Mean Time To Failure

Lower-Bounding the MTTF for systems with

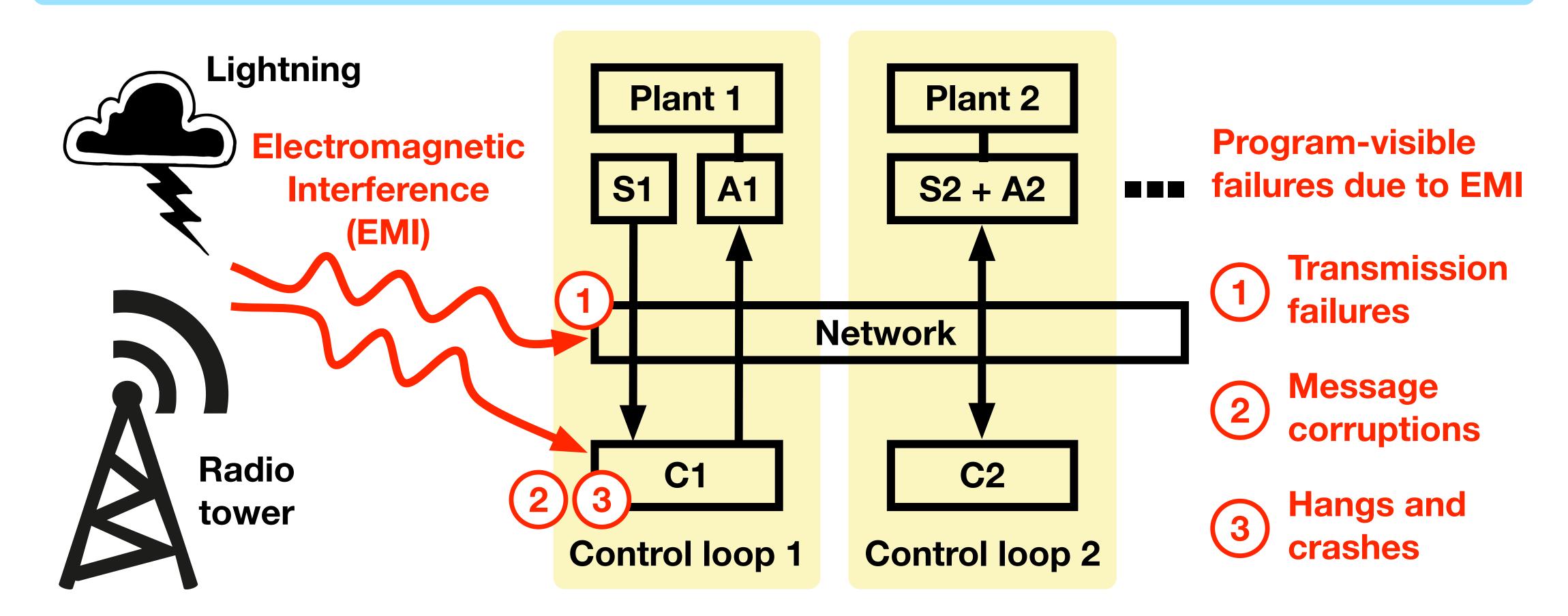
(m,k) constraints and IID iteration failure probabilities

Independent and Identically Distributed

Arpan Gujarati, Mitra Nasri, Björn B. Brandenburg

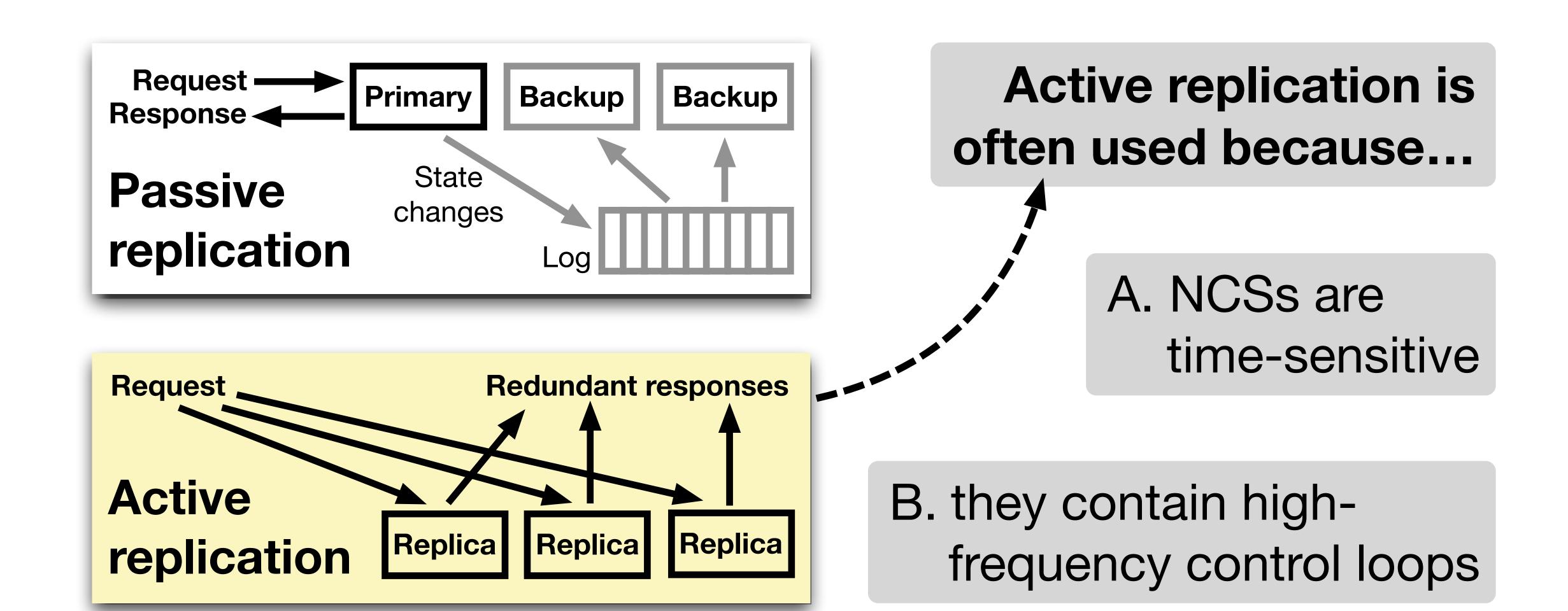
Reliability analysis of Networked Control Systems (NCS)

- = multiple feedback control loops + distributed hosts
 - + shared communication network



Safety-critical NCS must be fail-operational

i.e., continue functioning despite EMI-induced failures



Problem

What is a good active replication scheme?

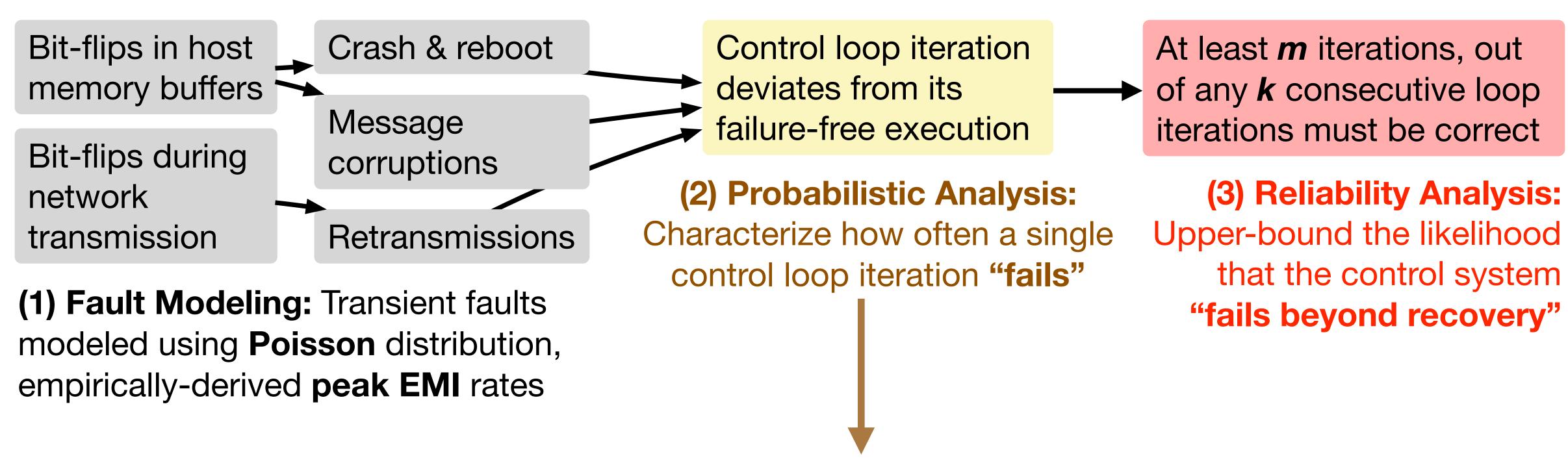
Constraints: size, weight, power, and cost

Objective: meet the dependability requirements

Opportunity: controller inherently robust to occasional disturbances

Quantifying NCS resiliency to EMI-induced transient faults

... to provide engineers with an objective metric for comparing different active replication schemes



This probability is upper-bounded by **F**, which satisfies the **IID** property w.r.t. each iteration (under submission)

Quantifying NCS resiliency to EMI-induced transient faults

... to provide engineers with an objective metric for comparing different active replication schemes

At least *m* iterations, out of any *k* consecutive loop iterations must be correct

(3) Reliability Analysis:
Upper-bound the likelihood
that the control system
"fails beyond recovery"

violation of the (m,k) constraint

Given F, lower-bound the Mean Time To Failure (MTTF)

Given F, lower-bound the mean time to failure (MTTF)

Outline -----

- Discrete probability density function (dPDF) g(n) = P(first (m,k) violation in the nth iteration)
- Probability density function (PDF) f(t) = P(first (m,k) violation at time t)
- Mean time to failure (MTTF)

 MTTF = E [system lifetime] = $\int_{0}^{\infty} tf(t) dt$
- 4 Evaluation

Failure = Violation of the (m,k) constraint:

At least *m* iterations, out of any *k* consecutive loop iterations must be correct

Lower-bounding dPDF (1/3)

g(n) = P(first(m,k)) violation in the n^{th} iteration)

$$P(C1) = {k-1 \choose k-m} F^{(k-m+1)} (1-F)^{m-1}$$

At least *m* iterations, out of any k consecutive loop iterations must be correct

C1: Less than *m* correct iterations out of last *k* iterations

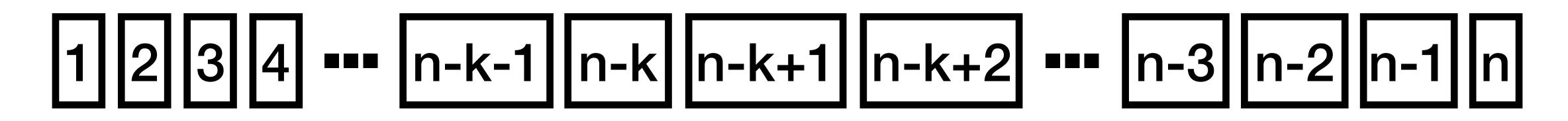
C2: (m,k) constraints not violated any time before the nth iteration

Computationally D(M) challenging

$$P(C2) = ?$$

Requires evaluating all possible combinations of failed and successful iterations among the first n-1 iterations.

Lower-bounding dPDF (2/3)



C2: (m,k) constraints not violated any time before the n^{th} iteration

Computationallychallenging

$$P(C2) = ?$$

= ? Requires evaluating all possible combinations of failed and successful iterations among the first n – 1 iterations.

modeled as

Sfakianakis et al. (1992)

- a-within-consecutive-b-out-of-c:F system
- ► consists of c ($c \ge a$) linearly ordered components,
 - fails iff at least a (a \leq b) components fail among any b consecutive components.

$$P(C2) >= R_{abc}(k - m + 1, k, n - 1)$$

Lower-bounding dPDF (3/3)

$$P(C1) = {\binom{k-1}{k-m}} F^{(k-m+1)} (1-F)^{m-1}$$

$$P(C2) >= R_{abc}(k - m + 1, k, n - 1)$$

$$g(n) \ge g_{LB}(n) = {k-1 \choose k-m} F^{(k-m+1)} (1-F)^{m-1} R_{abc}(k-m+1, k, n-1)$$

Given F, lower-bound the mean time to failure (MTTF)

Outline

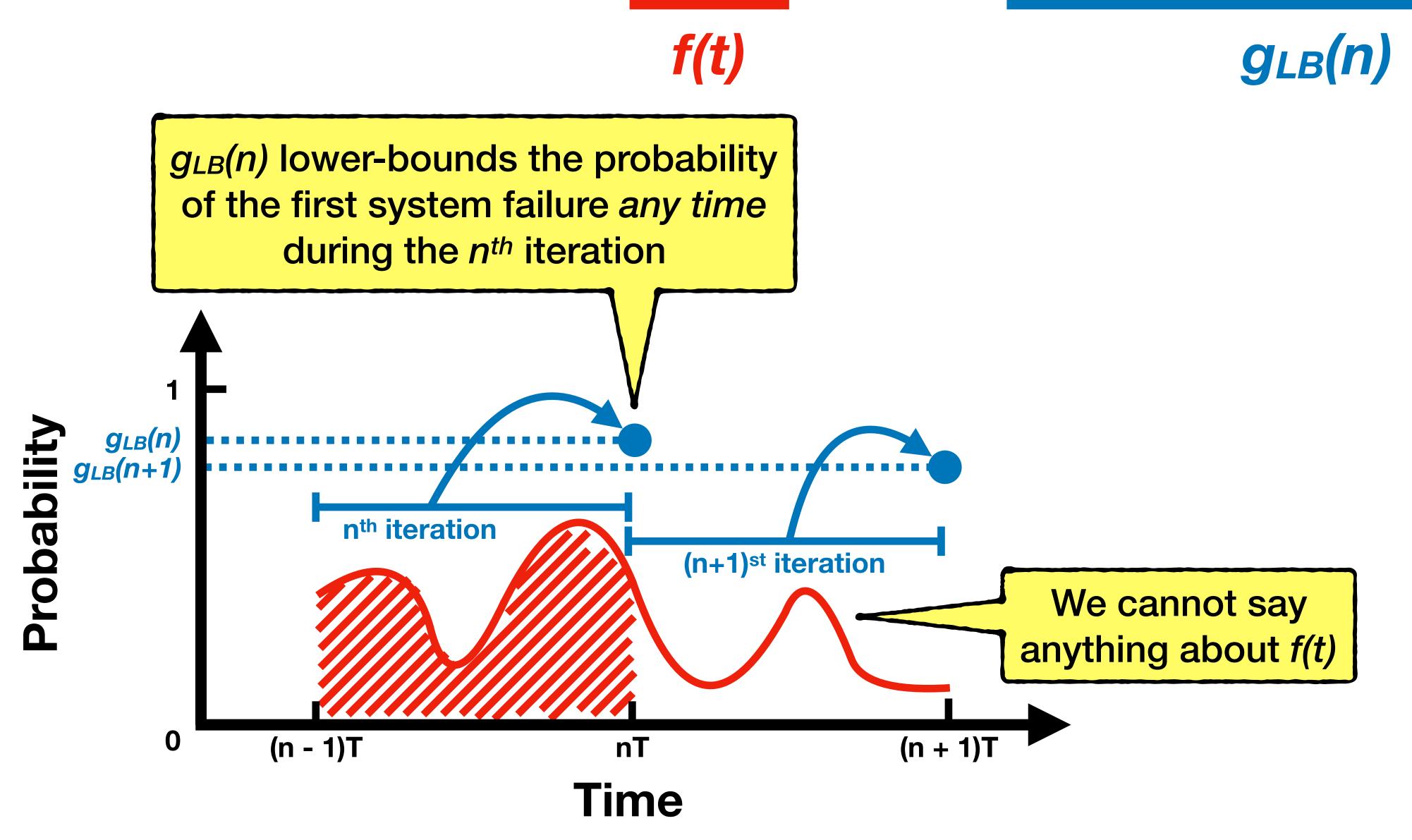
- Discrete probability density function (dPDF) g(n) = P(first(m,k)) violation in the n^{th} iteration)
- Probability density function (PDF) f(t) = P(first (m,k) violation at time t)
- Mean time to failure (MTTF)

 MTTF = E [system lifetime] = $\int_0^\infty tf(t) dt$
- 4 Evaluation

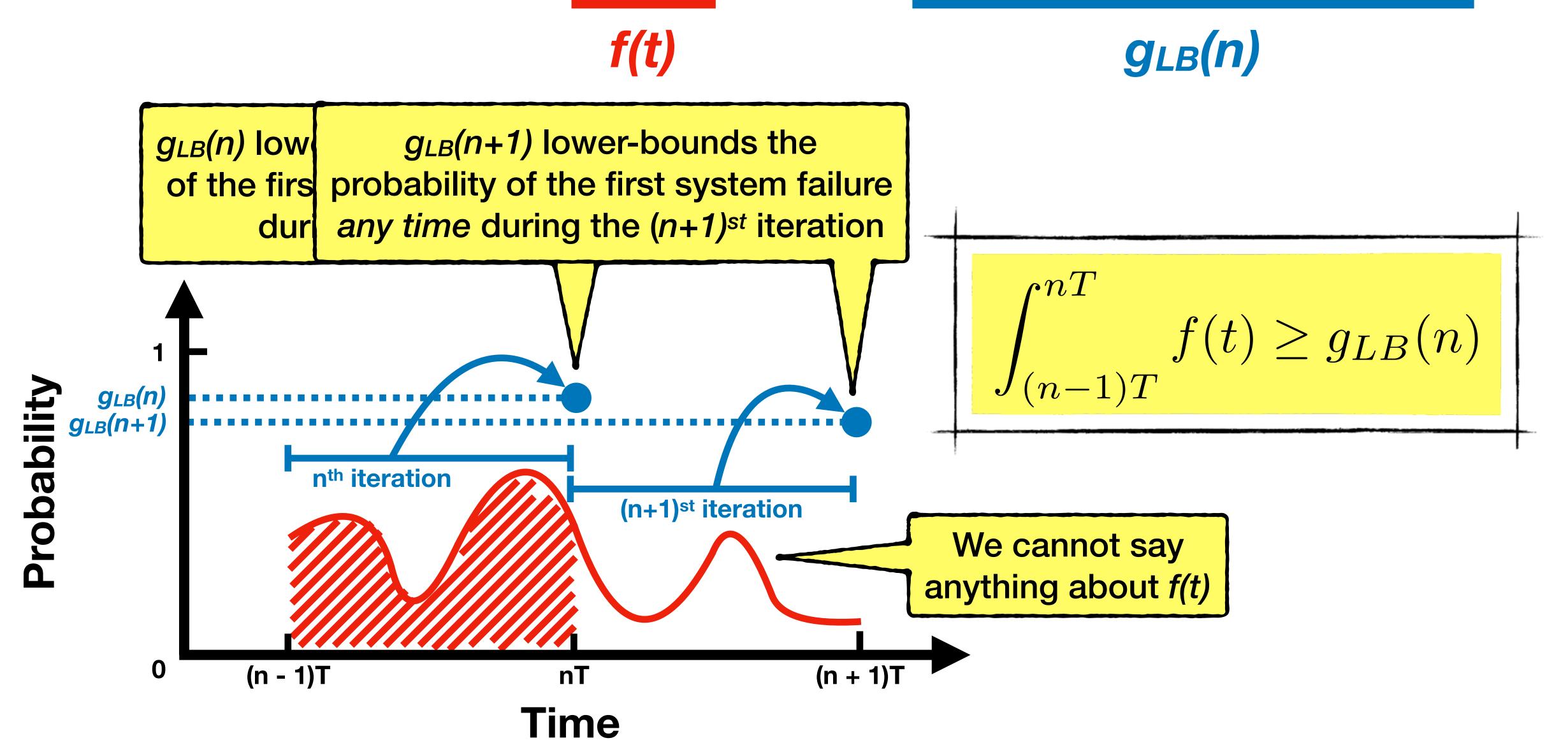
Failure = Violation of the (m,k) constraint:

At least *m* iterations, out of any *k* consecutive loop iterations must be correct

Lower-bounding PDF using dPDF lower bound



Lower-bounding PDF using dPDF lower bound



Given F, lower-bound the mean time to failure (MTTF)

Outline

- Discrete probability density function (dPDF) g(n) = P(first(m,k)) violation in the n^{th} iteration)
- Probability density function (PDF) f(t) = P(first (m,k) violation at time t)
- Mean time to failure (MTTF)

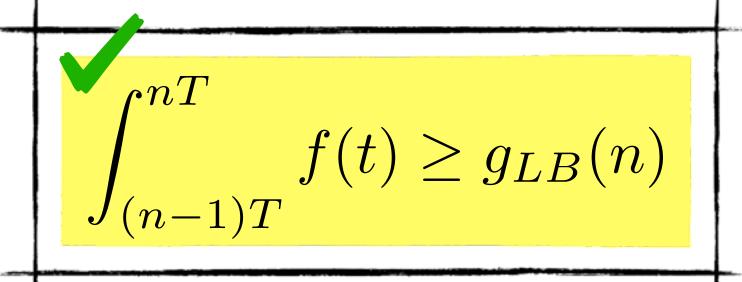
 MTTF = E [system lifetime] = $\int_0^\infty tf(t) dt$
- 4 Evaluation

Failure = Violation of the (m,k) constraint:

At least *m* iterations, out of any *k* consecutive loop iterations must be correct

Challenges

$$g(n) \ge g_{LB}(n) = {\binom{k-1}{k-m}} F^{(k-m+1)} (1-F)^{m-1} R_{abc}(k-m+1, k, n-1)$$



$$MTTF = \int_0^\infty tf(t) \, dt$$

Problem

- Complex definition
- Multiple sub-cases
- Recursive expressions

Challenges

#	Case	Definition	Type	Source
1	a = 0	$R_1(a,b,c) = 0$	Exact	_
2	a=1	$R_2(a,b,c) = P_S^c$	Exact	_
3	$a=2 \wedge c \leq 4b$	$R_3(a,b,c) = \sum_{i=0}^{\left[\frac{c+b-1}{b}\right]} {c-(i-1)(b-1) \choose i} P_F^i P_S^{c-i}$	Exact	[12, §11.4.1] (Eqs. 11.9 and 11.10)
4	$a=2 \land c > 4b$	$R_4(a,b,c) = R_3(a,b,b+t-1)(R_3(a,b,b+3))^u$ where $t = (c-b+1) \mod 4$ and $u = \left\lfloor \frac{c-b+1}{4} \right\rfloor$	LB	[12, §11.4.1] (Eq. 11.16)
5	$\begin{vmatrix} a > 2 \land c \le 2b \land \\ a = b \end{vmatrix}$	$R_5(a,b,c) = \begin{cases} 1 & 0 \le c < a \\ 1 - P_F^a - (c-k)P_F^a P_S & a \le c \le 2a \end{cases}$	Exact	[12, §9.1.1] (Eqs. 9.2, 9.9, and 9.20)
6	$\begin{vmatrix} a > 2 \land c \le 2b \land \\ a \ne b \land c \le b \end{vmatrix}$	$R_6(a,b,c) = \sum_{i=c-a+1}^{c} {c \choose i} P_S^i P_F^{c-i}$	Exact	[12, §7.1.1] (Eq. 7.2)
7	$a > 2 \land c \le 2b \land a \ne b \land c > b$	$R_7(a,b,c) = \sum_{i=0}^{a-1} {b-s \choose i} P_F^i P_S^{b-s-i} M(a',s,2s)$ where $s=c-b$ and $a'=a-i$, $\begin{cases} 1 & a'>s \\ R_2(a',s,2s) & a'=1 \\ R_3(a',s,2s) & a'=2 \\ R_5(a',s,2s) & a'>2 \land a'=s \\ R_7(a',s,2s) & a'>2 \land a'\neq s \end{cases}$	Exact	[12, §11.4.1] (Eq. 11.14)
8	$a>2 \land c>2b$	$R_8(a,b,c) = R_{\phi}(a,b,b+t-1)(R_{\phi}(a,b,b+3))^u$ where $t = (c-b+1) \mod 4$ and $u = \left\lfloor \frac{c-b+1}{4} \right\rfloor$, $R_5(a,b,c) a = b$ and $R_{\phi}(a,b,c) = \begin{cases} R_5(a,b,c) & a \neq b \land a \leq b \\ R_7(a,b,c) & a \neq b \land a > b \end{cases}$	LB	[12, §11.4.1] (Eq. 11.16)

TABLE I. Type indicates whether the reliability definition for that respective case is an exact value or a lower bound.

 ${}^{1}R_{abc}(k-m+1, k, n-1)$

Problem

- Complex definition
- Multiple sub-cases
- Recursive expressions

Symbolic integration not an option!

Numeric, but sound, method to lower-bound the MTTF

$$g(n) \ge g_{LB}(n) = {k-1 \choose k-m} F^{(k-m+1)} (1-F)^{m-1} R_{abc}(k-m+1, k, n-1)$$

Computing $g_{LB}(n)$ for a given < m, k, n, F > is easy

► *m, k, F* are constants for a given system

But what about n?

ightharpoonup n varies from 0 to ∞

$$\int_{(n-1)T}^{nT} f(t) \ge g_{LB}(n)$$

$$MTTF = \int_{0}^{\infty} tf(t) dt$$

Compute g_{LB}(n) at L + 1 distinct points d₀, d₁, ..., d_L

 GLB(d0)

 GLB(d1)

 GLB(d2)

 I

 GLB(dL-1)

 GLB(dL)

$$MTTF = \int_{0}^{\infty} t \times f(t) dt$$

{splitting $(0, \infty)$ into a finite number of subintervals $(0, d_0 T)$, $(d_0 T, d_1 T)$, ..., $(d_{D-1} T, d_D T)$, and $(d_D T, \infty)$; and dropping the integrals for subintervals $(0, d_0 T)$ and $(d_D T, \infty)$ since we are interested in lower-bounding the MTTF}

$$\geq \sum_{i=0}^{D-1} \int_{d_i T}^{d_{i+1} T} t \times f(t) dt$$

Paper

{since for all $t \in (d_iT, d_{i+1}T], t \geq d_iT$ }

$$\geq \sum_{i=0}^{D-1} \left(d_i T \times \int_{d_i T}^{d_{i+1} T} f(t) dt \right)$$

{splitting each subinterval $(d_iT, d_{i+1}T]$ into multiple subintervals $(d_iT, (d_i + 1)T], ((d_i + 1)T, (d_i + 2)T], \ldots, ((d_{i+1}-1)T, (d_{i+1})T]$, each of length T}

$$= \sum_{i=0}^{D-1} \left(d_i T \times \left(\sum_{j=0}^{d_{i+1}-d_i-1} \int_{(d_i+j)T}^{(d_i+j+1)T} f(t) dt \right) \right)$$

{since $\int_{(d_i+j)T}^{(d_i+j+1)T} f(t) dt \ge g_{LB}(d_i+j+1)$ (from Eq. 2)}

$$\geq \sum_{i=0}^{D-1} \left(d_i T \times \left(\sum_{j=0}^{d_{i+1}-d_i-1} g_{LB}(d_i+j+1) \right) \right)$$

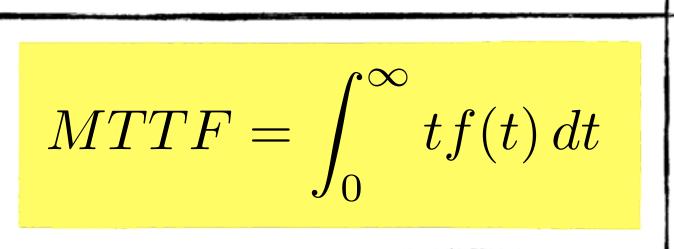
{since $g_{LB}(n)$ is decreasing with increasing n, for each integer j in the interval $[0, d_{i+1}-d_i-1], g_{LB}(d_i+j+1) \ge g_{LB}(d_i+d_{i+1}-d_i-1+1) = g_{LB}(d_{i+1})$ }

$$\geq \sum_{i=0}^{D-1} \left(d_i T imes \left(\sum_{j=0}^{d_{i+1}-d_i-1} g_{LB}(d_{i+1}) \right) \right)$$

{simplifying the innermost summation}

$$=\sum_{i=0}^{D-1} \left(d_iT imes g_{LB}(d_{i+1}) imes (d_{i+1}-d_i)
ight)$$

starting with

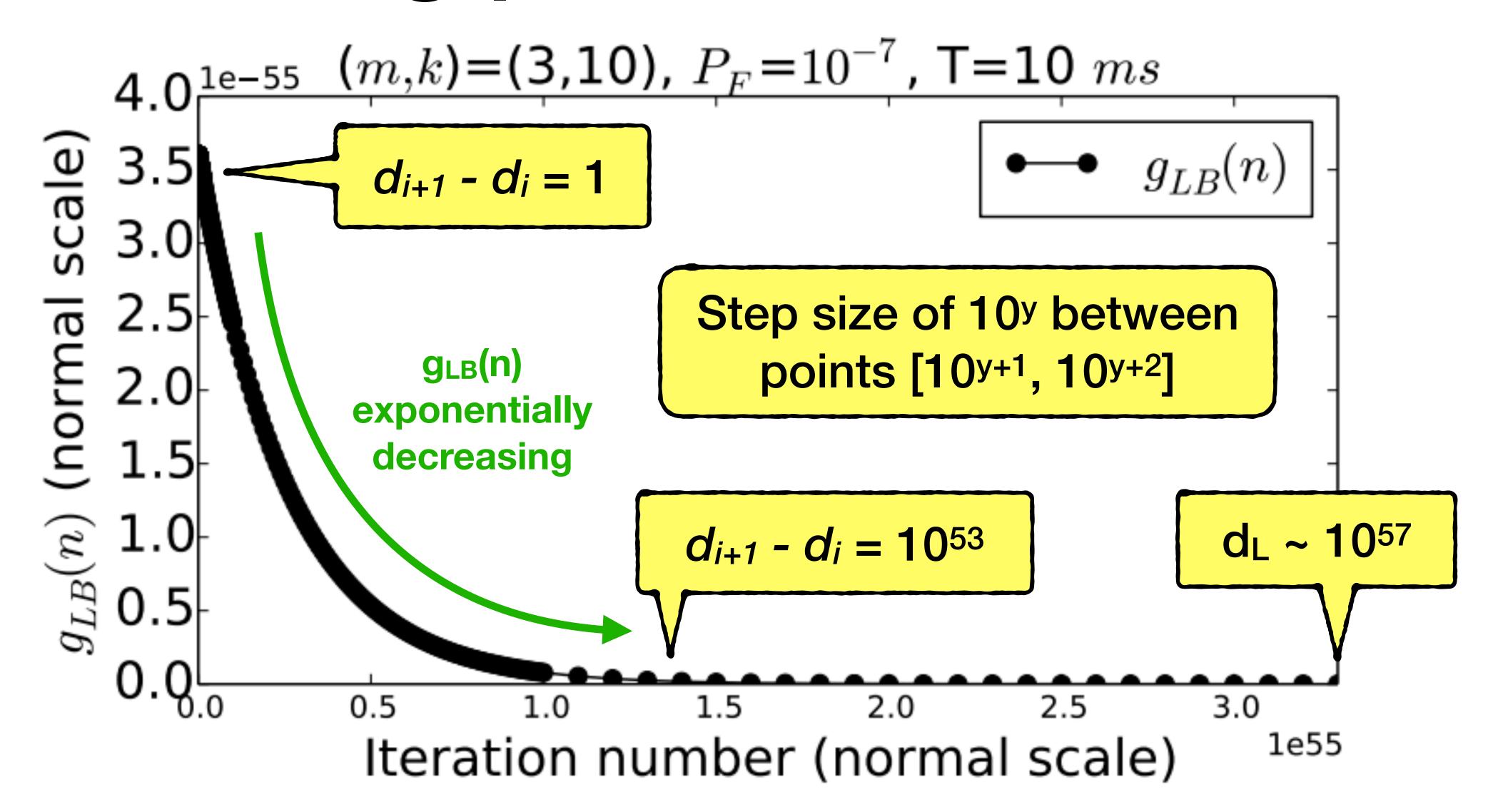


using the relation between PDF and dPDF

$$\int_{(n-1)T}^{nT} f(t) \ge g_{LB}(n)$$

$$MTTF \ge \sum_{i=0}^{L-1} \left(d_i \cdot g_{LB}(d_{i+1}) \cdot (d_{i+1} - d_i) \cdot T \right)$$

Choosing points do, d1, ..., dL



Given F, lower-bound the mean time to failure (MTTF)

Outline

- Discrete probability density function (dPDF) g(n) = P(first(m,k)) violation in the n^{th} iteration)
- Probability density function (PDF) f(t) = P(first (m,k) violation at time t)
- Mean time to failure (MTTF)

 MTTF = E [system lifetime] = $\int_0^\infty tf(t) dt$
- 4 Evaluation

Failure = Violation of the (m,k) constraint:

At least *m* iterations, out of any *k* consecutive loop iterations must be correct

Approximating MTTF using simulation

Biased-coin toss experiment

Tails with probability F

system iteration is incorrect

Heads with probability 1 - F

system iteration is correct

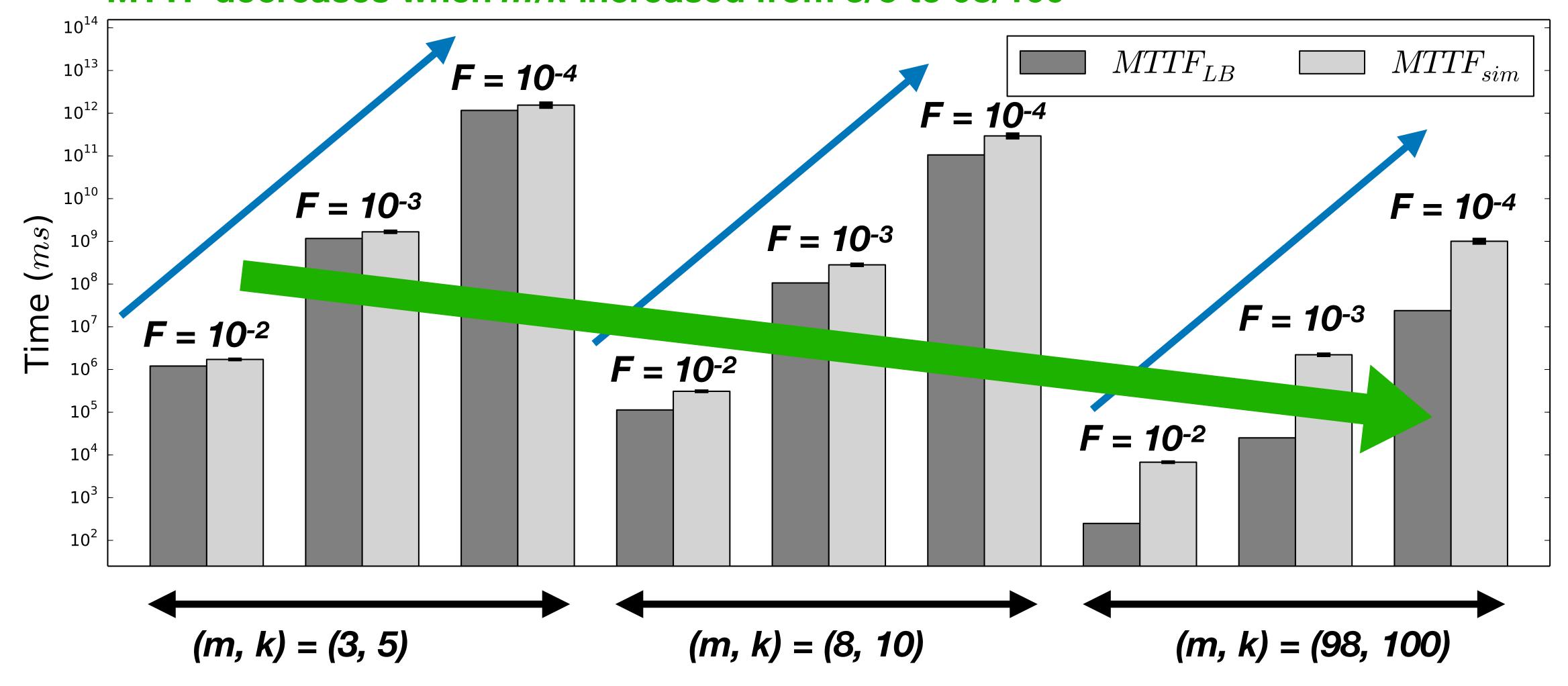
Each trial

Repeat coin toss until the (m,k) constraint is violated

 $MTTF_{sim}$ = Average tosses per trial x control period

Comparing MTTF_{LB} and MTTF_{sim}

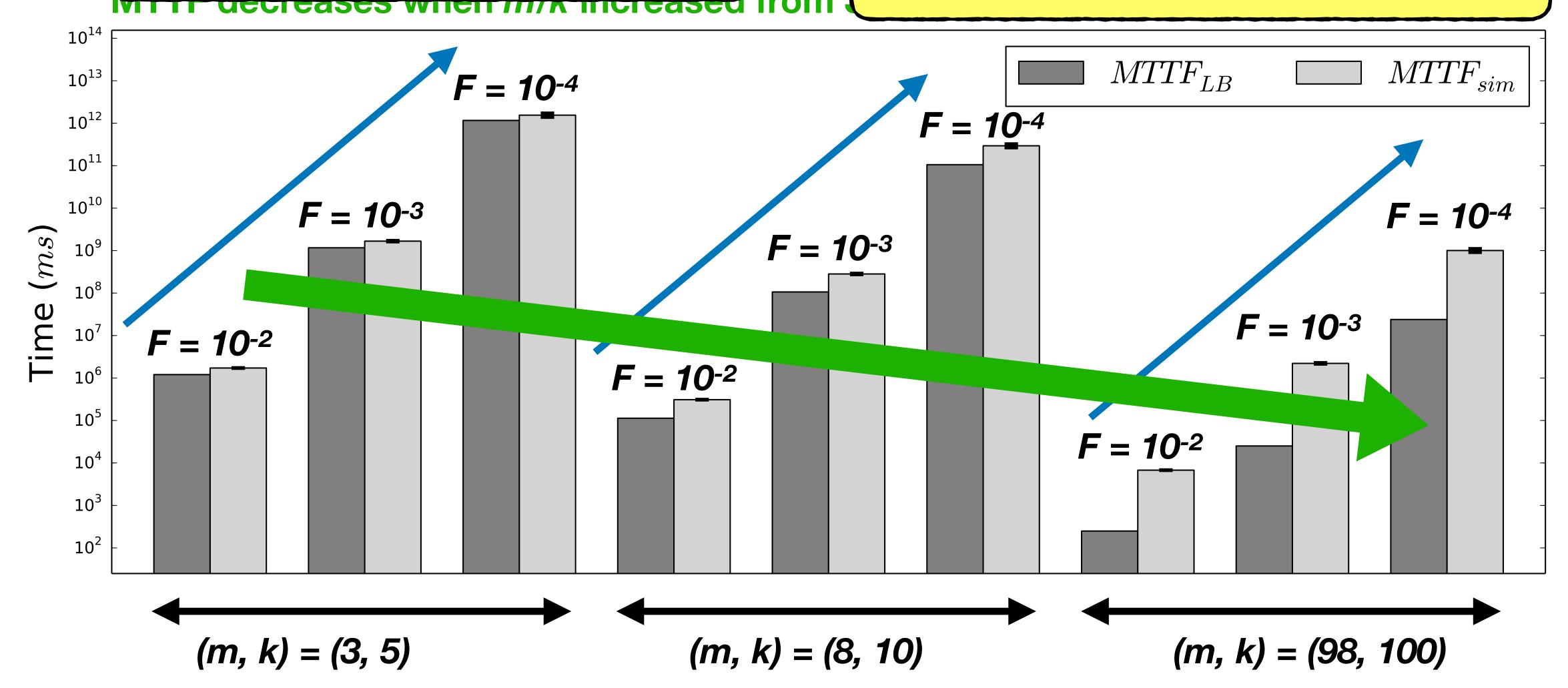
MTTF increases when *F* decreased from 10⁻² to 10⁻⁴ MTTF decreases when *m/k* increased from 3/5 to 98/100



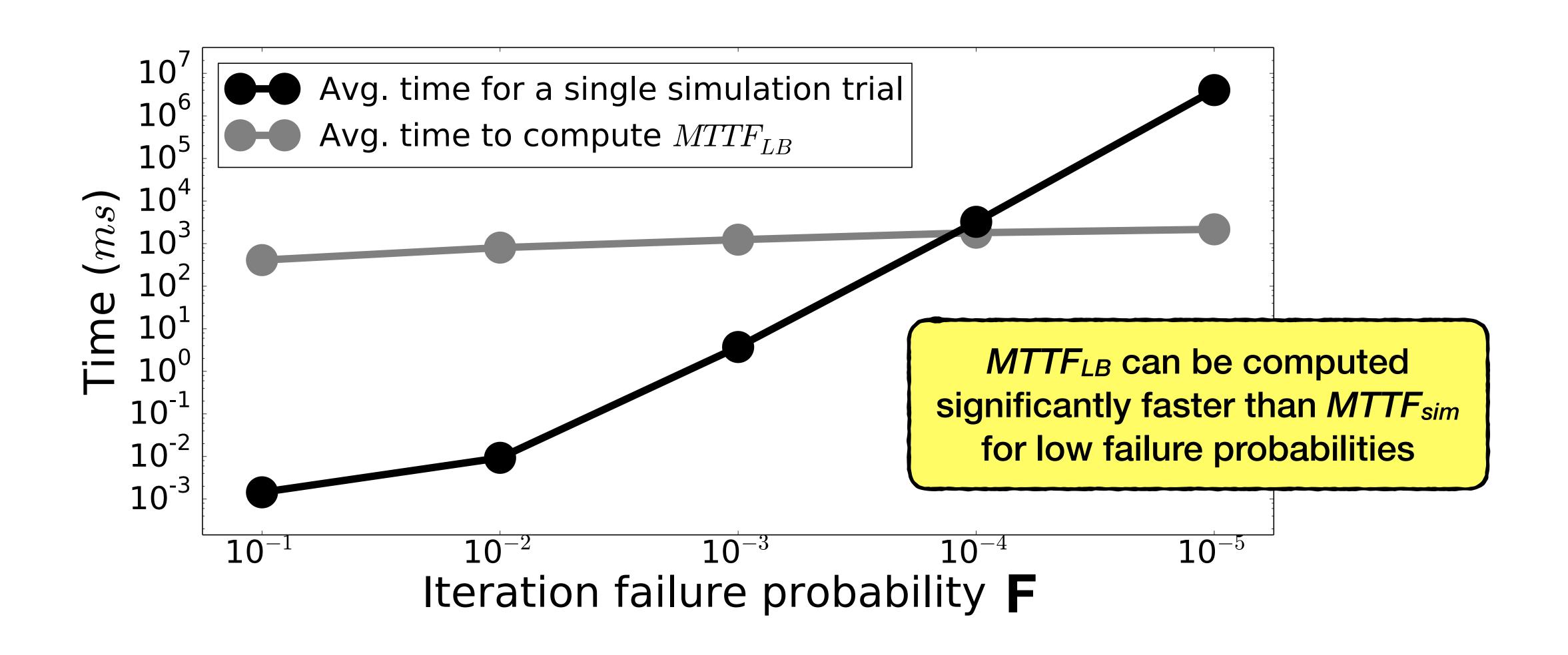
Comparing MTTF_{LB} and MTTF_{sim}

MTTF_{LB} is always less than MTTF_{sim} m 10-

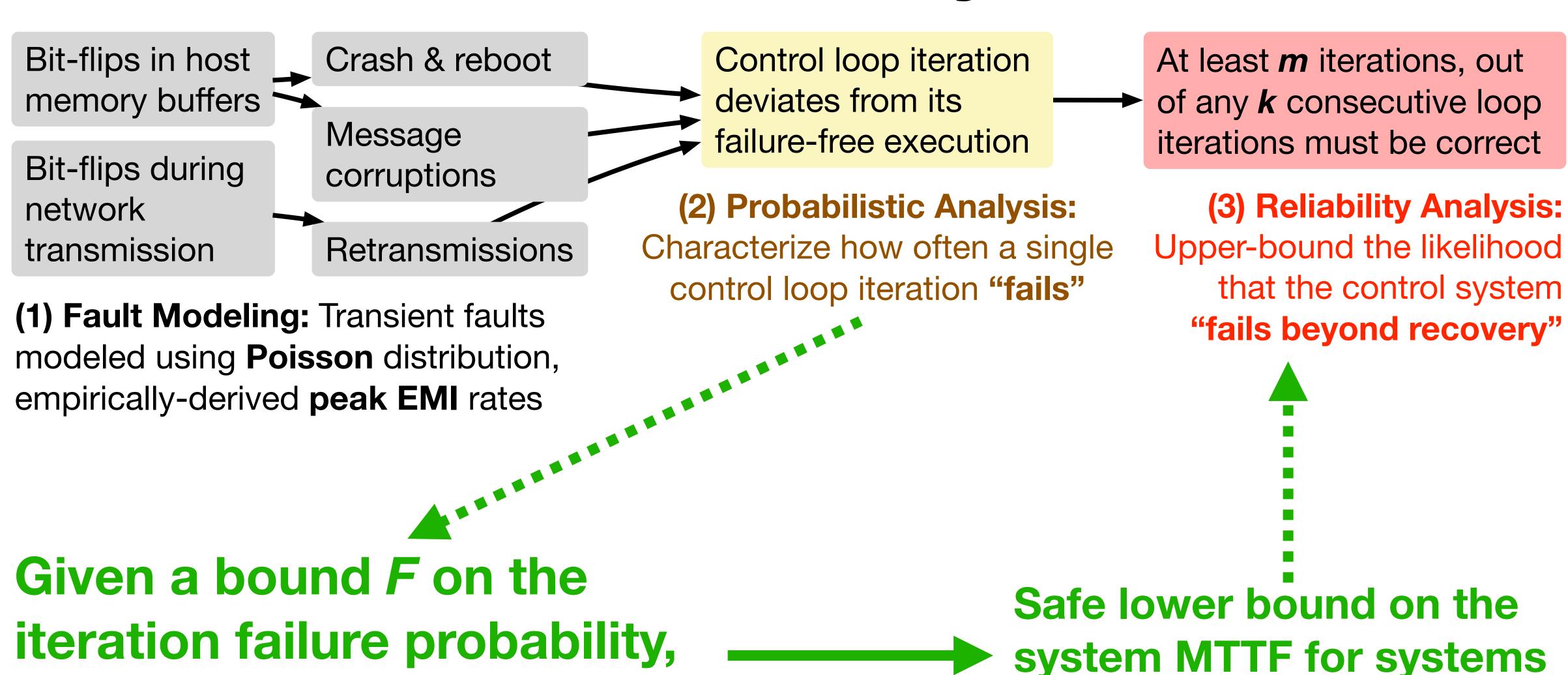
In all cases, $MTTF_{LB}$ and $MTTF_{sim}$ are roughly of the same orders of magnitude



Comparing time to compute MTTF_{LB} and MTTF_{sim}



Summary



with (m, k) constraints

also satisfying the IID property

Thank you. Questions?

Backup

