
Arpan Gujarati, 
Björn B. Brandenburg

Sameh Elnikety, 
Yuxiong He Kathryn S. McKinley

Swayam
Distributed Autoscaling for 
Machine Learning as a Service

1



Machine Learning as a Service (MLaaS)

Data Science & 
Machine Learning

Amazon Machine Learning

Machine Learning

Google Cloud AI

2



Machine Learning as a Service (MLaaS)

Data Science & 
Machine Learning

Amazon Machine Learning

Machine Learning

Google Cloud AI

+ =
Trained 
Model

Untrained 
model

Dataset

1. Training

+ =
Trained 
Model

2. Prediction

Query
Answer

2



Machine Learning as a Service (MLaaS)
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This work
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Distributed autoscaling

of the compute resources

needed for prediction serving + =

Trained 
Model

2. Prediction

Query
Answer

3



Prediction serving (application perspective)
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Prediction serving (provider perspective)
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dispatched to an 
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(2) A frontend receives 
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MLaaS Provider

Static partitioning of trained models
MLaaS Provider

Multiple request 
dispatchers "Frontends"

Problem: Not all models are 
used at all times

Problem: Many more models than backends, 
high memory footprint per model

No need to fetch and 
install the pink model

The trained models 
partitioned among 
the finite backends

Application / End UserResource efficiency

Low latency, SLAs

Static partitioning is infeasible
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Classical approach: autoscaling
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Enough backends to guarantee 
low latency
# Active backends over time is 
minimized for resource efficiency

With ideal autoscaling ...
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Autoscaling for MLaaS is challenging [1/3]
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Autoscaling for MLaaS is challenging [1/3]

Lots of trained models!

MLaaS Provider Finite compute resources 
"Backends" for prediction

(4) The backend fetches 
the pink model

(5) The request 
outcome is predicted

Multiple request 
dispatchers "Frontends"

Provisioning 
Time (4)

Execution 
Time (5)>>

(~ a few seconds) (~ 10ms to 500ms)

Challenge

Predictive autoscaling to 
hide the provisioning latency

Requirement
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MLaaS architecture is 
large-scale, multi-tiered

Frontends

Backends [ VMs, containers ]

Hardware 
broker

Autoscaling for MLaaS is challenging [2/3]
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MLaaS architecture is 
large-scale, multi-tiered

Frontends

Backends [ VMs, containers ]

Hardware 
broker

Autoscaling for MLaaS is challenging [2/3]

Challenge

Fast, coordination-free, 
globally-consistent autoscaling 

decisions on the frontends

Requirement

Multiple frontends with 
partial information about 

the workload
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"99% of requests must 
complete under 500ms"
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on response times
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on response times
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No closed-form solutions to 
get response-time distributions 

for SLA-aware autoscaling

Challenge

Accurate waiting-time and 
execution-time distributions

Requirement
"[B] Tolerate up to 25% 

increase in request rates 
without violating [A]"

"[A] 95% of requests 
must complete under 

850ms"

Autoscaling for MLaaS is challenging [3/3]
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}Provisioning 
Time (4)

Execution 
Time (5)>>

(~ a few seconds) (~ 10ms to 500ms)

Challenges

Multiple frontends with

partial information about


the workload

No closed-form solutions to 
get response-time distributions 

for SLA-aware autoscaling

We address these challenges

by leveraging specific

ML workload characteristics
and design an analytical model 
for resource estimation
that allows distributed and 
predictive autoscaling

Swayam: model-driven distributed autoscaling
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Outline

1. System architecture, key ideas 

2. Analytical model for resource estimation


3. Evaluation results
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Application / End User

Application / End User

Application / End User

Application / End User

Hardware 
broker

Frontends

Backends dedicated 
for the pink model

System architecture
Let's focus on the pink model

1. If load decreases, extra backends go back to the global pool (for resource efficiency)
2. If load increases, new backends are set up in advance (for SLA compliance)

Objective: dedicated set of backends should dynamically scale
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Key idea 1: Assign states to each backend
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request

Waiting for a 
request
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request

Dedicated, but not used 
due to reduced load

Can be safely 
garbage collected 

(scale-in)

Key idea 1: Assign states to each backend

... or easily 
transitioned to an in-
use state (scale-out)

How do frontends know which dedicated backends to use, and which to not use?
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Backends dedicated 
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Backends dedicated 
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Key idea 2: Order the dedicated set of backends

1 2 3 4 65

1110987 12

= warm in-use busy/idle 
= warm not-in-use

Backends dedicated 
for the pink model

1 2 3 4 65

1110987 12

If 9 backends are sufficient 
for SLA compliance ...

backends 10-12 transition 
to not-in-use state

frontends use backends 1-9

How do frontends know how many 
backends are sufficient?
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Frontends

Key idea 3: Swayam instance on every frontend

Incoming 
requests

Swayam 
instance

computes globally consistent minimum # 
backends necessary for SLA compliance

Backends dedicated 
for the pink model

1 2 3 4 65

1110987 12

= warm in-use busy/idle 
= warm not-in-use
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Outline

1. System architecture, key ideas


2. Analytical model for resource estimation 

3. Evaluation results
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Making globally-consistent decisions

What is the minimum # backends 
required for SLA compliance?

at each frontend (Swayam instance)
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Making globally-consistent decisions

} leverage ML workload 
characteristics

What is the minimum # backends 
required for SLA compliance?

at each frontend (Swayam instance)

1. Expected request execution time
2. Expected request waiting time
3. Total request load
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Determining expected request execution times

Studied execution traces of 15 
popular services hosted on 
Microsoft Azure's MLaaS platform
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Determining expected request execution times

Studied execution traces of 15 
popular services hosted on 
Microsoft Azure's MLaaS platform

‣ Fixed-sized feature vectors

‣ Input-independent control flow

‣ Non-deterministic machine & OS 

events main sources of variability 

Variation is low

Modeled using log-normal distributions

 0

 5

 10

 15

 20

 25

 30

 35

 0  50  100  150  200  250  300  350  400
N

or
m

al
iz

ed
 F

re
qu

en
cy

 (%
)

Service Times (ms)

Trace 1

Data from trace (bin width = 10)

 0

 5

 10

 15

 20

 25

 30

 35

 0  50  100  150  200  250  300  350  400
N

or
m

al
iz

ed
 F

re
qu

en
cy

 (%
)

Service Times (ms)

Trace 1

Data from trace (bin width = 10)
Fitted lognormal distribution

21



Determining expected request waiting times

load balancing (LB)
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in the near future, to account 
for high provisioning times

Determining the total request load
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}
in the near future, to account 

for high provisioning times

Determining the total request load

Frontends

Hardware 
broker

L 

Since the broker spreads 
requests uniformly among 

each frontends

L' = L/F 

F Total # frontends
L'

L'

Total request rate
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}
in the near future, to account 

for high provisioning times

Determining the total request load

Frontends

Hardware 
broker

L 

L' = L/F 

F 
L'

L'

‣Predicts L' for near future
Each Swayam instance

Depends on the time to 
setup a new backend
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}
in the near future, to account 

for high provisioning times

Determining the total request load

Frontends

Hardware 
broker

L 

L' = L/F 

F 
L'

L'

‣Predicts L' for near future

Determined from 
broker / through a 

gossip protocol

Each Swayam instance

‣Given F, computes L = F x L'

23



Making globally-consistent decisions

What is the minimum # backends 
required for SLA compliance?

at each frontend (Swayam instance)

1. Expected request execution time
2. Expected request waiting time
3. Total request load
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SLA-aware resource estimation
For each 

trained model

Response-Time 
Threshold

Service Level

Burst Threshold

RTmax

SLmin

U

n = min # backends
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SLA-aware resource estimation
For each 

trained model

Response-Time 
Threshold

Service Level

Burst Threshold

RTmax

SLmin

U

n = min # backends

Waiting Time Distribution

Execution Time Distribution

Response Time Modeling

Load

SLmin 
percentile 

response time
< RTmax?

n = 1 n++

No

Yes
x U

Closed-form expression for 
percentile response time 

(see the appendix)

Convolution
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SLA-aware resource estimation
For each 

trained model

Response-Time 
Threshold

Service Level

Burst Threshold

RTmax

SLmin

U

n = min # backends

Waiting Time Distribution

Execution Time Distribution

Response Time Modeling

Load

SLmin 
percentile 

response time
< RTmax?

n = 1 n++

No

Yes
x U

Amplified based on 
the burst threshold
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SLA-aware resource estimation
For each 

trained model

Response-Time 
Threshold

Service Level

Burst Threshold

RTmax

SLmin

U

n = min # backends

Waiting Time Distribution

Execution Time Distribution

Response Time Modeling

Load

SLmin 
percentile 

response time
< RTmax?

n = 1 n++

No

Yes
x U

Initialization

Retry, as long as 
not SLA compliant

25

Compute percentile 
response time for n



Frontends

Incoming 
requests

Swayam 
instance

computes globally consistent minimum # 
backends necessary for SLA compliance

Backends dedicated 
for the pink model

1 2 3 4 65

1110987 12

= warm in-use busy/idle 
= warm not-in-use
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Outline

1. System architecture, key ideas


2. Analytical model for resource estimation


3. Evaluation results
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Evaluation setup

• Prototype in C++ on top of Apache Thrift

➡ 100 backends per service

➡ 8 frontends

➡ 1 broker

➡ 1 server (for simulating the clients)
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Evaluation setup

• Prototype in C++ on top of Apache Thrift

➡ 100 backends per service

➡ 8 frontends

➡ 1 broker

➡ 1 server (for simulating the clients)

• Workload

➡ 15 production service traces (Microsoft Azure MLaaS)

➡ Three-hour traces (request arrival times and computation times)

➡Query computation & model setup times emulated by spinning
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SLA configuration for each model

• Response-time threshold RTmax =  5C 
➡C denotes the mean computation time for the model


• Desired service level SLmin = 99%

➡ 99% of the requests must have response times under RTmax


• Burst threshold U = 2x 
➡ Tolerate increase in request rate by up to 100%


• Initially, 5 pre-provisioned backends
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Baseline: Clairvoyant Autoscaler (ClairA)

➡ It knows the processing time of each request beforehand
➡ It can travel back in time to provision a backend

➡ "Deadline-driven" approach to minimize resource waste
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Baseline: Clairvoyant Autoscaler (ClairA)

• ClairA1 assumes zero setup times, immediate scale-ins

➡Reflects the size of the workload

• ClairA2 assumes non-zero setup times, lazy scale-ins

➡ Swayam-like

• Both ClairA1 and ClairA2 depend on RTmax, but not on SLmin and U

➡ It knows the processing time of each request beforehand
➡ It can travel back in time to provision a backend

➡ "Deadline-driven" approach to minimize resource waste
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Resource usage vs. SLA compliance
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because of a very bursty trace
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Summary
• Perfect SLA, irrespective of the input workload, is too expensive

➡ in terms of resource usage (as modeled by ClairA)

• To ensure resource efficiency, practical systems

➡ need to trade off some SLA compliance

➡while managing client expectations

• Swayam strikes a good balance, for MLaaS prediction serving

➡ by realizing significant resource savings

➡ at the cost of occasional SLA violations

• Easy integration into any existing request-response architecture
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Thank you. Questions?

33


