
A Note on Blocking Optimality

in Distributed Real-Time Locking Protocols

Björn B. Brandenburg
MPI-SWS

Initial version: July 2012 / Revised: April 2013

Abstract

Lower and upper bounds on maximum priority inversion blocking
(pi-blocking) are established under distributed multiprocessor real-time
semaphore protocols (where resources may be accessed only from specific
synchronization processors). Prior work on shared-memory multiproces-
sor semaphore protocols (which require resources to be accessible from
potentially any processor) has established bounds of Θ(m) and Θ(n)
maximum pi-blocking under suspension-oblivious and suspension-aware
analysis, respectively, where m denotes the total number of processors
and n denotes the number of tasks. In this paper, it is shown that in
the case of distributed semaphore protocols, there exist two different
task allocation scenarios that give rise to distinct lower bounds. In the
case of co-hosted task allocation, where application tasks may also be
assigned to synchronization processors, Ω(Φ · n) maximum pi-blocking
is unavoidable for some tasks under any locking protocol under both
suspension-aware and suspension-oblivious schedulability analysis. In
contrast, in the case of disjoint synchronization and application pro-
cessors (i.e., if application tasks are not scheduled on synchronization
processors), only Ω(m) and Ω(n) maximum pi-blocking is fundamental
under suspension-oblivious and suspension-aware analysis, respectively,
as in the shared-memory case. These bounds are shown to be asymp-
totically tight with the construction of two new distributed real-time
semaphore protocols that ensure O(m) and O(n) maximum pi-blocking
under suspension-oblivious and suspension-aware analysis, respectively.

1 Introduction

The goal of a real-time locking protocol is to provide predictable access to
shared resources subject to mutual exclusion constraints, that is, a real-time

1



locking protocol must allow worst-case blocking to be bounded a priori. As
excessive locking-related delays can endanger a real-time time task’s temporal
correctness, the primary objective of a good real-time locking protocol is
to avoid such blocking to the extent possible. This immediately leads to
questions of optimality: if some blocking is unavoidable when using locks, then
what is the minimal bound on worst-case blocking that any locking protocol
can guarantee? In other words, which upper bounds on worst-case blocking
must a real-time locking protocol ensure to be deemed (asymptotically)
optimal? This question has long been answered for uniprocessor locking
protocols [2, 20, 23], and has recently been answered for the case of shared-
memory multiprocessor semaphore protocols ([11–13, 24]), where shared
resources may be accessed from potentially any processor. However, for the
case of distributed multiprocessor semaphore protocols, where each resource
may only be accessed from a specific (subset of) processor(s), this fundamental
question has not been studied in prior work.

Contributions. In this paper, we address this gap in the understanding
of multiprocessor real-time synchronization. In particular, we show that
there exist in fact two distinct cases, termed co-hosted and disjoint task
and resource allocation, which lead to different lower bounds on unavoidable
blocking. Notably, we show that blocking in the co-hosted scenario, where
real-time tasks are allocated to synchronization processors (i.e., to processors
that have access to shared resources), can be asymptotically worse than in the
comparable shared-memory case by a factor of Φ, where Φ denotes the ratio
of the maximum response time and the minimum period (formalized in Sec. 2
below). In contrast, in the disjoint case, where synchronization processors
are prohibited from hosting real-time tasks, blocking that is asymptotically
not worse than in the comparable shared-memory case is possible. We show
these bounds to be asymptotically tight by constructing two distributed
real-time semaphore protocols that ensure asymptotically minimal blocking
under so-called suspension-oblivious and suspension-aware schedulability
analysis, respectively, which are two concepts central to blocking optimality
that we review in detail in the next section. Finally, we demonstrate that,
asymptotically speaking, prior distributed real-time semaphore protocols do
not ensure minimal blocking under either type of schedulability analysis.

2



2 Background and Definitions

In this section, we establish key definitions and review prior results. In
short, the results presented in this paper apply to arbitrary deadline sporadic
tasks provisioned on a multiprocessor platform with non-uniform processor
clusters. Non-processor resources are accessible only from select processors
and may be accessed using remote procedure calls (RPCs). We formalize
these assumptions as follows.

2.1 System Model

We consider the problem of scheduling a set of n sporadic real-time tasks τ =
{T1, . . . , Tn} on a set of m processors. Each sporadic task Ti is characterized
by its minimum inter-arrival separation pi, its per-job worst-case execution
time ei, and its relative deadline di, where ei ≤ min(di, pi).

We let Ji denote an arbitrary job of task Ti. A job is pending from its
release until it completes, and while it is pending, it is either ready and may
be scheduled on a processor, or suspended and not available for scheduling.
A job Ji released at time ta has its absolute deadline at time ta + di.

A task’s maximum response time ri describes the maximum time that
any Ji remains pending. A task Ti is schedulable if it can be shown that
ri ≤ di; the set of all tasks τ is schedulable if each Ti ∈ τ is schedulable. We
define Φ to be the ratio of the maximum response time and the minimum
period; formally

Φ =
maxi{ri}
mini{pi}

. (1)

Clusters. The set of m processors consists of K pairwise disjoint clusters
(or sets) of processors, where 2 ≤ K ≤ m. We let Cj denote the jth cluster,

and let mj denote the number of processors in Cj , where
∑K

j=1mj = m.
A common special case is a partitioned system, where mj = 1 for each Cj .
However, in general, clusters do not necessarily have a uniform size. We
preclude the special case of K = 1 and m1 = m, that is, the special case of a
single globally scheduled cluster, because distributed locking protocols are
relevant only if there are at least two clusters.

For notational convenience, we assume that clusters are indexed in order
of non-decreasing cluster size: mj ≤ mj+1 for 1 ≤ j < K. In particular, m1

denotes the (or one of the) smallest cluster(s) in the system (with ties broken
arbitrarily). Since K ≥ 2, we have m1 ≤ m

2 . This fact is exploited by the
lower-bound argument in Sec. 3.

3



Scheduling. Each task Ti is statically assigned to one of the K clusters;
we let C(Ti) denote the cluster to which Ti has been assigned. Each cluster
is scheduled independently according to a job-level fixed-priority (JLFP)
scheduling policy [14]. A JLFP scheduler assigns each pending job a fixed
priority and, at any point in time, schedules the mj highest-priority ready
jobs (or agents, see below) in each cluster Cj . Jobs may freely migrate among
processors belonging to the same cluster (i.e., global JLFP scheduling is used
within each cluster), but jobs may not migrate across cluster boundaries.
Note that this does not preclude the partitioned scheduling of shared-memory
systems since it is possible to interpret each processor as a singleton cluster.

Two commonly used JLFP policies are fixed-priority (FP) scheduling,
where each task is assigned a fixed priority and each job uses the priority of its
task, and earliest-deadline first (EDF) scheduling, where jobs are prioritized
in order of decreasing absolute deadlines (with ties broken arbitrarily).

A different JLFP policy may be use in each cluster. Our results apply to
any JLFP policy.

2.2 Distributed Real-Time Semaphore Protocols

Tasks may share serially reusable resources (such as co-processors, I/O ports,
or shared data structures). Access to shared resources is governed by a
locking protocol that ensures mutual exclusion. In this paper, we focus on
semaphore protocols, that is, on locking protocols in which blocked tasks wait
by suspending (in contrast to spin-based protocols, in which tasks busy-wait
by executing a delay loop).

There are two major types of semaphore protocols. In shared-memory
locking protocols, tasks execute critical sections locally, in the sense that
each task accesses shared resources directly from the processor on which
it is scheduled, such that, over time, resources are accessed from multiple
processors. For example, this is the case under the classic Multiprocessor
Priority-Ceiling Protocol (MPCP) [19, 20].

In contrast, in distributed locking protocols, each resource is accessed only
from a designated synchronization processor (or cluster). Such protocols,
which derive their name from the fact that they could also be used in
distributed systems (i.e., in the absence of shared memory), require critical
sections to be executed remotely if tasks access resources not local to their
assigned processor.

In this paper, we focus on distributed real-time semaphore protocols.

4



Resource model. The tasks in τ are assumed to share nr resources (be-
sides the processors). Each shared resource `q (where 1 ≤ q ≤ nr) is local to
exactly one of the K clusters (but can be accessed from any cluster using
RPC invocations). We let C(`q) denote the cluster to which `q is local.
Cluster C(`q) is also called the synchronization cluster for `q.

To facilitate resource access by remote tasks, access to each shared
resource is mediated by one or more resource agents. To access a shared
resource `q, a job Ji invokes an agent on cluster C(`q) using synchronous
RPC to carry out a request on Ji’s behalf. An agent is active while it is
processing requests, and inactive otherwise. While active, an agent is either
ready or suspended (e.g., if the current request involves asynchronous I/O
operations). After issuing a request for a resource, Ji suspends until notified
by the invoked agent that the request has been carried out. A locking protocol
determines how concurrent, conflicting requests are serialized. We review a
classic protocol for this purpose in Sec. 2.2.1 below.

We let Ni,q denote the maximum number of times that any Ji accesses `q,
and let Li,q denote the corresponding maximum critical section length, that
is, the maximum time that the agent handling Ji’s RPC invocation requires
exclusive access to `q to carry out the invoked operation (where Li,q = 0 if
Ni,q = 0). For notational convenience, we define

Lmax , max{Li,q | 1 ≤ q ≤ nr ∧ Ti ∈ τ}. (2)

Jobs invoke at most one agent at any time, and agents do not invoke other
agents as part of handling a resource request.

We initially assume that jobs can invoke agents without any delay, that is,
the overhead of cluster-to-cluster communication is assumed negligible. If a
distributed locking protocol is implemented on top of a global shared memory
(e.g., see [10]), this assumption is realistic. However, if RPC invocations
must be routed across a shared interconnect (e.g., this is the case in some
emerging many-core platforms), then additional communication delays must
be accounted for. However, these communication delays do not affect the
blocking analysis (i.e., they do not affect the contention for shared resources)
and thus can be ignored when deriving asymptotic bounds. We revisit the
issue of non-negligible communication delays in Sec. 6.

Finally, in a real system, there likely exist resources in each cluster that
are shared only among local tasks. Such local resources can be handled using
shared-memory protocols (or uniprocessor protocols in the case of singleton
clusters, i.e., if mj = 1) and are not subject of this paper. For each resource
`q, we assume that it is accessed by tasks from at least two different clusters.

5



2.2.1 The Distributed Priority Ceiling Protocol

Rajkumar et al . were first to study real-time locking on multiprocessors and
proposed the Distributed Priority-Ceiling Protocol (DPCP) [20, 21], which,
as the name implies, does not require shared memory. A detailed review of
the DPCP and other multiprocessor real-time locking protocols can be found
in [13]; herein, we briefly review the most essential aspects.

The DPCP assumes partitioned fixed-priority (P-FP) scheduling, that
is, the DPCP fundamentally requires mj = 1 for each cluster (or, rather,
partition) Cj . Each resource `q is assumed local (i.e., statically assigned)
to a specific processor and may not be accessed from other processors. The
DPCP provides one resource agent, denoted Aq,i, for each resource `q and
each task Ti. Importantly, resource agents are subject to priority boosting,
which means that they have priorities higher than any regular task (and thus
cannot be preempted by “normal” jobs), although resource agents acting
on behalf of higher-priority tasks may still preempt agents acting on behalf
of lower-priority tasks. That is, an agent Aq,h may preempt another agent
Ar,l if Th has a higher priority than Tl. After a job has invoked an agent, it
suspends until its request has been carried out.

On each processor, conflicting accesses are mediated using the well-known
uniprocessor priority-ceiling protocol (PCP) [20, 23]. The PCP assigns each
resource a priority ceiling, which is the priority of the highest-priority task
(or agent) accessing the resource, and, at runtime, maintains a system ceiling,
which is the maximum priority ceiling of any currently locked resource. A
job (or agent) is permitted to lock a resource only if its priority exceeds the
current system ceiling, waiting jobs/agents are ordered by effective scheduling
priority, and priority inheritance [20, 23] is applied to prevent unbounded
“priority inversion” (see Sec. 2.3 below).

2.2.2 Simplified Protocol Assumptions

The DPCP can be considered the de facto standard distributed multiprocessor
real-time semaphore locking protocol. In this paper, we abstract from the
specifics of the DPCP to consider a larger class of “DPCP-like” protocols.
Specifically, we focus on distributed real-time locking protocols that ensure
progress by means of two properties.

A1 Agents are priority-boosted: agents always have a higher priority than
regular jobs.

A2 The distributed locking protocol is weakly work-conserving : a resource
request R for a resource `q is unsatisfied at time t (i.e., R has been

6



issued but is not yet being processed) only if some resource (not
necessarily `q is currently unavailable (i.e., some agent is currently
processing a request for any resource).

Assumption A1 is necessary to expedite request completion since excessive
delays cannot generally be avoided if jobs can preempt agents. Assumption A2
rules out pathological protocols that “artificially” delay requests. We consider
this form of work conservation to be “weak” because it does not require the
requested resource to be unavailable; a request for an available resource may
also be delayed if some other resource is currently in use. While a stronger
progress guarantee may be desirable in practice, Assumption A2 suffices to
establish the lower and upper bounds presented herein. Notably, the DPCP
is only weakly work-conserving (and not work-conserving with respect to
each requested resource) since requests for available resources may remain
temporarily unsatisfied due to ceiling blocking under the PCP.

Assumptions A1 and A2 together ensure that any delay in the processing
of resource requests can be attributed only to other resource requests.

Agents. Under the DPCP, jobs do not require agents to access resources
local to their assigned processor since jobs can directly participate in the
PCP. In a sense, this can be seen as jobs taking over the role of their agent
on their local processor. To simplify the discussion in this paper, we assume
herein that resources are accessed only via agents (i.e., jobs invoke agents
even for resources that happen to be local to their assigned processors). This
does not change the algorithmic properties of the DPCP.

For the sake of simplicity, we further assume that there is only a single
local agent for each resource. As seen in the DPCP [20, 21], it can make
sense to use more than one agent per resource; however, in the following, we
abstract from such protocol specifics and let a single agent Aq represent all
agents corresponding to a resource `q.

2.2.3 Co-Hosted and Disjoint Task Allocation

Processor clusters that host resource agents are called synchronization clusters.
Conversely, processor clusters that host sporadic real-time tasks are called
application clusters. In this paper, we establish asymptotically tight lower and
upper bounds on maximum pi-blocking in two separate task and resource
allocation scenarios, which we refer to as “co-hosted” and the “disjoint”
settings, respectively.

In a co-hosted setting, the set of application clusters overlaps with the
set of synchronization clusters, that is, there exists a cluster that hosts both

7



tasks and agents. In contrast, in a disjoint setting, clusters may host either
agents or tasks, but not both. The significance of these two settings is that
they give rise to two distinct lower bounds on worst-case blocking, as will
become apparent in Sec. 3.

2.3 Priority Inversion Blocking

The sharing of resources subject to mutual exclusion constraints inevitably
causes some delays because conflicting concurrent requests must be serialized.
Such delays are problematic in a real-time system if they lead to an increase
in worst-case response times (i.e., if they affect some ri). Conversely, delays
that do not affect ri are not considered to constitute “blocking” in real-time
systems. This is captured by the concept of priority inversion [20, 23], which,
intuitively, exists if a job that should be scheduled according to its base
priority is not scheduled, either because it is suspended (while waiting to gain
access to a shared resource) or because a job or agent with elevated effective
priority prevents it from being scheduled. To avoid confusion with other
interpretations of the term “blocking” (e.g., in an OS context, “blocking”
often is used synonymously with suspending), we use the term priority
inversion blocking (pi-blocking) to denote any resource-sharing-related delay
that affects worst-case response times in this paper. We let bi denote a bound
on the maximum pi-blocking incurred by any job of task Ti.

2.3.1 Suspension-Oblivious vs. Suspension-Aware Analysis

Prior work has shown that there exist in fact two kinds of priority inversion
[11], depending on how suspensions are accounted for by the employed schedu-
lability analysis. The difference arises because many published schedulability
tests simply assume the absence of self-suspensions, which are notoriously
difficult to analyze (e.g., see [22]), and thus ignore a major source of pi-
blocking. Such suspension-oblivious (s-oblivious) schedulability tests can still
be employed to analyze task systems that exhibit self-suspensions, but require
that pi-blocking be accounted for pessimistically by inflating each execution
requirement ei by bi prior to applying the schedulability test. This results in
sound, but likely pessimistic results: over-approximating all pi-blocking as
additional processor demand is safe because converting execution time to
suspensions never increases response times of any task (assuming preemptive
JLFP scheduling), but is also likely pessimistic as the processor load is (much)
lower in practice than assumed during analysis.

For an example of an s-oblivious schedulability test, consider Liu and

8



Layland’s classic uniprocessor EDF utilization bound for implicit-deadline
tasks: a set of independent sporadic tasks τ is schedulable under EDF on
a uniprocessor if and only if

∑
Ti∈τ

ei
pi
≤ 1 [18]. This test is s-oblivious

because tasks are assumed to be independent (i.e., there are no shared
resources) and because jobs are assumed to always be ready (i.e., there are
no self-suspensions). However, even if these assumptions are violated (i.e., if
bi > 0 for some Ti), Liu and Layland’s utilization bound can still be used
as follows [11–13]: in the presence of locking-related self-suspensions, a set
of resource-sharing, implicit-deadline sporadic tasks τ is schedulable under
EDF on a uniprocessor if∑

Ti∈τ

ei + bi
pi

≤ 1. (3)

While s-oblivious schedulability analysis may at first sight appear too pes-
simistic to be useful, it is still relevant because some of the pessimism can
actually be “reused” to obtain less pessimistic pi-blocking bounds, and be-
cause many published multiprocessor schedulability tests (e.g., [3–8, 16]) do
not account for self-suspensions explicitly.

In contrast, effective suspension-aware (s-aware) schedulability analysis,
which explicitly accounts for the effects of pi-blocking, has been developed
for select JLFP policies, with response-time analysis (RTA) for FP scheduling
being a prime example [1, 17]. RTA can be applied to partitioned scheduling
(i.e., if mj = 1 for each Cj) as follows. Let bri denote a bound on maximum
remote pi-blocking (i.e., pi-blocking caused by tasks or agents assigned to
remote clusters), and let bli denote a bound on maximum local pi-blocking
(i.e., pi-blocking caused by tasks or agents assigned to cluster C(Ti)), where
bi = bri + bli. Then, assuming constrained deadlines (i.e., di ≤ pi), a task
Ti’s maximum response time ri is bounded by the smallest solution to the
following recursion [1, 17]:

ri = ei + bri + bli +
∑

Th∈hp(Ti)

⌈
ri + brh
ph

⌉
· eh, (4)

where hp(Ti) denotes the set of tasks assigned to processor C(Ti) that have
higher priorities than Ti. Equation (4) constitutes an s-aware schedulability
test because bi = bri + bli is explicitly accounted for.

2.3.2 S-Oblivious and S-Aware PI-Blocking

From the point of view of schedulability analysis, a priority inversion exists
if a job is delayed (i.e., not scheduled) and this delay cannot be attributed

9



to the execution of a higher-base-priority job (regular interference due to the
scheduling of higher-priority jobs are accounted for by any sound schedulabil-
ity test). Prior work [11–13] has shown that, since s-oblivious schedulability
analysis over-approximates a task’s processor demand, the definition of “pri-
ority inversion” is actually different under s-oblivious and s-aware analysis.

Def. 1. Under s-oblivious schedulability analysis, a job Ji incurs s-oblivious
pi-blocking at time t if Ji is pending but not scheduled and fewer than c
higher-priority jobs of tasks assigned to C(Ti) are pending.

Def. 2. Under s-aware schedulability analysis, a job Ji incurs s-aware
pi-blocking at time t if Ji is pending but not scheduled and fewer than c
higher-priority ready jobs of tasks assigned to C(Ti) are scheduled.

Note that s-oblivious pi-blocking is a weaker definition than s-aware pi-
blocking (a scheduled job is always pending, but the reverse is not necessarily
true). Therefore, a lower bound on s-oblivious pi-blocking also implies a
lower bound on s-aware pi-blocking. Conversely, an upper bound on s-aware
pi-blocking implies an upper bound on s-oblivious pi-blocking [11]. We use
this relationship in Sec. 3 below.

From a practical point of view, the difference between s-oblivious and
s-aware pi-blocking suggests that it is useful to design locking protocols
specifically for a particular type of analysis. From an optimality point of
view, which we review next, the difference between s-oblivious and s-aware
pi-blocking is fundamental because—in shared-memory systems—the two
types of analysis have been shown to yield two different lower bounds on the
amount of pi-blocking that is unavoidable under any locking protocl [11, 13].

2.3.3 PI-Blocking Complexity

The primary purpose of a real-time locking protocol is to minimize pi-blocking
to the extent possible. However, if resources are subject to mutual exclusion
constraints, then some pi-blocking (of either type) is unavoidable in the worst
case. A natural question to ask is then: how much is “some,” that is, what
is the fundamental lower bound on s-aware and s-oblivious pi-blocking that
any locking protocol can guarantee in the worst case? To enable systematic
study of this question, maximum pi-blocking, formally max{bi | Ti ∈ τ}, has
been proposed in prior work [11–13] as a metric of blocking complexity.

Concrete bounds on pi-blocking must necessarily depend on each Li,q—
long requests will cause long priority inversions under any protocol. Similarly,
bounds for any reasonable protocol grow linearly with the maximum number
of requests per job. Thus, when deriving asymptotic bounds, we consider, for

10



each Ti,
∑

1≤q≤nr
Ni,q and each Li,q to be constants and assume n ≥ m. All

other parameters are considered variable (or dependent on m and n). In par-
ticular, we do not impose constraints on the ratios Φ and max{pi}/min{pi},
the number of resources nr, or the number of tasks sharing each `q.

Surprisingly, it was shown [11–13] that, in the case of shared-memory
locking protocols, the lower bound on unavoidable pi-blocking depends on
whether s-oblivious or s-aware schedulability analysis is employed. More
specifically, it was shown that there exist pathological task sets such that
maximum pi-blocking is linear in the number of processors m under s-
oblivious analysis, but linear in the number of tasks n under s-aware analysis
[11–13]. Further, it was shown that these bounds are asymptotically tight
with the construction of shared-memory semaphore protocols that ensure for
any task set maximum pi-blocking that is within a constant factor of the
established lower bounds.

To summarize, it has been shown that, in the case of shared-memory
semaphore protocols, the real-time mutual exclusion problem can be solved
with max{bi | Ti ∈ τ} = Θ(m) under s-oblivious schedulability analysis,
and max{bi | Ti ∈ τ} = Θ(n) under s-aware schedulability analysis [11–
13]. We can now precisely state the contribution of this paper: in the
following sections, we establish upper and lower bounds on maximum pi-
blocking under s-oblivious and s-aware schedulability analysis for distributed
real-time locking protocols, thereby complementing the earlier results on
shared-memory real-time locking protocols [11–13].

3 Lower Bounds on Maximum PI-Blocking

In this section, we start by establishing a lower bound on maximum s-
oblivious and s-aware pi-blocking in a co-hosted setting. We do this by
showing the existence of pathological task sets in which some task always
incurs Ω(Φ · n) pi-blocking, regardless of whether s-oblivious or s-aware
schedulability analysis is used. This family of task sets is defined as follows.

Def. 3. For a given smallest cluster size m1, a given number of tasks n
(where n ≥ m ≥ 2 · m1), and an arbitrary positive integer parameter R
(where R ≥ 1), let τ seq(n,m1, R) , {T1, . . . , Tn} denote a set of n periodic
tasks, with parameters as given in Table 1, that share one resource `1 local
to cluster C1 (i.e., C(`1) = C1).

The task set τ seq(n,m1, R) depends on the smallest cluster size m1

because, by construction, the maximum pi-blocking will be incurred by tasks
in cluster C1. Note in Table 1 that the maximum critical section lengths

11



ei pi di Ni,1 Li,q C(Ti)

R·n
2 R · n R · n 0 0 C1 for i ∈ {1, . . . ,m1}
a n n+ 1 1 b C2, . . . , CK for i ∈ {m1 + 1, . . . , 2 ·m1}
a n n+ 1 1 a C2, . . . , CK for i > 2 ·m1 (if any)

Table 1: Parameters of the tasks in τ seq(n,m1, R), where a = 1 and b = 2 if
m1 > 1, and a = 1

2 and b = 1 if m1 = 1. Tasks T1, . . . , Tm1 are assigned to the
first cluster C1; all other tasks are assigned in a round-robin fashion to clusters
other than C1, e.g., C(Ti) = C(2+imod(K−1)). Recall that n ≥ m ≥ 2 ·m1.

(w.r.t. `1) depend on m1, which is required to accommodate the special case
of m1 = 1. We first consider the case of m1 > 1.

In the following, we assume a synchronous periodic arrival sequence, that
is, each task Ti releases a job at time zero and periodically every pi time
units thereafter. We consider periodic tasks (and not sporadic tasks) in this
section because it simplifies the example, and since periodic task activation is
a special case of sporadic task activation and thus sufficient for establishing
a lower bound.

For simplicity, we further assume that each job of tasks Tm1+1, . . . , Tn
immediately accesses resource `1 as soon as it is allocated a processor (i.e.,
at the very beginning of the job). This results in a pathological schedule
in which tasks Tm1+1, . . . , Tn are serialized on `1. An example schedule for
K = 2, m1 = 2, m2 = 2, n = 5, and R = 3 is shown in Fig. 1.

We begin by observing that the agent servicing requests for `1, denoted
A1 in the following, continuously occupies one of the processors in cluster
C1.

Lemma 1. If m1 > 1, then only m1 − 1 processors are available in cluster
C1 to service jobs of tasks T1, . . . , Tm1 .

Proof. By construction, the agent A1 servicing requests for resource `1 is
located in cluster C1. By Assumption A1, when servicing requests, agent A1

preempts any job of T1, . . . , Tm1 . By Assumption A2, and since there exists
only a single shared resource, agent A1 becomes active as soon as a request
for `1 is issued. Thus, a processor in C1 is unavailable for servicing jobs of
tasks T1, . . . , Tm1 whenever A1 is servicing requests issued by jobs of tasks
Tm1+1, . . . , Tn.

Consider an interval [ta, ta + n), where ta = x · n and x ∈ N. Assuming a
synchronous, periodic arrival sequence, tasks Tm1+1, . . . , Tn each release a

12



151050 time

C2

C1 T1

T2

T3

T4

A1

T5

3 4 5 3 4 5 3 4 5

job release

job completion

RPC issued

critical section

suspended

reply received
3

scheduled on processor
41 2

Figure 1: Example schedule of the task set τ seq(n,m1, R) as specified in
Table 1 for K = 2, m1 = 2, m2 = 2, n = 5, and R = 3. There are five
tasks T1, . . . , T5 assigned to K = 2 clusters sharing one resource `1, which
is local to cluster C1. Agent A1 is hence assigned to cluster C1. The small
digit in each critical section signifies the task on behalf of which the agent is
executing the request. Deadlines have been omitted from the schedule for the
sake of clarity. By construction, the scheduling policy employed to schedule
jobs is irrelevant (for simplicity, assume FP scheduling, where lower-indexed
tasks have higher priority than higher-indexed tasks). The response-time of
T2 is r2 = n · R = 5 · 3 = 15 since it has the lowest priority in its assigned
cluster C1, and because agent A1 is continuously occupying a processor.

job at time ta. Upon being scheduled, each such job immediately accesses
resource `1 and suspends until its request is serviced. As a result, regardless
of the JLFP policy used to schedule jobs, A1 is active during [ta, ta + n) for
the cumulative duration of all requests issued by jobs of tasks Tm1+1, . . . , Tn
released at time ta. Assuming each request requires the maximum time to

13



service, agent A1 is thus active for a duration of

n∑
i=m1+1

Ni,1 · Li,1 =

2m1∑
i=m1+1

Ni,1 · Li,1 +

n∑
i=2m1+1

Ni,1 · Li,1

=

2m1∑
i=m1+1

2 +

n∑
i=2m1+1

1

=

2m1∑
i=1

1 +

n∑
i=2m1+1

1

= n

time units during the interval [ta, ta + n), regardless of how the employed
locking protocol serializes requests for `1. Hence, only m1 − 1 processors are
available to service jobs of T1, . . . , Tm1 during the interval [ta, ta + n). Since
such intervals are contiguous (as ta = x · n and x ∈ N), one processor in C1

is continuously unavailable to jobs of T1, . . . , Tm1 , regardless of either the
employed JLFP scheduling policy or the employed locking protocol.

This in turn implies that the execution of one of the jobs of tasks
T1, . . . , Tm1 is delayed.

Lemma 2. If m1 > 1, then max {ri | 1 ≤ i ≤ m1 } = R · n.
Proof. Consider an interval [ta, ta + R · n), where ta = x · R · n and x ∈ N.
Assuming a synchronous, periodic arrival sequence, tasks T1, . . . , Tm1 each
release a job at time ta. Regardless of the (work-conserving) JLFP policy
employed to assign priorities to jobs, one of these m1 jobs will have lower
priority than the other m1 − 1 ready pending jobs in cluster C1. Let Jl
denote this lowest-priority job. By Lemma 1, there are only m1−1 processors
available to service jobs. Thus Jl will only be scheduled after one of the other
jobs has finished execution. Since each task assigned to cluster C1 has a worst-
case execution time of ei = R·n

2 , in the worst case, job Jl is not scheduled
until time ta+ R·n

2 , and then requires another el = R·n
2 time units of processor

service to complete. Hence, max {ri | 1 ≤ i ≤ m1 } = 2ei = R · n.

So far we have considered only the case of m1 > 1. By construction, the
same maximum response-time bound arises also in the case of m1 = 1.

Lemma 3. If m1 = 1, then max {ri | 1 ≤ i ≤ m1 } = R · n.
Proof. If m1 = 1, then there is only one task assigned to cluster C1. The
single processor in C1 is available to jobs of T1 only when A1 is inactive.
Recall from Table 1 that the maximum critical section lengths of tasks

14



Tm1+1, . . . , Tn are halved if m1 = 1. Analogously to Lemma 1, it can thus
be shown that, in the worst case, the single processor in C1 is available to T1
for only n

2 time units out of each interval [x · n, x · n+ n), where x ∈ N.
Consider an interval [ta, ta + R · n), where ta = x · R · n and x ∈ N.

Assuming a synchronous arrival sequence, task T1 releases a J1 at time ta.
In the worst case, J1 requires e1 = R·n

2 time units to complete. Assuming
maximum interference by A1 (i.e., if the processor is unavailable to J1 for n

2
time units every n time units), J1 will accumulate e1 time units of processor
service only by time ta + 2ei = ta +R · n.

Since there are m1 processors and m1 pending jobs in cluster C1, this
implies the existence of s-oblivious pi-blocking.

Lemma 4. Under any JLFP scheduling policy and s-oblivious schedulability
analysis, max {bi | Ti ∈ τ seq(n,m1, R)} ≥ R·n

2 .

Proof. By construction, there are at most m1 pending jobs in cluster C1

at any time. This implies that any delay of a pending job constitutes s-
oblivious pi-blocking (recall Definition 1), that is, bi = ri − ei for each
Ti ∈ {T1, . . . , Tm1}, regardless of the employed JLFP scheduling policy. Since
ei = R·n

2 for each Ti ∈ {T1, . . . , Tm1}, we have max {bi | 1 ≤ i ≤ n} ≥
max {ri | 1 ≤ i ≤ m1 }− R·n

2 . By Lemmas 2 and 3, max {ri | 1 ≤ i ≤ m1 } =
R · n, and thus max {bi | 1 ≤ i ≤ n} ≥ R · n− R·n

2 = R·n
2 .

Since the agent A1 and tasks T1, . . . , Tm1 share a cluster in τ seq(n,m1, R),
and because the s-oblivious pi-blocking implies s-aware pi-blocking, we obtain
the following lower bound on maximum pi-blocking in a co-hosted setting.

Theorem 1. Under JLFP scheduling, using either s-aware or s-oblivious
schedulability analysis, there exists a task set such that maximum pi-blocking
max{bi} = Ω(Φ · n) in a co-hosted setting under any weakly work-conserving
distributed multiprocessor real-time semaphore protocol employing priority-
boosted agents (i.e., under protocols matching Assumptions A1 and A2).

Proof. By Lemma 4, for any R ∈ N, there exists a task set τ seq(n,m1, R) such
that max {bi | Ti ∈ τ seq(n,m1, R)} ≥ R·n

2 under s-oblivious schedulability
analysis for any JLFP policy and any distributed multiprocessor semaphore
protocol satisfying Assumptions A1 and A2. Recall from Equation (1) that

Φ = max{ri}
min{pi} , and hence Φ = R·n

n = R in the case of τ seq(n,m1, R). Since

R can be freely chosen, we have max{bi} = Ω(R · n) = Ω(Φ · n) under
s-oblivious schedulability analysis. The presented analysis also extends to
s-aware schedulability analysis since Definition 1 is weaker than Definition 2;
lower-bounds on s-oblivious pi-blocking thus also imply lower bounds on
s-aware pi-blocking [11].

15



In the s-aware case, Theorem 1 shows that in the distributed setup with
co-hosted tasks and agents, maximum pi-blocking is asymptotically worse by
a factor of Φ, compared to a shared-memory system, where the equivalent
mutual exclusion problem can be solved with Θ(n) maximum s-aware pi-
blocking in the general case [11, 13]. Maximum s-oblivious pi-blocking is
also asymptotically worse—the equivalent mutual exclusion problem can be
solved with Θ(m) maximum s-oblivious pi-blocking[11–13] (recall that we
assume n ≥ m). Crucially, Φ, the ratio of the maximum response time and
the minimum period, can be chosen to be arbitrarily large and is independent
of either m or n. This suggests that, from a schedulability point of view,
the mutual exclusion problem is fundamentally more difficult to handle in a
distributed environment.

The observed discrepancy, however, is entirely due to the effects of
preemptions due to priority-boosted agents. While it is necessary to boost the
priority of agents to ensure a timely completion of requests, such troublesome
preemptions can be ruled out entirely by disallowing the co-hosting of agents
and tasks in the same cluster. In fact, in such a scenario with dedicated
synchronization processors (or clusters), the asymptotic lower bounds in the
distributed case are the same as in an equivalent shared-memory setting.
These lower bounds can be trivially established with the setup previously
used in [11]; we omit the details here and summarize the correspondence
with the following theorem.

Theorem 2. Under JLFP scheduling, there exist task sets such that, in a
disjoint setting, under any distributed real-time semaphore protocol matching
Assumptions A1 and A2, max{bi} = Ω(n) under s-aware schedulability
analysis and max{bi} = Ω(m) under s-oblivious schedulability analysis.

In other words, the previously established lower bounds on maximum pi-
blocking under any shared-memory locking protocol apply to the distributed
case as well since distributed locking protocols can also be implemented
in a shared-memory system. In Secs. 5.2 and 5.1, we show these bounds
on maximum pi-blocking to be asymptotically tight (in a disjoint setting)
with the construction of two asymptotically optimal distributed real-time
semaphore protocols.

As a final remark, we note that the task set τ seq(n,m1, R) as given in
Table 1 contains tasks with relative deadlines larger than their periods (i.e.,
di > pi for i > m1). This is purely a matter of convenience and asymptotically
unchanged bounds can easily be derived with implicit-deadline tasks only.

Having established a lower bound of Ω(Φ·n), we next explore the question
of asymptotic optimality in co-hosted settings.

16



4 Asymptotic Optimality in a Co-Hosted Setting

Intuitively, Theorem 1 shows that there exist pathological scenarios in which
the choice of real-time locking protocol is seemingly irrelevant. That is, regard-
less of the specifics of the employed locking protocol, worst-case pi-blocking
appears to be asymptotically worse than in a comparable shared-memory
system simply because resources are inaccessible from some processors. Cu-
riously, protocol-specific rules are immaterial from an asymptotic point of
view: as established next, any distributed real-time locking protocol that
does not starve requests is asymptotically optimal if co-hosting is allowed.

Theorem 3. Under any JLFP scheduler, any weakly-work-conserving, dis-
tributed real-time semaphore protocol that employs priority boosting (i.e.,
any protocol matching Assumptions A1 and A2) ensures O(Φ · n) maxi-
mum pi-blocking, regardless of whether s-aware or s-oblivious schedulability
analysis is employed.

Proof. A pi-blocked job Jb incurs s-aware pi-blocking either when (i) it is
suspended while waiting for a resource request to be completed, or when (ii)
it is preempted while a local priority-boosted agent completes a request for
another job.

Concerning (i), the completion of Jb’s own requests can only be delayed
by other requests (and not by the execution of other jobs) since agents
are priority-boosted, and since the employed distributed locking protocol is
weakly work-conserving (i.e., whenever one of Jb’s requests is delayed, at
least one other request is being processed by some agent).

Concerning (ii), agents only become active when invoked by other jobs.
Hence the total duration of all requests (issued by jobs of any task) that

are executed while Jb is pending provides an upper bound on the maximum
duration of pi-blocking incurred by Jb. Since each job is assumed to issue
at most a constant number of requests of constant length (i.e., from an
asymptotic blocking complexity point of view, for all Ti,

∑
`q
Ni,q ·Li,q = O(1)

[11, 13]), the maximum number of jobs that may be scheduled while Jb is
pending yields a suitable upper bound.

For any task Tx, the number of jobs of Tx that execute while Jb is pending

is bounded by
⌈
rx+rb
px

⌉
.1 Since there are n tasks in total, this implies that at

1See e.g. [13, Ch. 4] for a formal proof of this well-known bound.

17



most

n∑
x=1

⌈
rx + rb
px

⌉
=

n∑
x=1

⌈
rx
px

+
rb
px

⌉

≤
n∑
x=1

⌈
maxi{ri}
mini{pi}

+
maxi{ri}
mini{pi}

⌉
= n · d2Φe = O(Φ · n)

jobs are executed while Jb is pending. Since
∑

`q
Ni,q ·Li,q = O(1) for each Ti,

it follows that maxi{bi} = O(n · Φ), regardless of any protocol-specific rules.
The presented analysis also extends to s-oblivious schedulability analysis
since Definition 1 is weaker than Definition 2; upper-bounds on s-aware
pi-blocking thus also imply upper bounds on s-aware pi-blocking [11].

As a corollary, Theorem 3 implies that the DPCP, which orders requests
according to task priority, is asymptotically optimal in the co-hosted setting.
However, it also shows that requests may be processed in arbitrary order
(e.g., in FIFO order, or even in random order) without losing asymptotic
optimality (as long as at least one request at a time is satisfied and agents
are priority-boosted), which is surprising given that the choice of queue order
is crucial in the shared-memory case [11].

As already noted, in the previous section, by prohibiting the co-hosting
of resources and tasks—that is, somewhat counter-intuitively, by making the
system less similar to a shared-memory system (in which resources and tasks
are necessarily co-hosted)—it is indeed possible to ensure maximum s-aware
pi-blocking that is asymptotically no worse than in a shared-memory system.
Not surprisingly, the choice of queue order is significant in this case. We next
introduce suitable protocols that realize asymptotically optimal maximum
pi-blocking under s-aware and s-oblivious schedulability analysis.

5 Asymptotic Optimality in a Disjoint Setting

Prior work [9, 11–13] has established shared-memory protocols that yield
upper bounds on maximum s-aware and s-oblivious pi-blocking of O(n)
and O(m), respectively. These protocols, namely the FIFO Multiprocessor
Locking Protocol (FMLP+) for s-aware analysis [9, 13] and the family of O(m)
Locking Protocols (the OMLP family) for s-oblivious analysis [11–13], rely
on specific queue structures with strong progress guarantees to obtain the
desired bounds. In the following, we show how the key ideas underlying the
FMLP+ and the OMLP family can be adopted to the problem of designing

18



asymptotically optimal locking protocols for the distributed case studied in
this paper. We begin with the slightly simpler s-aware case.

5.1 Optimal Maximum S-Aware PI-Blocking

Inspired by the FMLP+ [13], the Distributed FIFO Locking Protocol (DFLP)
relies on simple FIFO queues to avoid starvation. Notably, the DFLP ensures
O(n) maximum s-aware pi-blocking in a disjoint setting and transparently
supports arbitrary, non-uniform cluster sizes (i.e., unlike the DPCP, the
DFLP supports distributed systems consisting of multiprocessor nodes with
mj > 1 for some Cj and allows mj 6= mh for j 6= h). We first describe the
structure and rules of the DFLP, and then establish its asymptotic optimality.

Rules. Under the DFLP, conflicting requests for each serially-reusable
resource `q are ordered with a per-resource FIFO queue FQq. Requests for `q
are served by an agent Aq assigned to `q’s cluster C(`q). Resource requests
are processed according to the following rules.

1. When Ji issues a request R for resource `q, Ji suspends and R is
appended to FQq. Ji’s request is processed by agent Aq when R
becomes the head of FQq.

2. When R is complete, it is removed from FQq and Ji is resumed.

3. Agent Aq is inactive when `q’s request queue FQq is empty and active
when it is processing requests. Active agents are scheduled preemptively
in order of increasing issue times with regard to each agent’s currently-
processed request (i.e., an agent processing an earlier-issued request
has higher priority than one serving a later-issued request). Any ties in
request times can be broken arbitrarily (e.g., in favor of agents serving
requests of lower-indexed tasks).

4. Agents have statically higher priority than jobs (i.e., agents are subject
to priority-boosting).

We next show that these simple rules yield asymptotic optimality.

Blocking complexity. The co-hosted case is trivial since the DFLP uses
priority boosting (Rule 4) and because it is weakly work-conserving (requests
are satisfied as soon as the requested resource is available—see Rule 1);
Theorem 3 hence applies.

19



To show that the DFLP is asymptotically optimal in the disjoint case
as well, we first establish a per-request bound on the number of interfering
requests that derives from FIFO-ordering both requests and agents.

Lemma 5. Let R denote a request issued by a job Ji for a resource `q
and let Tx denote a task (i 6= x). Under the DFLP, jobs of Tx delay the
completion of R with at most one request.

Proof. Ji’s request R cannot be delayed by later-issued requests since FQq is
FIFO-ordered and because agents are scheduled in FIFO order according to
the issue time of the currently-served request. Suppose R is delayed by two
or more requests issued by jobs of Tx. Since R is not delayed by later-issued
requests (and clearly not by earlier-completed requests), all blocking requests
are incomplete at the time that R is issued. Since tasks and jobs are both
sequential, and since jobs request at most one resource at a time, there exists
at most one incomplete request per task at any time. Contradiction.

An O(n) bound on maximum pi-blocking follows immediately since each
of the other n − 1 tasks delays Ji at most once each time Ji requests a
resource, and since agents do not preempt jobs in the disjoint setting.

Theorem 4. In a disjoint setting, the DFLP ensures O(n) maximum s-aware
pi-blocking.

Proof. Let Ji denote an arbitrary job. Since, by assumption, no agents
execute on Ji’s cluster, Ji incurs pi-blocking only when suspended while
waiting for a request to complete. By Lemma 5, each other task delays each
of Ji’s

∑
qNi,q requests at most for the duration of one request, that is, per

request, Ji incurs no more than n · Lmax s-aware pi-blocking. Hence, since
Ji issues at most

∑
qNi,q requests, we have bi ≤ n · Lmax ·

∑
qNi,q = O(n)

since
∑

qNi,q and Lmax are assumed to be constants.

The DFLP is thus asymptotically optimal with regard to maximum s-
aware pi-blocking, in both co-hosted settings (Theorem 3) and in settings
with dedicated synchronization processors (Theorem 4). In contrast, the
DPCP does not generally guarantee O(n) s-aware pi-blocking even if dedicated
synchronization processors are employed since it orders conflicting requests
by task priority and is thus prone to starvation issues (this can be shown
similar to the lower bound on priority queues established in [11, 13]).

Next, we consider the s-oblivious case.

20



5.2 Optimal Maximum S-Oblivious PI-Blocking

In this section, we define and analyze the Distributed O(m) Locking Protocol
(D-OMLP), which augments the OMLP family with support for the distributed
system model.

In order to prove optimality under s-oblivious analysis, a protocol must
ensure an upper bound of O(m) s-oblivious pi-blocking. Since there are
n ≥ m tasks in total, if each task is allowed to submit a request concurrently,
excessive contention could arise at each agent (i.e., if an agent is faced with n
concurrent requests, regardless of the order in which requests are processed, it
is not possible to ensure O(m) maximum s-oblivious pi-blocking). Thus, it is
necessary to limit contention early within each application cluster (where job
priorities can be taken into account) to only allow a subset of high-priority
jobs to invoke agents at the same time. In the interest of practicality, such
“contention limiting” should not require coordination across clusters, but
rather must be based only on local information. As we show next, this can
be accomplished by reusing (aspects of) two protocols of the OMLP family.

The first technique is to introduce contention tokens, which are virtual,
cluster-local resources that a job must acquire prior to invoking an agent.
This technique was previously used in the shared-memory OMLP variant
for partitioned JLFP scheduling [11]. By limiting the number of contention
tokens to m in total (i.e., by assigning exactly mj such tokens to each cluster
Cj), each agent is faced with at most m concurrent requests.

This in turn creates the problem of managing access to contention tokens.
However, since contention tokens are a cluster-local resource, this reduces
to a shared-memory problem and prior results on optimal shared-memory
real-time synchronization can be reused. In fact, as there may be multiple
contention tokens in each cluster (if mj > 1), of which a job may use any
one, this reduces to a k-exclusion problem (where k denotes the number of
tokens per cluster in this case). Several asymptotically optimal solutions
for the k-exclusion problem under s-oblivious analysis have been developed
[12, 15, 25], including a variant of the OMLP [12]; the contention tokens
can thus be readily managed within each cluster using one of the available
k-exclusion protocols. These considerations lead to the following protocol
definition.

Rules. Under the D-OMLP, there are mj contention tokens in each cluster

Cj , for a total of m =
∑K

j=1mj contention tokens in total. As in the DFLP,
there is one agent Aq and a FIFO queue FQq for each resource `q.

Jobs may access shared resources according to the following rules. In the

21



following, let Ji denote a job that must access resource `q.

1. Before Ji may invoke agent Aq, it must first acquire a contention token
local to cluster C(Ti) according to the rules of an asymptotically optimal
k-exclusion protocol (e.g., any of the protocols from [12, 15, 25]).

2. Once Ji holds a contention token, it immediately issues its request R
by invoking Aq and suspends. R is appended to FQq, and processed
by Aq when it becomes the head of FQq.

3. When R is complete, it is removed from FQq. Ji is resumed and
immediately relinquishes its contention token.

4. As in the DFLP, agent Aq is active whenever FQq is non-empty, and
inactive otherwise. Active, ready agents are scheduled preemptively in
order of non-decreasing request enqueue times (i.e., while processing
R, agent Aq’s priority is the point in time at which R was enqueued
in FQq). Any ties in the times that requests were enqueued can be
broken arbitrarily.

5. Agents have a statically higher priority than jobs (i.e., agents are
subject to priority-boosting).

Processing requests in FIFO order, together with the contention token
abstraction, yields asymptotically optimal maximum s-oblivious pi-blocking,
as we show next.

Blocking complexity. As with the DFLP, the co-hosted case is trivial
since Theorem 3 applies to the D-OMLP.

In the disjoint case, we first establish a bound on the maximum token-hold
time, since jobs can incur s-oblivious pi-blocking both due to Rule 1 (i.e.,
when no contention tokens are available) and due to Rules 2 and 4 (i.e.,
when R is preceded by other requests in FQq or if Aq is preempted while
processing R).

Lemma 6. In a setting with dedicated synchronization clusters, a job Ji
holds a contention token for at most m · Lmax time units per request.

Proof. By Rules 1 and 3, a job Ji holds a contention token while it waits
for its request R to be completed. Analogously to Lemma 5, since FQq is
FIFO-ordered, and since agents are scheduled FIFO order w.r.t. the time
that requests are enqueued (Rule 4), the completion of R can only be delayed
due to the execution of requests that were incomplete at the time that R was

22



enqueued in FQq. By Rule 1, only jobs holding a contention token may issue

requests to agents. Since there are only m =
∑K

j=1mj contention tokens in
total, there exist at most m− 1 incomplete requests at the time that R is
enqueued in FQq. Hence, R is completed and Ji relinquishes its contention
token after at most m · Lmax time units.

By leveraging prior asymptotically optimal k-exclusion locking protocols
for s-oblivious analysis, Lemma 6 immediately yields an O(m) bound on
maximum s-oblivious pi-blocking under the D-OMLP.

Theorem 5. In a disjoint setting, the D-OMLP ensures O(m) maximum
s-oblivious pi-blocking.

Proof. Let H denote the maximum token-hold time. By Lemma 6, the
maximum token-hold time is H = m · Lmax = O(m). Further, H represents
the “maximum critical section length” w.r.t. the contention token k-exclusion
problem. By Rule 1, an asymptotically optimal k-exclusion protocol is
employed to manage access to contention tokens within each cluster. Applied
to a cluster with mj processors, the k-exclusion problem can be solved such
that jobs incur s-oblivious pi-blocking for the duration of at most O

(mj

k

)
critical section lengths per request [12, 13]. By definition of the D-OMLP,
there are k = mj contention tokens in each cluster Cj . Hence, in a disjoint

setting, a task assigned to a cluster Cj incurs at most O
(
mj

mj
·H
)

= O(H) =

O(m) s-oblivious pi-blocking.

The D-OMLP is thus asymptotically optimal under s-oblivious schedu-
lability analysis, and hence a natural extension of the OMLP family to the
distributed real-time locking problem.

6 Conclusion

In this paper, we considered distributed real-time locking protocols that
ensure mutual exclusion from an optimality point of view: asymptotically
speaking, what is the “best” upper bound on pi-blocking that any such
protocol can ensure in the general case? We identified two different task and
resource allocation strategies, co-hosted and disjoint settings, that give rise to
different answers to this question. In the co-hosted setting, Ω(Φ·n) maximum
s-aware pi-blocking is unavoidable in pathological cases (under either s-aware
or s-oblivious analysis), whereas in the disjoint setting, Ω(n) maximum s-
aware and Ω(m) maximum s-oblivious pi-blocking is fundamental. We further
showed that any distributed locking protocol satisfying Assumptions A1
and A2 is asymptotically optimal in the co-hosted case. For the disjoint case,

23



we introduced two new distributed real-time semaphore protocols that show
the established lower bounds to be asymptotically tight. Specifically, the
DFLP is asymptotically optimal under s-aware analysis, and the D-OMLP is
asymptotically optimal under s-oblivious analysis, w.r.t. blocking complexity
as determined by the maximum pi-blocking metric.

It is important to note that asymptotic optimality does not imply that
such a protocol is always preferable to a non-optimal one. Rather, blocking
bounds of asymptotically similar locking protocols may differ greatly in
absolute terms. Whether a particular locking protocol is suitable for a
particular task set depends on both the task set’s specific requirements and
a protocol’s constant factors, which asymptotic analysis does not reflect. In
particular, this is the case in the co-hosted setting, where all distributed
locking protocols (in the considered class of protocols) differ only in terms of
constant factors. Fine-grained (i.e., non-asymptotic) bounds on maximum
pi-blocking suitable for schedulability analysis are thus required for practical
use and to enable a detailed comparison. Such bounds should not only
reflect a detailed analysis of protocol rules, but also exploit task-set-specific
properties such as per-task bounds on request lengths and frequencies. We
have recently developed such bounds for the DFLP and the DPCP [10]; the
same techniques could also be applied to analyze the D-OMLP.

As already noted in Sec. 2.2, following Rajkumar et al . [20, 21], we
have made the assumption that jobs can invoke agents with “negligible”
overheads (i.e., with overheads that can be accounted for using known
overhead accounting techniques [13]). This is a reasonable assumption
if distributed semaphore protocols are implemented on top of a (large)
shared-memory platform (e.g., see [10] for such a case), but it may be more
problematic in systems that require explicit message routing among a shared
interconnect. Assuming there exists an upper bound on the message delay
between a task Ti and each agent Aq, denoted ∆i,q, such delays can be
incorporated simply by increasing Ti’s self-suspension time by 2∆i,q for
each agent invocation (under the D-OMLP, the maximum token-hold time
is increased by 2∆i,q as well). If ∆i,q can be considered constant (i.e., if
∆i,q = O(1) from an asymptotic analysis point of view), then the asymptotic
upper and lower bounds established in this paper remain unaffected. If,
however, ∆i,q may depend on m or n, additional analysis is required.

In another opportunity for future work, it will also be interesting to
explore how to accommodate nested requests, that is, how to allow complex
requests that require agents to invoke other agents. Ward and Anderson
have recently shown that arbitrarily deep nesting can be supported in shared-
memory locking protocols without loss of asymptotic optimality [24]; however,

24



it remains to be seen whether their techniques can be extended to the case
of distributed real-time semaphore protocols as well.

References

[1] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A.J. Wellings.
Applying new scheduling theory to static priority pre-emptive scheduling.
Software Engineering Journal, 8(5):284–292, 1993.

[2] T. Baker. Stack-based scheduling for realtime processes. Real-Time
Systems, 3(1):67–99, 1991.

[3] T. Baker. Multiprocessor EDF and deadline monotonic schedulability
analysis. Proceedings of the 24th IEEE Real-Time Systems Symposium,
pages 120–129, 2003.

[4] S. Baruah. Techniques for multiprocessor global schedulability analysis.
In Proceedings of the 28th IEEE Real-Time Systems Symposium, pages
119–128, 2007.

[5] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller. Im-
proved multiprocessor global schedulability analysis. Real-Time Systems,
46(1):3–24, 2010.

[6] M. Bertogna and M. Cirinei. Response-time analysis for globally sched-
uled symmetric multiprocessor platforms. In Proceedings of the 28th
IEEE Real-Time Systems Symposium, pages 149–160, 2007.

[7] M. Bertogna, M. Cirinei, and G. Lipari. Improved schedulability anal-
ysis of EDF on multiprocessor platforms. In Proceedings of the 17th
Euromicro Conference on Real-Time Systems, pages 209–218, 2005.

[8] M. Bertogna, M. Cirinei, and G. Lipari. Schedulability analysis of global
scheduling algorithms on multiprocessor platforms. IEEE Transactions
on Parallel and Distributed Systems, 20(4):553–566, 2009.

[9] B. Brandenburg. An asymptotically optimal real-time locking protocol
for clustered scheduling under suspension-aware analysis. In Proceedings
of the 33rd IEEE Real-Time Systems Symposium Work-in-Progress
Session, page 8, 2012.

[10] B. Brandenburg. Improved analysis and evaluation of real-time
semaphore protocols for P-FP scheduling. In Proceedings of the 19th

25



IEEE Real-Time and Embedded Technology and Applications Symposium,
pages 141–152, 2013.

[11] B. Brandenburg and J. Anderson. Optimality results for multiproces-
sor real-time locking. In Proceedings of the 31st Real-Time Systems
Symposium, pages 49–60, 2010.

[12] B. Brandenburg and J. Anderson. The OMLP family of optimal multi-
processor real-time locking protocols. Design Automation for Embedded
Systems, online first, DOI 10.1007/s10617-012-9090-1, July 2012.

[13] Björn Brandenburg. Scheduling and Locking in Multiprocessor Real-
Time Operating Systems. PhD thesis, The University of North Carolina
at Chapel Hill, 2011.

[14] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah. A categorization of real-time multiprocessor scheduling
problems and algorithms. In Handbook of Scheduling: Algorithms,
Models, and Performance Analysis. Chapman Hall/CRC, 2004.

[15] G. Elliott and J. Anderson. An optimal k-exclusion real-time locking
protocol motivated by multi-GPU systems. In Proceedings of the 19th
International Conference on Real-Time and Network Systems, pages
15–24, 2011.

[16] J. Goossens, S. Funk, and S. Baruah. Priority-driven scheduling of
periodic task systems on multiprocessors. Real-Time Systems, 25(2-
3):187–205, 2003.

[17] K. Lakshmanan, D. Niz, and R. Rajkumar. Coordinated task scheduling,
allocation and synchronization on multiprocessors. In Proceedings of the
30th IEEE Real-Time Systems Symposium, pages 469–478, 2009.

[18] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in
a hard real-time environment. Journal of the ACM, 30:46–61, 1973.

[19] R. Rajkumar. Real-time synchronization protocols for shared memory
multiprocessors. Proceedings of the 10th International Conference on
Distributed Computing Systems, pages 116–123, 1990.

[20] R. Rajkumar. Synchronization In Real-Time Systems—A Priority
Inheritance Approach. Kluwer Academic Publishers, 1991.

26



[21] R. Rajkumar, L. Sha, and J. Lehoczky. Real-time synchronization
protocols for multiprocessors. Proceedings of the 9th IEEE Real-Time
Systems Symposium, pages 259–269, 1988.

[22] F. Ridouard, P. Richard, and F. Cottet. Negative results for scheduling
independent hard real-time tasks with self-suspensions. In Proceedings
of the 25th IEEE Real-Time Systems Symposium, pages 47–56, 2004.

[23] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance proto-
cols: an approach to real-time synchronization. IEEE Transactions on
Computers, 39(9):1175–1185, 1990.

[24] B. Ward and J. Anderson. Supporting nested locking in multiprocessor
real-time systems. In Proceedings of the 24th Euromicro Conference on
Real-Time Systems, pages 223–232, 2012.

[25] B. Ward, G. Elliott, and J. Anderson. Replica-request priority donation:
A real-time progress mechanism for global locking protocols. In Proceed-
ings of the 18th International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 280–289, 2012.

27


	Introduction
	Background and Definitions
	System Model
	Distributed Real-Time Semaphore Protocols
	The Distributed Priority Ceiling Protocol
	Simplified Protocol Assumptions
	Co-Hosted and Disjoint Task Allocation

	Priority Inversion Blocking 
	Suspension-Oblivious vs. Suspension-Aware Analysis
	S-Oblivious and S-Aware PI-Blocking
	PI-Blocking Complexity


	Lower Bounds on Maximum PI-Blocking
	Asymptotic Optimality in a Co-Hosted Setting
	Asymptotic Optimality in a Disjoint Setting 
	Optimal Maximum S-Aware PI-Blocking
	Optimal Maximum S-Oblivious PI-Blocking

	Conclusion

