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Abstract—Virtually all major real-time operating systems such
as QNX, VxWorks, LynxOS, and most real-time variants of Linux
expose processor affinity APIs to restrict task migrations. Initially
motivated by throughput and isolation reasons, the ability to
flexibly control migrations on a per-task basis has also proved
to be useful from a schedulability perspective.

However, as the motivation to use processor affinities is highly
application-specific, the two interests can conflict, i.e., the fixed,
user-specified processor affinities chosen for non-schedulability
reasons can actually limit any possible gains in schedulability.
This paper specifically addresses the scenario where processor
affinities are given as input, and investigates the following ques-
tion: while maintaining API compatibility (i.e., without changing
the interface exposed to the programmer), is it possible to im-
prove schedulability beyond what Linux and Linux-like systems
currently offer, without violating the original affinity restrictions?

To answer this question, we explore the similarities between
priority-based scheduling with processor affinities and the as-
signment problem with seniority and job priority constraints,
studied previously by Caron et al. in an operations-research
context, to derive a more generic model of migrations. Based on
vertex-weighted bipartite matchings, the proposed model exploits
the idea of shifting high-priority tasks among processors in
their affinity set, in order to accommodate lower-priority tasks
that have more constrained processor affinities. The proposed
approach is analyzed with a novel shifting-aware schedulability
analysis based on linear programming. An empirical evaluation
in terms of schedulability shows shifting to be effective, although
performance naturally degrades if migration overheads are high.

I. INTRODUCTION

Contemporary commodity operating systems—Linux, Win-
dows, and OS X—as well as major real-time operating
systems—QNX, VxWorks, LynxOS, etc.—flexibly control task
migrations with processor affinity masks, which specify on a
per-task basis on which processors a task may be scheduled.
Although this processor-affinity API has been shown to be
useful in several contexts such as application performance,
fault tolerance, and security [2, 17, 18, 21, 24, 26], it is not
yet well understood in the context of real-time systems.

In particular, the problem of scheduling real-time work-
loads with fixed priorities and arbitrary processor affinities
(APAs) has only recently been considered [19, 20]. The
initial work focused primarily on the schedulability aspects
of APA schedulers, showing that, in the context of job-
level fixed-priority (JLFP) policies, APA scheduling strictly
dominates partitioned, global, and clustered approaches. In
other words, prior work established that a careful selection of
processor affinities with the intent to improve schedulability
can indeed provide good schedulability results.

This paper, instead, is based on the assumption that processor
affinities are assigned in accordance with application-specific
use cases and not with the goal of attaining high schedulability.

Given this practical scenario, where fixed restricted processor
affinities are specified as input, this work explores the following
question: while maintaining API compatibility (i.e., without
modifying the programmer-visible kernel interface), is it possi-
ble to still improve real-time schedulability without violating
the user-provided processor affinity restrictions?

To answer this question, we study Linux’s APA interface.
Although not a hard real-time OS, we focus on Linux because it
is easy to inspect and because other proprietary RTOSs such as
QNX actually implement Linux-like APA scheduling semantics.
We next briefly explain APA scheduling as implemented by
Linux’s push and pull scheduler to provide the context needed
to state the contributions of this paper.

A. APAs in Linux Today: The Push and Pull Scheduler

For reasons of average-case efficiency, Linux implements per-
processor run-queues, where push and pull migrations across
run-queues are enacted on demand when a task arrives in
the system or when a processor finishes executing a task,
respectively. To conform with processor-affinity restrictions,
these migrations do not move tasks outside their affinities,
i.e., a lower-priority ready task must wait if all processors
included in its affinity mask are executing higher-priority tasks.

However, this approach of restricting the scope of migra-
tions to only within the waiting task’s processor affinity is
unnecessarily restrictive, and from an analytical point of view,
it does not provide the best possible schedulability. Since a
lower-priority task upon its arrival can never “dislodge” a
higher-priority task that could also execute elsewhere, this may
needlessly prevent tasks from being scheduled, even if some
processors idle as a result.

In this paper, to overcome such limitations, we explore
APA semantics beyond the existing implementations and show
that it is indeed possible to achieve improved schedulability
(i.e., lower response-time bounds) without violating any task’s
processor affinity, and without changing the operating system
API or leaving the class of JLFP schedulers, which is highly
attractive from a practical point of view.

B. This Paper: Strong APA Scheduling with Task Shifting

To this end, we relate APA scheduling to the assign-
ment problem with seniority constraints and job priority
constraints [12], which Caron et al. studied in the context of
assigning employees (i.e., tasks) with various levels of seniority
(i.e., priorities) to open positions (i.e., processors), where not
all employees may be suited for all positions (i.e., affinity
restrictions). Analogously to [12], we classify APA scheduling
into weak and strong APA scheduling, which allows us to



characterize Linux’s push and pull scheduler more formally: it
implements only weak APA scheduling.

Our primary contribution is to show that strong APA
scheduling provides superior schedulability and that it can
also be realized in practice by leveraging the concept of task
shifting, i.e., by allowing higher-priority tasks to be “dislodged”
or moved among processors in order to make space for lower-
priority tasks that are limited by affinity constraints.

To optimally decide when and which tasks to shift, we
model a priority-based APA scheduler as a bipartite graph
that maps tasks to processors according to affinities. By
encoding priorities as vertex weights, a maximum vertex-
weighted matching (MVM) [27] can be used to determine how
tasks should be optimally assigned to processors (Sec. IV-B).

A possible downside of modeling strong APA scheduling as
an MVM problem, however, is that each scheduling decision
could be subject to prohibitive runtime overheads if the MVM
algorithm is implemented naı̈vely. We therefore propose an
initial online algorithm that reuses previous matchings to reduce
the effort required to dispatch newly arriving tasks (Sec. IV-C).

We also propose a novel linear-programming-based shifting-
aware schedulability analysis, which we further extend to ac-
count for the overheads of shifting migrations (Secs. V and VI).
Our evaluation in Sec. VII explores the practical aspect of this
work, i.e., given an initial processor affinity, how large are the
improvements in schedulability due to shifting? And to what
extent do they outweigh the additional migration overheads?

II. MOTIVATING EXAMPLE

To motivate the potential for improved APA semantics,
consider the following example, which illustrates the key ideas.

Example 1. Suppose four tasks {T1, T2, T3, T4} are to be
executed on three processors {Π1,Π2,Π3}. Priorities are
assigned in decreasing order, i.e., T1 has the highest priority.
Tasks T1, T2, T3, and T4 are restricted to execute on processors
{Π1,Π2,Π3}, {Π2,Π3}, {Π1}, and {Π2,Π3}, respectively.
Assume that T1, T2, and T4 are released at time t1 and that
T3 is released at time t2 > t1. The initial state at time t1 is
illustrated in Fig. 1(a) using a bipartite graph where vertices
correspond to tasks and processors. Initially, task T1 is assigned
to processor Π1, T2 is assigned to Π2, and T4 is assigned to
Π3. In the following, we evaluate the valid states at time t2,
that is, the state transition corresponding to task T3’s arrival.

Under the Linux scheduler, a task arrival causes a push
migration, which in this case seeks to assign T3 to either an
idle processor or a processor that currently schedules a lower-
priority task. However, due to T3’s affinity (it may execute
only on Π1), it must wait in Π1’s run-queue until T1 completes.
Thus, under Linux, the task-to-processor assignment at time
t2 remains as it was at time t1 (as shown in Fig. 1(b)). Note
that the lower-priority task T4 remains scheduled even though
the higher-priority task T3 is waiting, which is an avoidable
violation of the priority order.

If the tasks at time t2 could be freely rearranged (i.e., not
confined by the limitations of a push migration), we could
achieve a better schedule. In this example, tasks can be
rearranged in the transition from t1 to t2 such that T1, T2,
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Fig. 1. Figures (a)-(d) each represents the state of the scheduler using a
bipartite graph consisting of vertices corresponding to tasks and processors.
(a) The initial state at time t1. Task T3 arrives at time t2. (b) Linux’s system
state after time t2. (c & d) Two alternate matchings (i.e., scheduler states)
that are valid at time t2, though neither of them can be found by Linux.

and T3 are scheduled at time t2 while respecting all affinities
and priorities (as illustrated in Figs. 1(c) and 1(d)). However,
Linux cannot find either of the two schedules because shift
migrations are required in both cases. That is, to reach the state
shown in inset (c), T1 must shift from Π1 to Π3, and to reach
the state shown in inset (d), T1 must shift from Π1 to Π2, and
T2 must shift from Π2 to Π3. In this case, the state shown in
inset (c) is preferable since it requires fewer shift migrations.

To determine how to reach the desired state at time t2,
we propose a simple graph-based model and an algorithm
that explores the complete state space of the system when
enacting migrations, allowing for better schedulability. For
example, consider the bipartite graph in Fig. 1(a) depicting
the system state at time t1. Let us associate weights with the
vertices on the left so that higher-priority tasks have larger
weights. Since there is no preference for a particular processor,
vertices on the right side are assigned weight zero. Finding a
matching of maximum vertex weight (i.e., solving the MVM
problem [27]) guarantees that an optimal set of tasks is assigned
to the processors (Theorem 1 in Sec. IV), in the sense that
no other assignment has fewer idle processors or schedules
higher-priority tasks. Such a task-to-processor mapping must
be recomputed every time a task arrives or departs.

In contrast to Linux’s preemptions-only approach, the new
approach allows shifting of higher-priority tasks in order to
accommodate lower-priority tasks (as shown when T1 shifts
from Π1 to either Π2 or Π3 so that T3 can be scheduled on Π1).
Note that, at least in the absence of overheads, shifting does
not affect the schedulability of the higher-priority tasks since
a task that shifts continues to execute on another processor.

We formalize the ideas highlighted in this example in Sec. IV,
after first establishing required definitions in Sec. III.

III. SYSTEM MODEL AND DEFINITIONS

In this section, we describe the system model and standard
assumptions upon which our analysis is based, and also provide
some essential definitions.

System model and assumptions: We consider the problem
of scheduling a set of n real-time tasks τ = {T1, . . . , Tn}
on a set of m identical processors π = {Π1, . . . ,Πm}. We
adopt the classic sporadic task model [25], where each task
Tk = (ek, dk, pk) is defined by a worst-case execution time



(WCET) ek, a relative deadline dk, and a minimum inter-arrival
time or period pk. Task Tk’s deadline can either be implicit
(dk = pk), constrained (dk ≤ pk), or arbitrary. We assume
constrained deadlines in this work. The task model is extended
by associating a user-defined processor affinity αk with every
task Tk, where αk ⊆ π is the set of processors on which Tk
is allowed to be scheduled (αk does not change over time).

In addition, the utilization of task Tk is defined as
uk = ek/pk and the utilization of task set τ as uτ =

∑
Tk∈τ uk.

The response time rk of task Tk is the maximum time taken
by any of Tk’s jobs to complete; we denote an upper bound on
rk as rubk . The set of backlogged tasks, represented as B(t),
consists of the tasks that are ready but not scheduled at time t.

In this work, we assume integral time, i.e., any time t ≥ 0
represents the entire real interval [t, t+ 1). We also assume that
tasks are independent and do not self-suspend. Although the
schedulability analysis in Sec. V assumes negligible overheads
(in particular those related to task migration), Sec. VI describes
how the analysis can be extended to account for overheads.

Priority assignment: Priority assignment policies used in real-
time scheduling can be classified either as task-level fixed pri-
ority (FP), job-level fixed priority (JLFP), or job-level dynamic
priority (JLDP) policies. While an FP policy assigns a unique
priority to each task, a JLFP policy assigns a fixed priority to
each job and, unlike under FP policies, two jobs of the same task
may have distinct priorities. Prominent examples for FP and
JLFP policies include the rate-monotonic priority assignment
and the earliest-deadline-first policy, respectively [23].

Due to space constraints, the discussion of APA scheduling
in Sec. IV and schedulability analysis in Sec. V are given
for FP scheduling. However, the same principles can also be
applied to JLFP policies without major changes. Extending the
schedulability analysis to JLDP policies is left as future work.
In this paper, we will denote Tk’s fixed priority as priok and
the set of all tasks with priorities higher than priok as hpk.

Workload and interference: The workload wk(t) of task
Tk denotes the maximum duration for which Tk can execute
in a time window of length t. It is based on the number
of jobs nk(t) = b(t+ dk − ek)/pkc that contribute with an
entire WCET in this window and is formally defined as
wk(t) = nk(t) · ek + min(ek, t+ dk − ek − nk(t) · pk). The
interference hki (t) of a higher-priority task Ti on the analyzed
lower-priority task Tk is the cumulative length of all sub-
intervals in which a job of Tk is backlogged but cannot
be scheduled on any processor while Ti is executing. The
interference is bounded by the workload of the interfering task
and also by the latest completion time of the job of Tk, i.e.,
hki (t) = min(wi(t), t− ek + 1). The concepts of workload and
interference are adopted from Bertogna and Cirinei [7].

Next, we formally introduce weak and strong APA schedul-
ing and propose a graph-based strong APA scheduler.

IV. APA SCHEDULING

In Sec. II, we identified the need for a more expressive model
for APA scheduling. While global and partitioned schedulers
can be realized with straightforward dispatching mechanisms
based on priority queues, under APA scheduling it is less
obvious which tasks should execute at a given point in time.

In this section, based on a bipartite graph model (as described
next in Sec. IV-A), we propose a new invariant that a correct
priority-based APA scheduler should maintain. Comparing the
new invariant with the APA scheduling invariant corresponding
to the Linux push and pull scheduler [19], we show that the
new invariant provides stronger schedulability guarantees (see
Sec. IV-B). Finally, in Sec. IV-C, we provide an incremental
scheduling algorithm that implements the new invariant.

A. Graph Model

Let G(t) = (U(t) ∪ V,E(t)) denote a bipartite graph repre-
senting the scheduler state at time t. U(t) is the set of ready
tasks, V = π is the set of all processors, and E(t) is the
set of edges representing affinities, i.e., (Tu,Πv) ∈ E(t) iff
Πv ∈ αu. With each task Tu ∈ U(t), we also associate a
weight φu corresponding to its priority, such that tasks with
higher priorities are assigned larger weights. Given this bipartite
graph model, the scheduling problem at time t can be intuitively
understood as finding the best possible matching χ(t) between
tasks and processors, in the sense that the number of non-
idle processors is maximized while maintaining the specified
priority ordering, without causing any affinity violations.

B. APA Scheduler Invariants

Since tasks can be assigned in different ways, we need to
properly identify an invariant representing a correct scheduler.
For global scheduling, this problem is easy, as the only concern
is that the m highest-priority ready tasks have to be selected.
But when tasks have different affinity constraints, it is difficult
to find a proper combination of assignments. In some cases, a
processor may have to idle even though tasks are waiting.

To formally define a correct scheduler, we refer to Caron
et al.’s work that addresses a conceptually equivalent problem,
but in the different context of assigning employees with varying
skill sets to open positions in order of seniority [12]. Most
relevant to APA scheduling are Caron et al.’s weak and strong
seniority constraints, as they are closely related to task priori-
tization with affinity restrictions. Below, we state analogous
constraints for APA scheduling in terms of our graph model.

Invariant 1 (Weak APA Invariant).

∀Tb ∈ B(t),∀πj ∈ αb,∃Ti : (Ti, πj) ∈ χ(t) ∧ φi ≥ φb. (1)

Invariant 1 is equivalent to the weak seniority constraint
defined by Caron et al. [12]. Intuitively, it states that for any
backlogged task, all the processors in its affinity mask are
occupied by higher-priority tasks. That is, there is no candidate
task for preemption scheduled on any of the processors on
which the backlogged task may execute.

Recall from the discussion of the Linux scheduler in Sec. II
that, upon the arrival of some task Tnew, Linux’s scheduler
performs only local decisions within αnew, searching for lower-
priority tasks that can be directly preempted. Specifically, Linux
never shifts higher-priority tasks in order to accommodate lower-
priority tasks restricted by affinity constraints. As a result,
the scheduling invariant ensured by Linux’s APA scheduler
(formalized in [19, 20]) is in fact equivalent to Invariant 1.



However, if shift migrations are allowed, i.e., if higher-
priority running tasks may be moved from one processor to
another, a stronger APA scheduling invariant is possible, similar
to the strong seniority constraint proposed by Caron et al.
Before stating the strong invariant, we must define preemption
and shifting migrations in terms of the graph G(t).

Preemption: Given a non-assigned task Tout, by traversing
the edges corresponding to αout, every task Tj assigned to a
processor Πj ∈ αout can be reached. By replacing a matched
edge (Tj ,Πj) with (Tout,Πj), we obtain a new matching χ′(t)
that replaces Tj with Tout, corresponding to a preemption.

Shifting: The same argument can be transitively applied
to paths to characterize shifting migrations. Consider an
alternating path in the form <Tout, Πj−k, Tj−k, . . . ,Πj−1,
Tj−1, Πj , Tj>, where Tj is a task reachable from Tout
via processor affinities, and every task in {Tj−k, . . . , Tj}
is covered by the matching χ(t). By removing the edge
(Tj ,Πj) from χ(t), adding a new edge (Tout,Πj−k) to χ(t),
and reassigning the edges (Tj−k,Πj−k) . . . (Tj−1,Πj−1) as
(Tj−k,Πj−k+1) . . . (Tj−1,Πj), respectively, we obtain a new
matching χ′(t) where Tj is replaced by Tout.

This path-based definition can represent any sequence of
migrations that respects all processor affinities, which allows
us to express the strong APA invariant.

Invariant 2 (Strong APA Invariant:). Let Ri(t) denote the
set of processors reachable from Ti in G(t).

∀Tb ∈ B(t), ∀Πj ∈ Rb(t), ∃Ti : (Ti,Πj) ∈ χ(t) ∧ φi ≥ φb (2)

Invariant 2 corresponds to Caron et al.’s strong seniority
constraint [12]. To illustrate the difference between the two
invariants, recall Linux’s scheduler state at time t2 depicted in
Fig. 1(b). With respect to the backlogged task T3, Invariant 1
trivially holds, since the only processor on which task T3 can
execute is busy with a higher-priority task. However, note that
processor Π3 can be reached from T3 via the neighboring task
T1. Because task T4, which has lower priority, is executing on
processor Π3, Invariant 2 is violated. No such priority inversion
occurs in the states shown in insets (c) and (d).

A mapping satisfying Invariant 2 can be obtained by solving
the maximum vertex-weighted matching (MVM) problem,
which refers to finding a bipartite matching χ(t) that maximizes
the total weight Φ =

∑
(Tu,Πv)∈χ(t) φu of the matched tasks.

As shown in [27], χ(t) is also a maximum cardinality matching,
which confirms that no processor unnecessarily remains idle.
Maximizing Φ further guarantees that among all the matchings
of maximum cardinality, χ(t) selects the highest-priority tasks.
We summarize the correspondence between APA scheduling
and the MVM problem in the following theorem.

Theorem 1. An MVM in G(t) satisfies Invariant 2 at time t.

Proof. By contradiction. Let χ(t) be an MVM in G(t) with
total weight Φ and assume that χ(t) does not satisfy the Strong
APA Invariant at time t. Then:

∃Tb ∈ B(t), ∃Πj ∈ Rb(t), ∀Ti : (Ti,Πj) /∈ χ(t) ∨ φi < φb. (3)

For such a processor Πj in Rb(t), there are two pos-
sible cases: either Πj has an assigned task Ti such that
φi < φb or Πj is idle. In the former case, suppose such

a task Ti exists. Consider a path that leads from Tb to
Ti: <Tb,Πj−k, Ti−k, . . . ,Πj−1, Ti−1,Πj , Ti>. Such a path al-
lows a shifting operation that assigns Tb and deassigns Ti, effec-
tively increasing the total weight to Φ′ = (Φ− φi + φb) > Φ.
Similarly, in the latter case where Πj is idle, adding Tb to the
matching leads to Φ′ = (Φ + φb) > Φ. Since there is a valid
edge substitution with total weight Φ′ > Φ in both the cases,
χ(t) is not an MVM in G(t). Contradiction.

In this paper, we refer to APA scheduling that guarantees the
strong APA Invariant (i.e., the MVM-based approach) as strong
APA scheduling, and to APA scheduling that guarantees only the
weak APA Invariant as weak APA scheduling (e.g., Linux’s push
and pull scheduler). Having identified a correctness condition
for strong APA schedulers, we now discuss one approach for
how such matchings can be computed at runtime.

C. Scheduling Algorithm

Since the scheduler is a critical part of an operating system,
an efficient implementation is necessary in order to avoid
performance bottlenecks. For APA scheduling, this is even
more important, as graph algorithms are typically more costly
than the priority queues found in conventional schedulers.

A JLFP scheduler implementation has to deal with two
main scheduling events that affect the set of ready tasks: task
arrival and task departure. A correct, yet naı̈ve, APA scheduler
would recompute the MVM “from scratch” every time a
scheduling event occurs. Examples of this non-incremental
approach include Volgenant’s algorithm [28], which improved
upon Caron et al.’s solution [12] to achieve O(|V | · |E|) time
complexity, and the solution described by Spencer et al. [27],
which is based on specialized bipartite-matching algorithms
and achieves O(

√
|V | · |E| · log |V |) time complexity (where

|V | = O(m+ n) and |E| = O(m · n) denote the total number
of vertices and edges in G(t)).

The above-mentioned algorithms perform iterations of aug-
mentation steps (each with O(|E|) time complexity), until
convergence is reached. Although they indeed compute correct
assignments, they are not ideal for APA schedulers in terms
of runtime complexity. This is because an operating system
is a dynamic system, where the set of ready tasks changes
gradually due to scheduling events. Therefore, for performance
and simplicity, it is desirable to have an incremental algorithm
that, in response to a scheduling event, reuses the previous
matching to compute the new task assignment.

In this work, instead of applying the multiple steps required
to compute an MVM “from scratch,” we propose a straight-
forward incremental algorithm that carries out a single O(|E|)
augmentation step. Although Volgenant’s algorithm works in a
similar way (by iteratively solving subproblems), it does not
address the incremental nature of our MVM problem, in which
the underlying graph changes only gradually over time.

In order to obtain a more efficient algorithm, let us consider
two high-level properties of our problem that simplify the
solution: (i) systems usually have a number of tasks that
significantly exceeds the number of processors (n� m); and,
as already mentioned, (ii) there are only two possible scheduling
events, task arrival (i.e., a job is released or resumes) and task



departure (i.e., a job completes or suspends). While the first
property suggests that it is preferable to iterate over processors
instead of tasks, the second property motivates splitting the
problem into two cases (arrival and departure), which can then
be solved by different, specialized algorithms. In addition, since
we assume that only one task is included or removed per event,
the new matching closely resembles the previous matching.

To derive an incremental algorithm, the scheduling problem
can be understood in terms of state transitions. Consider the
state of the scheduler at a particular time t1, where we have a
graph G(t1). Due to the occurrence of scheduling events (e.g.,
when some task arrives), the system may move to a new state
at time t2, with a new graph G(t2). Given the previous MVM
χ of total weight Φ, our objective is to find a new matching
for the modified graph.

In the following, we describe how to update the matching
upon task arrivals and departures. For the sake of simplicity,
we assume that every idle processor is assigned an idle task
Tidle of weight zero that is preemptable by any other task.
For the pseudocode presented in Secs. IV-D and IV-E, let
χπ(Ti) denote the processor and χτ (Πj) the task for a pair
(Ti,Πj) ∈ χ corresponding to a task assignment.

D. Task Arrival

Suppose a new task Tnew arrives at time t2 and the scheduler
had computed the previous matching χ of total weight Φ at
time t1, where t1 < t2. Since χ is an MVM in G(t1), tasks that
are initially unmatched remain so in G(t2). Upon the arrival
of the new task at time t2, there are only two possible cases:
either Tnew is added to the matching for G(t2) or it is not. In
the latter case, χ′ = χ maintains the weight Φ. Otherwise, we
must find a better matching that includes Tnew.

Consider every possible path in G(t2) of the form
<Tnew,Πj−k,Tj−k, . . . ,Πj−1,Tj−1,Πj ,Tj>. As explained in
Sec. IV-B, such paths represent all feasible shifting operations
that assign Tnew and deassign some task Tj . Such an operation
generates a new matching with total weight Φ′ = Φ+prionew−
prioj , which indicates that the scheduler must find a path that
ends with the lowest-priority scheduled task Tj being preempted
in favor of Tnew (possibly an idle task).

Since we are primarily interested in the end-points (Tnew, Tj)
of the shifting paths, this corresponds to a reachability problem,
which can be solved by any graph search algorithm: simply
start at task Tnew and find the reachable scheduled task Tj that
has the lowest priority, which will then become unassigned.
The associated path should be stored to allow backtracking at
the end, in order to enact the required shifting migrations. If
there is no task Tj with priority lower than Tnew, then Tnew
is not assigned and is added to the ready queue instead.

The length of the discovered paths corresponds to the number
of shifting operations that need to be performed. Thus, a
breadth-first search (BFS) minimizes the number of migrations,
as it finds a shortest path in graphs without edge weights.

The pseudocode corresponding to the arrival operation is
shown in Algorithm 1. Since the graph traversal visits only
matched tasks and processors, in the worst case it visits m
tasks, each of which may have an affinity to all m processors

Algorithm 1 BFS algorithm for task arrival
1: function TASK ARRIVAL(Tnew)
2: cpu to preempt← nil
3: for each cpu in αnew do
4: Enqueue(cpu) and mark it as visited
5: while queue not empty do
6: cur ← Dequeue()
7: task cur ← χτ (cur)
8: if task cur is the lowest priority task seen so far
9: and task cur has lower priority than Tnew then

10: cpu to preempt← cur

11: if task cur 6= Tidle then
12: for each unvisited cpu in αtask cur do
13: Enqueue(cpu) and mark it as visited
14: if cpu to preempt = nil then
15: Tnew is left unassigned
16: else Backtrack on the alternating path from new task to
17: cpu to preempt shifting along every task, so that new task
18: is scheduled and the task on cpu to preempt is preempted.
19: end function

(i.e., global scheduling is the worst case), for a total time
complexity of O(m2) (or O(|E|), assuming m ≤ n, since
|E| = O(m · n)). The runtime for workloads with “sparse”
affinities can be expected to be significantly lower.

E. Task Departure

A similar approach can be used to handle task departures.
Suppose that a task Told assigned to Πidle completes or
suspends at time t2. Given the previous MVM χ of total
weight Φ, we need to obtain a new MVM considering that
Told’s departure leaves processor Πidle unmatched.

For departures, there are also only two possible cases. Either
Told is replaced by another task in the new mapping, or the
processor stays idle. Consider a path in the form <Told, Πidle,
Tj−k, Πj−k, . . . , Tj , Πj ,Tout>, obtained by following as-
signed tasks up to some processor Πj that belongs to the affinity
of a non-assigned task Tout. The corresponding task substitution
produces a new matching of weight Φ′ = Φ−prioold+prioout,
where Tout shifts in to replace Told.

To find the best replacement Tout, we start a BFS at Πidle

looking for a reachable non-assigned task of highest priority.
This leads to a shifting operation that replaces Told by Tout
and maximizes the resulting weight Φ′. If the high-priority task
is found in the affinity of Πidle, this corresponds to a direct
assignment without shifting. The pseudocode for handling a
task departure is shown in Algorithm 2.

The task departure algorithm traverses every processor with
matched tasks that is reachable from Πidle. Following the pro-
cessor affinities, it searches for the highest-priority non-assigned
task, which becomes the endpoint of the chain of tasks shifting
into Πidle. Though Algorithm 2 may visit all O(n·m) = O(|E|)
edges in the bipartite graph (in the case of global affinities), it
improves upon the non-incremental algorithms mentioned in
Sec. IV-C, which require at least O(

√
|V | · |E| · log |V |) steps

to compute an MVM “from scratch”. Again, the runtime is
expected to be significantly lower for sparse graphs.



Algorithm 2 BFS algorithm for task departure
1: function TASK DEPARTURE(idle cpu)
2: task to pull← nil
3: Enqueue(idle cpu) and mark it as visited
4: while queue not empty do
5: cur ← Dequeue()
6: for each task such that cur ∈ αtask do
7: assigned cpu← χπ(task)
8: if assigned cpu = nil then
9: if task has highest priority seen so far then

10: task to pull← task

11: else Enqueue(assigned cpu) and mark it as visited
12: if task to pull = nil then
13: idle cpu remains idle
14: else Backtrack on the alternating path from idle cpu to
15: task to pull, shifting along every task. Then, idle cpu
16: receives a task and task to pull is also scheduled.
17: end function

V. SCHEDULABILITY ANALYSIS

Irrespective of whether strong or weak APA semantics are
used for scheduling, tasks with restricted processor affinities
are (generally) difficult to analyze when their affinities overlap.
To incorporate irregular interference patterns and to account for
shifting, we propose a novel LP-based response-time analysis
for strong APA scheduling, which we motivate with a simple
example. We initially assume negligible overheads and propose
techniques to account for overheads in Sec. VI. We begin with
a simple example to motivate the analysis.

Example 2. Consider a task set consisting of three tasks,
{T1, T2, T3}, to be scheduled on two processors, {Π1,Π2}.
Task priorities are defined in decreasing order of their indices,
i.e., T1 has the highest priority. Their WCETs are 8, 2, and 3
time units, respectively; and the affinities are α1 = {Π1,Π2},
α2 = {Π2}, and α3 = {Π1}. Tasks T1, T2, and T3 arrive
synchronously at time t = 0. We discuss the schedule of these
tasks in the interval [0, 12) under both weak and strong APA
scheduling. The resulting schedules are illustrated in Fig. 2.

The schedule under weak APA scheduling is shown in
Fig. 2(a). Suppose that tasks T1 and T2 are respectively
scheduled on processors Π1 and Π2 upon release. Since T3

can only execute on Π1, it must wait for T1’s job to complete,
i.e., T1 interferes with T3 for a total duration of x = 8 time
units (interval [0, 8)). Hence, T3’s job misses its deadline at
time t = 10. We observe that under weak APA scheduling, the
entire cost of a higher-priority job may contribute towards
the interference experienced by a lower-priority job (if their
affinities intersect).

The schedule under strong APA scheduling is shown in
Fig. 2(b). Unlike under weak APA scheduling, T3 has to
wait only for z = 2 time units during the interval [0, 12).
Interference on T3 reduces in comparison to the previous
scenario because at time t = 2, when T2’s job completes its
execution, T1 shifts from Π1 to Π2 and T3 is scheduled on Π1.
Consequently, T3’s job does not miss its deadline. In general,
under strong APA scheduling, the interference of a higher-
priority task on a lower-priority task (if their affinities intersect)
is also indirectly upper-bounded by the duration during which

T1

T2

T3

0 time 105

x

(a) Weak APA scheduling

T1

T2

T3

0 time 105

z

x'

y

(b) Strong APA scheduling

Fig. 2. Figures (a) and (b) illustrate the execution sequence of T1, T2, and T3

on Π1 and Π2 in the interval [0, 12) under weak and strong APA scheduling.
Arrows pointing upwards denote job releases, arrows pointing downwards
denote deadlines, and arrows with blunt ends denote job completion. Grey
(respectively, white) rectangles denote execution on processor Π1 (respectively,
Π2). In (a), T3’s job suffers x = 8 units of interference and misses its deadline
(dashed circle), whereas in (b), T3’s job suffers less interference (z = 2 units)
due to T1’s shifting, and completes its execution before its deadline.

other tasks prevent the higher-priority task from shifting.
In this particular example, under strong APA scheduling, T3

must wait only when T1 cannot shift to any other processors,
i.e., when both Π1 and Π2 are busy. Therefore, T1’s effective
interference on T3 during the interval [0, 12) is actually also
bounded by the workload of T2. In Fig. 2(b), x′ denotes the
workload of T1, z denotes the interference from T1 incurred
by T3 (i.e., the total time that T3 cannot be scheduled due to
T1’s execution), and y denotes the duration that T2 prevents T1

from shifting in favor of T3. We observe that trivially z ≤ x′
(since T1 must execute to interfere), but also that z ≤ y, which
demonstrates the key advantage of strong APA scheduling: if
higher-priority tasks can shift, then their full execution time
need not contribute to the interference on lower-priority tasks.

In the LP-based schedulability analysis that we introduce
next, we focus on FP scheduling, but note that the same
techniques can be used to analyze JLFP scheduling as well.

A. LP-based Schedulability Analysis for APA Scheduling
Many multiprocessor schedulability analyses rely on the

concept of interference (as defined in Sec. III). APA schedula-
bility analysis, however, requires a more expressive concept.
Since overlapping affinities cause a task’s interference to vary
across processors (unlike under global scheduling), we define
the concept of per-processor interference, denoted as xki,p(t). It
denotes, in a time window of length t, the cumulative execution
time of Ti on Πp, while Tk is backlogged.

Since the exact values of per-processor interferences on
Tk cannot be easily determined, we model the problem of
determining xki,p(t) as a linear program (LP). The objective
of the LP is to maximize rubk , i.e., the upper bound on Tk’s
response time rk, given some constraints on task interference.
Lemmas 1 and 2 (adapted from [20]) define constraints that we
use to formulate the LP. Proofs can be found in [20]. Recall
from Sec. III that hki (t) denotes the interference of Ti on Tk
in a time window of length t.

Lemma 1. In a time window of length t, if task Tk is analyzed
under FP APA scheduling and task Ti has a higher priority,∑

Πp∈αi
xki,p(t) ≤ hki (t) and ∀Πp /∈ αi : xki,p(t) = 0.

Lemma 2. In a time window of length t, if task Tk is analyzed
under FP APA scheduling and if t is the largest value such that



∀Πp ∈ αk, t ≤ ek +
∑
Ti∈hpk

xki,p(t), then t is also an upper
bound on the response time of task Tk.

We now state the LP that derives an upper bound on the
response time of a task Tk in a time window of length t.
The solution of the LP is recomputed for growing interval
lengths (up to dk) in a fixed-point iteration. If the iteration
converges to a value rubk ≤ dk, then rubk is an upper bound
on the response time of any job of task Tk (assuming that no
higher-priority task misses a deadline). The LP variables Xk

i,p

and Rubk correspond to xki,p(t) and rubk , respectively.

Theorem 2. Given a task Tk to be scheduled under FP APA
scheduling (either weak or strong), if no task misses a deadline,
a safe response-time bound rubk is given by the least fixed point
of the equation rubk = RLPk (rubk ), starting with rubk = ek, where
RLPk (t) is the solution of the following LP.

RLPk (t) , maximize Rubk subject to

∀Ti ∈ hpk :
∑

Πp∈αi

Xk
i,p ≤ hki (t) (Constraint 1)

∀Ti ∈ hpk,∀Πp /∈ αi : Xk
i,p = 0 (Constraint 2)

∀Πp ∈ αk : Rubk ≤ ek +
∑

Ti∈hpk

Xk
i,p (Constraint 3)

Constraints 1, 2 and 3 in Theorem 2 can be trivially derived
from Lemmas 1 and 2 (see [20]). We next propose additional
constraints, extending the LP in Theorem 2 to derive a shifting-
aware schedulability analysis for strong APA scheduling.

B. Shifting-aware Analysis for Strong APA Scheduling

From the definition of shifting migration in Sec. IV-B, it
follows that under strong APA scheduling, a reachable higher-
priority task may (positively) affect the interference on a lower-
priority task even if their affinities do not overlap, by virtue of
shifting. Therefore, to develop a shifting-aware schedulability
analysis for strong APA scheduling, we must define a bound
on task interference that also reflects the workloads of non-
interfering higher-priority tasks.

For instance, in the analysis of T3’s schedulability under
weak APA scheduling in Ex. 2, the constraint z ≤ x′ is trivial
to find (z is the interference incurred by T3 due to T1 and x′

denotes the workload of T1). In contrast, strong APA scheduling
also allows for an additional, less easily identifiable constraint
z ≤ y (y denotes the duration for which T2 prevents T1 from
shifting in favor of T3), which restricts the total interference on
T3 to a more accurate value than under weak APA scheduling.

In order to formalize such interference relations, we define
a static graph G′ representing the entire task set, which is used
to derive additional shifting-aware constraints for the LP.

Let G′ = (V ′, E′) represent an undirected graph, where
vertices in V ′ correspond to tasks. There exists an edge in E′

between tasks Ta and Tb iff their processor affinities intersect,
i.e., αa ∩ αb 6= ∅. In addition, let RTk(l) denote the set of tasks
that are reachable from Tk in exactly l hops, i.e., Ti ∈ RTk(l)
iff there exists a path <Tk0,Tk1, . . . , Tkl> in G′ such that
Tk0 = Tk and Tkl = Ti. We further define the set RPk(l) of
processors reachable in l steps as RPk(l) =

⋃
Ti∈RTk(l)

αi.

The following theorem considers, w.r.t. the task Tk under
analysis, every shifting path of length l from Tk to a reachable
processor Πp that some task Ti can shift to, as long as no
higher-priority task Tj ∈ hpk is executing on Πp.

Theorem 3. Given a time window of length t and a
task Tk to be analyzed under strong FP APA scheduling,
∀l ∈ {1, . . . ,m− 1}, ∀Ti ∈ RTk(l), and ∀Πp ∈ αi \ RPk(l − 1),
the following invariant holds:∑

Πr∈αi∩RPk(l−1)

xki,r(t) ≤
∑

Tj∈hpk∧Tj 6=Ti

xkj,p(t). (4)

Proof. By contradiction. Assume that ∃l ∈ {1, ...,m− 1},
∃Ti ∈ RTk(l), and ∃Πp ∈ αi \RPk(l − 1), such that:∑

Πr∈αi∩RPk(l−1)

xki,r(t) >
∑

Tj∈hpk∧Tj 6=Ti

xkj,p(t). (5)

Eq. 5 implies that, in some interval of length t, the total
execution time of task Ti on processors in αi ∩RP k(l − 1)

(while Tk is backlogged) exceeds the total execution of all
other higher-priority tasks on Πp (while Tk is backlogged). Let
δ be defined as follows:

δ =
∑

Πr∈αi∩RPk(l−1)

xki,r(t)−
∑

Tj∈hpk∧Tj 6=Ti

xkj,p(t),

and let ∆ represent the cumulative interval corresponding
to these δ time units. Note that since xki,r(t) and xkj,p(t) both
denote execution time while Tk is backlogged, it is the case
that Tk is backlogged at all times in the cumulative interval ∆.

Because δ is non-zero, there exists a point in time in ∆ such
that Ti is scheduled on a processor Πr ∈ αi ∩RPk(l− 1) while
Tk is backlogged and none of the tasks in hpk are scheduled on
Πp. However, in this case, Ti can shift to Πp, thus vacating a
processor in αi ∩RP k(l − 1), and another higher-priority task
in RTk(l − 1) can shift to the processor vacated by Ti. By
recursively applying this argument up to l = 1, we observe
that Tk is scheduled after l shifts.

Assuming that shifting migrations are enacted instanta-
neously (i.e., negligible overheads for task migrations), this
implies that task Tk is not backlogged at all times during the
cumulative interval ∆. Contradiction.

The invariants in Theorem 3 can be used as an additional
set of constraints in the LP in Theorem 2 to obtain shifting-
aware response-time bounds under strong APA scheduling.
Despite the larger number of constraints in the LP, in our
experiments considering up to 16 processors, this analysis
approach still exhibited good runtime performance (i.e., the
analysis required only a few seconds to complete for reasonable
task set sizes). An important concern for strong APA scheduling,
however, is how to account for the overheads induced by
shifting migrations, which is addressed in the next section.

VI. OVERHEAD ANALYSIS

In order to assess the potential for strong APA scheduling
in practice, it is necessary to provide means for overhead
accounting. The overheads present in an APA scheduler are,



in large parts, similar to what already occurs in standard
schedulers, and can be accounted for using existing techniques
(e.g., see [9]). The only exception, however, are the additional
shifting migrations, which are not covered by previous work.

Note that previous FP/JLFP schedulers enact migrations
only upon the arrival of high-priority tasks. Thus, existing
analyses for preemption-related overheads are able to charge
the cost of a preemption to the higher-priority (preempting) job,
which indirectly interferes with the lower-priority jobs. Under
strong APA scheduling, however, tasks can also be shifted due
to the arrival of lower-priority tasks, and thus the overheads
cannot always be modeled as interference. Rather, they must
be accounted for explicitly, as explained next.

The following lemma provides a bound on the number of
migrations that can occur during the lifetime of a job of task Tk.

Lemma 3. Under strong APA scheduling and in the absence
of self-suspensions, a job J migrates at most twice for each
job J ′ that arrives or departs while J is pending.

Proof. Under a FP/JLFP policy, J migrates only due to the
arrival or departure of some job J ′ of another task (regardless
of priority). The claim follows since (in the absence of self-
suspensions) each job arrives and departs exactly once.

Assume a worst-case migration (or preemption) delay of
∆mig time units. By Lemma 3, in a time window of length t, an
upper bound Mk(t) on the migration and preemption overhead
incurred by some task Tk can be defined as follows:

Mk(t) =
∑

Ti∈
⋃m−1

l=0 RTk(l)

2 ·
⌈
t

pi

⌉
·∆mig. (6)

This additional delay affects the analysis in two cases. First,
the overheads that directly affect task Tk must be added to the
LP constraints that model the response time:

∀Πp ∈ αk : Rubk ≤ ek +Mk(t) +
∑

Ti∈hpk

Xi,p. (7)

In addition, migrations that affect a task Ti of priority higher
than Tk must be added to the interference hki (t), so that they
are indirectly accounted for in the response time Rk:

hk′i (t) , hki (t) +Mi(t). (8)

The analysis can be further improved with two observations.
First, tasks with singleton processor affinity can only suffer
direct preemptions, but never shift. So, when analyzing such
tasks, it is sufficient to consider only the arrival of higher-
priority tasks executing on the same processor. In addition,
when tasks with global affinity arrive, they always preempt the
processor running the lowest-priority task, without affecting
higher-priority tasks. Thus, we do not consider the arrival of a
low-priority task with global affinity as a source of migrations.

Based on the described analysis techniques, we next report
on our evaluation of strong APA scheduling.

VII. EVALUATION

Recall from Sec. IV that enforcing the Strong APA Invariant
allows higher system utilization. Indeed, in Sec. V, we

established stricter bounds on the response time of real-time
tasks to be scheduled under strong APA scheduling. To assess
whether the theoretical benefits of strong APA scheduling also
translate into increased utilization, we conducted schedulability
experiments using the SchedCAT tool suite [1].

In the first set of experiments, we evaluated the analytical
benefits of shifting using overhead-oblivious schedulability
analysis, as described in Sec. V. In the second set of experi-
ments, using the overhead accounting technique introduced in
Sec. VI, we investigated how the schedulability under strong
APA scheduling degrades with increasing migration overheads.

Next, we explain the experimental setup used in our
evaluation, and then discuss the main trends.

A. Experimental Setup
Under APA scheduling, the affinity assignment adds a new

dimension when defining task set parameters. Finding optimal
affinity assignments is a non-trivial and still open problem. In
addition, there is a further complication in that affinities speci-
fied by users do not necessarily improve the schedulability of
the system. Since we desire to evaluate the benefits of shifting
in such restricted scenarios, it was necessary to approximate
user-defined affinity assignments in a reasonable manner.

Adhering to these requirements, we first randomly generated
task sets using Emberson et al.’s method [16] with parameters
m ∈ {4, 8, 16}, n ∈ {m + 1, 1.25m, 1.5m, 1.75m, 2m,
3m, 4m}, periods following a log-uniform distribution in
[10ms, 100ms], and priorities assigned according to the DkC
heuristic [13]. For each generated task set, we then applied
an affinity assignment step in order to emulate reasonable
user-defined affinities, as described below.

Initial Affinity Assignment: Processor affinities were not
completely randomized but rather uniformly sampled as either
partitioned, clustered, or global, according to a probability ratio
of the form p/c/g, respectively. For instance, the probability
of a task being partitioned given a hypothetical probability
ratio of 3/2/1 would be 3/(3 + 2 + 1).

In order to approximate realistic use cases, two different
configurations were evaluated, 1/1/6 and 5/2/1. The former
configuration corresponds to a global-like scenario where a
few cache-sensitive tasks are restricted to specific partitions or
clusters, and the remaining tasks remain global. In contrast,
the latter configuration is biased towards smaller affinities, i.e.,
it resembles use cases requiring isolation or fault tolerance
guarantees, in which critical tasks are statically assigned to
different processors, while the remaining tasks are assigned
clustered or global affinities.

After a task is assigned either a partitioned, clustered,
or global configuration, it must still be assigned the exact
set of processors. Although this processor selection affects
the schedulability of the tasks, we preferred not to bias the
experiment towards a specific allocation strategy as the user
may intentionally decide to isolate or group certain tasks. We
also preferred not to use random affinities since they may
overload processors. Instead, we applied a simple utilization-
and affinity-based heuristic.

According to the heuristic, a task Ti with a partitioned
configuration is assigned to the processor Πp that minimizes



the sum
∑
uk/|αk|, over all tasks Tk ∈ hpi already assigned to

Πp. This heuristic captures the fact that high-priority tasks with
larger affinities can migrate more easily, decreasing the load on
the individual processors in their respective affinities. A similar
heuristic was used for tasks with clustered configurations.

However, despite using the aforementioned heuristic, certain
processors were still overloaded. In order to discard such
clearly unschedulable assignments, we applied Baruah and
Brandenburg’s APA feasibility test [6].

This procedure generates the task sets we used in the
evaluation, where tasks are assigned an initial processor affinity
αi. In the next step, we applied schedulability tests, as described
in the following.

B. Runtime Affinity Minimization and Schedulability Tests

We consider a scenario in which a system designer has
determined that certain tasks should be restricted to execute only
on certain processors for application-specific reasons. However,
during system integration, it is possible to further restrict the
set of permissible processors. That is, under APA scheduling, a
task Ti with a user-provided affinity αi can be further restricted
to execute on a smaller set of processors βi ⊆ αi without
violating the user-provided scheduling restriction—there is no
requirement that Ti must actually be given the option at runtime
to execute on all processors in αi as long as schedulability is
maintained. Thus, during system integration, the user-provided
affinity may be “shrunk” to obtain a simpler scheduling problem.
In the following, to distinguish between the two cases, we refer
to αi as the design-time processor affinity of Ti and to βi as
the runtime processor affinity of Ti: αi is provided by the
system designer, whereas βi is given to the OS scheduler.

Partitioning: We first evaluated task sets under partitioned
scheduling, i.e., by attempting to find singleton runtime
processor affinities that are compliant with the user-provided
design-time affinities. This partitioning-first approach reflects
the observation that runtime overheads are low under partitioned
scheduling and uniprocessor schedulability analysis is accurate.
Therefore, there is little incentive to use an APA scheduler
at runtime if partitioning suffices to meet all design-time
affinity restrictions.

Finding singleton runtime processor affinities that are com-
pliant with the user-provided design-time affinities, however,
required partitioning heuristics specific for APA scheduling.
Partitioning with affinity constraints is inherently limited by
the initial design-time affinity assignment. Conventional bin-
packing heuristics such as First-Fit Decreasing-Utilization are
not effective. Since some tasks are assigned to single processors
in the initial affinity assignment, part of the task set may
already be partitioned, reducing the solution space for the bin-
packing heuristics. In particular, if tasks with large affinities are
partitioned first (i.e., tasks whose processor affinities include
most of the processors available in the system), the freedom to
choose processors for the remaining tasks is reduced, affecting
schedulability. Thus, we obtained improved results by sorting
tasks in increasing order w.r.t. the size of their affinities.

Response-time Analysis: For the cases where partitioning
failed, we applied the LP-based APA response-time analysis

(described in Sec. V) on different runtime affinity assignments.
Starting from the failed partitioning attempt, we first tried
intermediate configurations by growing the runtime processor
affinity of the tasks that did not fit during bin-packing (without
violating the design-time affinity restrictions). In the cases
where all these configurations were not schedulable, we applied
the schedulability test on the initial design-time affinity.

Having explained the experimental setup, we next present
the main results of our schedulability experiments.

C. Evaluation of Theoretical Benefits

In the first set of experiments, we assessed schedulability ig-
noring overheads. We generated graphs showing the fraction of
schedulable task sets w.r.t. increasing system utilization (0 to m
in steps of 0.05). For each point, 800 task sets were generated.

Each graph shows five curves. PART denotes the partitioning
heuristic described previously, i.e., APA scheduling where all
tasks are assigned singleton runtime affinities. RTA-Weak and
RTA-Strong denote the LP-based response-time analyses. The
former was proposed first in [20], while the latter is described in
Sec. V. To provide upper bounds on schedulability, we applied
two other tests, SIM-Weak and SIM-Strong, which simulated the
task sets for up to 500s under weak and strong APA scheduling,
respectively. Since such simulations cannot consider every
possible task arrival sequence, they only report task sets that
are not schedulable. Nevertheless, they aid in estimating the gap
between a scheduling algorithm and its corresponding analysis.

Schedulability results for 4, 8, and 16 processors, with
n ∈ {1.75m, 4m} and ratio 5/2/1 are shown in Figs. 3(a)–
3(f). We omit the graphs for the ratio 1/1/6 since most task
sets were partitionable and there were no differences between
the curves up to very high utilization values.

Recall that a task Tk only benefits from shifting if higher-
priority tasks that execute on processors in αk can migrate to
processors external to αk, which occurs more frequently when
the higher-priority tasks have large affinities. In the affinity
assignments that we generated, many tasks were able to shift,
allowing a significant schedulability improvement. As seen
in Figs. 3(a)–3(c), RTA-Strong was able to schedule roughly
15-20% more task sets than RTA-Weak for certain utilizations.

Most importantly, the fact that the pessimistic RTA-Strong
analysis dominates the optimistic SIM-Weak simulation pro-
vides strong evidence demonstrating that strong APA schedul-
ing is clearly superior in terms of schedulability.

Increasing the number of tasks reduces the difference
between partitioned and APA schedulability analysis due to pes-
simism, as shown by comparing Figs. 3(a)–3(c) with Figs. 3(d)–
3(f). However, note that SIM-Strong still suggests much better
schedulability, which hints that strong APA scheduling still has
a large potential that could be explored by improved analysis.
Another observation is that the results for partitioned scheduling
do not improve as expected for large task counts. This can be
attributed to the restrictive initial affinity assignments.

Overall, the results show that strong APA scheduling is able
to achieve reasonable schedulability gains from an analytical
point of view, which could be further improved by selecting
better runtime affinities. In addition, all of our experiments were
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(a) m = 4, n = (1.75 ·m) = 7
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(b) m = 8, n = (1.75 ·m) = 14
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(c) m = 16, n = (1.75 ·m) = 28
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(d) m = 4, n = (4 ·m) = 16
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(e) m = 8, n = (4 ·m) = 32
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(f) m = 16, n = (4 ·m) = 64
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(g) m = 4, n = (1.50 ·m) = 6
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Fig. 3. Schedulability graphs for the partitioned/clustered/global ratio of 5/2/1. Insets (a)-(f) do not reflect overheads. Insets (g)-(i) show results for strong
APA scheduling with migration costs. The x and y axes represent the total utilization and the fraction of schedulable task sets, respectively.

limited by the initial affinity assignment, which was in part
random to avoid bias towards specific application requirements.

D. Evaluation of Shifting Overheads
In this section, we present the results of our preliminary ex-

periments to evaluate the practicality of strong APA scheduling,
for which we used the overhead analysis from Sec. VI.

Task sets and processor affinities were generated using the
same methodology as described earlier, with a small difference.
Since partitioned scheduling incurs very low overheads and
can always be applied without violating affinities, it is not
useful as a baseline for comparison. Thus, we discarded task
sets that could be partitioned and focused on only the ones
that were schedulable using strong APA scheduling.

Experiment results for m ∈ {4, 8} showing the fraction of
task sets schedulable as the system utilization is increased from
0.3m to 0.9m, and with migration costs varying from 0 to
750µs, are shown in Figs. 3(g)–3(i). For small task counts and
migration overheads up to 500µs, a significant fraction of the
task sets is deemed schedulable. Because of the large pessimism
in the analysis, however, the overheads tend to grow with high
task and/or processor counts. Thus, the results are not yet
entirely satisfactory; however, even 500µs migration overheads
can be considered quite large, and efficient implementations, if
carefully optimized, may exhibit lower overheads in practice.

A full in-kernel implementation, the subject of future work,
will allow measuring realistic overheads and further clarify
the results. In addition, the overhead analysis could be made
less pessimistic. It is clear that not all patterns of shifting
can occur in real sequences of scheduling events. Quantifying
possible shift patterns would improve the overhead analysis,
in comparison with the current method that simply assumes
that every job causes shifting twice. We thus believe that more
efficient ways for implementing and analyzing APA schedulers
can be found, which we leave as future work.

VIII. RELATED WORK

Real-time APA scheduling has been addressed thrice in
the literature. Our previous work focused on schedulability
analysis for weak APA scheduling [19, 20], whereas Baruah and
Brandenburg proposed feasibility analysis for APA scheduling
with implicit deadlines [6]. In the following, we compare APA
scheduling with other related scheduling problems.

Among the schedulers found in the literature, there are
classes of hybrid approaches that resemble APA scheduling
in the sense of explicitly controlling task migration. Since
limiting when task migrations occur (as in restricted-migration
scheduling [3, 14]) is completely orthogonal to APA scheduling,
we focus on schedulers that restrict where a task may migrate to.



Under clustered scheduling [5, 11], migrations are disallowed
between groups of processors, in order to decrease cross-socket
memory access overheads in multicore platforms. Since such
restriction can be straightforwardly encoded with affinities,
APA scheduling clearly generalizes this approach [19, 20].

Semi-partitioned algorithms [4, 10, 22], while relying mostly
on static task allocation schemes, still allow a small num-
ber of migratory tasks to increase schedulability. Although
APA scheduling with time-varying processor affinities could
model semi-partioning-like behavior, the current work on APA
scheduling is still limited to static processor affinities.

Like APA scheduling, virtual cluster-based scheduling [15]
also allows tasks to be assigned to overlapping physical clusters.
However, Easwaran et al.’s work fundamentally targets an
orthogonal problem of hierarchical scheduling, and also differs
in that it does not fit into established scheduling APIs without
breaking legacy compatibility.

IX. CONCLUSION

This paper, motivated by the use of arbitrary processor
affinities for application-specific use cases, showed how a
conventional APA scheduler can be extended to achieve higher
schedulability, while maintaining API compatibility.

With the concept of task shifting, which we related to the
assignment problem with seniority constraints [12], we defined
how priority-based APA schedulers should be modeled in order
to maximize system utilization. Though we focused on FP
schedulers, the idea generalizes well to JLFP APA schedulers.
In addition, apart from identifying MVMs as a tool to compute
scheduling decisions, we also proposed a dynamic algorithm
for implementing APA schedulers more efficiently.

To assert temporal guarantees under strong APA scheduling,
we extended the recently proposed LP-based response time
analysis to account for task shifting. Since overheads must be
considered in practice, we also provided a preliminary method
to account for shifting migrations, which can be easily adapted
into the conventional overhead-aware analysis.

In our schedulability evaluation, strong APA scheduling
exhibited reasonable improvements in comparison with par-
titioning. More importantly, despite being subject to some
pessimism, strong APA schedulability analysis was shown to
dominate the simulation results for weak APA scheduling.
However, to confirm that our observations hold even with real-
world overheads, an in-kernel implementation of the scheduler
is still necessary. Due to space constraints, however, we had
to relegate our ongoing implementation efforts to future work.

Finally, being a relatively new research direction, APA
scheduling still has many loose ends. For instance, both the
schedulability and the overhead analysis could be further
improved. While the former does not yet integrate some
of the more recent improvements in global schedulability
analysis (e.g., see [8]), the latter incurs pessimism by over-
counting migrations. Nonetheless, this paper and the prior
work [6, 19, 20] already show that both strong and weak
APA scheduling have interesting properties that call for further
exploration.
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