Tableau: A High-Throughput and PredictableVM Scheduler for High-Density Workloads

Manohar Vanga, Arpan Gujarati, Björn Brandenburg MPI-SWS, Kaiserslautern, Germany

MAX-PLANCK-GESELLSCHAFT

Why High Density?

Competitive market driving datacenter efficiency

Why High Density?

Competitive market driving datacenter efficiency

Why High Density?

High-Density VM Packing

Consolidating small, cheap VMs to use fewer resources.

anaged cloud company

icrosoft Azure

Competitive market drivin

Challenge

Must continue to provide consistent throughput and predictable latency tails.

VM Scheduling Crucial for High-Density

VM Scheduling Crucial for High-Density

Many VMs per core

Many runtime decisions for allocating CPU time

VM scheduler performance can have significant impact

- Four VMs per core, 16-core server
- Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz.
- Measure HTTPs performance of one VM
- All other VMs running I/O-bound stress workload.

Observed Throughput (requests per second)

Observed Throughput (requests per second)

Observed Throughput (requests per second)

Observed Throughput (requests per second)

The Tableau VM Scheduler

Contributions

Tableau

An unorthodox scheduling approach

tailored for high-density public clouds.

Contributions

Tableau

An **unorthodox scheduling approach** tailored for high-density public clouds.

Efficient

Incurs low overheads

Predictable

Accurate control over scheduling latency.

High-throughput

Provides high SLAaware throughput.

This Talk

This Talk

- **Requirement 1**: Be as "invisible" as possible.
- **Requirement 2**: Guarantee utilization and ensure predictable scheduling latency for every VM.

Low overheads

- Requirement 1: Be as "invisible" as possible. <
- **Requirement 2**: Guarantee utilization and ensure predictable scheduling latency for every VM.

- **Requirement 1**: Be as "invisible" as possible.
- **Requirement 2**: Guarantee utilization and ensure predictable scheduling latency for every VM.

Requirement 2 is a **non-trivial** problem!

- **Requirement 1**: Be as "invisible" as possible.
- **Requirement 2**: Guarantee utilization and ensure predictable scheduling latency for every VM.

Requirement 2 is a **non-trivial** problem!

Attempting to enforce requirement 2 at **runtime** conflicts with requirement 1.

- **Requirement 1**: Be as "invisible" as possible.
- **Requirement 2**: Guarantee utilization and ensure predictable scheduling latency for every VM.

Requirement 2 is a **non-trivial** problem!

Attempting to enforce requirement 2 at **runtime** conflicts with requirement 1.

How do we overcome these conflicting requirements?

Exploit one key property of VM environments

VM churn on a single server is low ¹

[1] Cortez et al., Resource Central: Understanding and Predicting Workloads for Improved Resource Management in Large Cloud Platforms, SOSP 2017

Requirement 1

As invisible as possible. Fast, Low overhead

Requirement 2

Guarantee utilization and scheduling latency

Requirement 1

As invisible as possible. Fast, Low overhead

Requirement 2

Guarantee utilization and scheduling latency

Dispatcher is **completely unaware** of VM-specific requirements!

tools, and libraries.

requirements!

Dispatcher is **completely unaware** of VM-specific requirements!

> Can be **pre-generated** or generated on a **separate machine**.

high-level languages,

tools, and libraries.

Generating Tables Quickly

Credit requires a relative weight and timeslice)

 [1] Liu, Layland, Scheduling algorithms for multiprogramming in a hard-realtime environment. Journal of the ACM (JACM), 20(1), pp.46-61, 1973

[1] Liu, Layland, Scheduling algorithms for multiprogramming in a hard-realtime environment. Journal of the ACM (JACM), 20(1), pp.46-61, 1973

[1] Liu, Layland, Scheduling algorithms for multiprogramming in a hard-realtime environment. Journal of the ACM (JACM), 20(1), pp.46-61.

VM (vCPU)

Utilization (U) A percentage of CPU time reserved for VM.

Max Sched. Delay (L) An upper bound on scheduling delay.

Periodic Task

Budget (C)

Period (T)

Table generation times arereasonable compared to VMcreation and teardown times.

The Tableau Approach

Semi-Offline Table Planner

Policy

- Popular open-source hypervisor (Amazon AWS)
- Supervisory VM (domain-0) created at boot time.

Domain-0 (Linux)	VM1	VM2	VM3	VM4	VM5
Xen Hypervisor	Table-Driven Dispatcher				

• Simple, table-driven dispatcher implemented within the hypervisor.

- Userspace daemon responsible for re-generating tables whenever a VM is created.
- ~1,600 lines of Python code.

• For work-conserving behavior, idle time in tables (white blocks) yields to round-robin scheduler. Picks runnable core-local VMs to schedule.

This Talk

Evaluation

Tableau **incurs lower runtime overheads** compared to the other evaluated Xen schedulers

Tableau **incurs lower runtime overheads** compared to the other evaluated Xen schedulers

Tableau enables accurate control over scheduling latency.

Tableau **incurs lower runtime overheads** compared to the other evaluated Xen schedulers

Tableau enables accurate control over scheduling latency.

Tableau achieves higher SLA-aware application throughput.

Tableau incurs lower runtime overheads compared to the other evaluated Xen schedulers See our paper

for details!

Tableau enables accurate control over scheduling latency.

Tableau achieves higher SLA-aware application throughput.

Platform

- Server machine:
 - 16 cores (2 sockets), 512 GiB RAM
 - Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz
 - Ubuntu 16.04.3
 - Xen 4.9
- Load generation machine:
 - Identical machine connected via 10G ethernet.

Experimental Setup

- We simulate a multi-tenant datacenter environment.
 - 4 VMs/core (25% utilization each).
 - 1 vantage VM, rest background VMs
 - Background VMs run different workloads based on stress-ng tool.
- Schedulers configured based on best practices:
 - 5ms timeslice in Credit.
 - Equivalent configuration in Tableau and RTDS (max 20ms scheduling latency)

SLA-Aware Throughput

Observed Throughput (requests per second)

SLA-Aware Throughput

Observed Throughput (requests per second)

VMs Capped at 25%, 100K files, I/O background workload

VMs Capped at 25%, 100K files, I/O background workload

VMs Capped at 25%, 100K files, I/O background workload

VMs Capped at 25%, 100K files, I/O background workload

VMs Capped at 25%, 100K files, I/O background workload

SLA-Aware Throughput

VMs Capped at 25%, 100K files, I/O background workload

SLA-Aware Throughput (Capped Scenario)

VMs Capped at 25%, 100K files, I/O background workload
Hard-capped VMs under Tableau incur higher mean latencies.

Capped VMs, 1K files, I/O background workload

Capped VMs, 1K files, I/O background workload

Capped VMs, 1K files, I/O background workload

Summary of Results

Tableau **incurs lower runtime overheads** compared to the other evaluated Xen schedulers

Tableau enables accurate control over scheduling latency.

Tableau achieves higher SLA-aware application throughput.

Hard capped VMs under Tableau incur **higher mean latency**, but entirely controllable.

This Talk

Contributions

Tableau

An **unorthodox scheduling approach** tailored for high-density public clouds.

Efficient

Incurs low overheads

Predictable

Accurate control over scheduling latency.

High-throughput

Provides high SLAaware throughput.

Thanks!

Source-code available at:

http://tableau.mpi-sws.org/

Scheduling Overheads on 48-Core Server

	Credit	RTDS
Schedule	16.40	4.39
Wakeup	7.07	19.16
Migrate	0.42	168.62

Overheads (in μ s) of key scheduler operations on a 48-core server.

Overview of Table Generation Procedure

Table Sizes

Uncapped VMs, 100K files, I/O background workload

Uncapped VMs, 100K files, I/O background workload

Uncapped VMs, 100K files, I/O background workload

Uncapped VMs, 100K files, I/O background workload

Partitioning & Semi-Partitioning

Included for completeness, but unnecessary in practice.

Modelling VMs as Periodic Tasks

Modelling VMs as Periodic Tasks

Summary of Results

Tableau **incurs lower runtime overheads** compared to the other evaluated Xen schedulers

Tableau enables accurate control over scheduling latency.

Tableau achieves higher SLA-aware application throughput.

	Credit	RTDS	Tableau
Schedule Wakeup Migrate			

.

Overheads (in μ s) of key scheduler operations on 16-core server.

	Credit	RTDS	Tableau
Schedule	8.08	2.86	1.43
Wakeup	2.12	3.90	1.06
Migrate	0.32	9.42	0.43

.

Overheads (in μ s) of key scheduler operations on 16-core server.

Credit		RTDS	Tableau
Schedule	8.08	2.86	1.43
Wakeup	2.12	3.90	1.06
Migrate	0.32	9.42	0.43

Overheads (in µs) of key scheduler operations on 16-core server.

Significant reduction in runtime overheads

Credit		RTDS	Tableau
Schedule	8.08	2.86	1.43
Wakeup	2.12	3.90	1.06
Migrate	0.32	9.42	0.43

Overheads (in µs) of key scheduler operations on 16-core server.

Significant reduction in runtime overheads

Inherently scalable

Summary of Results

Tableau **incurs lower runtime overheads** compared to the other evaluated Xen schedulers

Tableau enables accurate control over scheduling latency.

Tableau achieves higher SLA-aware application throughput.

VMs Capped at 25%

With a **I/O or CPU background**, Credit's tail latency increases.

VMs Capped at 25%

With **an I/O or CPU background**, RTDS, and Tableau continue to have predictable scheduling delays.

VMs Capped at 25%

Limitations

Tableau incurs **higher mean latencies** for low throughputs with hard-capped VMs.

Table-generation increases VM startup and teardown times.

Dealing with Table-Generation Time

Cache pre-generated tables

Pre-generate fixed-utilization slots

Generate tables on an external (faster) server

This Talk

Limitations

Tableau incurs **higher mean latencies** for low throughputs with hard-capped VMs.

Table-generation increases VM startup and teardown times.
Limitations

Tableau incurs **higher mean latencies** for low throughputs with hard-capped VMs.

Table-generation increases VM startup and teardown times.

Tableau Results in Higher Mean Latencies

Capped VMs, 1K files, I/O background workload

Tableau Results in Higher Mean Latencies

Capped VMs, 1K files, I/O background workload

Tableau Results in Higher Mean Latencies

Capped VMs, 1K files, I/O background workload