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How to support 

high-density 

VM workloads

Many small VMs 
packed onto few 

cores



Why High Density?

Competitive market driving datacenter efficiency



Why High Density?

Competitive market driving datacenter efficiency

High-Density VM Packing 

Consolidating small, cheap 
VMs to use fewer resources.



Why High Density?

Competitive market driving datacenter efficiency

High-Density VM Packing 

Consolidating small, cheap 
VMs to use fewer resources.

Challenge 

Must continue to provide 
consistent throughput and 
predictable latency tails.
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VM Scheduling Crucial for High-Density

Many VMs per core

Many runtime decisions for 
allocating CPU time

VM scheduler performance 
can have significant impact



Case Study: VM Scheduling in Xen



• Four VMs per core, 16-core server


• Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz.


• Measure HTTPs performance of one VM


• All other VMs running I/O-bound stress workload.

Case Study: VM Scheduling in Xen
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Case Study: VM Scheduling in Xen

Default fair-share scheduler  
used in production.

Credit Tableau RTDS Credit2

Real-time scheduler (based on RT-
Xen) for latency-sensitive workloads.
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Case Study: VM Scheduling in Xen

Credit has increasing latency tails.

Credit provides much higher throughput.

Requesting random 100K-sized files, with I/O background workload

Credit Tableau RTDS Credit2
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Case Study: VM Scheduling in Xen

RTDS provides limited throughput.

Requesting random 100K-sized files, with I/O background workload

RTDS has consistent tail latencies 
across entire throughput range.

Credit Tableau RTDS Credit2



The Tableau VM Scheduler
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This paper

Requesting random 100K-sized files, with I/O background workload

Credit Tableau RTDS Credit2
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Tableau 
An unorthodox scheduling approach


tailored for high-density public clouds.

Efficient 

Incurs low overheads

Predictable 

Accurate control over 
scheduling latency.

High-throughput 

Provides high SLA-
aware throughput.
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What Do We Want From a VM Scheduler?

How do we overcome these conflicting requirements?

Requirement 2 is a non-trivial problem!

• Requirement 1: Be as "invisible" as possible.

• Requirement 2: Guarantee utilization and ensure 
predictable scheduling latency for every VM.

Attempting to enforce requirement 2 at
runtime conflicts with requirement 1.



VM churn on a single server is low 1

The Tableau Approach

Exploit one key property of VM 
environments

Cortez et al., Resource Central: Understanding and Predicting Workloads for Improved Resource 
Management in Large Cloud Platforms, SOSP 2017

[1]
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Requirement 1 
As invisible as possible. 

Fast, Low overhead

Requirement 2 
Guarantee utilization and 

scheduling latency

Table-Driven 
Dispatcher

Semi-Offline Table 
Planner

The Tableau Approach

Mechanism Policy

Dispatcher is completely 
unaware of VM-specific


requirements!

Easy to extend using 
high-level languages, 

tools, and libraries.

Can be pre-generated

or generated on a 

separate machine.



The Tableau Approach

Mechanism Policy

Table-Driven 
Dispatcher

Semi-Offline Table 
Planner
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Each configured with 
a utilization and max. 
scheduling latency.



Generating Tables Quickly

Set of VMs

Each configured with 
a utilization and max. 
scheduling latency.

No more information than 
existing schedulers (e.g., 
Credit requires a relative 

weight and timeslice)



Generating Tables Quickly

Set of VMs Model each VM as a 
periodic task1.

Each configured with 
a utilization and max. 
scheduling latency.

Liu, Layland, Scheduling algorithms 
for multiprogramming in a hard-real-
time environment. Journal of the 
ACM (JACM), 20(1), pp.46-61, 1973

[1]
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Generating Tables Quickly

Scheduling Table

Set of VMs

Each configured with 
a utilization and max. 
scheduling latency.

Model each VM as a 
periodic task1.

Liu, Layland, Scheduling algorithms 
for multiprogramming in a hard-real-
time environment. Journal of the 
ACM (JACM), 20(1), pp.46-61.

[1]

Apply recent 
scheduling theory 
from hard real-time 

systems.

Partitioning
Performed entirely in userspace of 

supervisory VM. 

Implemented in Python using a mature 
library (SchedCAT).



Generating Tables Quickly

Scheduling Table

Set of VMs

Each configured with 
a utilization and max. 
scheduling latency.

Model each VM as a 
periodic task1.

Liu, Layland, Scheduling algorithms 
for multiprogramming in a hard-real-
time environment. Journal of the 
ACM (JACM), 20(1), pp.46-61.

[1]

Apply recent 
scheduling theory 
from hard real-time 

systems.

Partitioning



Modeling VMs as Periodic Tasks

VM (vCPU)

Utilization (U)
A percentage of CPU 
time reserved for VM.

Max Sched. Delay (L)
An upper bound on 
scheduling delay.

Periodic Task

Budget (C)

Period (T)



Period (P)

Budget (C)VM (vCPU)

Utilization (U)
A percentage of CPU 
time reserved for VM.

Max Sched. Delay (L)
An upper bound on 
scheduling delay.

Periodic Task

Budget (C)

Period (P)

Modeling VMs as Periodic Tasks
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Budget (C)VM (vCPU)
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Worst-case
scheduling latency

Budget (C)

2 x (P - C)

VM (vCPU)

Utilization (U)
A percentage of CPU 
time reserved for VM.

Max Sched. Delay (L)
An upper bound on 
scheduling delay.

Periodic Task

Budget (C)

Period (P)

Period (P)

Modeling VMs as Periodic Tasks



Generating Tables Quickly

Scheduling Table

Set of VMs Model each VM as a 
periodic task.

Each configured with 
a utilization and max. 
scheduling latency.

Apply recent 
scheduling theory 
from hard real-time 

systems.

Partitioning
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Table generation times are 
reasonable compared to VM 
creation and teardown times.



The Tableau Approach

Mechanism Policy

Table-Driven 
Dispatcher

Semi-Offline Table 
Planner



Implementation in Xen

Xen Hypervisor

Domain-0
(Linux)

• Popular open-source hypervisor (Amazon AWS)


• Supervisory VM (domain-0) created at boot time.



Xen Hypervisor

Domain-0
(Linux)

VM1 VM2 VM3 VM4 VM5

Table-Driven
Dispatcher

• Simple, table-driven dispatcher implemented within the 
hypervisor.

Implementation in Xen



Xen Hypervisor

Domain-0
(Linux)

Table-Driven
Dispatcher

Implementation in Xen

Tableau Deamon

Custom
hypercall

VM1 VM2

VM1 VM2 VM3 VM4 VM5

• Userspace daemon responsible for re-generating tables 
whenever a VM is created.


• ~1,600 lines of Python code.



Xen Hypervisor

Domain-0
(Linux)

Table-Driven
Dispatcher

Implementation in Xen

Tableau Deamon

Round-Robin
Scheduler

Custom
hypercall

VM1 VM2 Idle time yields to
level-2 scheduler

• For work-conserving behavior, idle time in tables (white 
blocks) yields to round-robin scheduler. Picks runnable 
core-local VMs to schedule.

VM1 VM2 VM3 VM4 VM5
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Tableau incurs lower runtime overheads 
compared to the other evaluated Xen schedulers

Tableau enables accurate control over 
scheduling latency.

Summary of Results

Tableau achieves higher SLA-aware 
application throughput.

See our paper
for details!



Platform

• Server machine:

• 16 cores (2 sockets), 512 GiB RAM

• Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz

• Ubuntu 16.04.3

• Xen 4.9

• Load generation machine:

• Identical machine connected via 10G ethernet.



Experimental Setup

• We simulate a multi-tenant datacenter environment.

• 4 VMs/core (25% utilization each).

• 1 vantage VM, rest background VMs

• Background VMs run different workloads based on 
stress-ng tool.

• Schedulers configured based on best practices:

• 5ms timeslice in Credit.

• Equivalent configuration in Tableau and RTDS (max 
20ms scheduling latency)
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Peak Throughput
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Tableau achieves the highest peak 
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Credit achieves comparable peak 
throughput but latencies rise earlier.
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VMs Capped at 25%, 100K files, I/O background workload

RTDS provides controlled latencies 
but sacrifices throughput.

Peak Throughput
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SLA-Aware Throughput
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SLA-Aware Throughput (Capped Scenario)
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Tableau Results in Higher Mean Latencies

Hard-capped VMs under Tableau incur 
higher mean latencies.
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Tableau incurs higher mean 
latencies due to rigid table-

based scheduling.

Credit Tableau RTDS Credit2



0 200 400 600 800 1000 1200 1400 1600 1800

TKrougKput (reTs/sec) (sLze 1K)

100

101

102

103

104

0
e
a
n
 /
a
te
n
cy
 (
m
s) (a)

Tableau Results in Higher Mean Latencies

Capped VMs, 1K files, I/O background workload

Observed Throughput (requests per second)

M
ea

n 
La

te
nc

y 
(m

s)

Rigidity becomes 
advantageous at higher 

request rates.

Credit Tableau RTDS Credit2



Tableau incurs lower runtime overheads 
compared to the other evaluated Xen schedulers

Tableau enables accurate control over 
scheduling latency.

Tableau achieves higher SLA-aware 
application throughput.

Summary of Results

Hard capped VMs under Tableau incur higher 
mean latency, but entirely controllable.
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Contributions

Tableau 
An unorthodox scheduling approach


tailored for high-density public clouds.

Efficient 

Incurs low overheads

Predictable 

Accurate control over 
scheduling latency.

High-throughput 

Provides high SLA-
aware throughput.



Thanks!

http://tableau.mpi-sws.org/

Source-code available at:



Scheduling Overheads on 48-Core Server

Overheads (in µs) of key scheduler 
operations on a 48-core server.



Model each VM as a 
periodic task.

Partitioning

Simulate EDF for 
each core.

Repeating scheduling 
table for each core.

Scheduling Table

Overview  of Table Generation Procedure

Set of VMs each with 
a utilization and max. 
scheduling latency.

Postprocessing
Coalescing small 

slots.Generating indices 
for fast lookup. Extensible 

design in Python.



Table Sizes

0 20 40 60 80 100 120 140 160 180
1umber of V0V

0

0.50

10

1.50

20

T
a
b

le
 6

iz
e
 (

in
 0

iB
) All V0V 1mV

All V0V 5mV

All V0V 30mV

All V0V 100mV



0 100 200 300 400 500 600 700 800 900

7KrougKput (reTs/sec) (sLze 100K)

100

101

102

103

104

9
9
tK
 %
Lle
 /
a
te
n
cy
 (
m
s)

(n)

SLA-Aware Throughput (Uncapped Scenario)

Uncapped VMs, 100K files, I/O background workload

Observed Throughput (requests per second)

99
th

 P
er

ce
nt

ile
 L

at
en

cy
 (m

s)



0 100 200 300 400 500 600 700 800 900

7KrougKput (reTs/sec) (sLze 100K)

100

101

102

103

104

9
9
tK
 %
Lle
 /
a
te
n
cy
 (
m
s)

(n)

SLA-Aware Throughput (Uncapped Scenario)

Uncapped VMs, 100K files, I/O background workload

Observed Throughput (requests per second)

99
th

 P
er

ce
nt

ile
 L

at
en

cy
 (m

s)

Tableau achieves almost 1.6x peak 
throughput compared to Credit2
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100ms SLA-aware throughput 
under Tableau is significantly higher.
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Credit is unable to maintain a 100ms 
latency SLA at 100 req/sec.



Partitioning Semi-Partitioning

Assign VMs to 
individual cores using 
bin-packing heuristic.

Partitioning & Semi-Partitioning

Split any VMs that 
couldn't be assigned 

to multiple cores.

Optimal Scheduling

Guaranteed to find a 
schedule. Results in 
many preemptions.

Included for completeness, but 
unnecessary in practice.



Modelling VMs as Periodic Tasks

Worst-case
scheduling latency

Period (T)

Budget (C)

2 x (T - C)
= 2 x (1 - U) x T

2 x (1 - U) x T <= LPick any T such that

Choosing T indiscriminately can 
result in exponential hyperperiod.

Schedule repeats after hyperperiod
(common multiple of all task periods)

VM (vCPU)

Utilization (U)
A percentage of CPU 
time reserved for VM.

Max. Latency (L)
An upper bound on 
scheduling delay.

Periodic Task

Budget (C)

Period (T)



Modelling VMs as Periodic Tasks

Worst-case
scheduling latency

Period (T)

Budget (C)

2 x (T - C)
= 2 x (1 - U) x T

Pick periods from a set of candidate 
periods with a known hyperperiod 

(102,702,600 ns = ~102ms) to ensure 
bounded table length.

2 x (1 - U) x T <= LPick largest T ∈ F

(F is the set of all integer divisors of 102,702,600)

VM (vCPU)

Utilization (U)
A percentage of CPU 
time reserved for VM.

Max. Latency (L)
An upper bound on 
scheduling delay.

Periodic Task

Budget (C)

Period (T)



Tableau incurs lower runtime overheads 
compared to the other evaluated Xen schedulers

Tableau enables accurate control over 
scheduling latency.

Tableau achieves higher SLA-aware
application throughput.

Summary of Results
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Scheduler Overheads

Overheads (in µs) of key scheduler 
operations on 16-core server.Migrating de-scheduled VM to idle core.

Picking the next VM to schedule

Unblocking a VM
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Scheduler Overheads

Overheads (in µs) of key scheduler 
operations on 16-core server.

Significant reduction in 
runtime overheads Inherently scalable



Tableau incurs lower runtime overheads 
compared to the other evaluated Xen schedulers

Tableau enables accurate control over 
scheduling latency.

Summary of Results

Tableau achieves higher SLA-aware
application throughput.
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scheduling 

delays.
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With a I/O or CPU 
background, 

Credit's tail latency 
increases.



Scheduling Latency 

VMs Capped at 25%
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With an I/O or 

CPU 
background, 

RTDS, and 
Tableau continue 

to have 
predictable 
scheduling 

delays.



Tableau incurs higher mean latencies for low 
throughputs with hard-capped VMs.

Table-generation increases VM startup and 
teardown times.

Limitations



Cache pre-generated tables

Pre-generate fixed-utilization slots

Dealing with Table-Generation Time

Generate tables on an external (faster) server



This Talk

Tableau

Evaluation

Limitations

Conclusion
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Tableau incurs higher mean 
latencies due to rigid table-

based scheduling.

Credit Tableau RTDS Credit2



0 200 400 600 800 1000 1200 1400 1600 1800

TKrougKput (reTs/sec) (sLze 1K)

100

101

102

103

104

0
e
a
n
 /
a
te
n
cy
 (
m
s) (a)

Tableau Results in Higher Mean Latencies

Capped VMs, 1K files, I/O background workload

Observed Throughput (requests per second)

M
ea

n 
La

te
nc

y 
(m

s)

Rigidity becomes 
advantageous at higher 

request rates.

Credit Tableau RTDS Credit2


