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Abstract
We extend the FMLP to partitioned static-priority schedul-
ing and derive corresponding worst-case blocking bounds.
Further, we present the first implementation of the PCP,
SRP, D-PCP, M-PCP, and FMLP synchronization proto-
cols in a unified framework in a general-purpose OS and
discuss design issues that were beyond the scope of prior
algorithmic-oriented work on real-time synchronization.

1 Introduction
With the continued push towards multicore architectures by
most (if not all) major chip manufacturers [22, 28], the com-
puting industry is facing a paradigm shift: in the near fu-
ture, multiprocessors will be the norm. While current off-
the-shelf systems already routinely contain processors with
two, four, and even eight cores (examples include the Intel
Core 2 Duo, the AMD Phenom, and SUN UltraSPARC T1
processors), systems with up to 80 cores are projected to be-
come available within a decade [28]. Not surprisingly, with
multicore platforms so widespread, (soft) real-time applica-
tions are already being deployed on them. For example, sys-
tems processing time-sensitive business transactions have
been realized by Azul Systems on top of the highly-parallel
Vega2 platform, which consists of up to 768 cores [5].

Motivated by these developments, research on multipro-
cessor real-time systems has intensified in recent years (see
[15] for a survey), with significant effort being focused on
both soft and hard real-time scheduling and synchroniza-
tion [16, 21]. So far, however, few proposed approaches
have actually been implemented in operating systems and
evaluated under real-world conditions.

In an effort to help bridge the gap between algorithmic
research and real-world systems, our group recently devel-
oped LITMUSRT, a multiprocessor real-time extension of
Linux [9, 13]. The development of LITMUSRT has oc-
curred at an auspicious time, given the increasing inter-
est in real-time variants of Linux (see, for example, [1]).
These variants will undoubtedly be ported to multicore
platforms and thus could benefit from recent algorithmic
advances in scheduling-related research. LITMUSRT has
been used to assess the performance of various dynamic-
priority scheduling policies with real-world overheads con-
sidered [13]. More recently, a study was conducted to com-

pare synchronization alternatives under global and parti-
tioned earliest-deadline-first (EDF) scheduling [10].

The versions of LITMUSRT published so far have exclu-
sively focused on dynamic-priority scheduling algorithms.
In this paper, we extend this work by presenting an in-
tegrated implementation that supports five major real-time
synchronization algorithms under partitioned static-priority
(P-SP) scheduling. To our knowledge, this is the first such
implementation effort to be conducted on a modern general-
purpose multiprocessor operating system. Moreover, in-
cluding support for P-SP scheduling in LITMUSRT is im-
portant, as static-priority scheduling is widely used.

Prior Work. Sha et al. were the first to propose protocols
for uniprocessors to bound priority inversion — the priority
inheritance protocol — and also avoid deadlock — the pri-
ority ceiling protocol (PCP) [27]. As an alternative to the
PCP, Baker proposed the stack resource policy (SRP) [4].
Both the SRP and the PCP have received considerable at-
tention and have been applied to both EDF and rate mono-
tonic (RM) scheduling.

Rajkumar et al. presented two extensions of the PCP for
multiprocessor real-time systems under partitioned static-
priority scheduling: the distributed priority ceiling protocol
(D-PCP) [26], which does not require shared memory and
thus can be used in distributed systems as well as tightly-
coupled multiprocessors, and the multiprocessor priority
ceiling protocol (M-PCP) [24], which relies on globally-
shared semaphores.

Several multiprocessor synchronization protocols have
been proposed for partitioned EDF scheduling. Chen and
Tripathi [14] proposed a solution that only applies to syn-
chronous periodic tasks. Additionally, multiprocessor ex-
tensions of the SRP for partitioned EDF were proposed by
Lopez et al. [21] and Gai et al. [16]. Given the experimen-
tal focus of this paper, it is worth noting that Gai et al. not
only introduced a new locking protocol, the multiproces-
sor stack resource policy (M-SRP), but also discussed an
implementation of it. Their study showed that the M-SRP
outperforms the M-PCP. In recent work, Block et al. pro-
posed the flexible multiprocessor locking protocol (FMLP)
for both global and partitioned EDF and showed that it out-
performs the M-SRP [6].

Contributions. The contributions of our work are three-
fold: (i) we extend the FMLP to P-SP scheduling and
derive corresponding worst-case blocking bounds; (ii) we



present and discuss in detail the first implementation of
the SRP, PCP, M-PCP, D-PCP, and FMLP in one uni-
fied framework (which is available publicly under an open
source license [17] and, we hope, will serve as a guide
for practitioners); and (iii) we discuss implementation
and software design issues not fully considered in earlier
algorithmic-oriented work on real-time locking protocols.

The rest of this paper is organized as follows: Sec. 2 pro-
vides an overview of needed background, Sec. 3 presents
the FMLP for P-SP, Sec. 4 discusses the implementation of
the synchronization protocols listed above in LITMUSRT,
and Sec. 5 concludes. Bounds for worst-case blocking un-
der the FMLP are derived in Appendix A.

2 Background

In this section, we describe background necessary for dis-
cussing the implementation of the aforementioned synchro-
nization protocols in LITMUSRT.

2.1 System Model

In this paper, we consider the problem of scheduling a sys-
tem T of sporadic tasks that share resources upon a multi-
processor platform consisting of m identical processors. A
sporadic task Ti releases a sequence of jobs T j

i and is char-
acterized by its worst-case execution cost, e(Ti), and its pe-
riod, p(Ti). A job T j

i becomes available for execution at its
release time, r(T j

i ), and should complete execution before
its absolute deadline, d(T j

i ) = r(T j
i ) + p(Ti). A task Ti’s

jobs are ordered by release time and must be separated by at
least p(Ti) time units, i.e., j < k ⇔ r(T j

i )+p(Ti) ≤ r(T k
i ).

On uniprocessors, both the EDF and the RM policies
are commonly used to schedule sporadic task systems [19].
Under EDF, jobs with earlier deadlines have higher priority;
under RM, tasks with smaller periods have higher priority.

There are two fundamental approaches to scheduling
sporadic tasks on multiprocessors — global and parti-
tioned. With global scheduling, processors are scheduled
by selecting jobs from a single, shared queue, whereas
with partitioned scheduling, each processor has a private
queue and is scheduled independently using a uniprocessor
scheduling policy (hybrid approaches exist, too [12]). Tasks
are statically assigned to processors under partitioning. As
a consequence, under partitioned scheduling, all jobs of a
task execute on the same processor, whereas migrations
may occur in globally-scheduled systems. A discussion of
the tradeoffs between global and partitioned scheduling is
beyond the scope of this paper and the interested reader is
referred to prior studies [9, 13, 15].

In this paper, we consider only partitioned static-priority
(P-SP) scheduling (the use of the FMLP under global and
partitioned EDF has been investigated previously [6, 9]).
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X
scheduled
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waiting for response
from agent
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Figure 1: Legend.

Under P-SP, each task is statically assigned to a proces-
sor and each processor is scheduled independently using a
static-priority uniprocessor algorithm such as RM.

We assume that tasks are indexed from 1 to n by decreas-
ing priority, i.e., a lower index implies higher priority. We
refer to Ti’s index i as its base priority. A job is scheduled
using its effective priority, which can sometimes exceed its
base priority under certain resource-sharing policies (e.g.,
priority inheritance may raise a job’s effective priority).

After its release, a job T j
i is said to be pending until it

completes. While it is pending, T j
i is either runnable or

suspended. A suspended job cannot be scheduled. When
a job transitions from suspended to runnable (runnable to
suspended), it is said to resume (suspend). While runnable,
a job is either preemptable or non-preemptable. A newly-
released or resuming job T l

k can only preempt a scheduled
lower-priority job T j

i if T j
i is preemptable.

Resources. When a job T j
i requires a shared resource `, it

issues a request R for `. R is satisfied as soon as T j
i holds

`, and completes when T j
i releases `. |R| denotes the max-

imum duration that T j
i will hold `. A resource can only be

held by one job at any time. Thus, T j
i may become blocked

on ` if R cannot be satisfied immediately. A resource ` is
local to a processor p if all jobs requesting ` execute on p,
and global otherwise.

If T j
i issues another request R′ before R is complete,

then R′ is nested within R. In such cases, |R| includes the
cost of blocking due to requests nested in R. Note that not
all synchronization protocols allow nested requests. If al-
lowed, nesting is proper, i.e.,R′ must complete no later than
R completes. An outermost request is not nested within any
other request. Fig. 2 illustrates the different phases of a re-
source request. In this and later figures, the legend shown
in Fig. 1 is assumed.

Resource sharing introduces a number of problems that
can endanger temporal correctness. Priority inversion oc-
curs when a high-priority job T i

h cannot proceed due to a
lower-priority job T j

l either being non-preemptable or hold-
ing a resource requested by T i

h. T i
h is said to be blocked by

T j
l . Another source of delay is remote blocking, which oc-

curs when a global resource requested by a job is already
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Figure 2: The different phases of a resource request. T j
i issues

R1 and blocks since R1 is not immediately satisfied. T j
i holds

R1.` for |R1| time units. Note that |R1| includes blocking in-
curred due to nested requests.

in use on another processor. If the maximum duration of
priority inversion and remote blocking is not bounded, then
timing guarantees cannot be given.

2.2 Local Synchronization Protocols
Requests for local resources are arbitrated using unipro-
cessor synchronization protocols. Such protocols are
preferable to global protocols (where applicable) because
their worst-case blocking delays are generally shorter. In
LITMUSRT, we have implemented both the PCP and the
SRP. Note that at most one local protocol can be in use.

The PCP and the SRP both are based on the notion of
a priority ceiling.1 The priority ceiling of a resource ` is
the highest priority of any job that requests `. The system
ceiling (on processor p) is the maximum priority ceiling of
all (local) resources currently in use. The system ceiling is
∞ if none are in use (on processor p).

Under the PCP, the system ceiling is used to arbitrate
(local) resource requests directly. When a job T j

i requests
a resource, T j

i ’s priority is compared to the current system
ceiling. If T j

i ’s priority exceeds the system ceiling (or if T j
i

holds the resource that raised the system ceiling last), then
the request is satisfied, otherwise T j

i suspends. The PCP
also uses priority inheritance — while a lower-priority job
T l

k blocks a higher-priority job T j
i (directly or indirectly),

T l
k’s effective priority is raised to (at least) T j

i ’s effective
priority. Note that priority inheritance is transitive.

Under the SRP, resource requests are always satisfied
immediately. Blocking only occurs on release — a job T j

i

may not execute after its release until its priority exceeds
the system ceiling. Thus, jobs are blocked at most once and
there is no need for priority inheritance. (If jobs suspend,
then they can also block each time they resume.)

The nesting of local resources is permitted under both
the PCP and the SRP. Both protocols avoid deadlock and
bound the maximum length of priority inversions [4, 27].

1This section is intended as a brief reminder and assumes familiarity
with the discussed protocols. For a full discussion, the interested reader is
referred to [20].

Example. In Fig. 3, two schedules for three resource-
sharing jobs are shown. Inset (a) depicts resource sharing
under the PCP. T 1

3 issues a request forR1 at time 1, which
is satisfied immediately. This raises the system ceiling from
∞ to two. At time 2, T 1

2 is released and preempts T 1
3 . T 1

2

requestsR2 at time 4, but since its priority does not exceed
the system ceiling, it becomes blocked and suspends until
time 6 when R1 is released, which momentarily lowers the
system ceiling to ∞. The system ceiling is raised to one
again when T 1

2 ’s request is satisfied. T 1
1 arrives at time 7

and preempts T 1
2 . T 1

1 requests R2 at time 8 and suspends,
since the system ceiling is still one. This gives T 1

2 a chance
to requestR1 (which is satisfied since T 1

2 raised the system
ceiling last), to finish its critical section, and to release both
R1 and R2 at time 9. This allows T 1

1 to proceed. Finally,
all jobs complete in order of priority.

Inset (b) depicts a similar schedule for the same task
system under the SRP. Note that all blocking has been
“moved” to occur immediately after a job has been released.
For example, when T 1

2 is released at time 2, the current sys-
tem ceiling is already two. Thus, T 1

2 is blocked until time 4,
when the system ceiling is lowered to∞.

2.3 Global Synchronization Protocols

A global synchronization protocol is required if jobs execut-
ing on different processors may request a resource concur-
rently. In this paper (and in the LITMUSRT kernel), we fo-
cus on three global synchronization protocols: the D-PCP,
the M-PCP, and the FMLP. The D-PCP and the M-PCP
are reviewed next; the FMLP is discussed in greater detail
in Sec. 3.

The D-PCP extends the PCP by providing local agents
that act on behalf of requesting jobs. A local agent Aq

i , lo-
cated on remote processor q where jobs of Ti request re-
sources, carries out requests on behalf of Ti on processor
q. Instead of accessing a global remote resource ` on pro-
cessor q directly, a job T j

i submits a request R to Aq
i and

suspends. T j
i resumes when Aq

i has completedR. To expe-
dite requests, Aq

i executes with an effective priority higher
than that of any normal task (see [20, 25] for details). How-
ever, agents of lower-priority tasks can still be preempted
by agents of higher-priority tasks. When accessing global
resources residing on Ti’s assigned processor, T j

i serves as
its own agent. Note that, because jobs do not access remote
global resources directly, the D-PCP is suitable for use in
distributed systems where processors do not share memory.

The M-PCP is an extension of the PCP that relies on
shared memory to support global resources. In contrast to
the D-PCP, global resources are not assigned to any par-
ticular processor but are accessed directly. Local agents are
not required since jobs execute requests themselves on their
assigned processors. Competing requests are satisfied in or-
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Figure 3: Two example schedules in which three tasks share two local resources (only initial jobs shown, deadlines omitted). The
priority ceiling ofR1 is two, and the priority ceiling ofR2 is one. (a) PCP schedule. (b) SRP schedule.

der of job priority. When a request is not satisfied immedi-
ately, the requesting job suspends until its request is satis-
fied. Under the M-PCP, jobs holding global resources exe-
cute with an effective priority higher than that of any normal
task.

Both the D-PCP and the M-PCP avoid global deadlock
by prohibiting the nesting of global resource requests —
a global request R cannot be nested within another request
(either local or global) and no other request (local or global)
may be nested withinR.

Example. Fig. 4 depicts global schedules for four jobs
(T 1

1 ,. . . ,T 1
4 ) sharing two resources (`1, `2) on two proces-

sors. Inset (a) shows resource sharing under the D-PCP.
Both resources reside on processor 1. Thus, two agents (A1

2,
A1

4) are also assigned to processor 1 in order to act on behalf
of T2 and T4 on processor 2. A1

4 becomes active at time 2
when T 1

4 requests `1. However, since T 1
3 already holds `1,

A1
4 is blocked. Similarly, A1

2 becomes active and blocks at
time 4. When T 1

3 releases `1, A1
2 gains access next because

it is the highest-priority active agent on processor 1. Note
that, even though the highest-priority job T 1

1 is released at
time 2, it is not scheduled until time 7 because agents and
resource-holding jobs have an effective priority that exceeds
the base priority of T 1

1 . A1
2 becomes active at time 9 since

T 1
2 requests `2. However, T 1

1 is accessing `1 at the time,
and thus has an effective priority that exceeds A1

2’s priority.
Therefore, A1

2 is not scheduled until time 10.
Inset (b) shows the same scenario under the M-PCP. Lo-

cal agents are no longer required since T 1
2 and T 1

4 access
global resources directly. T 1

4 suspends at time 2 since T 1
3

already holds `1. Similarly, T 1
2 suspends at time 4 until it

holds `1 one time unit later. Meanwhile, on processor 1,
T 1

1 is scheduled at time 5 after T 1
2 returns to normal prior-

ity and also requests `1 at time 6. Since resource requests
are satisfied in priority order, T 1

1 ’s request has precedence
over T 1

4 ’s request, which was issued much earlier at time 2.
Thus, T 1

4 must wait until time 8 to access `1. Note that T 1
4

preempts T 1
2 when it resumes at time 8 since it is holding a

global resource.

3 The FMLP under P-SP

The flexible multiprocessor locking protocol (FMLP) is a
global real-time synchronization protocol that was recently
proposed by Block et al. [6]. It is intended to overcome
shortcomings of prior protocols such as the inability to nest
resources and overly pessimistic analysis. Block et al. orig-
inally proposed the FMLP for global and partitioned EDF.
In this paper, we show how to adapt the FMLP to P-SP
scheduling.

3.1 Design Choices
The FMLP is based on two fundamental design principles
— flexibility and simplicity. We desire flexibility so as to
not unnecessarily restrict the range of options available to
application designers. We favor simple mechanisms be-
cause they allow us to bound worst-case scenarios more
tightly. The latter is especially critical — our ability to an-
alyze a real-time system is more important than raw per-
formance. Based on these two principles, the FMLP was
originally designed — and adapted for P-SP here — by
focusing on three issues that every global synchronization
protocol must address: how to block, how to limit remote
blocking, and how to handle nested requests.

Blocking. When a resource request cannot be satisfied im-
mediately, the requesting job cannot proceed to execute:
it is blocked. On a multiprocessor, there are two ways to
handle such a situation. The blocked job can either remain
scheduled and busy-waits until its request is satisfied, or it
can relinquish its processor and let other jobs execute while
it is suspended. Traditionally, busy-waiting has mostly been
used in scenarios where resources are held only for very
short times, since busy-waiting clearly wastes processing
capacity. (Under the D-PCP and the M-PCP, jobs block
by suspending.) However, recent studies have shown that,
for real-time systems, busy-waiting is often preferable [10].
In the interest of flexibility, the FMLP allows both.

In the FMLP, global resources are classified as either
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Figure 4: Example schedules of four tasks sharing two global
resources. (a) D-PCP schedule. (b) M-PCP schedule. (c) FMLP
schedule (`1, `2 are long). (d) FMLP schedule (`1, `2 are short).
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Figure 5: The phases of short and long resource requests.

short or long — tasks busy-wait when blocked on short re-
sources and suspend when blocked on long resources. Re-
sources are classified by the application designer. However,
requests for long resources cannot be nested within requests
for short resources.

Remote blocking. When all tasks are independent, pro-
cessors can be analyzed individually (under partitioning). In
the presence of globally-shared resources, remote blocking
may occur. As a result, processors are no longer indepen-
dent and potentially pessimistic assumptions must be made
to bound worst-case delays. To minimize the impact of re-
mote blocking, resource-holding jobs should complete their
requests as quickly as possible. The D-PCP and M-PCP
expedite the completion of requests by letting resource-
holding jobs (or agents) execute at elevated priorities that
exceed normal job priorities — a resource-holding job can-
not be preempted by a job that does not hold a resource.
However, preemptions may occur among resource-holding
jobs (and agents). The FMLP uses a simplified approach.
To minimize the delay a job experiences when resuming,
the FMLP boosts the priority of resuming jobs equally —
a resource-holding job is scheduled with effective priority
0 to preempt any non-resource-holding job. Contending
priority-boosted jobs are scheduled on a FIFO basis. (Note
that priority boosting was not used in prior FMLP variants.)
Additionally, to avoid delays due to preemptions, all re-
quests (both short and long) are executed non-preemptively,
i.e., a job that executes a request cannot be preempted by
any other job. Note that, in the case of short resources, spin-
ning is carried out non-preemptively, too. Priority boosting
is not required for short resources since requesting jobs do
not suspend when blocked. Fig. 5 illustrates the differences
between long and short requests.

Nesting. Nested resource requests may lead to deadlock
and negatively affect worst-case delay bounds. To avoid
these problems, the D-PCP and the M-PCP disallow nest-



ing (for global resources) altogether. However, nesting
does occur in practice (albeit infrequently) [8]. The FMLP
strikes a balance between supporting nesting and optimizing
for the common case (no nesting) by organizing resources
into resource groups, which are sets of resources (either
short or long, but not both) that may be requested together.
Two resources are in the same group iff there exists a job
that requests both resources at the same time. We let G(`)
denote the group that contains `. Each group is protected
by a group lock, which is either a non-preemptive queue
lock [3] (for a group of short resources) or a semaphore (for
a group of long resources). Under the FMLP, a job always
acquires a resource’s group lock before accessing the re-
source. Note that, with the introduction of groups, the term
“outermost” is interpreted with respect to groups. Thus, a
short resource request that is nested within a long resource
request but not within any short resource request is consid-
ered to be outermost.

Fig. 6 shows an example wherein seven resources (two
long, five short) are grouped into three resource groups.
Note that, even though a request for `l2 may contain a re-
quest for `s7, the two resources belong to different groups
since one is short and one is long.

3.2 Request Rules
Based on the discussion above, we now define the rules
for how resources are requested in the FMLP under P-SP
scheduling.

We assume that resources have been grouped appropri-
ately beforehand, and that non-preemptive sections can be
nested, i.e., if a job enters a non-preemptive section while
being non-preemptive, then it only becomes preemptable af-
ter leaving the outermost non-preemptive section. Let T j

i be
a job that issues a request R for resource `. First, we only
consider outermost requests.

Short requests. If R is short and outermost, then T j
i be-

comes non-preemptable and attempts to acquire the queue
lock protecting G(`). In a queue lock, blocked processes
busy-wait in FIFO order. R is satisfied once T j

i holds `’s
group lock. WhenR completes, T j

i releases the group lock
and leaves its non-preemptive section.

Long requests. If R is long and outermost, then T j
i at-

tempts to acquire the semaphore protecting G(`). Under a
semaphore lock, blocked jobs are added to a FIFO queue
and suspend. As soon as R is satisfied (i.e., T j

i holds `’s
group lock), T j

i resumes (if it suspended) and enters a non-
preemptive section (which becomes effective as soon as T j

i

is scheduled). When R completes, T j
i releases the group

lock and becomes preemptive.

Priority boost. IfR is long and outermost, then T j
i ’s pri-

ority is boosted when R is satisfied (i.e., T j
i is scheduled
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Figure 6: Grouping of two long resources (`l1, `l2) and five short
resources (`s3,. . . ,`s7) under the FMLP. If a request for ` may con-
tain a request for `′, then this is indicated by a directed edge from
` to `′.

with effective priority 0). This allows it to preempt jobs exe-
cuting preemptively at base priority. If two or more priority-
boosted jobs are ready, then they are scheduled in the order
in which their priorities were boosted (FIFO).

Nesting. Nesting is handled in the same manner for long
and short resources: when a job T j

i issues a request R for
a resource ` and T j

i already holds `’s group lock, then R is
satisfied immediately and no further action is taken whenR
completes.

Example. Insets (c) and (d) of Fig. 4 depict FMLP sched-
ules for the same scenario previously considered in the con-
text of the D-PCP and the M-PCP. In (c), `1 and `2 are
classified as long resources. As before, T 1

3 requests `1 first
and forces the jobs on processor 2 to suspend (T 1

4 at time
2 and T 1

2 at time 4). In contrast to both the D-PCP and
the M-PCP, contending requests are satisfied in FIFO or-
der. Thus, when T 1

3 releases `1 at time 5, T 1
4 ’s request is

satisfied before that of T 1
2 . Similarly, T 1

1 ’s request for `1 is
only satisfied after T 1

2 completes its request at time 7. Note
that, since jobs suspend when blocked on a long resource,
T 1

3 can be scheduled for one time unit at time 6 when T 1
1

blocks on `1.
Inset (d) depicts the schedule that results when both `1

and `2 are short. The main difference to the schedule de-
picted in (c) is that jobs busy-wait non-preemptively when
blocked on a short resource. Thus, when T 1

2 is released at
time 3, it cannot be scheduled until time 6 since T 1

4 exe-
cuted non-preemptively from time 2 until time 6. Similarly,
T 1

4 cannot be scheduled at time 7 when T 1
2 blocks on `2 be-

cause T 1
2 does not suspend. Note that, due to the waste of

processing time caused by busy-waiting, the last job only
finishes at time 15. Under suspension-based synchroniza-
tion methods, the last job finishes at either time 13 (M-PCP
and FMLP for long resources) or 14 (D-PCP).

Local resources. The FMLP can be integrated with the
SRP. When a job blocks at release time due to the SRP,
it cannot have requested a global resource yet (and thus
does not impact the FMLP analysis). Global short requests
can be nested within local requests since jobs do not sus-
pend when blocked on short resources. However, global



long requests cannot be nested within local requests since
a job must not hold local resources when it suspends. Lo-
cal requests can be nested within global requests since a
task never blocks on a local request under the SRP. How-
ever, care must be taken to properly account for the inter-
action between the FMLP and the SRP— every time a job
resumes, it is subject to blocking from local resources.

Properties. The FMLP avoids deadlock — by construc-
tion, resources within a group cannot contribute to a dead-
lock, and the constraint that long requests cannot be nested
within short requests prohibits cyclic nesting of resource
groups. Bounds for worst-case blocking under the FMLP
are derived in Appendix A.

4 Implementation
Due to space constraints, we are unable to discuss ev-
ery detail of each implemented protocol. Instead, we fo-
cus on interesting architectural issues that we encountered
when designing LITMUSRT. The interested reader is re-
ferred to [9], which contains a detailed description of the
LITMUSRT framework and its capabilities and limitations,
and to LITMUSRT’s source code, which is publicly avail-
able online [17].

Developed by UNC’s real-time group, LITMUSRT is an
extension of Linux that supports a variety of real-time mul-
tiprocessor scheduling policies [13]. However, prior to this
paper, LITMUSRT did not support static-priority schedul-
ing. The contribution discussed in this paper is the addi-
tion of static-priority scheduling and implementations of the
PCP, the D-PCP, the M-PCP, and the FMLP (under P-
SP) in LITMUSRT.

Real-time Linux. Critics have argued that, due to inher-
ent non-determinism in the kernel’s architecture, Linux is
fundamentally not capable of providing (hard) real-time
guarantees. In practice, however, variants of Linux are in-
creasingly being adopted in (soft) real-time settings [1] —
the predictability of Linux is sufficient for many applica-
tions most of the time. Thus, while no absolute timing
guarantees can be given in Linux, it is desirable that nei-
ther scheduling nor resource sharing are the weakest links
in terms of predictability.

When implemented in a general-purpose OS, real-time
algorithms face a real-world requirement that is often
glanced over in algorithmic-oriented research — they must
degrade gracefully when faced with misbehaving applica-
tions. In a real OS, especially during development and
testing, jobs may unexpectedly suspend due to page faults,
perform diagnostic logging, accidentally request wrong re-
sources, fail to properly deallocate resources, and “get
stuck” in non-preemptive sections (among many other pos-
sible failures). While real-time guarantees cannot be given

for misbehaving jobs, in practice, (partial) resilience to fail-
ure is a very desirable property for a well-designed OS. We
revisit this issue in more detail in the following paragraphs.

Real-time tasks. A fundamental design decision is how
the sporadic task model is mapped onto the Linux process
model. In Linux, one or more sequential threads of execu-
tion that share an address space are called a process. There
are three obvious ways to implement sporadic tasks: (i) a
sporadic task is a process, and each job is a thread; (ii) a spo-
radic task is a thread, and each job is the iteration of a loop;
and (iii) a sporadic task is just a concept, and jobs are the in-
vocation of interrupt service routines. Approach (iii), while
popular in embedded systems, suffers from a general lack
of robustness and the limitations that are imposed on code
executing in kernel space (e.g., absence of floating point
arithmetic, etc.). Approach (i) suffers from high job release
overheads due to forking. This may be alleviated by recy-
cling threads by means of a thread pool, but determining the
maximum number of threads required in the face of dead-
line overruns is non-trivial. Approach (ii) limits how dead-
line overruns can be handled — late jobs cannot be easily
aborted and jobs of the same task cannot be scheduled con-
currently. Nonetheless, in LITMUSRT, we chose this ap-
proach because it most closely resembles the familiar UNIX
programming model. When sporadic tasks are threads, the
question arises as to whether all real-time tasks should re-
side in the same process. From an efficiency point of view,
a single-process solution may be beneficial, whereas from a
robustness point of view, address space separation is clearly
favorable. In LITMUSRT, we support both.

Resource references. Blocking-by-suspending requires
kernel support, as does maintaining and enforcing prior-
ity ceilings and enacting priority inheritance. Thus, each
resource is modeled as an object in kernel space, which
contains state information such as the associated priority
ceiling, unsatisfied requests, etc. (The exception are short
FMLP resources, which are unknown to the kernel, since
they are realized almost entirely in user space. See [9] for
details.)

All tasks that share a given resource must obtain a ref-
erence to the same in-kernel object. Since LITMUSRT is
committed to not unnecessarily restricting the application
design space, references must be (transparently) obtainable
across process boundaries. For performance reasons, re-
source references must be resolved by the kernel with as
little overhead as possible. Further, in a general-purpose
OS such as Linux, security concerns such as visibility of
resources and access control must also be addressed — the
resource namespace must be managed by the kernel.

Prior versions of LITMUSRT simply allocated a pre-
defined number of resources statically and let real-time
programs refer to objects by their offset. While this in-
terim method had low overheads, it was also completely



insecure and brittle. Further, the lack of flexibility inher-
ent in static allocation also quickly proved to be trouble-
some. As part of the FMLP under P-SP implementation
effort, we introduced a new solution to manage resources
in a secure, reliable, and efficient matter. Instead of intro-
ducing a new namespace (which would require appropriate
access policies and semantics to be defined), we opted to
reuse the filesystem to provide access control by attaching
LITMUSRT resources at run-time to inodes (an inode is the
in-kernel representation of a file). When a task attempts to
obtain a reference to a resource, it specifies a file descrip-
tor to be used as the naming context. By specifying the
same file, synchronization across process boundaries is pos-
sible (but only if allowed by the appropriate permissions).
If permitted, the kernel locates the requested resource and
stores its address in a lookup table in the thread control
block (TCB). Similar to the concept of the file descrip-
tor table, the resource lookup table enables fast reference-
to-address translation in the performance critical path of
synchronization-related system calls. With the new method,
LITMUSRT resources are created dynamically on demand.

Priority ceilings. It is commonly claimed that protocols
such as the PCP are hard to use in practice because priority
ceilings must be determined offline and specified manually
at runtime. However, that is not the case, as ceilings can be
computed automatically when threads obtain references to
resources.

The priority ceiling of a resource is initially ∞
(INT MAX in practice) and raised (if necessary) when a real-
time task obtains a reference to it. To ensure correctness, no
thread may request a resource before all tasks that share the
resource have obtained a reference (for that resource). Oth-
erwise, the computed ceiling may be incorrect. In practice,
this problem does not occur since it is ensured that the ini-
tialization of all real-time tasks is complete by the time the
first job of any task is released.

A processor’s system ceiling is maintained as a stack of
the local resources that are currently in use. Under the SRP,
when a task releases a new job or a job resumes, the kernel
checks whether the task’s priority exceeds the priority ceil-
ing of the top-most resource on the system ceiling stack (un-
less the stack is empty). If the job’s priority does not exceed
the ceiling, then it is added to a per-processor wait queue (a
wait queue is a standard Linux component used to suspend
jobs; see below). When an SRP resource is popped off the
system ceiling stack, jobs with priorities exceeding the new
system ceiling are resumed. Under the PCP, the top-most
resource’s priority ceiling is checked every time a resource
is requested.

In our experience, automatic determination of priority
ceilings facilitates task system setup greatly and eliminates
the possibility for human error.

Priority inheritance. Transitive priority inheritance, as
mandated by the PCP, requires the kernel to be able to tra-
verse the “wait-for” dependency graph to arbitrary depths.
The necessary state information is kept partially in the
TCBs and partially in the resource objects. When a thread
is blocked, the address of the resource is stored in its TCB.
Similarly, the address of the holding thread is stored in the
resource object.

When a job T j
i blocks on a PCP resource ` held by T l

k

(as determined by the address stored in the resource object)
and T j

i has a higher effective priority than T l
k, then T l

k’s
TCB is updated to reflect that it inherits T j

i ’s effective pri-
ority. If T l

k is already blocked on another PCP resource (as
indicated by its TCB), then transitive priority inheritance is
triggered. T l

k’s effective priority is recomputed when it re-
leases ` by examining all PCP resources that T l

k holds at
the time of release.

Wait queues. In Linux, threads suspend by enqueuing
themselves in a wait queue, which is a reusable component
used throughout the kernel. However, the standard Linux
API does not enforce any ordering of blocked threads. Mod-
ifications were required to ensure strict ordering under the
FMLP (FIFO order), and the M-PCP and D-PCP (priority
order).

Under the PCP, each resource has its own wait queue
to control priority inheritance. (The SRP only requires a
single wait queue per processor). When a PCP resource
is released, all jobs in its wait queue are resumed — static-
priority scheduling ensures that the highest-priority blocked
job will proceed next. This has the great benefit that the
PCP does not actually require sorted priority queues.

Sha et al. [27] and Rajkumar [25] note that an implemen-
tation of the PCP does not necessarily require per-resource
wait queues. Instead, they propose to keep blocked jobs in
the ready queue since the priority order will ensure that they
do not execute prematurely. This may be a valid approach
for an OS in a closely controlled setting (e.g., in embed-
ded systems), but for a general purpose OS such as Linux,
it is not a sufficiently robust approach. This is because it
relies on correct behavior on the part of resource-holding
jobs. What happens if resource-holding jobs suspend unex-
pectedly? If blocked tasks are kept on the run queue, such
an event would allow two or more jobs to execute in a crit-
ical section — a behavior that is clearly not correct. One
might argue that in a correct real-time system the resource-
holding job does not block. However, in real-world systems
such behavior cannot be ruled out. Even a simple printf
statement, maybe inserted for debugging purposes, can lead
to (very short) suspensions. Similarly, an unexpected page
fault due to the omission of disabling demand paging might
also cause a lock-holding task to suspend. Again, such an
event will not occur in a correct real-time system, but cannot
be ruled out completely (especially during development). In



the interest of robustness, a kernel-based mutual-exclusion
primitive should not rely on the correctness of user-space
programs. Instead, it should react as gracefully as possible
when facing incorrect applications.

Atomicity of resource requests. Since the FMLP re-
quires jobs holding a long resource to be non-preemptable
(under partitioned scheduling), care must be taken to en-
sure that group lock acquisition and non-preemptivity are
enacted atomically, i.e., if a job were to enter its critical sec-
tion in a second step, then it could be preempted in the time
between these two events. The LITMUSRT kernel avoids
this race condition by marking the resource-holding thread
as non-preemptable before returning to user space.

D-PCP. Due to the use of local agents, the D-PCP imple-
mentation differs significantly from the M-PCP and FMLP
implementations. There are two approaches for realizing
the concept of a local agent: (i) since LITMUSRT sup-
ports exclusively shared-memory architectures, the request-
ing thread could be migrated to the processor where the re-
source resides; or (ii) an additional thread is provided to
serve as the local agent. Since we conjecture that losing
cache affinity due to a migration is more expensive than
sending a request, we chose to implement approach (ii) in
LITMUSRT. Note that, since only one local agent can ex-
ecute at any time, providing a local agent thread for each
remote task is unnecessary — it suffices to provide one lo-
cal agent thread per address space that contains global re-
sources. In practice, we provide a local agent for each re-
source anyway — assuming that every resource resides in
its own address space is always correct and simplifies the
implementation significantly.

Performance comparison. Due to space constraints, we
are unable to thoroughly compare the implemented syn-
chronization approaches. A detailed study incorporating
real-word overheads is currently in preparation [7].

However, to give a rough estimate of relative perfor-
mance, Table 1 shows average and maximum observed sys-
tem call overheads, which were recorded on a system con-
sisting of four Intel Xeon processors clocked at 2.7 GHz.
For each protocol, we measured the request and release
overhead based on over 300,000 pairs of timestamps that
were recorded just before and after the system calls of inter-
est. The worst-case and average overheads were determined
after discarding the top one percent of data points to filter
for interrupts and other noise (similar to the methodology
used in [10]). Note that the system was mostly idle dur-
ing these measurements. The obtained values thus are only
meaningful relative to each other, but do not necessarily re-
flect a worst-case scenario. We are currently engaged in ex-
periments to obtain more realistic worst-case overheads [7].

Based on these results, we conclude that local synchro-
nization protocols are slightly more efficient to implement

Protocol Request Release
SRP 0.36 (0.56) 0.43 (0.50)
PCP 0.38 (0.49) 0.46 (0.52)
M-PCP 0.58 (0.66) 0.52 (0.59)
D-PCP 6.91 (8.08) 5.91 (6.57)
FMLP (long) 0.51 (0.56) 0.59 (0.61)
FMLP (short) 0.19 (0.21) 0.09 (0.09)

Table 1: Average (maximum) overheads encountered for invoking
kernel-based synchronization protocols. All times are in µs.

than suspension-based global shared-memory synchroniza-
tion protocols. Of great interest are the costs associated with
the D-PCP. Due to its distributed nature (which requires
IPC), its overhead is an order of magnitude larger than that
of shared-memory global synchronization protocols. This
discrepancy makes it unlikely that the D-PCP is a favorable
choice for synchronization on shared-memory multiproces-
sors. However, more detailed studies are required to obtain
a definitive answer.

5 Conclusion
In this paper, we have extended the FMLP to P-SP schedul-
ing and bounded its worst-case blocking behavior (in the
online version of the paper). Further, we have presented
the first implementation that integrates the SRP, the PCP,
the M-PCP, the D-PCP, and the FMLP in a single frame-
work in a general-purpose OS. We also discussed some of
the architectural design issues that arise when implement-
ing real-time synchronization protocols in such an OS. We
are currently preparing an extensive performance compari-
son of the aforementioned synchronization protocols, which
will be presented in a companion paper to this work [7].
Lessons learned. In our ongoing work with Linux and
LITMUSRT in particular, we have come to recognize three
principles that were not readily apparent to us prior to our
implementation efforts.

1. Robustness is essential. Algorithms that produce
mostly correct results when faced with small “glitches”
are always preferable to algorithms that have superior
theoretical performance but fail catastrophically when
assumptions are violated. In practice, it is impossi-
ble to foresee all possible interactions in a complex
general-purpose OS such as Linux.

2. Algorithmic performance dominates. On our platform,
the impact of non-determinism inherent in Linux (such
as interrupt handlers) is small compared to the impact
that real-time algorithms have on determinism — inter-
rupts rarely execute for longer than 100µs. In contrast,
even a single-quantum priority-inversion will delay a
thread by (at least) 1ms (which is the quantum size in
many variants of Linux). Thus, for the vast majority



of time-sensitive applications that do not require sub-
millisecond response times, a lack of proper real-time
scheduling and synchronization support has far greater
consequences than other sources of OS latency.

3. Design for change. Linux is a fast-moving target. The
rate of change can be overwhelming for an academic
research group. When implementing prototypes in
Linux, always choose the least-intrusive implementa-
tion possible. In our experience, architectures that are
structured as a layer of patches work best.

Several interesting avenues for the future present them-
selves. While the FMLP now supports several major mul-
tiprocessor scheduling algorithms, it would be beneficial to
extend the FMLP to PD2 [2], Earliest-Deadline-until-Zero-
Laxity [23], and utility-based [18] scheduling. Finally, we
would like to analyze the impact of multicore architectures
on the performance of real-time resoure sharing algorithms.
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A Bounding Blocking Time

Blocking is any delay encountered by a job that would not have arisen if all tasks were independent. The maximum blocking
duration must be bounded and accounted for when testing schedulability. In this appendix, we derive a bound B(T j

i ) for
the worst-case blocking incurred by any job T j

i under the FMLP under P-SP scheduling. Under the FMLP, there are five
distinct sources of blocking that can delay a job T j

i :

1. Boost blocking, bounded by BB(T j
i ), is incurred when T j

i cannot be scheduled because a local lower-priority job is
executing a long request. If none of the lower-priority tasks on T j

i ’s processor share long resources, then BB(T j
i ) = 0.

2. Arrival blocking, bounded by AB(T j
i ), is incurred when T j

i becomes eligible for execution (either on release or when
resuming from a suspension) and cannot be scheduled because the currently scheduled job executes non-preemptively.
Note that only outermost short requests that are not nested within a long request are considered to cause arrival
blocking since BB(T j

i ) includes short requests nested within long requests. If none of the lower-priority tasks on T j
i ’s

processor share short resources, then AB(T j
i ) = 0.

3. Short blocking, bounded by SB(T j
i ), is incurred while a request of T j

i for a short resource ` cannot be satisfied
because another remote job currently holds `’s group lock. Local jobs cannot cause direct short blocking since the
whole request is executed non-preemptively, i.e., short requests are atomic with regard to local jobs. If T j

i does not
share short resources, then SB(T j

i ) = 0.

4. Long blocking, bounded by LB(T j
i ), is incurred while a request of T j

i for a long resource ` cannot be satisfied because
another remote job currently holds `’s group lock. Only remote jobs are considered to cause long blocking—local
higher-priority jobs do not block T j

i (since they would have had precedence even without resource sharing), and any
delay due to long requests by lower-priority jobs is already accounted for in BB(T j

i ). If T j
i does not share long

resources, then LB(T j
i ) = 0.

5. Deferral blocking, bounded by DB(Ti), is incurred when higher-priority a job defers some of its execution to a later
instant (due to suspensions) and then causes a job of Ti to experience increased competition for processor time.
(Deferred execution was studied thoroughly in the context of deferrable servers and is explained well in [20].) If none
of the higher-priority tasks on T j

i ’s processor share long resources, then DB(Ti) = 0.

Given bounds for these sources of blocking, a bound for the worst-case blocking of T j
i is given by

B(T j
i ) = BB(T j

i ) + AB(T j
i ) + SB(T j

i ) + LB(T j
i ) + DB(Ti) (1)

Approach. Boost blocking, arrival blocking, and deferral blocking mostly depend on the behavior of jobs other than
T j

i —they can be bounded by determining the worst-case request pattern created by local jobs. Short blocking and long
blocking depend on the behavior of both T j

i and remote jobs. Intuitively, blocking incurred by T j
i due to resource requests

issued by T j
i can be bounded by the minimum of the number of times that T j

i requests resources and he number of times
that remote jobs request shared resources—in order for interference to occur, both conflicting parties must have issued a
request. Note that this is a direct consequence of using FIFO queuing: if T j

i makes only one request for a resource `, then
it can be directly blocked at most once by remote task that accesses resources in G(`) no matter how many conflicting
requests are issued while T j

i is pending. In contrast, if wait queues are ordered by priority (as is it is the case under
the M-PCP and the D-PCP), then a single request by T j

i may lead to T j
i being blocked multiple times by each remote

higher-priority task.
In the following subsections, we summarize the notation used throughout this appendix and derive the individual bounds

based on the intuition described above.



A.1 Notation
For convenience, some of the earlier definitions are repeated.

Ti A task with priority i (priorities are assumed to be unique).
T j

i The jth job of Ti.
jobs(Ti) The set of all jobs released by Ti (may be infinite).
e(Ti) The worst-case execution cost of Ti.
p(Ti) The period of Ti.
P(Ti) The processor (1 . . .m) to which Ti is assigned.
` A resource (either short or long).
R A request for a resource (also either short or long).
subreq(R) Predicate; true iffR is short outermost but nested within a long requestR′, i.e.,R′ containsR.
res(R) The resource requested byR.
tsk(R) The task that issuesR.
|R| An upper bound on the maximum duration for which res(R) will be held.

Does not include blocking due toR. Includes blocking due to nested requests.
G(`) The resource group that contains `.
SR(T j

i ) The set of outermost short requests issued by T j
i .

LR(T j
i ) The set of outermost long requests issued by T j

i .
WCSR(Ti) A set of outermost short requests that bounds the worst-case behavior of any job of Ti.

(W.r.t. duration and number of requests; used when the exact identity of an interfering job is unknown.)
WCLR(Ti) A set of outermost long requests that bounds the worst-case behavior of any job of Ti.

(W.r.t. duration and number of requests; used when the exact identity of an interfering job is unknown.)

There are n tasks, ordered by priority. The highest priority is i = 1, the lowest priority is i = n. For notational convenience,
we assume max(∅) = 0.

A.2 Basic Definitions
In this subsection, we define terms for recurring concepts in the derivation of the blocking terms.

The set of tasks assigned to processor p is given by

partition(p) = {Tx | P(Tx) = p} . (2)

Given a requestR, the set of requests issued by jobs on processor p that can interfere withR is given by

competing(R, p) = {R′ | G(res(R)) = G(res(R′)) ∧ tsk(R) 6= tsk(R′) ∧ P(tsk(R′)) = p} . (3)

Given a job T j
i and a task Tx, we let wclx(Tx, T

j
i ) denote the worst-case set of long outermost requests issued by jobs of

Tx while T j
i is pending. Since multiple jobs of Tx can block T j

i , it is important to keep track of the multiple instances of
each request that T j

i can encounter—this is realized by tagging competing requests in the definition of the set. There are at

most
⌈

p(Ti)
p(Tx)

⌉
+ 1 jobs of Tx concurrently active with T j

i . Hence, the set is given by

wclx(Tx, T
j
i ) =

{
(R, k) | R ∈WCLR(Tx) ∧ k ∈

{
1, . . . ,

⌈
p(Ti)
p(Tx)

⌉
+ 1
}}

. (4)

Similarly, we define for outermost short requests that are not nested within a long request

wcsx(Tx, T
j
i ) =

{
(R, k) | R ∈WCSR(Tx) ∧ ¬subreq(R) ∧ k ∈

{
1, . . . ,

⌈
p(Ti)
p(Tx)

⌉
+ 1
}}

. (5)



We let wclx>(Tx, T
j
i ) denote the set wclx(Tx, T

j
i ) ordered by non-decreasing request duration and let wclx>

l (Tx, T
j
i )

denote the lth item in wclx>(Tx, T
j
i ) (if it exists), i.e., wclx>(Tx, T

j
i ) is the list obtained by sorting wclx(Tx, T

j
i ) with

the following relation:

(R, k) > (R′, k′)⇔ |R| > |R′|. (6)

When a job becomes eligible to execute (either on release or when resuming execution after a suspension) it is said to
arrive. An upper bound on the number of arrivals of a job T j

i is given by

narr(T j
i ) = 1 + |LR(T j

i )|. (7)

A.3 Bounding Boost Blocking: BB(T j
i )

Boost blocking occurs when a lower-priority job has its priority boosted and thereby prevents T j
i from being scheduled.

Since lower-priority jobs cannot issue requests while T j
i is eligible for execution (they are not scheduled), requests that

cause boost blocking must have been made either before T j
i was released or while T j

i was suspended. Thus, a lower-
priority task Tx can cause boost blocking at most once every time T j

i arrives. Hence, the duration of boost blocking caused
by Tx is bounded by the sum of the durations of the narr(T j

i ) longest requests (for long resources) issued by jobs of Tx

while T j
i is pending. Let a = narr(T j

i ), s = |wclx(Tx, T
j
i )|, and (Rl, kl) = wclx>

l (Tx, T
j
i ). Then

bbt(Tx, T
j
i ) =

min(a,s)∑
l=1

|Rl|. (8)

A bound for the maximum duration of boost-blocking incurred by T j
i is then given by

BB(T j
i ) =

∑
x>i

P(Tx)=P(Ti)

bbt(Tx, T
j
i ). (9)

A.4 Bounding Arrival Blocking: AB(T j
i )

BB(T j
i ) accounts for most blocking due to non-preemptive sections. However, every time T j

i arrives and becomes eligible
for execution, it can be blocked by at most one local lower-priority job executing non-preemptively a short request that is
not nested within a long request. The set of all short requests that can block T j

i on arrival is given by

abr(T j
i ) =

⋃
P(Tx)=P(Ti)

x>i

wcsx(Tx, T
j
i ). (10)

However, T j
i can be blocked on arrival at most narr(T j

i ) times. Let abr>(T j
i ) denote the set abr(T j

i ) ordered by non-
decreasing request duration and let abr>

l (T j
i ) denote the lth item in abr>(T j

i ) (akin to wclx>(Tx, T
j
i )). Given this list, a

bound on arrival blocking is given by

AB(T j
i ) =

min(a,s)∑
l=1

|Rl| (11)

where a = narr(T j
i ), s = |abr(T j

i )|, and (Rl, kl) = abr>
l (T j

i ).



A.5 Bounding Short Blocking: SB(T j
i )

In the worst case, T j
i is the last job to enter the spin queue on every short request it makes. However, due to non-

preemptivity, there is at most one job on at most m − 1 other processors ahead of T j
i in the spin queue. Thus, the

per-request blocking can be bounded by the sum of the durations of the longest potentially competing request on each other
processor.

sbr(R) =
m∑

p=1
p 6=P(tsk(R))

max({|Rc| | Rc ∈ competing(R, p)}) (12)

Overall short blocking is bounded by the sum of the worst-case blocking incurred from each short request made by T j
i :

SB(T j
i ) =

∑
R∈SR(T j

i )

sbr(R) (13)

A.6 Bounding Long Blocking: LB(T j
i )

Every time T j
i requests a long resource, it can be subject to three ways of blocking.

1. Direct remote blocking occurs when a remote job that is executing holds the group lock for the resource that T j
i

requested.

2. Transitive remote boost blocking occurs when T j
i is directly blocked by a remote job T k

r , and T k
r is not scheduled

because other priority-boosted jobs take precedence over T k
r (recall that priority-boosted jobs are scheduled in FIFO

order). Note that T j
i can incur transitive remote boost blocking even when T k

r is not experiencing boost blocking
itself: higher-priority jobs on T k

r ’s processor never block T k
r , but they do block T j

i if they execute while T k
r holds

the group lock that T j
i requires to proceed (since, without resource sharing, T j

i would have proceeded unhindered). If
transitive remote boost blocking takes place, then it precedes direct remote blocking.

3. Transitive remote arrival blocking occurs when T j
i is directly blocked by a remote job T k

r , and T k
r cannot be scheduled

upon resuming because another job T l
np on T k

r ’s processor is non-preemptively executing a short request. Note that
at most one non-preemptive section can block T k

r , that only short outermost requests not nested within long requests
a considered to cause transitive remote arrival blocking (since nested outermost short requests are part of transitive
remote boost blocking), and that T j

i incurs transitive remote arrival blocking even when k > np.

Items 1 and 2 taken together imply that every time T j
i is directly blocked by a job on a remote processor p it can be blocked

by one long request (for any resource) by each job on processor p. Item 3 implies that every time T j
i is directly blocked by

a job on a remote processor p it can be blocked by one short request (for any resource) by one job on processor p. We let
rbl(T j

i ) (rbl: remote blocking – long) denote a bound on the former and let rbs(T j
i ) (rbs: remote blocking – short) denote

a bound on the latter. Given these, a bound on blocking due to long requests incurred by T j
i is given by

LB(T j
i ) = rbs(T j

i ) + rbl(T j
i ). (14)

Bounding the number of times T j
i is directly blocked on a processor p due to long requests: ndbp(T j

i , p). We first
derive a bound for the number of times that T j

i can be directly blocked on each processor since both rbl(T j
i ) and rbs(T j

i )
depend on it. We can bound ndbp(T j

i , p) by the sum of times that jobs from each task Tx on p can directly block T j
i

(denoted ndbt(Tx, T
j
i ))

ndbp(T j
i , p) =

∑
Tx∈partition(p)

ndbt(Tx, T
j
i ), (15)



which in turn can be bounded by the sum of the times that jobs from Tx can block T j
i via each group g that T j

i accesses
(denoted ndbtg(Tx, T

j
i , g))

ndbt(Tx, T
j
i ) =

∑
g∈{G(R) | R∈LR(T j

i )}
ndbtg(Tx, T

j
i , g). (16)

A bound on the number of times that jobs of Tx interfere with T j
i via group g is simply the minimum of the times that

either T j
i or jobs of Tx acquire g’s group lock while T j

i is pending. Note that a pessimistic assumption on the number of
jobs of Tx that are competing with T j

i must be made.

ndbtg(Tx, T
j
i , g) =min


∣∣∣{R | R ∈ LR(T j

i ) ∧G(R) = g
}∣∣∣ ,∣∣∣∣∣

{
R | R ∈WCLR(Tx) ∧G(R) = g

}∣∣∣∣∣ ·
(⌈

p(Ti)
p(Tx)

⌉
+ 1
)
 (17)

Bounding remote blocking – long: rbl(T j
i ). A bound for rbl(T j

i ) can be obtained by analyzing the interference from each
remote processor independently since jobs blocking T j

i are not subject to interference from other processors while they
block T j

i . Hence, given a bound on the total interference from a processor p (denoted rblp(T j
i , p)), a bound for rbl(T j

i ) is
given by

rbl(T j
i ) =

m∑
p=1

p 6=P(Ti)

rblp(T j
i , p). (18)

A bound on the interference from processor p is simply the sum of the bounds on the interference from each task on p;
formally

rblp(T j
i , p) =

∑
Tx∈partition(p)

rblt(Tx, T
j
i ). (19)

Jobs of Tx can block T j
i at most once every time T j

i is blocked on Tx’s processor. Hence, interference by Tx can be
bounded by the sum of the durations of the top ndbp(T j

i ,P(Tx)) longest requests for long resources issued by jobs of Tx

while T j
i is pending. Formally, let s = |wclx(Tx, T

j
i )|, b = ndbp(T j

i ,P(Tx)) and (Rl, kl) = wclx>
l (Tx, T

j
i ), then

rblt(Tx, T
j
i ) =

min(b,s)∑
l=1

|Rl|. (20)

Bounding remote blocking – short: rbs(T j
i ). Similar to the rbl(T j

i ) case, rbs(T j
i ) can be analyzed per processor. Hence

a bound is given by

rbs(T j
i ) =

m∑
p=1

p 6=P(Ti)

rbsp(T j
i , p). (21)

Recall that T j
i can incur transitive blocking from one short request every time that it is directly blocked (when requesting a

long resource) by a remote job. We let wcsp(T j
i , p) denote the set of all short requests that can cause T j

i transitive remote
arrival blocking:

wcsp(T j
i , p) =

⋃
Tx∈partition(p)

wcsx(Tx, T
j
i ) (22)



The rbs interference caused by jobs on processor p can be bounded by the sum of the durations of the top ndbp(T j
i , p)

requests in wcsp(T j
i , p). Formally, let wcsp>

l (Tx, T
j
i ) denote the lth element in the ordered set wcsp>(T j

i , p) (ordered
by non-decreasing request duration, akin to wclx>(Tx, T

j
i )), and let s = |wcsp(T j

i , p)|, b = ndbp(T j
i , p), and (Rl, kl) =

wcsp>
l (Tx, T

j
i ), then a bound for the interference from short requests executed on p not accounted for in rblp(T j

i , p) is
given by

rbsp(T j
i , p) =

min(b,s)∑
l=1

|Rl|. (23)

A.7 A Tighter Bound for SB(T j
i )

The intuitive and simple bound for SB(T j
i ) stated above is likely to be sufficient in most scenarios where jobs make few

short requests. However, a tighter bound can be obtained by following an approach similar to that used for bounding
LB(T j

i ). We define wcsxg(Tx, T
j
i , g) similarly to wcsx(Tx, T

j
i ) to denote short requests made by jobs of Tx while T j

i is
pending that involve resources in group g (note that, compared to wcsx(Tx, T

j
i ), the subreq(R) constraint is absent):

wcsxg(Tx, T
j
i , g) =

{
(R, k) | R ∈WCSR(Tx) ∧ g = G(res(R)) ∧ k ∈

{
1, . . . ,

⌈
p(Ti)
p(Tx)

⌉
+ 1
}}

. (24)

Based on wcsxg(Tx, T
j
i , g), we define similarly to wcsp(T j

i , p)

wcspg(T j
i , p, g) =

⋃
Tx∈partition(p)

wcsxg(Tx, T
j
i , g). (25)

Let s = |wcspg(T j
i , p, g)|, b = |{R | R ∈ SR(T j

i ) ∧ g = G(res(R))}|, and (Rl, kl) = wcspg>
l (T j

i , p, g) (akin to
wcsp>

l (Tx, T
j
i )). A bound for direct blocking through group g on processor p is given by

sbgp(T j
i , g, p) =

min(b,s)∑
l=1

|Rl| (26)

and hence a bound across all processors is given by

sbg(T j
i , g) =

m∑
p=1

p 6=P(tsk(R))

sbgp(T j
i , g, p). (27)

A bound on SB(T j
i ) follows:

SB(T j
i ) =

∑
g∈{G(R) | R∈SR(T j

i )}
sbg(T j

i , g) (28)

This bound yields improved blocking terms if T j
i issues frequent requests to few groups. When comparing the FMLP to

other synchronization protocols, the improved bound given in Equation 28 should be used.

A.8 Obtaining Per-Task Bounds
Up to this point, blocking bounds have been derived for a specific job T j

i . The advantage of this approach is that job-
specific behavior (LR(T j

i ) and SR(T j
i ), if they are known) can be used to obtain a better per-job bound. However, per-task

bounds are often required for schedulability analysis. Per-task bounds, i.e., bounds that limit worst-case blocking for any
job of Ti, can be obtained as follows. If a task is known to release only a finite number of jobs, then one can simply
find the maximum of the per-job bounds. If a task releases a potentially infinite sequence of jobs, then one can derive
per-task bounds by replacing both every occurrence of LR(T j

i ) with WCLR(Ti) in Equations 7, 16, and 17 as well as every
occurrence of SR(T j

i ) with WCSR(Ti) in Equations 13, 26, and 28.



A.9 Bounding Deferral Blocking: DB(Ti)

The standard technique for bounding deferral blocking is to charge the minimum of the execution cost and self-suspension
time for every local higher-priority task [20]. Under the FMLP, a bound on the maximum time that a job T k

r self-suspends
is given by LB(T k

r ). Hence, the maximum self-suspension time of Tr is given by

lbt(Tr) =max
({

LB(T k
r ) | T k

r ∈ jobs(Tr)
})
. (29)

Note that lbt(Tr) can be computed as described in Sec. A.8. The standard bound for deferral blocking hence is given by

DB(Ti) =
∑
x<i

P(Tx)=P(Ti)

min (e(Tx), lbt(Tx)) . (30)

A.10 Inflating Request and Execution Times to Account for Spinning
Prior to both computing DB(Ti) and testing schedulability, e(Tx) must have been inflated to account for execution time lost
to spinning. Similarly, the request duration of long requests that contain nested short requests must be inflated to account
for the nested blocking. Correct results can be obtained by computing blocking terms as follows:

1. Compute blocking times for all short requests with Equation 12.

2. Inflate all worst-case request durations of long requests that contain short requests to account for spinning as deter-
mined by Equation 12. Note that the improved bound given in Equation 28 cannot be used in this step since it does
not yield per-request blocking bounds, which are required to safely inflate outer long requests.

3. Inflate all worst-case execution costs to account for spinning as determined by Equation 28. The improved bound can
be used in this step since only the overall impact from all short requests made by a job is required.

4. Compute B(Ti) for each task Ti. Recall that per-task bounds can be computed as described in Sec. A.8.


