
Open Problems in FIFO Scheduling with Multiple Offsets
Mitra Nasri1†, Robert I. Davis2, and Björn B. Brandenburg1

1 Max Planck Institute for Software Systems (MPI-SWS)
2 University of York, UK, and Inria, France

I. INTRODUCTION

First-In-First-Out (FIFO) is a widely used scheduling policy that can easily be implemented in hardware or software. With
FIFO scheduling, the order in which jobs of tasks are executed depends only on their release times. This means that there are
no preemptions, since no future job can have a higher priority than one that has already been released. Since tasks are not
preempted, their worst-case execution times (WCETs) can be estimated with a higher degree of accuracy [1]. Further, on a
uniprocessor, non-preemptive execution means that a running task has exclusive access to shared resources. This allows FIFO
scheduling to reduce both design complexity and implementation overheads [2]. FIFO scheduling is also sustainable w.r.t. a
reduction in execution times, i.e., if a task set is schedulable under the FIFO policy when all jobs exhibit their WCETs, then
the system remains schedulable even if some jobs require less execution time [3]. As a result, in the absence of release jitter,
it is possible to use a simulation-based schedulability test to obtain exact response-time analysis for periodic tasks under FIFO
scheduling.

The key issue with FIFO scheduling is that it does not take task deadlines into account and so is ineffective at meeting time
constraints [3]. This is because once a task enters the FIFO queue, its position in the queue cannot be changed even if a more
urgent task is released later. FIFO scheduling of a hard real-time system therefore usually implies a severe under-utilization
of the processing resource [2]. In an attempt to improve schedulability, Altmeyer et al. [3] proposed a method where offsets
are chosen randomly until an assignment is found that is schedulable using FIFO scheduling; however, this solution does
not scale well beyond a few tasks or to task sets with a high utilization [2]. We note that this is an example of the classic
offset assignment problem, where the goal is to find an offset for each task such that the task set becomes schedulable by the
given scheduling algorithm. In this case, the initial offset chosen for each task affects both the release times and the absolute
deadlines of its jobs.

Recently, Nasri et al. [2] introduced a novel and different way of using offsets. Here, the initial offsets are assumed to be
fixed, and hence the absolute deadlines for the jobs are also fixed. With the approach of Nasri et al. [2], jobs are partitioned
into different groups and each group has a different additional relative offset applied. These relative offsets affect only the
release times of the jobs, but not their deadlines. Fig. 1-(a) shows a FIFO schedule using multiple offsets. Note that this task
set is not schedulable by any work-conserving policy if each task has only one offset (see Fig. 1-(b)). This example illustrates
that going beyond one offset per task can yield significant gains in schedulability [2].

Next, we precisely define the relative offset assignment problem with multiple offsets, as explored by Nasri et al. [2]. We
assume that a periodic task set is represented by τ = {τ1, τ2, . . . , τn}, where each task τi is characterized by its period Ti,
deadline Di, WCET Ci, and initial offset Oi. In order to express multiple offsets for a task, we use offset pairs denoted by
OP = (k, o), where k is the job index (from the start of the hyperperiod) from which a new offset o is applied. For example,
an offset pair (3, 12) means that starting from the third job in the hyperperiod, each job of the task has an offset of 12 +Oi,
until this is changed by a later offset pair (if any). More precisely, the release time and deadline of the jth job of task τi with
relative offset oi,x are ri,j = Oi + (j − 1) · Ti + oi,x and Di,j = Oi + (j − 1) · Ti +Di respectively. (Note that the relative
offset does not alter the deadline).

II. CHALLENGES AND OPEN PROBLEMS

Open Problem 1: Given a periodic task set τ , for each task τi (characterized by Ci, Ti, Di, Oi) find a set of offset pairs
Ôi = 〈(ki,1, oi,1), . . . , (ki,mi

, oi,mi
)〉 such that the resulting task set is schedulable using FIFO scheduling.

Open Problem 1 comes with several challenges. Firstly, this problem is strongly NP-Hard since any general solution could
also be used to solve the non-preemptive scheduling problem for periodic tasks, which is known to be strongly NP-hard [4].
Secondly, iterative approaches that attempt to find offsets for tasks one after another cannot easily be applied since changing
the offset of one task may change the alignment of the releases of that task w.r.t. all other tasks, resulting in a totally different
and potentially infeasible schedule [2]. This issue is more important for non-preemptive scheduling, since due to the blocking
effect a change in the schedule of a lower-priority task affects both higher and lower priority tasks as well as the next job
of the task itself. This makes the offset-assignment problem more difficult than the commonly studied preemptive case under
fixed-priority scheduling. Interestingly, in the case of sets of periodic tasks with non-harmonic periods, it may not be possible

† The first author is supported by a fellowship from the Alexander von Humboldt Foundation.

(a) FIFO schedule with multiple offsets 𝑂1 = 1, 0 ,
 𝑂2 = 1, 1 , 2, 6 , 3, 1 , 𝑂3 = 1, 11 , and 𝑂4 = 1, 39

(b) Non-preemptive RM (or EDF) schedules (c) Schedulability ratio of various scheduling algorithms

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

sc
h

e
d

u
la

b
ili

ty
 r

at
io

utilization

NP-FP + no offset FIFO + no offset

FIFO + offset tuning

3010 20 40

τ2

τ3

τ1

11

5 15 25 35 450

31

39

τ4

21

3010 20

τ2

τ3

τ1

9

5 15 25 350

27
τ4

18

Miss Miss
1

7

7

7 7

5 5

7

7 7

1

Fig. 1. (a) shows a FIFO schedule with multiple offsets, (b) shows a non-preemptive rate-monotonic schedule for the same task set, and (c) shows a comparison
between the schedulability ratio of various algorithms according to the results of Nasri et al. [2] for task sets similar to those used in automotive systems.

to find a single offset per task that ensures schedulability. Fig. 1-(b) shows an example task set that can be scheduled with
two offsets for a task, but is infeasible with only one.

An extreme solution would be to assign one offset to each job of a task. In that case, the problem reduces to one of finding
a feasible non-preemptive schedule, since the offset of each job can point to its start time in the non-preemptive schedule. This
approach, however, requires a large amount of memory to store the offset pairs, which leads to the following open problem.

Open Problem 2: Solve Open Problem 1 such that the total number of offset pairs is minimized, i.e., min
∑n

i=1 |Ôi|.

Recently, we have proposed a heuristic for solving Open Problem 1 [2], which is based on a reverse method, i.e., instead of
proposing an algorithm to find the offset pairs while building the schedule, our method starts from a given feasible reference
schedule and tries to assign offset pairs such that the FIFO scheduler mimics the given reference schedule. This technique, which
is called offset tuning, finds a small set of offsets such that the resulting FIFO schedule becomes equivalent to the reference
schedule, i.e., the resulting FIFO schedule has the same job ordering as the reference schedule and no job in the FIFO schedule
finishes later than the corresponding job in the reference schedule. Thus, offset tuning guarantees FIFO schedulability by design,
provided that the reference schedule is feasible. Offset tuning has O(M logM) computational complexity, where M is the total
number of jobs in the hyperperiod. In order to obtain high levels of schedulability, we used the non-preemptive, non-work-
conserving Critical-Window EDF (CW-EDF) [5] scheduling algorithm to produce the reference schedule. This combination
enables high schedulability to be achieved while retaining the low runtime of FIFO scheduling with only a small added memory
footprint [2]. Fig. 1-(c) compares the schedulability ratio of FIFO, non-preemptive fixed-priority (NP-FP) with rate-monotonic
priorities, and FIFO with offset tuning (FIFO-OT). It is worth noting that the offset tuning method [2] greedily minimizes
the number of offsets used for each individual task; however, this does not necessarily result in the minimum number for the
task set as a whole. The proposed solution thus does not optimally solve Open Problem 2, even though empirically it tends to
perform well [2]. Further, the performance of the offset-tuning heuristic for other types of reference schedules (e.g., obtained
from an ILP solver) is unclear and may be much less efficient.

One possible extension is to consider systems in which tasks exhibit release jitter. Release jitter, which can arise due to
timer interrupts, interrupt latency, network delays, etc., can potentially change the order of jobs in the FIFO queue at runtime.
Such runtime unpredictability renders Open Problem 1 much more challenging, since the relative offsets used must make the
resulting FIFO schedule consistent (or at least schedulable) for any combination of release jitter for all of the different tasks.

Open Problem 3: Given a periodic task set τ , for each task τi (characterized by Ci, Ti, Di, Oi, Ji) find a set of offset
pairs Ôi = 〈(ki,1, oi,1), . . . , (ki,mi

, oi,mi
)〉 such that the resulting task set is schedulable using FIFO scheduling.

Another possible extension is to relax the constraints that the initial offsets Oi are fixed. This leads to an open problem that
builds upon the classic offset assignment problem.

Open Problem 4: Given a periodic task set τ , for each task τi (characterized by Ci, Ti, Di) find an initial offset Oi and a
set of offset pairs Ôi = 〈(ki,1, oi,1), . . . , (ki,mi , oi,mi)〉 such that the resulting task set is schedulable using FIFO scheduling.

REFERENCES

[1] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström, “The worst-case execution-time problem - overview of methods and survey of tools,” ACM Trans. Embed.
Comput. Syst., vol. 7, no. 3, pp. 36:1–36:53, 2008.

[2] M. Nasri, R. I. Davis, and B. Brandenburg, “FIFO with Offsets: High Schedulability with Low Overheads,” in RTAS, 2018, pp. 271–282.
[3] S. Altmeyer, S. Sundharam, and N. Navet, “The case for FIFO real-time scheduling,” University of Luxembourg, Tech. Rep., 2016.
[4] K. Jeffay, D. F. Stanat, and C. U. Martel, “On non-preemptive scheduling of periodic and sporadic tasks,” in RTSS, 1991, pp. 129–139.
[5] M. Nasri and G. Fohler, “Non-work-conserving non-preemptive scheduling: motivations, challenges, and potential solutions,” in ECRTS, 2016, pp. 165–175.

