
When is CAN the Weakest Link? A Bound on
Failures-In-Time in CAN-Based Real-Time Systems

Arpan Gujarati and Björn B. Brandenburg
Max Planck Institute for Software Systems (MPI-SWS)

Abstract—A method to bound the Failures In Time (FIT) rate
of a CAN-based real-time system, i.e., the expected number of
failures in one billion operating hours, is proposed. The method
leverages an analysis, derived in the paper, of the probability
of a correct and timely message transmission despite host and
network failures due to electromagnetic interference (EMI). For
a given workload, the derived FIT rate can be used to find an
optimal replication factor, which is demonstrated with a case
study based on a message set taken from a simple mobile robot.

I. INTRODUCTION

Automotive embedded systems are surrounded by spark
plugs and electric motors. Industrial embedded systems are
often deployed in close vicinity to high-powered machinery.
Autonomous robots may need to operate in radiation-prone
environments. Each of these examples is a safety-critical real-
time system exposed to electromagnetic interference (EMI).

To withstand the effects of EMI—including hangs, crashes,
or incorrect outputs due to faults on the hosts, and, in networked
systems, also message corruption during transmissions—critical
tasks are often replicated on independent, networked hosts, and
network stacks typically detect and retransmit corrupted mes-
sages. For example, in a Controller Area Network (CAN), CAN
controllers automatically queue messages for retransmission if
any host signals a transmission fault. Similarly, classic replica-
tion approaches such as triple modular redundancy (TMR) are
commonly used to tolerate host failures.

In a distributed real-time system, however, these two
techniques—spatial vs. temporal redundancy—are fundamen-
tally at odds, as they both require spare network bandwidth, a
scarce resource. More precisely, a low network load is favorable
to ensure that deadlines are not violated due to retransmissions
(i.e., the more slack, the better), but active replication increases
the network load as more messages are sent (i.e., it reduces the
available slack). Thus, beyond a certain point, adding replicas
actually hinders a system’s ability to meet all deadlines, and
can ultimately decrease its overall reliability—see Fig. 1 for a
graphical illustration of the problem.

For a systems reliability engineer, this poses tough design
questions. Clearly, replicating the most-critical tasks to some
extent is a good idea, but what is the “right” number of replicas?
Should one choose TMR, or would two replicas suffice to
achieve the desired level of reliability? Perhaps five replicas
would be much better? Or would this already be detrimental
from a timing-reliability point of view? If there are multiple
critical tasks, but only limited slack available, how should
it be allocated? Favor higher-rate tasks (as they suffer from
greater exposure to transient faults), or favor lower-rate tasks

P
(c

or
re

ct
ne

ss
)

Replication Factor

(a)

P
(ti

m
el

in
es

s)

Replication Factor

(b)

Replication Factor

P
(s

uc
ce

ss
)

(c)
Fig. 1. Replication factor denotes the number of independent replicas of critical
tasks. The illustration shows that: (a) probability of correct execution improves
with replication; (b) probability of timely execution degrades with replication;
and (c) probability of correct and timely execution initially increases with
replication due to improved resilience to host failures, but then starts degrading
with replication due to increasing bus load.

(which induce less additional load if replicated)? None of these
questions admits an obvious, quick answer.

And further integration challenges exist. For instance, hard-
ening the network subsystem (or individual hosts), be it by
adding extra shielding to attenuate EMI, or by adding a second
bus to split the load, is of little value if the network is not
actually the weakest link. But when is the network, and the
hosts connected to it, the weakest link? In short, how can the
timeliness vs. correctness tradeoff be quantified, and ultimately
optimized, in the context of system-level reliability goals?
This paper. As a first step, to render these questions more
approachable to future study, we propose to recast the time-
liness vs. correctness question as the problem of bounding a
distributed real-time system’s Failures-In-Time (FIT) rate, or its
inverse, the mean time between failures (MTBF), as a function
of both system load and EMI strength.

FIT, which is the expected number of failures in one billion
operating hours, is a standard metric that is widely used
in the semiconductor, electronics, and defense industries to
characterize both component and product reliability. FIT rates
are a convenient metric because they are compositional, that
is, they are usually determined for low-level parts such as
individual capacitors or memory cells (e.g., see [33] for a
tutorial), from which the FIT rate of larger components (such
as memory modules or power supplies) and even entire systems
(say, an on-board computer) can be derived. By expressing a
distributed real-time system’s likelihood of violating its logical
and temporal specification as a FIT rate, a direct comparison
of its relative impact on overall system reliability becomes
possible—the weakest link, if any, becomes apparent.
Contributions. Our specific focus in this paper is CAN-based
systems, due to CAN’s attractive timing properties and its
prevalence in distributed real-time systems. Inspired by prior
work by Broster et al. [8], the main contribution of this paper
is the (to our knowledge) first bound on the FIT rate of CAN-

1

based distributed real-time systems (§VI), which in turn is
based on the first probabilistic analysis of CAN that takes both
host and network faults into account (§V). Our analysis applies
to both systems with and without synchronized clocks, and
to both sporadic and periodic message arrivals. An empirical
evaluation (§VII) shows our analysis to closely track simulation
results. Most interestingly, the analysis results confirm the effect
illustrated in Fig. 1: in certain scenarios, adding just two more
replicas, i.e., from six to eight, can drive up the FIT rate by
roughly twenty orders of magnitude (Fig. 4(b)).

We begin with a brief overview of CAN and relevant fault
types, and then establish essential definitions and notations.

II. SYSTEM MODEL AND ASSUMPTIONS

CAN is a broadcast bus designed for simple yet efficient
communication in embedded systems. It has a linear topology
and the bus arbitration policy results in priority-based non-
preemptive scheduling. A CAN controller packs each message
into a frame along with a cyclic redundancy checksum (CRC),
which ensures that hosts detect virtually all transmission errors.
In case of an error, the corresponding message is automatically
queued for retransmission (see [4] for details).
Faults. As a result of the error detection and correction
mechanism in CAN, raw transient faults (i.e., EMI-induced
bit-flips) may result in automatic retransmissions, which we
refer to as transmission failures.

Regarding the effect of raw transient faults affecting hosts,
we classify them into two broad categories, crash failures and
commission failures. Crash failures occur if the system suffers
an EMI-induced transient corruption that causes an exception
to be raised and the system to be rebooted. Although bit flips
can cause unbounded hangs in principle (e.g., loops that never
terminate due to a bit flip in the termination condition), we
assume that each host is equipped with a watchdog timer
that reboots the system in case of a hang. A crashed system
may remain unavailable for some time while it reboots and
thus causes an interval in which messages are continuously
omitted. If a system requires application state to be restored
after a reboot, then any delay due to state re-synchronization is
included in this unavailability interval; how application state is
re-synchronized (if needed) is beyond the scope of this work.

A commission failure occurs if a message is corrupted during
preparation before the CAN controller computes the payload
checksum included in the CAN header. For example, bit flips
in registers or memory of the CAN controller may manifest
as commission failures. We refer to the interval during which
a message is at risk of corruption as its exposure interval.

The exposure interval of a message depends on the applica-
tion design, i.e., it depends on whether the message computation
relies solely on the current input or also on application state
that could be affected by latent faults (i.e., state corruptions
that have not yet been detected). Therefore, we classify tasks
(or message preparations) as either stateless or stateful.

The exposure interval of a message that is prepared by a
stateless task is trivially defined as its scheduling window
(i.e., the time from its arrival until its deadline). The exposure
interval of a message from a stateful task, however, depends
on the mechanisms in place to tolerate (or avoid) latent faults.

We consider two scenarios: if the hardware platform is built
from Error-Correcting Code (ECC) memory and processors
using lockstep execution (common in safety-critical systems),
then the built-in protections suppress latent faults; otherwise,
if no such architectural support is available, then any relevant
state can be protected with software-based ECC or checksums.

In the first case, ECC memory guarantees that the latent
errors are prevented either by silently fixing bit flips, or
by converting unfixable errors into crashes (by raising an
exception). Combined with lockstep execution, the hardware
guarantees that a message can only be corrupted while it is
being prepared or while it is residing in device memory prior to
CRC computation. Thus, as with stateless messages, it suffices
to consider the scheduling window as the exposure interval.

For systems that use software techniques such as checksums
and error-correcting codes to detect (and possibly correct)
latent faults (e.g., see [28]), we assume the presence of a data
integrity checker task that periodically checks the checksums
of all relevant data structures (and that reboots the system
in the case of any mismatch). In this case, a message may
be corrupted due to host faults occurring either at any time
during its scheduling window, or at any time since the data
integrity was last checked. Therefore, the exposure interval of
the message includes its scheduling window and (in the worst
case) an entire period of the data integrity checker task. As
is the case with ECC memory, this mechanism avoids data
corruption at the expense of an increased crash rate.

We emphasize that our notion of “commission failures” does
not refer to software bugs or malicious (or Byzantine) agents.

System model. Consider a task system T where tasks
communicate with each other via messages. Considering tasks
to be vertices and messages to be edges, the task system forms
a directed, acyclic graph G. The task system T is deployed over
a distributed system H that consists of multiple independent
hosts that we assume to be networked with a single CAN
bus. (This is not a major restriction: although systems with
multiple, bridged CAN buses can be found in practice, each
CAN instance can be analyzed individually in such cases.)

Our analysis is primarily concerned with messages transmit-
ted on the CAN bus; task execution on hosts is considered
implicitly. We therefore do not model tasks in detail and focus
on the message set instead.

We let M = {M1,M2, . . . ,Mn} denote the set of all
messages. Let Tsendi

, Trecvi
∈ T denote the tasks that send

and receive message Mi, respectively. We assume that task
Tsendi sends message Mi either periodically or sporadically
with a period or minimum inter-arrival time Pi.

Let Mi,k denote the kth runtime activation (i.e., instance)
of message Mi. For each instance Mi,k, let ai,k denote its
arrival time and di,k denote its absolute deadline, i.e., the
time by which it must have been successfully received by the
recipient. Let Di denote the relative deadline of message Mi,
i.e., di,k = ai,k +Di for each instance Mi,k.

If all messages meet their respective deadlines, then any
end-to-end deadlines on G are considered satisfied. In addition,
let Ji denote the maximum jitter of message Mi. We assume
that Ji accounts for all processing delays and scheduling delays

2

experienced by the task Tsendi
while preparing a message Mi,k

before Mi,k is queued for transmission.

Replicated system model. To improve system reliability,
critical tasks in T are deployed on multiple hosts. For example,
if Tsendi

is a critical task, we may choose to deploy two active
copies of Tsendi (say T asendi

and T bsendi
) on separate hosts (say

Ha and Hb, respectively). Tasks T asendi
and T bsendi

both send
separate messages Ma

i and M b
i to task Trecvi . Although both

messages Ma
i and M b

i should ideally always contain the same
payload, replication guarantees that if either Ha or Hb crashes,
Trecvi

can still receive at least one of the two messages in
time. We refer to tasks T asendi

and T bsendi
as replicas of task

Tsendi
, and messages Ma

i and M b
i as replicas of message Mi.

More formally, let ri denote the number of replicas of
message Mi, also known as its replication factor. The ri
replicas of message Mi are denoted as M1

i ,M
2
i , . . . ,M

ri
i , and

the runtime messages corresponding to each replica M j
i are

denoted M j
i,1,M

j
i,2, . . . ; the parameters Di and Pi remain the

same for all replicas of message Mi. The arrival time ai,k
and the absolute deadline di,k also remain the same for all
replicas of the runtime message Mi,k. However, since the jitter
experienced by each replica is host-specific, we let Jji denote
the replica-specific maximum jitter for each message M j

i .
Finally, the replicated system model differs in that task Trecvi

may receive multiple messages M1
i ,M

2
i , . . . ,M

ri
i instead of a

single message Mi. Therefore, for each iteration k, having
received one or more messages M1

i,k,M
2
i,k, . . . ,M

ri
i,k, task

Trecvi is assumed to execute a receiver protocol in order to
derive the final message value, which is denoted Mfinal

i,k . We
discuss two possible receiver protocols in §IV.

Assumptions. In the proposed analysis, we derive guarantees
assuming only a single replica of task Trecvi

and that task Trecvi

never fails. In case task Trecvi also has multiple replicas, the
proposed analysis can be applied to each replica separately. In
addition, given any message M j

i,k, we assume that parameters
i, j, and k can be identified from the message frame. We also
assume that any clock synchronized to some source of physical
time may lag behind the physical time by at most ∆clk units of
time. For clocks that are not synchronized, ∆clk is not defined.

We also require that “babbling idiot” failures, i.e., cases
where a host attempts to monopolize the bus, are detected
and mitigated by bus guardians [5, 8] that cut off (and reboot)
“babbling” hosts, and further assume that crash and commission
failures across multiple hosts are mutually independent.

We revisit these assumptions in §VIII and Appendix A,
where we discuss their implications and potential alternatives.

III. FAULT MODEL

As mentioned in §I, since safety-critical real-time systems
are susceptible to EMI, this work focusses on transient faults
(also known as soft errors or single-event upsets) as the
primary considered source of failures. We first model the raw
EMI-induced transient faults, and then consider the resulting
program-visible effects.

A. EMI Model, Derating Factors, and Exposure Intervals

Let λCAN and λHi
denote the average rate of raw transient

faults occurring on a CAN bus and inside the hardware
components of each host Hi ∈ H , respectively. In practice,
these rates are empirically determined with measurements
or from environmental modeling assuming worst-possible
operating conditions, and typically include safety margins as
deemed appropriate by reliability engineers or domain experts.

Given the rates λCAN and λHi
, we model the raw transient

faults as random events following a Poisson distribution (other
possible fault models are discussed in §VIII).

Let Poisson(n, δ, λ) denote the probability mass function
of the Poisson distribution, i.e., the probability that n events
occur in time δ given that their mean rate of occurrence is λ:

Poisson(n, δ, λ) =
e−δ·λ (δ · λ)

n

n!
.

The probability that n raw transient faults occur on a CAN
bus in any interval of length δ is given by Poisson(n, δ, λCAN);
and the probability that n raw transient faults occur inside the
hardware of host Hi in any interval of length δ is given by
Poisson(n, δ, λHi

).
As in Broster et al.’s analysis [6], we assume that every

transient fault on the CAN bus causes a retransmission. Thus,
the CAN bus retransmission-rate is also bounded by λCAN ,
and the probability that n retransmissions occur in any interval
of length δ is bounded by Poisson(n, δ, λCAN). This is an
overestimation because a transient fault may occur when the bus
is idle, because multiple transient faults may result in a single
retransmission, and because the number of retransmissions in
practice is limited by the CAN bandwidth, whereas a Poisson
distribution has a non-zero probability for any number of events.

Next, we consider transient faults in hosts. Prior studies
have shown that the majority of transient faults do not affect
program execution [34]. Therefore, in order to derive the
average rate of commission failures and crash failures on any
host Hi, we assume a derating factor that accounts for masked
transient faults, which can be determined empirically [22].
Let fHi,com and fHi,crash denote the host-specific derating
factors for commission failures and crash failures, respectively;
the average rate of commission failures and crash failures
on host Hi is then given by λHi,com = fHi,com · λHi

and
λHi,crash = fHi,crash · λHi

, respectively.
Like the raw transient faults, we also model commission and

crash failures as random events following a Poisson distribution.
Thus, the probability that n commission failures occur in
any interval of length δ is Poisson(n, δ, λHi,com); and the
probability that n crash failures occur in any interval of length
δ is Poisson(n, δ, λHi,crash).

With respect to commission failures, as discussed in §II, we
assume for each message a finite exposure interval. We let
eji,k denote the maximum length of the exposure interval of
message M j

i,k. For stateless messages, and for stateful message
that are prepared on ECC- and lockstep-protected hosts, eji,k =
di,k − ai,k = Di. For stateful messages that are prepared on
hosts protected by a data integrity checker task, the exposure

3

interval length is given by eji,k = Di+P
j
checker , where P jchecker

denotes the period of the checker task.
Finally, we let ζHi

denote the maximum time that host Hi

remains unavailable after a crash.

B. Successful and Unsuccessful Message Transmissions

What does it mean to successfully transmit a message Mi in
the replicated system model? To illustrate different scenarios
of successful and unsuccessful message transmission, we next
discuss three simple examples.

Suppose that Tsendi
is a critical task, of which three active

copies, denoted T 1
sendi

, T 2
sendi

, and T 3
sendi

, are deployed in
parallel on hosts H1, H2, and H3, respectively. The receiving
task Trecvi , which is not replicated, is deployed on host H4.

We assume that task Trecvi follows the following straw-man
protocol in each iteration k: among the messages M1

i,k, M2
i,k,

and M3
i,k, the first message received by Trecvi

is assigned as
the final value Mfinal

i,k , and the remaining two messages (if
received later) are ignored. We discuss three different scenarios
in the following, assuming that host H4 executes fault-free.

Example 1. Hosts H1 and H2 are unavailable due to crash
failures. Host H3 executes fault-free. The worst-case response
time of message M3

i is less than or equal to Di. In this scenario,
Trecvi

receives M3
i on time. Since H3 executes fault-free, M3

i

is not corrupted by a commission failure. Thus, despite crash
failures, Mfinal

i,k is assigned a message that is not corrupted
and the assignment happens before deadline di,k. Hence, Mi

is considered to be transmitted successfully.

Example 2. Host H1 is unavailable due to a crash failure.
Messages from host H2 are corrupted due to commission
failures. Host H3 executes fault-free. The worst-case response
times of messages M2

i and M3
i are less than or equal to Di.

In this scenario, Trecvi
is guaranteed to infer Mfinal

i,k on time,
i.e., on or before di,k. However, in the worst case, M2

i is
corrupted due to commission failures on host H2. As a result,
if M2

i is received before M3
i , Trecvi

infers a corrupted value,
i.e., Mfinal

i,k = M2
i . Therefore, although Mi is guaranteed to

be transmitted on time, it is not guaranteed to be transmitted
successfully due to a lack of correctness guarantees.

Example 3. All hosts execute fault-free. Due to transmission
failures, each message transmission is delayed due to at
most x retransmissions. After incorporating delays due to x
retransmissions, all messages M1

i , M2
i , and M3

i have worst-
case response times greater than Di. In this scenario, Trecvi

always infers a correct value, since any message that is received
first and assigned to Mfinal

i,k is guaranteed to be not corrupted
by any commission failure. However, all the messages may be
received after deadline di,k and Mfinal

i,k may not be inferred on
time. Thus, although logical correctness is guaranteed, Mi is
not guaranteed to be transmitted successfully due to the lack of
a timeliness guarantee.

In summary, a successful transmission of message Mi

requires both timely inference (i.e., Trecvi
must infer Mfinal

i,k
before its deadline di,k) and correct inference (i.e., the final

Algorithm 1 Receiver protocol assuming that message arrivals
are periodic and hosts have synchronized clocks.

1: for each job Ji,0 do
2: set timer ∆i,0 = di,0 −∆clk

3: procedure RECEIVEMESSAGE(M j
i,k)

4: if M j
i,k is stale then

5: return
6: append M j

i,k to vector Vi,k
7: end procedure
8: procedure TIMEREXPIRES(∆i,k)
9: Mfinal

i,k ← most frequent message in Vi,k
10: (breaking ties uniformly at random)
11: set timer ∆i,k+1 = di,k+1 −∆clk

12: end procedure

value Mfinal
i,k must be based on a message that was not corrupted

due to commission failures on any host).
We next describe two receiver protocols that a message

recipient can use in order to mask as many corrupted messages
as possible without violating its temporal constraints.

IV. RECEIVER PROTOCOLS

The protocol followed by the receiver task Trecvi
in the

preceding examples, namely to use the first message and to dis-
regard any later-arriving messages, is not a good protocol as it
does not maximize the chances of masking commission failures.
Instead, the receiver task should take into account as many
messages as possible, while adhering to the respective message
deadline. We next describe two protocols to address this issue.

Algorithm 1 provides the first protocol, which assumes
periodic message transmissions and hosts with synchronized
clocks. According to the protocol, all replicas of message Mi,k

are collected in a vector Vi,k. A timer is set to fire at time
di,k−∆clk , which accounts for the maximum clock error ∆clk

w.r.t. the physical time. When the timer fires, the message value
that is occurring with maximum frequency in Vi,k is inferred as
the final message value and assigned to Mfinal

i,k . The protocol
guarantees timeliness if at least one message is received by
time di,k −∆clk . It also maximizes the probability of masking
message corruptions due to commission failures, since (within
the timing limitations) as many messages as possible are used
to estimate the final message value Mfinal

i,k .
Algorithm 1 assumes that the receiver task Trecvi

knows
the absolute deadline di,k of each message M j

i,k, which is
generally true only for periodic message arrivals, and that ∆clk

is defined for the host on which task Trecvi executes. However,
these assumptions do not hold for all systems. In particular,
if the host executing task Trecvi does not have a reliably
synchronized clock, ∆clk might not exist. For sporadic message
arrivals, the receiver task does not know the absolute deadlines
of any messages received, i.e., di,k is not known.1 For such
circumstances, we describe a second protocol (Algorithm 2)

1While one might imagine a plausible protocol in which the absolute
deadline is embedded in each message, we do no consider such approaches
here since the limited payload sizes of CAN makes it difficult to transmit a
high-resolution timestamp in addition to the actual payload.

4

Algorithm 2 Receiver protocol for sporadic message arrivals
and/or hosts without synchronized clocks.

1: for each task Ti do
2: r′i ← b ri2 c+ 1

3: procedure RECEIVEMESSAGE(M j
i,k)

4: if M j
i,k is stale then

5: return
6: append M j

i,k to vector Vi,k
7: if max. frequency of messages in Vi,k ≥ r′i then
8: Mfinal

i,k ← most frequent message in Vi,k,
9: (breaking any ties uniformly at random)

10: end procedure

that caters to systems with sporadic message arrivals and/or
hosts with clocks that are not synchronized.

According to Algorithm 2, the receiver task waits for at
least r′i = b ri2 c + 1 messages with the same message value
before estimating Mfinal

i,k . Given the way r′i is defined, the
final message value Mfinal

i,k always reflects the value of the
majority quorum, i.e., the largest set of messages with the same
message value. However, the protocol does not enforce that
Mfinal
i,k is inferred on time. Rather, this depends on the timing

of messages M1
i,k, . . . ,M

ri
i,k (Lemma 7 in §V-D).

In the next section, we derive a lower bound for each
protocol on the probability that any message Mi is successfully
transmitted, i.e., that all messages Mi = {Mi,1,Mi,2, . . . } are
successfully transmitted at runtime.

V. PROBABILISTIC ANALYSIS

In the following, we establish separate lemmas to reason
about transmission failures, crash failures, and commission
failures (in §V-A, §V-B, and §V-C, respectively). These results
are then used to define the final probabilistic analysis in §V-D.

A. Accounting for Transmission Failures
Recall from §I that the CAN protocol detects messages cor-

rupted by transmission failures and automatically queues them
for retransmission, which significantly affects message latencies.
The problem of determining worst-case response times for
individual messages has been thoroughly investigated in prior
work, e.g., see [8, 14, 18, 23, 25, 32]. We first review the basics
of this retransmission-aware response-time analysis, before
proposing a new analysis for the replicated system model.
Response-time analysis. (From prior work [8, 14, 32].) Let
Rji (n) denote the worst-case response time of message M j

i

assuming that it is delayed due to n retransmissions. Rji (n) is
defined as Rji (n) = Jji + φji , where φji = Bji +Ci + Iji (φji) +
Eji (n), and where Jji denotes the maximum jitter, Bji denotes
the blocking due to lower-priority messages, Iji (φji) denotes the
maximum interference due to higher-priority messages in any
interval of length φji , Ci denotes the worst-case transmission
time assuming zero transmission errors (which is the same for
all replicas), and Eji (n) denotes the maximum error overhead
due to n retransmissions. Definitions of the delay values Bji ,
Ci, I

j
i (φji), and Eji (n) are based on the specification of the

CAN protocol and can be found in prior work [8, 14, 32].

In contrast to prior work, however, we require aggregate
timing guarantees for a set of messages. That is, we require
a guarantee that, given a set of messages, at least a certain
fraction of messages is received on time, e.g., in Example 3,
at least one out of three messages must reach on time.

Therefore, we build upon the retransmission-aware response
time analysis summarized above to derive a new aggregate
timing analysis for sets of messages. In particular, we derive
the probability that, given any set of messages M ′i ⊆Mi, each
message in M ′i has a worst-case response time less than or
equal to its relative deadline, and each message in Mi \M ′i
has a worst-case response time exceeding its relative deadline.
We impose the condition on messages in Mi \M ′i since our
analysis in §V-C is conditioned on the exact set of messages
guaranteed to be received by task Trecvi

in the worst case.
We introduce a slightly refined notation to denote the worst-

case response time. Recall from §II that a crashed system
experiences an interval in which messages are continuously
omitted. Thus, given a set of crashed hosts H ′, we assume
that, for each task T jsendi

executing on one of the hosts in H ′,
(i) message M j

i is omitted and it’s response time is considered
to be infinity, and (ii) omitted messages do not interfere with
the transmission of other messages on the CAN bus.

To reflect both (i) and (ii), we use the modified notation
Rji (H

′, n) to denote the worst-case response time of message
M j
i , assuming that M j

i is delayed by n retransmissions and
that hosts in H ′ are unavailable due to crash failures at the
time of release of M j

i and during the transmission window,
i.e., each host in H ′ crashed and is unavailable during the
entire time that M j

i is queued for transmission.
Based on Rji (H

′, n), we can bound the probability of a
timely transmission by enumerating all possible H ′.

Lemma 1. Given a set of hosts H ′i ⊆ H that are unavailable
due to crash failures, a set of messages M ′i ⊆ Mi, and a
relative deadline δ ≤ Di, the probability that (in the worst
case and despite retransmissions) all messages in M ′i have
worst-case response times less than or equal to δ, whereas all
messages in Mi \M ′i have worst-case response times greater
than δ, is given by

Ptimely(H ′i,M
′
i , δ) =

∑
n∈N∪{0}∧Λn=M ′

i

Poisson(n, δ, λCAN),

where Λn = {M j
i | R

j
i (H

′
i, n) ≤ δ}.

Proof. Let n ∈ N ∪ {0} denote the number of retransmissions
occurring in an interval of length δ. We evaluate each value
of n separately as an independent case.

Let α denote the conditional probability given n that all
messages in M ′i have worst-case response times less than or
equal to δ, whereas all messages in Mi \M ′i have worst-case
response times greater than δ. Assuming that each message
M j
i ∈Mi is delayed by n retransmissions, the set of messages

in Mi with worst-case response times less than or equal to δ
is given by Λn = {M j

i | R
j
i (H

′
i, n) ≤ δ}. Thus, if Λn = M ′i ,

α = 1; otherwise, α = 0.
Recall from §III that n retransmissions occur during

an interval of length δ with a probability of at most

5

Poisson(n, δ, λCAN). Using the theorem of total probability,

Ptimely(H ′i,M
′
i , δ) =

∑
n∈N∪{0}

(Poisson(n, δ, λCAN) · α)

{ignoring the case where α = 0}

=
∑

n∈N∪{0}∧Λn=M ′
i

(Poisson(n, δ, λCAN) · 1) .

B. Accounting For Crash Failures

In the analysis of message Mi,k, suppose that any task
T jsendi

(which transmits message M j
i,k) is executing on host

Ha. If host Ha becomes unavailable due to a crash failure
before message M j

i,k is queued for transmission, we assume
that message M j

i,k is omitted in the worst case. The following
lemma derives the probability of this case.

In particular, the following lemma derives the probability for
a more generic scenario, i.e., the probability that all hosts in
H ′ ⊆ H are unavailable during any interval of length δ due to
crash failures, whereas all hosts in H \H ′ are available during
this interval. Recall that ζHi

denotes the maximum duration
for which host Hi remains unavailable after a crash failure.

Lemma 2. The probability that, during any interval of length
δ, hosts H ′ ⊆ H are unavailable due to crash failures, whereas
hosts H \H ′ are available during this interval, is given by

Pcrash(H ′, δ) =

(∏
Hi∈H′

Φicrash

)
·

 ∏
Hi∈H\H′

Φinot-crash

 ,

where Φinot-crash = Poisson(0, ζHi
+ δ, λHi,crash),

and Φicrash = 1− Φinot-crash .

Proof. Consider an arbitrary interval (t, t + δ] of length δ.
Consider host Hi. Assume that host Hi remains unavailable
for exactly ζHi

time units immediately after a crash (a worst-
case assumption). Thus, host Hi is unavailable during the
interval (t, t + δ] if it crashed at least once in the interval
(t − ζHi , t + δ]. The probability of this event is given by
Φicrash =

∑
n≥1 Poisson(n, ζHi

+ δ, λHi,crash). Similarly, if
host Hi does not crash during the interval (t − ζHi , t + δ],
it is available during the interval (t, t + δ]. The probability
of this event is Φinot-crash = Poisson(0, ζHi + δ, λHi,crash),
where Φicrash = 1− Φinot-crash for each host Hi.

Per-host probabilities can be safely multiplied assuming that
EMI-induced crash failures are independent across hosts.

C. Accounting for Commission Failures

In the following, we derive the probability that message M j
i,k

is corrupted due to commission failures on host Ha, where
Ha denotes the host executing task T jsendi

.

Lemma 3. Suppose that Ha denotes the host executing task
T jsendi

. An upper bound on the probability that any message
M j
i,k that is transmitted on or before its deadline di,k is

corrupted due to one or more commission failures is given by

Pcorrupt(M
j
i,k) = 1− Poisson(0, eji,k, λHa,com).

Proof. As discussed in §II, message M j
i,k can be corrupted

due to host commission failures occurring any time dur-
ing its exposure interval of length eji,k. Thus, from §III,
the probability that at least one commission failure oc-
curs on host Ha in the exposure interval is given by∑
n≥1 Poisson(n, eji,k, λHa,com). In the worst case, each com-

mission failure results in the corruption of message M j
i,k. Thus,∑

n≥1 Poisson(n, eji,k, λHa,com) also bounds the probability
that message M j

i,k is corrupted due to one or more com-
mission failures, where

∑
n≥1 Poisson(n, eji,k, λHa,com) =

1− Poisson(0, eji,k, λHa,com).

Next, we derive the probability that, given the set of messages
received by task Trecvi

on time, Trecvi
assigns to Mfinal

i,k
a message value that was not corrupted by a commission
failure. We assume that task Trecvi

is executing either of the
two protocols illustrated in Algorithms 1 and 2, and derive a
probability for each protocol separately.

Lemma 4. Suppose task Trecvi
executes Algorithm 1. Let M ′i

denote the set of messages received by task Trecvi
on time

out of the messages in Mi (i.e., each message M j
i,k ∈M ′i is

received on or before time di,k −∆clk). A lower bound on the
probability that the final message value inferred by Trecvi

is
not corrupted by a commission failure is

P algo-1
correct(M

′
i) =

∑
M ′′

i ⊆M ′
i

(Φincorrect · Φcorrect · α) ,

where Φincorrect =
∏

Mj
i,k∈M

′′
i

Pcorrupt(M
j
i,k),

Φcorrect =
∏

Mj
i,k∈M

′
i\M ′′

i

(
1− Pcorrupt(M

j
i,k)
)
,

and α =


1 if |M ′′i | <

⌊
|M ′

i |
2

⌋
+ 1,

1
2 if |M ′′i | =

|M ′
i |

2 ,
0 otherwise.

Proof. By Lemma 3, each message M j
i,k is corrupted by a

commission failure with probability at most Pcorrupt(M
j
i,k).

Under the assumption that each commission failure is inde-
pendent, the worst-case probability that messages in M ′′i are
corrupted, whereas messages in M ′i \M ′′i are not corrupted,
is given by Φincorrect · Φcorrect .

Recall from Algorithm 1 that, when the timer expires, the
message value occurring with the maximum frequency is
selected as the final message value (with ties broken uniformly
at random). Based on this maximum-frequency procedure, for
all M ′′i ⊆M ′i , we let α denote a lower bound on the conditional
probability that a correct inference is made given M ′i .

Case (i): The inferred message value is guaranteed to be
correct if there are fewer corrupted messages than correct
messages, i.e., if 0 ≤ |M ′′i | <

⌊
|M ′

i |
2

⌋
+ 1. Therefore, α = 1.

Case (ii): If there are as many corrupted messages as there
are correct messages, and if all the corrupted messages happen
to have the same message value (a worst-case assumption), then

6

there is a tie. In this case, since ties are broken uniformly at
random, the inferred message value is correct with a probability
of 1

2 . Hence, if |M ′′i | =
|M ′

i |
2 , then α = 1

2 .
Case (iii): If there are more corrupted messages than correct

messages, we assume that the inferred message value is
corrupted (a worst-case assumption). Thus, α = 0. Since we
are deriving a lower bound, this is safe, but (likely) pessimistic.

Using the theorem of total probability, the probability of
correct inference is computed by summing over the probability
of correct inference for all M ′′i ⊆M ′i .

Lemma 5. Suppose task Trecvi
executes Algorithm 2. Let M ′i

denote the set of messages received by task Trecvi on time
(out of the messages in Mi). The probability that the final
message value inferred by Trecvi is not corrupted due to any
commission failure is

P algo-2
correct(M

′
i) =

∑
M ′′

i ⊆M
′
i

|M ′′
i |≤|M

′
i |−r

′
i

(Φincorrect · Φcorrect) ,

where Φincorrect =
∏

Mj
i,k∈M

′′
i

Pcorrupt(M
j
i,k)

and Φcorrect =
∏

Mj
i,k∈M

′
i\M ′′

i

(
1− Pcorrupt(M

j
i,k)
)
.

Proof. Recall from Algorithm 2 that the first r′ messages
received by task Trecvi

with the same message value are used
to select the final message value.

Since r′i = b ri2 c+ 1 and r′i + r′i > ri, i.e., since more than
half of the messages are needed to constitute a quorum (i.e.,
a group of messages with the same message value) of size at
least r′i, there can either be a quorum of r′i correct messages, or
a quorum of r′i corrupted messages, but not a quorum for both
cases simultaneously. Therefore, if at least r′i messages in M ′i
are correct, it is guaranteed that no other group of messages
will constitute the first r′ messages received by Trecvi

with the
same message value. In other words, in order to guarantee that
the final value inferred by task Trecvi is correct, it is sufficient
to guarantee that at least r′ messages in set M ′i are correct.
We derive the probability for this case in the following.

For at least r′i messages in M ′i to be correct, there must be at
most |M ′i | − r′i corrupted messages in M ′i . Let M ′′i denote the
set of corrupted messages in M ′i : then |M ′′i | ≤ |M ′i |−r′i. Since
Pcorrupt(M

j
i,k) is known for each message M j

i,k, and assuming
that commission failures are independent, the probability that
messages in M ′′i are corrupted and messages in M ′i \ M ′′i
are correct is computed trivially. P algo-2

correct(M
′
i) is computed by

summing over all cases M ′′i ⊆M ′i .
Note that if |M ′i | < r′i, the probability of a correct inference

is trivially zero, because the protocol in Algorithm 2 does not
decide on a final message value, i.e., the condition in line 7 is
false. Since |M ′i | < r′i implies that |M ′′i | ≤ |M ′i | − r′i is false
(as |M ′i | − r′i < 0), this case is accounted for by considering
only those subsets M ′′i where |M ′′i | ≤ |M ′i | − r′i.

D. Probability of a Successful Message Transmission

In the following, using Lemmas 1–5, we derive a bound on
the probability that a message Mi is successfully transmitted
by considering the worst-case scenario for any message Mi,k ∈
Mi. Recall from Example 1 that message Mi,k is successfully
transmitted only if both task Trecvi infers Mfinal

i,k not later
than its deadline di,k (i.e., timely inference) and the message
value assigned to Mfinal

i,k was not derived from a corrupted
message (i.e., correct inference). We derive separate bounds
for Algorithms 1 and 2, respectively.

Lemma 6. Suppose task Trecvi
executes Algorithm 1. Let Jmax

i

denote the maximum jitter experienced by any message replica
M j
i . A lower bound on the probability that an instance of

message Mi is successfully transmitted is given by

P algo-1
success(Mi) =

∑
H′⊆H

Φcrash ·
∑

M ′
i⊆Mi

(Φtimely · Φcorrect) ,

where Φcrash = Pcrash(H ′, Jmax
i),

Φtimely = Ptimely(H ′,M ′i , Di −∆clk),

and Φcorrect = P algo-1
correct(M

′
i).

Proof. Consider any arbitrary message Mi,k. Replicas of Mi,k

may be omitted due to crash failures: if task T ji is executing
on host Ha that is unavailable during (ai,k, ai,k + Jji] due to
crash failures, M j

i,k is omitted. Therefore, we first perform a
case analysis considering each H ′ ⊆ H . From Lemma 2, the
probability that hosts in H ′ are unavailable due to crash failures
during (ai,k, ai,k+Jmax

i], whereas hosts in H\H ′ are available
during (ai,k, ai,k + Jmax

i], is given by Pcrash(H ′, Jmax
i). The

conditional probability given H ′ that Mi,k is successfully
transmitted is derived next.

According to Algorithm 1, the receiver task infers the final
message value Mfinal

i,k when timer ∆i,k expires. Since ∆i,k =
di,k−∆clk , all messages transmitted later than time di,k−∆clk

are ignored. In other words, any message with a worst-case
response time greater than di,k −∆clk − ai,k = Di −∆clk

may be ignored. Therefore, we perform another case analysis
over all subsets M ′i ⊆Mi, assuming that messages in M ′i have
worst-case response times of at most Di−∆clk and messages in
Mi \M ′i have worst-case response times exceeding Di−∆clk.

From Lemma 1, the probability for each case is given
by Φtimely = Ptimely(H ′,M ′i , Di −∆clk). From Lemma 4,
the conditional probability given M ′i that the message value
with the maximum frequency (ties broken uniformly at ran-
dom) is not corrupted is given by Φcorrect = P algo-1

correct(M
′
i).

Therefore, by the theorem of total probability, the conditional
probability given H ′ that Mi is successfully transmitted is∑
M ′

i⊆Mi
(Φtimely · Φcorrect).

Lemma 7. Suppose task Trecvi executes Algorithm 2. Let Jmax
i

denote the maximum jitter experienced by any message replica
M j
i . A lower bound on the probability that all messages in

7

Mi are successfully transmitted is given by:

P algo-2
success(Mi) =

∑
H′⊆H

Φcrash ·
∑

M ′
i⊆Mi

|M ′
i |≥r

′
i

(Φtimely · Φcorrect) ,

where Φcrash = Pcrash(H ′, Jmax
i),

Φtimely = Ptimely(H ′,M ′i , Di),

and Φcorrect = P algo-2
correct(M

′
i).

Proof. The proof is similar to the proof of Lemma 6. Consider
any arbitrary message Mi,k. Replicas of Mi,k may be omitted
due to crash failures: if task T ji is executing on host Ha that
is unavailable during (ai,k, ai,k + Jji], then M j

i,k is omitted.
Therefore, we first perform a case analysis considering each
H ′ ⊆ H . From Lemma 2, the probability that hosts in H ′ are
unavailable due to crash failures during (ai,k, ai,k + Jmax

i],
whereas hosts in H\H ′ are available during (ai,k, ai,k+Jmax

i],
is given by Pcrash(H ′, Jmax

i). The conditional probability
given H ′ that Mi,k is successfully transmitted is derived next.

According to Algorithm 2, the receiver task infers the final
message value Mfinal

i,k if at least r′i messages with the same
message value have been received. For a successful transmis-
sion, Mfinal

i,k must be inferred no later than by the deadline di,k.
Thus, only the cases where at least r′i messages have worst-
case response times less than or equal to di,k − ai,k = Di can
guarantee a successful transmission. Therefore, we perform
another case analysis considering each subset M ′i ⊆Mi such
that |M ′i | ≥ r′i, assuming that messages in M ′i have worst-case
response times of at most Di and that messages in Mi \M ′i
have worst-case response times exceeding Di.

By Lemma 1, the probability for each such case is given by
Φtimely = Ptimely(H ′,M ′i , Di). By Lemma 5, the conditional
probability given M ′i that at least r′i messages in M ′i are not
corrupted by any commission failures is given by Φcorrect =
P algo-2

correct(M
′
i). As argued in the proof of Lemma 5, if at least r′i

messages are not corrupted and have the same message value,
there cannot be another quorum of size greater than or equal
to r′i. Thus, Φcorrect also denotes the conditional probability
given M ′i that the receiver task makes a correct inference.
Therefore, by the theorem of total probability, the conditional
probability given H ′ that Mi is successfully transmitted is∑
M ′

i⊆Mi s.t. |M ′
i |≥r

′
i
(Φtimely · Φcorrect).

Complexity. Computing P algo-1
success(Mi) or P algo-2

success(Mi) re-
quires enumerating potentially all subsets of H and Mi. With
regard to H , a host is relevant only if at least one of the replicas
of Mi originates from it. Thus, since |Mi| = ri and assuming
that all message replicas originate on distinct hosts, the analysis
requires 2ri outermost iterations, and further 2ri innermost
iterations. In total, the analysis thus requires 2(2·ri) iterations
of the computation of Φtimely · Φcorrect (which each involves
response-time analysis). However, given that replication factors
are typically small, the analysis remains practical despite its
nominally high computational complexity.

Lemmas 6 and 7 only help us to understand the chances that
a message Mi is transmitted on time and correctly. In the next

section, we derive a system-wide reliability metric to assess if
the entire system executes successfully.

VI. FAILURE-IN-TIME OF THE TASK SYSTEM

Recall that the FIT rate is the expected number of failures in
one billion operating hours. The procedure to compute the FIT
rate for a system with multiple components is as follows: (i) for
each component, compute its probability density function f(t)
that denotes the probability that the component fails for the
first time at time t; (ii) using f(t), compute the MTBF for each
component, where MTBF =

∫∞
0
t · f(t) dt; (iii) given each

component’s MTBF in hours, its FIT rate is given by 109

MTBF ;
and, (iv) assuming that each component fails independently,
the FIT rate for the entire system is given as the sum of all
the component-wise FIT rates (see [33] for an industry tutorial
and real-world example calculations).

In the following, we derive the FIT rate assuming that all
messages arrive periodically and that hosts have synchronized
clocks, using the four-step process described above. Thereafter,
we briefly discuss the remaining cases.
Step (i): For each message Mi, we derive the probability
density function as a function of the number of runtime
activations x of the message, rather than as a function of time.
From Lemma 6, the worst-case probability that any particular
instance of message Mi is successfully transmitted is given by
P algo-1

success(Mi). Thus, the probability that x− 1 runtime activa-
tions of message Mi, i.e., messages Mi,1,Mi,2, . . . ,Mi,x−1,
are successfully transmitted whereas the xth instance of mes-
sage Mi, i.e., message Mi,x, is not successfully transmitted is
bounded by fi(x) =

(
P algo-1

success(Mi)
)x−1 ·

(
1− P algo-1

success(Mi)
)
.

Steps (ii) and (iii): Let MABF i denote the Mean number
of Activations Between Failures for message Mi (similar to
the MTBF, but in terms of the number of runtime activa-
tions rather than time). Like the MTBF, MABF i is defined
as follows: MABF i =

∫∞
0
x · fi(x) dx. Assuming that the

period Pi of messages in Mi is given in milliseconds, the
MTBF for the successful transmission of Mi is defined
as MTBF i = (MABF i × Pi)/(1000× 3600) hours. The FIT
rate of message Mi is trivially given by FIT i = 109/MTBF i.
Step (iv): For any two messages Ma,Mb ∈M , the probabili-
ties that they are successfully transmitted, i.e., P algo-1

success(Ma)
and P algo-1

success(Mb), respectively, are derived using worst-case
assumptions and are thus not dependent on each other. There-
fore, the respective FIT rates for messages Ma and Mb,
which are derived from the failure probabilities, can also
be considered to be mutually independent. Based on this
assumption, the FIT rate for the entire task system is defined
as the sum of all the message-specific FIT rates, as follows:
FIT system =

∑
Mi⊆M FIT i.

Our approach yields an upper bound on the actual FIT rate
since it is based on the probabilistic analysis proposed in §V,
which is defined under worst-case assumptions (which has the
benefit of ensuring the required independence). However, at
runtime, not every message instance incurs worst-case condi-
tions in practice. Therefore, the actual observed FIT rate can be
expected to be lower than predicted by our analysis. Given that
we seek to bound failures of possibly safety-critical components,

8

a safe, but inexact bound is acceptable, and certainly preferable
to a potentially optimistic FIT bound.

Generally speaking, the FIT rate computation derived as-
suming periodic messages and hosts with synchronized clocks
can also be repeated for any system that uses Algorithm 2,
by using P algo-2

success(Mi) in place of P algo-1
success(Mi). However, for

the scenario where messages arrive sporadically, the derived
FIT rate could be even more pessimistic. This is because
the equation MTBF i = (MABF i × Pi)/(1000× 3600) hours
assumes that runtime activations of messages happen with
maximum frequency, whereas the average frequency of sporadic
messages may be much lower in practice. Nonetheless, our
procedure still yields a safe bound on the actual FIT rate.

VII. EXPERIMENTS

As discussed in §I, the FIT rate is a standard industry metric
used to characterize both component and product reliability.
While it is our hope that the proposed FIT-rate bound will prove
useful in the analysis and benchmarking of various real-time
system design issues (e.g., such as how to allocate slack, or how
to pick optimal replica counts), the focus of our evaluation is
to assess the proposed FIT derivation itself, and not the utility
of a FIT rate. In particular, we want to evaluate whether the
derived bound on the FIT rate works, in the sense of yielding
non-obvious insights into a practical task system, or whether
the proposed analysis is too coarse-grained to be useful.

To this end, we based our experiments on a message set
extracted from a simple mobile robot, which was previously
also used as a benchmark by Broster et al. [7]. The message
set consists of six messages, with a total bus utilization of
roughly 40%. We denote the original message set as M40pc =
{M1,M2, . . . ,M6}, with periods 2ms , 4ms , 4ms , 8ms , 12ms ,
and 24ms , respectively. We consider message M1, which is
sent by the “MotorCtrl” unit, to be a critical task. Without
breaking (deterministic) schedulability guarantees of lower-
priority messages, M1 can be replicated up to r40pc

i = 4 times.
To evaluate larger replica counts, we derived a second message
set M30pc , with roughly 30% total bus utilization (prior to
replication) and periods 4ms , 6ms , 6ms , 8ms , 12ms , and
24ms , respectively. The second message set allows replicating
message M1 up to r30pc

i = 9 times.
To assign message priorities, we used Davis and Burns’s

robust priority assignment algorithm [13] to maximize the
number of tolerated retransmissions, which resulted in M1

receiving the highest priority. Note that Davis and Burns’s
algorithm does not assume task replication. While their proof
of optimality [13] thus does not extend to our replicated system
model (where not necessarily all messages in the message
set need to be received in time), we believe that it is still a
good heuristic. Finding an optimal priority assignment in the
presence of replicated messages, i.e., a priority assignment that
minimizes the overall FIT, is an interesting open problem.

A. Experiment 1 – Analysis vs. Simulation
In the first experiment, we determined the probability that a

message transmission fails both analytically (using the proposed
analysis) and empirically (using a simulator). For messages
M1 and M4 in message set M30pc , Fig. 2 shows how the

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 1 2 3 4 5 6 7 8 9

P
(f

a
ilu

re
)

number of replicas of M1

mean host-failure-rate = 10
-2

 per ms, mean retransmission-rate = 10
-1

 per ms

M1 (simulation-algo-1)
M1 (analysis-algo-1)

M1 (simulation-algo-2)
M1 (analysis-algo-2)

M4 (simulation)
M4 (analysis)

Fig. 2. Probability of transmission failure for messages M1 and M4 in
message set M30pc as a function of M1’s replication factor. Dashed curves
show probabilities derived analytically; solid curves indicate simulation results.
Separate curves are plotted for message M1 assuming Algorithms 1 and 2,
respectively. Exceptionally high failure rates λhost = 10−2 faults/ms and
λCAN = 10−1 faults/ms were used in this experiment as sampling limitations
prevented the simulation from measuring probabilities lower than 1−09.

probability of failure varies as the replication factor of message
M1 is increased. The curves for the remaining lower-priority
messages are similar to that of M4 and have been omitted from
the graph to avoid clutter. The probability of failure assuming
message set M40pc also follows a similar trend.

There are two main observations from this experiment.
First, the proposed analysis is safe, in that it overestimates
the probability of failure (the dashed analysis curves are
always above the corresponding solid simulation curves).
And second, the proposed analysis is sufficiently accurate to
track the simulation results, in particular for higher-priority
messages. In general, given that we have made several worst-
case assumptions (e.g., in Lemmas 6 and 7, and by assuming
that EMI on the bus always causes a retransmission), the
analysis and simulation diverges somewhat when analysis
results of multiple messages are taken into account (e.g., at
high replica counts, or for lower-priority messages that are
delayed by all higher-priority retransmissions).

Another interesting trend in Fig. 2 is the distinct sawtooth
pattern that the curves for message M1 exhibit when Algo-
rithm 2 is used by the receiver task. This can be attributed
to two key properties of Algorithm 2: (i) the probability of a
correct inference depends only on the set of r′i messages with
identical payload received first by the receiver task (and not
directly on ri), and (ii) since r′i = b ri2 c + 1, the probability
to receive r′i out of ri messages is higher for odd values of
ri than it is, relatively speaking, for even values of ri. For
example, the receiver is more likely to receive four out of
seven messages on time than it is to receive four out of six
messages on time. In other words, when waiting to receive an
unambiguous majority of identical messages, it is beneficial
if the total number of messages is odd. At the same time, the
bus load grows with increasing ri, which causes the uptick in
failure probability for even values for ri.

B. Experiment 2 – FIT Analysis

In the second set of experiments, we determined message-
specific FIT rates and the system-wide FIT rate as a function

9

 1e-50

 1e-40

 1e-30

 1e-20

 1e-10

 1

 1e+10

 1 2 3 4

F
IT

 r
a
te

number of replicas of message M1

mean host-failure-rate = 10
-20

 per ms, mean retransmission-rate = 10
-6

 per ms

FIT-1 (algo-1)
FIT-1 (algo-2)

FIT-4
FIT-system (algo-1)
FIT-system (algo-2)

(a) λCAN = 10−6 faults/ms, λhost = 10−20 faults/ms

 1e-50

 1e-40

 1e-30

 1e-20

 1e-10

 1

 1e+10

 1 2 3 4

F
IT

 r
a

te

number of replicas of message M1

mean host-failure-rate = 10
-20

 per ms, mean retransmission-rate = 10
-10

 per ms

FIT-1 (algo-1)
FIT-1 (algo-2)

FIT-4
FIT-system (algo-1)
FIT-system (algo-2)

(b) λCAN = 10−10 faults/ms, λhost = 10−20 faults/ms

Fig. 3. FIT rates for messages M1 and M4 (labelled FIT-1 and FIT-4,
respectively) and for the entire system (labelled FIT-system) for message set
M40pc as a function of r1. Solid curves show FIT rates using Algorithm 1;
dashed curves correspond to Algorithm 2.

of the replication factor of message M1. We repeated the ex-
periments for both message sets and assuming different values
for the host failure and retransmission rates. Representative
example graphs are shown in Fig. 3 for message set M40pc

and in Fig. 4 for message set M30pc .
While Figs. 3(a) and 4(a) reflect a high retransmission rate

of λCAN = 10−6 faults/ms, Figs. 3(b) and 4(b) correspond
to a lower retransmission rate of λCAN = 10−10 faults/ms.
These rates are in accordance with prior studies on the bit-
fault rate in CAN, e.g., according to Ferreira et al. [15] and
Rufino et al. [27], typical values of λCAN range from 10−4

faults/ms in aggressive environments to 10−10 faults/ms in lab
conditions. All graphs assume a host failure rate of λhost =
10−20 faults/ms for all hosts and for both crash failures and
commission failures; we assume that failure rates in ECC-
and lockstep-protected hosts are typically orders of magnitude
smaller than the bit-fault rate in CAN (since cabling can be
expected to be more exposed to EMI). As in Fig. 2, results for
messages other than the highest-priority message M1 and the
lower-priority message M4 have been omitted for clarity.
Optimal replication factor for message M1. First of all, all
graphs clearly resemble the conceptual graph in Fig. 1(c) (note
that the “U” shape is flipped, i.e., Fig. 1(c) shows probability

 1e-70

 1e-60

 1e-50

 1e-40

 1e-30

 1e-20

 1e-10

 1

 1e+10

 1 2 3 4 5 6 7 8 9

F
IT

 r
a
te

number of replicas of message M1

mean host-failure-rate = 10
-20

 per ms, mean retransmission-rate = 10
-6

 per ms

FIT-1 (algo-1)
FIT-1 (algo-2)

FIT-4
FIT-system (algo-1)
FIT-system (algo-2)

(a) λCAN = 10−6 faults/ms, λhost = 10−20 faults/ms

 1e-70

 1e-60

 1e-50

 1e-40

 1e-30

 1e-20

 1e-10

 1

 1e+10

 1 2 3 4 5 6 7 8 9

F
IT

 r
a

te

number of replicas of message M1

mean host-failure-rate = 10
-20

 per ms, mean retransmission-rate = 10
-10

 per ms

FIT-1 (algo-1)
FIT-1 (algo-2)

FIT-4
FIT-system (algo-1)
FIT-system (algo-2)

(b) λCAN = 10−10 faults/ms, λhost = 10−20 faults/ms

Fig. 4. FIT rates for messages M1 and M4 (labelled FIT-1 and FIT-4,
respectively) and for the entire system (labelled FIT-system) for message set
M30pc as a function of r1. Solid curves show FIT rates using Algorithm 1;
dashed curves correspond to Algorithm 2.

of success, whereas Figs. 3 and 4 show FIT). The optimal
replication factor for M1 can thus be readily identified: while
for the message set M40pc , all graphs indicate that r1 = 3
yields the minimal system-wide FIT rate, in the case of message
set M30pc , the result varies with the failure parameters. Case
in point, Fig. 4 indicates that the optimal number of replica of
message M1 is on the higher side (i.e., around 5 or 6) if the
mean rate of retransmission is lower.
Range of derived FIT rates for M. An interesting obser-
vation can be made in Fig. 4: there can be a difference of
more than 20 orders of magnitude between the maximum
and minimum system-wide FIT rates when the replication
factor for M1 is varied from 1 to 7 (note the log scale). In
general, the results strongly suggest that a systematic approach
towards system reliability, e.g., using the proposed FIT rate
analysis, can make a large difference. For instance, in the case
of λCAN = 10−10 faults/ms shown in Fig. 4(b), the difference
between a good system design (i.e., selecting r1 = 5 or r1 = 6)
vs. a bad system design (i.e., selecting r1 = 1 or r1 = 9) results
in substantial variations of the overall failure rate.

Our results show that the derived FIT-rate bound is accurate
enough to discuss key system design questions, and to yield
non-obvious results (e.g., that r1 = 3 is optimal for M40pc , but

10

that r1 = 5 can be preferable for M30pc , depending on EMI
strength). In future work, we plan to carry out more extensive
studies using a larger set of benchmarks.

VIII. DISCUSSION AND RELATED WORK

In this section, we elaborate on our choices, e.g., the failure
types and corresponding models, model assumptions, etc., and
justify our approach in the context of prior studies.

Recall that we considered three types of failures: transmis-
sion failures, crash failures, and commission failures. While
transmission failures on a CAN bus are well documented in the
literature [8, 14, 18, 23, 25, 32], there are no generic studies
available on host failures that justify crashes and commission
faults as the right abstraction for host failures. Therefore,
we refer to studies based on specific types of hosts in order
to justify these abstractions. For example, Frantz et al. [16]
evaluated the effects of soft errors in a network-on-chip router
and showed that they can manifest in the form of lost packets,
routing errors, payload errors, packet formation errors, and
router crash. Rebaudengo et al. [26] and Azkarate-askasua et al.
[2] studied the effects of transient faults on processor caches
and on time-triggered system-on-chip architectures, respectively,
and showed that they can manifest in the form of exceptions,
timeouts, stalls, and wrong answers. We believe that crash
failures and commission failures cover a majority of these fault
effects under a simple abstraction.

The probabilistic fault models described in §III follow recent
work. Like Broster et al. [8], and as in all prior probabilistic
analyses of the CAN bus [6, 23], we assume independence
among transient faults. Thus, their inter-arrival times can
be modeled with an exponential density function, forming
a Poisson distribution for the faults [1]. We use a similar
model for EMI-induced host failures as well. This choice is
reasonable since real-time tasks are repeated, short workloads;
thus, any job is equally likely to be affected by a commission
failure, and a host is equally likely to be crashed at any point
in time (see [19] for a mathematical basis for this argument).

When describing the system model in §II, we made an
implicit assumption that task replication is a useful mechanism
to tolerate transient faults on the hosts. This view is supported
by prior studies (e.g., [3]), which have noted that system failure
rates can be reduced to near-zero levels with active replication,
providing the necessary reliability for some long-term remote
or mission-critical applications.

Nonetheless, it is interesting to note that prior work,
e.g., [9, 17, 21, 24], has often assumed a system model based
on temporal redundancy, i.e., similar to the retransmission
mechanism on a CAN bus, where any job affected by a fault
is re-executed. However, research has shown that immediate
detection of erroneous tasks is not always feasible, and that
faults propagate and corrupt memory [10, 11, 20]. Recently,
Song and Parmer [29] proposed an efficient and predictable
system-level monitoring framework to tackle the problem of
undetected errors. Their solution is in line with prior work that
focuses on building robust operating systems as a means to
improve fault-tolerance, e.g., [12, 30, 31].

In general, these techniques are complementary to the active
replication studied herein: active replication helps provide

another layer of redundancy (and also helps against permanent
faults, against which host-level approaches are powerless),
which is generally desirable and aids with implementing
a defense-in-depth approach. Therefore, we see host-level
approaches as a mechanism that (greatly) reduces the derating
factor (which reflects a host’s vulnerability to EMI).

IX. CONCLUSIONS AND FUTURE WORK

We have proposed a method to derive a FIT rate for
CAN-based distributed real-time systems. To the best of our
knowledge, this is the first such attempt. We believe that FIT
rates, a standard reliability metric used widely in industry, are
beneficial to assess the reliability, both in a logical and in a
timeliness sense, of embedded real-time systems in the context
of system-level reliability goals.

In future work, we seek to investigate ways to reduce the
remaining pessimism in our analysis (e.g., by analyzing entire
hyperperiods as a whole). Furthermore, we believe that the
proposed FIT rate analysis is an excellent tool to investigate
many diverse CAN-related system design challenges.

REFERENCES

[1] R. B. Ash, Basic probability theory. Courier Corporation, 2012.
[2] M. Azkarate-askasua, I. Martinez, X. Iturbe, and R. Obermaisser,

“Dependability assessment of the time-triggered SoC prototype us-
ing FPGA fault injection,” in IECON, 2011.

[3] R. C. Baumann, “Radiation-induced soft errors in advanced semi-
conductor technologies,” IEEE Transactions on Device and Materi-
als Reliability, vol. 5, no. 3, 2005.

[4] C. Bosch, “Specification version 2.0,” Published by Robert Bosch
GmbH (September 1991), 1991.

[5] I. Broster and A. Burns, “An analysable bus-guardian for event-
triggered communication,” in RTSS 2003.

[6] I. Broster, A. Burns, and G. Rodrı́guez-Navas, “Probabilistic analy-
sis of CAN with faults,” in RTSS 2002.

[7] I. Broster, A. Burns, and G. Rodriguez-Navas, “Comparing real-
time communication under electromagnetic interference,” in ECRTS,
2004.

[8] I. Broster, A. Burns, and G. Rodrı́guez-Navas, “Timing analysis of
real-time communication under electromagnetic interference,” Real-
Time Systems, 2005.

[9] A. Burns, R. Davis, and S. Punnekkat, “Feasibility analysis of fault-
tolerant real-time task sets,” in ECRTS, 1996.

[10] S. Chandra and P. M. Chen, “How fail-stop are faulty programs?” in
FTCS, 1998.

[11] P. Chevochot and I. Puaut, “Experimental evaluation of the fail-
silent behavior of a distributed real-time run-time support built from
COTS components,” in DSN, 2001.

[12] F. M. David, E. Chan, J. C. Carlyle, and R. H. Campbell, “CuriOS:
Improving reliability through operating system structure.” in OSDI,
2008.

[13] R. I. Davis and A. Burns, “Robust priority assignment for messages
on controller area network (CAN),” Real-Time Systems, 2009.

[14] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller
area network (CAN) schedulability analysis: Refuted, revisited and
revised,” Real-Time Systems, 2007.

[15] J. Ferreira, A. Oliveira, P. Fonseca, and J. Fonseca, “An experiment
to assess bit error rate in CAN,” in RTN, 2004.

[16] A. P. Frantz, L. Carro, E. Cota, and F. L. Kastensmidt, “Evaluating
SEU and crosstalk effects in network-on-chip routers,” in IOLTS,
2006.

[17] S. Ghosh, R. Melhem, and D. Mosse, “Enhancing real-time sched-
ules to tolerate transient faults,” in RTSS, 1995.

[18] H. A. Hansson, T. Nolte, C. Norstrom, and S. Punnekkat, “Integrat-
ing reliability and timing analysis of CAN-based systems,” IEEE
Transactions on Industrial Electronics, 2002.

[19] X. Li, S. V. Adve, P. Bose, and J. A. Rivers, “Architecture-level soft
error analysis: Examining the limits of common assumptions,” in
DSN, 2007.

11

[20] H. Madeira and J. G. Silva, “Experimental evaluation of the fail-
silent behavior in computers without error masking,” in FTCS-24,
1994.

[21] P. Mejı́a-Alvarez and D. Mossé, “A responsiveness approach for
scheduling fault recovery in real-time systems,” in RTAS, 1999.

[22] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerabil-
ity factors for a high-performance microprocessor,” in MICRO-36,
2003.

[23] N. Navet, Y.-Q. Song, and F. Simonot, “Worst-case deadline failure
probability in real-time applications distributed over controller area
network,” Journal of Systems Architecture, 2000.

[24] S. Punnekkat and A. Burns, “Analysis of checkpointing for schedu-
lability of real-time systems,” in RTCSA, 1997.

[25] S. Punnekkat, H. Hansson, and C. Norstrom, “Response time analy-
sis under errors for CAN,” in RTAS, 2000.

[26] M. Rebaudengo, M. Sonza Reorda, and M. Violante, “An accurate
analysis of the effects of soft errors in the instruction and data caches
of a pipelined microprocessor,” in DATE, 2003.

[27] J. Rufino, P. Verissimo, G. Arroz, C. Almeida, and L. Rodrigues,
“Fault-tolerant broadcasts in CAN,” in FTCS. IEEE, 1998.

[28] P. Shirvani, N. Saxena, and E. McCluskey, “Software-implemented
EDAC protection against SEUs,” IEEE Transactions on Reliability,
vol. 49, no. 3, pp. 273–284, 2000.

[29] J. Song and G. Parmer, “C’MON: a predictable monitoring infras-
tructure for system-level latent fault detection and recovery,” in
RTAS, 2015.

[30] J. Song, J. Wittrock, and G. Parmer, “Predictable, efficient system-
level fault tolerance in C3,” in RTSS, 2013.

[31] M. M. Swift, B. N. Bershad, and H. M. Levy, “Improving the
reliability of commodity operating systems,” in SOSP, 2003.

[32] K. Tindell and A. Burns, “Guaranteeing message latencies on con-
trol area network (CAN),” in International CAN Conference, 1994.

[33] J. Trinh and D. Ly, “FIT data and MTTF/MTBF,” TDK Corp.,
Whitepaper, available at http://product.tdk.com/capacitor/mlcc/en/
faq/pdf/24 fit data and mttfmtbf.pdf, 2013.

[34] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characterizing
the effects of transient faults on a high-performance processor
pipeline,” in DSN, 2004.

APPENDIX

A. Correlated Host Failures

The analysis in §V fundamentally assumes that failures on
different hosts are uncorrelated. In this appendix, we briefly
elaborate on alternatives if this assumption is invalidated.

Fundamentally, there are three different failure scenarios:
(i) independent host faults without any correlation (e.g., due to
atmospheric background EMI); (ii) external events that cause
potentially catastrophic damage to the entire system and thus
affect all hosts at the same time (e.g., a massive power surge or
a small UAV hit by a lightening strike); and (iii) intermediate
cases, where failures affecting groups of one or more hosts may
be correlated (e.g., a large plane subject to a lightening strike,
or a system-on-a-chip in which several logically independent
hosts are located on the same silicon die).

The analysis in §V covers case (i); we consider cases (ii)
and (iii) in the following. Correlated failures of type (ii) can
be simply handled as a separate failure process. To derive a
whole-system FIT, all sources of failures must be considered.
Whereas we have focused on the CAN bus in this paper, in a
real product, other concerns such as failure of power supplies,
material fatigue, thermal wear-out, etc. must be taken into
account—a typical embedded system may fail for a large
number of different reasons. As discussed in §I and §VI, this
can be addressed by deriving a FIT rate for each failure source
and by then adding the individual rates. Thus, correlated whole-
system effects do not have to be integrated into our analysis

for localized EMI effects, but rather should be dealt with by
deriving the FIT (or its inverse, the MTBF) for catastrophic
events, which can then be directly considered in the whole-
system reliability analysis.

Correlated failures of type (iii) are more challenging to
address. First, we focus on specific design-induced correlations,
e.g., when two or more (logically independent) hosts are located
on the same silicon die, or when they share the same power
source, or when different hosts share a single CAN controller
or CAN bridge, in which case a fault in the CAN controller or
bridge makes all connected hosts unavailable simultaneously,
etc. To handle such cases, we partition the set of all hosts
into equivalence classes such that hosts in the same class may
have correlated failures, whereas hosts in different classes are
expected to not be correlated. We then make a simplifying
worst-case assumption that, if a host crashes, then all hosts in
the equivalence class may crash at the same time.

The equivalence classes are denoted as E1, E2, . . . such that
∀i, j, Ei ∩ Ej = ∅ and

⋃
iEi = H . Based on this assumption,

it is possible to formulate an alternative to Lemma 2. We
assume that the mean rate of crash failures for each class Ei
can be derived empirically and is denoted as λEi,crash ; and
that the maximum duration for which any host in Ei may
remain unavailable due to a crash failure is denoted as ζEi

.

Lemma 8. The probability that, during any interval of length
δ, hosts H ′ ⊆ H are unavailable due to crash failures, whereas
hosts H \H ′ are available during this interval, is given by

Pcrash(H ′, δ) =

 ∏
Ei⊆H′

Φicrash

 ∏
Ei⊆H\H′

Φinot-crash

β,

where Φinot-crash = Poisson(0, ζEi
+ δ, λEi,crash),

Φicrash = 1− Φinot-crash , and β = 1−
∏

Ei∩H′ 6=∅
Ei∩H\H′ 6=∅

1.

Proof. Similar to Lemma 2, except for the factor of β. For
any equivalence class Ei, since all hosts in Ei are assumed
to crash together, it is not possible that some hosts in Ei are
in H ′ and some hosts in Ei are in H \H ′. Thus, if any Ei
intersects both H ′ and H \H ′, then β = 0.

Lemma 8 addresses host crashes; correlated message cor-
ruption failures can be accounted for similarly based on
equivalence classes. The corresponding changes in Lemmas 4
and 5 are omitted due to space constraints.

Finally, one may consider correlation due to physical
proximity. For example, consider a large plane. In the case
of a lightening strike, or when intersecting a powerful radar
beam, it is plausible to assume that physically close hosts are
more likely to exhibit correlated EMI effects than physically
distant hosts. If a proper correlation matrix for such events
can be established—a non-trivial data collection challenge—
then it would be interesting to extend the proposed analysis
to integrate correlation into the probabilistic model, which we
leave as future work.

12

http://product.tdk.com/capacitor/mlcc/en/faq/pdf/24_fit_data_and_mttfmtbf.pdf
http://product.tdk.com/capacitor/mlcc/en/faq/pdf/24_fit_data_and_mttfmtbf.pdf

	Introduction
	System Model and Assumptions
	Fault Model
	EMI Model, Derating Factors, and Exposure Intervals
	Successful and Unsuccessful Message Transmissions

	Receiver Protocols
	Probabilistic Analysis
	Accounting for Transmission Failures
	Accounting For Crash Failures
	Accounting for Commission Failures
	Probability of a Successful Message Transmission

	Failure-in-Time of the Task System
	Experiments
	Experiment 1 – Analysis vs. Simulation
	Experiment 2 – FIT Analysis

	Discussion and Related Work
	Conclusions and Future Work
	Appendix
	Correlated Host Failures

