
Optimality Results for Multiprocessor Real-Time Locking∗

Björn B. Brandenburg and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract
When locking protocols are used in real-time systems,
bounds on blocking times are required when ensuring timing
constraints. While the term “blocking” is well-understood in
the context of uniprocessor real-time systems, the same is not
true in the multiprocessor case. In this paper, two definitions
of blocking are presented that are applicable to suspension-
based multiprocessor locking protocols. The need for two
definitions arises because of differences in how suspensions
are handled in existing schedulability analysis. For each
definition, locking protocols are presented that have asymp-
totically optimal blocking behavior. In particular, protocols
are presented for any job-level static-priority global or par-
titioned scheduling algorithm.

1 Introduction
The recent shift by major chip manufacturers to multicore
technologies has led to renewed interest in infrastructure and
analysis techniques for supporting multiprocessor real-time
applications. In order to support such applications, multipro-
cessor real-time scheduling algorithms and resource-sharing
protocols are required that, when used together, enable a
task system’s timing constraints to be ensured. Ensuring
such constraints usually requires restricting the supported
task system in some way. For example, it may be necessary
to restrict per-task utilizations or overall system utilization.
With regard to lock-based resource sharing, such restrictions
arise because of processor capacity that is lost when tasks
block on one another as they wait to acquire shared resources.
A good locking protocol should minimize such loss.

In the uniprocessor case, good locking protocols are well
known. Indeed, uniprocessor protocols exist that ensure that
each job (instance) of a task blocks for the duration of at most
one (outermost) critical section, which is obviously asymp-
totically optimal [1, 21, 23]. In the multiprocessor case, how-
ever, the situation is much more murky, despite the consider-
able body of work on multiprocessor real-time locking pro-
tocols (which we review below). In fact, to the best of our
knowledge, general, precise definitions of what actually con-
stitutes “blocking” in this case do not even exist. Rather,
existing protocols have been analyzed by providing upper
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bounds on lock-acquisition delays that would be sufficient
under any reasonable definition of blocking. It goes with-
out saying that without a precise definition of blocking, we
clearly have no understanding of what constitutes optimal
blocking behavior in multiprocessor systems.

Motivated by this, we discuss in this paper how to pre-
cisely define blocking in the multiprocessor case and present
multiprocessor real-time locking protocols that have asymp-
totically optimal blocking behavior, i.e., protocols under
which the amount of time lost to blocking (by any task
set) is bounded within a constant factor of the loss shown
to be unavoidable in the worst case (for some task sets).
We specifically focus on implicit-deadline sporadic task sys-
tems that are scheduled by job-level static-priority sched-
ulers [11]. We consider three such schedulers in detail:
global and partitioned earliest-deadline-first scheduling (G-
EDF and P-EDF, resp.), in which jobs are prioritized in
earliest-deadline-first order, and partitioned static-priority
scheduling (P-SP), in which each task is assigned a fixed
priority. Regarding resource sharing, our focus is locking
protocols in which tasks wait by suspending. We assume that
lock accesses are not nested, or equivalently, nested accesses
are realized by using group locks [8].

Prior work. Due to space constraints, our discussion of
prior work is not exhaustive, but rather focuses on those
prior efforts that are of most relevance to the results we
present. Rajkumar et al. [20, 21, 22] were the first to pro-
pose locking protocols for real-time multiprocessor systems.
They presented two suspension-based protocols for P-SP-
scheduled systems, the multiprocessor priority-ceiling pro-
tocol (MPCP) [17, 20] and the distributed priority-ceiling
protocol (DPCP) [22]. In later work on P-EDF-scheduled
systems, Chen and Tripathi [12] presented two protocols
that only apply to periodic (and not sporadic) tasks, Lopez
et al. [19] presented a partitioning heuristic that transforms
global resources (i.e., resources that can be accessed from
multiple processors) into local resources, and Gai et al. [15]
proposed a protocol in which blocking for global resources
is realized via spinning (i.e., busy-waiting) rather than sus-
pending. More recently, Block et al. [8] presented the flex-
ible multiprocessor locking protocol (FMLP), which can be
used under G-EDF, P-EDF, and P-SP [9]. The FMLP cate-
gorizes critical sections as either “short” or “long”: blocking
is realized by spinning (suspension) for short (long) critical
sections. Finally, Easwaran and Andersson [14] recently pre-
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sented the suspension-based parallel priority-ceiling proto-
col (PPCP) and an analysis of the priority inheritance pro-
tocol (PIP) for globally-scheduled static-priority systems.

In all of the just-cited papers, the focus is on develop-
ing locking protocols for which blocking times can be suffi-
ciently bounded. Issues of optimality are not considered. In
many cases, the bounds that are derived are quite pessimistic.
Pessimism will inevitably arise, for example, if a locking
protocol is used that makes it difficult to disambiguate true
blocking from ordinary demand, i.e., demand for processor
time that must be accounted for assuming no locks exist. In
such cases, lock-acquisition delays may get doubly charged
as both blocking and ordinary demand. Of course, disam-
biguating blocking from demand requires formal definitions.
Contributions. As in the uniprocessor case, we argue that,
with respect to multiprocessor locking protocols, true block-
ing that must be accounted for arises when priority inver-
sions occur. Accordingly, we use the term pi-blocking. Be-
cause the definition of pi-blocking is rooted in the notion of
a “priority inversion,” a formal definition of the former re-
quires a formal definition of the latter. While the notion of a
priority inversion is straightforward to define in the unipro-
cessor case, we argue that an appropriate definition in the
multiprocessor case hinges on whether schedulability analy-
sis is suspension-oblivious or suspension-aware. In brief (see
Sec. 2), suspensions are modeled as ordinary computation
under suspension-oblivious analysis, but as true suspensions
under suspension-aware analysis.

Our complexity bounds apply to a system of n implicit-
deadline sporadic tasks scheduled by a job-level, static-
priority scheduler onm processors, where the number of crit-
ical sections per job and the length of each critical section are
taken to be constant. In the suspension-oblivious case, we
present an Ω(m) lower bound on per-job worst-case block-
ing that applies to both partitioned and global schedulers
(see Sec. 3.1). We also present global (Sec. 3.2) and par-
titioned (Sec. 3.3) variants of a new optimal locking proto-
col, the O(m) locking protocol (OMLP) (Secs. 3.2 and 3.3),
for which per-job blocking times are O(m). These proto-
cols have better blocking times than prior algorithms under
suspension-oblivious analysis, so for them, we provide more
exact (not just asymptotic) blocking analysis.

In the suspension-aware case, we show that O(m) block-
ing complexity is not possible by establishing an Ω(n) lower
bound on blocking (Sec. 4.1). We show that the FMLP is
optimal in the global case (Sec. 4.2), and present a sim-
ple, optimal FIFO algorithm that, in the partitioned case, has
O(n) blocking complexity under suspension-aware analysis
(Sec. 4.3). The simplicity of this algorithm derives from the
fact that it greatly limits parallelism in accessing resources.
One may question whether an asymptotically better approach
might be possible by ordering requests on a static-priority or
EDF basis. We show that this is not possible by establish-
ing an Ω(mn) lower bound that is applicable to any such
approach.

We formalize our system model and summarize relevant
background next.

2 Background and Definitions
We consider the problem [11, 18] of scheduling a set of n
implicit-deadline1 sporadic tasks τ = {T1, . . . , Tn} on m
processors; we let Ti(ei, pi) denote a task with a worst-case
per-job execution time ei and a minimum job separation pi.
Ji,j denotes the jth job (j ≥ 1) of Ti. Ji,j is pending from
its arrival (or release) time ai,j ≥ 0 until it finishes execution
at time fi,j . If j > 1, then ai,j ≥ ai,j−1 +pi. Ji,j’s response
time is given by fi,j − ai,j . We omit the job index j if it is
irrelevant and let Ji denote an arbitrary job.

For a given scheduling algorithm A, task Ti’s worst-case
response time ri is the maximum response time of any job
of Ti in any schedule of τ produced by A. A task set is
schedulable under A if ri ≤ pi for each Ti, i.e., if every job
completes by its implicit deadline [18].

A pending job is in one of two states: a ready job is avail-
able for execution, whereas a suspended job cannot be sched-
uled. A job resumes when its state changes from suspended
to ready. We assume that pending jobs are ready unless sus-
pended by a locking protocol.

Resources. The system contains q shared resources `1,
. . . , `q (such as shared data objects and I/O devices) besides
the m processors. When a job Ji requires a resource `k, it
issues a request R for `k. R is satisfied as soon as Ji holds
`k, and completes when Ji releases `k. The request length,
denoted ‖R‖, is the time that Ji must execute2 before it re-
leases `k. We let Ni,k denote the maximum number of times
that any Ji requests `k, and let Li,k denote the maximum
length of such a request, where Li,k = 0 if Ni,k = 0.

A resource can be held by at most one job at any time.
Thus, a locking protocol must be employed to order conflict-
ing requests. A job Ji that issues a requestR incurs acquisi-
tion delay and cannot proceed with its computation while it
waits for R to be satisfied. There are two principle mecha-
nisms to realize waiting: a job can either busy-wait (or spin)
in a tight loop, thereby wasting processor time, or it can relin-
quish the processor and suspend until its request is satisfied.

A resource `k is local to a processor P if all jobs re-
questing `k execute on P , and global otherwise. Local re-
sources can be optimally managed with uniprocessor proto-
cols [1, 21]; the focus of this paper is global resources.

We assume non-nested resource requests, i.e., jobs request
at most one resource at any time. We note, however, that
nesting can be handled with group locks as in the FMLP [8],
albeit at the expense of reduced parallelism.

1The presented results do not depend on the choice of deadline con-
straint. Implicit deadlines were chosen to avoid irrelevant detail.

2We assume that Ji must be scheduled to complete its request. This is
required for shared data objects, but may be pessimistic for I/O devices. The
latter can be accounted for at the expense of more verbose notation.
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Scheduling. All schedulers considered in this paper are as-
sumed to be work-conserving job-level static-priority (JLSP)
schedulers [11]. We consider three such schedulers in de-
tail: global and partitioned earliest-deadline-first scheduling
(G-EDF and P-EDF, resp.), in which jobs are prioritized
in order of increasing deadline (with ties broken in favor of
lower-index tasks), and partitioned static-priority scheduling
(P-SP), in which each task is assigned a fixed priority. We
assume that P-SP-scheduled tasks are indexed in order of
decreasing priority. Tasks (and their jobs) are statically as-
signed to processors under partitioning; in this case, we let
Pi, 1 ≤ Pi ≤ m, denote Ti’s assigned processor, and let
part(x) , {Ti | Pi = x} denote the set of tasks assigned
to processor x. Under global scheduling, jobs are scheduled
from a single ready queue and may migrate [11].

Locking protocols may temporarily raise a job’s effective
priority. Under priority inheritance [21, 23], the effective
priority of a job Ji holding a resource `k is the maximum
of Ji’s priority and the priorities of all jobs waiting for `k.
Alternatively, under priority boosting [9, 17, 20, 21, 22],
a resource-holding job’s priority is unconditionally elevated
above the highest-possible base (i.e., non-boosted) priority
to expedite the request completion. Non-preemptive sections
can be understood as a form of priority boosting.
Blocking. For historical reasons, “blocking” is an over-
loaded term. In non-real-time settings, jobs waiting for a
shared resource are commonly said to be “blocked.” In the
context of uniprocessor real-time resource sharing, “block-
ing” has a more specific meaning: a waiting job is not
blocked whenever the currently-scheduled job is of higher
priority [1, 21, 23]. This notion of blocking arises because
acquisition delay can increase response times and must be ac-
counted for when determining whether a task set is schedula-
ble. Since acquisition delay that overlaps with higher-priority
work does not affect response times, it is not counted as
“blocking” even though the job is “blocked on” a resource.
In this interpretation, a job incurs “blocking” only during
times of priority inversion [21, 23], i.e., if a low-priority job
is scheduled while a higher-priority job is pending.

Further, in the context of schedulability analysis, “block-
ing” can also refer to other delays unrelated to resource shar-
ing that cause response-time increases. For example, this
includes deferral blocking [24], which arises under static-
priority scheduling due to suspensions. Deferral blocking
does not necessarily coincide with priority inversion.

In this paper, we consider the definition specific to re-
source sharing, which we denote as priority inversion block-
ing (pi-blocking) to avoid ambiguity. To reiterate, pi-
blocking occurs whenever a job’s completion is delayed and
this delay cannot be attributed to higher-priority demand (for-
malized below). We let bi denote a bound on the total pi-
blocking incurred by any Ji.

Before we continue, we need to clarify the concept of a
“priority inversion on a multiprocessor,” which is compli-
cated by two issues. First, on a uniprocessor, pi-blocking

occurs when a low-priority job is scheduled in place of a
higher-priority job. This intuitive definition does not gener-
alize to multiprocessors: as some processors may idle while
a job is waiting, pi-blocking may be incurred even when no
lower-priority job is scheduled.

Second, multiprocessor schedulability analysis has not yet
matured to the point that suspensions can be analyzed under
all schedulers. In particular, none of the seven major G-EDF
hard real-time schedulability tests [2, 3, 4, 5, 6, 7, 16] inher-
ently accounts for suspensions. Such analysis is suspension-
oblivious (s-oblivious): jobs may suspend, but each ei must
be inflated by bi prior to applying the test to account for all
additional delays. This approach is safe—converting exe-
cution time to idle time does not increase response times—
but pessimistic, as even suspended jobs are (implicitly) con-
sidered to prevent lower-priority jobs from being sched-
uled. In contrast, suspension-aware (s-aware) schedulabil-
ity analysis that explicitly accounts for bi is available for
global static-priority scheduling, P-EDF, and P-SP (e.g., see
[14, 17, 21]). Notably, suspended jobs are not considered to
occupy a processor under s-aware analysis.

Consequently, priority inversion is defined differently un-
der s-aware and s-oblivious analysis: since suspended jobs
are counted as demand under s-oblivious analysis, the mere
existence of m pending higher-priority jobs rules out a pri-
ority inversion, whereas only ready higher-priority jobs can
nullify a priority inversion under s-aware analysis.

Def. 1. Under global s-oblivious schedulability analysis, a
job Ji incurs s-oblivious pi-blocking at time t if Ji is pending
but not scheduled and fewer than m higher-priority jobs are
pending.

Def. 2. Under global s-aware schedulability analysis, a job
Ji incurs s-aware pi-blocking at time t if Ji is pending but not
scheduled and fewer than m higher-priority jobs are ready.3

In both cases, “higher-priority” is interpreted with respect
to base priorities. The difference between s-oblivious and s-
aware pi-blocking is illustrated in Fig. 1. Notice that Def. 1
is weaker than Def. 2. Thus, lower bounds on s-oblivious pi-
blocking apply to s-aware pi-blocking as well, and the con-
verse is true for upper bounds.

In the case of partitioning, definitions similar to Defs. 1
and 2 apply on a per-processor basis, i.e., only local higher-
priority jobs are considered and m = 1.

Blocking complexity. We study two characteristic com-
plexity metrics that reflect overall pi-blocking: maximum
pi-blocking, maxTi∈τ{bi}, which reflects per-task bounds
that are required for schedulability analysis, and total pi-
blocking,

∑n
i=1 bi, which yields average pi-blocking and

thus provides context for the maximum, i.e., it indicates

3Easwaran and Andersson [14] provide a definition of “job blocking”
that conceptually resembles our notion of s-aware pi-blocking. However,
their definition specifically applies to global static-priority scheduling and
does not encompass all of the effects that we consider to be “blocking” (e.g.,
such as priority boosting).
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Figure 1: Example of s-oblivious and s-aware pi-blocking of three
jobs J1, J2, and J3, sharing one resource on two G-EDF-scheduled
processors. J3 suffers acquisition delay during [1, 3), and since no
higher-priority jobs exist it is pi-blocked under either definition. J1,
suspended during [2, 4), suffers pi-blocking under either definition
during [3, 4) since it is among the m highest-priority pending jobs,
but only s-aware pi-blocking during [2, 3) since J3 is pending but
not ready then. (The notation in this figure is used in subsequent
figures as well.)

whether the maximum pi-blocking bound is “typical.”

Assumptions. Concrete bounds on pi-blocking must neces-
sarily depend on each Li,k—long requests will cause long
priority inversions under any protocol. Similarly, bounds un-
der any protocol become increasingly pessimistic as the to-
tal number of requests per job grows. Thus, when deriving
asymptotic bounds, we consider, for each Ti,

∑
1≤k≤q Ni,k

and each Li,k to be constants and assume n ≥ m. All other
parameters are considered variable (or dependent on m and
n). In particular, we do not impose constraints on the ratio
max{pi}/min{pi} or the number of tasks sharing each `k.

3 S-Oblivious Pi-Blocking
We first consider s-oblivious pi-blocking. We begin by es-
tablishing lower bounds on maximum and total pi-blocking,
and then present an optimal locking protocol for both global
(Sec. 3.2) and partitioned scheduling (Sec. 3.3).

3.1 Lower Bound
Ω(m) pi-blocking is unavoidable in some cases. Consider
the following pathological high-contention task set.

Def. 3. Let τ seq(n) denote a task set of n identical tasks that
share one resource `1 such that ei = 1, pi = 2n, Ni,1 = 1,
and Li,1 = 1 for each Ti, where n ≥ m ≥ 2.

Lemma 1. There exists an arrival sequence for τ seq(n) such
that, under s-oblivious analysis, maxTi∈τ{bi} = Ω(m) and∑n
i=1 bi = Ω(nm) under any locking protocol and JLSP

scheduler.

Proof. Without loss of generality, assume that n is an inte-
ger multiple of m. Consider the schedule resulting from the

5 10 150
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J3

J4

J5

J6

Figure 2: G-EDF schedule of τ seq(n) for n = 6 and m = 3, and
thus g ∈ {0, 1}. The first group of jobs (J1,1, J2,1, J3,1) is released
at time 0; the second group (J4,1, J5,1, J6,1) is released at time 3.
Each group incurs 0 + 1 + 2 =

Pm−1
i=0 i total pi-blocking.

following periodic arrival sequence: each Ji,j is released at
time ai,j = (di/me− 1) ·m+ (j− 1) · pi, and issues one re-
quest Ri,j , where ‖Ri,j‖ = 1, i.e., releases occur in groups
of m jobs and each job requires `1 for its entire computation.
The resulting G-EDF schedule is illustrated in Fig. 2.

There are n/m groups of m tasks each that release jobs
simultaneously. Each group of jobs of Tg·m+1, . . . , Tg·m+m,
where g ∈ {0, . . . , n/m − 1}, issues m concurrent re-
quests for `1. Since `1 cannot be shared, any locking pro-
tocol must impart some order, and thus there exists a job in
each group that incurs d time units of pi-blocking for each
d ∈ {0, . . . ,m − 1}. Hence, for each g,

∑g·m+m
i=g·m+1 bi ≥∑m−1

i=0 i = Ω(m2), and thus, across all groups,
∑n
i=1 bi =∑(n/m−1)

g=0

∑g·m+m
i=g·m+1 bi ≥ n/m · Ω(m2) = Ω(nm), which

implies maxTi∈τ{bi} = Ω(m).
By construction, the schedule does not depend on G-EDF

scheduling since no more than m jobs are pending at any
time, and thus applies to other global JLSP schedulers as
well. The lower bound applies equally to partitioned JLSP
schedulers since τ seq(n) can be trivially partitioned such
that each processor serves at least bn/mc and no more than
dn/me tasks.

Prior work shows this bound to be tight for spin-based
protocols—if jobs busy-wait non-preemptively in FIFO or-
der, then they must wait for at most m − 1 earlier re-
quests [8, 13]. However, prior work has not yielded anO(m)
suspension-based protocol.

3.2 Optimal Locking under Global Scheduling
As mentioned in the introduction, Block et al.’s FMLP [8]
is the only prior locking protocol for G-EDF that allows
waiting jobs to suspend. The FMLP’s primary design goal
is simplicity, in both implementation and analysis. Accord-
ingly, conflicting requests for both short and long resources
are satisfied in FIFO order. As pointed out above, this is
optimal for busy-waiting. In contrast, the FMLP analysis
for long resources is asymptotically worse—jobs can incur
O(n) pi-blocking when waiting for a long resource [8], and
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Figure 3: Two examples of n = 4 tasks sharing one resource `1 on
m = 2 G-EDF-scheduled processors. Each job requires `1 for the
entirety of its computation. (a) If conflicting requests are satisfied
in FIFO order, then the job with the earliest deadline (J1) may incur
Ω(n) pi-blocking if its request is issued just after all other requests.
(b) If conflicting requests are satisfied in order of job priority, then
a job’s request may be deferred repeatedly even though it is among
the m highest-priority jobs.

schedules in which a job does indeed incur Θ(n) s-oblivious
pi-blocking are readily created, as shown in Fig. 3(a).

It is tempting to view this as an indictment of FIFO or-
dering, as one might reasonably expect a real-time locking
protocol to reflect job priorities. However, ordering requests
by job priority, as done in [14], does not improve the bound:
since a low-priority job can be starved by later-issued higher-
priority requests, it is easy to construct an arrival sequence in
which a job incurs Ω(n) s-oblivious pi-blocking, as seen in
Fig. 3(b). Thus, ordering all requests by job priority is, at
least asymptotically speaking, not preferable to the much-
simpler FIFO queuing.

Fortunately, by combining FIFO and priority ordering, it
is possible to realize O(m) pi-blocking, as shown next.

3.2.1 The Global OMLP

The O(m) locking protocol (OMLP ) is a suspension-based
resource sharing protocol in which jobs incur at most O(m)
s-oblivious pi-blocking. In the global OMLP, each resource
is protected by two locks: a priority-basedm-exclusion lock4

that limits access to a regular FIFO mutex lock, which in turn
serializes access to the resource.

Structure. For each resource `k, there are two job queues:
FQk, a FIFO queue of length at most m, and PQk, a priority
queue (ordered by job priority) that is only used if more than
m jobs are contending for `k. The job at the head of FQk (if
any) holds `k.

Rules. Let queuedk(t) denote the number of jobs queued in
both FQk and PQk at time t. Requests are ordered according
to the following rules.

G1 A job Ji that issues a request R for `k at time t is
appended to FQk if queuedk(t) < m; otherwise, if
queuedk(t) ≥ m, it is added to PQk. R is satisfied
when Ji becomes the head of FQk.

4An m-exclusion lock can be held concurrently by up to m jobs.

5 10 150

t2t0 t1enters PQ

enters FQ

J1

J2

J3

J4

J5

J6

Figure 4: Example showing the global OMLP under G-EDF for
six tasks sharing one resource on m = 2 processors. J6 issues a
request at t0 = 3, enters FQ1 at t1 = 7, and holds `1 at t2 = 8.
Note that J1 and J2 enter FQ1 immediately for lack of contention,
and thus J2’s request precedes J4’s request in spite of J4 having an
earlier deadline. In contrast, J4 and J5 arrive and enqueue after J6,
but enter FQ1 before J6 due to their earlier deadlines and Rule G3.
Similarly, J6 acquires `k before J3, despite J3’s earlier request.

G2 All queued jobs are suspended, with the exception of
the job at the head of FQk, which is ready and inherits
the priority of the highest-priority job in FQk and PQk.

G3 When Ji releases `k, it is dequeued from FQk and the
new head of FQk (if any) is resumed. Also, if PQk
is non-empty, then the highest-priority job in PQk is
moved to FQk.

The key insight is the use of an m-exclusion lock to safely
defer requests of lower-priority jobs without allowing a pi-
blocked job to starve. This can be observed in the example
depicted in Fig. 4. At time 1.5, m = 2 jobs hold the m-
exclusion lock, i.e., have entered FQ1, and thus J3 must enter
PQ1. Hence it is safely deferred when `1 is later requested
by higher-priority jobs (J4, J5, J6). At the same time, J2,
which incurs pi-blocking until J6’s arrival at time 2, precedes
the later-issued requests since it already held them-exclusion
lock—this avoids starvation in scenarios such as the one de-
picted in Fig. 3(b).

3.2.2 Global OMLP Schedulability Analysis

We first derive a bound on the number of requests that cause
Ji to be pi-blocked. We then show how such bounds affect
scheduling analysis by considering G-EDF.

In the following, let t0 denote the time at which Ji issues
R, t1 denote the time at which Ji enters FQk, and t2 denote
the time at which R is satisfied (see Fig. 4). Further, let
entered(t), t0 ≤ t < t1, denote the number of jobs that have
been moved from PQk to FQk during [t0, t] due to Rule G3,
i.e., that preceded Ji in entering FQk. For example, for J6 in
Fig. 4, entered(3.5) = 0 and entered(6) = 2.

Lemma 2. For each point in time t ∈ [t0, t1), if Ji is pi-
blocked at time t, then entered(t) < m.
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Proof. By Rule G3, because Ji has not yet entered FQk at
time t, there must be m pending jobs queued in FQk. Due
to FIFO ordering, if entered(t) ≥ m, then each job queued
in FQk at time t must have been enqueued in FQk during
[t0, t]. By Rule G3, this implies that each job in FQk must
have a priority that exceeds Ji’s priority. By the definition of
s-oblivious pi-blocking (Def. 1), the presence of m higher-
priority pending jobs implies that Ji is not pi-blocked.

Lemma 3. During [t0, t2], Ji incurs pi-blocking for the com-
bined duration of at most 2 · (m− 1) requests.
Proof. Due to the bounded length of FQk, at most m− 1 re-
quests complete in [t1, t2] before a given request is satisfied.
By Lemma 2 and Rule G3, at most m− 1 requests complete
before J1 is no longer pi-blocked in [t0, t1).

Combining Lemma 3 with the maximum request length
for each `k yields the following bound.

Lemma 4. Ji is pi-blocked for at most

bi ,
q∑

k=1

Ni,k · 2 · (m− 1) · max
1≤i≤n

{Li,k}.

Proof. By Lemma 3, Ji is pi-blocked for the duration of at
most 2 · (m− 1) requests each time it requests a resource `k.
Due to priority inheritance, the resource-holding job has an
effective priority among the m highest priorities whenever
Ji is pi-blocked; requests are thus guaranteed to progress to-
wards completion when Ji is pi-blocked. As Ji requests `k
at most Ni,k times, it suffices to consider the longest request
for `k Ni,k · 2 · (m − 1) times. The sum of the per-resource
bounds yields bi.

Theorem 1. S-oblivious pi-blocking under the global
OMLP is asymptotically optimal.
Proof. Follows from Lemmas 1, 3, and 4.

Practically speaking, the bound given in Lemma 4 can be
pessimistic since it does not take the actual “demand” for
shared resources into account, i.e., this bound cannot reflect
low-contention scenarios in which each `k is requested by
only few tasks. For example, consider a message buffer that
is shared between only two tasks and suppose m = 100:
assuming that every request is interfered with by 198 re-
quests is clearly needlessly pessimistic. We provide a less
pessimistic bound that reflects individual request frequencies
and lengths in Appendix A.

Recall that bi was derived assuming that suspended
higher-priority jobs are accounted for as demand. Thus, each
per-job execution time must be inflated by bi before applying
existing G-EDF schedulability tests that assume tasks to be
independent.

Theorem 2. A task set τ is schedulable under G-EDF and
the OMLP if τ ′ is deemed schedulable by an s-oblivious G-
EDF schedulability test for independent tasks [2, 3, 4, 5, 6,
7, 16], where τ ′ = {T ′i (ei + bi, pi) | Ti ∈ τ }.

Note that the derivation of bi itself does not depend on
G-EDF; the OMLP can thus also be applied to other global
JLSP schedulers.

3.3 Optimal Locking under Partitioned Scheduling
Additional challenges arise under partitioning since prior-
ity inheritance across partitions is, from an analytical point
of view, ineffective. Under global scheduling (and on
uniprocessors), priority inheritance ensures that the resource-
holding job has sufficient priority to be scheduled whenever
a waiting job is pi-blocked. In contrast, the highest local pri-
ority may be lower than the priority of any remote job under
partitioning and thus progress cannot be guaranteed.

In prior work, three partitioned, suspension-based real-
time locking protocols have been proposed: the DPCP [21,
22] and MPCP [17, 20, 21] for P-SP scheduling, and the
FMLP for both P-EDF [8] and P-SP [9] scheduling. These
protocols share two characteristics: they all employ priority
boosting instead of (or in addition to) priority inheritance,
and they use global, per-resource wait queues, in which jobs
are ordered either by priority (DPCP and MPCP) or in FIFO
order (FMLP). Interestingly, either design choice can result
in schedules with Ω(n) pi-blocking for some jobs. This is
avoided by the partitioned OMLP.

3.3.1 The Partitioned OMLP

Since comparisons of local and remote priorities cannot be
used to bound pi-blocking under partitioning, the partitioned
OMLP uses a token abstraction to limit global contention. A
“contention token” is a virtual, local resource that a job must
hold before it may request a global resource. There is only a
single contention token per processor, i.e., the same token is
used for all global resources. This serves to limit the number
of jobs that can cause pi-blocking due to priority boosting.
Structure. The contention token CTP local to processor P ,
P ∈ {1, . . . ,m}, is a binary semaphore with an associated
priority queue PQP (ordered by job priority). There is one
global FIFO queue FQk of length at mostm for each resource
`k. The job at the head of FQk holds `k.
Rules. Let Ji denote a job on processor Pi that issues a re-
questR for a global resource `k at time t.

P1 If CTPi
is not held by any (local) job at time t, then Ji

acquires CTPi
and proceeds with Rule P3. Otherwise,

Ji is suspended and enqueued in PQPi
.

P2 If Ji was suspended due to Rule P1, then it resumes and
acquires CTPi at the earliest point in time such that both
(a) Ji is the highest-priority pending job assigned to Pi
and (b) CTPi

is not being held.

P3 Once Ji holds CTPi
, it is added to FQk. Ji is suspended

unless FQk was empty before adding Ji.

P4 Ji’s effective priority is boosted while holding CTPi ,
i.e., Ji is scheduled unless suspended.
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Figure 5: Illustration of s-oblivious pi-blocking under P-EDF and
the partitioned OMLP for six tasks sharing one resource on m = 2
processors. J1 incurs direct pi-blocking (Bfifo

i ) while waiting for
J3 to release `1 until the higher-priority job J2 is released at time 4.
J2 is preempted and incurs pi-blocking (Bprio

i ) when J1 is priority-
boosted during [5, 8). J4 incurs pi-blocking immediately on release
at time 2 because J3 is priority-boosted (Bprio

i ), and again during
[5.5, 6.5] while waiting for J1 to release `1 (Bfifo

i ). J4 is no longer
pi-blocked when the higher-priority J6 is released at time 6.5. J6

incurs pi-blocking during [7, 9) while it waits for J6 to release CT2.
The first half of the interval is accounted for by Btrans

6 since J6 is
transitively pi-blocked by a remote request while J4 is waiting it-
self. This changes at time 8 when J4 is priority-boosted to complete
its request, which is accounted for by Bprio

6 . Note that J5 does not
resume until time 11 when it becomes the highest-priority pending
job despite CT2 becoming available at time 10.

P5 When Ji releases `k, it is removed from FQk, releases
CTPi

, and the new head of FQk (if any) is resumed.

An example schedule is depicted in Fig. 5. Under the par-
titioned OMLP, jobs that do not share resources themselves
may still incur pi-blocking due to priority boosting (e.g., this
happens to J2 at time 5 in Fig. 5). This is not the case under
the global OMLP, which highlights the advantage of using
priority inheritance if possible.

Note that the set of allm contention tokens implements an
m-exclusion algorithm—thus, at most m jobs may contend
for global resources at any time. This property is essential to
obtaining the following O(m) bound on pi-blocking.

3.3.2 Partitioned OMLP Schedulability Analysis

Pi-blocking arises in three ways under the partitioned
OMLP, as illustrated in Fig. 5. Ji may incur pi-blocking

1. due to a local request if it is preempted by a priority-
boosted job (Rule P4)—this delay is denoted Bprio

i ;

2. directly due to remote requests while waiting in a FIFO
queue (Rule P3)—this delay is denoted Bfifo

i ; and

3. transitively due to remote requests while waiting for
CTPi

(Rules P1 and P2) if the CTPi
-holding job is sus-

pended itself (Rule P3)—this delay is denoted Btrans
i .

We bound each of these sources individually and begin with
interference due to lower-priority jobs.

Lemma 5. No job local to Pi with priority lower than Ji’s
priority acquires CTPi while Ji is pending.

Proof. Suppose a lower-priority job Jx acquires CTPi
at time

t while Ji is pending, i.e., t ∈ [ai, fi). If Jx was suspended
by Rule P1, then, by Rule P2(a), Jx cannot resume and ac-
quire CTPi

at time t. Thus, to issue a request at time t, Jx
must be ready and scheduled, which implies that Ji is sus-
pended. If Ji is suspended due to Rule P4, then it holds
CTPi itself. If Ji is suspended due to Rule P1, then CTPi

is not available at time t. Thus, in either case Jx cannot ac-
quire CTPi

at time t ∈ [ai, fi).

Lemma 6. Ji is pi-blocked due to local, priority-boosted,
lower-priority jobs (Rule P4) for at most

Bprio
i , max {Lx,k | Tx ∈ part(Pi) ∧ 1 ≤ k ≤ q } .

Proof. Let Jx denote a lower-priority job that is priority-
boosted while Ji is pending. By Rule P4, Jx must hold CTPi

.
By Lemma 5, Jx must have acquired CTPi before Ji’s re-
lease. At most one such Jx can exist. Jx releases CTPi after
one request (Rule P5). Thus, Ji is blocked for the length of
at most one local request.

Next, we bound pi-blocking due to Rule P3, which only
affects jobs that issue requests.

Lemma 7. While holding CTPi , Ji incurs pi-blocking for at
most

Bfifo
i ,

q∑
k=1

Ni,k · (m− 1) · max
1≤x≤n

{Lx,k}.

Proof. Due to Rule P1, at most one job on every remote
processor can globally contend at any time. Thus, due to
the FIFO ordering of each FQk, at most (m − 1) requests
precede Ji’s request each time that Ji requires `k. Prior-
ity boosting ensures that the resource-holding job is always
scheduled (Rule P4), thus progress is ensured. Since FIFO
queues are not shared among resources, the sum of the indi-
vidual per-resource bounds yields Bfifo

i .
Finally, we need to bound pi-blocking due to Rule P1.

Lemma 8. While waiting for CTPi
, Ji incurs at most

Btrans
i , (m− 1) · max

1≤k≤q
max

1≤x≤n
{Lx,k}

pi-blocking due to requests issued by remote jobs.

Proof. Ji must wait for CTPi if it is held by either a higher-
priority or a lower-priority local job Jx. By the definition
of s-oblivious pi-blocking, Ji is only pi-blocked in the latter
case. By Lemma 5, this can occur at most once. While Ji
waits for Jx to release CTPi , it is transitively pi-blocked by
at most (m−1) remote requests since at mostm−1 jobs can
precede Jx in the FIFO queue. Priority boosting ensures the
progress of resource-holding jobs.

Note that Bprio
i already accounts for the execution of the

lower-priority job’s request, and that Btrans
i thus only ac-

counts for pi-blocking that Ji incurs while the CTPi
-holding
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job is suspended (e.g., see J6 in Fig. 5). Further, note that
Btrans
i and Bfifo

i only apply to tasks that share resources,
i.e., if

∑q
k=1Ni,k > 0.

Lemma 9. Ji incurs pi-blocking for at most bi , Bprio
i if∑q

k=1Ni,k = 0, i.e., if Ti does not access resources, and
bi , Bprio

i +Bfifo
i +Btrans

i otherwise.

Proof. Follows from the preceding discussion.
Note that the above bound is again very coarse-grained

and thus likely pessimistic. As in the global case, we pro-
vide a less pessimistic bound that reflects individual request
frequencies and lengths in Appendix A. However, Lemma 9
suffices to establish optimality.

Theorem 3. S-oblivious pi-blocking under the partitioned
OMLP is asymptotically optimal.

Proof. Recall from Sec. 2 that
∑
kNi,k and each Li,k are

assumed constant. It follows that Bprio
i = O(1), Bfifo

i =
O(m), and Btrans

i = O(m), and hence maxTi∈τ{bi} =
O(m) and

∑n
i=1 bi = O(nm).

Schedulability under P-EDF can be established with the
classic s-oblivious EDF utilization bound [18].

Theorem 4. A task set τ is schedulable under P-EDF
and the OMLP if, for each processor o, 1 ≤ o ≤ m,∑
Ti∈part(o)

ei+bi

pi
≤ 1.

As in the global case, the derivation of bi does not inher-
ently depend on EDF scheduling, and can be applied to other
JLSP schedulers by substituting an appropriate s-oblivious
schedulability test.

4 S-Aware Pi-Blocking
One can easily construct schedules with later-arriving,
higher-priority jobs similar to Fig. 3(b) that demonstrate that
the OMLP does not ensure O(m) s-aware pi-blocking. Nat-
urally, the question arises: can the OMLP be “tweaked” to
achieve this bound? This is, in fact, impossible.

4.1 Lower Bound
The following lemma shows that maximum s-aware pi-
blocking of Ω(n) is fundamental.

Lemma 10. There exists an arrival sequence for
τ seq(n) (see Def. 3) such that, under s-aware analysis,
maxTi∈τ{bi} = Ω(n) and

∑n
i=1 bi = Ω(n2), under any

locking protocol and JLSP scheduler.

Proof. Without loss of generality, assume that n is an integer
multiple of m. We first consider the partitioned case and
assume that Pi = di/me, i.e., n/m tasks are assigned to
each processor.

Consider the schedule Sseq resulting from a synchronous,
periodic arrival sequence: each Ji,j is released at ai,j =
(j − 1) · pi, and issues one request Ri,j , where ‖Ri,j‖ = 1.
Sseq is illustrated in Fig. 6(a) assuming P-EDF scheduling.

50

J1

J2

J3

J4

(a) 50

J1

J2

J3

J4

(b)

Figure 6: Illustration of (a) Sseq and (b) Spar for n = 4 andm = 2
under P-EDF. Note that bi ≥ rseq

i − rpar
i . For example, J4 incurs

pi-blocking during [0, 2) in Sseq ; consequently b4 ≥ rseq
4 − r

par
4 =

4− 2 = 2. Similarly, b3 ≥ rseq
3 − rpar

3 = 3− 1 = 2.

Note that linear suspension times are immediately apparent.
However, to bound bi under any JSLP scheduler, we need to
take into account the times in which a suspended job is not
pi-blocked because a higher-priority job executes.

Towards this aim, consider the schedule Spar resulting
from the same arrival sequence assuming that jobs are inde-
pendent, i.e., each Ji executes for ei without requesting `1.
Spar is illustrated in Fig. 6(b).

Under Sseq , because jobs are serialized by `1, only one
job completes every time unit until no jobs are pending; thus,∑n
i=1 r

seq
i =

∑n
i=1 i irrespective of how requests are or-

dered or jobs prioritized.
Under Spar , because jobs are independent and the sched-

uler is, by assumption, work-conserving, m jobs complete
concurrently every time unit until no jobs are pending; thus,
under any job prioritization,

∑n
i=1 r

par
i =

∑n
i=1di/me.

By construction, no job is pi-blocked in Spar . In con-
trast, jobs incur pi-blocking in Sseq under the same JLSP
scheduler, i.e., jobs are prioritized consistently in Spar and
Sseq . Thus, the observed response time increase of every job
reflects the amount of pi-blocking incurred in Sseq . There-
fore, for each Ti, bi ≥ rseq

i,1 − rpar
i,1 , and thus

∑n
i=1 bi ≥∑n

i=1 r
seq
i,1 −

∑n
i=1 r

par
i,1 =

∑n
i=1 i−

∑n
i=1

⌈
i
m

⌉
≥
∑n
i=1 i−

1
m

∑n
i=1 i−

∑n
i=1 1 =

(
1− 1

m

)
(n+1)n2−n = Ω(n2). This

implies maxTi∈τ{bi} = Ω(n).
Since at most one job is scheduled in Sseq at any time,

pi-blocking does not decrease under global scheduling.
We next show this bound to be tight under both global and

partitioned scheduling.

4.2 Optimal Locking under Global Scheduling
The suspension-based “long” FMLP for G-EDF [8] uses per-
resource FIFO queues with priority inheritance, i.e., there is a
FIFO queue FQk for each resource `k, Ji is appended to FQk
when requesting `k, and the job at the head of FQk holds `k
and inherits the priority from any job blocked on `k.5 This,
in fact, ensures asymptotically optimal s-aware pi-blocking.

Theorem 5. S-aware pi-blocking under the global,
suspension-based FMLP [8] is asymptotically optimal.

5This is a somewhat simplified—but faithful—description of the
suspension-based “long” FMLP; see Block et al. [8] for details. Our dis-
cussion does not apply to the spin-based “short” FMLP.
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Proof. We derive a simple bound on s-aware pi-blocking un-
der the FMLP.

Each time that Ji requests a resource `k, it is enqueued in
FQk. Thus, it must wait for the completion of at most n− 1
requests. Due to priority inheritance, the job at the head of
FQk is guaranteed to be scheduled whenever Ji is pi-blocked.
Thus, Ji incurs pi-blocking for at most

bi ,
q∑

k=1

Ni,k · (n− 1) max
1≤x≤n

{Lx,k}

across all requests. Since max1≤x≤n{Lx,k} and
∑q
k=1Ni,k

are considered constant (see Sec. 2), this implies that
maxTi∈τ{bi} = O(n) and thus

∑n
i=1 bi = O(n2).

This implies that the bound established in Lemma 10 is
tight under global scheduling. Further note that, even though
the FMLP was originally proposed for G-EDF, the above
analysis does not depend on G-EDF and can be applied to
other global JLSP schedulers as well.

4.3 Optimal Locking under Partitioned Scheduling
As discussed in Sec. 3.3, the lack of (in an analytical sense)
effective priority inheritance under partitioning complicates
matters. In particular, in the case of the partitioned FMLP, it
is easy to show a (likely pessimistic) bound of O(n2) maxi-
mum pi-blocking, but the FMLP’s reliance on priority boost-
ing makes it challenging to derive a tighter bound.

However, it turns out that a much simpler protocol suf-
fices to establish tightness of the Ω(n) lower bound. Con-
sider the following simple, partitioned FIFO locking proto-
col (SPFP): there is only one global FIFO queue FQG that
is used to serialize requests to all requests, and the job at the
head of the queue is priority-boosted.

Theorem 6. S-aware pi-blocking under the SPFP is asymp-
totically optimal.
Proof. Analogously to Thm. 5: each request is preceded by at
most n− 1 requests, and the job at the head of FQG is guar-
anteed to be scheduled since it is the only priority-boosted
job. Thus, Ji incurs pi-blocking under the SPFP for at most

bi , max
1≤x≤n

{Lx,k | 1 ≤ k ≤ q } · (n− 1) ·
q∑

k=1

Ni,k.

The theorem follows.
The “trick” behind the SPFP is to avoid pessimism that

arises when multiple jobs sharing a processor are concur-
rently priority-boosted. Obviously, serializing all requests
is of only limited practical value. However, the asymptotic
optimality of the SPFP does establish that Ω(n) s-aware pi-
blocking is a tight lower bound in the general case.

4.4 Lower Bound on EDF and Static-Priority Queuing
Intuitively, one might reasonably expect queuing disciplines
that order lock requests on a static-priority or EDF basis to

5 10 150
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Figure 7: Illustration of τprio(n) for n = 6 and m = 3. The
depicted schedule arises under any partitioned JLSP scheduler if re-
quests are ordered either by deadline or by static priority (with task
indexed in order of decreasing priority). Also, an equivalent sched-
ule arises under global scheduling since only one job is scheduled
at any time. J6 incurs pi-blocking for (m− 1) · n = 12 time units
under partitioning and for mn − 1 = 17 time units under global
scheduling (throughout [0, 17) only one job is scheduled).

cause no more blocking than simple FIFO queuing. How-
ever, asymptotically speaking, this is not the case.

Consider the following task set.

Def. 4. Let τprio(n), where n ≥ 2m, denote a set of n tasks
sharing one resource `1 such that, for each Ti, ei = 1,Ni,1 =
1, Li,1 = 1, and pi = m if i < m, pi = mn/2 if m ≤ i ≤
2m− 2, and pi = mn otherwise.

Lemma 11. There exists an arrival sequence for τprio(n)
such that maxTi∈τ{bi} = Ω(mn) (under s-aware analysis)
when ordering requests by either non-decreasing job dead-
line or static priority under any JLSP scheduler.

Proof. Without loss of generality, assume that n is an integer
multiple of 2m. We first consider partitioned scheduling and
assume that τprio(n) is partitioned such that Pi = i if i < m
and Pi = m otherwise.

Consider the synchronous, periodic arrival sequence, i.e.,
each Ji,j is released at ai,j = (j − 1) · pi, and issues one
request Ri,j , where ‖Ri,j‖ = 1. The resulting schedule for
m = 3 and n = 6 is illustrated in Fig. 7.

Since the task set is serialized by `1, the order of job com-
pletions is fully determined by the queuing discipline under
any work-conserving scheduler. Recall from Sec. 2 that tasks
are indexed in order of decreasing priority, and that dead-
line ties are broken in favor of jobs of higher-indexed tasks.
Thus, if requests are either EDF- or static-priority-ordered,
then, by construction, Jn,1’s request is the last one to be sat-
isfied at time n ·m − 1. By Def. 2, Jn,1 incurs pi-blocking
whenever no higher-priority job is scheduled on Pm during
[0, n ·m − 1). By construction, Pm is used for only n − 1
time units during [0, n ·m− 1). Thus, Jn,1 is pi-blocked for
at least bn ≥ n ·m− 1− (n− 1) = (m− 1) · n = Ω(mn)
time units. Since at most one job is scheduled at any time,
pi-blocking does not decrease under global scheduling.

Total pi-blocking is similarly non-optimal in such cases.
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Scheduler Protocol Queue
Maximum pi-blocking
s-oblivious s-aware

global

FMLP [8] FIFO Θ(n) Θ(n)
PIP [14] priority Ω(n) Ω(mn)
PPCP [14] priority Ω(n) Ω(mn)
OMLP hybrid Θ(m) Ω(mn)

partitioned

DPCP [22] priority Ω(n) Ω(mn)
MPCP [20] priority Ω(n) Ω(mn)
FMLP [8] FIFO O(n2) O(n2)
OMLP hybrid Θ(m) Ω(mn)
SPFP FIFO Θ(n) Θ(n)

Table 1: Summary of results. Only the OMLP is optimal in the s-
oblivious case because both FIFO- and priority-ordered queues give
rise to Ω(n) s-oblivious pi-blocking (see Sec. 3.2). In the s-aware
case, all protocols employing priority queues are subject to a lower
bound of Ω(mn) (Lemma 11), and similar reasoning also applies to
the OMLP. Recall from Sec. 2 that an upper bound on s-aware pi-
blocking bounds s-oblivious pi-blocking as well. A comparison of
each protocol’s exact (i.e., non-asymptotic) bounds requires empir-
ical experiments since such bounds usually cannot be expressed as
closed-form expressions and is thus beyond the scope of this paper.

Lemma 12. There exist task systems with
∑n
i=1 bi =

Ω(m(n −m)2 + m2) (under s-aware analysis) when order-
ing requests by either non-decreasing job deadline or static
priority under any JLSP scheduler.

Proof. Omitted due to space constraints; can be shown anal-
ogously to Lemma 10 by considering a modified version of
τprio(n) in which pi = m · (n−m+ 1) if i ≥ m. The −m
and m2 terms arise because T1,. . .,Tm−1 incur only little pi-
blocking.

Note that Lemmas 11 and 12 depend on
max{pi}/min{pi} = mn/m not being constant. If
max{pi}/min{pi} is constrained to be constant, then
any (reasonable) protocol likely ensures O(n) maximum
pi-blocking if shared resources are not continuously in use.

5 Conclusion
We have presented precise definitions of pi-blocking for s-
oblivious and s-aware multiprocessor schedulability analy-
sis. Using these definitions, we have established a number
of bounds on pi-blocking that are applicable to any JLFP
global or partitioned scheduling algorithm. For the case of s-
oblivious analysis, we have shown that Ω(m) worst-case pi-
blocking is fundamental. We have also presented global and
partitioned variants of a new asymptotically optimal locking
protocol, the OMLP. Worst-case s-oblivious pi-blocking un-
der the global (partitioned) OMLP is O(m) under any global
(partitioned) JLFP scheduler. The OMLP is not just of theo-
retical interest. For example, the only prior proposed locking
protocol for G-EDF is the FMLP, and the OMLP has sub-
stantially better pi-blocking bounds than the FMLP.

For the case of s-aware analysis, we have shown that
O(m) worst-case pi-blocking is not possible by presenting

a general Ω(n) lower bound. We have also shown that the
global FMLP meets this bound and thus is asymptotically
optimal. In the partitioned case, we have presented a simple
FIFO locking protocol that also meets this bound. This al-
gorithm achieves O(n) worst-case pi-blocking by serializing
requests of all resources. While such an approach may be of
questionable practical utility, its existence nonetheless shows
that our lower bound is tight. We have further shown that no
locking protocol that orders lock requests on a static-priority
or EDF basis can be optimal by establishing an Ω(mn) lower
bound that is applicable to any such protocol. Our results are
summarized in Table 1.

It is important to note that asymptotic optimality as a func-
tion of m or n does not imply that a locking protocol is
the best to use in all circumstances. Obviously, asymptotic
claims ignore constant factors. Additionally, a non-optimal
algorithm could yield lower pi-blocking delays for some task
systems (just like the non-optimal Quicksort algorithm is of-
ten faster than optimal sorting algorithms).

In future work, it would be interesting to empirically in-
vestigate such practical tradeoffs with schedulability and im-
plementation studies. Likewise, as shown in Table 1, asymp-
totic upper bounds have yet to be derived for many existing
protocols—finding bounds that are asymptotically tight may
be non-trivial in some cases. With regard to locking opti-
mality, we would like to more carefully examine the effects
of certain parameters (like request lengths and the number
of requests per job) that we have assumed to be constant.
Similarly, bounds in the case where the maximum number
of tasks sharing a resource is constant (e.g., if any resource
is accessed by at most three tasks) are of practical interest.
Also, nesting with fine-grained locking (i.e., not using group
locks) and reader/writer locks warrant further attention. Fi-
nally, we note that current hard real-time G-EDF analysis is
s-oblivious. S-aware analysis may enable resource sharing to
be treated less pessimistically.
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A Improved Bounds
As noted in Sec. 3.2.2, the bound given in Lemma 4 (and,
respectively, in Lemma 7 under partitioning) overestimate
worst-case pi-blocking incurred when requesting resources
that are not heavily contended: if requests are infrequent and
mostly short, then assuming that that all queues are “satu-
rated” with the longest-possible request is needlessly pes-
simistic. This is best illustrated with an example.
Ex. 1. Consider three tasks T1, T2, and T3 with parameters
as indicated in Table 2 sharing one resource `1. Suppose that

Task ei pi Ni,1 Li,1

T1 9 50 2 1
T2 6 30 1 3
T3 3 20 1 1

Table 2: Example tasks set. Three tasks T1, T2, T3 sharing one
resource `1.

these tasks are scheduled on m = 16 processors (together
with a number of other tasks that do not access `1). Under
the global OMLP, by Lemma 4, a job J3 is pi-blocked for
at most b3 = N3,1 · 2 · (m − 1) · max{L1,1, L2,1, L3,1} =
1 · 2 · 15 · 3 = 90 time units. Given that only jobs of T2

issue requests of length 3, this clearly overestimates actual
worst-case pi-blocking. Based on this coarse-grained bound,
T3 would be (wrongly) deemed unschedulable since b3 > p3.

In this appendix, we derive less-pessimistic, albeit nota-
tionally more tedious, bounds for s-oblivious pi-blocking un-
der the global and partitioned OMLP that better reflect task
periods and per-task maximum request lengths.

A.1 S-Oblivious Pi-Blocking under the Global OMLP
Lemma 4 can be improved by deriving a better approxima-
tion of the set of requests that can delay a job in the worst
case. Intuitively, the idea is to “count” how many times each
task Tx can request a shared resource while Ji is pending,
and to charge each Lx,k individually based on these counts.
Ex. 2. Continuing Ex. 1, we derive the “worst-case inter-
ference” for J3, which we then use to bound maximum pi-
blocking. Because p3 < p2 < p1, J3 can overlap (i.e., be
pending concurrently) with at most two jobs of T1 and T2

each. Each J1 can request `1 twice, and each J2 can request
`1 once. Thus, at most six requests (4×T1, 2×T2) can inter-
fere with J3 in the worst case. Since L1,1 = 1, this method
yields a much tighter upper bound of b3 = 4·L1,1+2·L2,1 =
4 · 1 + 2 · 3 = 10.

To formalize this approach, we require a safe approxima-
tion of the set of possibly-interfering requests issued by jobs
of each competing task Tx. As illustrated in Ex. 2, this re-
quires a bound on the maximum number of jobs of Tx that
may execute (and thus issue requests) concurrently with Ji.

Lemma 13 (from [10]). At most d(t+ rx)/pxe jobs of a
task Tx can execute during any interval of length t.

By the definition of Nx,k, Lemma 13 implies that jobs of
Tx issue at most d(t+ rx)/pxe · Nx,k requests for `k over
any interval of length t. This yields the following definition.
Def. 5. The worst-case task interference generated by jobs
of Tx over any interval of length t is the set of requests

tif (Tx, `k, t) , {Rx,y | 1 ≤ y ≤ Nx,j · d(t+ rx)/pxe},

where ‖Rx,y‖ = Lx,k for eachRx,y .
Def. 5 characterizes the worst-case demand for `k by jobs

of Tx, i.e., it is a safe upper bound of both the number of
requests issued by Tx as well as their respective lengths.

11



Ex. 3. Suppose ri = pi for each Ti (see Sec. A.3 below).
Continuing Ex. 2, let t = p3 = 20. Then tif (T1, `1, 20) =
{R1,1,R1,2,R1,3,R1,4}, where ‖R1,1‖ = ‖R1,2‖ =
‖R1,3‖ = ‖R1,4‖ = 1, since d(20 + p1)/p1e = 2 and
N1,1 = 2. Similarly, tif (T2, `1, 20) = {R2,1,R2,2}, where
‖R2,1‖ = ‖R2,2‖ = 3.

Task interference bounds contention due to a single task.
We similarly define interference from a subset of τ .

Def. 6. For a set of tasks S, we let

xif (S, `k, t) ,
⋃
Tx∈S

tif (Tx, `k, t)

denote the worst-case request interference, and, for each v,
1 ≤ v ≤ |xif (S, `k, t)|, let xifv (S, `k, t) denote the vth
longest request in xif (S, `k, t) (with ties broken arbitrarily).

Ex. 4. Continuing Ex. 3, let S = {T1, T2} and t = 20.
Then xif (S, `1, 20) = {R2,1,R2,2,R1,1,R1,2,R1,3,R1,4}
in order of non-increasing length, i.e., ‖xif1 (S, `1, 20)‖ = 3,
‖xif2 (S, `1, 20)‖ = 3, ‖xif3 (S, `1, 20)‖ = 1, etc. Thus, the
bound that was manually derived in Ex. 2 can be expressed
as b3 =

∑6
v=1 ‖xifv (S, `1, p3)‖ = 10.

We formalize this bound next on a per-resource basis. We
provide a per-resource bound in anticipation of a later refine-
ment for special cases (Lemma 15 below).

Def. 7. Let bi,k denote a bound on the total pi-blocking in-
curred by Ji due to requests for resource `k. Under the global
OMLP, bi =

∑q
k=1 bi,k.

Combining the worst-case interference (Def. 6) with
Lemma 3 yields the following more accurate (but asymptot-
ically unchanged) bound.

Lemma 14. Let S = τ \ {Ti}, and let αk = min(Ni,k · 2 ·
(m−1), |xif (S, `k, ri)|). Ji is pi-blocked due to requests for
`k for at most bi,k ,

∑αk

v=1 ‖xifv (S, `k, ri)‖.
Proof. Follows from Lemma 3 and Def. 6: total pi-blocking
does not exceed the length of the Ni,k · 2 · (m − 1) longest
interfering requests (if that many exist, hence αk).

Deriving the worst-case request interference avoids over-
counting long-but-infrequent requests. However, if a re-
source is shared by at most m tasks, then the above bound
fails to fully reflect the strict FIFO-ordering of jobs in FQk.

Ex. 5. Consider the task set from Ex. 1. Since only two other
tasks access `1 andm = 16, J3 is guaranteed to immediately
enter FQ1 when it requests `1. Thus, J3 has to await the
completion of at most one request of T1 and one request of
T2 since jobs are FIFO-ordered in FQ1 and at most one job
per task is pending at any time. This implies a tighter bound
of b3 = N3,1 · L1,1 +N3,1 · L2,1 = 1 · 1 + 1 · 3 = 4.

This improvement is formalized next.

Def. 8. Let Ak denote the number of tasks accessing `k, i.e.,
Ak , |{Ti | 1 ≤ i ≤ n ∧Ni,k > 0}|.

Lemma 15. Let Cx,k = |tif (Tx, `k, ri)| denote the maxi-
mum number of times that jobs of Tx request `k while Ji is
pending. If Ak ≤ m, then Ji is pi-blocked due to requests
for `k for at most bi,k ,

∑n
x=1;x 6=i min(Ni,k, Cx,k) · Lx,k.

Proof. IfAk ≤ m, then Ji never enters PQk. Due to the FIFO
ordering in FQk, Ji is pi-blocked by at most one request from
Ak−1 other tasks each time that it requests `k, for a total of at
most Ni,k requests per task. However, if jobs of a competing
task Tx issue fewer than Ni,k requests, then not each request
of Ji is blocked by a request of Tx. Hence, Ji is pi-blocked
for a total duration of at most min(Ni,k, Cx,k) ·Lx,k for each
Tx (note that Cx,k = 0 if Nx,k = 0).

Thus, Ji is pi-blocked in total for at most bi =
∑q
k=1 bi,q ,

with each bi,q defined as given in Lemma 15 if Ak ≤ m, and
defined as given in Lemma 14 otherwise.

A.2 S-Oblivious Pi-Blocking under the Part. OMLP
The same approach, namely to derive a more accurate ap-
proximation of the worst-case request interference, can be
easily transferred to the partitioned OMLP. In particular,
Lemma 7 overestimates the contention arising on each re-
mote processor if resources are requested only infrequently.
Based on Def. 6, we can state the following more-accurate
bound that takes worst-case interference into account.

Lemma 16. While holding CTPi
, Ji is pi-blocked for at

most

Bfifo
i ,

q∑
k=1

m∑
o=1
o 6=Pi

αk,o∑
v=1

‖xifv (part(o), `k, ri)‖,

where αk,o = min(Ni,k, |xif (part(o), `k, ri)|).
Proof. Each time that Ji requests a resource `k, Ji must wait
for the completion of at most one request originating from
each remote processor. Hence, it is sufficient to consider the
Ni,k longest requests for `k originating from each remote
processor (if that many exist, hence αk,o).

It is further possible to improve Lemmas 6 and 8 by
considering only resources accessed by lower-priority jobs.
This, however, requires scheduling-algorithm-specific analy-
sis. Note that Lemma 16 does not depend on the employed
scheduling algorithm.

A.3 Computing bi
Both tif (Ti, `k, t) and xif (S, `k, ri) (Defs. 5 and 6) depend
on each Ti’s worst-case response time ri, which in turn de-
pends on the worst-case acquisition delay and thus worst-
case interference. This circular dependency can be resolved
either by conducting a fixed-point search for an upper bound
on ri (a similar approach is used to analyze the MPCP [17]),
or by simply substituting pi for ri, which is a safe approxima-
tion if the resulting τ ′ is schedulable. The former requires re-
peated response time approximations (e.g., see [7]), whereas
the latter can be computed immediately, albeit at the cost of
increased pessimism.
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