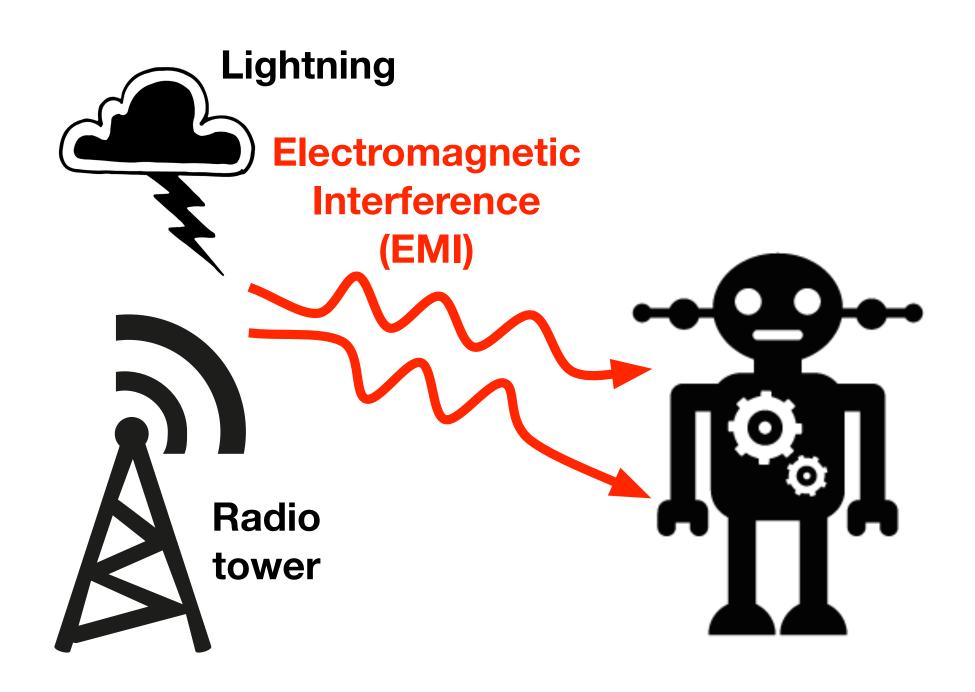

From Iteration to System Failure Characterizing the FITness of Periodic Weakly-Hard Systems

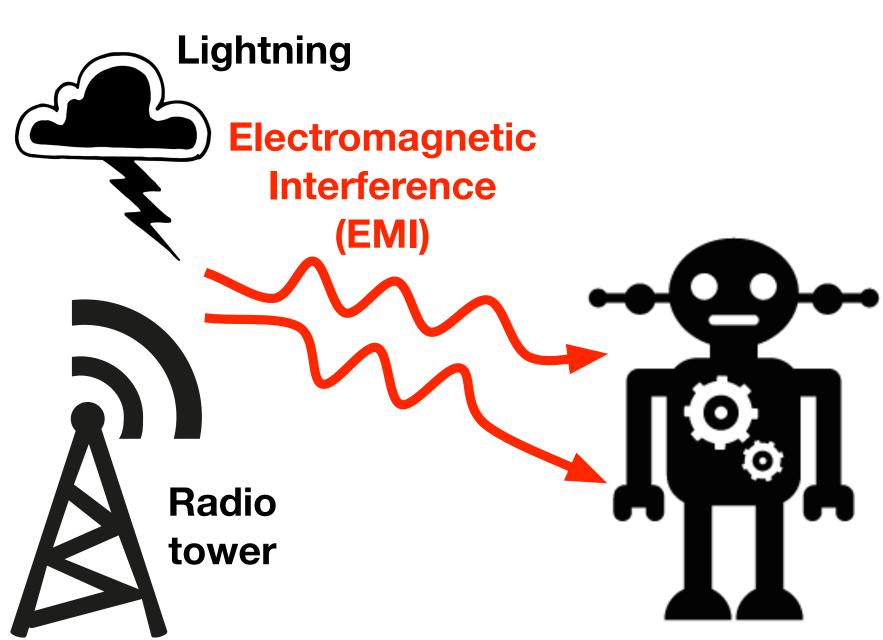
Arpan Gujarati*, Mitra Nasri[#], Rupak Majumdar*, and Björn B. Brandenburg* *MPI-SWS (Germany), #TU Delft (Netherlands)

> MAX PLANCK INSTITUTE FOR SOFTWARE SYSTEMS



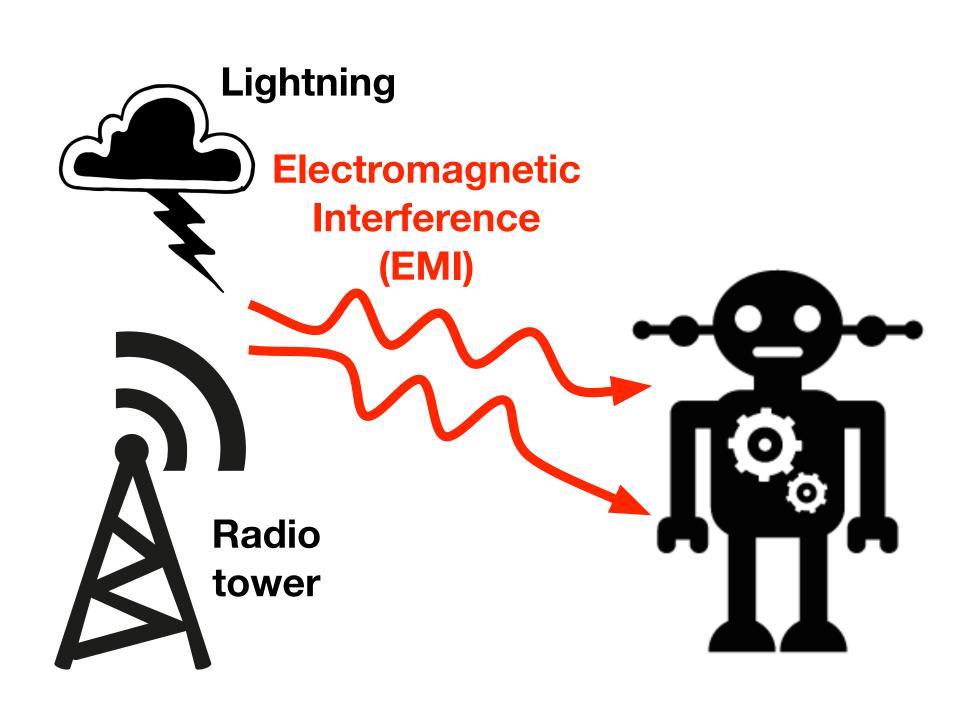
Quantitative Reliability Analysis is Essential for Safety-Critical CPS

Quantitative Reliability Analysis is Essential for Safety-Critical CPS

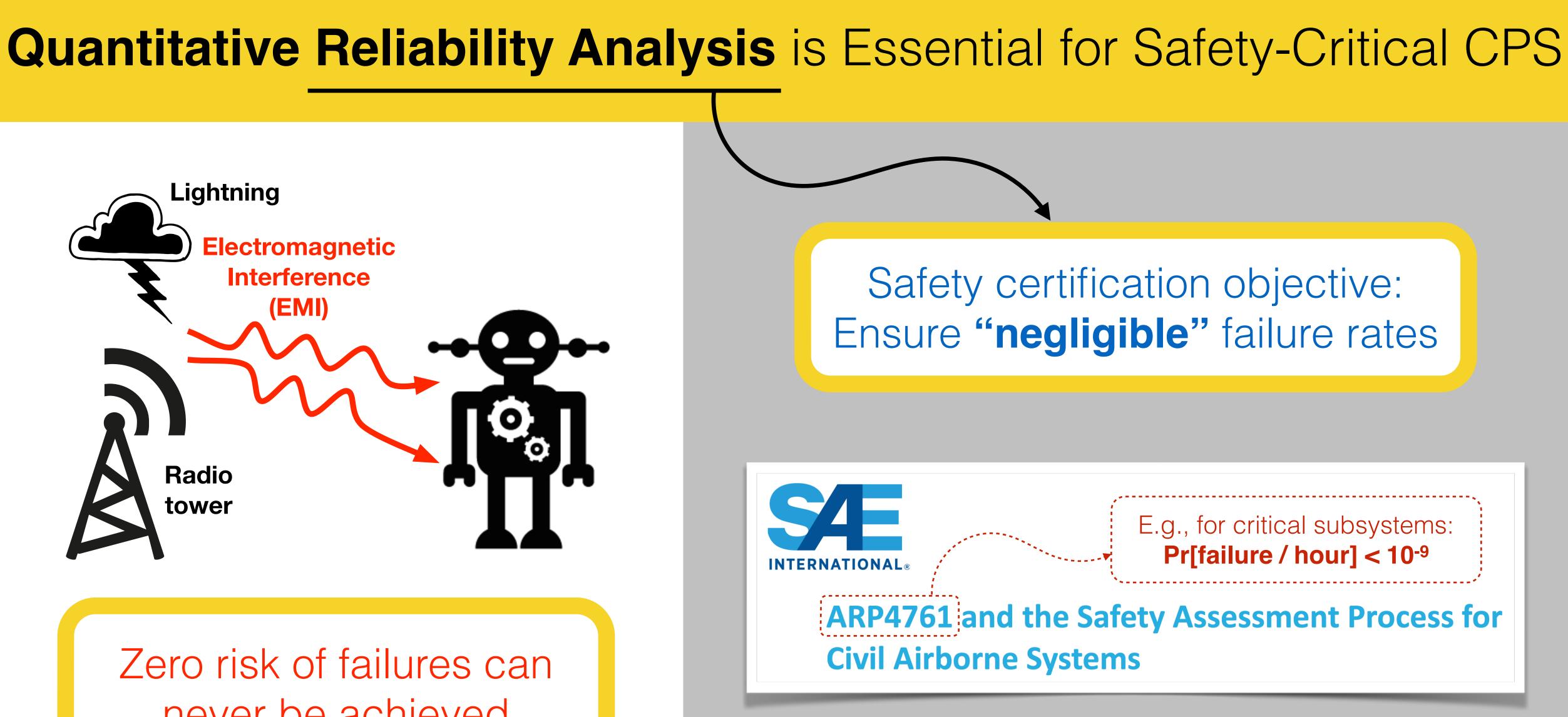

Zero risk of failures can never be achieved

Arpan Gujarati (MPI-SWS)

Quantitative Reliability Analysis is Essential for Safety-Critical CPS Lightning **Electromagnetic** Interference Safety certification objective: (EMI) Ensure "negligible" failure rates

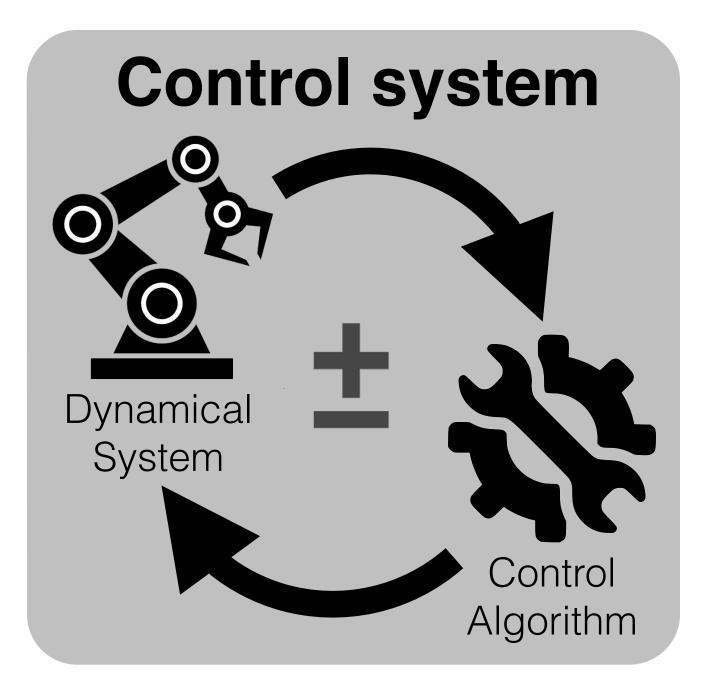

Zero risk of failures can never be achieved

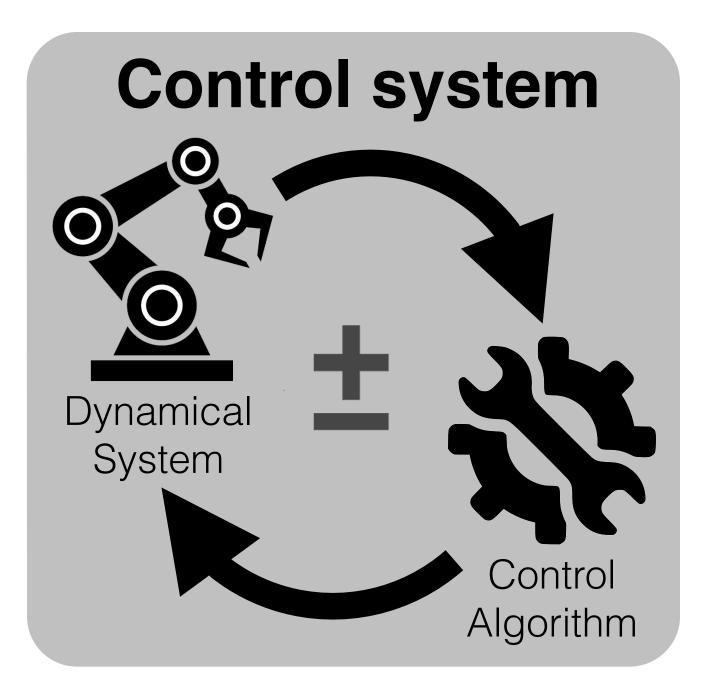
Arpan Gujarati (MPI-SWS)



Zero risk of failures can never be achieved

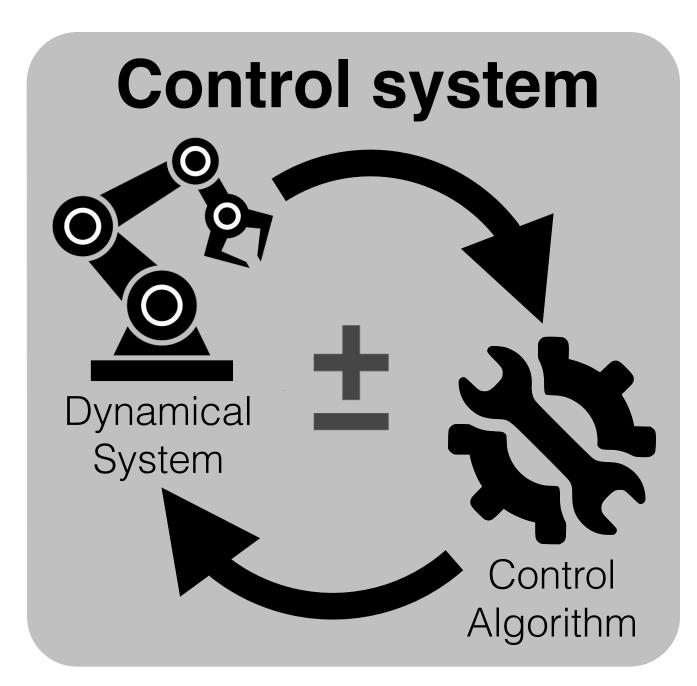
Arpan Gujarati (MPI-SWS)





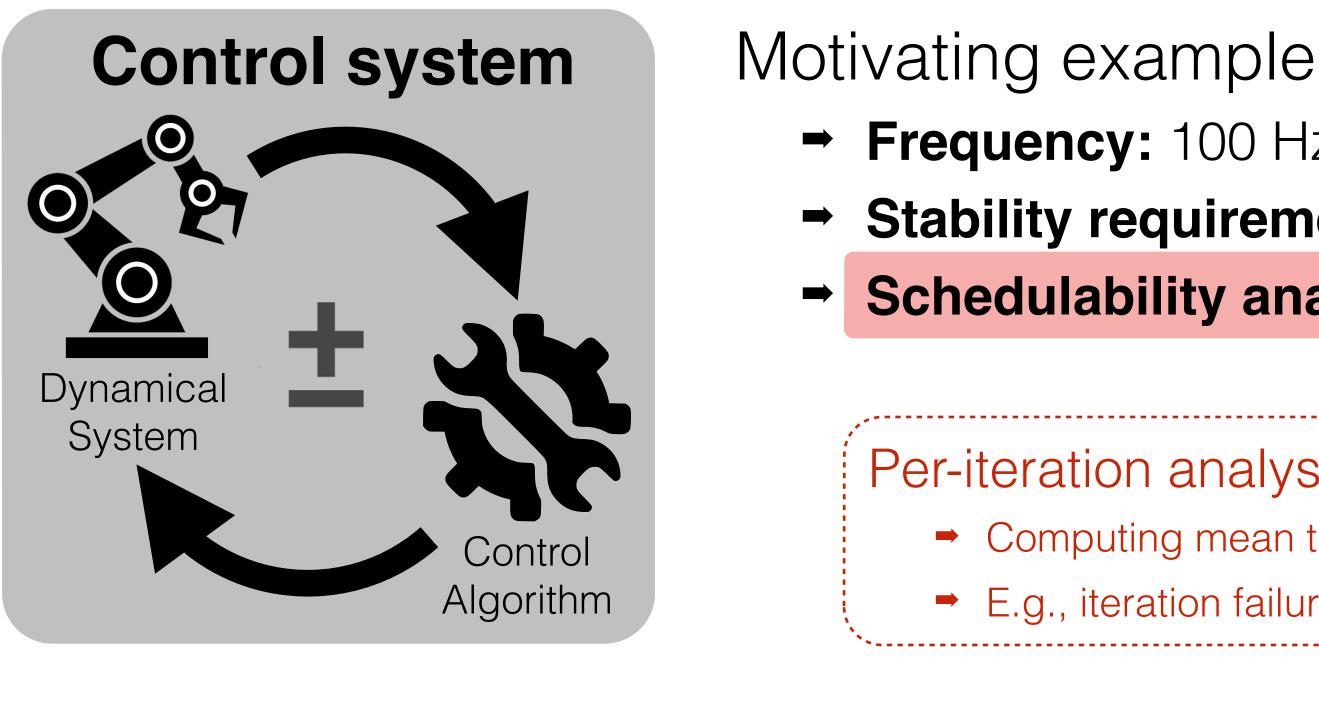
Motivating example → **Frequency:** 100 Hz (10 ms time period) → Stability requirement: 3 out of 4 iterations execute on time

Arpan Gujarati (MPI-SWS)



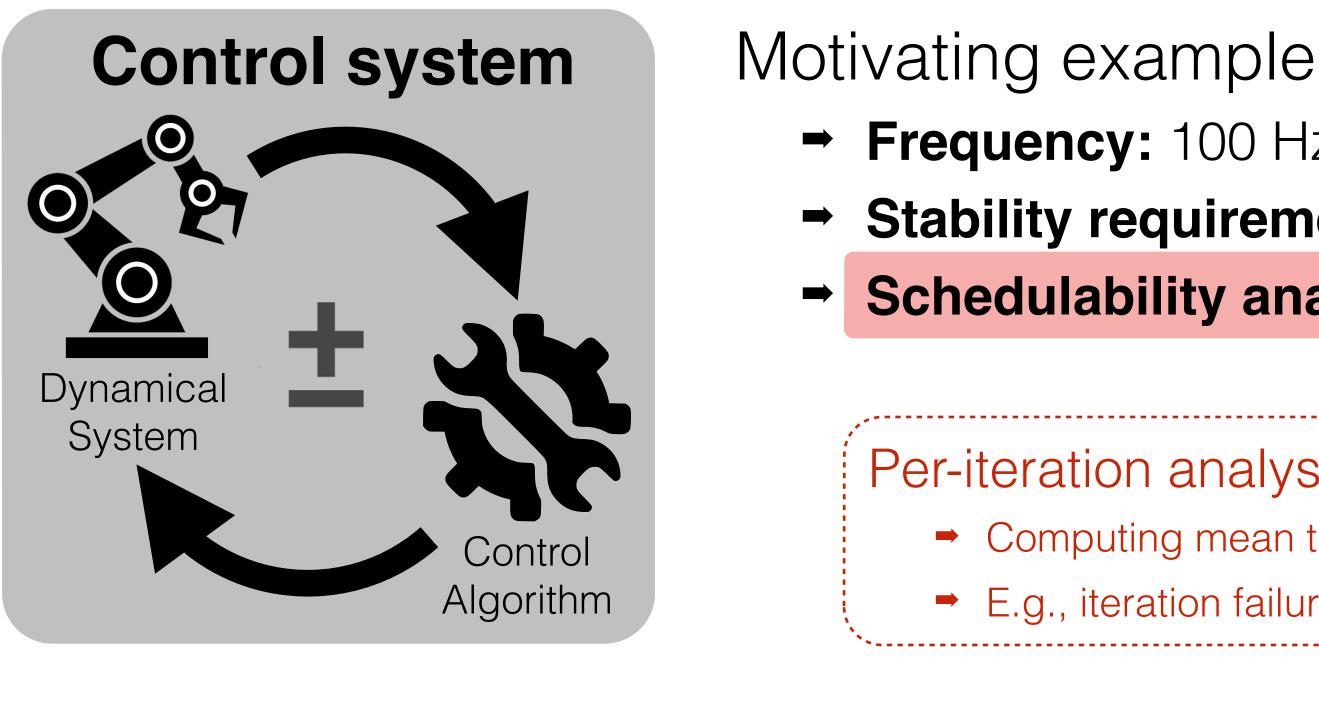
- Motivating example → **Frequency:** 100 Hz (10 ms time period) → Stability requirement: 3 out of 4 iterations execute on time - Schedulability analyses: $\Pr[single iteration delayed] \le 10^{-10}$

- **Stability requirement:** 3 out of 4 iterations execute on time **Schedulability analyses:** $Pr[single iteration delayed] \le 10^{-10}$
- Motivating example → Frequency: 100 Hz (10 ms time period)


E.g., iteration failure probability of $10^{-10} \rightarrow 36,000 \times 10^{-9}$ failures / hours

- Per-iteration analyses yield pessimistic failure rates
 - Computing mean time to first failed iteration ignores stability requirements

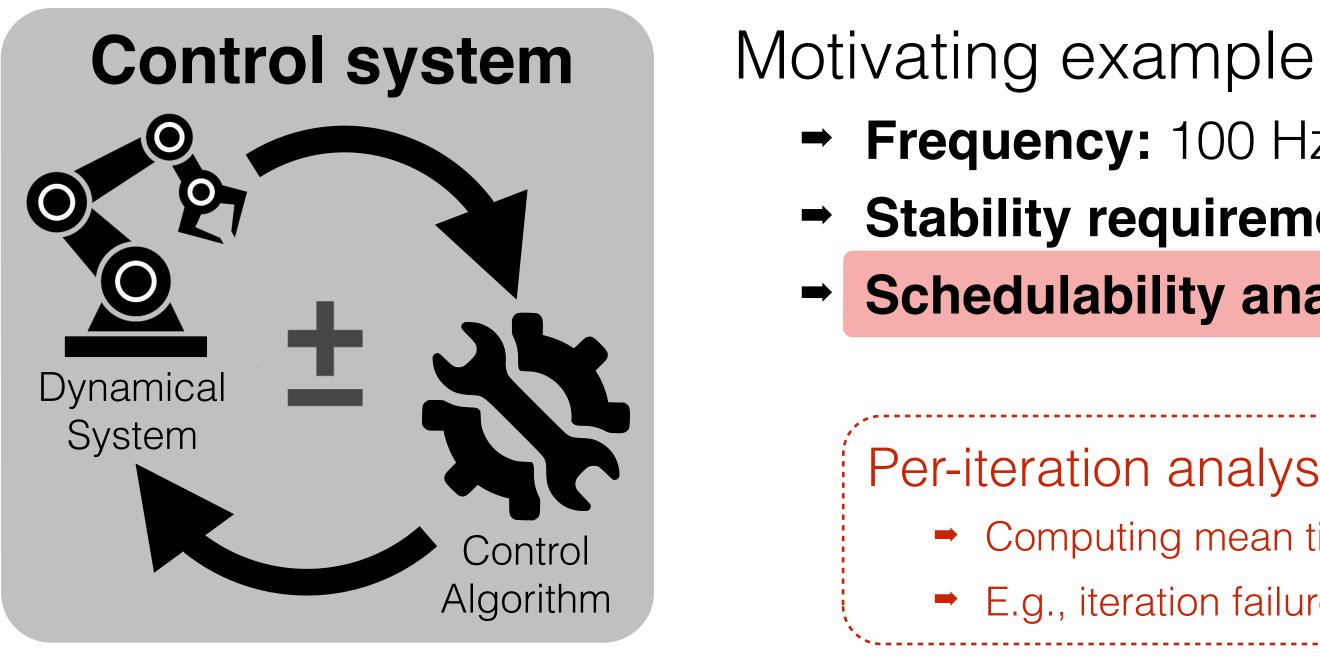
Explicitly accounting for the stability requirements


- Yields more accurate failure rates
- E.g., iteration failure probability of 10^{-10} and stability requirement \mapsto **1.08 x 10⁻¹⁵ failures / hours**

- → **Frequency:** 100 Hz (10 ms time period) **Stability requirement:** 3 out of 4 iterations execute on time **Schedulability analyses:** $Pr[single iteration delayed] \le 10^{-10}$
 - Per-iteration analyses yield pessimistic failure rates Computing mean time to first failed iteration ignores stability requirements E.g., iteration failure probability of $10^{-10} \rightarrow 36,000 \times 10^{-9}$ failures / hours

Explicitly accounting for the stability requirements

- Yields more accurate failure rates
- E.g., iteration failure probability of 10^{-10} and stability requirement \mapsto **1.08 x 10⁻¹⁵ failures / hours**


- → **Frequency:** 100 Hz (10 ms time period) **Stability requirement:** 3 out of 4 iterations execute on time **Schedulability analyses:** $Pr[single iteration delayed] \le 10^{-10}$
 - Per-iteration analyses yield pessimistic failure rates
 - Computing mean time to first failed iteration ignores stability requirements
 - E.g., iteration failure probability of $10^{-10} \rightarrow 36,000 \times 10^{-9}$ failures / hours

9 orders of magnitude!

Explicitly accounting for the stability requirements Not trivial anymore! Yields more accurate failure rates E.g., iteration failure probability of 10^{-10} and stability requirement \mapsto **1.08 x 10⁻¹⁵ failures / hours**

- → **Frequency:** 100 Hz (10 ms time period) **Stability requirement:** 3 out of 4 iterations execute on time **Schedulability analyses:** $Pr[single iteration delayed] \le 10^{-10}$
 - Per-iteration analyses yield pessimistic failure rates
 - Computing mean time to first failed iteration ignores stability requirements
 - E.g., iteration failure probability of $10^{-10} \rightarrow 36,000 \times 10^{-9}$ failures / hours

9 orders of magnitude!

This work

Objectives

Generic Complex robustness requirements

Objectives

Generic

Complex robustness requirements

Accurate (ideally, exact)

 Minimize pessimism in the final system reliability

Objectives

Generic

Complex robustness requirements

Accurate (ideally, exact)

Minimize pessimism in the final system reliability

Scalable

Asymptotic requirements with large parameter values

Objectives

Generic

Complex robustness requirements

Accurate (ideally, exact)

Minimize pessimism in the final system reliability

Scalable

Asymptotic requirements with large parameter values

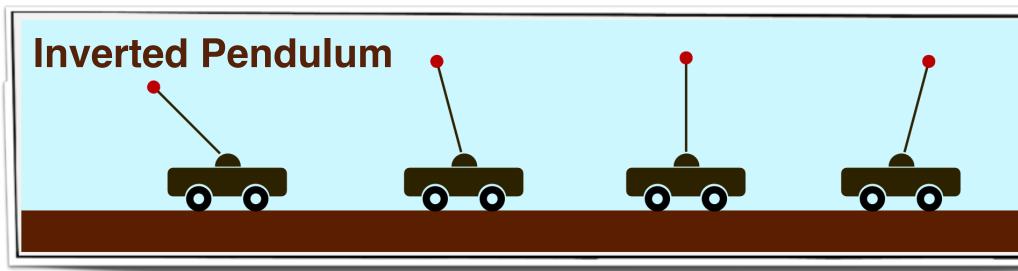
Proposed Techniques

PMC (Probabilistic Model Checking) Exact, very generic, but slow

Mart (uses martingale theory) Exact, less generic, but slightly faster

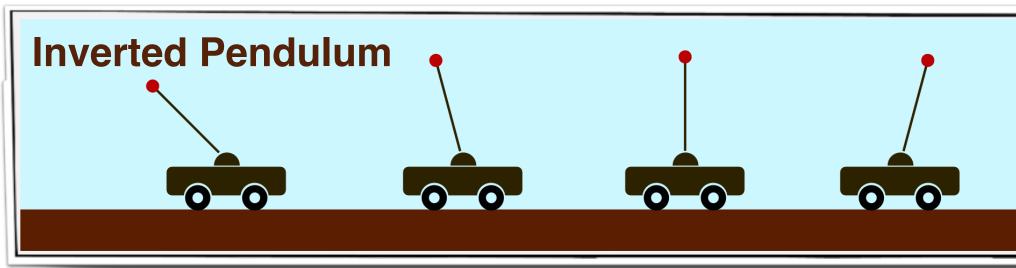
SAp (Sound **Ap**proximation) Not exact, least generic, but highly scalable

Background & System Model


Arpan Gujarati (MPI-SWS)

Asymptotic Properties

Asymptotic Properties


Specification: Mass 0.5 kg, length 0.20 m, period 10 ms **Design:** Current iteration is skipped \mapsto Use previous iteration parameters Asymptotically stable with at least 76.51% successful iterations*

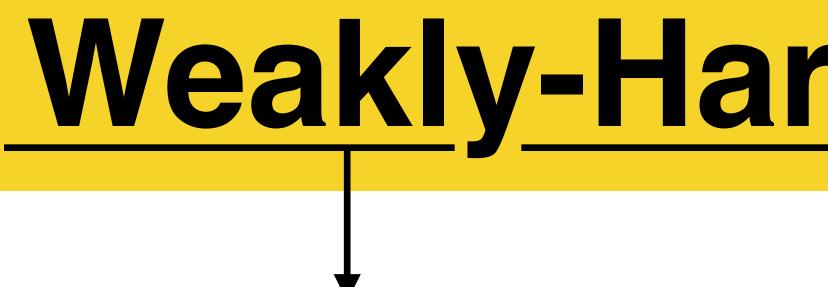
* Majumdar et al. "Performance-aware scheduler synthesis for control systems." EMSOFT, Taipei (2011)

Asymptotic Properties

Specification: Mass 0.5 kg, length 0.20 m, period 10 ms **Design:** Current iteration is skipped \mapsto Use previous iteration parameters Asymptotically stable with at least 76.51% successful iterations*

Doesn't specify if the system can handle a burst of skipped iterations What if the first 50 iterations are skipped? No feedback for 0.5 second

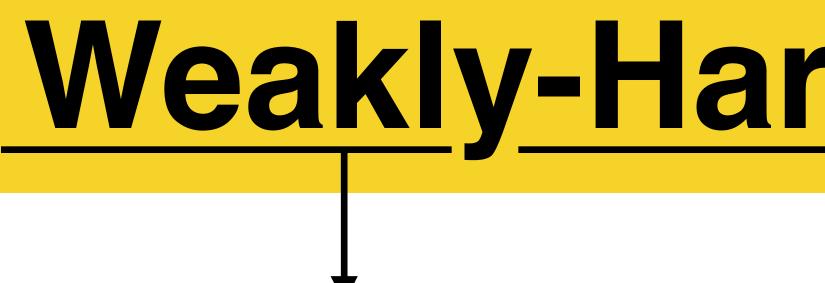
* Majumdar et al. "Performance-aware scheduler synthesis for control systems." EMSOFT, Taipei (2011)


Concretize asymptotic properties using finite window sizes

* Bernat et al. "Weakly hard real-time systems." IEEE Transactions on Computers, 50(4):308–321 (2001).

Arpan Gujarati (MPI-SWS)

Weakly-Hard* Constraints


Concretize asymptotic properties using finite window sizes

If each iteration is labeled either as a Success or a Failure (m, k) constraint: At least m out of every k consecutive iterations must be Successful

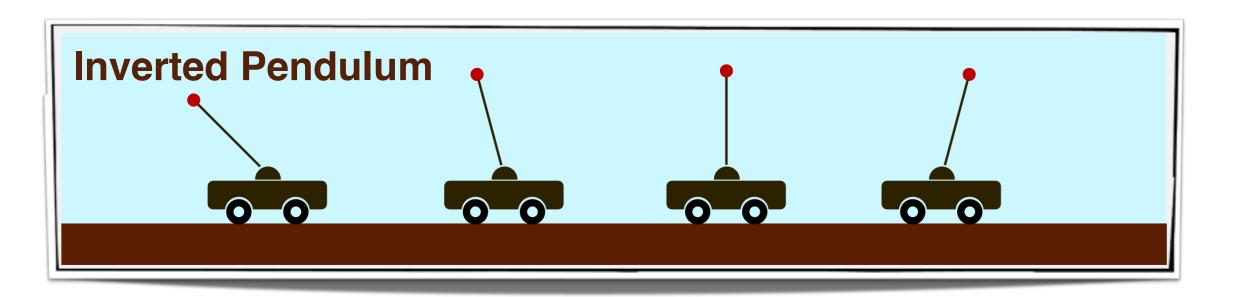
* Bernat et al. "Weakly hard real-time systems." IEEE Transactions on Computers, 50(4):308–321 (2001).

Weakly-Hard* Constraints

Concretize asymptotic properties using finite window sizes

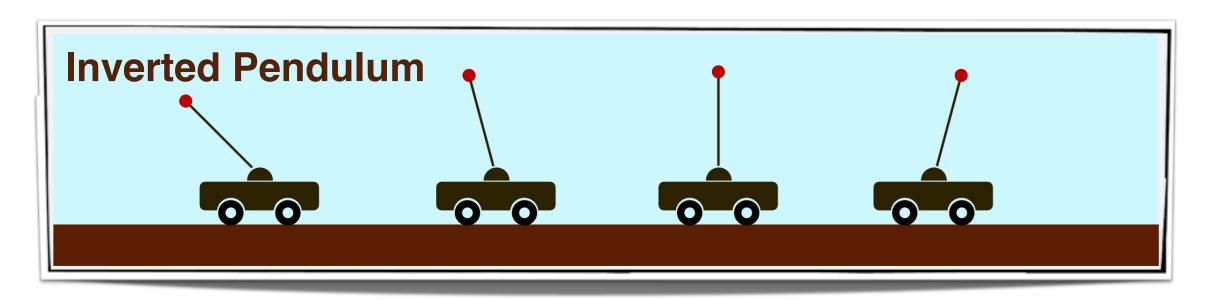
If each iteration is labeled either as a Success or a Failure

Temporal robustness as per (2, 3) constraint

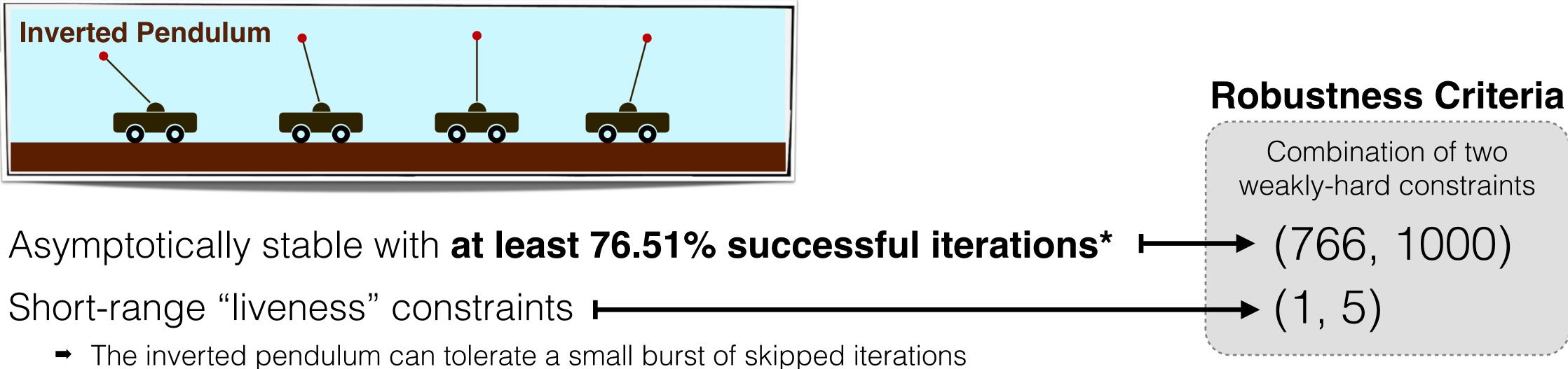

Bernat et al. "Weakly hard real-time systems." IEEE Transactions on Computers, 50(4):308–321 (2001).

Weakly-Hard* Constraints

- (m, k) constraint: At least m out of every k consecutive iterations must be Successful

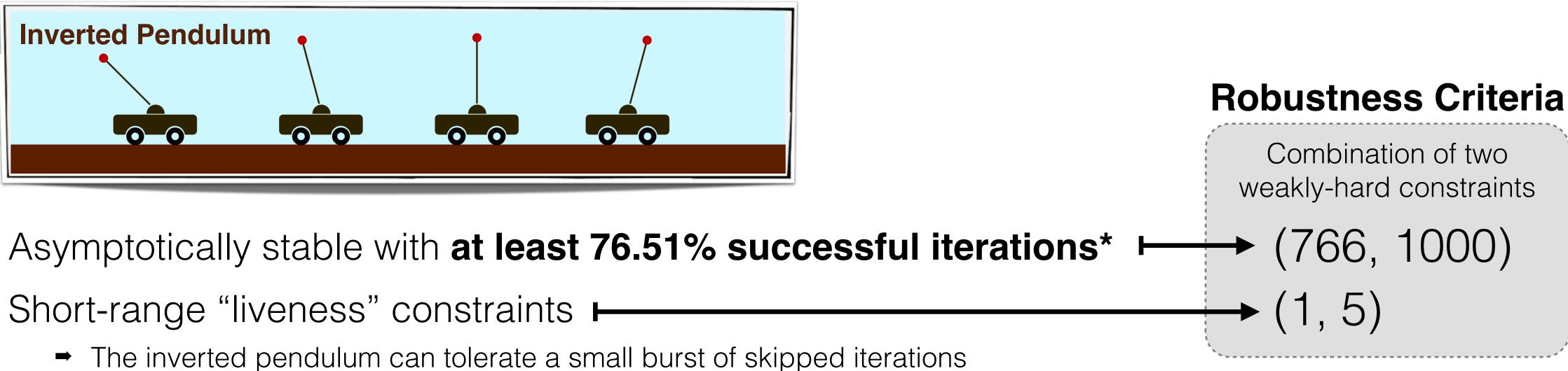


Asymptotically stable with at least 76.51% successful iterations* → (766, 1000)


Short-range "liveness" constraints

The inverted pendulum can tolerate a small burst of skipped iterations

Asymptotically stable with at least 76.51% successful iterations* (766, 1000) (1, 5)



Combination of different weakly-hard constraints

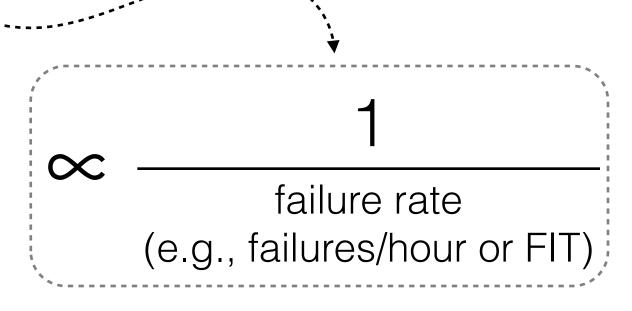
- \rightarrow (m, k) = Each k consecutive iterations, at least m successes needed
- \rightarrow $\langle m, k \rangle$ = Each k consecutive iterations, at least m consecutive successes needed
- \rightarrow $\langle m \rangle$ = m consecutive failures should never happen

Given periodic system S, time period T, iteration failure probability P_{F} , and the temporal robustness criteria ...

Given periodic system S, time period T, iteration failure probability $\mathbf{P}_{\mathbf{F}}$, and the temporal robustness criteria ...

Lower-bound the Mean Time To Failure (MTTF) of S

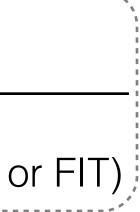
MTTF = Expected time to 1^{st} temporal robustness violation ∞ $= \sum \left(nT \times Pr[1^{st} \text{ violation in the } n^{th} \text{ iteration}] \right)$



Given periodic system S, time period T, iteration failure probability $\mathbf{P}_{\mathbf{F}}$, and the temporal robustness criteria ...

Lower-bound the Mean Time To Failure (MTTF) of S

MTTF = Expected time to 1^{st} temporal robustness violation ∞ $= \sum \left(nT \times Pr[1^{st} \text{ violation in the } n^{th} \text{ iteration}] \right)$


Given periodic system S, time period T, iteration failure probability $\mathbf{P}_{\mathbf{F}}$, and the temporal robustness criteria ...

Lower-bound the Mean Time To Failure (MTTF) of S

MTTF = Expected time to 1^{st} temporal robustness violation $= \sum \left(nT \times Pr[1^{st} \text{ violation in the } n^{th} \text{ iteration}] \right)$ (e.g., failures/hour or FIT)

Assumption: $\mathbf{P}_{\mathbf{F}}$ is independently and identically distributed (IID)^{1, 2}

¹ Broster et al. "Timing Analysis of Real-Time Communication Under Electromagnetic Interference." Real Time Systems Journal (2005) ² Gujarati et al. "Quantifying the Resiliency of Fail-Operational Real-Time Networked Control Systems." ECRTS, Barcelona (2018)

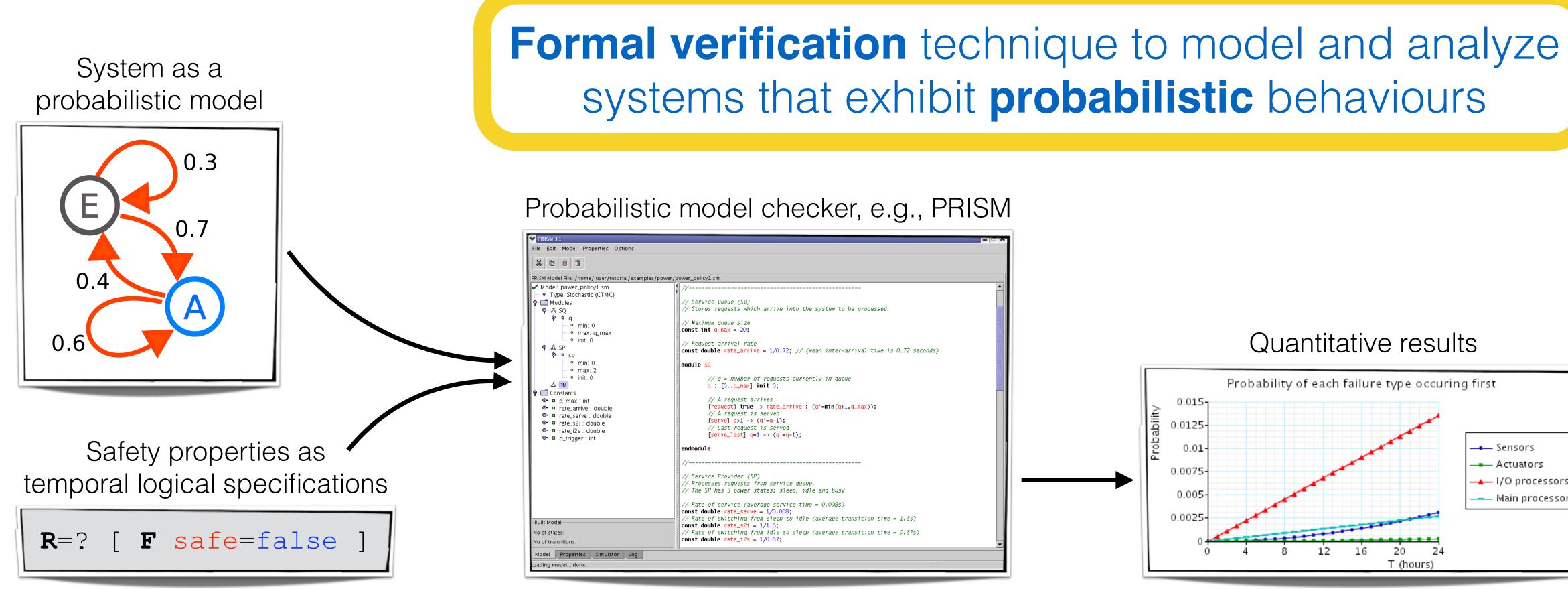
Probabilistic Model Checking (PMC) Exact, very generic, but slow

Arpan Gujarati (MPI-SWS)

10

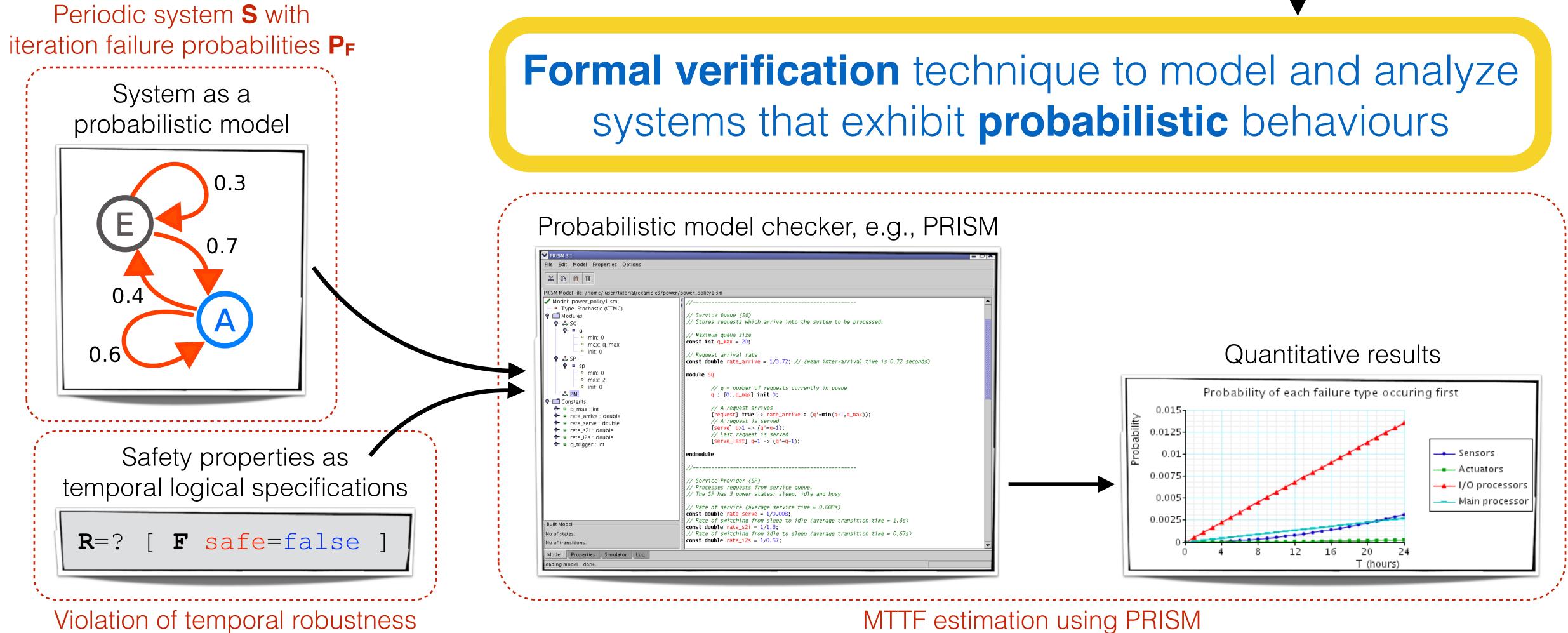
MTTF Estimation using PMC

Arpan Gujarati (MPI-SWS)


Formal verification technique to model and analyze systems that exhibit **probabilistic** behaviours

11

MTTF Estimation using **PMC**



MTTF Estimation using PMC

MTTF estimation using PRISM

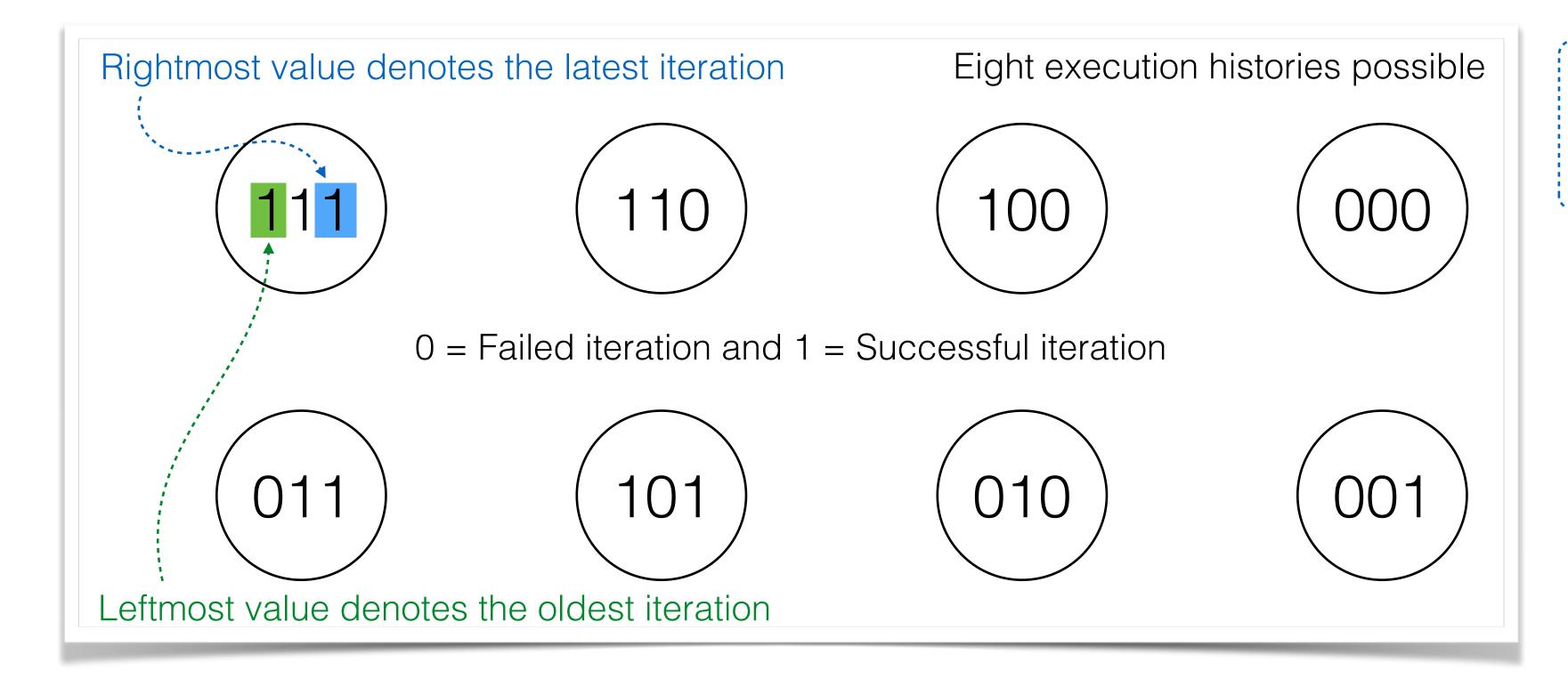
11

Modeling Weakly-Hard Constraints

- E.g., (m, k) constraint depends on the k latest iterations Connect all possible execution histories via transition probabilities P_F and 1 - P_F

Key idea

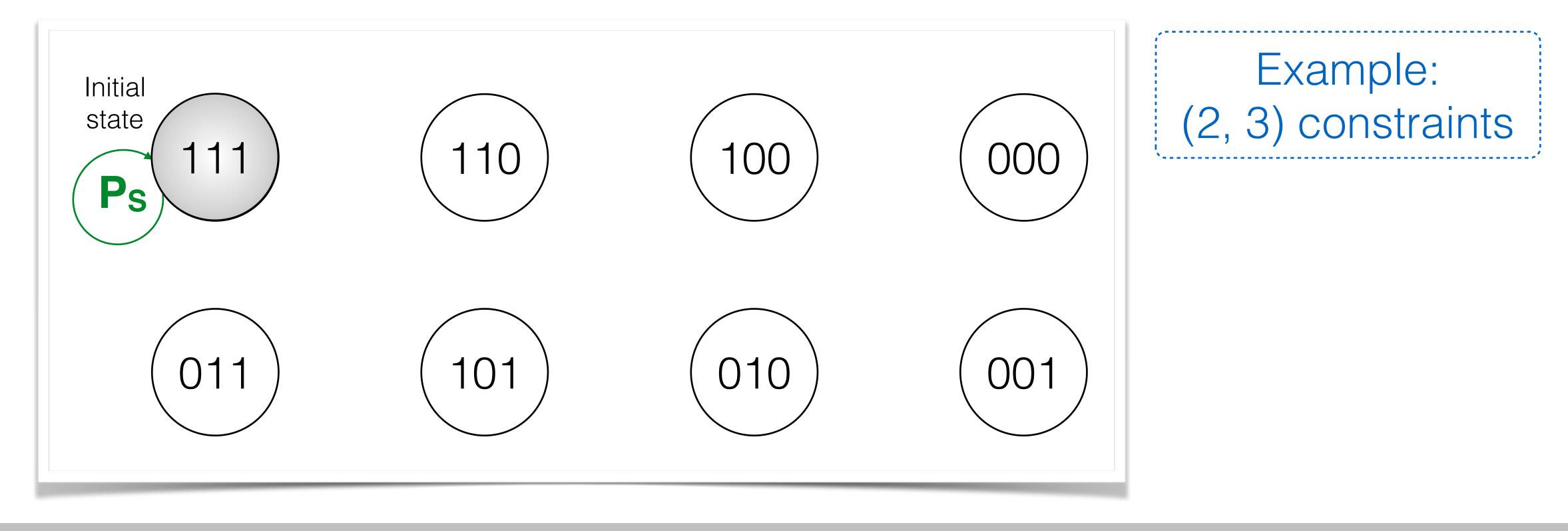
Weakly-hard constraints depend on a finite-sized history



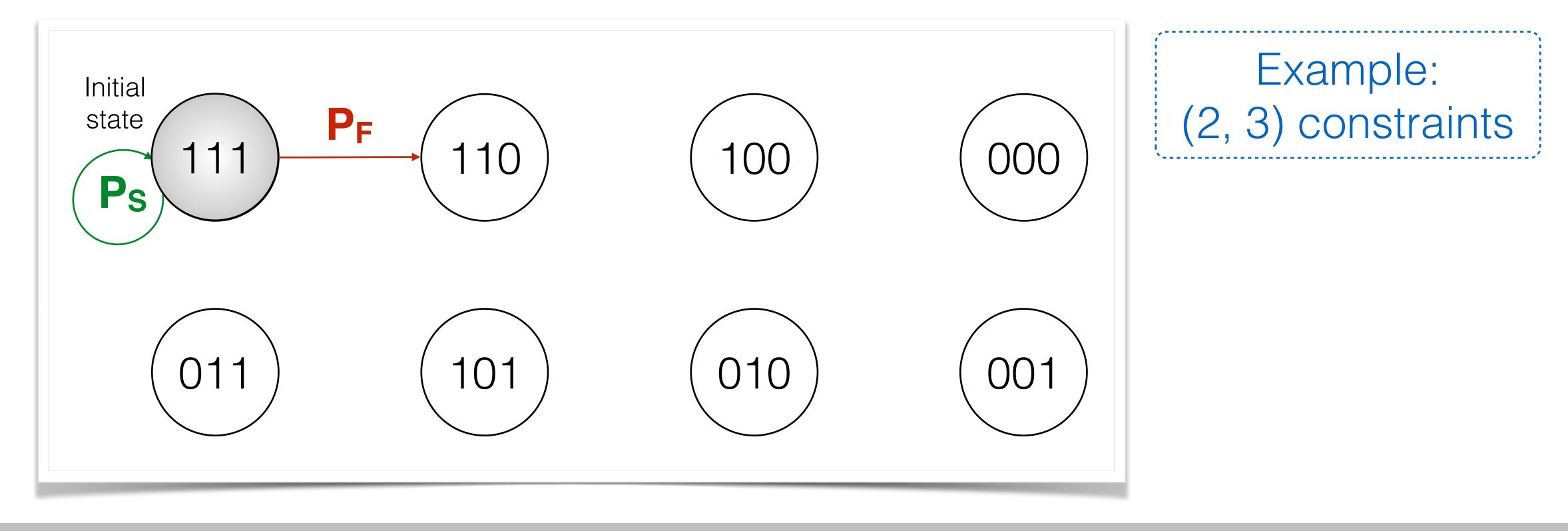
Weakly-hard constraints depend on a finite-sized history

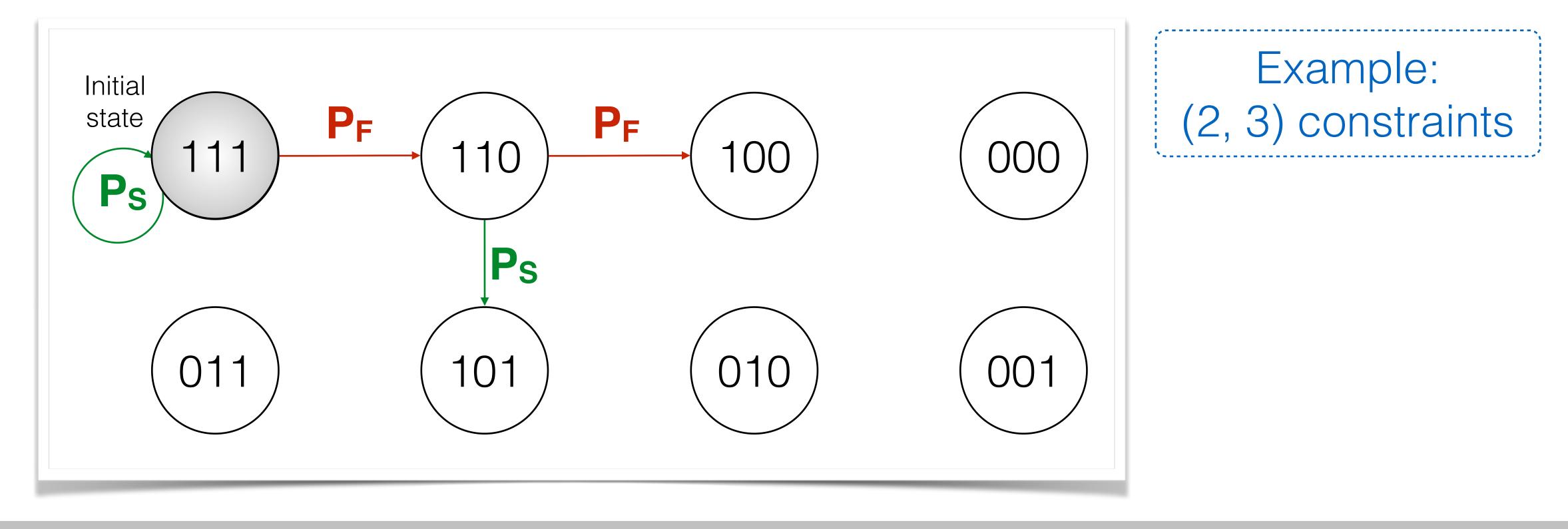
E.g., (m, k) constraint depends on the k latest iterations

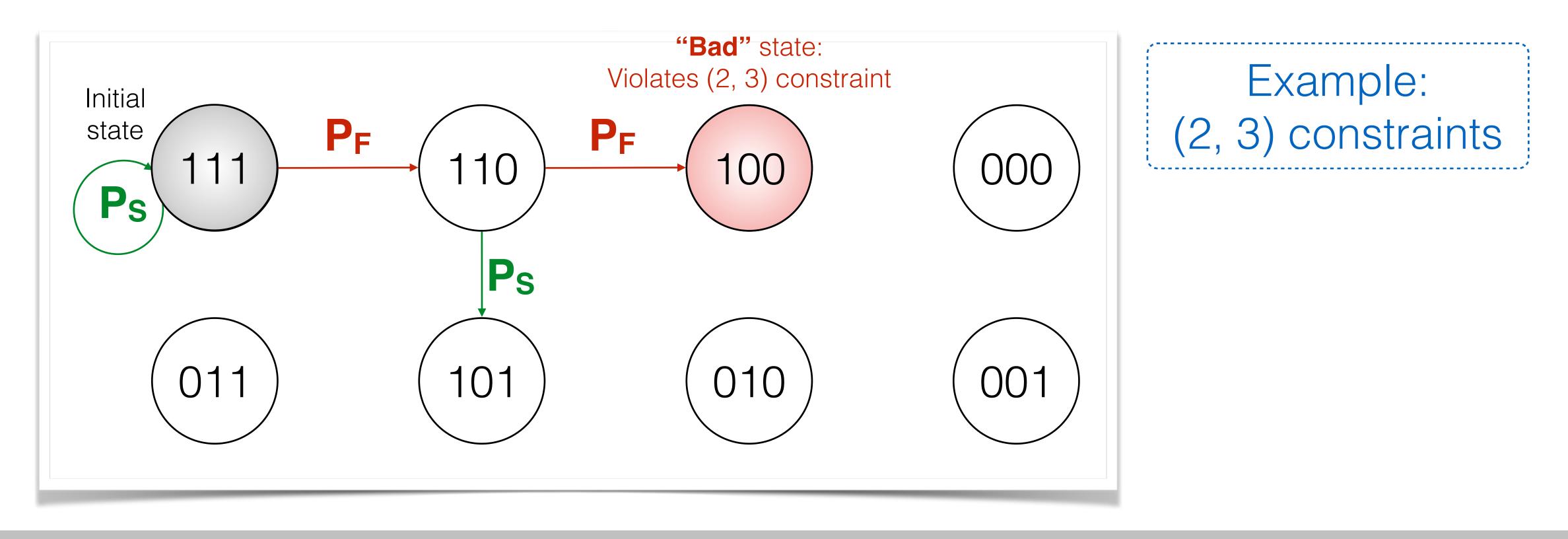
Connect all possible execution histories via transition probabilities P_F and 1 - P_F

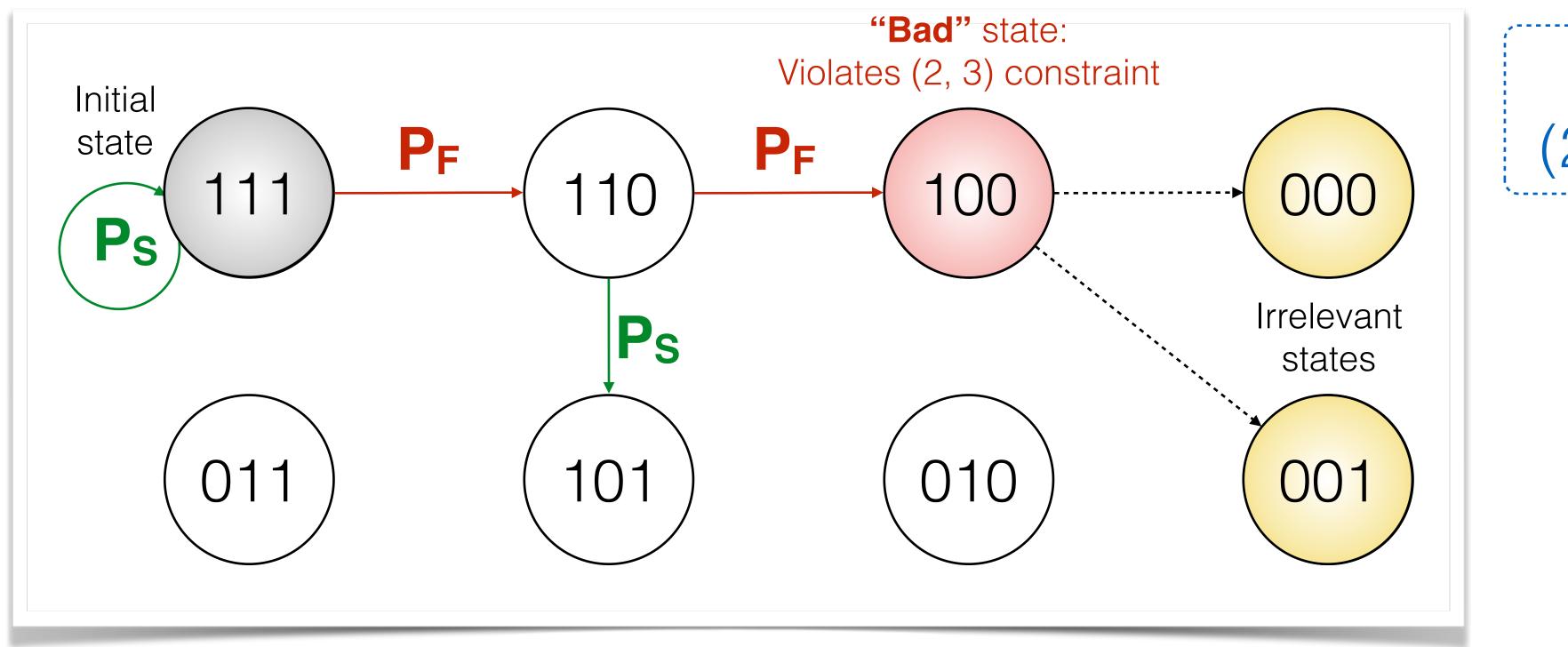

Key idea

Example: (2, 3) constraints

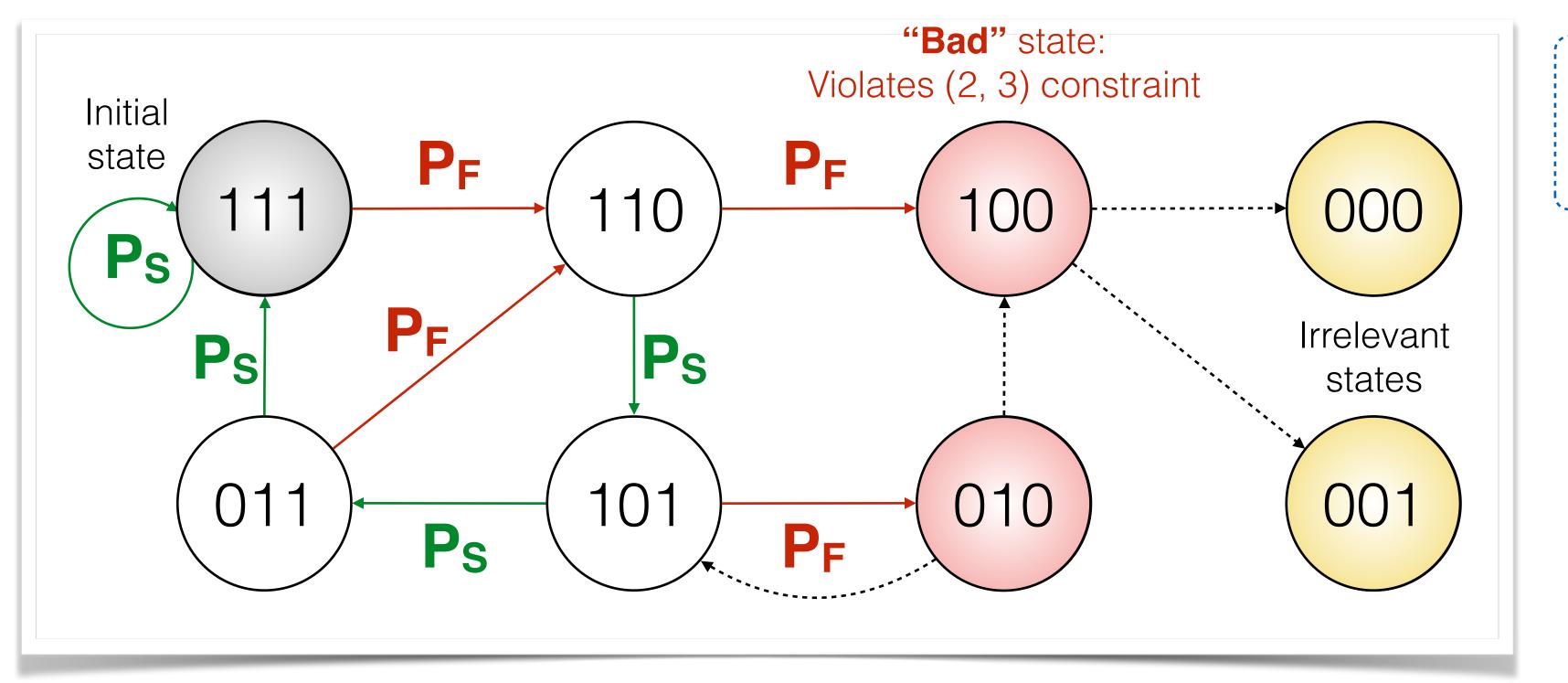

Weakly-hard constraints depend on a finite-sized history Key idea E.g., (m, k) constraint depends on the k latest iterations Connect all possible execution histories via transition probabilities P_F and 1 - P_F


Weakly-hard constraints depend on a finite-sized history Key idea E.g., (m, k) constraint depends on the k latest iterations Connect all possible execution histories via transition probabilities P_F and 1 - P_F


Weakly-hard constraints depend on a finite-sized history Key idea → E.g., (m, k) constraint depends on the k latest iterations Connect all possible execution histories via transition probabilities P_F and 1 - P_F

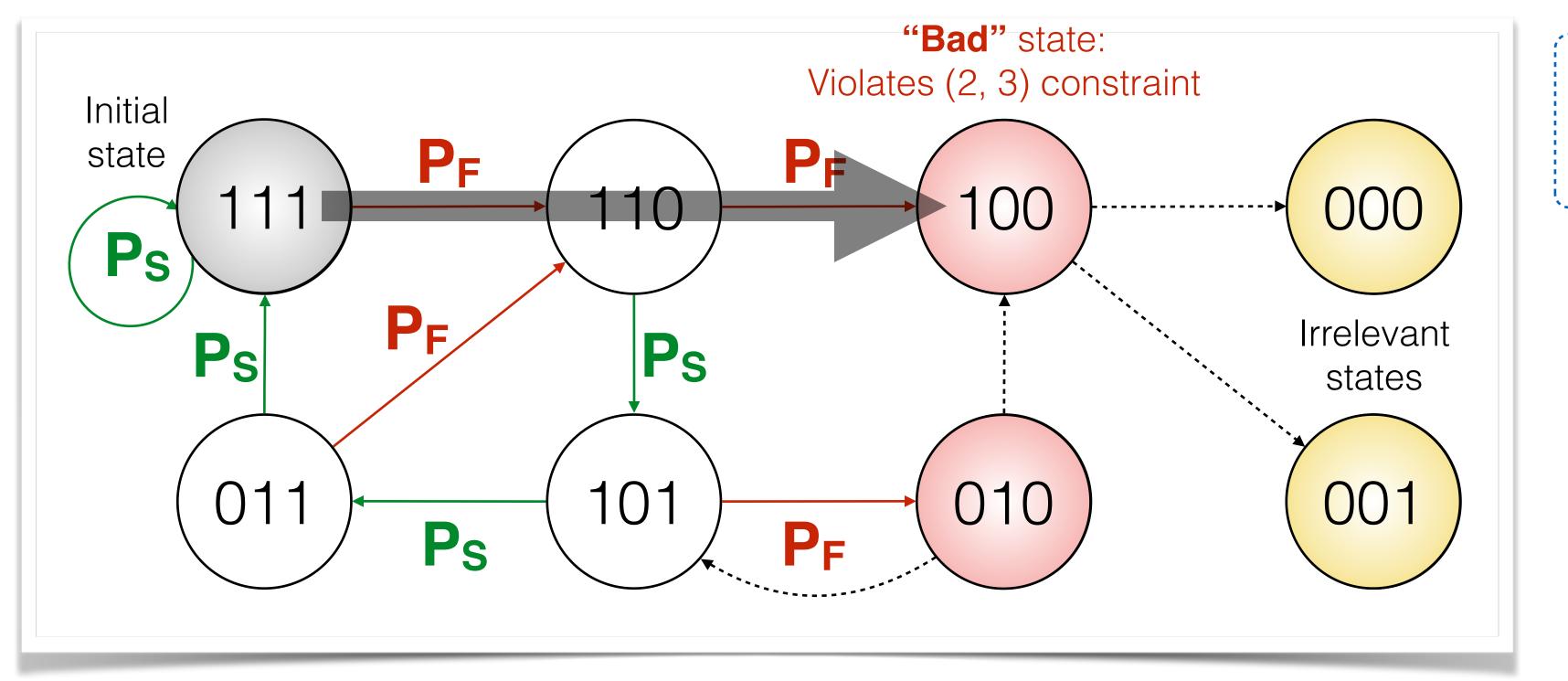

Weakly-hard constraints depend on a finite-sized history Key idea E.g., (m, k) constraint depends on the k latest iterations Connect all possible execution histories via transition probabilities P_F and 1 - P_F

Weakly-hard constraints depend on a finite-sized history Key idea E.g., (m, k) constraint depends on the k latest iterations Connect all possible execution histories via transition probabilities P_F and 1 - P_F



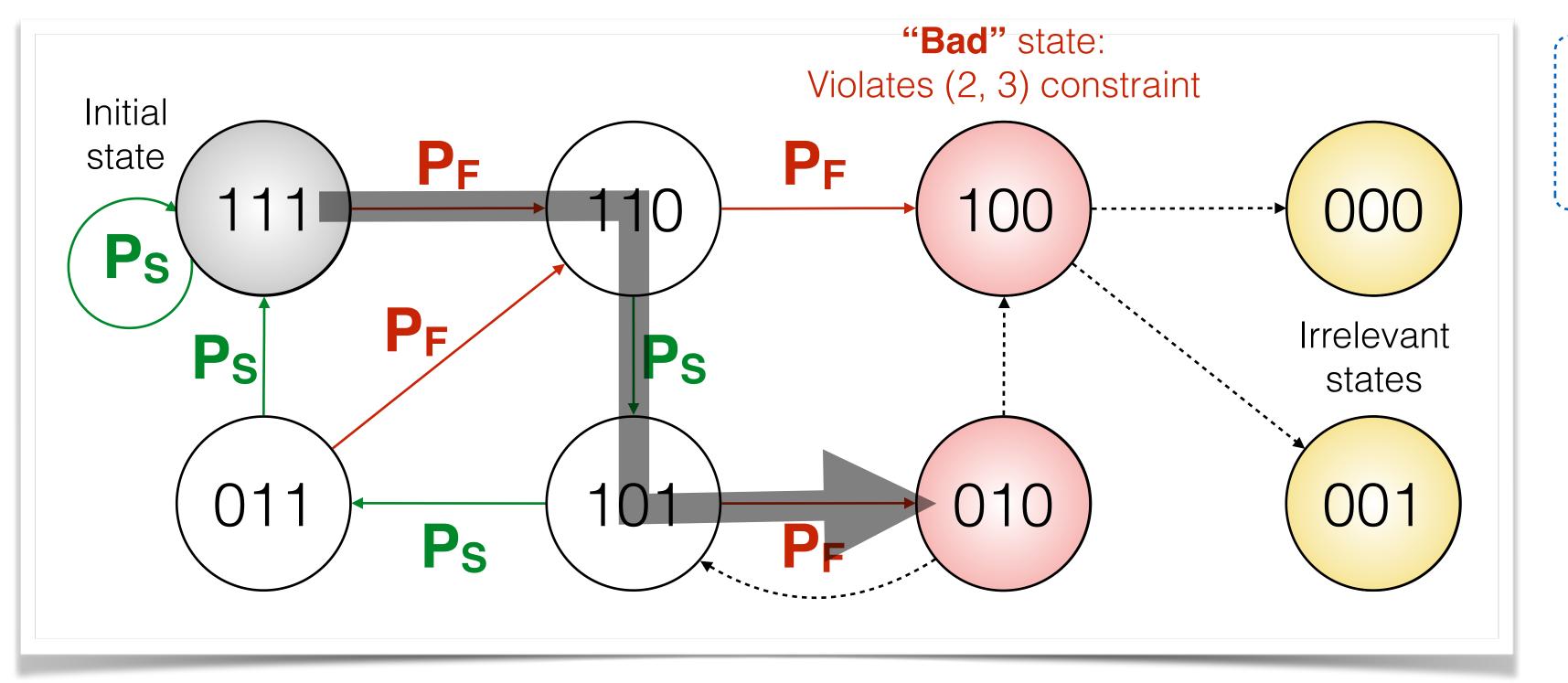
Example: (2, 3) constraints

Weakly-hard constraints depend on a finite-sized history Key idea → E.g., (m, k) constraint depends on the k latest iterations Connect all possible execution histories via transition probabilities P_F and 1 - P_F



Example: (2, 3) constraints

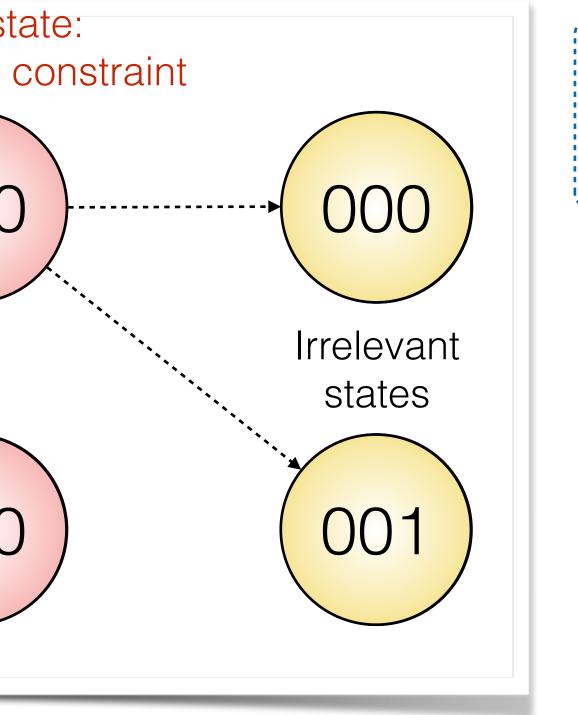
Weakly-hard constraints depend on a finite-sized history Key idea E.g., (m, k) constraint depends on the k latest iterations Connect all possible execution histories via transition probabilities P_F and 1 - P_F



Example: (2, 3) constraints

Weakly-hard constraints depend on a finite-sized history Key idea E.g., (m, k) constraint depends on the k latest iterations Connect all possible execution histories via transition probabilities P_F and 1 - P_F

Example: (2, 3) constraints

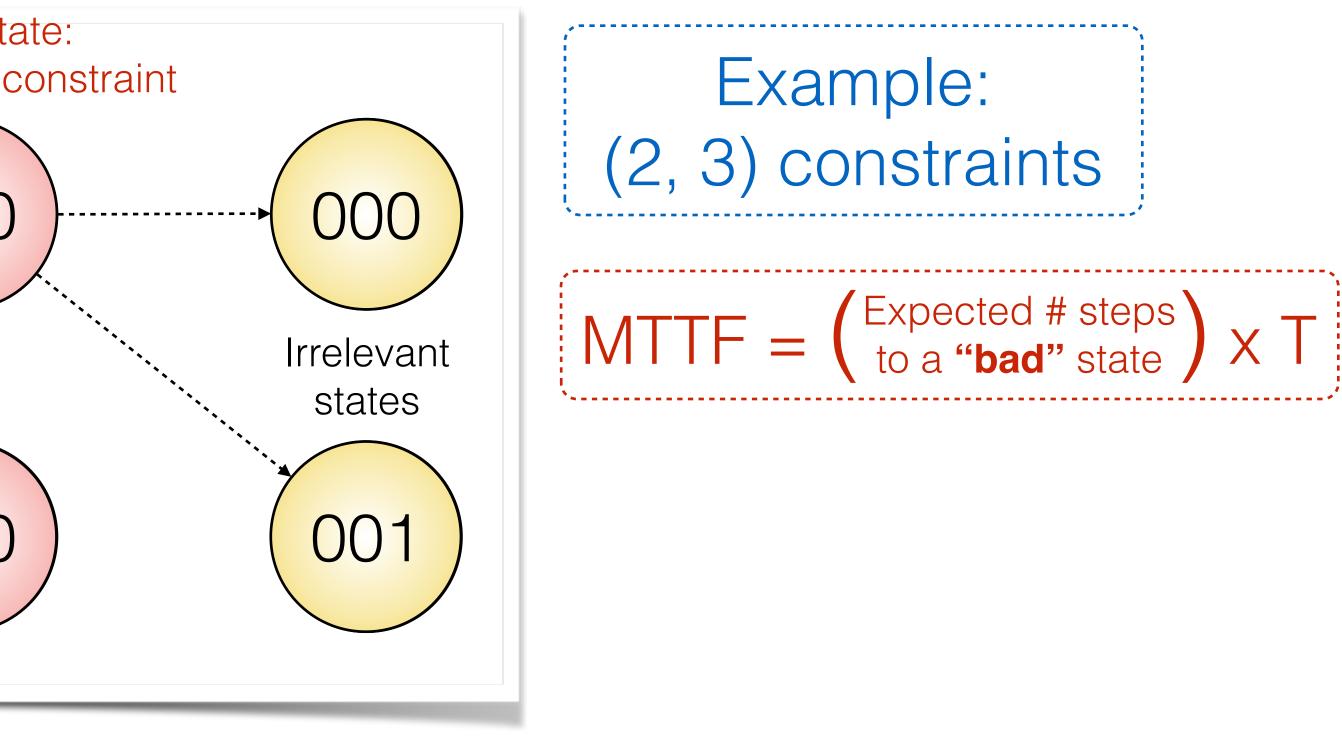


Weakly-hard constraints depend on a finite-sized history Key idea E.g., (m, k) constraint depends on the k latest iterations

"Bad" state: Violates (2, 3) constraint Initial state PF PF 00 10 Ps PF Ps D 010 PF Ps

- Connect all possible execution histories via transition probabilities P_F and 1 P_F

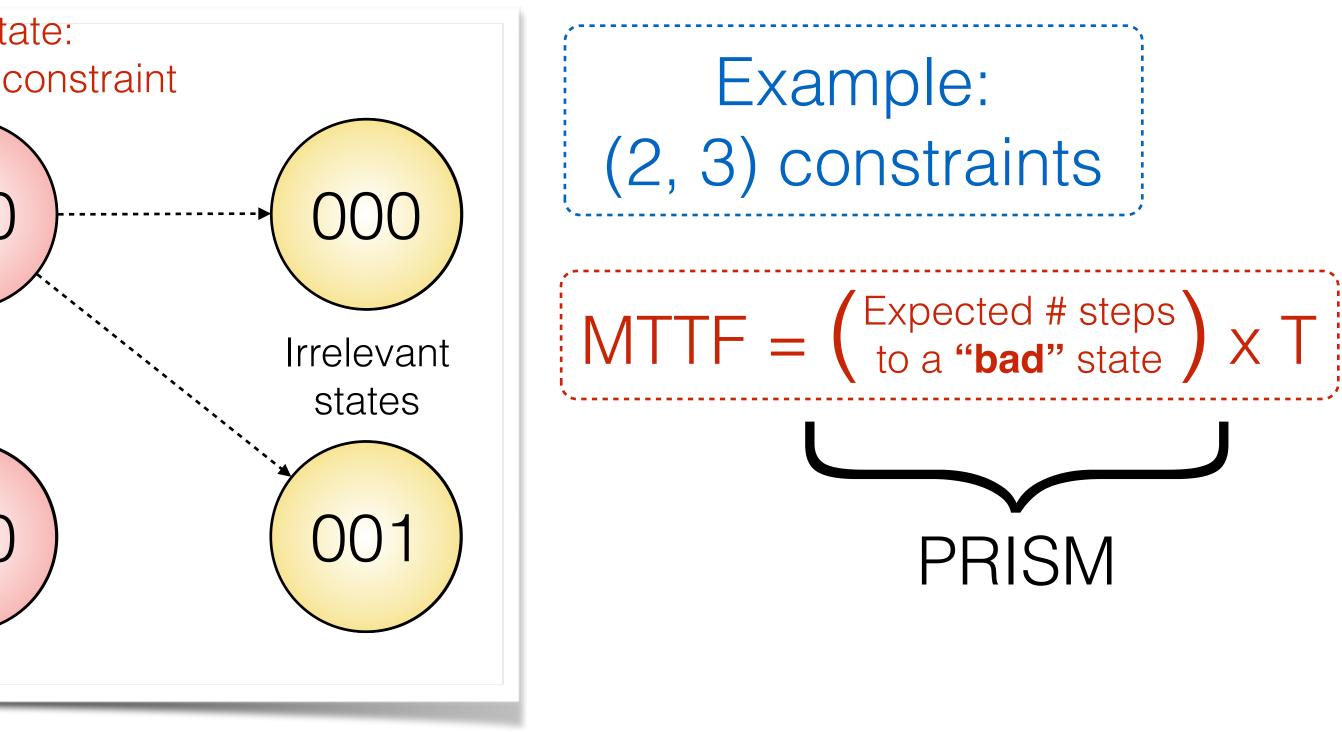
Example: (2, 3) constraints

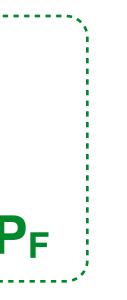


Weakly-hard constraints depend on a finite-sized history Key idea E.g., (m, k) constraint depends on the k latest iterations

"Bad" state: Violates (2, 3) constraint Initial state PF PF 10 00Ps PF Ps 010 PF Ps

- Connect all possible execution histories via transition probabilities P_F and 1 P_F




Weakly-hard constraints depend on a finite-sized history Key idea E.g., (m, k) constraint depends on the k latest iterations

"Bad" state: Violates (2, 3) constraint Initial state PF PF 10 00 Ps PF Ps 010 PF Ps

- Connect all possible execution histories via transition probabilities P_F and 1 P_F



Does PMC Scale with k?



	24																								?
	23																							?	?
	22																						?	?	?
	21																					?	?	?	?
	20			П	_	П															?	?	?	?	?
	19			Ρ	=	Ρ		IC												?	?	?	?	?	?
	18																		?	?	?	?	?	?	?
	17																	?	?	?	?	?	?	?	?
	16																?	?	?	?	?	?	?	?	?
	15															?	?	?	?	?	?	?	?	?	?
	14														?	?	?	?	?	?	?	?	?	?	?
	13													?	?	?	?	?	?	?	?	?	?	?	?
	12												?	?	?	?	?	?	?	?	?	?	?	?	?
	11											?	?	?	?	?	?	?	?	?	?	?	?	?	?
	10										Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	9									Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	8								Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	7							Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	6						Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	5					Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	4				Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	3			Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
↑	2		Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
m	1	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
k	\rightarrow	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Arpan Gujarati (MPI-SWS)

Does PMC Scale with k?

	24																								?
	23																							?	?
	22																						?	?	?
	21																					?	?	?	?
	20			D	=	D	N /														?	?	?	?	?
	19			Γ	_	r														?	?	?	?	?	?
	18																		?	?	?	?	?	?	?
	17																	?	?	?	?	?	?	?	?
	16																?	?	?	?	?	?	?	?	?
	15															?	?	?	?	?	?	?	?	?	?
	14														?	?	?	?	?	?	?	?	?	?	?
	13													?	?	?	?	?	?	?	?	?	?	?	?
	12												?	?	?	?	?	?	?	?	?	?	?	?	?
	11											?	?	?	?	?	?	?	?	?	?	?	?	?	?
	10										Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	9									Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	8								Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	7							Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	6						Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	5					Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	4				Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	3			Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
1	2		Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
n	1	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
k	\rightarrow	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

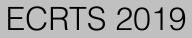

Arpan Gujarati (MPI-SWS)

m

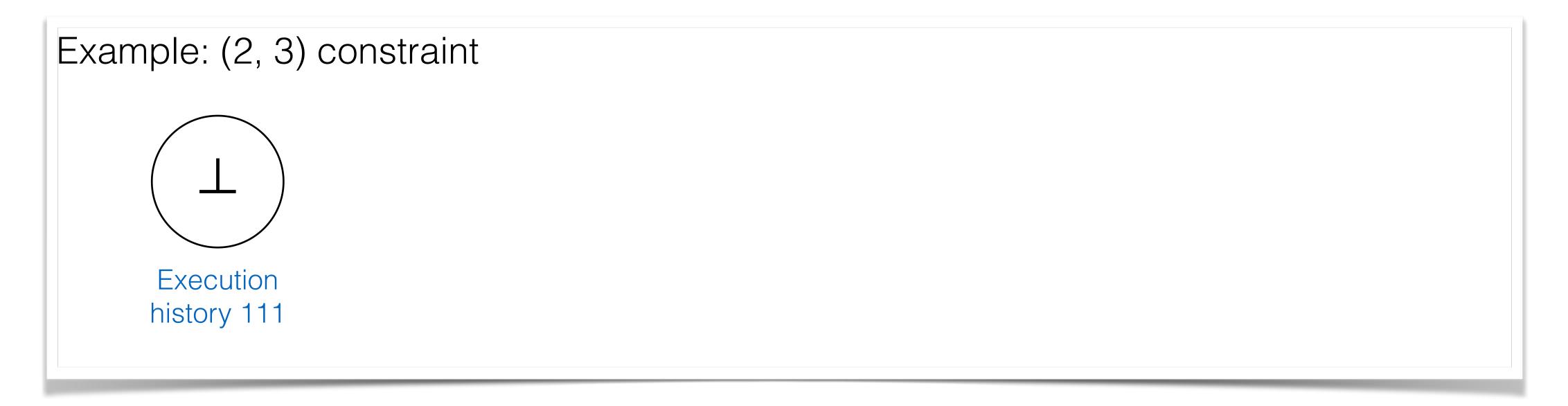
k

Does PMC Scale with k?

PMC times out after 1 hour for each k > 11

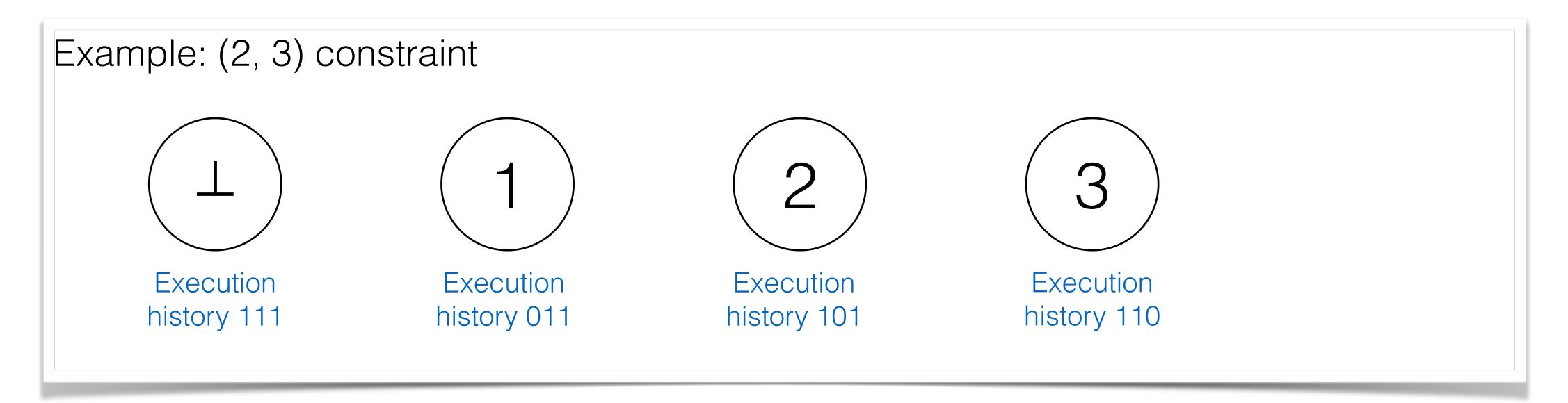


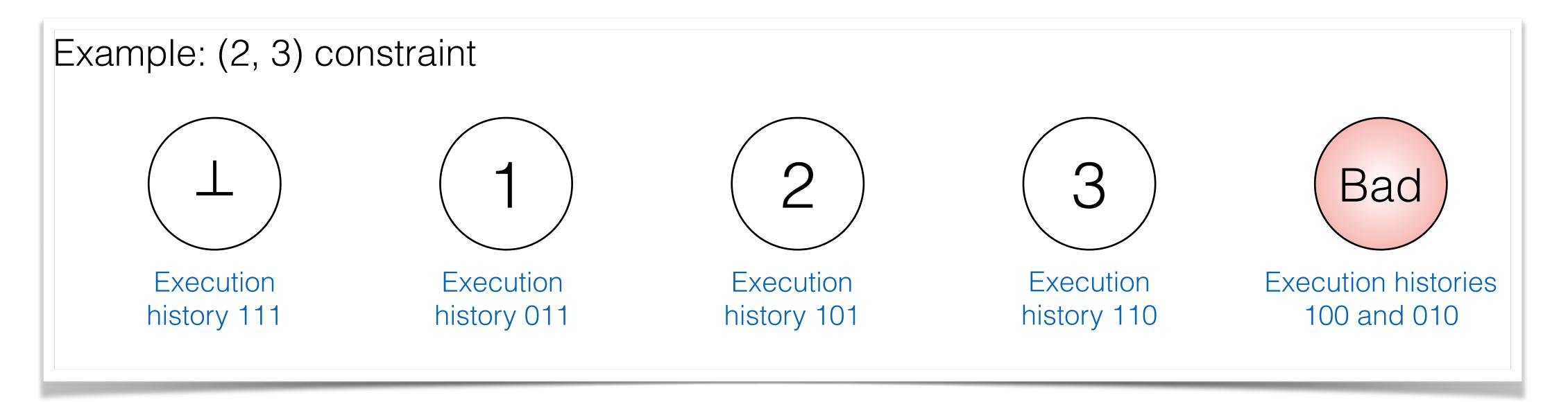
ECRTS 2019

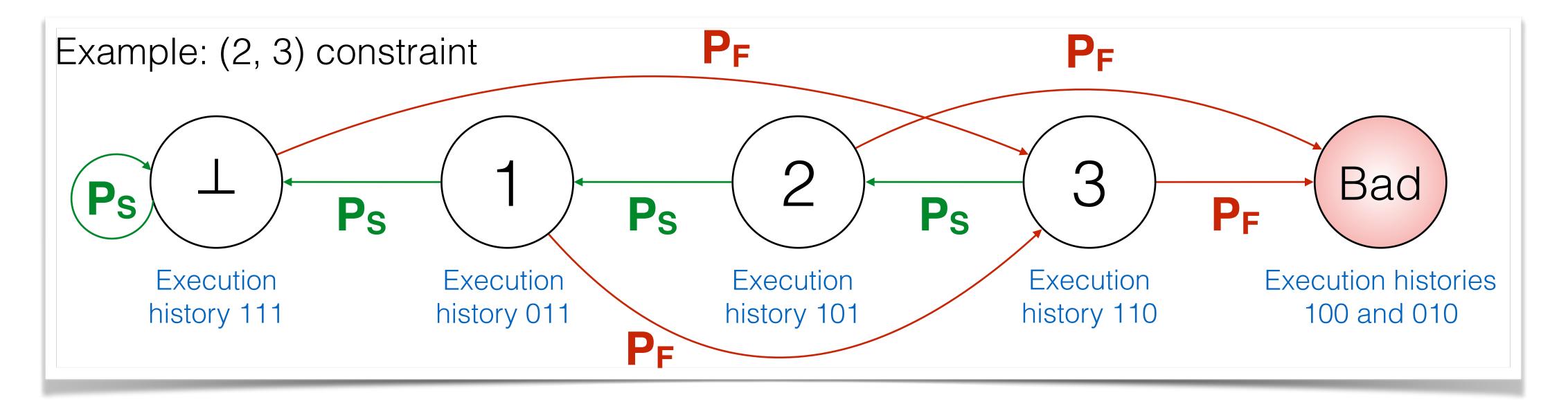


Store **positions of all failed iterations**, instead of the entire history

Store **positions of all failed iterations**, instead of the entire history


Store **positions of all failed iterations**, instead of the entire history


Store **positions of all failed iterations**, instead of the entire history


Store **positions of all failed iterations**, instead of the entire history

ECRTS 2019

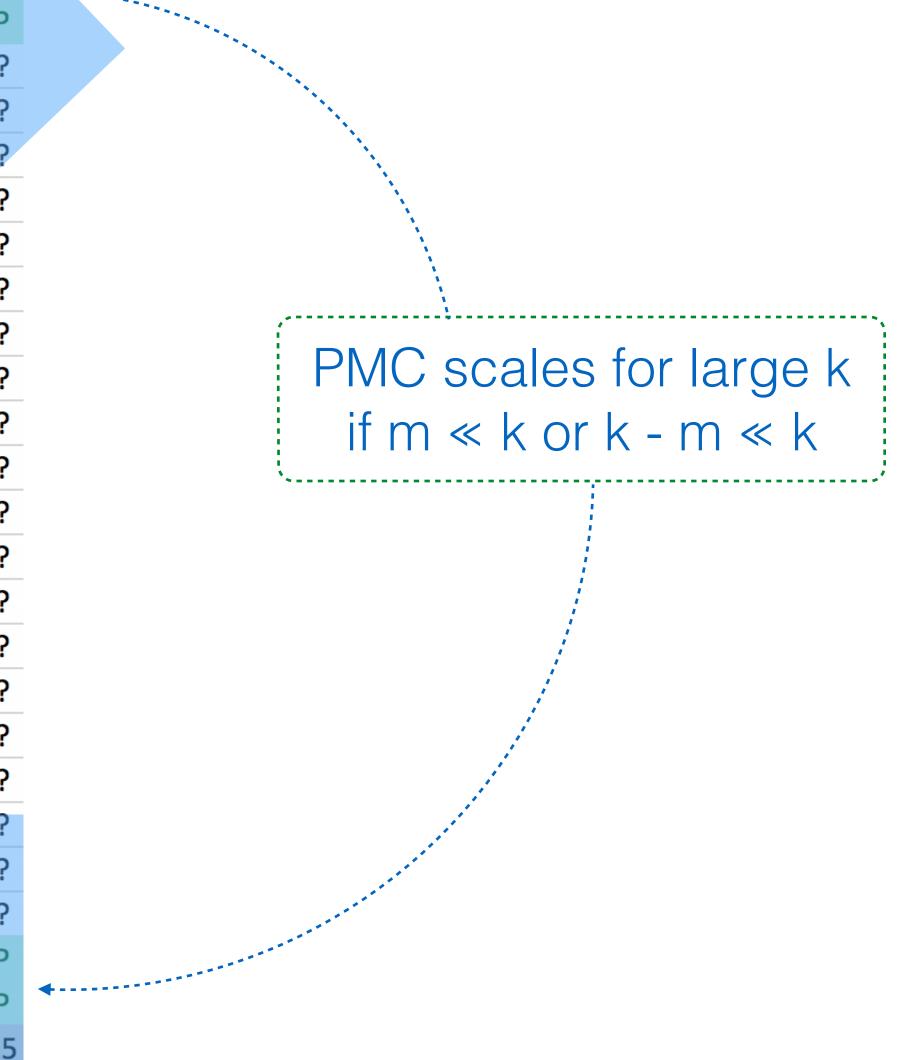
Store **positions of all failed iterations**, instead of the entire history

ECRTS 2019

Does the Optimized PMC Scale with k?

	24																								Ρ
	23																							Ρ	Ρ
	22																						Ρ	Ρ	?
	21																					Ρ	Ρ	?	?
	20			D	_	D	N /														Ρ	Ρ	?	?	?
	19			Ρ	-	Ρ	M													Ρ	Ρ	?	?	?	?
	18																		Ρ	Ρ	?	?	?	?	?
	17																	Ρ	Ρ	?	?	?	?	?	?
	16																Ρ	Ρ	?	?	?	?	?	?	?
	15															Ρ	Ρ	?	?	?	?	?	?	?	?
	14														Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?
	13													Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?
	12												Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?
	11											Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?
	10										Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?
	9									Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?
	8								Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?
	7							Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	6						Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	5					Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	4				Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?
	3			Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?
↑	2		Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
m	1	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
k	\rightarrow	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Arpan Gujarati (MPI-SWS)


ECRTS 2019

Does the Optimized PMC Scale with k?

	24																								Ρ
	23																							Ρ	Ρ
	22																						Ρ	Ρ	?
	21																					Ρ	Ρ	?	?
	20			D	_	Ρ	Ν/														Ρ	Ρ	?	?	?
	19			r	_	Γ														Ρ	Ρ	?	?	?	?
	18																		Ρ	Ρ	?	?	?	?	?
	17																	Ρ	Ρ	?	?	?	?	?	?
	16																Ρ	Ρ	?	?	?	?	?	?	?
	15															Ρ	Ρ	?	?	?	?	?	?	?	?
	14														Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?
	13													Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?
	12												Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?
	11											Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?
	10										Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?
	9									P	Р	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?
	8								Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?
	7							Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	6						Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	5					Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	4				Р	Ρ	Ρ	Ρ	Ρ	Р	Ρ	Р	?	?	?	?	?	?	?	?	?	?	?	?	?
	3		_	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Р	Ρ	Ρ	Ρ	Ρ	Ρ	Р	?	?	?	?	?	?	?	?	?
↑	2	_	Р	P	P	P	Р	P	P	P	P	P	Р	P	Р	Ρ	P	P	Ρ	Ρ	Ρ	Ρ	Р	P	Ρ
m	1	P	P	P	P	P	P	P	P	P	P	P	P	Р	P	P	P	Р	P	P	P	P	Р	P	P
k	\rightarrow	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Arpan Gujarati (MPI-SWS)

ECRTS 2019

Does the Optimized PMC Scale with k?

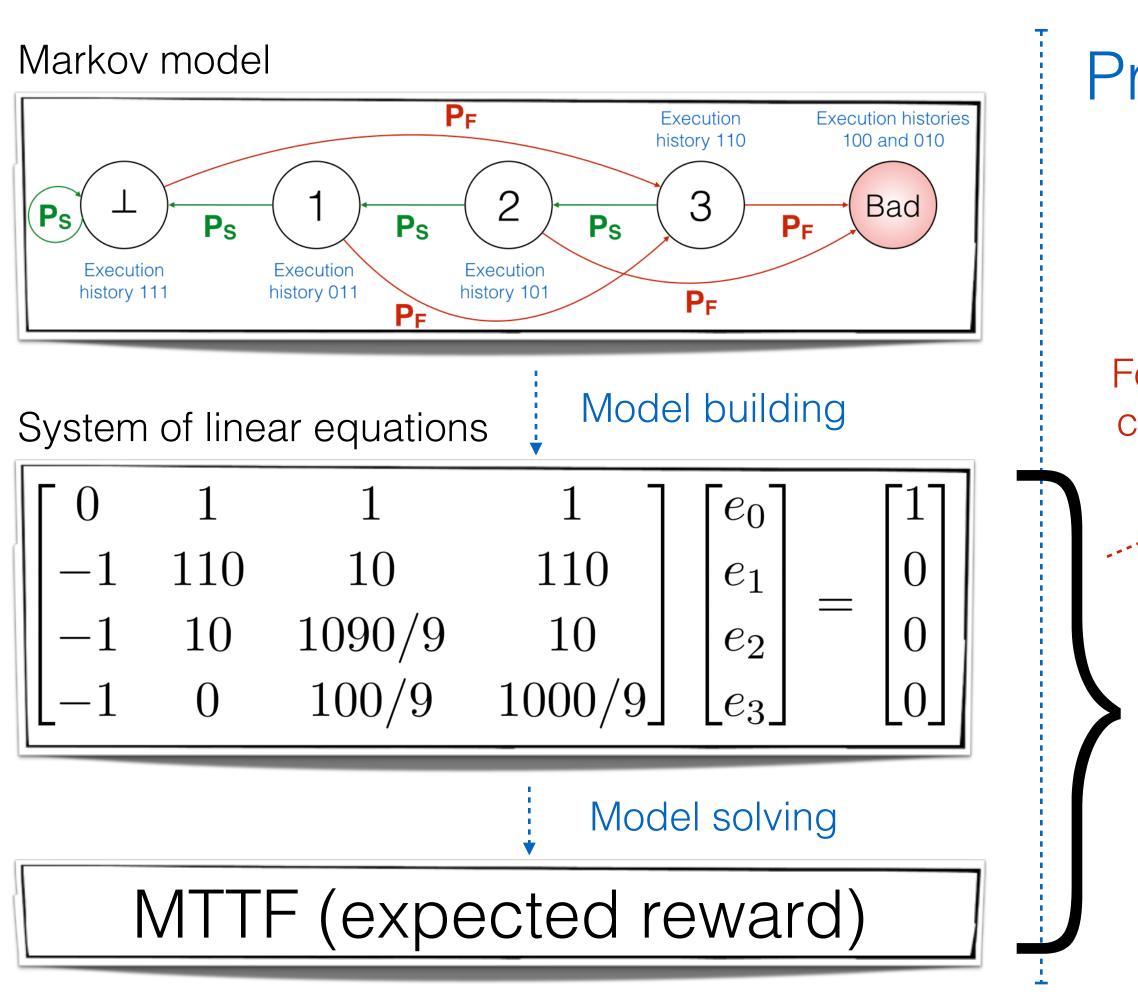
	24																								Ρ
	23																							Ρ	Ρ
	22																						Ρ	Ρ	?
	21																					Ρ	Ρ	?	?
	20			D	_	Ρ	Ν/														Ρ	Ρ	?	?	?
	19			r	_	Γ														Ρ	Ρ	?	?	?	?
	18																		Ρ	Ρ	?	?	?	?	?
	17																	Ρ	Ρ	?	?	?	?	?	?
	16																Ρ	Ρ	?	?	?	?	?	?	?
	15															Ρ	Ρ	?	?	?	?	?	?	?	?
	14														Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?
	13													Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?
	12												Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?
	11											Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?
	10										Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?
	9									P	Р	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?
	8								Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?
	7							Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	6						Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	5					Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?	?	?	?	?	?	?
	4				Р	Ρ	Ρ	Ρ	Ρ	Р	Ρ	Р	?	?	?	?	?	?	?	?	?	?	?	?	?
	3		_	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Р	Ρ	Ρ	Ρ	Ρ	Ρ	Р	?	?	?	?	?	?	?	?	?
↑	2	_	Р	P	P	P	Р	P	P	P	P	P	Р	P	Р	Ρ	P	P	Ρ	Ρ	Ρ	Ρ	Р	P	Ρ
m	1	P	P	P	P	P	P	P	P	P	P	P	P	Р	P	P	P	Р	P	P	P	P	Р	P	P
k	\rightarrow	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Arpan Gujarati (MPI-SWS)

·----

PMC scales for large k if $m \ll k \text{ or } k - m \ll k$

Scalability still a problem for the general case


The Martingale Approach (Mart) Exact, less generic, but slightly faster

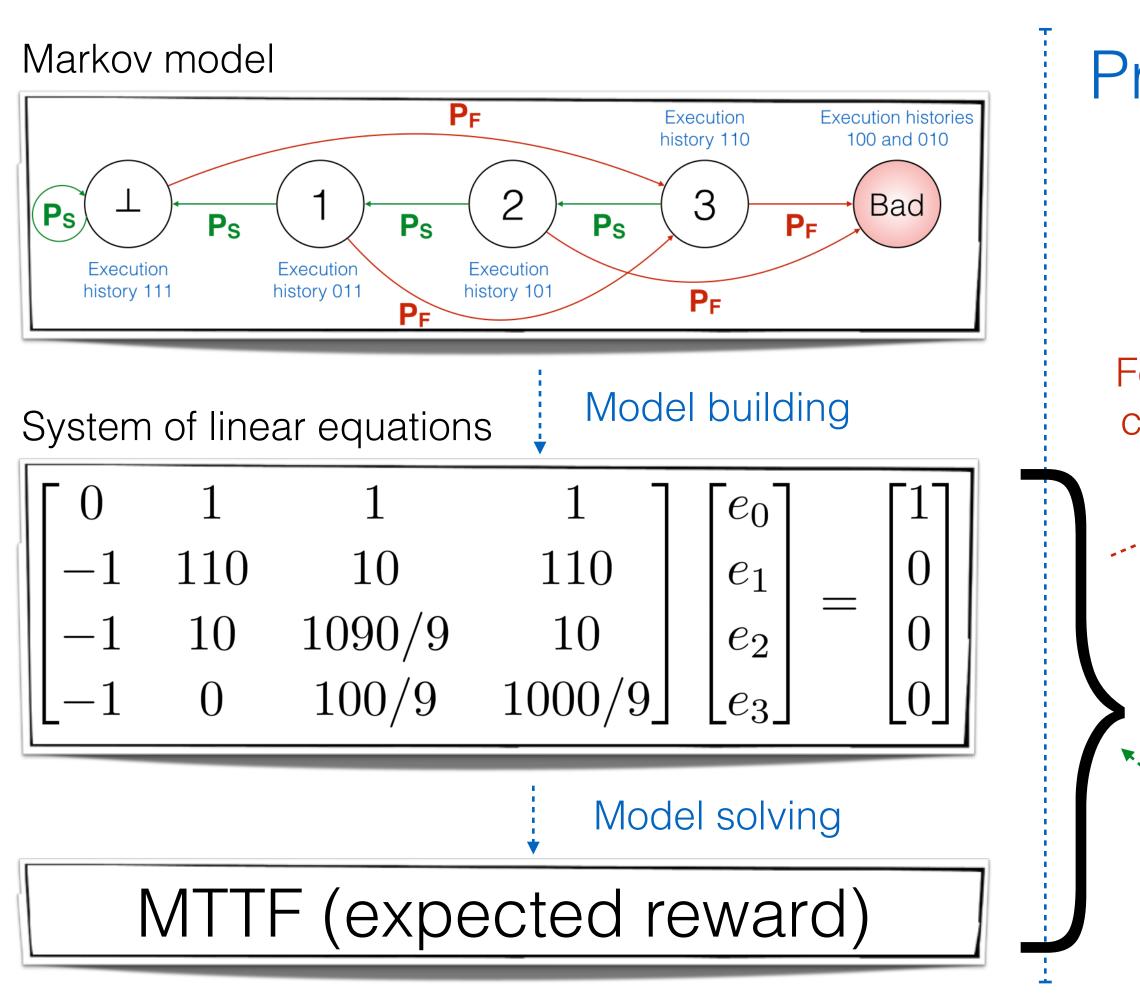
Arpan Gujarati (MPI-SWS)

ECRTS 2019

Exact Model Checking Slows Down PRISM

Probabilistic model checking (PRISM under the hood)

For error-free computation


PRISM must be configured with exact model checking (i.e., no floating points)

Exact Model Checking Slows Down PRISM

* Li. "A Martingale Approach to the Study of Occurrence of Sequence Patterns in Repeated Experiments." The Annals of Probability 8.6 (1980):1171–1176.

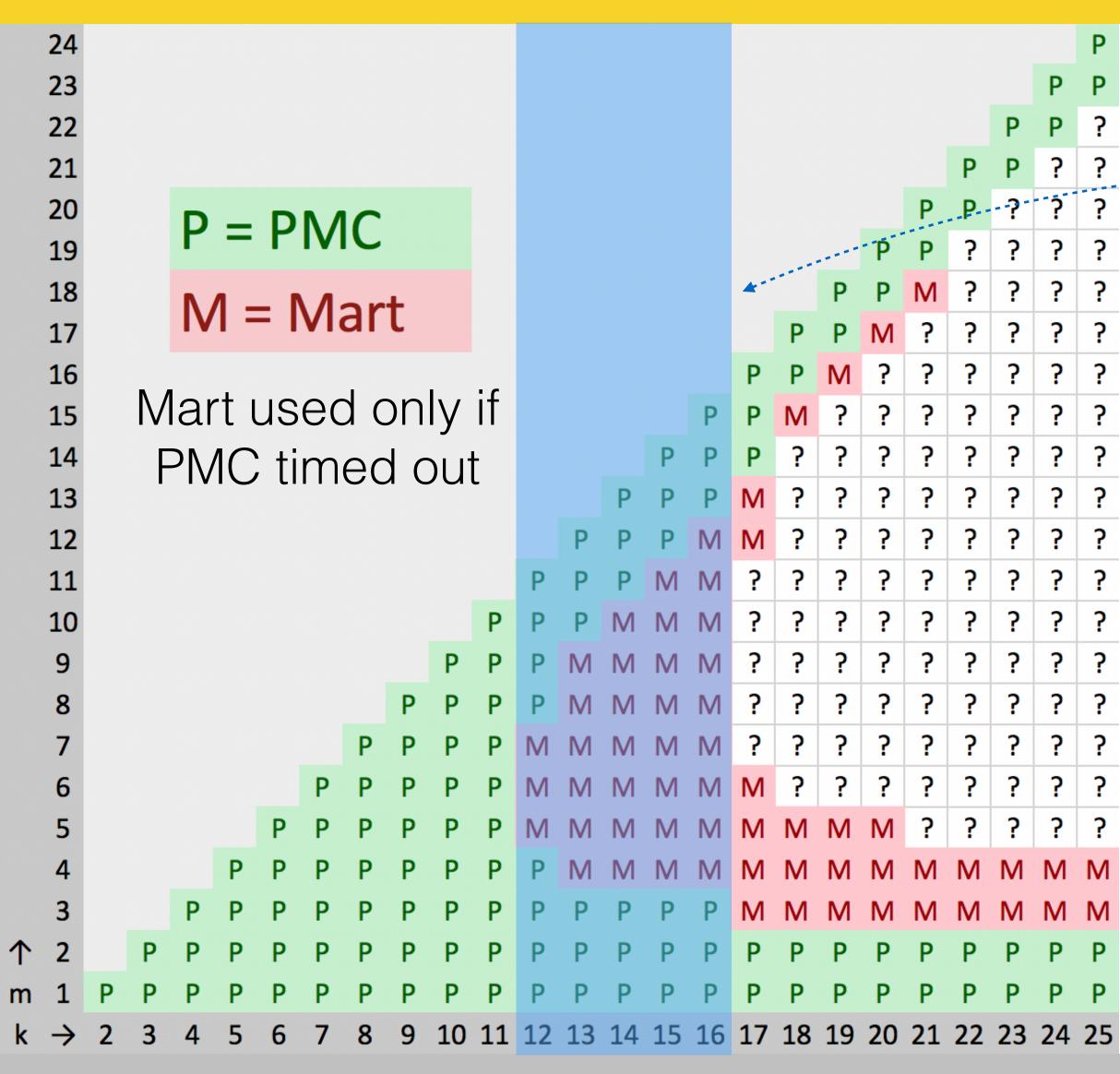
Probabilistic model checking (PRISM under the hood)

For error-free computation

PRISM must be configured with exact model checking (i.e., no floating points)

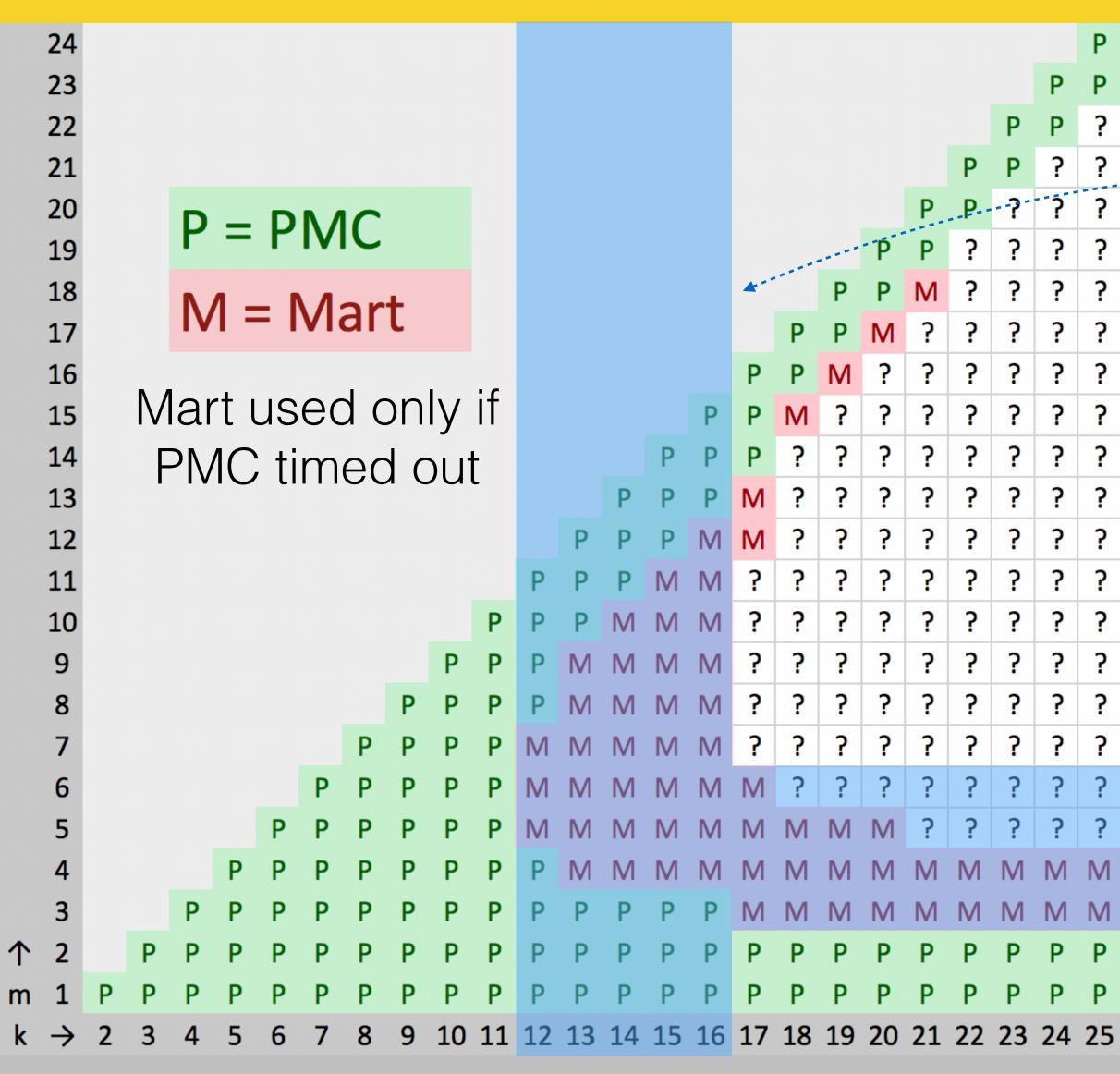
Using martingale theory*

- Linear equations obtained directly
- Bypass PRISM, use highly-scalable BLAS/ LAPACK libraries, with very high precision



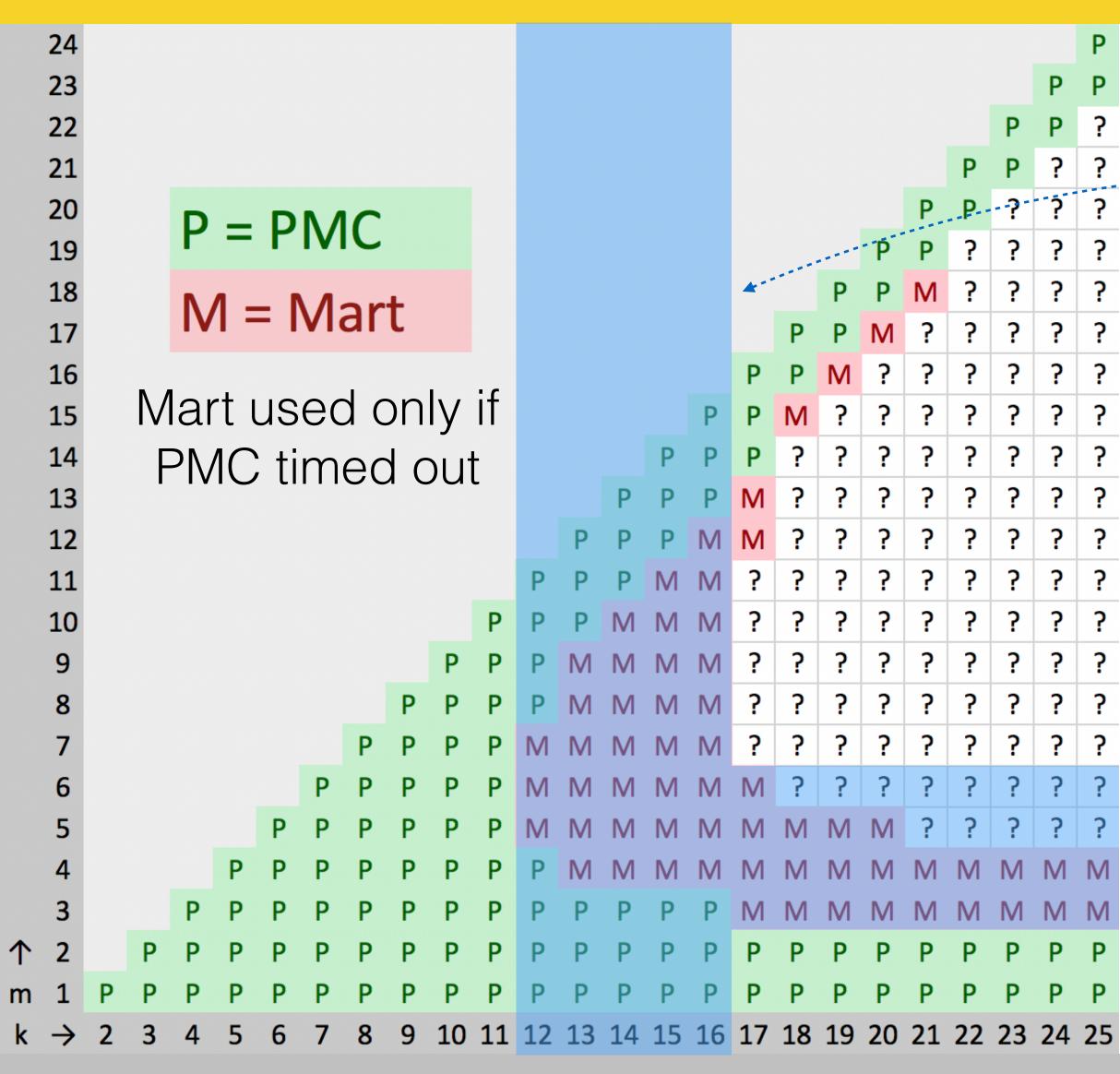
	24																								Ρ
	23																							Ρ	Ρ
	22																						Ρ	Ρ	?
	21																					Ρ	Ρ	?	?
	20			D	=	D	Γ.Λ														Ρ	Ρ	?	?	?
	19			Г	-	Γ	IVI													Ρ	Ρ	?	?	?	?
	18			N	1 =	- ſ	Л	ər	÷										Ρ	Ρ	Μ	?	?	?	?
	17			IV	1.7	- 1	VI	aı	L									Ρ	Ρ	Μ	?	?	?	?	?
	16		R /		а н .					I. <i>.</i>	: ר						Ρ	Ρ	Μ	?	?	?	?	?	?
	15		IV	lar	τι	JS	ec		DN	ly	IT					Ρ	Ρ	Μ	?	?	?	?	?	?	?
	14		F	PM	1C	ti	m	ec		but	t				Ρ	Ρ	Ρ	?	?	?	?	?	?	?	?
	13										-			Ρ	Ρ	Ρ	Μ	?	?	?	?	?	?	?	?
	12												Ρ	Ρ	Ρ	Μ	Μ	?	?	?	?	?	?	?	?
	11											Ρ	Ρ	Ρ	Μ	Μ	?	?	?	?	?	?	?	?	?
	10										Ρ	Ρ	Ρ	Μ	Μ	Μ	?	?	?	?	?	?	?	?	?
	9									Ρ	Ρ	Ρ		Μ			?	?	?	?	?	?	?	?	?
	8								Ρ	Ρ	Ρ	Ρ		Μ				?	?	?	?	?	?	?	?
	7						_	Ρ	Ρ	Ρ	Ρ		Μ					?	?	?	?	?	?	?	?
	6					_	Р	Р	Ρ	Ρ	P		Μ						?	?	?	?	?	?	?
	5					Р	Р	P	Ρ	P	Р		M								?	?	?	?	?
	4				Р	Р	Р	P	Ρ	P	Р	P								Μ					M
	3		-	Р	P	Р	Р	P	P	P	Р	P	Р	Р		Р	_			Μ					
Υ	2	-	Р	Р	Р	Р	Р	Р	P	P	P	P	P	Р	Р	P	P	P	P	P	P	P	Р	P	P
m	1	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P	P
k	\rightarrow	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Arpan Gujarati (MPI-SWS)



Arpan Gujarati (MPI-SWS)

Mart helps scale up exact MTTF estimation to **k = 16**


Arpan Gujarati (MPI-SWS)

Mart helps scale up exact MTTF estimation to **k = 16**

Also, Mart implicitly benefits from small values of m

Arpan Gujarati (MPI-SWS)

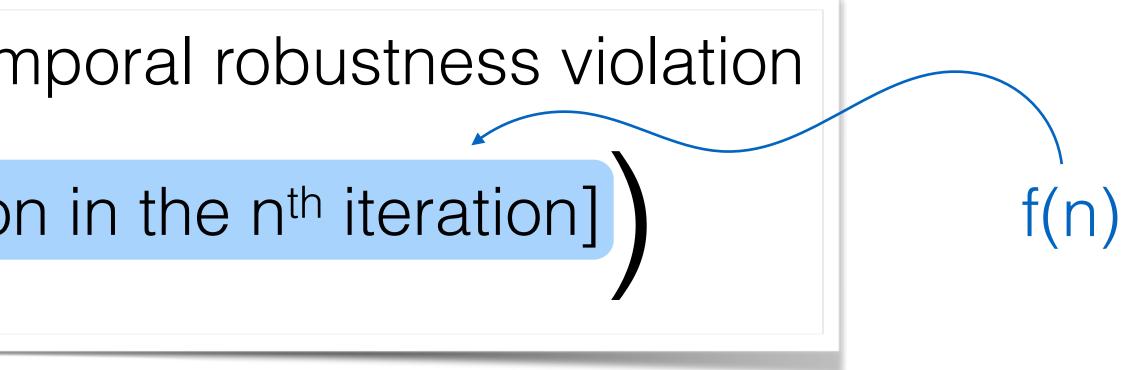
Mart helps scale up exact MTTF estimation to **k = 16**

Also, Mart implicitly benefits from small values of m

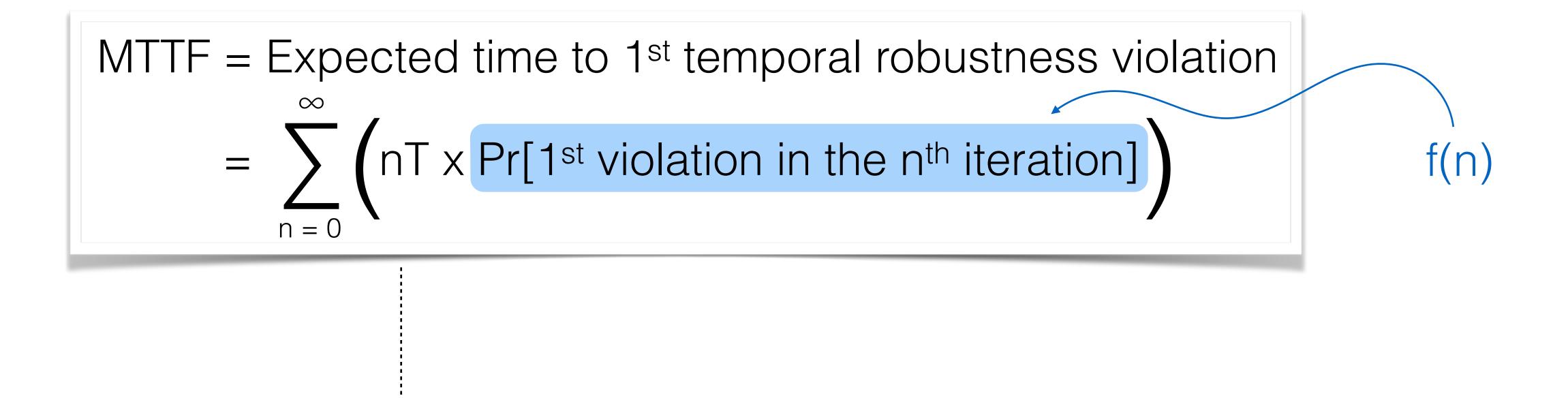
Scalability still a problem for the general case

Sound Approximation (SAp) Not exact, least generic, but highly scalable

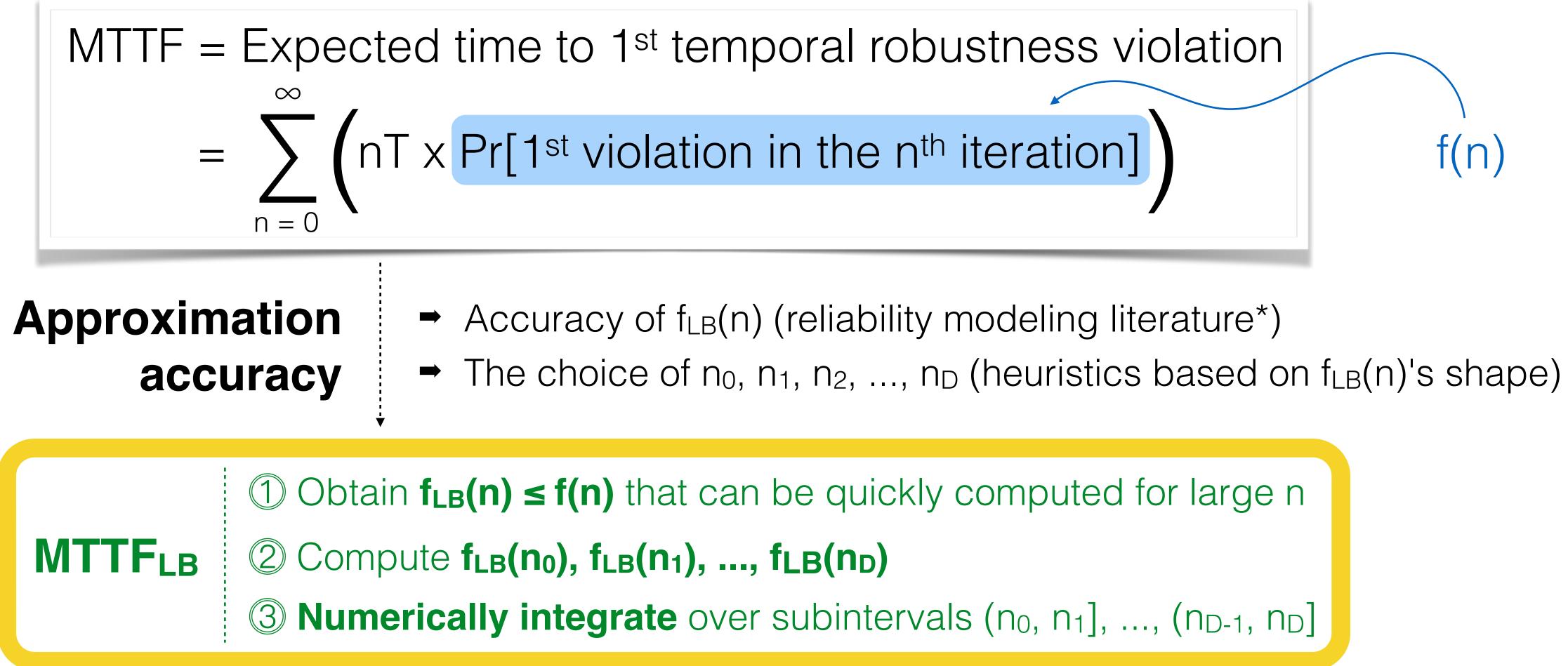
Arpan Gujarati (MPI-SWS)



MTTF = Expected time to 1^{st} temporal robustness violation $= \sum \left(nT \times Pr[1^{st} \text{ violation in the } n^{th} \text{ iteration}] \right)$



MTTF = Expected time to 1^{st} temporal robustness violation $= \sum \left(nT \times Pr[1^{st} \text{ violation in the } n^{th} \text{ iteration}] \right)$



2 Compute **f**_{LB}(**n**₀), **f**_{LB}(**n**₁), ..., **f**_{LB}(**n**_D)

(1) Obtain $f_{LB}(n) \leq f(n)$ that can be quickly computed for large n ③ Numerically integrate over subintervals $(n_0, n_1], \dots, (n_{D-1}, n_D]$

* Sfakianakis et al.. "Reliability of a consecutive k-out-of-r-from-n: F system." IEEE Transactions on Reliability 41.3 (1992): 442-447.

SAp is Scalable to Very Large Window Sizes

	24								_	_															Ρ
	23								S	SA	р	US	е(DN	ly	if	b	oth	ן				Ρ	Ρ
	22							F	≥₩	1C	a	n	1 k	$\Lambda \epsilon$	art	ti	me	eo		ut			Ρ	Ρ	S
	21									10				vi c								Ρ	Ρ	S	S
	20			Ρ	=	Ρ	M														Ρ	Ρ	S	S	S
	19			•	_	1														Ρ	Ρ	S	S	S	S
	18			\mathbf{N}	1 =	= [M	ar	t									-	Р	Р	Μ	S	S	S	S
	17			•••	•				•								-	P	Р	M	S	S	S	S	S
	16			S	=	S	٩r	2								D	P	P	M	S	S	S	S	S	S
	15			-			٦,								Р	P P	P P	M S	S S	S S	S S	S S	S	S S	S
	14 13													Р	P	P	M	S S							
	12												Р	r D	P	M	M	S	S	S	S	S	S	S	S
	11											Р	P	P	M	M	S	S	S	S	S	S	S	S	S
	10										Р	P	P		M		S	S	S	S	S	S	S	S	S
	9									Р	Ρ	Ρ	Μ	М	_	_	S	S	S	S	S	S	S	S	S
	8								Ρ	Р	Ρ	Ρ	Μ	М	Μ	Μ	S	S	S	S	S	S	S	S	S
	7							Ρ	Ρ	Ρ	Ρ	М	Μ	Μ	Μ	Μ	S	S	S	S	S	S	S	S	S
	6						Ρ	Ρ	Ρ	Ρ	Ρ	М	Μ	Μ	Μ	Μ	Μ	S	S	S	S	S	S	S	S
	5					Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	S	S	S	S	S
	4				Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ
	3			Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ
↑	2		Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
m	1	Р	Ρ	Р	P	Р	P	Р	Р	Р	Р	Р	Р	Р	P	Р	P	Р	Р	Р	Р	Р	Р	Р	Р
k	\rightarrow	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Arpan Gujarati (MPI-SWS)

SAp is Scalable to Very Large Window Sizes

	24								_	_															Ρ
	23								S	SA	р	US	е(DN	ly	if	b	oth	ן				Ρ	Ρ
	22							F	≥₩	1C	a	n	1 k	$\Lambda \epsilon$	art	ti	me	eo		ut			Ρ	Ρ	S
	21									10				vi c								Ρ	Ρ	S	S
	20			Ρ	=	Ρ	M														Ρ	Ρ	S	S	S
	19			•	_	1														Ρ	Ρ	S	S	S	S
	18			\mathbf{N}	1 =	= [M	ar	t									-	Р	Р	Μ	S	S	S	S
	17			•••	•				•								-	P	Р	M	S	S	S	S	S
	16			S	=	S	٩r	2								D	P	P	M	S	S	S	S	S	S
	15			-			٦,								Р	P P	P P	M S	S S	S S	S S	S S	S	S S	S
	14 13													Р	P	P	M	S S							
	12												Р	r D	P	M	M	S	S	S	S	S	S	S	S
	11											Р	P	P	M	M	S	S	S	S	S	S	S	S	S
	10										Р	P	P		M		S	S	S	S	S	S	S	S	S
	9									Р	Ρ	Ρ	Μ	М	_	_	S	S	S	S	S	S	S	S	S
	8								Ρ	Р	Ρ	Ρ	Μ	М	Μ	Μ	S	S	S	S	S	S	S	S	S
	7							Ρ	Ρ	Ρ	Ρ	М	Μ	Μ	Μ	Μ	S	S	S	S	S	S	S	S	S
	6						Ρ	Ρ	Ρ	Ρ	Ρ	М	Μ	Μ	Μ	Μ	Μ	S	S	S	S	S	S	S	S
	5					Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	S	S	S	S	S
	4				Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ
	3			Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ	Μ
↑	2		Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
m	1	Р	Ρ	Р	P	Р	P	Р	Р	Р	Р	Р	Р	Р	P	Р	P	Р	Р	Р	Р	Р	Р	Р	Р
k	\rightarrow	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Arpan Gujarati (MPI-SWS)

SAp comfortably scales for windows of size k = 1000

How Accurate is SAp?

All errors are positive (SAp is proven to under-approximate the exact MTTF)

	11											81.45
	10		Error > 5	50 %							79.25	69.20
	9		${\tt 25~\%} <$	$Error \leq 5$	50 %					76.61	65.85	58.25
	8		$Error \leq 2$	25 %					73.38	62.01	54.73	47.79
	7							69.36	57.75	50.31	44.30	39.06
	6						64.29	52.99	44.91	40.11	35.35	31.43
	5					57.84	47.34	39.12	34.28	31.22	28.13	25.06
	4				49.62	39.96	33.44	28.17	24.82	22.98	21.64	20.28
	3			39.29	30.21	25.73	22.68	20.09	17.80	15.93	14.55	13.63
\uparrow	2		25.91	19.44	15.77	13.60	12.30	11.50	10.98	10.62	10.35	10.13
m	1	05.76	05.76	05.76	05.76	05.76	05.76	05.76	05.76	05.76	05.76	05.76
k	\rightarrow	2	3	4	5	6	7	8	9	10	11	12

How Accurate is SAp?

All errors are positive (SAp is proven to under-approximate the exact MTTF)

	11											81.45
	10		Error > 5	50 %							79.25	69.20
	9		${\tt 25~\%} <$	$Error \leq 5$	50 %					76.61	65.85	58.25
	8		$Error \leq 2$	25 %					73.38	62.01	54.73	47.79
	7							69.36	57.75	50.31	44.30	39.06
	6						64.29	52.99	44.91	40.11	35.35	31.43
	5					57.84	47.34	39.12	34.28	31.22	28.13	25.06
	4				49.62	39.96	33.44	28.17	24.82	22.98	21.64	20.28
	3			39.29	30.21	25.73	22.68	20.09	17.80	15.93	14.55	13.63
\uparrow	2		25.91	19.44	15.77	13.60	12.30	11.50	10.98	10.62	10.35	10.13
m	1	05.76	05.76	05.76	05.76	05.76	05.76	05.76	05.76	05.76	05.76	05.76
k	\rightarrow	2	3	4	5	6	7	8	9	10	11	12

Relative errors significant even for small k

Exact analysis needed when feasible

How Accurate is SAp?

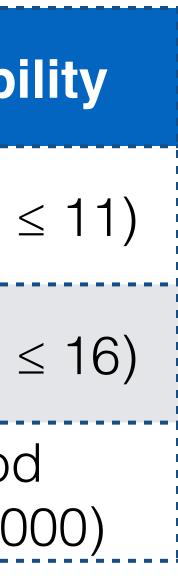
All errors are positive (SAp is proven to under-approximate the exact MTTF)

	11											81.45
	10		Error > 5	50 %							79.25	69.20
	9		${\tt 25~\%} <$	$Error \leq 5$	50 %					76.61	65.85	58.25
	8		$Error \leq 2$	25 %					73.38	62.01	54.73	47.79
	7							69.36	57.75	50.31	44.30	39.06
	6						64.29	52.99	44.91	40.11	35.35	31.43
	5					57.84	47.34	39.12	34.28	31.22	28.13	25.06
	4				49.62	39.96	33.44	28.17	24.82	22.98	21.64	20.28
	3			39.29	30.21	25.73	22.68	20.09	17.80	15.93	14.55	13.63
\uparrow	2		25.91	19.44	15.77	13.60	12.30	11.50	10.98	10.62	10.35	10.13
m	1	05.76	05.76	05.76	05.76	05.76	05.76	05.76	05.76	05.76	05.76	05.76
k	\rightarrow	2	3	4	5	6	7	8	9	10	11	12

Relative errors significant even for small k

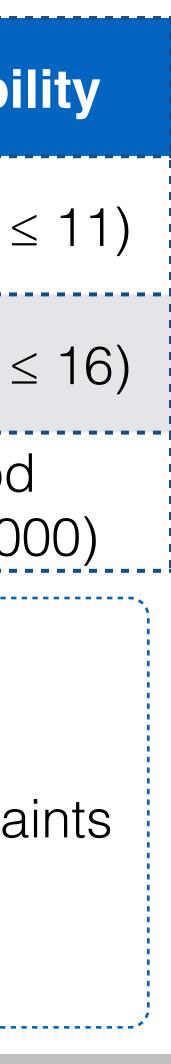
Exact analysis needed when feasible

SAp is reasonably accurate


Example: If $MTTF_{exact} = 10^9$ hours, 100% error \rightarrow MTTF_{SAp} = 0.5 x 10⁹ hours

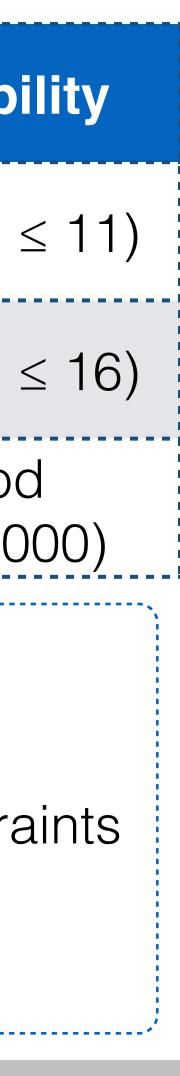
Approach	Accuracy	Expressiveness	Scalabi
PMC	Exact	General system, any weakly-hard constraint	Poor (m ≤
Mart	Exact	IID systems, any weakly-hard constraint	Poor (m ≤
SAp	Sound approx. (≤ 100%)	IID systems, single (m, k) constraint	Good (m ≤ 10

Summary



Summary

Approach	Accuracy	Expressiveness	Scalabi
PMC	Exact	General system, any weakly-hard constraint	Poor (m ≤
Mart	Exact	IID systems, any weakly-hard constraint	Poor (m ≤
SAp	Sound approx. (≤ 100%)	IID systems, single (m, k) constraint	$Good (m \le 10)$
		More in the paper!	


- PRISM code and Mart example
- → PMC / Mart for $\langle m, k \rangle$ and $\overline{\langle m \rangle}$ constraints
- SAp details and soundness proofs
- More extensive evaluation of PRISM

Summary

Approach	Accuracy		Expressiveness	Scalabi
PMC	Exact	General syster	Poor (m ≤	
Mart	Exact	IID systems, any weakly-hard constraint		Poor (m ≤
SAp	Sound approx. $(\leq 100\%)$	IID systems, single (m, k) constraint		Good (m ≤ 10
 Future work: Make SAp more expressive → Handle other / multiple weakly-hard constraints → Beyond IID iteration failure probabilities 			 More in the paper! PRISM code and Mart example PMC / Mart for ⟨m, k⟩ and ⟨m⟩ constration SAp details and soundness proofs More extensive evaluation of PRISM 	

