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Abstract. This paper presents a performance comparison of three mul-
tiprocessor real-time locking protocols: the multiprocessor priority ceil-
ing protocol (M-PCP), the distributed priority ceiling protocol (D-PCP),
and the flexible multiprocessor locking protocol (FMLP). In the FMLP,
blocking is implemented via either suspending or spinning, while in the
M-PCP and D-PCP, all blocking is by suspending. The presented com-
parison was conducted using a UNC-produced Linux extension called
LITMUSRT. In this comparison, schedulability experiments were con-
ducted in which runtime overheads as measured on LITMUSRT were
used. In these experiments, the spin-based FMLP variant always exhib-
ited the best performance, and the M-PCP and D-PCP almost always
exhibited poor performance. These results call into question the prac-
tical viability of the M-PCP and D-PCP, which have been the de-facto
standard for real-time multiprocessor locking for the last 20 years.

1 Introduction

With the continued push towards multicore architectures by most (if not all)
major chip manufacturers [19, 25], the computing industry is facing a paradigm
shift: in the near future, multiprocessors will be the norm. Current off-the-shelf
systems now routinely contain chips with two, four, and even eight cores, and
chips with up to 80 cores are envisioned within a decade [25]. Not surprisingly,
with multicore platforms becoming so widespread, real-time applications are
already being deployed on them. For example, systems processing time-sensitive
business transactions have been realized by Azul Systems on top of the highly-
parallel Vega2 platform, which consists of up to 768 cores [4].

Motivated by these developments, research on multiprocessor real-time sched-
uling has intensified in recent years (see [13] for a survey). Thus far, however, few
proposed approaches have actually been implemented in operating systems and
evaluated under real-world conditions. To help bridge the gap between algorith-
mic research and real-world systems, our group recently developed LITMUSRT,
a multiprocessor real-time extension of Linux [8, 11, 12]. Our choice of Linux as
a development platform was influenced by recent efforts to introduce real-time-
oriented features in stock Linux (see, for example, [1]). As Linux evolves, it could



undoubtedly benefit from recent algorithmic advances in real-time scheduling-
related research.

LITMUSRT has been used in several scheduling-related performance stud-
ies [5, 8, 12]. In addition, a study was conducted to compare synchronization
alternatives under global and partitioned earliest-deadline-first (EDF) schedul-
ing [11]. This study was partially motivated by the relative lack (compared to
scheduling) of research on real-time multiprocessor synchronization. It focused
more broadly on comparing suspension- and spin-based locking on the basis of
schedulability. Spin-based locking was shown to be the better choice.

Focus of this paper. In this paper, we present follow-up work to the latter
study that focuses on systems where partitioned, static-priority (P-SP) sched-
uling is used. This is an important category of systems, as both partitioning
and static priorities tend to be favored by practitioners. Moreover, the earliest
and most influential work on multiprocessor real-time synchronization was di-
rected at such systems. This work resulted in two now-classic locking protocols:
the multiprocessor priority ceiling protocol (M-PCP) and the distributed priority
ceiling protocol (D-PCP) [22]. While these protocols are probably the most widely
known (and taught) locking protocols for multiprocessor real-time applications,
they were developed at a time (over 20 years ago) when such applications were
deemed to be mostly of “academic” interest only. With the advent of multicore
technologies, this is clearly no longer the case. Motivated by this, we take a new
look at these protocols herein with the goal of assessing their practical viability.
We also examine the subject of our prior EDF-based study, the flexible multi-
processor locking protocol (FMLP) [6, 9, 11]. We seek to assess the effectiveness
of these protocols in managing memory-resident resources on P-SP-scheduled
shared-memory multiprocessors.

Tested protocols. The M-PCP, D-PCP, and FMLP function very differently.
In both the M-PCP and D-PCP, blocked tasks are suspended, i.e., such a task
relinquishes its assigned processor. The main difference between these two pro-
tocols is that, in the D-PCP, resources are assigned to processors, and in the
M-PCP, such an assignment is not made.1 In the D-PCP, a task accesses a re-
source via an RPC-like invocation of an agent on the resource’s processor that
performs the access. In the M-PCP, a global semaphore protocol is used instead.
In both protocols, requests for global resources (i.e., resources accessed by tasks
on multiple processors) cannot appear in nested request sequences. Invocations
on such resources are ordered by priority and execute at elevated priority lev-
els so that they complete more quickly. In contrast to these two protocols, the
FMLP orders requests on a FIFO basis, allows arbitrary request nesting (with
one slight restriction, described later), and is agnostic regarding whether block-
ing is via spinning (busy-waiting) or suspension. While spinning wastes processor
time, in our prior work on EDF-scheduled systems [11], we found that its use
almost always results in better schedulability than suspending. This is because

1 Because the D-PCP assigns resources to processors, it can potentially be used in
loosely-coupled distributed systems—hence its name.



it can be difficult to predict which scheduler events may affect a task while it
is suspended, so needed analysis tends to be pessimistic. (Each of the protocols
considered here is described more fully later.)

Methodology and results. The main contribution of this paper is an assess-
ment of the performance of the three protocols described above in terms of P-SP
schedulability. Our methodology in conducting this assessment is similar to that
used in our earlier work on EDF-scheduled systems [11]. The performance of
any synchronization protocol will depend on runtime overheads, such as pre-
emption costs, scheduling costs, and costs associated with performing various
system calls. We determined these costs by analyzing trace data collected while
running various workloads under LITMUSRT (which, of course, first required im-
plementing each synchronization protocol in LITMUSRT). We then used these
costs in schedulability experiments involving randomly-generated task systems.
In these experiments, a wide range of task-set parameters was considered (though
only a subset of our data is presented herein, due to space limitations). In each
experiment, schedulability was checked for each scheme using a demand-based
schedulability test [15], augmented to account for runtime overheads. In these ex-
periments, we found that the spin-based FMLP variant always exhibited the best
performance (usually, by a wide margin), and the M-PCP and D-PCP almost al-
ways exhibited poor performance. These results reinforce our earlier finding that
spin-based locking is preferable to suspension-based locking under EDF schedul-
ing [11]. They also call into question the practical viability of the M-PCP and
D-PCP.

Organization. In the next two sections, we discuss needed background and the
results of our experiments. In an appendix, we describe how runtime overheads
were obtained.

2 Background

We consider the scheduling of a system of sporadic tasks, denoted T1, . . . , TN ,
on m processors. The jth job (or invocation) of task Ti is denoted T ji . Such a
job T ji becomes available for execution at its release time, r(T ji ). Each task Ti is
specified by its worst-case (per-job) execution cost , e(Ti), and its period , p(Ti).
The job T ji should complete execution by its absolute deadline, r(T ji ) + p(Ti).
The spacing between job releases must satisfy r(T j+1

i ) ≥ r(T ji )+p(Ti). Task Ti’s
utilization reflects the processor share that it requires and is given by e(Ti)/p(Ti).

In this paper, we consider only partitioned static-priority (P-SP) scheduling,
wherein each task is statically assigned to a processor and each processor is
scheduled independently using a static-priority uniprocessor algorithm. A well-
known example of such an algorithm is the rate-monotonic (RM) algorithm,
which gives higher priority to tasks with smaller periods. In general, we assume
that tasks are indexed from 1 to n by decreasing priority, i.e., a lower index
implies higher priority. We refer to Ti’s index i as its base priority. A job is



scheduled using its effective priority, which can sometimes exceed its base prior-
ity under certain resource-sharing policies (e.g., priority inheritance may raise a
job’s effective priority). After its release, a job T ji is said to be pending until it
completes. While it is pending, T ji is either runnable or suspended. A suspended
job cannot be scheduled. When a job transitions from suspended to runnable
(runnable to suspended), it is said to resume (suspend). While runnable, a job
is either preemptable or non-preemptable. A newly-released or resuming job can
preempt a scheduled lower-priority job only if it is preemptable.

Resources. When a job T ji requires a resource `, it issues a request R` for `.
R` is satisfied as soon as T ji holds `, and completes when T ji releases `. |R`|
denotes the maximum time that T ji will hold `. T ji becomes blocked on ` if R`
cannot be satisfied immediately. (A resource can be held by at most one job at
a time.) A resource ` is local to a processor p if all jobs requesting ` execute on
p, and global otherwise.

If T ji issues another request R′ before R is complete, then R′ is nested within
R. In such cases, |R| includes the cost of blocking due to requests nested in R.
Some synchronization protocols disallow nesting. If allowed, nesting is proper,
i.e., R′ must complete no later than R completes. An outermost request is not
nested within any other request. Inset (b) of Fig. 1 illustrates the different phases
of a resource request. In this and later figures, the legend shown in inset (a) of
Fig. 1 is assumed.

Resource sharing introduces a number of problems that can endanger tem-
poral correctness. Priority inversion occurs when a high-priority job T ih cannot
proceed due to a lower-priority job T jl either being non-preemptable or holding
a resource requested by T ih. T ih is said to be blocked by T jl . Another source of
delay is remote blocking, which occurs when a global resource requested by a job
is already in use on another processor.

In each of the synchronization protocols considered in this paper, local re-
sources can be managed by using simpler uniprocessor locking protocols, such
as the priority ceiling protocol [24] or stack resource policy [3]. Due to space
constraints, we do not consider such functionality further, but instead focus our
attention on global resources, as they are more difficult to support and have
the greatest impact on performance. We explain below how such resources are
handled by considering each of the D-PCP, M-PCP, and FMLP in turn. It is not
possible to delve into every detail of each protocol given the space available. For
such details, we refer the reader to [6, 9, 11, 21].

The D-PCP and M-PCP. The D-PCP implements global resources by provid-
ing local agents that act on behalf of requesting jobs. A local agent Aqi , located
on remote processor q where jobs of Ti request resources, carries out requests on
behalf of Ti on processor q. Instead of accessing a global remote resource ` on pro-
cessor q directly, a job T ji submits a request R to Aqi and suspends. T ji resumes
when Aqi has completed R. To expedite requests, Aqi executes with an effective
priority higher than that of any normal task (see [16, 21] for details). However,
agents of lower-priority tasks can still be preempted by agents of higher-priority
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units, which includes blocking incurred due to nested requests.

tasks. When accessing global resources residing on Ti’s assigned processor, T ji
serves as its own agent.

The M-PCP relies on shared memory to support global resources. In contrast
to the D-PCP, global resources are not assigned to any particular processor but
are accessed directly. Local agents are thus not required since jobs execute re-
quests themselves on their assigned processors. Competing requests are satisfied
in order of job priority. When a request is not satisfied immediately, the request-
ing job suspends until its request is satisfied. Under the M-PCP, jobs holding
global resources execute with an effective priority higher than that of any normal
task.

The D-PCP and M-PCP avoid deadlock by prohibiting the nesting of global
resource requests—a global request R cannot be nested within another request
(local or global) and no other request (local or global) may be nested within R.

Example. Fig. 2 depicts global schedules for four jobs (T 1
1 ,. . . ,T 1

4 ) sharing two
resources (`1, `2) on two processors. Inset (a) shows resource sharing under the
D-PCP. Both resources reside on processor 1. Thus, two agents (A1

2, A1
4) are also

assigned to processor 1 in order to act on behalf of T2 and T4 on processor 2. A1
4

becomes active at time 2 when T 1
4 requests `1. However, since T 1

3 already holds
`1, A1

4 is blocked. Similarly, A1
2 becomes active and blocks at time 4. When T 1

3

releases `1, A1
2 gains access next because it is the highest-priority active agent

on processor 1. Note that, even though the highest-priority job T 1
1 is released

at time 2, it is not scheduled until time 7 because agents and resource-holding
jobs have an effective priority that exceeds the base priority of T 1

1 . A1
2 becomes

active at time 9 since T 1
2 requests `2. However, T 1

1 is accessing `1 at the time,
and thus has an effective priority that exceeds A1

2’s priority. Therefore, A1
2 is not

scheduled until time 10.
Inset (b) shows the same scenario under the M-PCP. In this case, T 1

2 and T 1
4

access global resources directly instead of via agents. T 1
4 suspends at time 2 since

T 1
2 already holds `1. Similarly, T 1

2 suspends at time 4 until it holds `1 one time
unit later. Meanwhile, on processor 1, T 1

1 is scheduled at time 5 after T 1
2 returns

to normal priority and also requests `1 at time 6. Since resource requests are
satisfied in priority order, T 1

1 ’s request has precedence over T 1
4 ’s request, which
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Fig. 2. Example schedules of four tasks sharing two global resources. (a) D-PCP sched-
ule. (b) M-PCP schedule. (c) FMLP schedule (`1, `2 are long). (d) FMLP schedule (`1,
`2 are short).

was issued much earlier at time 2. Thus, T 1
4 must wait until time 8 to access `1.

Note that T 1
4 preempts T 1

2 when it resumes at time 8 since it is holding a global
resource.

The FMLP. The FMLP is considered to be “flexible” for several reasons: it can be
used under either partitioned or global scheduling, with either static or dynamic
task priorities, and it is agnostic regarding whether blocking is via spinning or
suspension. Regarding the latter, resources are categorized as either “short” or
“long.” Short resources are accessed using queue locks (a type of spin lock) [2,
14, 18] and long resources are accessed via a semaphore protocol. Whether a
resource should be considered short or long is user-defined, but requests for long
resources may not be contained within requests for short resources. To date, we
have implemented FMLP variants for both partitioned and global EDF and P-SP
scheduling (the focus of the description given here).



Deadlock avoidance. The FMLP uses a very simple deadlock-avoidance mech-
anism that was motivated by trace data we collected involving the behavior of
actual real-time applications [7]. This data (which is summarized later) suggests
that nesting, which is required to cause a deadlock, is somewhat rare; thus, com-
plex deadlock-avoidance mechanisms are of questionable utility. In the FMLP,
deadlock is prevented by “grouping” resources and allowing only one job to ac-
cess resources in any given group at any time. Two resources are in the same
group iff they are of the same type (short or long) and requests for one may be
nested within those of the other. A group lock is associated with each resource
group; before a job can access a resource, it must first acquire its corresponding
group lock. All blocking incurred by a job occurs when it attempts to acquire
the group lock associated with a resource request that is outermost with respect
to either short or long resources.2 We let G(`) denote the group that contains
resource `.

We now explain how resource requests are handled in the FMLP. This process
is illustrated in Fig. 3.

short

issued satisfied complete

blocked, job spins critical section

long

blocked, job suspends critical section

non-preemptive execution

non-preemptive 
execution

resumed, 
but blocked

priority boosted

time

Fig. 3. Phases of short and long resource requests.

Short requests. IfR is short and outermost, then T ji becomes non-preemptable
and attempts to acquire the queue lock protecting G(`). In a queue lock, blocked
processes busy-wait in FIFO order.3 R is satisfied once T ji holds `’s group lock.
When R completes, T ji releases the group lock and leaves its non-preemptive
section.

2 A short resource request nested within a long resource request but no short resource
request is considered outermost.

3 The desirability of FIFO-based real-time multiprocessor locking protocols has been
noted by others [17], but to our knowledge, the FMLP is the first such protocol to
be implemented in a real OS.



Long requests. If R is long and outermost, then T ji attempts to acquire the
semaphore protecting G(`). Under a semaphore lock, blocked jobs are added to
a FIFO queue and suspend. As soon as R is satisfied (i.e., T ji holds `’s group
lock), T ji resumes (if it suspended) and enters a non-preemptive section (which
becomes effective as soon as T ji is scheduled). When R completes, T ji releases
the group lock and becomes preemptive.

Priority boost. If R is long and outermost, then T ji ’s priority is boosted when
R is satisfied (i.e., T ji is scheduled with effective priority 0). This allows it to
preempt jobs executing preemptively at base priority. If two or more priority-
boosted jobs are ready, then they are scheduled in the order in which their
priorities were boosted (FIFO).

Example. Insets (c) and (d) of Fig. 2 depict FMLP schedules for the same
scenario previously considered in the context of the D-PCP and M-PCP. In (c),
`1 and `2 are classified as long resources. As before, T 1

3 requests `1 first and forces
the jobs on processor 2 to suspend (T 1

4 at time 2 and T 1
2 at time 4). In contrast

to both the D-PCP and M-PCP, contending requests are satisfied in FIFO order.
Thus, when T 1

3 releases `1 at time 5, T 1
4 ’s request is satisfied before that of T 1

2 .
Similarly, T 1

1 ’s request for `1 is only satisfied after T 1
2 completes its request at

time 7. Note that, since jobs suspend when blocked on a long resource, T 1
3 can

be scheduled for one time unit at time 6 when T 1
1 blocks on `1.

Inset (d) depicts the schedule that results when both `1 and `2 are short.
The main difference from the schedule depicted in (c) is that jobs busy-wait non-
preemptively when blocked on a short resource. Thus, when T 1

2 is released at
time 3, it cannot be scheduled until time 6 since T 1

4 executes non-preemptively
from time 2 until time 6. Similarly, T 1

4 cannot be scheduled at time 7 when
T 1

2 blocks on `2 because T 1
2 does not suspend. Note that, due to the waste of

processing time caused by busy-waiting, the last job only finishes at time 15.
Under suspension-based synchronization methods, the last job finishes at either
time 13 (M-PCP and FMLP for long resources) or 14 (D-PCP).

3 Experiments

In our study, we sought to assess the practical viability of the aforementioned
synchronization protocols. To do so, we determined the schedulability of randomly-
generated task sets under each scheme. (A task system is schedulable if it can
be verified via some test that no task will ever miss a deadline.)

Task parameters were generated—similar to the approach previously used
in [11]—as follows. Task utilizations were distributed uniformly over [0.001, 0.1].
To cover a wide range of timing constraints, we considered four ranges of peri-
ods: (i) [3ms-33ms], (ii) [10ms-100ms], (iii) [33ms-100ms], and (iv) [100ms-
1000ms]. Task execution costs (excluding resource requests) were calculated
based on utilizations and periods. Periods were defined to be integral, but execu-
tion costs may be non-integral. All time-related values used in our experiments



were defined assuming a target platform like that used in obtaining overhead
values. As explained in the appendix, this system has four 2.7 GHz processors.

Given our focus on partitioned scheduling, task sets were obtained by first
generating tasks for each processor individually, until either a per-processor uti-
lization cap Û was reached or 30 tasks were generated, and then generating
resource requests. By eliminating the need to partition task sets, we prevent the
effects of bin-packing heuristics from skewing our results. All generated task sets
were determined to be schedulable before blocking was taken into account.

Resource sharing. Each task was configured to issue between 0 and K resource
requests. The access cost of each request (excluding synchronization overheads)
was chosen uniformly from [0.1µs, L]. K ranged from 0 to 9 and L from 0.5µs
to 15.5µs. The latter range was chosen based on locking trends observed in a
prior study of locking patterns in the Linux kernel, two video players, and an
interactive 3D video game (see [7] for details.). Although Linux is not a real-time
system, its locking behavior should be similar to that of many complex systems,
including real-time systems, where great care is taken to make critical sections
short and efficient. The video players and the video game need to ensure that
both visual and audio content are presented to the user in a timely manner,
and thus are representative of the locking behavior of a class of soft real-time
applications. The trace data we collected in analyzing these applications suggests
that, with respect to both semaphores and spin locks, critical sections tend to be
short (usually, just a few microseconds on a modern processor) and nested lock
requests are somewhat rare (typically only 1% to 30% of all requests, depending
on the application, with nesting levels deeper than two being very rare).

The total number of generated tasks N was used to determine the number of
resources according to the formula K·N

α·m , where the sharing degree α was chosen
from {0.5, 1, 2, 4}. Under the D-PCP, resources were assigned to processors in a
round-robin manner to distribute the load evenly. Nested resource requests were
not considered since they are not supported by the M-PCP and D-PCP and also
because allowing nesting has a similar effect on schedulability under the FMLP
as increasing the maximum critical section length.

Finally, task execution costs and request durations were inflated to account
for system overheads (such as context switching costs) and synchronization over-
heads (such as the cost of invoking synchronization-related system calls). The
methodology for doing this is explained in the appendix.

Schedulability. After a task set was generated, the worst-case blocking delay
of each task was determined by using methods described in [20, 21] (M-PCP),
[16, 21] (D-PCP), and [9] (FMLP). Finally, we determined whether a task set was
schedulable after accounting for overheads and blocking delay with a demand-
based [15] schedulability test.

A note on the “period enforcer.” When a job suspends, it defers part of its
execution to a later instant, which can cause a lower-priority job to experience
deferral blocking. In checking schedulability, this source of blocking must be ac-
counted for. In [21], it is claimed that deferral blocking can be eliminated by



using a technique called period enforcer. In this paper, we do not consider the
use of the period enforcer, for a number of reasons. First, the period enforcer has
not been described in published work (nor is a complete description available on-
line). Thus, we were unable to verify its correctness4 and were unable to obtain
sufficient information to enable an implementation in LITMUSRT (which obvi-
ously is a prerequisite for obtaining realistic overhead measurements). Second,
from our understanding, it requires a task to be split into subtasks whenever it
requests a resource. Such subtasks are eligible for execution at different times
based on the resource-usage history of prior (sub-)jobs. We do not consider it
feasible to efficiently maintain a sufficiently complete resource usage history in-
kernel at runtime. (Indeed, to the best of our knowledge, the period enforcer
has never been implemented in any real OS.) Third, all tested, suspension-based
synchronization protocols are affected by deferral blocking to the same extent.
Thus, even if it were possible to avoid deferral blocking altogether, the relative
performance of the algorithms is unlikely to differ significantly from our findings.

3.1 Performance on a Four-Processor System

We conducted schedulability experiments assuming four to 16 processors. In all
cases, we used overhead values obtained from our four-processor test platform.
(This is perhaps one limitation of our study. In reality, overheads on larger
platforms might be higher, e.g., due to greater bus contention or different caching
behavior. We decided to simply use our four-processor overheads in all cases
rather than “guessing” as to what overheads would be appropriate on larger
systems.) In this subsection, we discuss experiments conducted to address three
questions: When (if ever) does either FMLP variant perform worse than either
PCP variant? When (if ever) is blocking by suspending a viable alternative to
blocking by spinning? What parameters affect the performance of the tested
algorithms most? In these experiments, a four-processor system was assumed;
larger systems are considered in the next subsection.

Generated task systems. To answer the questions above, we conducted ex-
tensive experiments covering a large range of possible task systems. We varied
(i) L in 40 steps over its range ([0.5µs, 15.5µs]), (ii) K in steps of one over its
range ([0, 9]), and (iii) Û in 40 steps over its range ([0.1, 0.5]), while keeping
(in each case) all other task-set generation parameters constant so that schedu-
lability could be determined as a function of L, K, and Û . In particular, we
conducted experiments (i)–(iii) for constant assignments from all combinations
of α ∈ {0.5, 1, 2, 4}, Û ∈ {0.15, 0.3, 0.45}, L ∈ {3µs, 9µs, 15µs}, K ∈ {2, 5, 9},
and the four task period ranges defined earlier. For each sampling point, we
generated (and tested for schedulability under each algorithm) 1,000 task sets,
for a total 13,140,000 task sets.

4 Interestingly, in her now-standard textbook on the subject of real-time systems, Liu
does not assume the presence of the period enforcer in her analysis of the D-PCP [16].



Trends. It is clearly not feasible to present all 432 resulting graphs. However,
the results show clear trends. We begin by making some general observations
concerning these trends. Below, we consider a few specific graphs that support
these observations.

In all tested scenarios, suspending was never preferable to spinning. In fact,
in the vast majority of the tested scenarios, every generated task set was schedu-
lable under spinning (the short FMLP variant). In contrast, many scenarios could
not be scheduled under any of the suspension-based methods. The only time that
suspending was ever a viable alternative was in scenarios with a small number
of resources (i.e., small K, low Û , high α) and relatively lax timing constraints
(long, homogeneous periods). Since the short FMLP variant is clearly the best
choice (from a schedulability point of view), we mostly focus our attention on
the suspension-based protocols in the discussion that follows.

Overall, the long FMLP variant exhibited the best performance among suspen-
sion-based algorithms, especially in low-sharing-degree scenarios. For α = 0.5,
the long FMLP variant always exhibited better performance than both the M-
PCP and D-PCP. For α = 1, the long FMLP variant performed best in 101 of
108 tested scenarios. In contrast, the M-PCP was never the preferable choice
for any α. Our results show that the D-PCP hits a “sweet spot” (which we
discuss in greater detail below) when K = 2, Û ≤ 0.3, and α ≥ 2; it even
outperformed the long FMLP variant in some of these scenarios (but never the
short variant). However, the D-PCP’s performance quickly diminished outside
this narrow “sweet spot.” Further, even in the cases where the D-PCP exhibited
the best performance among the suspension-based protocols, schedulability was
very low. The M-PCP often outperformed the D-PCP; however, in all such cases,
the long FMLP variant performed better (and sometimes significantly so).

The observed behavior of the D-PCP reveals a significant difference with
respect to the M-PCP and FMLP. Whereas the performance of the latter two
is mostly determined by the task count and tightness of timing constraints, the
D-PCP’s performance closely depends on the number of resources—whenever the
number of resources does not exceed the number of processors significantly, the
D-PCP does comparatively well. Since (under our task-set generation method)
the number of resources depends directly on both K and α (and indirectly on
Û , which determines how many tasks are generated), this explains the observed
“sweet spot.” The D-PCP’s insensitivity to total task count can be traced back
to its distributed nature—under the D-PCP, a job can only be delayed by events
on its local processor and on remote processors where it requests resources. In
contrast, under the M-PCP and FMLP, a job can be delayed transitively by
events on all processors where jobs reside with which the job shares a resource.

Example graphs. Insets (a)-(f) of Fig. 4 and (a)-(c) of Fig. 5 display nine
selected graphs for the four-processor case that illustrate the above trends. These
insets are discussed next.

Fig. 4 (a)-(c). The left column of graphs in Fig. 4 shows schedulability as a
function of L for K = 9. The case depicted in inset (a), where Û = 0.3 and



p(Ti) ∈ [33, 100], shows how both FMLP variants significantly outperform both
the M-PCP and D-PCP in low-sharing-degree scenarios. Note how even the long
variant achieves almost perfect schedulability. In contrast, the D-PCP fails to
schedule any task set, while schedulability under the M-PCP hovers around 0.75.
Inset (b), where Û = 0.3, p(Ti) ∈ [10, 100], and α = 1, presents a more chal-
lenging situation: the wider range of periods and a higher sharing degree reduce
the schedulablity of the FMLP (long) and the M-PCP significantly. Surprisingly,
the performance of the D-PCP actually improves marginally (since, compared
to inset (a), there are fewer resources). However, it is not a viable alternative
in this scenario. Finally, inset (c) depicts a scenario where all suspension-based
protocols fail due to tight timing constraints. Note that schedulability is largely
independent of L; this is due to the fact that overheads outweigh critical-section
lengths in practice.

Fig. 4 (d)-(f). The right column of graphs in Fig. 4 shows schedulability as a
function ofK for L = 9µs, p(Ti) ∈ [10, 100] (insets (d) and (e)) and p(Ti) ∈ [3, 33]
(inset (g)), and Û equal to 0.3 (inset (d)), 0.45 (inset (e)), and 0.15 (inset (f)).
The graphs show that K has a significant influence on schedulability. Inset (d)
illustrates the superiority of both FMLP variants in low-sharing-degree scenarios
(α = 0.5): the long variant exhibits a slight performance drop for K ≥ 6, whereas
the PCP variants are only viable alternatives for K < 6. Inset (e) depicts the
same scenario with Û increased to 0.45. The increase in the number of tasks (and
thus resources too) causes schedulability under all suspension-based protocols
to drop off quickly. However, relative performance remains roughly the same.
Inset (f) presents a scenario that exemplifies the D-PCP’s “sweet spot.” With
Û = 0.15 and α = 2, the number of resources is very limited. Thus, the D-PCP
actually offers somewhat better schedulability than the long FMLP variant for
K = 3 and K = 4. However, the D-PCP’s performance deteriorates quickly, so
that it is actually the worst performing protocol for K ≥ 7.

Fig. 5 (a)-(c). The left column of graphs in Fig. 5 shows schedulability as
a function of Û . Inset (a) demonstrates, once again, the superior performance
of both FMLP variants in low-sharing-degree scenarios (α = 0.5, K = 9, L =
3µs, p(Ti) ∈ [10, 100]). Inset (b) shows one of the few cases where the D-PCP
outperforms the M-PCP at low sharing degrees (α = 1, K = 2, L = 3µs,
p(Ti) ∈ [3, 33]). Note that the D-PCP initially performs as well as the long FMLP
variant, but starting at Û = 0.3, fails more quickly. In the end, its performance
is similar to that of the M-PCP. Finally, inset (c) presents one of the few cases
where even the short FMLP variant fails to schedule all tasks sets. This graph
represents the most taxing scenario in our study as each parameter is set to its
worst-case value: α = 4 and K = 9 (which implies high contention), L = 15µs,
and p(Ti) ∈ [3, 33] (which leaves little slack for blocking terms). None of the
suspension-based protocols can handle this scenario.

To summarize, in the four-processor case, the short FMLP variant was always
the best-performing protocol, usually by a wide margin. Among the suspension-
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Fig. 4. Schedulability (the fraction of generated task systems deemed schedulable) as
a function of (a)-(c) the maximum critical-section length L and (d)-(f) the per-job
resource request bound K.
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Fig. 5. Schedulability as a function of (a)-(c) the per-processor utilization cap Û and
of (d)-(f) processor count.



based protocols, the long FMLP variant was preferable most of the time, while the
D-PCP was sometimes preferable if there were a small number (approximately
four) resources being shared. The M-PCP was never preferable.

3.2 Scalability

We now consider how the performance of each protocol scales with the processor
count. To determine this, we varied the processor count from two to 16 for all
possible combinations of α, Û , L, K, and periods (assuming the ranges for each
defined earlier). This resulted in 324 graphs, three of which are shown in the
right column of Fig. 5. The main difference between insets (d) and (e) of the
figure is that task periods are large in (d) (p(Ti) ∈ [100, 1000]) but small in (e)
(p(Ti) ∈ [10, 100]). As seen, both FMLP variants scale well in inset (d), but the
performance of the long variant begins to degrade quickly beyond six processors
in inset (e). In both insets, the M-PCP shows a similar but worse trend as the
long FMLP variant. This relationship was apparent in many (but not all) of the
tested scenarios, as the performance of both protocols largely depends on the
total number of tasks. In contrast, the D-PCP quite consistently does not follow
the same trend as the M-PCP and FMLP. This, again, is due to the fact that
the D-PCP depends heavily on the number of resources. Since, in this study,
the total number of tasks increases at roughly the same rate as the number of
processors, in each graph, the number of resources does not change significantly
as the processor count increases (since α and K are constant in each graph).
The fact that the D-PCP’s performance does not remain constant indicates that
its performance also depends on the total task count, but to a lesser degree.
Inset (f) depicts the most-taxing scenario considered in this paper, i.e., that
shown earlier in Fig. 5 (c). None of the suspension-based protocols support this
scenario (on any number of processors), and the short FMLP variant does not
scale beyond four to five processors.

Finally, we repeated some of the four-processor experiments discussed in
Sec. 3.1 for 16 processors to explore certain scenarios in more depth Although
we are unable to present the graphs obtained for lack of space, we do note that
blocking-by-suspending did not become more favorable on 16 processors, and the
short FMLP variant still outperformed all other protocols in all tested scenarios.
However, the relative performance of the suspension-based protocols did change,
so that the D-PCP was favorable in more cases than before. This appears to
be due to two reasons. First, as discussed above, among the suspension-based
protocols, the D-PCP is impacted the least by an increasing processor count
(given our task-set generation method). Second, the long FMLP variant appears
to be somewhat less effective at supporting short periods for larger processor
counts. However, schedulability was poor under all suspension-based protocols
for tasks sets with tight timing constrains on a 16-processor system.

3.3 Impact of Overheads

In all experiments presented so far, all suspension-based protocols proved to be
inferior to the short variant of the FMLP in all cases. As seen in Table 1 in the



appendix, in the implementation of these protocols in LITMUSRT that were used
to measure overheads, the suspension-based protocols incur greater overheads
than the short FMLP variant. Thus, the question of how badly suspension-based
approaches are penalized by their overheads naturally arose. Although we believe
that we implemented these protocols efficiently in LITMUSRT, perhaps it is
possible to streamline their implementations further, reducing their overheads.
If that were possible, would they still be inferior to the short FMLP variant?

To answer this question, we reran a significant subset of the experiments con-
sidered in Sec. 3.1, assuming zero overheads for all suspension-based protocols
while charging full overheads for the short FMLP variant. The results obtained
showed three clear trends: (i) given zero overheads, the suspension-based pro-
tocols achieve high schedulability for higher utilization caps before eventually
degrading; (ii) when performance eventually degrades, it occurs less gradually
than before (the slope is much steeper); and (iii) while the suspension-based
protocols become more competitive (as one would expect), they were still bested
by the short FMLP variant in all cases. Additionally, given zero overheads, the
behavior of the M-PCP approached that of the suspension-based FMLP much
more closely in many cases.

4 Conclusion

From the experimental study just described, two fundamental conclusions emerge.
First, when implementing memory-resident resources (the focus of this paper),
synchronization protocols that implement blocking by suspending are of ques-
tionable practical utility. This applies in particular to the M-PCP and D-PCP,
which have been the de-facto standard for 20 years for supporting locks in multi-
processor real-time applications. Second, in situations in which the performance
of suspension-based locks is not totally unacceptable (e.g., the sharing degree
is low, the processor count is not too high, or few global resources exist), the
long-resource variant of the FMLP is usually the better choice than either the
M-PCP or D-PCP (moreover, the FMLP allows resource nesting).

Although we considered a range of processor counts, overheads were mea-
sured only on a four-processor platform. In future work, we would like to obtain
measurements on various larger platforms to get a more accurate assessment.
On such platforms, overheads would likely be higher, which would more nega-
tively impact suspension-based protocols, as their analysis is more pessimistic.
Such pessimism is a consequence of difficulties associated with predicting which
scheduling-related events may impact a task while it is suspended. In fact, it is
known that suspensions cause intractabilities in scheduling analysis even in the
uniprocessor case [23].
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APPENDIX

To obtain the overheads required in this paper, we used the same methodology
that we used in the prior study concerning EDF scheduling [11]. For the sake of
completeness, the approach is summarized here.

In real systems, task execution times are affected by the following sources
of overhead. At the beginning of each quantum, tick scheduling overhead is in-
curred, which is the time needed to service a timer interrupt. Whenever a sched-
uling decision is made, a scheduling cost is incurred, which is the time taken to
select the next job to schedule. Whenever a job is preempted, context-switching
overhead and preemption overhead are incurred; the former term includes any
non-cache-related costs associated with the preemption, while the latter accounts
for any costs due to a loss of cache affinity.

When jobs access shared resources, they incur an acquisition cost. Similarly,
when leaving a critical section, they incur a release cost. Further, when a system
call is invoked, a job will incur the cost of switching from user mode to kernel
mode and back. Whenever a task should be preempted while it is executing a
non-preemptive (NP) section, it must notify the kernel when it is leaving its NP-
section, which entails some overhead. Under the D-PCP, in order to communicate
with a remote agent, a job must invoke that agent. Similarly, the agent also incurs
overhead when it receives a request and signals its completion.

Accounting for overheads. Task execution costs can be inflated using stan-
dard techniques to account for overheads in schedulability analysis [16]. Care
must be taken to also properly inflate resource request durations. Acquire and
release costs contribute to the time that a job holds a resource and thus can cause
blocking. Similarly, suspension-based synchronization protocols must properly
account for preemption effects within critical sections. Further, care must be
taken to inflate task execution costs for preemptions and scheduling events due
to suspensions in the case of contention. Whenever it is possible for a lower-
priority job to preempt a higher-priority job and execute a critical section,5 the

5 This is possible under all three suspension-based protocols considered in this paper:
a blocked lower-priority job might resume due to a priority boost under the FMLP
and M-PCP and might activate an agent under the D-PCP.



event source (i.e., the resource request causing the preemption) must be ac-
counted for in the demand term of all higher-priority tasks. One way this can
be achieved is by modeling such critical sections as special tasks with priorities
higher than that of the highest-priority normal task [16].

Implementation. To obtain realistic overhead values, we implemented the M-
PCP, D-PCP, and FMLP under P-SP scheduling in LITMUSRT. A detailed de-
scription of the LITMUSRT kernel and its architecture is beyond the scope of
this paper. Such details can be found in [10]. Additionally, a detailed account
of the implementation issues encountered, and relevant design decisions made,
when implementing the aforementioned synchronization protocols in LITMUSRT

can be found in [9]. LITMUSRT is open source software that can be downloaded
freely.6

Limitations of real-time Linux. There is currently much interest in using
Linux to support real-time workloads, and many real-time-related features have
recently been introduced in the mainline Linux kernel (such as high-resolution
timers, priority inheritance, and shortened non-preemptable sections). However,
to satisfy the strict definition of hard real-time, all worst-case overheads must
be known in advance and accounted for. Unfortunately, this is currently not
possible in Linux, and it is highly unlikely that it ever will be. This is due to
the many sources of unpredictability within Linux (such as interrupt handlers
and priority inversions within the kernel), as well as the lack of determinism on
the hardware platforms on which Linux typically runs. The latter is especially a
concern, regardless of the OS, on multiprocessor platforms. Indeed, research on
timing analysis has not matured to the point of being able to analyze complex
interactions between tasks due to atomic operations, bus locking, and bus and
cache contention. Without the availability of timing-analysis tools, overheads
must be estimated experimentally. Our methodology for doing this is discussed
next.

Measuring overheads. Experimentally estimating overheads is not as easy as
it may seem. In particular, in repeated measurements of some overhead, a small
number of samples may be “outliers.” This may happen due to a variety of
factors, such as warm-up effects in the instrumentation code and the various non-
deterministic aspects of Linux itself noted above. In light of this, we determined
each overhead term by discarding the top 1% of measured values, and then taking
the maximum of the remaining values. Given the inherent limitations associated
with multiprocessor platforms noted above, we believe that this is a reasonable
approach. Moreover, the overhead values that we computed should be more than
sufficient to obtain a valid comparison of the D-PCP, M-PCP, and FMLP under
consideration of real-world overheads, which is the focus of this paper.

The hardware platform used in our experiments is a cache-coherent SMP
consisting of four 32-bit Intel Xeon(TM) processors running at 2.7 GHz, with
8K L1 instruction and data caches, and a unified 512K L2 cache per proces-

6 http://www.cs.unc.edu/∼anderson/litmus-rt.



Overhead Worst-Case
Preemption 42.00
Context-switching 9.25
Switching to kernel mode 0.34
Switching to user mode 0.89
Leaving NP-section 4.12
FMLP short acquisition / release 2.00 / 0.87

(a)

Overhead Worst-Case
Scheduling cost 6.39
Tick 8.08
FMLP long acquisition / release 2.74 / 8.67
M-PCP acquisition / release 5.61 / 8.27
D-PCP acquisition / release 4.61 / 2.85
D-PCP invoke / agent 8.36 / 7.15

(b)

Table 1. (a) Worst-case overhead values (in µs), on our four-processor test platform
obtained in prior studies. (b) Newly measured worst-case overhead values, on our four-
processor test platform, in µs. These values are based on 86,368,984 samples recorded
over a total of 150 minutes.

sor, and 2 GB of main memory. Overheads were measured and recorded using
Feather-Trace, a light-weight tracing toolkit developed at UNC [7]. We calculated
overheads by measuring the system’s behavior for task sets randomly generated
as described in Sec. 3. To better approximate worst-case behavior, longer criti-
cal sections were considered in order to increase contention levels (most of the
measured overheads increase with contention).

We generated a total of 100 task sets and executed each task set for 30
seconds under each of the suspension-based synchronization protocols7 while
recording system overheads. (In fact, this was done several times to ensure that
the determined overheads are stable and reproducible.) Individual measurements
were determined by using Feather-Trace to record timestamps at the beginning
and end of the overhead-generating code sections, e.g., we recorded a timestamp
before acquiring a resource and after the resource was acquired (however, no
blocking is included in these overhead terms). Each overhead term was deter-
mined by plotting the measured values obtained to check for anomalies, and then
computing the maximum value (discarding outliers, as discussed above).

Measurement results. In some case, we were able to re-use some overheads
determined in prior work; these are shown in inset (a) of Tab. 1. In other cases,
new measurements were required; these are shown in inset (b) of Tab. 1.

The preemption cost in Table 1 was derived in [12]. In [12], this cost is given
as a function of working set size (WSS). These WSSs are per quantum, thus
reflecting the memory footprint of a particular task during a 1-ms quantum,
rather than over its entire lifetime. WSSs of 4K, 32K, and 64K were considered
in [12], but we only consider the 4K case here, due to space constraints. Note that
larger WSSs tend to decrease the competitiveness of methods that suspend, as
preemption costs are higher in such cases. Thus, we concentrate on the 4K case
to demonstrate that, even in cases where such methods are most competitive,
spinning is still preferable. The other costs shown in inset (a) of Table 1 were
determined in [11].

7 Overheads for the short FMLP variant were already known from prior work [11] and
did not have to be re-determined.


