
Mitra Nasri* Bjӧrn B. Brandenburg

MPI-SWS, Kaiserslautern, Germany

RTAS, April 2017

2

allows you to store only a little “crucial” information

to rebuild your table at runtime
with the help of an efficient online scheduling algorithm.

What do you do if

you have a nice scheduling table

that doesn’t fit into memory?

Offline Equivalence

Sc
h

ed
u

le

3

Arm Cortex MCU family

 Many embedded systems (still) have limited

processing power and memory

 Usually no operating system

 Naturally non-preemptive

16 2

16 2

16 2

16 2

16 2

16 2

16 8

64 20

192 20

128 20

4

Online
scheduling

Low runtime overhead

High schedulability ratio

Flexible: allows adding
constraints during

construction
Less flexibility to add
complex constraints

Larger runtime overhead
(non-work-conserving algorithms)

Low schedulability ratio
(work-conserving algorithms)

Table must be stored
in memory

No need to store a table

Stores less information

work-conserving
(fixed-priority, EDF, etc.)

Non-work-conserving
(Precautious-RM, CW-EDF, etc.)A power train ECU [Anssi13]:

• 6 periodic tasks with release offset
• Periods {1, 5, 10, 10, 40, 100}
• 500 jobs in a hyperperiod
• Offline table is at least 2 KiB

An automotive benchmark from Bosch [Kramer15]:
• Periods are {1, 2, 5, 10, 20, 50, 100, 200, 1000}
• 1886 jobs in a hyperperiod
• Adding a functionality with 30 frames per second

leads to 63,238 jobs in a hyperperiod

Table-driven scheduling
or cyclic executive

Offline
Equivalence

5

Our online
Scheduler (OE)

Differential
data

(irregularities)

Scan the table and
store differences

Offline table generator

Online scheduling algorithm

Scheduling
table

Online
policy

Modify online scheduler
to use differential data

Types of irregularities
• Priority inversion
• Idle interval

Modified online
scheduling algorithm

6

 Offline equivalence technique

 An efficient offline table generation algorithm
(for a non-preemptive set of jobs)

7
7

Offline equivalence

 Efficient table generation

 Evaluation

 Conclusion

8

Scan the table and
Store differences

Offline table
generator

Online scheduling
algorithm

Schedule
table

Our online scheduler (OE)

Differential data
(irregularities)

Modified online
scheduling algorithm

Modify online scheduler
to use differential data

9

 Scan the table to identify irregularities w.r.t. the online policy and store them

◦ Priority inversion irregularity

◦ Idle interval irregularity

10 20 30 40 50

36

Idle interval
[9, 10] 8

6

3
2412 48

60

𝜏3 = 8, 60

𝜏2 = 6, 12

𝜏1 = 3, 10

Idle-time irregularity table (IIT) Priority inversion table (PIT)

From time 9, for 1 time unit The 3rd Job of 𝜏2 starts at 30

Only two entries were needed

Online policy:
rate monotonic

10

Priority inversion table (PIT)
(sorted by Task# and Job#)

Task # Job # Start time

Idle-time irregularity table (IIT)
(sorted by start time)

Start time Duration

start

Busy-wait until the
end of idle interval

Execute the job

Is there an
irregular job that
must start now?

Find the highest
priority pending job

Busy-wait until the
end of its WCET

Should
schedule an
idle interval

now?

WCETs are already
padded to include

scheduler overhead

This loop
runs for ever

If one hyperperiod has
passed, reset all time

variables and local data

yes

yes

no

no

11

 Baseline online scheduling policy: non-preemptive RM

 Implementation platform: Arduino

◦ Entire implementation of OE scheduler is just 200 lines of simple C++ code

◦ Possibility to store extra tables:

 in flash memory

 in RAM

◦ Available online at
 People.mpi-sws.org/~bbb/papers/details/rtas17m/index.html

http://people.mpi-sws.org/~bbb/papers/details/rtas17m/index.html

12
12

 Offline equivalence approach

 Efficient table generation

 Evaluation

 Conclusion

Task model
◦ Periodic Tasks

◦ Constrained deadline

◦ No release offset

Strongly NP-Hard!

13

The original problem is job sequencing:
• Given a set of jobs
• Find an ordering such that all timing constraints are met

Branch and bound is a common

approach [Moore68, Pinedo16, …]:
• Tries all possible combinations of the

jobs in the ordering
• Even with pruning conditions it is still a

combinatorial problem.

A simpler approach:
iterative backtracking

1. For each possible schedule for 𝑱𝒊
1.1. If 𝐽𝑖 and all other scheduled jobs meet their timing constrains

1.1.1. Recursively try to schedule 𝐽𝑖+1 (all other not scheduled jobs)
1.1.2. If succeeded, return the schedule

New job 𝐽𝑖
WCET 𝐶𝑖

Deadline
miss

Deadline
missDeadline

miss

Successful: now follow step 1.1.1

This paper:
To reduce the backtracking steps and improve the search speed,

group jobs in chained windows!

14

A chained window is a tuple that represents a job sequence, a window of time,
and a slack value and

any schedule that starts and finishes the job sequence within the window, respects
all timing constraints of the jobs

3

3

3

7

10

12 25

12

20 30
𝐽4

𝐽1

𝐽2

𝐽3
32

28

15
15

𝑤′

𝑤1 𝑤2

New job 𝐽𝑖
WCET 𝐶𝑖

𝐶𝑖

𝑤3

𝑤2

𝑤1

𝐽𝑖

Create a new
chained windows

𝑤1 𝑤2 𝑤3

Merge

16
16

 Offline equivalence approach

 Efficient offline table generation

Evaluation
 Conclusion

17

 How efficient is Offline Equivalence (OE)?

◦ What is the memory requirement of OE?

◦ What is the timing overhead of OE online scheduler?

◦ Implementation platform:

 Arduino Mega 5056

 6 KiB RAM, 256 KiB Flash memory, 16MHz processor speed

◦ Measurements:

 Required memory for OE tables (in Bytes)

 OE online scheduler’s run time (in microseconds)

 How fast and efficient is the Chained Window technique?
◦ Measurements:

 Schedulability ratio for varying system utilization

 Schedulability ratio for varying time budget

18

Total Utilization

4 10 16 29 39 49 69 90 123

2,519 2,513 2,450 2,518 2,530 2,555 2,480 2,571 2,657

0

500

1,000

1,500

2,000

2,500

3,000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 S
iz

e
o

f
St

o
re

d
 D

at
a

(i
n

 b
yt

es
)

OE Tables Original Schedule Table

21xThis is the best result among all
considered table generation algorithms.

19

4 10 16 29 39 49 69 90 123104 179
272

613

1,160

1,923

2,384

2,519 2,513 2,450 2,518 2,530 2,555 2,480 2,571 2,657

0

500

1,000

1,500

2,000

2,500

3,000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 S
iz

e
o

f
St

o
re

d
 D

at
a

(i
n

 b
yt

es
)

Total Utilization

CW-EDF Chained Window Original Time Table

2.1x
9.3x

20

Sc
h

ed
u

le
r

in
vo

ca
ti

o
n

 o
ve

rh
ea

d
(i

n
 m

ic
ro

se
co

n
d

s)

21

 How efficient is Offline Equivalence (OE)?

◦ What is the memory requirement of OE?

◦ What is the timing overhead of OE online scheduler?

◦ Implementation platform:

 Arduino Mega 5056

 6 KiB RAM, 256 KiB Flash memory, 16MHz processor speed

◦ Measurements:

 Required memory for OE tables (in Bytes)

 OE online scheduler’s run time (in microseconds)

 How fast and efficient is Chained Window technique?
◦ Measured outputs:

 Schedulability ratio for varying system utilization

 Schedulability ratio for varying time budget

22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Sc
h

ed
u

la
b

ili
ty

 R
at

io

Utilization

23

0.133

0.401

0.678
0.715

0 0.002 0.007 0.013

0.795 0.835 0.856
0.907

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

Sc
h

e
d

u
la

b
ili

ty
 R

at
io

Time budget (seconds)

BB-Moore BB-Naïve Chained Window

10 tasks per task set. Utilization 0.9.

More experiments in the paper.

24
24

 Related work

 Offline equivalence approach

 Efficient offline table generation

 Evaluation

Conclusion and future work

25
25 of 25

A Framework to Construct Customized
Harmonic Periods for RTS

Reduces memory consumption

Guarantees that the extra required
information fits in a the memory

Is fast and efficient in
generating a schedule

Optimal, i.e., is able to find a schedule
for any feasible task set

What does it not do?What does it do?

Minimizes memory consumption

Schedules task according to a
given schedule

Has low runtime overhead

Chained
Window

Technique

Offline
Equivalence

26
26 of 25

A Framework to Construct Customized
Harmonic Periods for RTS

Generate a schedule with the least
number of irregularities

Find a set of differential parameters
such that differential data
fits in a given memory size

KiB

sc
h

ed
u

le

Find the best policy, parameters
and encoding that minimizes

the size of stored datasc
h

ed
u

le

27

Thank you

Questions

Offline equivalence available at

http://people.mpi-sws.org/~bbb/papers/details/rtas17m/index.html

http://people.mpi-sws.org/~bbb/papers/details/rtas17m/index.html

