memory + Triple Modular Redundancy (TMR) Byzantine Fault Tolerance (BFT)

• Transmission errors

Real-time requirements

Safety certification

- Reliability thresholds
- ► < 10⁻⁹ failures/hour

Industry:

SWaP-C Size, Weight, and Power ... plus Cost

Inconsistent broadcast errors

Faults in systems connected over point-to-point networks like Ethernet

Checksums and retransmissions Dual Modular Redundancy (DMR) ECC Memory + Triple Modular Redundancy (TMR) Byzantine Fault Tolerance (BFT)

Checksums and retransmissions Dual Modular Redundancy (DMR) ECC Memory + **Triple Modular Redundancy (TMR) Byzantine Fault Tolerance (BFT)**

Design and reliability analysis of a BFT protocol for **Ethernet-based** distributed real-time systems

Arpan Gujarati (MPI-SWS)

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

FOCUS

Physical plant reliable

7

Physical plant reliable

DMR / TMR / Hybrid

0 **D D** Step 2

Arpan Gujarati (MPI-SWS)

Physical plant reliable

DMR / TMR / Hybrid

Ethernet Time-Sensitive Networking (TSN)

Statically reserved routes

Arpan Gujarati (MPI-SWS)

0

S

Stead

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

Decreasing

priority

Physical plant reliable

Active Replication

DMR / TMR / Hybrid

Decreasing

priority

Ethernet Time-Sensitive Networking (TSN)

Priority classes

Statically reserved routes

Arpan Gujarati (MPI-SWS)

0

0

O

Sten

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

Problem: Replicas can diverge due to Byzantine errors

Physical plant reliable

Active Replication

DMR / TMR / Hybrid

Decreasing

priority

Problem: Replicas can diverge due to Byzantine errors Key idea: Byzantine fault tolerant (BFT) atomic broadcast layer

Ethernet Time-Sensitive Networking (TSN)

Priority classes

Statically reserved routes

Arpan Gujarati (MPI-SWS)

0

0

O

Ster A

Physical plant reliable

Active Replication

DMR / TMR / Hybrid

Decreasing

priority

Problem: Replicas can diverge due to Byzantine errors Key idea: Byzantine fault tolerant (BFT) atomic broadcast layer **Challenge:** Prior work does not consider hard real-time predictability

Ethernet Time-Sensitive Networking (TSN)

Priority classes

Statically reserved routes

Arpan Gujarati (MPI-SWS)

0

()

Ο

Physical plant reliable

Active Replication

DMR / TMR / Hybrid

Statically-checked hard real-time protocol

Synchronous [Pease et al., 1980]

Ethernet Time-Sensitive Networking (TSN)

Priority classes

Statically reserved routes

Decreasing priority

Arpan Gujarati (MPI-SWS)

0

の

Step

Periodic tasks and messages

BFT Atomic Broadcast

Statically-checked hard real-time protocol

Synchronous [Pease et al., 1980]

Arpan Gujarati (MPI-SWS)

0

()

7

Step 3

BFT Atomic Broadcast

Statically-checked hard real-time protocol

Synchronous [Pease et al., 1980]

Arpan Gujarati (MPI-SWS)

0

()

Ster

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

What is the probability of an atomic broadcast failure? BFT Atomic Broadcast Stend **Synchronous** Statically-checked hard real-time protocol [Pease et al., 1980]

Arpan Gujarati (MPI-SWS)

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

What is the probability of an atomic broadcast failure? BFT Atomic Broadcast Stend **Synchronous** Statically-checked hard real-time protocol [Pease et al., 1980]

Arpan Gujarati (MPI-SWS)

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

Stochastically modeled basic errors

Basic errors due to transient faults are random, independent events E.g., node crashes, link corruption

Stochastically modeled basic errors

Basic errors due to transient faults are random, independent events

E.g., node crashes, link corruption

Poisson distribution using peak rates from maximum interference periods

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

11

Stochastically modeled basic errors

Basic errors due to transient faults are random, independent events

E.g., node crashes, link corruption

For processors and switches **Poisson(n, \delta, \lambda_{crash})** = Pr(n crashes in an interval of length δ l crash rate λ_{crash})

For processors, switches, and network links

Arpan Gujarati (MPI-SWS)

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

Poisson distribution using peak rates from maximum interference periods

Poisson(n, \delta, \lambda_{corruption})

= Pr(n corruptions in an interval of length δ l corruption rate $\lambda_{corruption}$)

11

What is the probability of an atomic broadcast failure? BFT Atomic Broadcast Stend **Synchronous** Statically-checked hard real-time protocol [Pease et al., 1980]

Arpan Gujarati (MPI-SWS)

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

Straw-man solutions

Arpan Gujarati (MPI-SWS)

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

13

Straw-man solutions

Scalability challenges

- Empirical techniques scale poorly when evaluating low-probability events
- Formal methods often do not scale beyond small distributed models

Straw-man solutions

Arpan Gujarati (MPI-SWS)

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

Scalability challenges

- Empirical techniques scale poorly when evaluating low-probability events
- Formal methods often do not scale beyond small distributed models

Reliability anomalies

In practice, the failure probability may significantly exceed the estimated
Pr (atomic broadcast failure)

Key idea 1: Scalability through abstraction and pruning

Arpan Gujarati (MPI-SWS)

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

Goal: PUB > Pr (atomic broadcast failure)

14

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

Error event E₁

Round 1 messages sent by Π_1 omitted at source

Arpan Gujarati (MPI-SWS)

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

Error event E₁

Round 1 messages sent by Π_1 omitted at source

Error event E₂

Round 1 messages sent by Π_1 corrupted at source

Network error event E₃

Frame carrying round 1 messages from Π_1 to Π_2 corrupted by the network

Arpan Gujarati (MPI-SWS)

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

Error event E₁

Round 1 messages sent by Π_1 omitted at source

Error event E₂

Round 1 messages sent by Π_1 corrupted at source

Network error event E₃

Frame carrying round 1 messages from Π_1 to Π_2 corrupted by the network

Arpan Gujarati (MPI-SWS)

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

Error event E₁

Round 1 messages sent by Π_1 omitted at source

Error event E₂

Round 1 messages sent by Π_1 corrupted at source

Network error event E₃

Frame carrying round 1 messages from Π_1 to Π_2 corrupted by the network

Arpan Gujarati (MPI-SWS)

Error event E₁

Round 1 messages sent by Π_1 omitted at source

Error event E₂

Round 1 messages sent by Π_1 corrupted at source

Network error event E₃

Frame carrying round 1 messages from Π_1 to Π_2 corrupted by the network

Example!

Link L_{b2} Π_2

Link L_{b2} Π_2

Link L_{b2} Π_2

Link L_{b2} Π_2

Error event E₁

Round 1 messages sent by Π_1 omitted at source

Error event E₂

Round 1 messages sent by Π_1 corrupted at source

Network error event E₃

Frame carrying round 1 messages from Π_1 to Π_2 corrupted by the network

Arpan Gujarati (MPI-SWS)

Error event E₁

Round 1 messages sent by Π_1 omitted at source

Error event E₂

Round 1 messages sent by Π_1 corrupted at source

Network error event E₃

Frame carrying round 1 messages from Π_1 to Π_2 corrupted by the network

Arpan Gujarati (MPI-SWS)

Error event E₁

Round 1 messages sent by Π_1 omitted at source

Error event E₂

Round 1 messages sent by Π_1 corrupted at source

Network error event E₃

Frame carrying round 1 messages from Π_1 to Π_2 corrupted by the network

Arpan Gujarati (MPI-SWS)

Arpan Gujarati (MPI-SWS)

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

Scalability challenges

Key idea 1: Tackle scalability through abstraction and pruning

Reliability anomalies

In practice, the failure probability may significantly exceed the estimated Pr (atomic broadcast failure)

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

Peak fault rate

- From measurements / environmental modeling assuming worst-possible operating conditions
- Include safety margins as deemed appropriate by reliability engineers or domain experts.

Arpan Gujarati (MPI-SWS)

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

Peak fault rate

- From measurements / environmental modeling assuming worst-possible operating conditions
- Include safety margins as deemed appropriate by reliability engineers or domain experts.

Arpan Gujarati (MPI-SWS)

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

Peak fault rate

- From measurements / environmental modeling assuming worst-possible operating conditions
- Include safety margins as deemed appropriate by reliability engineers or domain experts.

Arpan Gujarati (MPI-SWS)

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

Peak fault rate

- From measurements / environmental modeling assuming worst-possible operating conditions
- Include safety margins as deemed appropriate by reliability engineers or domain experts.

Arpan Gujarati (MPI-SWS)

Pr (atomic broadcast failure) increases despite decreasing component fault rate

> Intuition: Sometimes, a node crash is good for the overall system, because it may reduce the probability of confusing a majority voting protocol in another part of the system!

Peak fault rate

- From measurements / environmental modeling assuming worst-possible operating conditions
- Include safety margins as deemed appropriate by reliability engineers or domain experts.

Arpan Gujarati (MPI-SWS)

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

For soundness, need to estimate failure probabilities for the entire search space [0, 10-5]

Combinatorial analysis

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

Combinatorial analysis

Arpan Gujarati (MPI-SWS)

Combinatorial analysis

Eliminating reliability anomalies

Peak fault rate

- From measurements / environmental modeling assuming worst-possible operating conditions
- Include safety margins as deemed appropriate by reliability engineers or domain experts.

Arpan Gujarati (MPI-SWS)

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

For soundness, need to estimate failure probabilities for the entire search space [0, 10-5]

Arpan Gujarati (MPI-SWS)

Real-Time Replica Consistency over Ethernet with Reliability Bounds (RTAS 2020)

Scalability challenges Key idea 1: Tackle scalability through abstraction and pruning **Reliability anomalies** Key idea 2: Ensure monotonicity to eliminate anomalies

Summary

Arpan Gujarati (MPI-SWS)

Arpan Gujarati (MPI-SWS)

Summary

atomic broadcast failure?

Arpan Gujarati (MPI-SWS)

Building safety-critical real-time applications

- Formalize and eliminate **reliability anomalies**

COTS-based distributed systems with quantifiably negligible failure rates Byzantine errors with **non-uniform fault rates** resulting from transient faults

In the paper ...

Parameterized BFT interactive consistency protocol Time-aware correctness criteria Reliability anomalies formalization for arbitrary configurations Analysis versus simulation experiments Case studies with varying network topologies and protocol parameters

In the paper ...

Parameterized BFT interactive consistency protocol Time-aware correctness criteria Reliability anomalies formalization for arbitrary configurations Analysis versus simulation experiments Case studies with varying network topologies and protocol parameters

Thank you! arpanbg@mpi-sws.org

