
The Case for an Opinionated, Theory-Oriented
Real-Time Operating System

Björn B. Brandenburg
Max Planck Institute for Software Systems (MPI-SWS)

ABSTRACT
While today it is in principle possible to construct cyber-physical
systems in a temporally sound way, in practice this rarely hap-
pens because, with the current real-time operating system (RTOS)
foundations, the prerequisite investments in time, expertise, and
resources are prohibitive. This position paper argues that this is due
to a lack of (i) easy-to-use, high-level abstractions in contemporary
RTOSs and (ii) first-class support for adaptive systems provisioned
at below-worst-case levels. A fundamentally different RTOS con-
cept that seeks to address these issues, based on the novel notion
of theory-oriented RTOS design, is introduced and a concrete mani-
festation, called TOROS, currently under development is sketched.

1 INTRODUCTION
In terms of scientific progress, the real-time systems community can
look back on an extraordinarily successful couple of decades; the
community’s collective understanding of time-critical computing
has come an impressively long way since the field’s early begin-
nings in the 1970s and the community’s concrete formation in the
1980s, with major advances in both the foundational theory and
analysis as well as the practical engineering of real-time systems.
As a result, developers of cyber-physical systems (CPSs) today can
choose among a diverse selection of battle-tested real-time operat-
ing systems (RTOSs) and leverage a rich and sophisticated formal
foundation that enables, at least in principle, even large and com-
plex systems to exhibit predictability at historically unprecedented
scales. It is no surprise, then, that state-of-the-art real-time methods
and results have been adopted by leading corporations in many
demanding application domains, including avionics, automotive
systems, and factory automation (among others). Inarguably, this
is in many ways a great success story.

The picture, however, looks considerably less rosy if one steps
outside of domains dominated by large corporations that can afford
substantial research and development (R&D) departments, which
usually retain specialized staff and in-house technology consultants,
including real-time systems experts. Especially when narrowing the
focus to the adoption of temporally sound system architectures and
analytically sound timing analysis methods, the successful transfer
of real-time systems research into practice appears to be much less
common overall, and certainly much less common than is desirable.

For instance, among the many small- to medium-sized compa-
nies (or development teams) that download, configure, and deploy
Linux with the PREEMPT_RT patch, what is the fraction of compa-
nies/teams that also employ some variant of formal schedulability
analysis? Similarly, among the thousands of research and prod-
uct teams that develop robotics applications using the popular
ROS middleware (which commonly runs on Linux), what is the
fraction of teams that deploy ROS using proper real-time policies

NGOSCPS ’19, April 15, 2019, Montreal, Canada
.

that guarantee predictable, analyzable resource allocation (such as
reservation-based scheduling with SCHED_DEADLINE in Linux)? At
least anecdotally, the answer to both questions is unfortunately
“close to zero.” In these areas, as in many others, temporally sound
methods are simply not mainstream (yet), and there presently ap-
pears to be little momentum towards change in the status quo.

In other words, beyond the well-known, large, and technologi-
cally advanced users of state-of-the-art real-time technology (such
as Airbus, Thales, ABB, Bosch, and the like), there exists a long
and heavy tail of much smaller companies and research groups
that could and should benefit from proper, analytically sound real-
time system design, predictable software architectures, and formal
methods for verification and validation, but that currently do not.

This state of affairs is regrettable, and I posit that reaching the
large number of potential users in the long tail—users who without
a doubt care deeply about the timeliness of their systems, but who
are neither formal timing experts themselves nor supported by
R&D departments with on-staff real-time expertise—represents the
biggest challenge to, and opportunity for, continued growth, rele-
vance, and real-world impact of the real-time systems community.
Case in point, it is difficult to see how the widespread proliferation
of autonomous vehicles and service drones imagined by many to
become a hallmark feature of the 21st century—all of them safety-
critical and operating in public space—is going to happen without
order-of-magnitude improvements in certification costs. As of today,
the best hope for such improvements is the pervasive use of formal
methods, and especially so in the context of temporal correctness.

The core problem is not a fundamental lack of capabilities, but
rather one of accessibility. The existing large body of literature on
real-time systems holds the answers to many (or evenmost) of these
potential users’ timing problems, but this information is spread
across thousands of papers, with at times unclear recommendations
and often incompatible policies and assumptions, stemming from
various schools of thought (e.g., fixed-priority vs. earliest-deadline
first scheduling, global vs. partitioned multiprocessor scheduling, to
name a few). Navigating this literature is by no means an easy task
to the uninitiated, and requires a substantial amount of time even
in the best of circumstances—time that engineers in practice rarely
have (if ever). Thus, my question: how do we make this treasure
trove of scientific progress and insights useful and accessible to the
development community at large, without requiring each and every
user to earn an advanced degree in real-time systems first?

2 HURDLES TO ADOPTION
To achieve widespread adoption, I conjecture that it is necessary
to fundamentally rethink how RTOSs are designed, with the goal
of completely replacing the interfaces and abstractions that they
offer to developers with simpler, higher-level alternatives. To moti-
vate the design sketch presented in Sec. 3, I briefly review in the
following what I consider to be major challenges to adoption today.

NGOSCPS ’19, April 15, 2019, Montreal, Canada Björn B. Brandenburg

Design-for-analysis is uncommon. Contemporary formal analysis
requires the system to be designed for such analysis. Given the
challenges inherent in obtaining provably sound formal analysis,
it is simply unreasonable to expect it to work for just any given
system with a structure not intentionally chosen to facilitate formal
reasoning, which is true both for functional verification (e.g., see
seL4 [2]) and the verification of non-functional properties such
as temporal correctness. This, however, represents a monumental
barrier to adoption because it means that system architects and
developers must be convinced to rely on formal analysis even before
the system is designed. Conversely, even if a developer or system
integrator later realizes that analysis support would have been
beneficial, it is too late—at that point, the high cost of rearchitecting
the system to enable formal analysis likely outweighs the benefits,
or there is simply no time left in the project schedule to do so.

Furthermore, even if the system designers and developers are in
principle interested in making their system analysis-friendly, there
is a good chance that the actual design and implementation will
fail to achieve this goal, due to the next issue.

Expertise barrier. Current RTOSs lack high-level abstractions,
which renders temporally sound system design too costly in terms
of effort, time, and expertise to be a common option in practice.

On the one hand, RTOSs commonly used in CPSs today—in par-
ticular, various real-time variants of Linux and specialized OSs like
FreeRTOS, RTEMS, VxWorks, QNX Neutrino, or Nucleus RTOS—
have accumulated a bewildering array of APIs, few of which are
temporally sound. The root of the problem is that these interfaces
expose low-level mechanisms that are too difficult to use and com-
bine correctly, rather than predictable high-level abstractions. While
low-level APIs like scheduling priorities, processor affinity masks,
various kinds of semaphores, signals, pipes, sockets, and so on could
in theory be used to realize predictable, analytically sound systems
if combined in just the right way, their correct use requires a deep un-
derstanding of the relevant real-time theory and a careful selection
of which interfaces to use and which to avoid. However, domain
experts typically have little background in real-time scheduling
theory—nor should they be expected to have any!

On the other hand, modern research RTOSs such as Composite
OS [4], Fiasco.OC [3], or seL4 [2] emphasize policy freedom as a key
design goal, such that the resulting OS can be used to implement
any policy—which again requires the users of the OS to make all key
policy choices, which (in the long tail) they are ill-equipped to make.

Separate tools and extra steps. Next, even if developers are not
deterred by the above issues, actually integrating formal analysis
tools into the development, integration, and testing and validation
workflow is not at all easy. Besides the fact that most developers
loath introducing “yet another” build dependency, available tool
support is actually rather limited and not necessarily all that user-
friendly. In fact, it is not uncommon for major vendors of static
timing analysis tools to dispatch application engineers to customers
to help integrate their (arguably somewhat arcane) tooling into the
customer’s build system and workflows on a case-by-case basis.

Needless to say, this situation does not further widespread adop-
tion, especially with small development and research teams who
rely primarily on open-source technology stacks and tool chains
(e.g., Linux, ROS, GNU binutils, etc.). In contrast, just imagine

that Linux would provide for each real-time process a virtual file
/proc/$PID/max-response-time-estimate that gives a built-in,
up-to-date, analytically sound response-time bound based on cur-
rent process priorities and the maximum arrival rates and execution
times observed so far (i.e., the analysis would be provably sound,
but the inputs traced and thus readily available but uncertain). It
stands to reason that such an easy-to-use facility would be quickly
adopted and widely used during development, regression testing,
component validation, integration testing and for runtime monitor-
ing of Linux-based real-time systems—it would certainly go a long
way towards popularizing response-time analysis. Nonetheless, it
might still not be all that useful, due to the following mismatch.

Adaptive, below-worst-case provisioning. Themain body of classic
real-time scheduling theory makes two limiting standard assump-
tions: that the workload is static (i.e., tasks do not leave or join the
system, or change requirements), and that safe bounds on all worst-
case execution times (WCETs) are known. Both are problematic in
a modern CPS context. First, many CPS workloads are inherently
dynamic. For instance, in an autonomous CPS such as a service
drone, the runtimes of vision, planning, and mapping algorithms all
depend on the environment. Further, different missions and situa-
tions naturally require different features or subsystems to be active.
On-demand adaptation is thus essential. In particular, the system
must reconfigure when faced with unforeseen load changes since
it is not feasible to anticipate the worst-case resource needs for
complex, environment-dependent CPS workloads. The essence of
real-world engineering is graceful degradation, not static worst-
case guarantees that are established once and then hold “forever.”

Second, on modern commodity multicore processors, even just
the difference between the 99th percentile execution cost and the
observed maximum can easily span an order of magnitude due
to inherent hardware unpredictability. It is simply not possible in
practice to provision all code based on observed maxima (e.g., 10×
above the typical case), let alone based on safe, but pessimistic
WCET bounds (if even available). Thus, in reality, most systems
are not provisioned at worst-case levels. Instead, engineers exploit
the fact that not all tasks exhibit maximum resource demands at
the same time. However, this common practice is a fundamental
mismatch with existing analysis, and a source of uncertainty that in
practice is typically dealt with by blind over-provisioning—if there
is “enough” extra capacity on average, it “probably” works out most
of the time. But how much spare capacity is really needed? Today,
this is largely left to guesswork, testing, and trial-and-error.

In summary, with the current analysis and RTOS foundations, it
is still too difficult and too costly to construct CPSs such that their
temporal correctness can be rigorously and efficiently ascertained—
that is, without requiring a “valiant effort” on behalf of the devel-
opers that is uneconomical for all but the most critical CPS.

3 TOROS: A THEORY-ORIENTED RTOS
To attack the challenges laid out in the previous section, I have
started a new clean-slate, from-scratch RTOS project called TOROS.
TOROS is an experimental, exploratory, theory-oriented (and quite
opinionated1) RTOS design targeting a long-term horizon, and seeks

1https://stackoverflow.com/questions/802050/what-is-opinionated-software

https://stackoverflow.com/questions/802050/what-is-opinionated-software

The Case for an Opinionated, Theory-Oriented Real-Time Operating System NGOSCPS ’19, April 15, 2019, Montreal, Canada

to fundamentally rethink the role of an RTOS without regard for
legacy code, standards compliance, or existing RTOS conventions.
The design is guided by the following principles and goals.

Theory-oriented RTOS design. To eliminate intrinsic and acciden-
tal unpredictability, all provided OS abstractions must be temporally
sound and supported by sound analysis. All others must be removed,
which includes leaving behind the classic (but analytically challeng-
ing) concept of long-running “processes.”

To reiterate, the central design goal is to enable the construction
of predictable, analytically sound multiprocessor real-time systems
by developers who are not aware of any underlying theory, or its
limitations and pitfalls. This means that all primitives and abstrac-
tions offered by the RTOS must align with backing scheduling theory
such that any possible use, any possible combination of primitives
can be automatically analyzed. In other words, accidental unpre-
dictability must be virtually impossible (i.e., well-behaved, idiomatic
TOROS applications must not accidentally become unanalyzable).

Declarative, high-level RTOS abstractions. To make predictability
affordable (i.e., to make the design of predictable applications more
approachable to non-real-time experts), the OS must provide (ex-
clusively) high-level, declarative interfaces that allow users to state
automatically checkable timing and resource-allocation goals.

Further, the OS should be opinionated software: rather than
exposing many options and forcing application developers into
making difficult policy decisions, the OS should implement policies
that work well in most cases and offer “one right way” to realizing
common real-time functionality. In the interest of simplicity, and
in contrast to microkernel philosophy, TOROS aims for “freedom
from choice” rather than keeping the kernel free of policy.

Temporal reflection. Since the system is expected to be provi-
sioned below worst-case needs, and to expose real-time analysis
to non-expert users, it must transparently and continuously self-
assess its temporal correctness to warn and proactively adapt when
assumptions are violated or declared timing goals can no longer be
guaranteed. By incorporating sound, always-on schedulability anal-
ysis into the runtime system (instead of seeing it purely as an offline
tool), and by continuously monitoring actual resource demands,
the system will be able to predict worst-case response times before
they occur. That is, as soon as changes in the load are observed that
imply that the envelope of safe system states has been left (i.e., that
timing errors have become possible), the system can proactively
adapt before a timing error actually occurs (in application-specific
ways, e.g., by disabling optional functionality, rerouting resources
from less critical to more critical subsystems, etc.).

Structured uncertainty management. To allow the system to be
provisioned below worst-case levels without completely giving up
on analyzability, TOROS will rely heavily on slack reclamation [1],
declarative slack pools, and a new kind of correlation-aware sen-
sitivity analysis that takes typical execution costs into account to
provide strong probabilistic timing guarantees at economically vi-
able provisioning levels. Importantly, the result of this sensitivity
analysis will be an estimated safety margin relative to the declared
end-to-end timing goals (i.e., a result of the form “an increase in
execution time by X% has no ill effects with probability at least Y ”),

rather than a conventional yes/no schedulability judgement.
In particular, it will be possible to bound the expected safety

margin (i.e., the amount of slack available in the expected case). This
approach reconciles existing practice (provisioning below the worst
case, a necessity in practice) with a sound theory of why it works
(with very high probability). Conversely, it will allow the system
to trigger proactive adaptation in case the residual risk exceeds a
given threshold (i.e., if more slack is needed to stay below the risk
threshold). That is, rather than relying on blind over-provisioning,
TOROS will allow developers to tailor resource use in an informed
way to reach any given level of acceptable risk.

While tracing is often frowned upon as it cannot establish a
sound WCET, TOROS is fundamentally different: it will trace cor-
relations and percentiles, and not WCETs, which is feasible since
correlations and percentiles can be established with high confidence
given a relatively modest number of samples.

Implementation sketch. To guarantee analyzability, the TOROS
design retires the classical notion of long-running processes in
favor of three (and only three) orthogonal concepts: ephemeral jobs
(EJs) with run-to-completion semantics (i.e., sequential execution
contexts that cannot suspend), passive logic and data compartments
(LDCs), and guaranteed processor shares (GPSs). LDCs are protection
domains (i.e., address spaces) and closely resemble the components
in Parmer’s Composite OS [4] and are in fact directly inspired by
them. GPSs are the basic time abstraction and offer a guaranteed
long-term utilization with a guaranteed maximum latency. Each
EJ is associated with exactly one LDC and one GPS. Key to the
envisioned theory-oriented design is that TOROS allows only two
operations to compose jobs: asynchronous invoke (create a new EJ),
optionally with barrier semantics (last to invoke creates a new EJ),
and synchronous invoke (create a new EJ and wait for it to finish with
call-return semantics). In particular, there is no “block,” “wait,” or
“sleep” API—it will not be possible to reference an already existing
job and wait for it in any way, or to suspend it, which naturally
forces an event-driven (or reactive) programming model. Another
innovation is to introduce declarative occupancy constraints to hide
the challenging multiprocessor real-time mutual exclusion problem
from application developers by treating each LDC as a monitor.

4 OUTLOOK
The TOROS project officially started in January 2019 and is kindly
supported for the next five years by a Starting Grant of the European
Research Council (ERC). As such, the project is still in a very early
phase, open to design adjustments, and welcomes collaboration; I
am particularly interested in constructive criticism of the sketched
design and alternatives for achieving the stated goals.

REFERENCES
[1] M. Caccamo, G. Buttazzo, and L. Sha. 2000. Capacity Sharing for Overrun Control.

In Proceedings of the 21st IEEE Real-Time Systems Symposium (RTSS). 295–304.
[2] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,

Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, et al. 2009. seL4: Formal verification of an OS kernel. In Proceedings of the
22nd ACM SIGOPS Symposium on Operating Systems Principles (SOSP). 207–220.

[3] A. Lackorzynski and A. Warg. 2009. Taming subsystems: capabilities as universal
resource access control in L4. In Proceedings of the Second Workshop on Isolation
and Integration in Embedded Systems.

[4] Gabriel A. Parmer. 2010. Composite: A component-based operating system for
predictable and dependable computing. Ph.D. Dissertation. Boston University.

	Abstract
	1 Introduction
	2 Hurdles to Adoption
	3 TOROS: A Theory-Oriented RTOS
	4 Outlook
	References

