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Abstract—The concept of a probabilistic worst-case execution
time (pWCET) has gradually emerged from the work of many
authors over the course of 2–3 decades. Intuitively, pWCET is a
simplifying model abstraction that safely over-approximates the
ground-truth probabilistic execution time (pET) of a real-time task.
In particular, when analyzing the cumulative processor demand
of multiple jobs, the pWCET abstraction is intended to allow
for the use of techniques from probability theory that require
random variables to be independent and identically distributed
(IID), even though the underlying ground-truth pET random
variables are usually not independent. However, while powerful,
the pWCET concept is subtle and difficult to define precisely,
and easily misinterpreted. To place the pWCET concept on firm,
unambiguous mathematical foundations, this paper proposes the
first rigorous, axiomatic definition of pWCET that is suitable for
formal proof. In addition, an adequacy property is stated that
formally captures the intuitive notion of an “IID upper bound on
pET.” The proposed pWCET definition is shown to satisfy this
adequacy condition, and thereby is the first notion of pWCET for
which the IID guarantee is formally established. All definitions
and proofs have been verified with the Coq proof assistant.

I. INTRODUCTION

Whether by choice or necessity, interest in probabilistic
real-time systems is on the rise. By choice, because there
are good reasons to prefer a stochastic perspective (e.g., cost
considerations when dealing with soft or “firm” workloads that
can tolerate the occasional deadline violation). Or by necessity,
because the complexities of today’s commodity hardware
platforms (such as multi-level caches, speculative execution,
or undisclosed component specifications) quite often prevent
a meaningful worst-case execution time (WCET) analysis,
leaving measurement-based approaches as the only available
option. Either way, real-world systems—subject to market
pressures, technological limitations, or both—commonly fail
to meet the prerequisites for traditional worst-case guarantees.

Now, if absolute certainty is unattainable given the circum-
stances, then the next best guarantee is bounds on the proba-
bility of undesirable events (e.g., missed deadlines). However,
while the motivation and benefits are clear, the problem of
actually obtaining such bounds is far from trivial and, as we
review in Sec. II, has been the subject of intense study [18, 19].

In response to this challenge, the notion of probabilistic
worst-case execution time (pWCET) has emerged over the past
two decades as a central concept that is now routinely used
in new work in this area. Intuitively, pWCET is a simplifying

model abstraction that helps overcome two major obstacles
commonly encountered in the probabilistic setting.

First, it is obviously extremely difficult to determine the true
probabilistic execution time (pET) of a given task, especially
if the task exhibits nontrivial control flow. It is thus natural
to want to over-approximate the amount of required processor
service with some margin. This idea of a somewhat pessimistic
but safe “upper bound” on the ground-truth pET distribution
in any possible scenario is at the heart of pWCET.

Second, since in practice tasks share a common execution
environment and interact with each other, pETs are bound
to be correlated across tasks and also across jobs (i.e.,
successive activations) of the same task. In other words, when
considering multiple jobs executing in temporal proximity,
their pETs are decidedly not independent random variables,
which unfortunately leads to major analytical complications.
The pWCET abstraction promises a convenient way out [16]:
by substituting all pET random variables with random variables
following suitably chosen pWCET distributions, one obtains
a problem composed only of independent and identically
distributed (IID) random variables, which opens the door to a
wealth of classic techniques from probability theory.

Given these advantages, it is no wonder that pWCET has
become a dominant method in the probabilistic toolbox. Upon
closer inspection, however, the situation is not as clearcut and
settled as it may first appear. Even after decades of development
of the idea (reviewed in Sec. II), the pWCET intuition remains
subtle and difficult to capture in precise mathematical language.
More often than not, key aspects are addressed only in prose.
As a result, existing definitions are arguably difficult to interpret
and unsuitable for formal proof. In fact, as we illustrate in
Sec. III, even the state-of-the-art definition [19] can easily be
misinterpreted to provide stronger guarantees than it does.

It is high time to place the pWCET concept on a firm
mathematical foundation. To this end, we propose the first
rigorous, axiomatic definition of pWCET that is amenable to
formal proof. In particular, we have relied extensively on the
Coq proof assistant [15] both in developing our definition and
in validating its adequacy as a “safe upper bound.”

Contributions. In this paper, we:

• observe that the currently accepted pWCET definition has
come a long way (Sec. II), but that it is also still difficult
to interpret and easily misunderstood (Sec. III);
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• introduce the first formal semantics of probabilistic real-
time systems, suitable for reuse in future research, to lay
a precise foundation for formalization (Secs. IV and V);

• propose the first precise notions of pET and pWCET,
following the established intuition (Sec. VI); and

• formally state an adequacy property capturing the notion
of an “IID upper bound on pET” that, we argue, any rea-
sonable pWCET definition should satisfy, and verify with
Coq that our proposal is adequate in this sense (Sec. VII).

II. PWCET: A SHORT HISTORY

The pWCET concept has gradually emerged from the work
of many authors over the course of 2–3 decades. Bernat
et al. [6] were the first to coin the term “pWCET” in 2003, with
key ideas going back to even earlier work. The most recent
authoritative definition appears in Davis and Cucu-Grosjean’s
excellent surveys of probabilistic timing and schedulability
analysis [18, 19]. Since these surveys already cover the area
in detail, we focus here on the key ideas, twists, and turns that
lead to the pWCET notion as it is intuitively understood today.

Historically, work on probabilistic real-time systems has
focused on one of two questions that mirror the divide between
WCET and schedulability analysis in the classical setting.
Q1 How to characterize a task’s resource needs stochastically,

either by means of measurement or by static derivation?
Q2 How to exploit a given stochastic characterization of

resource needs in schedulability analysis?
The earliest work on Q2 (surveyed in [18]) precedes the work
on Q1 (surveyed in [19]). We thus proceed in the same order.

A. Early Schedulability Perspective (Q2)

In 1993, Heidmann [26] was first to propose a schedulability
analysis exploiting stochastic task costs. Focusing on preemp-
tive rate-monotonic (i.e., fixed-priority) scheduling, he made
two simplifying assumptions: all tasks exhibit execution times
characterized by Normal distributions with upper and lower
bounds and the execution times of all tasks are stochastically
independent. In modern terminology, Heidmann placed these
assumptions on the pETs of all jobs of each task.

Soon after, Tia et al. [37] proposed an analysis that removes
the (very) restrictive assumption of normally distributed execu-
tion times. Still targeting fixed-priority scheduling, Tia et al.
allowed job execution times to be modeled by an arbitrary finite
discrete probability distribution, while still retaining the (clearly
unrealistic) independence assumption. From these assumptions,
they derived a bound on the deadline-miss probability of each
task. Crucially, Tia et al. evaluated their proposal in a real
system and observed: “Unfortunately, the computation times
of individual requests are not statistically independent. [. . . ]
As a consequence, the probability of meeting deadlines thus
computed may be overly optimistic.” [37]. In other words,
incorrectly assuming that pETs are independent is a soundness
issue that demonstrably causes incorrect predictions.

Nevertheless, independence of random variables is a very
desirable (or even necessary) property, so it was still assumed
in later work. Dı́az et al. [21] made an important clarification

in this regard in 2002 when they explicitly stated that one
must (also) assume independence with respect to “previous
instances of the same task” [21]. That is, in order to apply
independence-assuming techniques from probability theory to
random variables representing pETs, one must also assume
independence among pETs among jobs of the same task (and
not just other tasks), which was not stated in earlier work.

A conceptually much larger step that brings us closer to
the contemporary view was taken by Dı́az et al. [22] in 2004,
who proposed to over-approximate the distributions of random
variables modeling task behavior to obtain a key monotonicity
property: “if pessimistic variables are introduced into the
stochastic analysis, the response times provided by the analysis
will also be pessimistic. [. . . ] The pessimistic analysis is a safe
approximation in the sense that the probabilities of deadline
misses it provides are guaranteed to be greater than the exact
ones” [22]. This, of course, is what we are looking for in
pWCET, and we return to this notion in Sec. VI-B.

To give a precise meaning to the concept of “pessimistic
variables,” Dı́az et al. [22] introduced an order � on random
variables that closely resembles first-order stochastic dominance
and remains used to this day (we will recall it in Def. 2).
Intuitively, X1 � X2 means that, for any given fixed threshold x,
the probability of X1 exceeding x is bounded by the probability
of X2 exceeding x, i.e., X2 dominates X1 point-wise.

Dı́az et al. [22], however, still retained the IID assumption
on job pETs (which they called “exact variables,” i.e., the
ground-truth behavior of the tasks). In other words, while Dı́az
et al.’s “pessimistic variables” can be interpreted as a “proto-
pWCET” from today’s vantage point, their over-approximation
guarantee applies only if the underlying pETs are independent.

However, to clarify the desired relationship between pWCET
and non-IID pETs, progress on question Q1 was necessary first.

B. Derivation Perspective (Q1)

One of the pioneering papers on pWCET derivation is due
to Burns and Edgar [10] in 2000, who recognized the problem
of increasingly complex, superscalar architectures that hinder
the use of static WCET analysis methods. To overcome this
problem, Burns and Edgar proposed a measurement-based
approach relying on extreme value theory (EVT) to estimate
the maximum of the sampled execution-time distribution [10].

Burns and Edgar’s work [10] paved the way for a rich
literature on measurement-based probabilistic timing analy-
sis (MBPTA) [1, 5, 6, 25, 28, 32, 33]; Davis and Cucu-Grosjean
provide a comprehensive review [19]. Notably, it is in this line
of work that Bernat et al. [6] coined the “pWCET” terminology.
EVT remains central to current MBPTA techniques.

In parallel, the area of static probabilistic timing analy-
sis (SPTA) emerged alongside MBPTA (e.g., [2, 7, 17, 27]). In
contrast to MBPTA, SPTA methods explicitly model sources of
randomness in the hardware platform (e.g., random-replacement
caches), the software itself (e.g., randomized algorithms), or the
environment (e.g., input distributions) and use this information
to characterize (or upper-bound) the ground-truth execution-
time distribution. Notably, David and Puaut coined the term
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“pET” in their work [17] on the static determination of such
ground-truth distributions.

However, even with the pWCET and pET concepts in place,
it still took several more years before a link emerged.

C. Connection, Confusion, and Consensus

In a 2013 position paper, Cucu-Grosjean [16] was first to
offer side-by-side definitions of the ground-truth execution-time
distributions (pETs) [16, Def. 1], upper-bounding distributions
(pWCETs) [16, Def. 2], and to establish a relationship among
the two [16, Def. 3], enabling pWCET to be used in schedula-
bility analyses to over-approximate pET. Going a significant
step further than prior work, Cucu-Grosjean argued that no
additional IID assumptions were required for probabilistic
analysis to be sound, claiming that: “probabilistic real-time
analyses do not have stronger requirements from the task
systems than a deterministic real-time analysis [. . . ] as long as
pWCETs are used” [16]. In particular, Cucu-Grosjean observed
that, when using pWCET for probabilistic analysis, “the
(probabilistic) independence of tasks is implicit and it does not
require any new hypothesis” [16], which obviously provides
major benefits (e.g., enabling convolution). Thus, for the first
time, pETs could be allowed to be arbitrarily non-IID without
preventing the use of IID-assuming analysis techniques, which
unsurprisingly proved to be a highly influential observation.

Another important clarification was subsequently provided
by Davis et al. [20], who noted that there are two fundamentally
different interpretations of pWCET that should not be confused.
In the first interpretation, pWCET is a statement about how
confident one is that a given value bounds the maximum
execution time. In this interpretation, no claim is made about the
shape of the underlying pET distribution—it is only a statement
about the maximum. Consequently, the pWCET distribution
does not provide any information about, say, the mean execution
time of jobs (i.e., the pET distribution’s expected value).

In the second interpretation, pWCET is understood as an
over-approximation of the underlying pET distributions in the
sense of Dı́az et al.’s dominance relation � [22]. Here, the
pWCET distribution can be seen as retaining some information
about the shape of the pET distribution. In particular, the
expected value of the pWCET distribution provides an upper
bound on the ground-truth expected execution time.

Obviously, the two interpretations are not interchangeable,
and neither can be used to infer the other. So which is pWCET?

A consensus view finally emerged in 2019, when Davis and
Cucu-Grosjean offered the following definition in their surveys
of probabilistic schedulability [18] and timing analysis [19].

Def. 1 (Def. 2 in both [18] and [19]). The probabilistic Worst-
Case Execution Time (pWCET) distribution for a program is
the least upper bound, in the sense of [Dı́az et al.’s dominance
relation�], on the execution time distribution of the program for
every valid scenario of operation, where a scenario of operation
is defined as an infinitely repeating sequence of input states and
initial hardware states that characterize a feasible way in which
recurrent execution of the program may occur.

Def. 1 follows the dominance interpretation in the tradition of
Dı́az et al. [22] and Cucu-Grosjean [16], relating the pWCET
distribution to “every valid scenario of operation” (i.e., the
ground-truth execution-time distribution) resulting from “an
infinitely repeating sequence of input states and initial hardware
states” (i.e., any possible evolution of the system and its
environment). Following Cucu-Grosjean [16], we continue to
refer to this notion of “all possible ground-truth execution times”
concisely as “pET” and offer a formal definition later in Sec. V.

On the all-important issue of independence, Davis and Cucu-
Grosjean [18] echoed Cucu-Grosjean’s observation [16], stating
w.r.t. pWCET distributions derived via SPTA: “We note that
the actual execution times for a sequence of jobs of a task,
which exercise the same or different paths, may well show
strong correlations and dependences. It is the modelling of
the execution times via an appropriate pWCET distribution
which enables probabilistic independence to be assumed.” [18,
p. 4:10]. Similarly, when discussing pWCET obtained through
MBPTA, they stated: “Probabilistic independence of the
pWCET distribution means that it can be used to characterise
the behaviour of any randomly selected job of the task, and
also composed using basic convolution to upper bound the
interference from multiple jobs in probabilistic schedulability
analysis.” [18, p. 4:11].

In summary, the modern understanding of pWCET (Def. 1)
relates an upper-bounding distribution to the ground truth such
that pWCET-based schedulability analysis can assume IID
execution times, provided the pWCET distributions are suitably
derived to be “probabilistically independent” [18].

Nevertheless, while the state of the art has certainly come
a long way, we believe that the pWCET concept is still not
fully understood and in need of further clarification. First, it is
not entirely obvious what mathematical properties a pWCET
distribution must satisfy for Def. 1 to formally enable the
independence claims quoted above. Second, the definition
leaves key elements defined only in prose (e.g., ground-
truth behavior, probabilistic independence), requiring much
interpretation by the reader. Third, it is consequently ill-suited
for formal proof (e.g., using Coq). Indeed, as we illustrate next
with an example (Sec. III-A), it is all too easy to mistakenly
attribute guarantees to Def. 1 that it does not actually provide.

In general, probabilistic analysis is inherently tricky and an
area where intuition can easily deceive. Therefore, we believe
that anchoring the pWCET idea in a precise formal foundation
is the logical and necessary next step in its evolution.

III. PROBABILISTIC PITFALLS

To motivate a more rigorous approach, we next highlight
four subtleties affecting pWCET and probabilistic analysis.

A. Definition 1 Alone Does Not Enable IID Reasoning

The primary reason to adopt pWCET as a model abstraction
is to allow for IID reasoning despite non-IID ground-truth
execution times, as discussed in Sec. II-A. Clearly, there must
be some mathematical relation between ground-truth execution
times and pWCET for this to hold. What exactly is this relation?
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It is tempting to believe that stochastic dominance in all sce-
narios of operation is sufficient. That is, when reading Def. 1 in
isolation, an unsuspecting reader might come to expect that, if
each task’s pWCET dominates its ground-truth execution-time
distribution, then a response-time distribution provided by an
IID-assuming analysis operating on pWCETs will necessarily
dominate the ground-truth response-time distribution.

However, this is not the case, which Davis and Cucu-
Grosjean [18] also cautioned in their subsequent discussion of
Def. 1. As it is a crucial point, we illustrate this potential pitfall
with “Program B,” one of their examples [19, pp. 3:09–3:10].
Each invocation of Program B executes one of four possible
paths p0, p1, p2, and p3, which the program cycles through
in order (pi 7→ p(i+1)%4). The ground-truth execution cost of
path pi is (i+ 1) · 10± 2, i.e., the cost comprises a fixed cost
10 · (i + 1) and some “random variability” ±2 (with some
unspecified distribution). The path taken by the first invocation
of Program B is unknown but may be assumed to be uniformly
distributed (i.e., each pi with probability 0.25 [19]).

The ground-truth execution-time distribution of Program B
is EB ,

(
10±2 20±2 30±2 40±2
0.25 0.25 0.25 0.25

)
, where

( c1 c2 ... cn
p1 p2 ... pn

)
denotes

a multi-modal distribution with n modes such that mode ci
has occurrence probability pi. (Again, the distribution of the
variable component ±2 is irrelevant and left unspecified.)
Davis and Cucu-Grosjean explain that, “[for Program B],
the pWCET distribution valid for any scenario of operation”
is FB ,

(
12 22 32 42

0.25 0.25 0.25 0.25

)
[19, p. 3:10]. Distribution FB

clearly satisfies Def. 1: it upper-bounds the random variation
±2 (irrespective of its distribution) in each scenario of operation
and is indeed “the least upper bound” satisfying EB � FB .

Now consider two periodic tasks {τ1, τ2} under rate-
monotonic scheduling, where τ1 is Program B and τ2 simply
has a fixed cost of 110 (i.e., single path, no variability).
Additionally, assume τ1 has a period and relative deadline
equal to 50 and τ2 has a relative deadline of 200 and a period
of 1000. Both tasks release their first job at time zero. What
is the probability of the first job of τ2 missing its deadline?

Ground truth. Since τ2’s job requires 110 time units of
processor service by time 200, it misses its deadline iff the
first four jobs of τ1 (i.e., those released during [0, 200))
jointly require more than 90 time units of service. We do
not know the initial path taken by Program B, but since
exactly four jobs of τ1 execute during [0, 200), the program
will execute each path exactly once. Hence, the total fixed cost
is 10 + 20 + 30 + 40 = 100 time units, so that even in the best
case (each job exhibiting −2 variability) 100−4 ·2 = 92 is the
least-possible amount of service required to complete all four
jobs of τ1. Therefore, τ2’s job certainly misses its deadline.

pWCET convolution. As discussed, the reason to use pWCET
in the first place is to allow for analysis methods rooted in IID
assumptions, in particular convolution. Thus, let us approximate
the joint demand of the first four jobs of τ1 by basic convolution
of FB , which we denote as

⊕4
i=1 F

B . According to the
resulting distribution, the first four jobs of τ1 exhibit a total
cost of less than 90 time units with non-zero probability (e.g.,

Fig. 1. Survival curves (i.e., exceedance probability) of the total cost of four
consecutive invocations of “Program B” e1, . . . , e4 (orange, solid) and of
a convolution of four instances of FB (blue, dashed). A vertical line (red)
marks the least-possible total cost

∑4
1 ei, which is 92.

4 ·12 = 48 with probability 0.254), as illustrated in Fig. 1. The
convolved pWCET distribution hence incorrectly predicts that
τ2’s first job meets its deadline with roughly 0.25 probability.

The example shows that Def. 1 by itself does not actually
guarantee the main feature generally associated with pWCET.
Although Davis and Cucu-Grosjean discuss this very issue [18,
pp. 4:11–4:12], it (arguably) may still come as a surprise,
depending on how one interprets “every valid scenario of
operation” in Def. 1. For example, all jobs exhibiting best-case
execution times is a “feasible recurrent execution,” and clearly
not an “invalid” scenario, so one might reasonably wonder,
should it not be covered by the criteria set forth in Def. 1?

Ultimately, the prose surrounding the state-of-the-art pWCET
definition [18, 19] does much more of the “heavy lifting” than
one may first realize. From a formal point of view, Def. 1 is
too weak to derive IID guarantees, which limits its suitability
for rigorous proof. In general, given two random variables X
and Y with “upper bounds” X̂ and Ŷ such that X � X̂ and
Y � Ŷ, it is not necessarily the case that X + Y � X̂ ⊕ Ŷ
if X and Y are not independent. Thus, stochastic dominance
alone cannot enable IID reasoning at the pWCET level when
pETs are non-IID. But then what, exactly, are the mathematical
requirements that a pWCET distribution must satisfy to cover
non-IID pETs? We believe this question is central to defining
“pWCET” and propose one possible answer in Sec. VI.

B. pWCET is not a Standalone Property
Another point that has received little coverage in the existing

literature is that pWCET is not purely a property of the
workload. That is, Def. 1 and prior concepts such as Dı́az
et al.’s “pessimistic variables” [22] are often discussed as if
they provide guarantees by themselves. In fact, it is impossible
to derive useful guarantees, such as Dı́az et al.’s response-time
monotonicity (recall Sec. II-A), from pWCET alone.

To demonstrate this aspect, we adapt the well-known fact
that non-preemptive fixed-priority scheduling is subject to
scheduling anomalies to the probabilistic setting. Consider
the example workload in Fig. 2, which exhibits one of two
possible schedules in the first 12 time units. If job J1,1 executes
for 3 time units, then job J3,1 commences execution before
job J2,1 is released, which results in J2,1 missing its deadline.
Otherwise, if job J1,1 executes for 4 time units, then J2,1 is not
delayed by J3,1 and no deadline is missed. The ground-truth
deadline-miss probability of J2,1 is thus 0.5.
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J1,1

<latexit sha1_base64="COkwP/BYlVM+7YaBYTuSfPIRRIc=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5RERT0WvIinCvYD2lA220m7dLMJuxuhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0gE18Z1v53Cyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDv1W0+oNI/loxkn6Ed0IHnIGTVWat33soszb9IrV9yqOwNZJl5OKpCj3it/dfsxSyOUhgmqdcdzE+NnVBnOBE5K3VRjQtmIDrBjqaQRaj+bnTshJ1bpkzBWtqQhM/X3REYjrcdRYDsjaoZ60ZuK/3md1IQ3fsZlkhqUbL4oTAUxMZn+TvpcITNibAllittbCRtSRZmxCZVsCN7iy8ukeV71rqrew2WlRvI4inAEx3AKHlxDDe6gDg1gMIJneIU3J3FenHfnY95acPKZQ/gD5/MHXrKO1Q==</latexit>

J3,1

<latexit sha1_base64="rNwm5p5Y4tncWwsCBrfIXFzYbg8=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkiHoseBFPFewHtKFstpt26WYTdidCCf0RXjwo4tXf481/47bNQVsfDDzem2FmXpBIYdB1v53C2vrG5lZxu7Szu7d/UD48apk41Yw3WSxj3Qmo4VIo3kSBkncSzWkUSN4Oxrczv/3EtRGxesRJwv2IDpUIBaNopfZ9P6tdeNN+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn83On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphje+JlQSYpcscWiMJUEYzL7nQyE5gzlxBLKtLC3EjaimjK0CZVsCN7yy6ukVat6V1Xv4bJSJ3kcRTiBUzgHD66hDnfQgCYwGMMzvMKbkzgvzrvzsWgtOPnMMfyB8/kDXSuO1A==</latexit>

J2,1

<latexit sha1_base64="SUycDWRMUBzuNepX8mKdXqL7dAw=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgIeFWRC0DNmIVwZhAEsLeZi9Zsrd37M4J4ciPsLFQxNbfY+e/cZNcoYkPBh7vzTAzL0iUtOj7315hZXVtfaO4Wdra3tndK+8fPNo4NVw0eKxi0wqYFUpq0UCJSrQSI1gUKNEMRjdTv/kkjJWxfsBxIroRG2gZSs7QSc27XkbP6KRXrvhVfwayTGhOKpCj3it/dfoxTyOhkStmbZv6CXYzZlByJSalTmpFwviIDUTbUc0iYbvZ7NwJOXFKn4SxcaWRzNTfExmLrB1HgeuMGA7tojcV//PaKYbX3UzqJEWh+XxRmCqCMZn+TvrSCI5q7AjjRrpbCR8ywzi6hEouBLr48jJ5PK/Syyq9v6jUSB5HEY7gGE6BwhXU4Bbq0AAOI3iGV3jzEu/Fe/c+5q0FL585hD/wPn8AW6SO0w==</latexit>

J1,1

<latexit sha1_base64="FroEfJ8P1G5m0YDdH4OiVynWq3U=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9WtVrXlfqJI+jCGdwDpfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz9w14yY</latexit>

0
<latexit sha1_base64="dToW/5YBPAo7k3iFOk83TWj6nv4=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVBIR9Vjw4rGCaQttKJvtpF272YTdjVBCf4EXD4pXf5M3/43bNgdtfTDweG+GmXlRJrg2nvftVDY2t7Z3qrvu3v7B4VHNPW7rNFcMA5aKVHUjqlFwiYHhRmA3U0iTSGAnmtzN/c4zKs1T+WimGYYJHUkec0aNlR6uBrW61/AWIOvEL0kdSrQGta/+MGV5gtIwQbXu+V5mwoIqw5nAmdvPNWaUTegIe5ZKmqAOi8WhM3JulSGJU2VLGrJQf08UNNF6mkS2M6FmrFe9ufif18tNfBsWXGa5QcmWi+JcEJOS+ddkyBUyI6aWUKa4vZWwMVWUGZuNa0PwV19eJ+3Lhn/d8OtNUoZRhVM4gwvw4QaacA8tCIABwgu8wbvz5Lw6H8vGilNOnMAfOJ8/DL2Lcg==</latexit>

4
<latexit sha1_base64="iwYuwwq+kkUZCgx4u6mnxY4oex0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasKan3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9m6rXvK7USR5HEc7gHC7Bg1uowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AfPeMoA==</latexit>

8
<latexit sha1_base64="bp+7r8t2XQxQmg4QatWI6JDjDlM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKVI8FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpwasNyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFpfOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmb5MhV8iMmFpCmeL2VsLGVFFmbDglG4K3+vI6adeqXr3q3V9VGiSPowhncA6X4ME1NOAOmtACBiE8wyu8ORPnxXl3PpatBSefOYU/cD5/AOM4jNU=</latexit>

12
<latexit sha1_base64="FroEfJ8P1G5m0YDdH4OiVynWq3U=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9WtVrXlfqJI+jCGdwDpfgwQ3U4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz9w14yY</latexit>

0
<latexit sha1_base64="dToW/5YBPAo7k3iFOk83TWj6nv4=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVBIR9Vjw4rGCaQttKJvtpF272YTdjVBCf4EXD4pXf5M3/43bNgdtfTDweG+GmXlRJrg2nvftVDY2t7Z3qrvu3v7B4VHNPW7rNFcMA5aKVHUjqlFwiYHhRmA3U0iTSGAnmtzN/c4zKs1T+WimGYYJHUkec0aNlR6uBrW61/AWIOvEL0kdSrQGta/+MGV5gtIwQbXu+V5mwoIqw5nAmdvPNWaUTegIe5ZKmqAOi8WhM3JulSGJU2VLGrJQf08UNNF6mkS2M6FmrFe9ufif18tNfBsWXGa5QcmWi+JcEJOS+ddkyBUyI6aWUKa4vZWwMVWUGZuNa0PwV19eJ+3Lhn/d8OtNUoZRhVM4gwvw4QaacA8tCIABwgu8wbvz5Lw6H8vGilNOnMAfOJ8/DL2Lcg==</latexit>

4
<latexit sha1_base64="iwYuwwq+kkUZCgx4u6mnxY4oex0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWRuUK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasKan3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9m6rXvK7USR5HEc7gHC7Bg1uowz00oAUMEJ7hFd6cR+fFeXc+lq0FJ585hT9wPn8AfPeMoA==</latexit>

8
<latexit sha1_base64="bp+7r8t2XQxQmg4QatWI6JDjDlM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKVI8FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpwasNyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFpfOyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhjZ9xmaQGJVsuClNBTEzmb5MhV8iMmFpCmeL2VsLGVFFmbDglG4K3+vI6adeqXr3q3V9VGiSPowhncA6X4ME1NOAOmtACBiE8wyu8ORPnxXl3PpatBSefOYU/cD5/AOM4jNU=</latexit>

12

Fig. 2. The two possible scenarios of a periodic workload τ , {τ1, τ2, τ3}
under non-preemptive fixed-priority scheduling, where task τ1 (red) has period
16, deadline 10, offset 0, and a cost of either 3 or 4 with probability 0.5 each,
task τ2 (green) has period 16, deadline 6, offset 4, and a fixed cost of 3, and
task τ3 (blue) has period 16, deadline 9, offset 3, and a fixed cost of 5.

Now suppose we (over-)approximate the ground truth with
pWCETs as follows: F1 =

(
4 5

0.5 0.5

)
, F2 =

(
3
1

)
, and F3 =

(
5
1

)
.

Clearly, this choice satisfies �-dominance for each τi and is
pessimistic for τ1. However, if we “replace” the actual job-
cost distributions with the stated pWCET distributions—that
is, if we enumerate all possible schedules assuming pWCET
distributions in lieu of the ground truth to approximate the
response-time distribution—then we wrongly conclude that it
is impossible for job J3,1 to start execution before job J2,1

(according to F1, J1,1 always takes at least 4 time units to finish,
so J2,1 has time to arrive). The stated pWCET would cause
unsafe under-estimation of the true deadline-miss probability.

Clearly, pWCET is not the right abstraction in the presence
of scheduling anomalies. In hindsight, it seems obvious that the
pWCET concept is tied to sustainable scheduling policies [3,
12], but the existing literature does not dwell much on this
constraint [18, 19]. A major advantage of a formal approach like
the one we propose in Sec. VI is that such implicit assumptions
become obvious and cannot be accidentally overlooked.

C. Incompatible Interpretations of Job Indices

Finally, even something as innocuous as how one counts
jobs can produce misleading results. In the (classical) real-time
systems literature, it is customary to enumerate a task’s jobs
in order of their release, so that Ji,j (or alternatively also τi,j)
denotes the j-th activation of the i-th task. Unfortunately, this
common notation can lead astray in a stochastic context.

For simplicity, we illustrate this point with a contrived setup;
however, the issue is nontrivial and affects common models
such as sporadic tasks. The core of the problem is that a
probabilistic analysis inherently considers multiple scenarios,
in which the order of jobs may differ and some jobs may not
even arrive in some scenarios. Unfortunately, the customary
indexed notation Ji,1, Ji,2, . . . may then result in cases of
mistaken identity, and ultimately in incompatible results.

For example, consider the jobs of a task τ1 and suppose
exactly two scenarios are possible: an “exceptional” scenario
ω1 occurs with probability ε and the “common case” ω2 occurs
with probability 1 − ε. Fig. 3 shows the jobs released by τ1
in these two scenarios. In ω1, the first job J1,1 is released at
time 0, executes procedure A, and has cost 7. A second job
J1,2 is released at time 4, which executes procedure B with
cost 2. Suppose J1,2 has a tight deadline at time 8: due to
J1,1’s long execution time, J1,2 misses its deadline in ω1. At
times 8 and 12, two more jobs are released, which respectively
execute procedures C and then again A, and so on.

<latexit sha1_base64="SUycDWRMUBzuNepX8mKdXqL7dAw=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgIeFWRC0DNmIVwZhAEsLeZi9Zsrd37M4J4ciPsLFQxNbfY+e/cZNcoYkPBh7vzTAzL0iUtOj7315hZXVtfaO4Wdra3tndK+8fPNo4NVw0eKxi0wqYFUpq0UCJSrQSI1gUKNEMRjdTv/kkjJWxfsBxIroRG2gZSs7QSc27XkbP6KRXrvhVfwayTGhOKpCj3it/dfoxTyOhkStmbZv6CXYzZlByJSalTmpFwviIDUTbUc0iYbvZ7NwJOXFKn4SxcaWRzNTfExmLrB1HgeuMGA7tojcV//PaKYbX3UzqJEWh+XxRmCqCMZn+TvrSCI5q7AjjRrpbCR8ywzi6hEouBLr48jJ5PK/Syyq9v6jUSB5HEY7gGE6BwhXU4Bbq0AAOI3iGV3jzEu/Fe/c+5q0FL585hD/wPn8AW6SO0w==</latexit>

J1,1

<latexit sha1_base64="2c6Su8M+97W10rCrjVbjN6mQ/kA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5SkiHoseBFPFewHtKFstpt26WYTdidCCf0RXjwo4tXf481/47bNQVsfDDzem2FmXpBIYdB1v53C2vrG5lZxu7Szu7d/UD48apk41Yw3WSxj3Qmo4VIo3kSBkncSzWkUSN4Oxrczv/3EtRGxesRJwv2IDpUIBaNopfZ9P/MuatN+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn83On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphje+JlQSYpcscWiMJUEYzL7nQyE5gzlxBLKtLC3EjaimjK0CZVsCN7yy6ukVat6V1Xv4bJSJ3kcRTiBUzgHD66hDnfQgCYwGMMzvMKbkzgvzrvzsWgtOPnMMfyB8/kDXSmO1A==</latexit>

J1,2

<latexit sha1_base64="nsl3qRy89d0TztVWtDzXUsRVr7A=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5RERT0WvIinCvYD2lA220m7dLMJuxuhhP4ILx4U8erv8ea/cdvmoK0PBh7vzTAzL0gE18Z1v53Cyura+kZxs7S1vbO7V94/aOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDv1W0+oNI/loxkn6Ed0IHnIGTVWat33Mu/sYtIrV9yqOwNZJl5OKpCj3it/dfsxSyOUhgmqdcdzE+NnVBnOBE5K3VRjQtmIDrBjqaQRaj+bnTshJ1bpkzBWtqQhM/X3REYjrcdRYDsjaoZ60ZuK/3md1IQ3fsZlkhqUbL4oTAUxMZn+TvpcITNibAllittbCRtSRZmxCZVsCN7iy8ukeV71rqrew2WlRvI4inAEx3AKHlxDDe6gDg1gMIJneIU3J3FenHfnY95acPKZQ/gD5/MHXq6O1Q==</latexit>

J1,3
<latexit sha1_base64="VlAoNBgGbQ3wmDsdVJwfcBAeL8c=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKqMeAF48RzEOSJcxOZpMh81hmZoWw5Cu8eFDEq5/jzb9xNtmDJhY0FFXddHdFCWfG+v63V1pb39jcKm9Xdnb39g+qh0dto1JNaIsornQ3woZyJmnLMstpN9EUi4jTTjS5zf3OE9WGKflgpwkNBR5JFjOCrZMe+0rQER4ElUG15tf9OdAqCQpSgwLNQfWrP1QkFVRawrExvcBPbJhhbRnhdFbpp4YmmEzwiPYclVhQE2bzg2fozClDFCvtSlo0V39PZFgYMxWR6xTYjs2yl4v/eb3UxjdhxmSSWirJYlGccmQVyr9HQ6YpsXzqCCaauVsRGWONiXUZ5SEEyy+vkvZFPbiqB/eXtQYq4ijDCZzCOQRwDQ24gya0gICAZ3iFN097L96797FoLXnFzDH8gff5A+hUj7c=</latexit>!1

<latexit sha1_base64="rFjoRP1B/P/K04lCnNH/TlUstOQ=">AAAB8HicbVDLSgNBEJz1GeMr6tHLYBA8hd0g6jHgxWME85BkCbOT3mTIPJaZWSEs+QovHhTx6ud482+cTfagiQUNRVU33V1Rwpmxvv/tra1vbG5tl3bKu3v7B4eVo+O2Uamm0KKKK92NiAHOJLQssxy6iQYiIg6daHKb+50n0IYp+WCnCYSCjCSLGSXWSY99JWBEBvXyoFL1a/4ceJUEBamiAs1B5as/VDQVIC3lxJhe4Cc2zIi2jHKYlfupgYTQCRlBz1FJBJgwmx88w+dOGeJYaVfS4rn6eyIjwpipiFynIHZslr1c/M/rpTa+CTMmk9SCpItFccqxVTj/Hg+ZBmr51BFCNXO3YjommlDrMspDCJZfXiXtei24qgX3l9UGLuIooVN0hi5QgK5RA92hJmohigR6Rq/ozdPei/fufSxa17xi5gT9gff5A+nZj7g=</latexit>!2

<latexit sha1_base64="YXEip/K0z9bMX5CtTJsEZ5S71mY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REinoseBFPFewHtKFstpt26WYTdidCCf0RXjwo4tXf481/47bNQVsfDDzem2FmXpBIYdB1v53C2vrG5lZxu7Szu7d/UD48apk41Yw3WSxj3Qmo4VIo3kSBkncSzWkUSN4Oxrczv/3EtRGxesRJwv2IDpUIBaNopfZ9P/MuatN+ueJW3TnIKvFyUoEcjX75qzeIWRpxhUxSY7qem6CfUY2CST4t9VLDE8rGdMi7lioaceNn83On5MwqAxLG2pZCMld/T2Q0MmYSBbYzojgyy95M/M/rphje+JlQSYpcscWiMJUEYzL7nQyE5gzlxBLKtLC3EjaimjK0CZVsCN7yy6ukdVn1rqreQ61SJ3kcRTiBUzgHD66hDnfQgCYwGMMzvMKbkzgvzrvzsWgtOPnMMfyB8/kDYDOO1g==</latexit>

J1,4

<latexit sha1_base64="SUycDWRMUBzuNepX8mKdXqL7dAw=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgIeFWRC0DNmIVwZhAEsLeZi9Zsrd37M4J4ciPsLFQxNbfY+e/cZNcoYkPBh7vzTAzL0iUtOj7315hZXVtfaO4Wdra3tndK+8fPNo4NVw0eKxi0wqYFUpq0UCJSrQSI1gUKNEMRjdTv/kkjJWxfsBxIroRG2gZSs7QSc27XkbP6KRXrvhVfwayTGhOKpCj3it/dfoxTyOhkStmbZv6CXYzZlByJSalTmpFwviIDUTbUc0iYbvZ7NwJOXFKn4SxcaWRzNTfExmLrB1HgeuMGA7tojcV//PaKYbX3UzqJEWh+XxRmCqCMZn+TvrSCI5q7AjjRrpbCR8ywzi6hEouBLr48jJ5PK/Syyq9v6jUSB5HEY7gGE6BwhXU4Bbq0AAOI3iGV3jzEu/Fe/c+5q0FL585hD/wPn8AW6SO0w==</latexit>

J1,1

<latexit sha1_base64="pHrjvO0yL37+YtkDTKLLzire+vw=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5RERL1Z8CKeKtgPaEPZbCft0s0m7G6EEvojvHhQxKu/x5v/xm2bg7Y+GHi8N8PMvCARXBvX/XYKK6tr6xvFzdLW9s7uXnn/oKnjVDFssFjEqh1QjYJLbBhuBLYThTQKBLaC0e3Ubz2h0jyWj2acoB/RgeQhZ9RYqXXfy7yzm0mvXHGr7gxkmXg5qUCOeq/81e3HLI1QGiao1h3PTYyfUWU4EzgpdVONCWUjOsCOpZJGqP1sdu6EnFilT8JY2ZKGzNTfExmNtB5Hge2MqBnqRW8q/ud1UhNe+xmXSWpQsvmiMBXExGT6O+lzhcyIsSWUKW5vJWxIFWXGJlSyIXiLLy+T5nnVu6x6DxeVGsnjKMIRHMMpeHAFNbiDOjSAwQie4RXenMR5cd6dj3lrwclnDuEPnM8fcOqO4Q==</latexit>
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Fig. 3. If a job is omitted in scenario ω2, which release corresponds to J1,3?

Now consider ω2, which differs from ω1 only by releasing
no job at time 4. This poses a seemingly trivial, but actually
deep question: which job is released at time 8 in ω2?

If we use the conventional consecutive numbering scheme,
then the job released at time 8 in ω2—which executes procedure
C—is J1,2. In this case, job J1,1 finishes before the release of
J1,2 and J1,2 can finish on time. We thus conclude that job
J1,2 has a deadline-failure probability (DFP) of only ε.

In contrast, “the B job” J1,2 can be considered absent in
ω2—giving it a notion of identity other than its index. Now, job
J1,2’s DFP changes drastically: “the B job” misses a staggering
100% of its deadlines w.r.t. scenarios in which it arrives. For
example, this interpretation could be highly relevant if B is an
error handler that is executed only in abnormal conditions.

Clearly, these are two very different situations. A minuscule
DFP is often acceptable in many applications, whereas a 100%
DFP is a clear design flaw. Notice, however, that the system
did not change at all: only our job-naming convention did.

What is the right interpretation? Ultimately, both conventions
are sensible in their own right, depending on application
needs and semantics. The concern is, however, that two
individually sound analyses using different conventions may
produce unsound results when they are unwittingly combined.

Our approach to bring more clarity to this issue is to omit
indices altogether, which makes it obvious that our result does
not depend on how jobs are named. To this end, we rely on
Leibniz equality [e.g., 34, Ch. 5]: two jobs J and J ′ are equal
iff there is no predicate p such that p(J)∧¬p(J ′). As a result,
two activations in different scenarios may be considered to be
“the same job” even if they occur at different times or positions.

Our index-free notation generalizes all prior conventions: it
can be augmented with arbitrary naming schemes to encode
either way of indexing—or even completely different ways
of relating jobs across scenarios (e.g., by the input processed,
code executed, state observed, etc.).

D. The Execution Cost of Rare Jobs

Similar issues affect pWCET: what is the pWCET of a
sporadic task, say, an “emergency handler,” that does not release
a job in 99% of the “valid scenarios of operation”? What is
its expected execution cost? Is its 99th percentile execution
cost zero? If pWCET distributions are stated only with regard
to scenarios in which a task releases jobs, can we still freely
convolve this pWCET with that of another task that arrives in
some, but not all of the same scenarios?

An informal approach is prone to glossing over such issues,
which to our knowledge have not previously been raised in
the literature on probabilistic real-time systems. To allow for
precise answers, we next introduce a semantics, formalized with
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the Coq proof assistant, in which the possibility of alternate
traces and the absence of jobs are first-class concepts.

IV. MULTI-EVOLUTION TRACE SEMANTICS

To introduce a formal definition of pWCET that is mecha-
nizable in Coq, we propose a formal semantics of real-time
scheduling capable of expressing a wide variety of assumptions.
At a high-level, we generalize Prosa’s [4, 11] single-trace
semantics to multiple scenarios, which we call evolutions.
Whereas Prosa’s single-trace semantics are best suited for
classical worst-case analysis, the multi-evolution semantics
proposed here enable reasoning about all “valid scenario[s] of
operation” [18] in a formal manner.

It is important to realize that reasoning about a set of
possible evolutions does not necessarily imply probabilistic
reasoning: (i) recognizing that multiple scenarios are possible
and (ii) assigning a probability of occurrence to each scenario
are two distinct modeling steps. To ensure a clear separation of
concerns, we focus exclusively on (i) in this section, and then,
in Sec. V, present a stochastic interpretation that augments
our semantics with a probabilistic measure. We stress that the
probability measure is just an extension of the semantics; others
are possible. Hence, the distinction between multi-evolution
trace semantics and its stochastic extension makes both practical
sense, since the former can be reused in other contexts (e.g.,
sustainability theory [12]), and pedagogical sense, since the
distinction allows us to isolate conceptually orthogonal parts.
Evolutions. To define the trace semantics, we let Ω denote
the set of all possible evolutions of the system under analysis.
This set Ω encapsulates everything relevant that may affect the
system’s dynamic behavior: the evolution of its environment, all
observed input values, the timing of all inputs and stimuli, any
source of entropy within the system itself (such as a hardware
random number generator), etc. Environmental disturbances
such as electro-magnetic interference (EMI), the occurrence
of hardware faults, silicon defects, and so on can be seen as
a kind of input for our purposes and are accounted for in Ω.
Each ω ∈ Ω is one possible evolution of the system behavior.
In particular, fixing a specific ω ∈ Ω completely determines
the system’s evolution (i.e., the trace of its behavior), leaving
no room for uncertainty. For example, any non-deterministic
tie-breaking decisions are fixed in each ω ∈ Ω. Conversely, if
two scenarios differ in some observable aspect (such as how a
tie is resolved), then they are distinct elements of Ω.

The set Ω can be viewed as a formal notion of the phrase
“all valid scenarios of operation.” Importantly, Ω is a purely
theoretical concept: we assume that such a set exists, in
principle, but not that it can be derived, e.g., by enumerating
all program paths or some other form of a priori reasoning.

In the following, consider a system comprised of n tasks
τ = {τ1, . . . , τn} and let J be the set of all jobs arriving in
any evolution ω ∈ Ω. To allow evolutions to be related, we
assume that a job can arrive in multiple evolutions (i.e., jobs
have identity). We let J ∈ J denote an arbitrary job and, in
a slight abuse of notation, Ji ∈ τi denotes a job released by
task τi, interpreting τi ⊆ J as the set of all jobs produced by

some task τi. Throughout this paper, we assume a discrete-time
model, where the value ε > 0 represents the least indivisible
unit of time and T , {ε · k | k ∈ N} ⊂ R denotes the time
domain. Finally, to differentiate between absolute time T and
the amount of processor service needed to complete a job,
W , {ε · k | k ∈ N} denotes the set of workload values.
Foundational properties. Each individual evolution ω ∈ Ω
fixes all information relevant to (one specific) dynamic behavior
of the system under analysis. To allow statements about
evolutions, we introduce functions that express basic properties
of the system under analysis in a given evolution ω. For the
purposes of this paper, it suffices to introduce only the most
basic properties: arrival time and execution cost. In future work,
more properties like other resource needs, preemption points,
release jitter, self-suspensions, etc. can be added as needed.

The arrival time is a function A• : J×Ω→ T∪⊥ that maps
a job J and an evolution ω to J’s arrival time if it arrives in
ω, or to ⊥ if the job does not arrive. Given a job J ∈ J, we
write AJ to denote A• specialized to job J . Vice versa, we
write A•(ω) to denote A• specialized to a specific ω ∈ Ω.

Here we observe the first major departure from single-trace
analyses, where one can simply assume that every job has
a release time, since otherwise it can safely be ignored. In
contrast, in the multi-evolution trace semantics, one must
consider that a job may arrive in only a subset of evolutions.
Therefore, we must explicitly distinguish between cases in
which a job arrives and cases in which it does not (i.e., ⊥).

We analogously define a function C• : J× Ω→W ∪ ⊥
that, given a job J and an evolution ω, returns the execution
cost of job J in evolution ω, or ⊥ if J does not arrive in ω.

Another indispensable element of a real-time system is the
scheduler, which we define as a function σ : T× Ω→ J ∪ ⊥
that maps a time instant t and an evolution ω to a job that is
scheduled at time t in evolution ω, or ⊥ if the processor is idle
at time t. For now, we do not assume any specific algorithm
behind σ. If the scheduling policy is non-deterministic, then
this fact is reflected by the existence of (many) distinct ω ∈ Ω
representing different possible choices made by σ.
Derived definitions. From the foundational properties, we
derive higher-level concepts. Later in this paper, the notion of
a job’s response time will be of primary importance, so we
focus here on properties needed for defining “response time.”
In general, however, many other properties can be defined.

The processor service that a job J receives up to time t in an
evolution ω is defined as sJ(t, ω) ,

∑
0≤i<t 1[σ(i, ω) = J ],

where 1[x] denotes the indicator function that evaluates to 1
when x is true and 0 otherwise. Completion of a job can be
derived from its cost and service: a job J is complete at a time
instant t in an evolution ω, denoted cJ(t, ω), if it has received
enough service, i.e., cJ(t, ω) , sJ(t, ω) ≥ CJ(ω).

We let RJ(ω) denote the exact response time of job J in
evolution ω: RJ(ω) , inf {r | r ∈ T : cJ(AJ(ω) + r, ω)} if J
arrives in ω and RJ(ω) = ⊥ otherwise. If J arrives but never
completes, then the set is empty and inf evaluates to +∞.

Let Di denote the relative deadline of task τi. A job Ji ∈ τi
misses its deadline in evolution ω iff RJ(ω) > Di. We assume
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that ⊥ ≤ t for any t ∈ T; hence, if a job does not arrive in ω,
then by definition it does not miss its deadline.

For brevity, we introduce the notion of an arrival sequence
ξ : T×Ω→ 2J, where ξ(t, ω) , {J | AJ(ω) = t}. That is, the
arrival sequence ξ yields the set of jobs that arrive at a given
time t in evolution ω. For convenience, we also define the
arrival sequence of a task τi as ξi(t, ω) , ξ(t, ω) ∩ τi.
Classical assumptions. Our proposed semantics can be used
in a wide variety of contexts. For example, the classical hard
real-time constraint can be expressed by stating that not a
single ω ∈ Ω can give rise to a situation where there exists
a job J ∈ τi such that RJ(ω) > Di; or stated positively, the
goal invariant is ∀τi ∈ τ,∀J ∈ τi,∀ω ∈ Ω: RJ(ω) ≤ Di.
Other classical concepts can be expressed similarly concisely.

Example 1 ( 1). The worst-case execution time (WCET) of a
task τi is a constant Ci such that (i) ∀ω ∈ Ω,∀J ∈ τi : CJ(ω) ≤
Ci and (ii) ∃ω ∈ Ω,∃J ∈ τi : CJ(ω) = Ci.

Note how similar Example 1 is to the usual way of defining
WCET: we simply account for all evolutions ω ∈ Ω instead of
assuming a scalar parameter such as the usual per-job execution
cost “ci,j” (which corresponds to our CJ(ω)). By dropping
clause (ii), we naturally obtain the notion of a WCET bound.

Example 2 ( ). A constant Ti is a valid bound on the minimum
inter-arrival time of a task τi iff

∀ω ∈ Ω: ∀t1, t2 ∈ T : ∀J, J ′ ∈ τi :
t1 ≤ t2 ∧ J ∈ ξi(t1, ω) ∧ J ′ ∈ ξi(t2, ω) ∧ J 6= J ′ →
t2 − t1 ≥ Ti.

That is, any two distinct jobs J and J ′ of τi arrive at least
Ti time units apart in every possible evolution ω ∈ Ω.

In general, single-trace semantics, e.g., as used in Prosa [4,
11], can be embedded in our multi-evolution semantics in a
lossless manner simply by lifting all properties to ∀ω ∈ Ω.
The added power of our semantics, however, is that it allows
reasoning about many evolutions simultaneously. For example,
future work on sustainability theory might be interested in
analyzing subsets of Ω that do not contain certain scenarios. In
this paper, we augment Ω with a probability measure, so we
can express that some evolutions are more likely than others.

V. STOCHASTIC INTERPRETATION

To formally define pWCET, we first need to characterize the
ground truth. For this purpose, we extend the multi-evolution
trace semantics with a probability measure. In preparation, we
briefly recall the necessary concepts from probability theory.

A. Probability Primer and Notation

A discrete probability space is a pair (Ω,P), where Ω is a
countable, non-empty set of all possible outcomes, P : 2Ω →
[0, 1] is a probability function, and 2Ω is the set of all subsets

1We use the symbol to indicate mechanization in Coq. The symbol is
clickable (in the PDF) and leads to the corresponding definition or lemma.
The full proof, building on Tassarotti’s probability theory library [35, 36] and
in small parts on Prosa [11, 31], is available online [9].

of Ω. In the discrete case, it is always possible to derive a
distribution function µ : Ω → [0, 1] such that ∀ω, µ(ω) ≥ 0
and

∑
ω∈Ω µ(ω) = 1, and that, for any event A ⊆ Ω, it holds

that P [A] =
∑
a∈A µ(a). We use µ and P interchangeably.

A random variable is a function X : Ω → E, where E is
any set (i.e., we impose no restrictions since Ω is countable).
For brevity, the argument of a random variable is often omitted
when used in the context of a probability function. For instance,
P [X ≤ 7] is equivalent to P [{ω ∈ Ω | X(ω) ≤ 7}].

The conditional probability of an event A, given an event
with positive probability B, is P [A|B] , P [A ∩B]/P [B]. We
will frequently use the (discrete) law of total probability (LTP):

Fact 1 ( ). Given a probability space (Ω,P), an event
A ⊆ Ω, and a finite or countably infinite partition {Bi}i
of the sample space, that is, for i 6= j, (i) Bi ∩ Bj = ∅
and (ii) ∀ω ∈ Ω: µ(ω) > 0 =⇒ ∃i : ω ∈ Bi, we have
P [A] =

∑
i P [A ∩Bi].

Given a random variable X : Ω→ E with E ⊆ R, its cumu-
lative distribution function (CDF) F [X] : R→ [0, 1] is defined
as F [X] (x) , P [X ≤ x]. Akin to conditional probability, the
conditional CDF of X given an event with positive probability
B is defined as F [X|B] (x) , P [X ≤ x|B].

We adopt and slightly generalize the partial order on random
variables introduced by Dı́az et al. [22]. Let f, g : N→ R be
two arbitrary functions. We say that f is dominated by g iff
∀x ∈ N, f(x) ≥ g(x) and denote this relation as f � g ( ).
Graphically speaking, f � g iff f always stays above g.

Def. 2 (Dı́az et al. [22], ). Let X1 : Ω1 → E and X2 : Ω2 →
E be two random variables with two not necessarily identical
domains and identical codomain E ⊆ R. We say that X1 is
dominated by X2, denoted as X1 � X2, iff F [X1] � F [X2].

We next recall the crucial notion of conditional independence.

Def. 3. Given two events A,B ⊆ Ω and an event with positive
probabilityC ⊆ Ω, we say that eventsA andB are conditionally
independent given C iff P[A ∩B|C] = P[A|C] · P[B|C].

A set of random variables X1, . . . ,Xn : Ω→ E is mutually
independent iff P

[⋂
i∈G Xi = xi

]
=
∏
i∈G P [Xi = xi] for any

constants x1, . . . , xn ∈ E and any subset G ⊆ {1, . . . , n}.
Finally, we say that a set of random variables is IID if they

are mutually independent and all share the same CDF.

B. Probabilistic Real-Time Semantics

Let us now introduce the probabilistic structure. Crucially,
we make two common-sense assumptions that greatly simplify
the subsequent formalization, not only, but especially, in Coq.

First, we assume there exists a finite horizon H ∈ T such
that the system ceases operation after at most H time units. In
practice, H is not a restriction since it can be arbitrarily large.
Formally, it means we may assume the total number of jobs to
be finite (i.e., |J| ≤ N for some very large N ∈ N), assuming
no task releases an unbounded number of jobs instantaneously.

Second, we assume the system under analysis to have finite
memory, i.e., it is a finite-state system, which obviously holds
for practical digital computers. As a useful consequence, we
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may conclude that Ω is countable because there are only finitely
many evolutions of a finite-state system of length at most H .

We thus interpret the set of all possible evolutions Ω as a
countable outcome space. Next, we assume the existence (but
not necessarily knowledge) of a distribution function µ : Ω→
[0, 1], which as discussed implies a measure P : 2Ω → [0, 1],
thereby yielding the probability space (Ω,P).

Given (Ω,P), we can now define the probabilistic execution
time (pET): it is simply the cost function C• : J×Ω→W∪⊥
introduced in Sec. IV. Recall that a random variable is a
function Ω → E, for some set E. Seen this way, C• maps
a job J to a random variable describing its cost CJ : Ω →
W∪⊥. Thus, we can use CJ to reason about the probability of
events related to the job’s execution time. For example, given
a job J , we can state “J’s cost is bounded by 12 time units
with probability 0.99” simply as P [CJ ≤ 12] = 0.99.

Analogously to pET, the probability space (Ω,P) imposes
a probabilistic structure on A, ξ, σ, c, etc., which all become
random variables under the stochastic interpretation. As a more
involved example, we can express the generally true proposition
that the probability of completion increases with time ( ) as
∀J ∈ J,∀t1, t2 ∈ T : t1 ≤ t2 =⇒ P[cJ(t1)] ≤ P[cJ(t2)].
Note that the second argument of cJ(t, ω) is omitted following
the usual convention for random variables.

For notational convenience, we overload the arrival sequence
notation ξ in the context of events and conditional probability.
Consider the set of all arrival sequences Ξ , {ξ(·, ω) |ω ∈ Ω}.
Given a fixed arrival sequence ξo ∈ Ξ, we define a corre-
sponding event comprising all evolutions with this fixed arrival
sequence ξo, formally {ω ∈ Ω | ξ(·, ω) = ξo }. In the following,
we simply use ξ to refer to this induced event.

The presented formalization is expressive enough to account
for the interplay between the “average” and “worst-case”
behaviors. One well-known example where this matters is
the deadline failure probability (DFP). Let J be some job of a
task τi. If we simply state P [RJ > Di], it means the DFP of
job J assuming we do not consider the arrival sequence to be
a critical instant, i.e., it is a statement w.r.t. all possible arrival
sequences (similarly to [29]). To state the worst-case DFP
(WCDFP), we actually need to use conditional probability:
maxξ : P[ξ>0] maxJ∈τi P [RJ > Di | ξ] (e.g., similarly to [30]).

More generally, a significant number of prior analyses
consider the arrival sequence either to be fixed [8] or to be
formed in a worst-case fashion [13, 14, 38]. With the proposed
stochastic multi-evolution semantics, all such assumptions and
metrics can be stated clearly and related. For the purposes of
this paper, the semantics allow us to precisely define pWCET.

VI. AXIOMATIC PWCET AND ITS ADEQUACY

In the following, we develop the main technical contribution
of this paper: a formal definition of pWCET called axiomatic
pWCET (Sec. VI-A). To ensure that axiomatic pWCET captures
the intuition laid out in Sec. II, we introduce a formal adequacy
requirement (in Secs. VI-B and VI-C), and then prove that our
proposal is adequate in this sense (in Sec. VII).
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P[CJa
= 3 ^ CJb

= 4] = 0

<latexit sha1_base64="ZErxAy5DuJZNIHmfKolZTNoQ/40=">AAACLXicbVDLSgMxFM3UV62vqks3wVpwVWeqaDdCoS7EVQX7gHYYMultG5p5kGSUMswPufFXRHBREbf+hpm2C209kHA4J5ece9yQM6lMc2JkVlbX1jeym7mt7Z3dvfz+QVMGkaDQoAEPRNslEjjzoaGY4tAOBRDP5dByR7XUbz2CkCzwH9Q4BNsjA5/1GSVKS07+pusRNXTduJ50ppQSHtcSJ75zSIKv8TnuPkFvAHjBdFOzbOvLOqs4+YJZMqfAy8SakwKao+7k37q9gEYe+IpyImXHMkNlx0QoRjkkuW4kISR0RAbQ0dQnHkg7nm6b4KJWergfCH18hafq74mYeFKOPZ2wmGaWi14q/ud1ItWv2DHzw0iBT2cf9SOOVYDT6nCPCaCKjzUhVDCdFdMhEYQqXXBOl2AtrrxMmuWSdVmy7i8K1ZN5HVl0hI7RKbLQFaqiW1RHDUTRM3pFE/RhvBjvxqfxNXuaMeYzh+gPjO8fZNSmxg==</latexit>

P[CJa
= 3 ^ CJb

= 2] = 1/8
<latexit sha1_base64="b2yE+fiYn6aSyjk4Omom9pMNOUo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0lE1GPBi8dK7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GdzO//cS1EbF6xEnC/YgOlQgFo2ilRqPv9csVt+rOQVaJl5MK5Kj3y1+9QczSiCtkkhrT9dwE/YxqFEzyaamXGp5QNqZD3rVU0YgbP5ufOiXnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NbPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2nZEPwll9eJa3Lqndd9R6uKrWzPI4inMApXIAHN1CDe6hDExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gDMNY1j</latexit>

S1

<latexit sha1_base64="Z/BcmOhaav2QWTTjrxFcq5o1d1k=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4KkkR9Vjw4rFS+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WjmSToR3QoecgZNVZqNPrVfqnsVtw5yCrxclKGHPV+6as3iFkaoTRMUK27npsYP6PKcCZwWuylGhPKxnSIXUsljVD72fzUKbmwyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPUzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2naEPwll9eJa1qxbuueA9X5dp5HkcBTuEMLsGDG6jBPdShCQyG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gDNuY1k</latexit>

S2

Fig. 4. An example system (Ω,P). An evolution in this system is a pair
(x1, x2) ∈ {1, 2, 3, 4} × {1, 2, 3, 4}, illustrated as a grid of outcomes. Each
blue outcome (i.e., cell in the grid) has a probability of occurrence of 1/8,
and each white cell has probability 0. The two subsets S1 (clear) and S2

(dashed) form a partition S of Ω for job Ja (as explained after Def. 7).

A. Axiomatic pWCET via Partitioning

Before we gradually define axiomatic pWCET, let us
consider the illustrative example in Fig. 4. The set of evolutions
Ω consists of 16 scenarios {(x1, x2) |x1, x2 ∈ {1, 2, 3, 4}}
such that each evolution is a pair ω = (x1, x2). The probability
distribution is given by µ((x1, x2)) = 1/8 if (x1 + x2 =
5) ∨ (x1 = x2) and 0 otherwise (see Fig. 4 for a graphical
representation). For simplicity, there are only two jobs Ja and
Jb that both arrive at time 0, with costs CJa((x1, x2)) = x1

and CJb((x1, x2)) = x2. Given Ω and µ, pETs CJa and CJb
are clearly dependent random variables. In order to introduce
a valid “pWCET,” one thus needs a condition stronger than �.

This stronger condition is at the heart of our axiomatic
pWCET proposal. To define it, we first require three new
concepts: a “partition” of all possible evolutions, “partition
independence,” and “partition dominance.” We formally state
each of these ideas next and then relate them to Fig. 4.

Recall from Sec. II how Def. 1 requires pWCET to dominate
pET for every “valid scenario of operation.” In a similar spirit,
we introduce the notion of a partition of all possible evolutions.

Def. 4 ( ). A partition S , {Sl}l is any finite, or countably
infinite, disjoint cover of all positive-probability elements of Ω.

It follows from Def. 4 that P[
⋃
l Sl] = 1. Intuitively, a

partition S can be understood as splitting Ω into subsets of
related evolutions representing different “scenarios.” Formally,
we place no restrictions on how such a “scenario” Sl ∈ S
is found or defined. Intuitively, one can think of application-
specific criteria such as, for instance, the path taken by a job,
the hardware state, or the value of some input to the system.

For axiomatic pWCET, we require not just any partition, but
one with a particular feature: it must ensure that the pET of a
given job is conditionally independent of all other pETs for
each Sl ∈ S. We call this property “partition independence.”

In the below definition, we use a new notation ~c• : J →
W ∪ ⊥ to denote a vector of fixed job costs. In contrast to
the pET C•, the cost vector ~c• does not depend on Ω (and
hence is not a random variable); rather, it is simply a vector
of fixed values that we use to concisely express one possible
“assignment” of job costs. Similarly to pET, we write ~cJ to
denote the element of ~c• corresponding to a given job J .

Def. 5 ( ). Given a job J ∈ J, a fixed arrival sequence ξ, and
a partition S, job J’s pET is partition-independent w.r.t. S iff,
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for any set G ⊆ J with J 6∈ G and any fixed cost vector ~c•:

∀Sl ∈ S s.th. P[Sl ∧ ξ] > 0:

P [CJ = ~cJ ∧ ∀J ′ ∈ G : CJ′ = ~cJ′ |Sl ∧ ξ]
= P [CJ = ~cJ |Sl ∧ ξ] · P [∀J ′∈ G : CJ′ = ~cJ′ |Sl ∧ ξ].

In other words, the probability of job J exhibiting a particular
fixed cost ~cJ must be conditionally independent (given ξ and
any Sl ∈ S) of any other job J ′ exhibiting a particular
fixed cost ~cJ′ . This matches the definition of conditional
independence (Def. 3) with event CJ = ~cJ being A, event
∀J ′ ∈ G : CJ′ = ~cJ′ being B, and event Sl ∧ ξ being C. Note
that some partition ensuring this property always exists, as
S = {{ω} |ω ∈ Ω} satisfies Def. 5 ( ).

Finally, we incorporate Dı́az et al.’s dominance relation �
on a per-partition basis, which we call partition dominance.

Def. 6 ( ). Given a job J ∈ J, a fixed arrival sequence ξ, and
a partition S, a function F : W→ [0, 1] S-dominates CJ iff

∀Sl ∈ S s.th. P[Sl ∧ ξ] > 0: F[CJ |Sl ∧ ξ] � F.
Based on Defs. 4–6, we can finally define axiomatic pWCET.

Def. 7 ( ). A monotonically increasing function Fi : W →
[0, 1] with Fi(0) = 0 and limt→∞ Fi(t) = 1 is an axiomatic
pWCET for a task τi if, for every J ∈ τi and every fixed arrival
sequence ξ ∈ Ξ, there exists a partition S (Def. 4) such that

1) CJ is partition-independent w.r.t. ξ and S (Def. 5), and
2) Fi S-dominates CJ w.r.t. ξ (Def. 6).
Note that Def. 7 does not require there to be only one “global”

partition S—rather, it merely requires a S satisfying Defs. 5
and 6 to exist for each job, but no two jobs are required to
have the same S. That is, in the terminology of Def. 1, what is
considered a “scenario of operation” can differ across tasks and
jobs. In this regard, Def. 7 is considerably weaker than Def. 1.
The rationale is that Def. 7’s weaker requirement suffices to
establish adequacy (Sec. VII). Also unlike Def. 1, axiomatic
pWCET does not impose a notion of “least upper bound”—
Def. 7 ensures soundness, not tightness. In one key point,
however, Def. 7 is stronger than Def. 1: partition independence
and dominance jointly enable IID reasoning (Sec. VII).
Example. Let us illustrate Defs. 4–7 with the example from
Fig. 4. The arrival sequence in the example is fixed and hence
not relevant. Suppose Ja is released by a task τa. Let us find
an axiomatic pWCET for τa, which requires the following
steps. (1) We construct a partition S = {S1, S2} for Ja
according to Def. 4, where S1 , {(x1, x2) |x1 ∈ {1, 4}}
and S2 , {(x1, x2) |x1 ∈ {2, 3}}, and x2 ∈ {1, 2, 3, 4} in
both cases. (2) Geometrically, it is easy to see that CJa and
CJb are partition-independent w.r.t. S (Def. 5): P[CJa =
~cJa ∧ CJb = ~cJb |Si] = P[CJa = ~cJa |Si] · P[CJb = ~cJb |Si]
for any ~cJa ,~cJb ∈ {1, 2, 3, 4} and Sl ∈ S0. For example,
conditioned on S1, the pET CJa equals either 1 or 4 with
probability 0.5 each, regardless of the value assumed by CJb .
Similarly, it’s either 2 or 3 when conditioned on S2. (3) We
choose Fa ,

(
2 4

0.5 0.5

)
and check that it S-dominates CJa

(Def. 6): for CJa |S1, we have
(

1 4
0.5 0.5

)
�
(

2 4
0.5 0.5

)
, and for

CJa |S2, we have
(

2 3
0.5 0.5

)
�
(

2 4
0.5 0.5

)
. Thus,

(
2 4

0.5 0.5

)
is a safe

axiomatic pWCET distribution for task τa (Def. 7).
Let us also revisit “Program B” from Sec. III-A. Let P 1

i

denote the event that the first job executes path pi. Since the
pET of a job depends on the path taken by the previous job, all
the way back to P 1

i , we conclude that SB = {P 1
1 , P

1
2 , P

1
3 , P

1
4 }

ensures partition-independence (assuming that the noise term
±2 does not exhibit correlation itself). The tightest possible
pWCET distribution satisfying Def. 6 w.r.t. SB is

(
40±2

1

)
,

which indeed results in a safe over-approximation. This revised
bound also suggests that mostly deterministic execution does
not leave much room for pWCET to provide a large benefit,
which, however, is a discussion that we leave to future work.

B. pWCET Adequacy: A Minimal Requirement

Having proposed axiomatic pWCET, we now wish to assess
whether it is adequate, in the sense of allowing the kind of
IID-based reasoning sketched in Secs. II and III-A. To this
end, we define a class of “system transformations” that are
monotone w.r.t. the probabilistic response time (pRT) R•(ω)
and argue that “replacing pETs with pWCETs” ought to be
monotone in this sense for any reasonable notion of “pWCET.”

So far in this paper, we have relied heavily on the reader’s
intuition when saying “we replace pETs with pWCETs.” Let
us now clarify the meaning behind “replacement.” Recall the
definition of a probabilistic real-time system (Ω,P) with its
foundational properties A• and C•. We call (Ω,P,A•, C•) a
system and allow its transformation as follows.

Def. 8. A system transformation is a function T that maps
a given probabilistic real-time system (Ω,P,A•, C•) to a new
system (Ω?,P?,A?•, C?•) , T(Ω,P,A•, C•).

With this terminology, the “replacement” of one element with
another is simply a mapping of (Ω,P,A•, C•) to a new system
(Ω?,P?,A?•, C?•). In the context of pWCET, we are interested
in a class of system transformations that are monotone w.r.t.
the induced change in the pRT of any job.

Def. 9 ( ). Given a system (Ω,P,A•, C•), a system trans-
formation T is pRT-monotone iff the resulting system
(Ω?,P?,A?•, C?•) , T(Ω,P,A•, C•) is guaranteed to satisfy

∀J ∈ J : RJ � R?J ,
where RJ and R?J are the pRT of J in systems (Ω,P,A•, C•)
and (Ω?,P?,A?•, C?•), respectively.

We posit that pRT-monotone pET substitution is the minimum
adequacy requirement that any reasonable pWCET definition
must satisfy: as surveyed in Secs. I and II, when over-
approximating pET distributions with pWCET distributions,
we expect to obtain safe pRT distributions.

Example. To illustrate Defs. 8 and 9, consider a trivial transfor-
mation of the system described in Fig. 4 that replaces pETs with
(classical) WCETs. Let (Ω,P,A•, C•) be the original system
described in the example and (Ω?,P?,A?•, C?•) be the result of
the following transformation: pETs are mapped to degenerate
random variables always returning the corresponding WCETs
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(i.e., ∀ω′ ∈ Ω? : C?•(ω′) , maxω∈Ω C•(ω)) and the rest is left
untouched (i.e., Ω? , Ω, P? , P, and A?• , A•). Under
fully preemptive fixed-priority scheduling (with any priority
assignment), the response times of all jobs in all evolutions do
not decrease, and thus ∀J ∈ {Ja, Jb} : RJ � R?J .

C. pRT-Monotone pET Substitution

What remains to be clarified is how, formally speaking,
pWCETs can be substituted for pETs, since pWCET is not a
job-level random variable, but a task-level function resembling
a CDF. The formal connection requires elaboration.

At a high level, pET substitution proceeds on a job-by-job
basis. For convenience, let κ : {1, . . . , |J|} → J enumerate the
jobs in the order in which they are processed. For now, let us
consider just one step of the transformation, in which we seek
to replace the pET of an arbitrary given job Jo.

Def. 10 ( ). Let (Ωs, µs,As•, Cs•) be the system after the s-th
step, and let Jo = κ(s+ 1) be a job released by a task τi. Given
the task’s pWCET Fi, define the corresponding probability mass
function (PMF) fi as fi(0) , Fi(0) and fi(t+ε) , Fi(t+ε)−
Fi(t). The s+ 1-th pET substitution step Ts+1 is defined as:

Ωs+1 , Ωs ×W
µs+1((ω, c)) , µs(ω) · fi(c)

∀J,As+1
J ((ω, c)) , AsJ(ω)

∀J, Cs+1
J ((ω, c)) ,

{
CsJ(ω) if J 6= Jo

c if J = Jo

Let us consider each element in turn. First, it can be shown
that

∑
c fi(c) = 1 and fi(c) ≥ 0 for any cost c; hence fi is

indeed the PMF of Fi. Second, the given set of evolutions Ωs

is augmented with an extra dimension W. The new set Ωs+1

remains countable by the classic diagonalization argument [e.g.,
24, p. 92]. All arrival times remain unchanged. Finally, the
new job cost function directly references the new dimension
for Jo, and defers to the given cost function for all other jobs.

By construction, Def. 10 ensures two important properties:
first, for any g ∈ {s + 1, . . . , |J|}, CgJo is independent of all
other properties of the system since it depends only on its
dedicated dimension; and second, CgJo’s distribution is the
pWCET distribution Fi since CgJo = c occurs with probability
P[{(ω, c) |ω ∈ Ωs }] =

∑
ω∈Ωs µs(ω) · fi(c) = 1 · fi(c). Thus,

CgJo can now be thought of as an “pWCET random variable.”
Repeating Def. 10 for each job yields the desired result.

Def. 11 ( ). Let Ts denote the step-wise transformation defined
in Def. 10, and let S = (Ω, µ,A•, C•) be the initial system.
The pET substitution T maps the initial system to the system
(Ω?, µ?,A?•, C?•) = T(S) = T|J|(. . . (T2(T1(S)))).

By construction, the transformation T generates a new
system in which all job costs are independent and job
costs corresponding to jobs of the same task have identical
distributions. That is, job costs are provably IID after pET
substitution (since each pET is confined to its own dimension),
which matches the expected intuition (Sec. II).

Example. To show how transformation T works at the low level,
we apply it to our running example from Fig. 4. Transformation
T iterates twice since there are only two jobs in the example
system. A safe pWCET used for both jobs is F =

(
2 4

0.5 0.5

)
,

with a PMF f(c) = 1/2 iff c = 2 ∨ c = 4 and f(c) = 0
otherwise. The sample space is augmented with two additional
dimensions: Ω? = Ω×W×W. The final distribution function
becomes µ?((ω, c1, c2)) = µ(ω) ·f(c1) ·f(c2). Arrivals simply
ignore the newly added dimensions: A?•((ω, c1, c2)) = A•(ω).
Finally, C?Ja((ω, c1, c2)) = c1 and C?Jb((ω, c1, c2)) = c2.

To verify that C?Ja now follows the pWCET distribu-
tion F , let us see why P[C?Ja = 2] = 1/2 (the prob-
ability of C?Ja = 4 is computed analogously). Since
C?Ja((ω, c1, c2)) = 2 iff c1 = 2, we must consider the set
Ψ , {(ω, 2, c2) |ω ∈ Ω ∧ c2 ∈ N} ⊆ Ω?. By distributivity,
the sum

∑
ω?∈Ψ µ

?(ω?) =
∑
ω∈Ω,c2∈N µ(ω) · f(2) · f(c2)

simplifies to f(2) · (∑ω∈Ω,c2∈N µ(ω) · f(c2)), which in turn
simplifies to 1/2 · 1, which matches the pWCET

(
2 4

0.5 0.5

)
.

Additionally, one can easily show that C?Ja and C?Jb are indeed
independent; we omit the calculation due to space constraints.

What remains to be shown is that pET substitution (Def. 11)
is pRT-monotonic (Def. 9), assuming that each Fi is an
axiomatic pWCET (Def. 7), thereby establishing the adequacy
of Def. 7. As it turns out, this is far from obvious.

VII. AXIOMATIC PWCET IS PRT-MONOTONIC

In fact, Def. 7 cannot be proven adequate by itself —recall
from Sec. III-B that any guarantees inherently must depend
on the scheduling policy. Therefore, we must assume that a
scheduling algorithm S is employed consistently across ω ∈ Ω.

Scheduler. In analogy to ~c•, let ~a• denote a vector of fixed
arrival times. We model the scheduler S as a function that
maps two vectors ~a• and ~c• of fixed values corresponding to
the foundational job properties (i.e., arrival times and costs,
respectively) to a schedule of the system. Formally, the schedule
σ and the scheduler S are related as follows: S[A•(ω), C•(ω)] =
σ(ω) for any ω ∈ Ω ( ). Recall that, specialized on a given
ω ∈ Ω, A•(ω) and C•(ω) are fixed parameter vectors.

Clearly, S is not intended to resemble a real scheduler
implementation. Rather, it is a minimal abstraction that serves
two important purposes in the proof. First, it allows reasoning
about related evolutions: since S is a function, identical input
vectors result in an identical output schedule. Second, it allows
restricting the scope to anomaly-free policies, as explained next.

We use S to define an algorithm RJ [~a•,~c•] that, given the
parameter vectors ~a• and ~c•, computes the response time of
any given job J . It can be shown ( ) that RJ [A•(ω), C•(ω)] =
RJ(ω), that is, we prove that RJ [~a•,~c•] computes correctly.
Let ~c• denote any cost vector, and ~c+++

• a derived cost vector
obtained from ~c• by increasing an arbitrary element of ~c•. We
say that S is response-time monotone (RT-monotone) iff, for
any given job J and fixed vector of arrivals ~a•, J’s response
time does not decrease: RJ [~a•,~c•] ≤ RJ [~a•,~c

+++
• ].

Overview. We restrict our attention to RT-monotone schedulers.
At a high level, the proof mirrors Sec. VI-C. First, we show
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that one step Ts (Def. 10) is a pRT-monotone transformation
(Def. 9), which takes the Lion’s share of the proof effort.
In this part, we rely heavily on Fact 1 (LTP). Second, we
apply Ts repeatedly (Def. 11) to obtain a chain on inequalities
RJ = R0

J � R1
J � . . . � R

|J|
J = R?J . The final statement then

simply follows from the transitivity of �.
Our formal proof [9], if fully elaborated, would require many

pages to describe in detail. Due to space constraints, we focus
here on the essential steps, with an emphasis on the overall
strategy. For further details, we refer the interested reader to
the Coq development linked to throughout this section.

pRT-monotonic step Ts. Consider a system (Ω, µ,A•, C•)
transformed by Ts into (Ω̂, µ̂, Â•, Ĉ•) to replace the pET of a
single job Jo , κ(s). By Def. 9, we need to establish:

Theorem 1 ( ). ∀J : RJ � R̂J

Proof. To prove the dominance �, we have to show the
inequality P[RJ > r] ≤ P̂[R̂J > r] for arbitrary J and r.

Introduce ξ via LTP. To perform a case analysis on all possible
arrival sequences ( ), we apply LTP to both sides of the
inequality. Since Ts does not change arrivals, arrival sequences
in both (Ω,P) and (Ω̂, P̂) coincide ( ). Hence, it suffices to
establish the claim for an arbitrary, but fixed arrival sequence
ξ appearing on both sides of the inequality.

Introduce Sl and Ŝl via LTP. Now, by Def. 7, there is a
partition S satisfying Defs. 5 and 6 for job Jo. We show that Ts

respects the structure of S, so that there is a simple extension
Ŝ to the transformed system ( ). Similarly to ξ, since S and
Ŝ have identical structure, it suffices to establish the claim
for an arbitrary, but fixed pair of “twin” events Sl ∈ S and
Ŝl ∈ Ŝ. After all this “zooming in,” the following inequality
remains to be shown: P[RJ > r∧ξ∧Sl] ≤ P̂[R̂J > r∧ξ∧ Ŝl].
Condition on ξ ∧ Sl and ξ ∧ Ŝl. Next, we perform a case
analysis on the probability of the event ξ∧Sl. If P[ξ∧Sl] = 0,
the claim is trivial, so assume otherwise. For the “twin” event
in (Ω̂, P̂), we show P[ξ ∧ Sl] = P̂[ξ ∧ Ŝl] ( ). Recall the
definition of conditional probability. Dividing by P[ξ ∧ Sl] on
the LHS, and by P̂[ξ ∧ Ŝl] on the RHS, reduces the proof
obligation to: P[RJ > r|ξ ∧ Sl] ≤ P̂[R̂J > r|ξ ∧ Ŝl] ( ).

Switch to RJ [·, ·]. We exploit the assumption that a scheduler
S is used in all ω to replace RJ(ω) with RJ [A•(ω), C•(ω)]
(analogously for R̂J(ω)) ( ). For brevity, the expression
RJ [A•(ω), C•(ω)] > r should be understood as an event
{ω ∈ Ω |RJ [A•(ω), C•(ω)] > r} (analogously for the RHS):

P[RJ [A•(ω), C•(ω)] > r|ξ ∧ Sl]
≤ P̂[RJ [Â•(ω), Ĉ•(ω)] > r|ξ ∧ Ŝl].

Pin A• and Â• to ~a•. Note that A• is completely determined
by ξ. Since we consider one specific ξ, A• does not vary within
the event ξ ∧ Sl. Hence, there is one ~a• equal to A•(ω) for
any ω ∈ ξ ∩ Sl (analogous reasoning applies to Â•) ( ):

P[RJ [~a•, C•(ω)] > r|ξ ∧ Sl] ≤ P̂[RJ [~a•, Ĉ•(ω)] > r|ξ ∧ Ŝl].

Pin C• and Ĉ• to ~c•. Next, let us apply LTP to perform a case
analysis on all job costs except for the job cost that we want
to replace. Recall Jo = κ(s). We use the notation C•\Jo and
~c•\Jo to denote that the respective domains do not include job
Jo. By applying LTP w.r.t. the set of all such reduced-domain
cost vectors, we obtain as the remaining proof obligation ( ):∑

~c•\Jo

P[RJ [~a•, C•(ω)] > r ∧ C•\Jo = ~c•\Jo |ξ ∧ Sl]

≤
∑
~c•\Jo

P̂[RJ [~a•, Ĉ•(ω)] > r ∧ Ĉ•\Jo = ~c•\Jo |ξ ∧ Ŝl].

Once again, both sums iterate over the same set of values (i.e.,
they are structurally identical). Hence, it suffices to establish
the claim for an arbitrary, but fixed ~c•\Jo and prove that the
LHS does not exceed the RHS for this specific cost vector.

Let us apply LTP once more to analyze the cost of Jo, which
we will refer to simply as c (as in Def. 10) ( ). Note that ~c•\Jo
and c together define all job costs, so let us “reassemble” the
two, once-more obtaining a vector of all costs ~c•. We exchange
C•(ω) with ~c•, since any ω that satisfies both Ĉ•\Jo = ~c•\Jo and
ĈJo = c also satisfies C•(ω) = ~c• (similarly for the RHS) ( ):∑

c

P[RJ [~a•,~c•] > r ∧ C•\Jo = ~c•\Jo ∧ CJo = c|ξ ∧ Sl]

≤
∑
c

P̂[RJ [~a•,~c•] > r ∧ Ĉ•\Jo = ~c•\Jo ∧ ĈJo = c|ξ ∧ Ŝl].

Why did we apply LTP twice, once on ~c•\Jo and once on c,
just to recombine the two afterwards? Ultimately, the reason
is a technicality in the Coq proof that we gloss over here.
Exploit partition-independence. Both arguments of RJ [~a•,~c•]
are now fixed values that do not depend on ω. Therefore,
RJ [~a•,~c•] > r is a boolean value (and not a random variable).
Hence, we can separate it from the probability expressions on
both sides using the indicator function 1[·].

Next, consider the LHS: we exploit Def. 5 for G = J \ {Jo}
to conclude ( ) that the pET CJo is conditionally independent
from other pETs C•\Jo (conditioned on ξ∧Sl). On the RHS, the
probability term can, by construction (Def. 10), be factored into
P[C•\Jo = ~c\Jo |ξ ∧ Sl] · Pf [ĈJo = c] ( ), where Pf denotes
the probability measure induced by pWCET’s PMF fi.

The first factor of the RHS (P[C•\Jo = ~c\Jo |ξ∧Sl]) coincides
with the corresponding term on the LHS; hence both cancel out.
The second factor of the RHS Pf [ĈJo = c] does not depend
on ξ and Ŝl since, by construction (Def. 10), ĈJo depends only
on the added dimension. All in all, we arrive at ( ):∑

c

1[RJ [~a•,~c•] > r] · P[CJo = c|ξ ∧ Sl]

≤
∑
c

1[RJ [~a•,~c•] > r] · Pf
[
ĈJo = c

]
.

Use RT-monotonicity. Since the scheduler S is RT-monotone,
if some c0 causes J to have a response time exceeding r, then
this is the case also for any c > c0. Therefore, we consider
three cases: (i) independently of c, RJ [~a•,~c•] > r is always
false, (ii) independently of c, RJ [~a•,~c•] > r is always true, and
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(iii) there exists a c0 such that c > c0 ⇐⇒ RJ [~a•,~c•] > r
( ). The first two cases are trivial: if (i), then the LHS and
RHS both equal 0 ( ), and if (ii), then both sides equal 1 ( ).

Consider the last case. We replace RJ [~a•,~c•] > r with
c > c0 since, in case (iii), they are equivalent ( ):∑
c

1[c > c0]P[CJo = c|ξ ∧ Sl] ≤
∑
c

1[c > c0]Pf [ĈJo = c].

The LHS and RHS of the inequality can be simplified to
P[CJo > c0|ξ ∧ Sl] and Pf [ĈJo > c0], respectively. Using the
fact that P [a > b] ≤ P [c > d] ⇐⇒ P [a ≤ b] ≥ P [c ≤ d],
we transform the inequality to obtain ( ):

P[CJo ≤ c0|ξ ∧ Sl] ≥ Pf [ĈJo ≤ c0].

Finally, by construction (Def. 10), Pf [ĈJo ≤ c0] = Fi(c0).
Hence, we end up with P[CJo ≤ c0|ξ ∧ Sl] ≥ Fi(c0), which
follows ( ) from partition-dominance (Def. 6).

Transformation T is pRT-Monotone. We are now ready to
prove the main result, which follows easily from Theorem 1.

Theorem 2 ( ). Consider a job J ∈ J. LetRJ be the pRT of
J in (Ω,P,A•, C•) andR?J be the pRT of J in (Ω?, µ?,A?•, C?•),
where the latter is defined as in Def. 11. ThenRJ � R?J .

Proof. We construct a chain of dominance relations:

RJ = R0
J � R1

J � . . . � R|J|J = R?J , (1)

where RsJ denotes pRT of J in system (Ωs, µs,As•, Cs•) after
the s-th step of the transformation. The claim then follows
from the transitivity of �, Theorem 1, and the fact that, for
each task τi, the function Fi is an axiomatic pWCET (Def. 7)
w.r.t. system (Ωs, µs,As•, Cs•) for 0 ≤ s ≤ |J| ( ).

Theorem 2 establishes axiomatic pWCET’s adequacy in the
sense of Def. 9, under any RT-monotone scheduling policy.
This means that pWCET distributions satisfying Def. 7 may
be used to “replace” pETs (as in Def. 11) to enable safe IID
reasoning. Axiomatic pWCET is the first notion of pWCET
for which the IID guarantee has been formally established.

VIII. PRACTICAL APPLICABILITY

Axiomatic pWCET (Def. 7) is defined w.r.t. a space of all
evolutions Ω, which is rarely (if ever) known. While this might
raise questions about the practicality of the proposed approach,
it is actually not an issue since Ω is just a modeling construct.
In fact, even though Ω usually cannot be enumerated, it can
still be possible to partition it (Defs. 4–6), which suffices.

To illustrate this idea, let us focus on a result by Frias
et al. [23], who consider the problem of DFP derivation for
randomized robotics applications as found in an autonomous
vehicle. While the execution costs observed in the real system
are statistically dependent and thus do not satisfy the IID
assumption, Frias et al. show that a hidden Markov model
(HMM) can faithfully describe the application’s behavior.

One can interpret the HMM learning task (i.e., parameter
inference from a corpus of traces) as the derivation of a

partition satisfying Def. 5. Consider an HMM H with k
states H1, . . . ,Hk, and let HJ(ω) denote the state of H
in which a job J is released in evolution ω ∈ Ω. Each
state of the HMM corresponds to a disjoint subset of Ω.
More precisely, for each job J , we can define a suitable
partition SJ ,

{{
ω
∣∣HJ(ω) = Hi

}
| i ∈ {1, . . . , k}

}
(recall

from Def. 7 that a different partition may be chosen for each
job). Such a partition satisfies Def. 5 since, by the definition
of an HMM, the cost of J is independent of any other cost
conditioned on the current state of the HMM—HJ(ω). Thus,
we have derived a finite partition satisfying Def. 5 for an
opaque, unenumerated set of evolutions Ω.

To satisfy Def. 6, it suffices to simply upper-bound the
distribution of job costs in each HMM state (in the sense of
Def. 2) by taking a point-wise minimum of the execution-cost
CDFs associated with H1, . . . ,Hk. In conclusion, if a task’s
behavior can be described with an HMM (e.g., as demonstrated
in practice by Frias et al. [23]), then Def. 7 applies nicely.

Finally, by design, Def. 7 is in spirit very close to Def. 1,
just minimally strengthened to guarantee IID reasoning. Indeed,
Def. 4 refines the notion of a “scenario of operation” in precise
mathematical language, and the essence of Def. 6 coincides in
both definitions. It stands to reason that, for any application
for which it is possible to satisfy Def. 1 and the additional
requirements needed for IID reasoning (as given by Davis and
Cucu-Grosjean [18, 19]), it will also be possible to apply Def. 7.

IX. CONCLUSION

Motivated by the observation that previous pWCET defi-
nitions are prone to misinterpretation (Sec. III-A), we have
developed axiomatic pWCET (Sec. VI-A), the first truly formal
notion of pWCET backed by rigorous proof. Axiomatic pWCET
follows in the tradition of the prevailing intuition about pWCET
(Sec. II-C), but improves upon prior proposals by providing
the first mathematically precise and complete justification for
the desirable guarantees commonly ascribed to pWCET.

The name “axiomatic pWCET” derives from the fact that
Def. 7 is the weakest precondition for which we could
find a mechanized, Coq-verified proof of pRT-monotonicity
(Sec. VII), which we consider to be the minimum adequacy
requirement that any reasonable pWCET definition should
satisfy (Sec. VI-C). Overall, axiomatic pWCET significantly
advances the state of the art by illuminating exactly how, when,
and why the pWCET abstraction enables IID reasoning.

We leave all practical considerations to future work. In
particular, it will be interesting to understand, ideally formally,
which of the existing pWCET derivation methods (Sec. II-B)
are compatible with axiomatic pWCET. Another interesting
empirical direction is hypothesis testing: given a pWCET
distribution claimed to satisfy Def. 7 for a real system, what
observations are necessary to accept or reject the claim with
high confidence? Finally, on the theoretical side, there is
the opportunity to formally verify probabilistic schedulability
analyses based on the proposed precise, Coq-backed semantics.
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