
Automatic Latency Management for ROS 2:
Benefits, Challenges, and Open Problems
Tobias Blass∗†, Arne Hamann∗, Ralph Lange∗, Dirk Ziegenbein∗, Björn B. Brandenburg‡

∗Robert Bosch GmbH
†Saarland University, Saarland Informatics Campus

‡Max Planck Institute for Software Systems (MPI-SWS), Saarland Informatics Campus

Abstract—Robotic systems are typically subject to real-time
constraints. Still, the ROS ecosystem—the most popular repos-
itory of open-source robotics software—exhibits little evidence
of the use of real-time theory to bound or control worst-case
response times. Hurdles to adoption are the amount of expertise
required to correctly use real-time scheduling mechanisms and
the inherent unpredictability of typical robotics workloads, which
defy static provisioning. To overcome these hurdles, ROS-Llama,
an automatic latency manager for ROS 2, is proposed. Crucially,
use of ROS-Llama requires only little effort and knowledge of real-
time concepts. Relevant properties of ROS 2 and essential require-
ments of the robotics domain are identified, and the conceptual
and practical challenges in developing such a mostly automatic
tool are discussed. Experiments on a mobile robot demonstrate
the viability of the approach and show that ROS-Llama reduces
the maximum observed latency under load compared to the
default Linux scheduler. Finally, open problems in the underlying
real-time analysis and major platform limitations in Linux and
ROS 2 that prevent further improvements are identified.

I. INTRODUCTION

In complex inter-disciplinary application domains that re-
quire deep expert knowledge in diverse fields of study, such
as robotics, writing all or even most software from scratch is
usually not an option. Roboticists instead commonly embrace
the integration of existing third-party components providing
standard functionalities, which are readily available in popular
robotics frameworks such as ROS. The advantages are numerous
and easy to see. For instance, why painstakingly develop
a new navigation subsystem if a complete navigation stack
with multiple state-of-the-art path-planning algorithms and 3-D
visualization support is just one download away?

To build a complete robotics system, many interacting compo-
nents need to be integrated. Due to the distributed, open-source
nature of the ROS development process, these components
are usually developed in isolation by multiple independent
component developers who do not necessarily know (of) each
other. Similarly, the system integrator, who composes the
selected components on a deployment platform with application-
and mission-specific logic and “glue code,” usually does not
coordinate closely with the respective component developers.

To keep the integration of components as simple as possi-

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 803111).

ble, ROS employs the classic topic-based publish-subscribe
paradigm to enable a loose coupling of components. Concep-
tually, each component can be understood as a “black box”
containing a number of callbacks that subscribe to certain
topics. Whenever a message is published pertaining to a given
topic, all subscribing callbacks are invoked, perform some
computation, and may then publish subsequent messages to
other topics, which in turn triggers further callbacks, and
so on. Integrators compose components by connecting the
“input callbacks” of one component to the “output topics”
of another. ROS systems thus form complex networks of
interconnected topics and callbacks, where data (such as
environmental stimuli) propagates along cause-effect chains
through the network in an event-driven manner, transparently
crossing component boundaries as desired by the integrator.

A typical example of such cause-effect chains is the sense-
compute-actuate pipeline in a mobile robot that needs to
detect and react to obstacles in its path. For instance, a
hardware driver component may acquire a new sample from,
say, a laser scanner (the cause), which then passes through
multiple mapping, coordinate-transform, path-planning, and
wheel-control components before ultimately resulting in a
change in wheel velocity (the effect). Obviously, the maximum
latency from cause until effect along such data-processing
chains plays an important role for the correct functioning of a
robot, and is often also crucial for safety considerations.

Importantly, to leave as many deployment choices as possible
to the system integrator and thus maximize the opportunity for
component reuse, the execution management layer of ROS and
the underlying operating system are intentionally not exposed
to component developers. Rather, ROS’s central callback
abstraction is simply a procedure with run-to-completion
semantics, without any awareness of how or when callback
procedures are scheduled, how the execution of callbacks is
organized across threads or processes, or how the networking
layer handles the sending and receiving of messages.

Since ROS is open-source software, it is, in principle,
possible to gain a full understanding and control of a system’s
execution and communication behavior. From a real-time
expert’s point-of-view, it may thus seem to be a logical step
to enrich ROS with well-known techniques from real-time
systems research. However, there are several hurdles that make
this more difficult than it appears at first glance.

1



First of all, the integrator lacks the required information.
Most real-time analyses presume in-depth knowledge of many
low-level system details such as the number of concurrent
tasks, their activation semantics and functional interactions,
arrival patterns of messages, worst-case execution times, etc.
ROS components do not come with a manifest that would
provide this kind of information. To make matters worse, real-
time analyses do not cope well with faulty or incomplete
information. A single mistake or oversight while manually
reverse-engineering a third-party component for modeling
purposes could silently invalidate the entire effort.

Secondly, the required system details cannot be statically
determined and described at the component level. One reason is
that many robotics algorithms exhibit vastly varying execution
times and activation patterns that depend on use-case- and
platform-specific aspects. For example, consider a generic
object-tracking component that identifies objects in a video
stream and infers their trajectories (e.g., cars in a neighboring
lane). The execution time of this functionality depends on a
variety of parameters, including the frame rate, resolution, and
codec of the video stream, and various other parameters related
to the specific tracking algorithm. None of these parameters
can be known or fixed upfront by the developer of a generic
object-tracking component. Such use-case specific information
is only known to the integrator building a specific robot, who in
turn is not necessarily an expert in object tracking or real-time
systems and thus cannot always predict the impact of specific
configuration choices. The resource demands and real-time
behavior of a component must therefore always be evaluated
in the context of its use in a specific deployment, which is not
compatible with the modular reuse of “black box” components
that underlies the popularity of the ROS framework.

Last but not least, even if the integrator were to discuss each
component with the respective experts and would somehow
obtain all details necessary for a timing analysis, a third
fundamental problem remains: the resource requirements and
performance characteristics of many components inherently de-
pend on a robot’s dynamic environment and thus vary over time,
rendering a static (worst-case) resource provisioning infeasible.

For instance, consider again the aforementioned object-
tracking component, and suppose the robot also relies on a
landmark-based self-localization component. On the one hand,
the object tracker will demand much more processor time
moving through a bustling city than through sparsely populated
countryside. On the other hand, self-localization is likely much
easier in a city with its many recognizable landmarks than in a
mostly uniform landscape. To guarantee sufficient resources in
both situations, the system integrator would have to provision
the system for bustling cities consisting of barren countryside.

In robotics, such pessimistic system dimensioning is bound
to quickly run into real-world limitations. Instead, to remain
practical and cost-efficient, robotics systems must be provi-
sioned for the expected peak joint resource demands, rather
than the sum of each component’s individual peak demands.

Contributions. To overcome these challenges, we propose to

use an automatic latency manager to provision ROS systems
in a timing-aware manner dynamically at runtime. Specifically,
this paper introduces the ROS Live latency manager (ROS-
Llama), which enables the use of existing real-time mechanisms
to control latencies along critical cause-effect chains in a way
that both is easy to use for non-real-time experts and that takes
little effort to configure. Rather than asking users to provide
intricate system parameters, ROS-Llama relies solely on intro-
spection and automatically estimates all required parameters
at runtime to dynamically adjust scheduling parameters as the
situation changes. If not all specified latency goals can be
fulfilled at the same time (e.g., due to a transient overload
caused by adverse environmental conditions), ROS-Llama
initiates a controlled graceful degradation process that allows
the system integrator to specify the criticality of cause-effect
chains in a purely declarative manner (i.e., without needing to
understand which components a cause-effect chain traverses).

In summary, this paper makes the following contributions.

• We explore the dynamic latency-management problem in
the robotics domain and document constraints and require-
ments that a practical solution must satisfy (Sec. III);

• present the design and implementation of ROS-Llama, the
first automatic latency manager for ROS (Sec. IV); and

• report on an evaluation demonstrating that ROS-Llama is
capable of successfully controlling cause-effect chain la-
tencies of a mobile robot using standard ROS components
on a stock Linux system (Sec. VI).

ROS-Llama is the result of a multi-year research and engineer-
ing effort, during which we encountered a number of challenges
and limitations in the state of the art. In Sec. VII, we highlight

• opportunities for analysis improvements that would render
ROS-Llama more effective and accurate, and

• major limitations in the ROS and Linux platforms that
stand in the way of further improvements of the system.

II. BACKGROUND AND DEFINITIONS

We briefly summarize necessary background knowledge and
the main analysis concepts underlying ROS-Llama.

a) ROS: The ROS framework is a popular open-source
middleware and component repository for robotics applica-
tions [1]. This paper pertains specifically to ROS 2 [2], a recent
major refactoring of the first-generation ROS framework. For
brevity, we omit the version number throughout this paper.

ROS is a mature and featureful middleware usually deployed
on Linux; we focus on the key runtime elements essential for
latency management: topics, callbacks, and executors.

As already mentioned, ROS is built around a publish-
subscribe infrastructure that is mostly oblivious to deployment
choices. ROS applications can thus span multiple hosts, cores,
processes, and threads. For the purpose of automatic latency
management, the natural scope is a shared-memory multicore
system running Linux, to which we restrict our attention herein.

We have already discussed topics and callbacks at the

2



conceptual level in Sec. I. At the implementation level, a ROS
application consists of one or more processes, each comprising
one or more threads, which in turn run executors (i.e., the
ROS library facility that invokes callbacks). Each callback is
associated with a specific executor. When a new message is
posted to a topic, the ROS middleware ensures that a copy of the
message is distributed to all threads hosting executors that serve
subscribers to the topic. In a standard configuration, ROS relies
on the DDS middleware to broker messages among executors;
there exist multiple suitable DDS implementations [3–5].

When an executor is notified that a new message is
available, the corresponding callback is activated and queued
for execution. The latency with which a callback processes a
message is hence determined by two major factors: (i) how
much processor time the OS allocates to the thread hosting
the respective executor, and (ii) any queueing delay that arises
from how the executor sequences pending callback activations.

For our purposes, aspect (i)—the scheduling of executor
threads—is of primary interest, as it is the main factor that an
automatic latency manager can control at runtime. Aspect (ii),
the queueing delay, also has a major impact on callback latency
and is by no means trivial to analyze [6], but (in current ROS
versions) it is not amenable to runtime management.

b) Response-time analysis: We rely on prior work by
Casini et al. [6] for (ii), i.e., to bound the response times of
callbacks managed by ROS’s default executor. Casini et al.
model a ROS system as a directed acyclic graph (DAG)
of callbacks, connected by activation relations, and provide
executor-aware response-time bounds for processing chains, i.e.,
end-to-end latency bounds for arbitrary paths in the callback
DAG.1 Casini et al.’s processing chains directly correspond to
the cause-effect chains that ROS-Llama manages.

c) Reservations: More precisely, Casini et al. provide
a response-time bound under the assumption that a supply
bound function (SBF) [7] is known for each thread. An SBF
characterizes aspect (i) above, i.e., how much processing time
a thread is guaranteed to be allocated by the OS scheduler
in a given interval. This allows a schedulability analysis to
analyze each thread as if it ran on an isolated core that provides
sbf (∆) units of processing time in any interval of length ∆.
The standard way to obtain such an SBF guarantee is to use
reservation-based scheduling, which in Linux is realized by
the SCHED DEADLINE policy [8].

The SCHED DEADLINE scheduler implements the Hard
Constant Bandwidth Server (H-CBS) [9] reservation scheme in
conjunction with GRUB [10] bandwidth reclamation. While the
specific scheduling rules are irrelevant for now, we note that
each reservation r is characterized by a budget budget(r) and a
period period(r); the scheduler guarantees that each reservation
receives at least budget(r) units of processor service in each
period of length period(r). The guarantee is sometimes more
conveniently specified as the bandwidth bw(r) = budget(r)

period(r) .
d) Arrival curves: Finally, another key assumption in

Casini et al.’s analysis [6] is that an arrival curve is known

1 In practice, ROS applications are not always acyclic. We discuss how
ROS-Llama avoids cycles in the extracted callback graph in Sec. V.

for each ingress callback, i.e., for callbacks triggered by an
external event source. An event source is not itself a callback,
but sends messages to one or more topics (e.g., a device driver
obtaining and feeding sensor values into the callback DAG). An
arrival curve ηc(∆) bounds the maximum number of activations
of a callback c over any given interval of length ∆. Given an
arrival curve and a per-invocation worst-case execution time
(WCET) ec, it is trivial to determine a callback’s request-bound
function (RBF) as rbfc(∆) = ec · ηc(∆), which bounds the
maximum cumulative processor demand of all activations of
callback c in an interval of length ∆. The interplay of an
executor’s SBF and the RBFs of all its callbacks are at the
core of Casini et al.’s analysis [6], which highlights the fact that
considerable real-time expertise and comprehensive knowledge
of a system’s internals are required to apply their analysis.

III. AUTOMATIC LATENCY MANAGEMENT

As argued in Sec. I, the robotics domain comes with specific
requirements and constraints that have not received much
attention in the real-time systems community to date. To
document the challenging nature of the automatic latency
management problem in robotics in general, and in a ROS
context in particular, we highlight the most noteworthy aspects
of ROS workloads that guided the design of ROS-Llama.

a) Form does not follow function: It is common in
the classic real-time literature to assume that a system’s
functionalities and requirements are neatly reflected in its
implementation as a set of executable tasks at the OS level.
Correspondingly, central notions such as response time, priority,
and criticality are usually associated with specific tasks, and
hence the problem of ensuring correct timing for a given
functionality is implicitly understood to be equivalent to the
problem of properly provisioning the corresponding task.

As should be evident by now from Secs. I and II, this is
hardly the case in ROS: latency-critical functionality is rarely
contained in a single component, cause-effect chains usually
extend across many executors (and hence threads), and shared
executors frequently serve multiple chains with vastly different
latency needs and activation patterns. A latency manager must
hence consider ROS systems holistically and cannot provision
individual tasks, threads, or other OS entities in isolation.

b) Do no harm: ROS is popular because, empirically, it
works well (enough) for many workloads. By default, ROS
relies on Linux’s best-effort CFS scheduler, which requires no
configuration whatsoever. To state the obvious: active latency
management should not result in worse compliance with latency
goals than observed under CFS. This, however, is far less trivial
than it sounds since a poorly configured real-time scheduler
easily performs much worse than the default CFS scheduler. A
latency manager should hence be self-aware and refrain from
enacting configuration changes of uncertain benefit.

c) No exotic kernel patches: Robotics engineers are
generally not willing to switch away from officially supported,
“battle-tested” platforms just because of a promise of better
real-time support. The gain in predictability rarely outweighs
the lack of tooling, the difficulty in obtaining support, or the

3



(perceived) lack of code maturity with its implied risks of
rare bugs and untested corner cases. This rules out the use of
bespoke patches augmenting a kernel’s real-time capabilities.
A practical solution is hence limited to the facilities found in a
stock Linux kernel (and its widely used PREEMPT RT variant).

d) No universal buy-in: As discussed in Sec. I, the
ROS ecosystem is inherently heterogeneous, and development
proceeds in an asynchronous, agile fashion, marked by frequent
component updates. It is hence not realistic to expect all
(or even any) component developers to invest effort into
supporting any particular latency management approach, nor is
it reasonable to expect system integrators to fill in such support
where it is lacking. In particular, this means a practical solution
cannot rely on source-level annotations, presuppose the use of
custom APIs, or change how ROS works in fundamental ways.

e) Ease of adoption: In a similar vein, a latency manager
must minimize the upfront configuration and continuous
maintenance burden incurred by system integrators. This is
especially true given that the baseline choice—the default
CFS scheduler—requires no setup at all. A system integrator
usually has a high-level understanding of robot- and mission-
specific end-to-end latency requirements but cannot reasonably
be expected to know low-level system internals such as how
the various ROS components interact precisely, how frequently
they do so, how many executors there are, how callbacks are
scheduled by the ROS executors, or how Linux’s real-time
scheduling facilities work in detail. To minimize the barrier to
adoption, a practical latency manager should thus rely as much
as possible on dynamic introspection rather than on upfront
configuration (or costly static analysis) and favor configuration
by means of declarative goals over mechanism-specific options.

f) Unpredictable environments: A dynamic, introspection-
based approach is also advisable due to the inherently uncertain
and shifting resource needs in dynamic environments, as already
explained in Sec. I. Furthermore, latency goals may change as
mission profiles evolve and robots adapt their behavior, which
reinforces the need for a high-level, goal-oriented approach.

g) Nice-to-have payloads: Closely related to the prior
point, it would be naı̈ve and misguided to assume that a
robot is actually equipped with sufficient compute resources to
sustain all software functions in all situations. To the contrary,
especially in mobile robots subject to space, weight, and power
(SWaP) constraints, it is not uncommon to include “nice-to-
have” functionalities that should work “most of the time,” but
which are not strictly essential and fully expected to operate
at a degraded level (or not at all) when conditions become
challenging (e.g., mission- but not safety-critical payloads). A
practical latency manager must be cognizant of such intentional
under-provisioning of non-critical functionalities.

h) Unsurprising overload behavior: Conversely, it is not
out of the ordinary for robots to experience periods of transient
overload. By their very nature, such periods are the most
challenging situations for an automatic latency manager and
necessitate hard choices as not all latency goals can be satisfied
simultaneously. A practical latency manager must not devolve
to erratic decision making or otherwise unstable behavior under

overload. Rather, it should avoid “surprises” by degrading the
latency of cause-effect chains predictably and gracefully.

i) Earn your keep: Last but not least, it is worth
emphasizing that every processor cycle spent on the latency
manager is a cycle not spent on the workload, especially during
periods of overload. Since, pragmatically speaking, latency
issues under CFS can often be attenuated simply by making
additional resources available, it is not a given that the presence
of an active latency manager is actually beneficial in terms of
latency goal compliance. In other words, a latency manager
must yield sufficient benefits to compensate for the cost of
running it in the first place. Implementation efficiency, as well
as the runtimes of any employed analyses, are hence crucial.

IV. DESIGN OF ROS-LLAMA

Guided by the just-discussed observations and considerations,
we designed ROS-Llama to operate largely automatically, fol-
lowing a purely declarative configuration approach. Specifically,
in terms of necessary setup, ROS-Llama requires only a latency
goal for each cause-effect chain the system integrator deems
latency-sensitive (i.e., in need of active latency management),
and a degradation order among latency-sensitive cause-effect
chains that is consulted in case of transient overload.

Latency goals are stated for cause-effect chains, which are
identified solely by their start- and endpoints. For example,
a user might specify that at most 200 ms may pass between
the arrival of a new measurement at the laser scanner callback
and the completion of the callback registering the detected
obstacle in the map. Motivated by Req. (a) and Req. (e), it is
ROS-Llama’s responsibility to determine how these callbacks
are connected, how frequently the chain is triggered, how much
processor time each callback requires, and ultimately how the
involved threads must be scheduled to achieve the latency goal.

Guided by Reqs. (f)–(h), ROS-Llama allows system in-
tegrators to configure a policy for controlled degradation,
which is also defined in terms of processing chains. If ROS-
Llama determines that it cannot guarantee all latency goals
simultaneously, it degrades some chains to best-effort mode.
The provided degradation policy determines in which order
ROS-Llama will provision chains, which ensures predictable
behavior under overload and allows system integrators to ensure
that critical chains are never degraded to best-effort status in
favor of lower-importance chains (Req. (h)).

To realize the configured goals, ROS-Llama must solve three
main problems: (1) extract a model of the running ROS system
(all topics, callbacks, executors, their resource needs, etc.),
(2) provision all threads such that the configured latency goals
are satisfied to the extent possible and decide if any chains
need to be degraded to best-effort mode, and (3) schedule all
threads in accordance to how they were provisioned in (2).

As illustrated in Fig. 1, ROS-Llama consists of a model
extractor and a budget manager to address (1) and (2),
respectively, and uses Linux’s SCHED DEADLINE scheduler
for (3). To keep up with changing demands (Req. (f)), the
model extractor continuously updates the model at runtime.
Periodically, the budget manager takes a snapshot of this model

4



Budgets 
Periods

ROS 
System

Model 
Extractor

Budget 
Manager

Timing 
Analysis

Linux
SCHED_DEADLINE

Timing 
Model

Trace 
Events

Fig. 1. Overview of ROS-Llama. The model extractor derives a timing model of
the ROS system in a continuous manner and makes it available to the budget
manager, which provisions the executor threads based on a response-time
analysis of each cause-effect chain. Finally, the new budgets are enacted.

and computes a new set of scheduling parameters, which are
then enacted by SCHED DEADLINE. In our case study, this
was done every six seconds. Effectively, ROS-Llama provisions
a dynamic ROS system by treating it as a series of static systems
over time, always based on the latest model. We now discuss
each part in turn, beginning with the model extractor.

A. The Model Extractor

The model extractor computes an empirical timing model of
the running ROS system by observing its behavior over time.
Specifically, the model extractor must identify all relevant
threads in the system, recover the callback graph structure, and
measure arrival- and execution times. To this end, the ROS-
Llama model extractor transparently instruments the ROS core
libraries rclcpp and rcl. Since these libraries are used by
all (C++-based) ROS nodes, they can be instrumented locally
without requiring any changes to third-party ROS components,
which is essential to comply with Req. (d).

The instrumentation comprises static tracepoints that report
when callbacks are registered, are invoked, publish, or complete.
There are further tracepoints for thread identification, which re-
port when a thread becomes an executor by starting the callback
processing loop, and special-purpose tracepoints to monitor
the use of certain APIs (e.g., to detect “services,” see below).

The model extractor incrementally constructs a callback-
activation graph based on the stream of trace events. Each
trace event comprises its type, the originating thread, a pair
of timestamps, and additional event-specific data. The two
timestamps measure time according to different clocks: the
system-wide monotonic clock that indicates wall-clock time,
and the per-thread CPU-time clock that tracks the amount of
processor service received by the thread. The extractor uses the
monotonic timestamp to infer arrival times and the CPU-time
clock to measure execution times.

When a new callback is registered, the corresponding trace
event reports the callback’s type and its associated topic. The
event record further contains an identifier derived from the
virtual address of the callback object, which is used to uniquely
identify the callback. These three properties — type, topic, and
identifier — are determined at registration time and do not
change during the lifetime of the callback.

Additional dynamic properties are derived and continuously
updated from events that are emitted when a callback starts
running, completes, or publishes. Each such trace event carries
the unique callback identifier and, in the case of publication
events, the topic being published to. Whenever a callback

publishes, the extractor adds an edge between the callback and
the reported topic if one does not exist yet. Whenever a callback
completes, the extractor updates the callback’s execution-time
curve. Similarly, arrival curves are updated incrementally based
on the occurrence of publication and start events.

In addition to observing executors, the model extractor also
needs to identify all event sources, that is, threads that interact
with the ROS system but are not executors themselves. Such
threads are easily recognizable because they publish without
ever starting a callback. A typical example is a driver that reads
from a device file in a blocking I/O loop and relays each new
sample encapsulated in a ROS message. ROS-Llama needs
to manage such threads to control the latency of cause-effect
chains that start with data acquisition.

It is worth mentioning that, in addition to callbacks, the
ROS API also offers a notion of services, which realize call-
return semantics: callbacks can invoke a service in a seemingly
blocking manner and receive a reply in response. Under the
hood, however, services are implemented as regular callbacks
using a continuation-passing approach (clients invoke a service
by posting a message to a special request topic and indicate on
which topic they would like to receive the response). The model
extractor can hence detect and trace services, and represent
them in a way that is transparent to the rest of ROS-Llama.

The latest inferred callback graph and timing model is
periodically provided to the budget manager, which it then
uses to make up-to-date provisioning decisions.

B. Predictable Thread Scheduling

Before taking a detailed look at the budget manager, however,
it is necessary to understand how provisioned threads are
actually scheduled by ROS-Llama. Due to Req. (c), there
are only two viable choices: either use a classic POSIX
fixed-priority scheduler (i.e., the SCHED FIFO or SCHED RR
policies), or rely on Linux’s more recent reservation-based
SCHED DEADLINE scheduler. We chose the latter.

Compared to the fixed-priority option, SCHED DEADLINE
provides two main advantages: analyzability and containment.
Most importantly, its convenient analyzability stems from
the fact that Casini et al.’s response-time analysis for ROS
processing chains [6] directly applies to executor threads
scheduled in resource reservations (recall Sec. II). By building
on this analysis, ROS-Llama’s budget manager can predict the
effect of its provisioning decisions on the worst-case latency of
the associated chains in a safe manner that avoids “missteps.”
That is, in accordance with Req. (b), it enables ROS-Llama
to decide with confidence whether a cause-effect chain can be
guaranteed, or else needs to be degraded to best-effort mode.

Containment means that a thread experiencing an unexpected
surge in processor demand cannot prevent other threads from
receiving their provisioned budgets in a timely manner. This
property is beneficial in case of transient overload or when
resource needs increase due to changes in a robot’s environment,
and is hence well-aligned with Req. (f) and Req. (h). Any such
surges in demand will be detected by the model extractor and
reflected in the next timing model update, and hence are taken

5



into account the next time budgets are recomputed.
On multicore platforms, Linux provides two ways to in-

stantiate SCHED DEADLINE: global scheduling, where the
scheduler migrates threads freely among cores depending on
current availability, and partitioned scheduling, where each
thread is assigned to a specific core on which it remains even
when other cores are idle. Prior work has shown that, empiri-
cally, partitioned scheduling achieves higher schedulability for
most workloads (i.e., it is much more effective at admitting
and guaranteeing reservations) [11]. Its effectiveness, though,
depends heavily on the mapping from tasks to cores, which
places an additional burden onto the user (especially in dynamic
environments). Linux avoids this burden by defaulting to global
scheduling. ROS-Llama, on the other hand, has sufficient
information to determine a suitable mapping automatically
and therefore uses partitioned scheduling without imposing any
additional burden on the system integrator (recall Req. (e)).

Partitioned scheduling also allows ROS-Llama to conve-
niently isolate itself and miscellaneous system infrastructure
such as various kernel and DDS middleware threads on a
reserved system core. The remaining cores are made available
to the budget manager for the provisioning of ROS threads.

Executors that serve only chains in best-effort mode are not
provisioned by ROS-Llama and left to be scheduled by CFS
instead. In particular, to comply with Req. (b), ROS-Llama
never partially provisions a chain, letting degraded chains be
served in a best-effort manner rather than risk providing a thread
with insufficient budget. A degraded chain hence continues to
operate without interruption and can still complete in time, but
ROS-Llama cannot guarantee that it does.

C. The Budgeting Algorithm

Based on the extracted model, the budget manager must
find a scheduler configuration—a budget and period for each
reservation, and a feasible mapping of reservations to cores—
that ensures the timely completion of the configured chains.

In the literature on reservation-based scheduling, a reserva-
tion’s period is often derived from the underlying periodicity
of the task [12–15]. This is not possible in our case since
executors often influence multiple chains with different periods,
as explained in Req. (a). Lacking a clear choice, ROS-Llama
simply assigns all reservations a uniform period that is chosen
to be significantly shorter than the tightest latency goal, but
sufficiently long to avoid undue context-switching overheads.
In our case study, the uniform reservation period was 10 ms.

How to assign a sufficient budget to each reservation is
also far from obvious. In fact, reservation budgets cannot be
chosen in isolation, but require solving a global co-optimization
problem due to the interconnected nature of the callback graph.
While we omit a formal description of the problem due to
space constraints, the underlying intuition is easy to see. In
a callback chain, the response-time bound of an “upstream”
callback determines the activation jitter of any “downstream”
callbacks. Changing the budget of one executor affects the
response-time bounds of all callbacks that it handles and can
thus induce changes in demand in any number of executors

Algorithm 1: The initial budget estimate.
1 for all influencing executors e without a budget do
2 needed ←

∑
c served by e rbfc(horizon)

3 bw(e)← needed
horizon

4 for any callback c with unbounded response times do
5 e← executor serving c
6 needed ← rbf (c, horizon)− sbf e(horizon)
7 if bw(e) = 1 then
8 degrade chain
9 else

10 bw(e)← min(bw(e) + needed
horizon

, 1)
11 if no partitioning for budget found then degrade chain

serving “downstream” callbacks. This in turn affects response-
time bounds in those executors, at which point the propagation
effect repeats. Worse, influence cycles are possible: though each
callback chain is cycle-free, it is possible for two executors to
be connected by multiple callback chains in opposite directions.

Arbitrary budget dependencies may thus exist among execu-
tors. Optimally solving such a complex optimization problem
would be much too expensive at runtime, especially given
Req. (i). ROS-Llama therefore attempts to find a (non-optimal)
solution with an iterative heuristic-driven search that is per-
formed for each cause-effect chain in reverse degradation order.

a) Finding a Starting Point: Algorithm 1 is used to find an
initial budget assignment that reflects the maximum longterm
processor demand of each executor. Since later steps will only
add bandwidth, but never remove it, it is desirable to start with
the least estimate that still ensures finite response-time bounds.

To estimate the longterm demand, first the cumulative
demand over a long interval called the horizon is deter-
mined (Line 2). In our case study discussed in Sec. VI, we
arbitrarily chose a horizon of 10 seconds, which exceeded all
latency goals and typical busy-window lengths. To break the
aforementioned dependency cycle—actual RBFs depend on
the budget of other executors—Line 2 is computed under the
simplifying assumption that all other executors receive 100%
budget. Line 3 configures the resultant initial budget estimate.

Having assigned an initial budget, we now drop the as-
sumption that other executors have 100% bandwidth. As a
result, some callbacks likely become unschedulable due to
increased jitter effects. To cope, Lines 4 to 10 iteratively
increase the bandwidth of the corresponding executors until
either the longterm demand at the horizon is met, or the
executor would have to exceed 100% bandwidth, in which
case it is impossible to guarantee bounded response times and
the degradation process is started.

The degradation process is also started in Line 11 if no
feasible reservation-to-processor mapping can be found with
common bin-packing heuristics. Following [11], ROS-Llama
tries worst- and first-fit-decreasing, in that order.

b) Refining the Budget: Based on the initial budget
assignment that (barely) achieves finite response-time bounds,
Algorithm 2 refines executor budgets until the processing
chain’s response-time bound no longer exceeds the chain’s
configured latency goal. To this end, ROS-Llama relies on
what we refer to as the budget-shortage delay heuristic d(e),

6



Algorithm 2: The assignment improvement heuristic.
1 res ← set of “upstream” executors that affect response times
2 while chain latency > goal do
3 for e in res do
4 d(e)←

∑
c served by e(RT (c)−RT 100%(c))

5 for e in res by decreasing d(e) do
6 if bw(e) = 1 then remove e from res and continue
7 bw(e)← min(bw(e) + 5%, 1)
8 if partitioning for budget found then
9 candidate found, break inner loop

10 remove e from res and restore old value of bw(e)
11 if no candidate found then degrade chain

which is the total increase in response time attributable to
executors having less than 100% bandwidth (Line 4). Here,
RT (c) denotes the actual current response-time bound [6],
whereas RT 100%(c) denotes the response-time bound obtained
by assuming 100% bandwidth. A large budget-shortage delay
indicates that increasing the budget of this executor is likely
to have large positive effects on response times in the system.

Following this heuristic, ROS-Llama considers the influenc-
ing executors in order of their shortage delay (Lines 5 to 10).
For each executor, the algorithm tries to increase the bandwidth
by a fixed step size (Line 7) until the chain’s latency goal is
reached. We chose 5% as a compromise between the speed of
convergence and the quality of the result. If no candidate for
a budget increase can be found while the latency goal remains
unmet, the degradation process is started (Line 11).

V. PRACTICAL CONSIDERATIONS

While implementing ROS-Llama, we encountered several
unanticipated challenges that required some extensions to its
analytical foundations and special considerations in the model
extractor and budget manager, which we sketch in following.

a) Activation cycles: The response-time analysis used
by ROS-Llama [6] models the callbacks of a ROS system as
an acyclic graph. This is an obvious choice for a topic-based
pub-sub system like ROS, as a cycle in the graph would imply
that some callback directly or indirectly activates itself, which
one expects to result in an infinite cycle of activations.

To our surprise, we nonetheless encountered a cycle in the
self-localization component AMCL (a part of the ROS naviga-
tion stack). This component publishes the robot’s estimated
position through the widely used TF coordinate transform
library [16], a core ROS library for managing the various
coordinate transformations encountered in robotics applications.
In short, the AMCL component not only publishes an estimated
location of the robot, it also consumes odometry updates to
produce its estimate—hence it both subscribes and publishes
to the /tf topic, resulting in an apparent cycle.

Why does this not trigger an infinite loop? The answer lies
in the content of the messages published on the /tf topic:
AMCL’s position update is triggered only by messages updating
the odometry coordinate frame. Translations involving any other
coordinate frames, like the position update published by AMCL
itself, are ignored and can therefore not trigger a cycle.

As this construct effectively implements “topics within

0 100 200

Callback Instance

0

20

40

E
x
e
c
u
ti

o
n

T
im

e
(m

s)

0 10 20 30 40

Consecutive Activations (n)

0

1000

2000

C
u
m

.
D

e
m

a
n
d

(m
s)

ET+(n)

n · ET+(1)

Fig. 2. Left: 250 observed per-invocation execution times of the /tf callback
in the AMCL component. Right: Cumulative demand assumed by the analysis
for n consecutive activations under different execution-time models.

topics,” it is hardly an idiomatic instance of ROS’s design
philosophy. Alas, it is widespread and hence, in the spirit of
Req. (d), ROS-Llama needs to generally address such activation
cycles without relying on case-by-case reasoning. To this end,
we assume that developers guard against infinite loops, which
implies that a callback publishing to its own topic activates
only other subscribers to the topic, not itself. To cope, the
model extractor introduces a virtual cycle-breaker topic in the
extracted model: the cycle-inducing component is modeled as if
it published to this virtual topic instead, which is given the same
set of subscribers as the real topic except for the cycle-inducing
component itself. This modeling tweak restores ROS-Llama’s
ability to apply Casini et al.’s response-time analysis [6] in
our case study. More complex cycles would require more
sophisticated model adjustments or manual intervention.

b) Scalar WCETs are pessimistic: A common modeling
choice in the real-time literature is to describe the maximum
execution time of executable entities like callbacks or jobs
with a scalar WCET parameter, meaning that the maximum
cost per single activation is known, and the joint cost of n
consecutive activations is extrapolated simply as the product
of n and the scalar WCET.

In the context of ROS, this turned out to be prohibitively
pessimistic. Fig. 2 shows observed execution times of the AMCL
node’s /tf callback, which as discussed above handles diverse
messages. In the depicted trace, the maximum observed cost of
a single activation was roughly 56 ms. However, it is apparent
that the trace follows a pattern where such expensive activations
are rare and far apart—any two peaks are separated by many
“cheap” activations. Thus, assuming that every instance of the
callback requires 56 ms is horrendously pessimistic.

To describe the execution-time requirements of such call-
backs more accurately, ROS-Llama uses cumulative execution-
time curves [17], a more expressive execution-time model
that describes the cumulative execution-time requirements of
multiple consecutive invocations. More precisely, an execution-
time curve ET+(n) bounds the maximum cumulative execution
time of any n consecutive activations. The classic scalar WCET
is hence equivalent to ET+(1). The resulting gain in precision
can be seen in the right-hand inset of Fig. 2. The ET+(n)
curve correctly represents that any single activation might take
up to 56 ms, but also shows that the cumulative execution time
of any 40 consecutive executions never exceeded ET+(40) =
122 ms. For the same number activations, the scalar WCET
model would predict a cost of 40 × ET+(1) = 2240 ms.

7



TABLE I
CONFIGURED PROCESSING CHAINS IN REVERSE DEGRADATION ORDER

Name Purpose Deg. Order Length Goal (ms)

heartbeat Keep-alive signal (last) 7 1 100
pilot Navigation & control 6 2 125
odometry-nav Odometry (navigation) 5 2 75
laser-scanner Sensor data acquisition 4 2 150
localization Self-localization 3 1 450
odometry-loc Odometry (localization) 2 2 100
tracker Track objects (first) 1 2 990

We therefore modified Casini et al.’s response-time analy-
sis [6] to use rbfc(∆) = ET+(ηc(∆)) as a callback’s RBF.

c) Rare events: Extracted arrival curves can be highly
imprecise for rare aperiodic events. For example, consider an
interactive operator input that arrives twice in short succession
after minutes of operation. A naı̈ve arrival curve estimator
would account only for the two observed events, pessimistically
mischaracterizing them as following a periodic arrival pattern
with a short period. To incorporate that the event has been
observed only twice since system startup, we additionally treat
the system startup as a virtual activation of each callback. In
the above example, this allows the model extractor to conclude
that, although two events may occur in rapid succession, it
takes much longer to observe three or more events.

VI. EVALUATION

We evaluated ROS-Llama on a Turtlebot 3 “Burger” con-
trolled by a Raspberry Pi 4B. The Raspberry Pi features an
ARM A72 CPU with four cores clocked at 600 MHz.2 The
system ran a standard Linux kernel with the PREEMPT RT
patch (version 4.19.71-rt24-raspi2) hosting ROS 2 “Dashing
Diademata” using Eclipse’s Cyclone DDS (version 0.5.1-1).

a) ROS components: On top, we deployed three ROS
components: (1) drivers for the Turtlebot, which provide a ROS
interface to the robot’s hardware (a laser scanner, odometers,
and wheels powered by an electric motor), (2) the ROS
navigation stack, and (3) an object tracker payload.

The ROS navigation stack [18] implements generic naviga-
tion primitives for wheeled mobile robots, including navigation
planning, path following, and self-localization. The object
tracker [19] tracks designated objects through a video sequence
and serves as a typical example of a computationally demanding
mission-critical (but not safety-critical) payload. In our setup,
we simulated a camera by repeatedly playing the car1 video
taken from the VOT 2018 challenge [20, 21]; in this scenario,
the object tracker is tasked with following cars through the
scene. To compensate for the large performance difference
between the Raspberry Pi and the hardware recommended by
the package developers (an Intel i7-6700HQ with four cores
clocked at 2.6 Ghz), we downsampled the video accordingly.

b) Latency goals: We configured latency goals for the
callback chains shown in Table I. The heartbeat chain simply
manages a watchdog timer with a period of 100 ms that prevents

2The processor also supports a 1.2 GHz setting. However, this frequency
cannot be sustained in continuous operation due to overheating, quickly leading
to unpredictable thermal throttling of the cores. As dynamic frequency scaling
is beyond the scope of this paper, we thus focus on the stable 600 MHz setting.

the hardware from resetting. The first two functional chains
are concerned with the movement of the robot’s wheels. The
pilot chain consists of a computation-intensive local planner
callback responsible for computing the next motor command,
followed by a shorter callback that encodes the command for
transmission to the electric motor. The 125 ms latency goal
ensures the motor receives the local planner’s command once
per period. The odometry-nav chain reports the measured wheel
movements to the planner every 50 ms. We set a latency goal of
75 ms to ensure that an odometry update arrives every period,
i.e., that the gap between two measurements, including the
sampling delay of up to 50 ms, remains below 125 ms.

The next three chains cover the self-localization of the robot.
The localization component relies on laser scans and an internal
map to narrow down plausible estimates of the robot’s current
location. Since the laser moves with the robot, interpreting these
scans also requires information about the robot’s movement
and orientation, i.e., odometry. The two inputs are provided by
the laser-scanner and odometry-loc chains. The localization
chain involves the merging of the inputs and the computation
of a position estimate. We will revisit this chain in Sec. VII.

The localization estimate expires after one second, counting
from the time the underlying laser scan was taken. This imposes
a timing constraint on the localization component: once the
localization estimate expires, the robot cannot navigate and
performs an emergency stop. We thus need to arrange for
an end-to-end latency of at most one second between the
laser scanner and the final localization callback. The laser
scanner rotates at 5 Hz, allowing it to produce one scan
every 200 ms. In practice, we found that individual scans
are occasionally transmitted incompletely by the hardware
and cannot be interpreted. Accounting for such skipped scans
yields a worst-case sampling delay of 400 ms, leaving 600 ms
for processing. We assigned 150 ms to the laser scanner chain
and 450 ms to the localization chain. For the odometry, we
have to account for an additional 50 ms of sampling delay,
leaving 100 ms for the odometry-loc chain.

Finally, the tracker chain covers the image tracker. The chain
covers the (simulated) camera, which periodically acquires a
frame (from disk) and sends it to the /rgb topic, and the
tracker, which follows marked objects and outputs their position
in the latest frame. The assigned latency goal ensures that every
frame is processed before the next frame arrives, ensuring
that the tracker does not fall behind under normal conditions.
However, the tracker chain is also first in the degradation order,
which reflects that its output is “nice to have” but not essential
for the correct operation of the robot.

We stress that all latency goals derive from high-level
functional considerations and hardware properties that would
be known to a system integrator.

c) Baselines: We compare ROS-Llama against two base-
lines. The first is a standard Linux setup, where threads are
scheduled globally across all four cores using CFS without any
of the ROS-Llama infrastructure present. This is the default
ROS setup and arguably the only other available choice that
does not require real-time expertise on behalf of the system

8



TABLE II
NUMBER OF CHAIN ACTIVATIONS AND GOAL VIOLATIONS

Name ROS-Llama SCHED RR CFS
violations count violations count violations count

heartbeat 0 7,324 0 6,908 0 6,907
pilot 0 4,826 2 4,857 3 4,869
odometry-nav 0 14,648 0 13,814 0 13,812
laser-scanner 0 3,636 15 3,432 0 3,428
localization 0 3,636 0 3,433 0 3,429
odometry-loc 0 14,648 1 13,814 0 13,812
tracker 208 584 219 700 238 700

integrator and component developers. It provides a fair baseline
with regard to Req. (i) (i.e., the question of whether the cost
of running ROS-Llama outweighs its benefits) since it does
not incur any of ROS-Llama’s overhead.

The second is a primitive variant of ROS-Llama that does not
use response-time analysis. Instead, it schedules latency-critical
executors with the SCHED RR fixed-priority scheduler. It aims
for graceful degradation by assigning priorities according to
the degradation order, prioritizing executor threads serving
chains later in the degradation order over executors serving
exclusively chains earlier in the order. This is arguably the most
straightforward approach to implement controlled degradation
without analysis, but still cumbersome and error-prone to
realize manually as it requires correct identification of all
callbacks, chains, and threads. We use this baseline to evaluate
to what extent the use of response-time analysis improves
the decisions of ROS-Llama. We use SCHED RR rather than
SCHED DEADLINE for this baseline, because without analysis,
we have no way of assigning sensible reservation budgets.

d) Scenario: The robot patrols between two fixed lo-
cations while following a number of objects in the video.
The experiment is divided into three phases: no load, normal
load, and high load. In the first phase, the object tracker does
not follow any objects. In the following phases, the number
of objects to track increases to simulate the effects of an
increasingly crowded environment. This increases the execution
time of the tracker from a barely noticeable to an unsustainable
load that forces video frames to be discarded. We observe the
impact of this demand increase on the other chains.

A. Evaluation Results: Latency Goal Compliance

We evaluated how effective ROS-Llama is at meeting latency
goals. Table II shows the number of observed chain completions
with end-to-end latency exceeding the configured goal.

The tracker chain exceeds its bound frequently (between
208 and 238 times out of 700 activations). In the case of
ROS-Llama, the tracker chain is even forced to skip frames
entirely, resulting in only 584 observed chain instances during
the experiments. This indicates that the camera simulation does
not receive enough processor time to transmit a frame in some
periods. Such effects are to be expected as a result of the
unsustainable load in the last phase. Controlled degradation
should ensure that this overload does not affect the other chains.
However, under both baselines other chains exceed their goal
latency, namely the pilot chain under both CFS and SCHED RR,
and additionally the odometry-loc chain under SCHED RR. In

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

x

no load

CFS
SCHED_RR
ROS-Llama

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

x

normal load

40 60 80 100 120 140 160
Latency (ms)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

x

high load

Fig. 3. CDFs of the latency of the pilot chains, separated by phase. ROS-
Llama keeps the tail latency below the 125 ms goal (dashed line), even
under heavy load. Both baselines exhibit tail latencies in excess of the goal.

contrast, ROS-Llama successfully protects the more critical
chains from undue interference by the tracker chain, degrading
the system gracefully in face of the surge.

To understand the reasons for the observed goal violations,
we investigated the affected chains in more detail. Figure 3
shows a CDF of the observed end-to-end latencies in the pilot
chain, separated by phase. The dashed vertical line marks
the latency goal: the goal is always met if a curve’s points
are all to the left of this line (i.e., if the observed maximum
end-to-end latency does not exceed the chain’s latency goal).
In the first phase, all three approaches ensure a margin of at
least 25 ms to the latency goal. As the load increases, CFS’s
curve grows wider, indicating that high-latency results become
more prevalent. While only 4% of activations exceed 80 ms
in the first phase, 10% do under normal load, and 16% under
high load. It is also evident how the tail grows longer, finally
exceeding the latency goal.

These observations demonstrate the risk posed by CFS’s
complete lack of temporal isolation: the non-essential tracker
chain is functionally completely unrelated to the critical pilot
chain, but still the overload experienced in the tracker chain
heavily impacts the observed end-to-end latency of the critical
chain, increasing it by over 25 ms in the most extreme cases.

The root cause is that both chains contain computationally
intensive callbacks, and hence both are entitled to an equal share
of the available resources under the default CFS timesharing
policy. Oblivious to their respective latency requirements
and their relative importance to the robot’s overall correct
operation, CFS has no way of inferring which of the two
components it should prioritize and, as a result, both chains
exhibit latency goal violations. Fair sharing of resources, the
core principle underlying CFS, is obviously and demonstrably
not the appropriate policy under transient overload conditions.

9



0.00

0.25

0.50

0.75

1.00
Fr

ac
tio

n 
x

no load

CFS
SCHED_RR
ROS-Llama

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

x

normal load

0 20 40 60 80 100 120
Latency (ms)

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n 

x

high load

Fig. 4. CDFs of the latency of the odometry-loc chains, separated by phase.
ROS-Llama and the CFS baseline comply with the 100 ms latency goal,
whereas the SCHED RR baseline exhibits a large tail-latency spike.

As one might hope, the SCHED RR baseline keeps latency
more stable most of the time. However, we also observed a few
large outliers in the pilot chain that exceeded the latency goal
by at least 15 ms, which is surprising given that, according
to the degradation order, the pilot chain clearly should have
higher priority than the overloaded tracker chain (the two
chains do not share any executors). In fact, the effect here is
subtle and can be understood as a kind of “collateral damage”:
because the tracker chain is overloaded at real-time priority, it
induces a bursty overload also into the DDS layer, which in turn
negatively affects the intra-chain communication delays of the
pilot chain. This shows that graceful degradation is essential—
ROS-Llama actively degrades the overloaded tracker chain to
best-effort mode, which implicitly prevents the DDS overload.
We revisit the DDS issue in Sec. VII-A.

We observed an even more severe latency spike under the
SCHED RR baseline in the odometry-loc chain, with the high-
load tail latency exceeding the maximum observed latency in
the no-load scenario by almost 100 ms, as shown in Fig. 4.
The reason here is that the odometry-loc chain is early in the
degradation order, and the executors serving its callbacks are
thus assigned a low scheduling priority. It is therefore at risk
of being starved by less urgent chains that happen to occur
later in the degradation order, which is a typical problem when
assigning priorities in a criticality-monotonic fashion rather than
according to urgency [22]. Of course, not assigning criticality-
monotonic priorities would risk (even more) unpredictable
degradation behavior, and hence is also not a viable approach.

Overall, one should be careful to not assign too much weight
to the specific numbers reported herein, as the evaluation
setup—an actual robot moving autonomously through an
actual physical environment while under control of complex
navigation heuristics that make decisions based on noisy

TABLE III
AVERAGE ROS-LLAMA OVERHEAD BY COMPONENT PER PHASE

Phase No load Medium load High load

Model Extractor (Go) 1.17s ( 70%) 1.38s ( 62%) 1.39s ( 61%)
Model Processing (Python) 0.28s ( 17%) 0.32s ( 14%) 0.32s ( 14%)
Budget Selection (Python) 0.05s ( 3%) 0.12s ( 5%) 0.13s ( 6%)
Timing Analysis (Rust) 0.18s ( 11%) 0.41s ( 19%) 0.43s ( 19%)
Total 1.68s (100%) 2.23s (100%) 2.27s (100%)

sensor input—allows for a fair amount of run-to-run variability
(e.g., as exhibited by the varying chain activation counts in
Table II). Nonetheless, our case study illustrates a clear trend
that we observed across many reruns of the experiments:
Neither avoiding real-time scheduling altogether (the default
CFS baseline) nor assigning real-time priorities in a “blind”,
purely heuristic-driven manner without a backing analysis (the
SCHED RR baseline) leads to satisfactory results. ROS-Llama
in contrast exploits the existing capabilities offered by Linux’s
SCHED DEADLINE scheduler by provisioning the system
dynamically, based on introspection and guided by response-
time analysis, notably without burdening the system integrator
with any real-time scheduling details.

B. Evaluation Results: ROS-Llama Runtime Costs

We conclude the evaluation with an investigation of the
costs involved in running ROS-Llama. ROS-Llama’s memory
footprint is negligible relative to the footprint of ROS; we
hence focus on processor time. Table III reports the average
per-invocation cost of the main parts of ROS-Llama. Recall
that we configured ROS-Llama to recompute the budget every
six seconds; in total, ROS-Llama as a whole thus consumes 30–
40% of one CPU. The lower analysis- and budgeting overhead
in the first phase results from ROS-Llama opportunistically
reusing cached budget assignments in a low-load scenario. The
model extractor, which runs continuously alongside the system,
accounts for about 60% of the total cost of ROS-Llama. The
cost of preparing the timing model for analysis causes about
15% of the overhead. The remainder of the runtime costs are
due to the budget selection process, separated into the budgeting
heuristics (≈5%) and the response-time analysis (≈20%).

The results show that ROS-Llama introduces noticeable
runtime overheads. However, ROS-Llama nonetheless ensures
better latency-goal compliance and more graceful degradation
behavior than the CFS baseline. In other words, it satisfies
Req. (i): ROS-Llama comes with significant costs, but provides
sufficient benefits to realize a favorable trade-off between
performance and predictability.

In the current prototype, the model extractor causes most of
the overhead due to our unoptimized tracing implementation.
Integrating ROS-Llama with a mature tracing system like
LTTng [23] would likely lower the cost of running ROS-Llama.

VII. OPEN PROBLEMS AND PRAGMATIC WORKAROUNDS

While developing ROS-Llama, we have become aware of a
number of opportunities for future work as well as of limitations

10



in ROS and Linux that were not obvious to us initially.

A. Open Analysis Problems

ROS-Llama stands to benefit from improvements in the ana-
lytical foundations upon which it rests along several directions.

a) Complex activations: In addition to regular callbacks,
which are unconditionally activated upon publication of a
message, ROS also provides advanced activation semantics
in the form of message filters. Of particular interest to us
are the TF-related message filters, which are used in the
navigation stack. Conceptually, filters select and combine
multiple incoming data items (from separate messages) into
a single message for joint downstream processing based on
complex rules. In terms of expressiveness, they go far beyond
classic “and” activation semantics, and may in fact also depend
on the contents of to-be-combined messages.

For instance, in the navigation stack, the localization com-
ponent uses message filters to ensure that the laser scanner
callback is only triggered once also an odometry measurement
is available that is no older than the latest available laser
scan sample. Such complex activation semantics cannot be
represented with current modeling approaches. In our case
study, we circumvented this problem by declaring the parts
before and after the message filter as separate chains (i.e., the
laser-scanner, odometry-loc, and localization chains), and by
manually distributing the latency goal among the chains before
and after the message filter. With a more expressive model,
such manual configuration tuning could be avoided, benefitting
both ROS-Llama’s usability and efficiency.

b) In want of stochasticity: As discussed in Sec. V, the
use of execution-time curves (rather than a scalar WCET model)
is essential to obtaining useful analysis accuracy. Nonetheless,
in our experiments, we sometimes still noticed large gaps
between observed latencies and predicted bounds.

The reason is obvious: an execution-time curve, while less
pessimistic, is still a model of worst-case demand, but in
practice ROS systems are exceedingly unlikely to consistently
exhibit worst-case behavior. Conceptually, a stochastic timing
analysis might thus be a much better match for ROS systems,
which are virtually always deployed on commodity platforms
and certainly not amenable to static WCET analysis.

Case in point, given that ROS-Llama follows a dynamic,
introspection-based approach anyway, we would gladly trade
some analysis certainty for much tighter response-time bounds—
for instance, with a hypothetical analysis rooted in the concept
of a traced “probabilistic worst-case execution-time curve”
pWCET (n), in analogy to the probabilistic WCET concept at
the center of much recent attention [24–30]. Given the inherent
uncertainty in ROS systems and their dynamic environments,
we believe there to be much promise in this direction.

c) DDS: The DDS middleware heavily affects the trans-
mission delay between ROS components, as all communication
must pass through it. To tune this delay, DDS provides
numerous QoS options; the documentation of one implemen-
tation [31] lists alone 53 parameters affecting, among other
things, the number of threads created, the scheduling priority

of several DDS support threads, or the message transmission
order. While there is prior work on analyzing implementation-
independent QoS options [32, 33], the scheduling of DDS
threads is intentionally left aside by the DDS standard as
“implementation-defined” and remains little-understood to date.
To our knowledge, there is as of now no principled way to
predict the impact of scheduling decisions on DDS latency.

In this work, we therefore treated the DDS infrastructure
as a black box and reduced its latency impact by isolating all
DDS threads on the separate system core at a high scheduling
priority. Furthermore, we elided DDS message propagation
delay in the response-time analysis (even though it is arguably
non-negligible) as this did not impede ROS-Llama’s ability
to function in our experiments. Future work illuminating the
effects of thread scheduling on DDS latency might enable
ROS-Llama to automatically select suitable DDS QoS options
and to predict and account for worst-case propagation delays.

B. Linux Platform Limitations

ROS-Llama benefits from Linux’s real-time capabilities, and
particularly from SCHED DEADLINE [8], to a great extent.
Nonetheless, certain issues also posed surprising challenges.

a) High-latency I/O: In our experiments, we found that
laser-scanner and odometry data would sometimes arrive at the
Turtlebot driver threads only after excessive delays. It turned
out that data arriving on USB serial ports traverses the TTY
layer, which involves CFS-scheduled kernel threads (even in
a PREEMPT RT kernel) that are easily starved by real-time
processes. Although we were ultimately able to sidestep this
problem by forcing Linux’s “unbound kworker threads” onto
the system processor, it serves as a reminder that real-time I/O
remains a frequently overlooked and understudied problem.

b) Scheduler inversion: SCHED DEADLINE threads
always take priority over SCHED FIFO and SCHED RR
threads, which simplifies the analysis but also causes many
practical issues. Although the assigned reservation bandwidths
limit this delay somewhat, it can still be substantial (i.e.,
the maximum EDF busy-window length). This design is
particularly unfortunate since many system-critical kernel
threads (e.g., disk drivers) are scheduled with SCHED FIFO
or SCHED RR priorities. Assigning “too much” bandwidth
to reservations can thus starve critical kernel threads and
actually lead to kernel panics. A principled solution might
be to introduce “scheduling-class reservations” that explicitly
reserve processor time for SCHED FIFO, SCHED RR, and
CFS in the SCHED DEADLINE schedule.

c) Threads vs. reservations: SCHED DEADLINE ties
reservation parameters to individual threads. It is thus not
possible to share a budget among multiple threads, making it
exceedingly inefficient to apply reservations to multi-threaded
applications that distribute work dynamically among threads
(e.g., virtually all DDS middlewares). Popular libraries for asyn-
chronous programming like boost::asio or the C++ std::async
API are also impossible to provision. First-class reservations

11



supporting multiple client threads would be a relief.
d) Soft reservations needed: Mainline Linux presently

supports only hard reservations, which unconditionally cut off
a thread that exhausts its reservation’s budget from processor
service until the next replenishment time [34]. This rate-limiting
behavior can be highly problematic: underestimating the re-
quired budget even by a minuscule amount results in a massive
latency increase, since once a thread’s under-dimensioned
budget runs out, it must wait even if it could complete if it were
a CFS thread. In contrast, soft reservations [34] would allow
under-provisioned threads to receive at least some guaranteed
bandwidth and then progress on a best-effort basis, which would
allow ROS-Llama to partially provision degraded chains.

C. ROS Idiosyncrasies

Although ROS-Llama seeks to accommodate the existing
ROS ecosystem as much as possible, it cannot work miracles
if the managed ROS components are already susceptible to
latency spikes even in the absence of interference. Case in
point, consider the TF system again, which internally queues
any messages it cannot process immediately. All such queued
messages are reconsidered when a new translation appears on
the TF topic—to the effect that a single /tf callback instance
may non-preemptively process a large backlog of messages
in one fell swoop, which inevitably induces latency spikes in
other callbacks served by the same executor.

Another noteworthy implementation choice is a domain-
specific language in the navigation stack. Specifically, the
navigator’s strategy is described using XML behavior trees,
which are queried for changes in intended behavior in a
polling manner by a C++-based interpreter embedded in a timer
callback that is triggered every 10 ms. Such constructs obfuscate
the system’s true communication structure and timing behavior,
and thus impede the model extractor’s efforts. We resolved this
problem in our case study by rewriting the behavior tree as a
normal, message-triggered C++ callback.

Overall, ROS-Llama shows that automatic latency manage-
ment for robotics is practical and has great potential, but these
discoveries also illustrate that there are limits to the degree of
automation that can be realistically attained if developers do
not favor principled, idiomatic solutions whenever possible.

VIII. RELATED WORK

The real-time needs of robotics workloads have long been a
subject of intense study, with classic papers in this area defining
suitable APIs and runtime systems; better-known examples are
HARTIK [35, 36], which introduced a similar approach to
controlled degradation as used in ROS-Llama, ETHNOS [37,
38], and XO/2 [39]. Our focus is the nowadays popular ROS,
which we cannot alter due to Req. (d).

The general ideas of adaptation and graceful degradation in
the face of transient overload have also been explored from
many angles in prior work. A substantially different, very well-
explored approach is the concept of service levels [15, 40–45],
which relies on application developers to explicitly expose
different operating modes and a notion of utility associated

with each mode. Compared to ROS-Llama’s much more narrow
but simpler mechanism, such approaches are more difficult to
adopt due to the required developer buy-in. ROS components
generally do not expose multiple operating modes.

Another common adaptation strategy is to rely on feedback-
control theory to adjust scheduling parameters. Prior work has
explored approaches to directly control periods [46, 47], QoS-
levels [42, 45, 46, 48], and reservation budgets [43, 49–54], to
name a few. Such approaches could in principle be transferred
to ROS, but have not yet been systematically studied in that
context. ROS-Llama differs from these prior approaches in
that it realizes predictive provisioning guided by response-
time analysis [6] based on an explicit extracted model of the
workload, rather than feedback-guided reactive provisioning.

While there is earlier work on the real-time capabilities of
ROS 1 [55, 56], it is unclear to what extent these findings still
apply since improved real-time support is a key differentiator
of ROS 2. Park et al. [57] evaluated the predictability of ROS 2
in comparison to ROS 1 and found ROS 2’s improved timing
precision to result in better path-following precision.

Finally, the problem of finding optimal budgets and periods
for resource reservations has been studied extensively, for both
individual tasks [12–15, 58–60] and DAGs [61]. However,
these approaches are not directly applicable to ROS due to the
complex interdependencies in the ROS callback graph (recall
Sec. IV-C). Nonetheless, future work adapting and extending
such approaches to cope with ROS-specific challenges could
supplant ROS-Llama’s current budgeting heuristic.

In summary, ROS-Llama builds on well-established tech-
niques and ideas that have been studied individually in prior
contexts. The primary contributions of ROS-Llama are the
integration of these concepts in a practical, easy-to-use system
and their adaptation to overcome ROS-specific challenges. ROS-
Llama is the first automatic latency manager that copes with the
complexities posed by real-world robotics frameworks such as
ROS. Its distinguishing feature is that can be applied to existing
ROS applications running on unmodified stock Linux kernels
hosted on commodity platforms, as elaborated in Sec. III.

IX. CONCLUSION

We have presented ROS-Llama (Sec. IV), the first automatic
latency manager for ROS 2. Its design has been shaped by
a careful analysis of the requirements and constraints of the
ROS ecosystem (Sec. III). Our evaluation has shown ROS-
Llama to be practical and beneficial, achieving better latency
control under load than either the default CFS baseline or a
criticality-monotonic SCHED RR baseline. Finally, our work
on ROS-Llama has given us a better appreciation of a number
of open analysis questions of practical relevance and current
limitations in ROS and Linux, which we have shared in Sec. VII
in the interest furthering advances in this promising area.

REFERENCES

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “ROS: An open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[2] “ROS 2,” https://github.com/ros2.

12

https://github.com/ros2


[3] “Eclipse Cyclone DDS,” https://projects.eclipse.org/projects/iot.
cyclonedds.

[4] “eProsima FastRTPS,” https://www.eprosima.com/index.php/
products-all/eprosima-fast-rtps.

[5] “RTI Connext DDS,” https://www.rti.com/products/
connext-dds-professional.

[6] D. Casini, T. Blaß, I. Lütkebohle, and B. Brandenburg,
“Response-Time Analysis of ROS 2 Processing Chains Under
Reservation-Based Scheduling,” in Proceedings of the 31st
Euromicro Conference on Real-Time Systems (ECRTS), 2019.

[7] A. Mok, X. Feng, and D. Chen, “Resource Partition for Real-
Time Systems,” in Proceedings of the 7th IEEE Real-Time
Technology and Applications Symposium (RTAS), 2001.

[8] D. Faggioli, F. Checconi, M. Trimarchi, and C. Scordino, “An
EDF scheduling class for the Linux kernel,” in Proceedings of
the 11th Real-Time Linux Workshop, 2009.

[9] A. Biondi, A. Melani, and M. Bertogna, “Hard Constant Band-
width Server: Comprehensive formulation and critical scenarios,”
in Proceedings of the 9th IEEE International Symposium on
Industrial Embedded Systems (SIES), 2014.

[10] G. Lipari and S. Baruah, “Greedy Reclamation of Unused
Bandwidth in Constant-Bandwidth Servers,” in Proceedings of
the 12th Euromicro Conference on Real-Time Systems (ECRTS),
2000.

[11] B. Brandenburg and M. Gül, “Global Scheduling Not Required:
Simple, Near-Optimal Multiprocessor Real-Time Scheduling
with Semi-Partitioned Reservations,” in Proceedings of the 37th
IEEE Real-Time Systems Symposium (RTSS), 2016.

[12] G. Buttazzo and E. Bini, “Optimal Dimensioning of a Constant
Bandwidth Server,” in Proceedings of the 27th IEEE Interna-
tional Real-Time Systems Symposium (RTSS), 2006.

[13] L. Abeni, A. Balsini, and T. Cucinotta, “Container-based Real-
Time Scheduling in the Linux Kernel,” ACM SIGBED Review,
2019.

[14] L. Palopoli and L. Abeni, “Legacy Real-Time Applications in
a Reservation-Based System,” IEEE Transactions on Industrial
Informatics, 2009.

[15] S. Groesbrink, L. Almeida, M. de Sousa, and S. M. Petters,
“Towards Certifiable Adaptive Reservations for Hypervisor-Based
Virtualization,” in Proceedings of the 19th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS),
2014.

[16] T. Foote, “Tf: The Transform Library,” in Proceedings of the
2013 IEEE Conference on Technologies for Practical Robot
Applications (TePRA), 2013.

[17] S. Quinton, M. Hanke, and R. Ernst, “Formal Analysis of Spo-
radic Overload in Real-Time Systems,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2012.

[18] S. Macenski, F. Martı́n, R. White, and J. G. Clavero, “The
Marathon 2: A Navigation System,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2020.

[19] “Ros2 object analytics,” https://github.com/intel/ros2 object
analytics.

[20] M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pfugfelder,
L. Č. Zajc, T. Vojir, G. Bhat, A. Lukezic, A. Eldesokey, and
G. Fernandez, “The sixth visual object tracking VOT2018
challenge results,” in VOT2018 Workshop, 2018.

[21] M. Kristan, J. Matas, A. Leonardis, T. Vojir, R. Pflugfelder,
G. Fernandez, G. Nebehay, F. Porikli, and L. Cehovin, “A
Novel Performance Evaluation Methodology for Single-Target
Trackers,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2016.

[22] S. Baruah, A. Burns, and R. Davis, “Response-Time Analysis
for Mixed Criticality Systems,” in Proceedings of the 32nd IEEE
Real-Time Systems Symposium (RTSS), 2011.

[23] M. Desnoyers and M. Dagenais, “The LTTng tracer: A low
impact performance and behavior monitor for GNU/Linux,” in

Proceedings of the Linux Symposium, 2006.
[24] K. P. Silva, L. F. Arcaro, and R. S. De Oliveira, “On Using

GEV or Gumbel Models When Applying EVT for Probabilistic
WCET Estimation,” in Proceedings of the 38th IEEE Real-Time
Systems Symposium (RTSS), 2017.

[25] J. Abella, D. Hardy, I. Puaut, E. Quinones, and F. J. Cazorla,
“On the Comparison of Deterministic and Probabilistic WCET
Estimation Techniques,” in Proceedings of the 26th Euromicro
Conference on Real-Time Systems (ECRTS), 2014.

[26] K. P. Silva, L. F. Arcaro, D. B. de Oliveira, and R. S. de Oliveira,
“An Empirical Study on the Adequacy of MBPTA for Tasks
Executed on a Complex Computer Architecture with Linux,”
in Proceedings of the 23rd IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), 2018.

[27] L. Santinelli, F. Guet, and J. Morio, “Revising Measurement-
Based Probabilistic Timing Analysis,” in Proceedings of the 23rd
IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2017.

[28] N. Gobillot, F. Guet, D. Doose, C. Grand, C. Lesire, and
L. Santinelli, “Measurement-Based Real-Time Analysis of
Robotic Software Architectures,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2016.

[29] R. I. Davis and L. Cucu-Grosjean, “A Survey of Probabilistic
Schedulability Analysis Techniques for Real-Time Systems,”
LITES: Leibniz Transactions on Embedded Systems, 2019.

[30] ——, “A Survey of Probabilistic Timing Analysis Techniques for
Real-Time Systems,” LITES: Leibniz Transactions on Embedded
Systems, 2019.

[31] “RTI Connext DDS – Comprehensive Summary of QoS Policies,”
https://community.rti.com/static/documentation/connext-dds/
5.2.0/doc/manuals/connext dds/RTI ConnextDDS
CoreLibraries QoS Reference Guide.pdf.

[32] H. Pérez and J. J. Gutiérrez, “Modeling the QoS parameters of
DDS for event-driven real-time applications,” Journal of Systems
and Software, 2015.

[33] A. Hakiri, “Supporting end-to-end quality of service properties
in OMG data distribution service publish/subscribe middleware
over wide area networks,” Journal of Systems and Software,
2013.

[34] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource
Kernels: A Resource-Centric Approach to Real-Time and Mul-
timedia Systems,” in Multimedia Computing and Networking,
K. Jeffay, D. D. Kandlur, and T. Roscoe, Eds., 1998.

[35] G. C. Buttazzo, “HARTIK: A Real-Time Kernel for Robotics
Applications,” in Proceedings of the 14th IEEE Real-Time
Systems Symposium (RTSS), 1993.

[36] G. Buttazzo, “Real-time Issues in Advanced Robotics Appli-
cations,” in Proceedings of the 8th Euromicro Workshop on
Real-Time Systems (EMWRTS), 1996.

[37] M. Piaggio, A. Sgorbissa, and R. Zaccaria, “A Programming
Environment for Real-Time Control of Distributed Multiple
Robotic Systems,” Advanced Robotics, 2000.

[38] M. Piaggio and R. Zaccaria, “Distributing a Robotic System
on a Network: The ETHNOS Approach,” Advanced Robotics,
1996.

[39] R. Brega, N. Tomatis, and K. Arras, “The Need for Autonomy
and Real-Time in Mobile Robotics: A Case Study of XO/2
and Pygmalion,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2000.

[40] H. Hassan, J. Simó, and A. Crespo, “Flexible Real-Time Mobile
Robotic Architecture based on Behavioural Models,” Engineering
Applications of Artificial Intelligence, 2001.

[41] G. Beccari, S. Caselli, and F. Zanichelli, “A Technique for
Adaptive Scheduling of Soft Real-Time Tasks,” Real-Time
Systems, 2005.

[42] A. Block, B. Brandenburg, J. H. Anderson, and S. Quint, “An
Adaptive Framework for Multiprocessor Real-Time Systems,” in

13

https://projects.eclipse.org/projects/iot.cyclonedds
https://projects.eclipse.org/projects/iot.cyclonedds
https://www.eprosima.com/index.php/products-all/eprosima-fast-rtps
https://www.eprosima.com/index.php/products-all/eprosima-fast-rtps
https://www.rti.com/products/connext-dds-professional
https://www.rti.com/products/connext-dds-professional
https://github.com/intel/ros2_object_analytics
https://github.com/intel/ros2_object_analytics
https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/manuals/connext_dds/RTI_ConnextDDS_CoreLibraries_QoS_Reference_Guide.pdf
https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/manuals/connext_dds/RTI_ConnextDDS_CoreLibraries_QoS_Reference_Guide.pdf
https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/manuals/connext_dds/RTI_ConnextDDS_CoreLibraries_QoS_Reference_Guide.pdf


Proceedings of the 20th Euromicro Conference on Real-Time
Systems (ECRTS), 2008.

[43] L. Abeni and G. Buttazzo, “Adaptive Bandwidth Reservation for
Multimedia Computing,” in Proceedings of the 6th International
Conference on Real-Time Computing Systems and Applications
(RTCSA), 1999.

[44] C. Lu, J. A. Stankovic, T. F. Abdelzaher, G. Tao, S. H. Son,
and M. Marley, “Performance Specifications and Metrics for
Adaptive Real-Time Systems,” in Proceedings of the 21st IEEE
Real-Time Systems Symposium (RTSS), 2000.

[45] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao, “Feedback Control
Real-Time Scheduling: Framework, Modeling, and Algorithms,”
Real-Time Systems, 2002.

[46] A. Cervin and J. Eker, “Feedback Scheduling of Control Tasks,”
in Proceedings of the 39th IEEE Conference on Decision and
Control, 2000.

[47] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Årzén, “Feed-
back–Feedforward Scheduling of Control Tasks,” Real-Time
Systems, 2002.

[48] J. A. Stankovic, C. Lu, S. H. Son, and G. Tao, “The Case for
Feedback Control Real-Time Scheduling,” in Proceedings of
the 11th Euromicro Conference on Real-Time Systems (ECRTS),
1999.

[49] L. Abeni, L. Palopoli, G. Lipari, and J. Walpole, “Analysis of a
Reservation-Based Feedback Scheduler,” in Proceedings of the
23rd IEEE Real-Time Systems Symposium (RTSS), 2002.

[50] L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari, “AQu-
oSA—Adaptive Quality of Service Architecture,” Software:
Practice and Experience, 2009.

[51] L. Palopoli, L. Abeni, and G. Lipari, “On the Application of
Hybrid Control to CPU Reservations,” in International Workshop
on Hybrid Systems: Computation and Control, 2003.

[52] E. Eide, T. Stack, J. Regehr, and J. Lepreau, “Dynamic
CPU Management for Real-Time, Middleware-Based Systems,”

in Proceedings of the 10th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2004.

[53] N. Shankaran, X. D. Koutsoukos, D. C. Schmidt, Y. Xue, and
C. Lu, “Hierarchical Control of Multiple Resources in Distributed
Real-Time and Embedded Systems,” Real-Time Systems, 2008.

[54] D. Fontanelli, L. Palopoli, and L. Greco, “Deterministic and
Stochastic QoS Provision for Real-Time Control Systems,”
in Proceedings of the 17th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2011.

[55] Y. Saito, T. Azumi, S. Kato, and N. Nishio, “Priority and
Synchronization Support for ROS,” in Proceedings of the 4th
IEEE International Conference on Cyber-Physical Systems,
Networks, and Applications (CPSNA), 2016.

[56] Y. Suzuki, T. Azumi, S. Kato, and N. Nishio, “Real-Time ROS
Extension on Transparent CPU/GPU Coordination Mechanism,”
in Proceedings of the 21st IEEE International Symposium on
Real-Time Distributed Computing (ISORC), 2018.

[57] J. Park, R. Delgado, and B. W. Choi, “Real-Time Characteristics
of ROS 2.0 in Multiagent Robot Systems: An Empirical Study,”
IEEE Access, 2020.

[58] G. Lipari and E. Bini, “Resource Partitioning among Real-Time
Applications,” in Proceedings of the 15th Euromicro Conference
on Real-Time Systems (ECRTS), 2003.

[59] ——, “A Methodology for Designing Hierarchical Scheduling
Systems,” Journal of Embedded Computing, 2005.

[60] ——, “A Framework for Hierarchical Scheduling on Multiproces-
sors: From Application Requirements to Run-Time Allocation,”
in Proceedings of the 31st IEEE Real-Time Systems Symposium
(RTSS), 2010.

[61] G. Buttazzo, E. Bini, and Y. Wu, “Partitioning Parallel Appli-
cations on Multiprocessor Reservations,” in Proceedings of the
22nd Euromicro Conference on Real-Time Systems (ECRTS),
2010.

14


	Introduction
	Background and Definitions
	Automatic Latency Management
	Design of ROS-Llama
	The Model Extractor
	Predictable Thread Scheduling
	The Budgeting Algorithm

	Practical Considerations
	Evaluation
	Evaluation Results: Latency Goal Compliance
	Evaluation Results: ROS-Llama Runtime Costs

	Open Problems and Pragmatic Workarounds
	Open Analysis Problems
	Linux Platform Limitations
	ROS Idiosyncrasies

	Related Work
	Conclusion

