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Abstract

The importance of accounting for interrupts in multiprocessor real-time schedulability anal-
sysis is discussed and three interrupt accounting methods, namely quantum-centric, task-centric,
and processor-centric accounting, are analyzed and contrasted. Additionally, two special cases,
dedicated interrupt handling (i.e., all interrupts are processed by one processor) and timer multi-
plexing (i.e., all jobs are released by a single hardware timer), are considered and corresponding
analysis is derived. All discussed approaches are evaluated in terms of schedulability based on
interrupt costs previously measured on a Sun Niagara multicore processor. The results show
that there is no single “best” accounting technique that is always preferable, but rather that the
relative performance of each approach varies significantly based on task set composition, i.e.,

the number of tasks and the maximum utilization.

1 Introduction

System overheads such as time lost to task switches and scheduling decisions must be accounted
for in real-time systems if temporal correctness is to be guaranteed (Cofer and Rangarajan, 2002;
Liu, 2000). Of these overheads, interrupts are notoriously troublesome for real-time systems since

they are not subject to scheduling and can significantly delay real-time tasks.
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In work on uniprocessor real-time systems, methods have been developed to account for inter-
rupts under the two most-commonly considered real-time scheduling policies (Liu and Layland,
1973): under static-priority scheduling, interrupts can be analyzed as higher-priority tasks (Liu,
2000), and under earliest-deadline-first (EDF) scheduling, schedulability can be tested by treating
time lost to processing interrupts as a source of blocking (Jeffay and Stone, 1993).

Properly—but not too pessimistically—accounting for interrupts is even more crucial in mul-
tiprocessor real-time systems. Due to their increased processing capacity, such systems are likely
to support much higher task counts, and since real-time tasks are usually invoked in response to
interrupts, multiprocessor systems are likely to service interrupts much more frequently. Further,
systematic pessimism in the analysis has a much larger impact on multiprocessors, as is shown
below.

Unfortunately, interrupts have not received sufficient attention in work on multiprocessor real-

time systems. The first and, to the best of our knowledge, only published approach to date was
proposed by Devi (2006). Devi presented a quantum-centric accounting method in which the length
of the system’s scheduling quantum is reduced to reflect time lost to overheads. In this paper, we
consider this method, as well as two others, in the context of global scheduling algorithms. When
the quantum-centric method is applied in this context, it is usually necessary to assume that all
possible interrupts occur on all processors in every quantum. This assumption is obviously quite
pessimistic and motivates the consideration of other approaches.
Motivating example. In a recent case study on a 32-processor platform involving up to 600 light!
tasks, the release overhead (i.e., the time taken to process a timer interrupt and invoke a real-
time task) of a global EDF (G-EDF) implementation was measured to exceed 50us in the worst
case (Brandenburg et al., 2008). Given the system’s quantum size of 1000us, the quantum-centric
method would have deemed any task set of 20 or more tasks unschedulable—with fewer tasks than
processors, this is clearly excessively pessimistic.

In the above case study, a new, less pessimistic “task-centric” accounting method (see Section 4)

I'The utilization of the tasks was distributed uniformly in [0.001,0.1]. Please see Section 6.1 and (Brandenburg

et al., 2008) for a detailed description of these experiments.



G-EDF overhead speculation: uniformly distributed in [0.001, 0.1]
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Figure 1: Hard real-time schedulability under G-EDF on a 32-processor platform assuming re-
duced release overhead, which is accounted for using the task-centric method. Note that all task
sets are schedulable if all overheads are assumed to be negligible. (This graph corresponds to

Figure 2(a) in (Brandenburg et al., 2008); see Section 6 for details.)

was developed. However, even with “task-centric” accounting, G-EDF performed worse than ex-
pected. Suspecting high job release overhead to be the cause, we conducted simulations to estimate
performance assuming reduced overhead. Surprisingly, we found that even with a 75% reduction in
release overhead, schedulability increases very little (see Figure 1). However, the experiments also
confirmed release overhead as the leading cause of reduced schedulability—performance improved
dramatically assuming overhead-free releases. This discrepancy stems from quadratically-growing
pessimism in the “task-centric method,” as is shown in Section 4.3.3. Figure 1 highlights that
accurate accounting for overheads is crucial to multiprocessor real-time performance, and that sys-
tematic pessimism can have a significant impact on multiprocessor systems due to high task counts.
Contributions. This paper provides an overview of all currently-known multiprocessor interrupt

accounting techniques for global schedulers. In particular, we

e highlight the importance of accurate interrupt accounting for multiprocessor real-time sys-

tems and survey commonly-encountered interrupt sources in current multiprocessor systems



(Section 2, formalized in Section 3);

e summarize “quantum-centric” interrupt accounting (Section 4.1) and describe “task-centric”
interrupt accounting (Section 4.3), which has been used—but not described in detail—in
previous studies (Brandenburg et al., 2008; Brandenburg and Anderson, 2008, 2009) to
overcome the limitations of “quantum-centric” accounting, and show that the “task-centric”
method still over-estimates interrupt delays by a factor that is quadratic in the number of

tasks (Section 4.3.3);

e show how interrupt accounting is fundamentally different from previous work on reduced-
capacity scheduling and, by addressing these differences, propose “processor-centric” inter-
rupt accounting, which is designed to overcome the pessimism inherent in “task-centric”

accounting (Section 4.4);

e discuss two common special cases, namely how job releases are delayed if interrupts are
handled by a dedicated processor (Section 5.2), and further how said delays change if all job

releases are triggered by a single hardware timer (Section 5.3); and

e cvaluate the effectiveness of all considered approaches in terms of schedulability for both
hard and soft real-time systems and show that none of the proposed approaches strictly dom-

inates the others, i.e., there is no single “best” approach (Section 6).

This paper extends a previous conference version (Brandenburg et al., 2009); in particular, a dis-
cussion of delays due to “inter-processor interrupts” (Section 4.2) and common special cases (Sec-
tion 5) has been added, and the experiments (Section 6) were augmented to include all special cases
and repeated with more-recent overhead measurements (Brandenburg and Anderson, 2009), thus
reflecting over a year of implementation improvements.

Next, we provide a survey of common interrupt types and describe how they are usually serviced

by operating systems.



2 Interrupts

To motivate our system model, we begin by providing a high-level overview of interrupts in a mod-
ern multiprocessor architecture. We focus on Intel’s x86 architecture because it is in widespread
use and well-documented (Intel Corp., 2008a,b), but the discussion similarly applies to other mul-
tiprocessor architectures as well (Weaver and Germond, 1994; Saulsbury, 2008).

Interrupts notify processors of asynchronous events and may occur between (almost) any two
instructions. If an interrupt is detected, the processor temporarily pauses the execution of the
currently-scheduled task and executes a designated interrupt service routine (ISR) instead. This
can cause the interrupted task to incur undesirable delays that must be accounted for during schedu-
lability analysis.

Most interrupts are maskable, i.e., the processor can be instructed by the OS to delay the in-
vocation of ISRs until interrupts are unmasked again. However, non-maskable interrupts (NMls),
which can be used for “watch dog” functionality to detect system hangs, cannot be suppressed by
the OS (Intel Corp., 2008b).

In multiprocessor systems, some interrupts may be local to a specific processor (e.g., register-
based timers (Weaver and Germond, 1994)), whereas others may be serviced by multiple or all
processors.

Interrupts differ from normal preemptions in that a task cannot migrate while it is being delayed
by an ISR, i.e., a task cannot resume execution on another processor to reduce its delay. This
limitation arises due to the way context switching is commonly implemented in OSs. For example,
in Linux (and Linux-derived systems such as the one considered in (Brandenburg et al., 2008)),
there is only a single function in which context switching can be performed, and it is only invoked
at the end of an ISR (if a preemption is required). From a software engineering point of view,
limiting context switches in this way is desirable because it significantly reduces code complexity.
In terms of performance, ISRs tend to be so short (in well-designed systems) that context-switching
and migration costs dominate ISR execution times. Hence, delaying tasks is usually preferable to
allowing migrations unless either migration and scheduling costs are negligible or ISR execution

times are excessively long.



Delays due to ISRs are fundamentally different from scheduling and preemption overheads: the
occurrence of scheduling and preemption overheads is controlled by the OS and can be carefully
planned to not occur at inopportune times. In contrast, ISRs execute with a statically-higher pri-
ority than any real-time task in the system and cannot be scheduled, i.e., while interrupts can be
temporarily masked by the OS, they cannot be selectively delayed?, and thus are not subject to the

scheduling policy of the OS.

2.1 Interrupt Categories

Interrupts can be broadly categorized into four classes: device interrupts (DIs), timer interrupts
(TTs), cycle-stealing interrupts (CSls), and inter-processor interrupts (IPIs). We briefly discuss the
purpose of each next.

DIs are triggered by hardware devices when a timely reaction by the OS is required or to avoid
costly “polling” (see below). In real-time systems, DIs may cause jobs to be released, e.g., a sensor
may trigger a DI to indicate the availability of newly-acquired data, in response to which a job is
released to process said data.

TIs are used by the OS to initiate some action in the future. For example, TIs are used to support
high-resolution delays (“sleeping”) in Linux. They can also be used for periodic job releases and
to enforce execution time budgets. In networking protocols, TIs are commonly employed to trigger
timeouts and packet re-transmissions.

CSIs are an artifact of the way that modern hardware architectures are commonly implemented
and differ from the other categories in that they are neither controlled nor handled by the OS.
CSIs are used to “steal” processing time for some component that is—from the point of view of
the OS—hardware, but that is implemented as a combination of hardware and software (so called
“firmware”’) and that lacks its own processor. CSIs are intended to be transparent from a logical

correctness point of view, but of course do affect temporal correctness.® They are usually non-

2Masking may create non-trivial timing dependencies because it usually affects physical interrupt lines, which are

oftentimes shared among multiple interrupt sources.
3CSIs are especially problematic if the code that is being executed is unknown—for example, a CSI could flush

instruction and data caches and thereby unexpectedly increase task execution costs.
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maskable and the OS is generally unaware if and when CSIs occur. A well-known example for
the use of CSlIs is the system management mode (SMM) in Intel’s x86 architecture (Intel Corp.,
2008a,b): when a system management interrupt (SMI) occurs, the system switches into the SMM
to execute ISRs stored in firmware. For example, on some chip sets the SMM is entered to control
the speed of fans for cooling purposes. CSlIs can also occur in architectures in which raw hardware
access is mediated by a hypervisor (such as Sony’s PlayStation 3 (Kurzak et al., 2008) and SUN’s
sun4v architecture (Saulsbury, 2008))—the hypervisor may become active at any time to handle
interrupts or perform services for devices “invisible” to the OS.

In contrast to DIs, TTs, and CSIs, the final category considered, IPIs, are specific to multiproces-
sor systems. IPIs are used to synchronize state changes across processors and are generated by the
OS. For example, the modification of memory mappings (i.e., changes to address spaces) on one
processor can require software-initiated TLB flushes on multiple processors (Intel Corp., 2008b,c).

IPIs are also commonly used to cause a remote processor to reschedule.

2.2 Delay Avoidance

There are four implementation choices that help to limit interrupt-related delays: split interrupt
handling, polling, interrupt masking, and, in multiprocessor systems, dedicating a processor to
interrupt handling.

Split interrupt handling can be used to reduce the length of ISRs. With split interrupt handling,
the work required to handle an interrupt is divided into two parts: a short ISR only acknowledges the
interrupt and does the minimum amount of work necessary for correct operation, whereas the main
work is carried out by an interrupt thread that is subject to OS scheduling (Liu, 2000). However,
even with split interrupt handling, some work, such as releasing jobs or activating interrupt threads,
must be carried out in the ISRs themselves, and this work must be accounted for.

DIs can be avoided altogether through polling, whereby hardware devices are probed periodi-
cally for state changes and pending events. However, TIs are still required to invoke the scheduler
and initiate polling periodically.

In embedded systems that execute real-time tasks in privileged mode, interrupts can be masked



whenever a real-time job is executing. Once a job completes, interrupts are unmasked and pending
interrupts handled. While this helps to make interrupts more predictable, it does not reduce the time
lost to ISRs. Further, this approach does not apply to NMlIs and, for security and safety reasons, it is
highly undesirable to run real-time tasks in privileged mode. Additionally, if timing constraints are
stringent, then the associated increase in interrupt latency may be prohibitive. If IPIs are masked
for prolonged times, then concurrency may be reduced while processors wait to synchronize.

Both polling and masking interrupts for prolonged times can drastically reduce the maximum
I/0 throughput by increasing device idle time. Such throughput losses may be economically unde-
sirable or even unacceptable (especially in soft real-time systems). Finally, neither approach is a
viable choice in the increasingly-relevant class of general purpose operating systems with real-time
properties (such as real-time variants of Linux). Further, if a hardware platform makes use of CSIs,
then, by definition, they cannot be avoided by any OS design.

With dedicated interrupt handling (Stankovic and Ramamritham, 1991), a processor that does
not schedule real-time tasks is reserved for servicing all DIs and most* TIs. Thus, real-time applica-
tions are shielded from interrupts other than CSIs and IPIs and hence incur fewer delays. However,
such a design may lead to an increased reliance on IPIs since interrupt-triggered scheduling deci-
sions must be relayed from the dedicated processor to the processors on which real-time applica-
tions execute. Such IPIs can increase release latencies and must be accounted for in schedulability
analysis.

In practice, dedicated interrupt handling is commonly used. Variants of dedicated interrupt
handling have been developed for several real-time Linux variants (Brosky and Rotolo, 2003; Piel
et al., 2005; Betti et al., 2008); dedicated interrupt handling is also supported in recent standard
versions of Linux.

To summarize, interrupts can delay real-time tasks and cannot be avoided completely on most
(if not all) modern multiprocessor architectures; hence, they must be accounted for in schedulability

analysis.

“Depending on the particular implementation, periodic timer ticks may still be serviced by all processors. For

example, this is the case with standard Linux.



2.3 Bounding Interrupt Interference

Bounding ISR activations may be difficult in practice. The number of distinct interrupts is often
limited (to reduce hardware costs), and hence interrupts may be shared among devices. Further,
many devices and interrupts are commonly multiplexed among many logical tasks. For example, a
single timer (and its corresponding ISR) is likely to be shared among multiple real-time tasks and
potentially even best-effort tasks.

As a result, it may be impractical to characterize a system’s worst-case interrupt behavior by
modeling the individual (hardware) interrupts. Instead, it may be more illuminating to consider
logical “interrupt sources” that cause one or more ISRs to be invoked in some pattern, but do not

necessarily correspond to any particular device. This approach is formalized in the next section.

3 System Model

We consider the problem of scheduling a set of n implicit-deadline sporadic tasks 7 = {711, ...,T,,}
on m processors; we let T;(e;, p;) denote a task where e; is T;’s worst-case per-job execution time
and p; is its period. T; ; denotes the 4t job (j > 1) of T;. T; ; is released at time r; ; > 0 and
should complete by its absolute deadline d; ; = r;; + p;. If 7 > 1, thenr,; > r;;_1 + p;. If
T; ; completes at time ¢, then its tardiness is max(0,¢ — d; ;). A task’s tardiness is the maximum
of the tardiness of any of its jobs. Note that, even if T} ; misses its deadline, 7; ;41 is not altered.
However, tasks are sequential: 7; j; cannot start execution until 7; ; completes. 1;’s utilization is
w; =e;/p;; 7’s total utilization is U(1)=>_"_ u;. We assume U(7) < m; otherwise, tardiness may
grow unboundedly (Devi, 2006).

Scheduler. In this paper, we assume preemptive G-EDF scheduling (i.e., jobs with smaller d; ;
values have higher priority). In an event-driven system, the scheduler is invoked whenever a job is
released (to check if a preemption is required) or completes (to select the next job, if any). In con-
trast, in a quantum-driven system, the scheduler is invoked only at integer multiples of a scheduling

quantum () (see (Devi, 2006; Liu, 2000) for overviews). Hence, job releases and completions may



be processed with a delay of up to () time units® and all task parameters must be integer multiples
of ().
Interrupts. An interrupt source causes ISRs to be invoked. An interrupt source is local if all
invoked ISRs are serviced on the same processor, and global otherwise. We consider a system with
r global interrupt sources 1, . .., [, and, on each processor h, where 1 < h < m, rj, local interrupt
sources I]', ... ,Iﬁh.

When an ISR is invoked on a processor, the job currently running on that processor is temporar-

ily stopped and its completion is delayed. In contrast to a regular preemption, a stopped job cannot

migrate to another processor while the interfering ISR executes.

Definition 1. We assume that for each interrupt source [, (either global or local) there is a mono-
tonic function dbf(7,, A) that bounds the maximum service time required by all ISRs invoked by

I, over an interval of length A > 0.

Additionally, we assume that, for each interrupt source I, (either local or global), dbf(7,, A) is
upper-bounded by a linear function of A, i.e., there exist P(I,) < 1 and R(I,) > 0 such that (1)
below holds for all A > 0.

dbf(I,,A) < P(I,)- A+ R(I,) (1)

As an example, for a sporadic interrupt source I, that invokes an ISR of maximum length ¢, at
most once every p, time units, the demand bound function is given by
dbf(1,,A) = {AJ - ¢ + min (cx, A — LéJ -px) , (2)
Pz Pz
as illustrated in Figure 2, in which case, P(I;) = 7= and R(;) = c;.
We require that, in total, the time spent on interrupt handling does not exceed the capacity of

one processor for sufficiently long time intervals. This assumption holds if

P+ Y PN <1 3)
k=1 h=1 k=1

SThis delay can be accounted for by shortening a task’s period (and hence relative deadline) by ) time units. A

choice of ) = 1ms is common (Devi, 2006).
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Figure 2: Illustration of (2) for ¢, = 3, p, = 5, and A = 12, where a = p, - L%J and b =
A — L%J - Pz. At most L”%J = 2 complete ISR invocations execute in A (times 0-3 and 5-8), and

b = 2 time units of a third invocation fit within A (time 10-12).

Note that systems that violate (3) likely have sufficiently-high processor and task counts to render
global scheduling impractical. We expect such large systems to be scheduled using a clustered
approach (Baker and Baruah, 2007; Calandrino et al., 2007; Brandenburg et al., 2008), wherein (3)
applies only on a per-cluster basis (and hence is not a serious limitation).

Schedulability. In a hard real-time system, each job must complete by its absolute deadline and,
in a soft real-time system, each job must have bounded deadline tardiness. We are interested in
developing a validation procedure—or schedulability test—for determining whether hard or soft
real-time constraints are met for a task set 7 that is scheduled on m processors using G-EDF in the
presence of interrupts.

Many hard and soft real-time schedulability tests for G-EDF without interrupts have been pro-
posed in prior work (Goossens et al., 2003; Baker, 2003; Bertogna et al., 2005; Baruah, 2007; Devi,
2006; Leontyev and Anderson, 2008; Bertogna et al., 2009). In the next section, we describe three
methods for incorporating interrupts in existing analysis, Devi’s “quantum-centric” method and

two recently-developed methods.

4 Schedulability Analysis

Because interrupt handlers effectively have higher priority than ordinary jobs, they may delay job
completions. This can be accounted for in three different ways. Under quantum-centric account-

ing (Devi, 2006), interrupts are understood to reduce the “effective quantum length,” i.e., the service
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time available in each quantum to real-time jobs. Each task’s worst-case execution cost is inflated
to ensure completion given a lower-bound on the effective quantum length. Under task-centric
accounting, interrupts are considered to extend each job’s actual execution time and worst-case ex-
ecution times are inflated accordingly. Under processor-centric accounting, task parameters remain
unchanged and interrupts are considered to reduce the processing capacity available to tasks.

The first two methods are not G-EDF-specific—a task system is deemed schedulable if it passes
an existing sustainable (Baruah and Burns, 2006) schedulability test assuming inflated worst-case
execution times for all tasks.

Processor-centric accounting requires a two-step process: (i) reduce the processing capacity
of the platform by accounting for the time consumed by interrupt handlers in the worst case; and
(ii) analyze the schedulability of the original task set on the reduced-capacity platform. While
general in principle, the reduced-capacity analysis used in Step (ii) has been developed only for a
limited number of scheduling algorithms to date, G-EDF prominently among them (Leontyev and

Anderson, 2007; Shin et al., 2008).

4.1 Quantum-Centric Accounting

Recall from Section 3 that under quantum-based scheduling all task parameters are multiples of a
quantum size () and that scheduling decisions are only made at multiples of (). In practice, some
processor time is lost due to system overheads during each quantum; the remaining time is called
the effective quantum length ()'. With Devi’s quantum-based accounting method (Devi, 2006), ()’
is derived by assuming that all interrupt sources require maximum service time in each quantum,

i.e., on processor h,
Th r
Qy=Q =Y _dbf(I},Q) — > dbf(I}, Q). @)
k=1 k=1

Under G-EDF, it generally cannot be predicted on which processor(s) a job will execute, hence
the system-wide effective quantum length is the minimum of the per-processor effective quantum

lengths, i.e., ' = min{@}, }. If Q" > 0, then task 7;’s inflated worst-case execution time ¢/ is given

12
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If @ < 0ore, > p; for some 7;, then 7 is deemed unschedulable. This technique does not
depend on the scheduling algorithm in use—in fact, it has been used by Devi to analyze a range
of algorithms (Devi, 2006). A major limitation of the quantum-centric method is that it tends to

overestimate interrupt frequencies due to the short analysis interval (). This is especially a concern

on large multiprocessor platforms due to the (likely) high number of interrupt sources.

4.2 IPI Delay

Before considering the task- and processor-centric methods in detail, we make the following ob-
servation. If scheduling is not quantum-based, then a job release is typically triggered by a TI or
DLI. In this situation, the processor executing the job-release ISR and the processor on which the
newly released job is scheduled may be different. To initiate rescheduling, an IPI is sent to the

target processor as the example below illustrates.

Example 1. Consider a task set 7 = {77(3, 8)} scheduled on two processors. Suppose that an ISR
serving interrupts from source /;, which is invoked every 8 time units and executes for 0.5 time
unit, releases jobs of 77. In the schedule shown in Figure 3, job 77 ; is released by the ISR that
executes within the interval [0,0.5) on processor 1. At time 0.5, an IPI is sent to processor 2 and
thus the IPI service routine executes during the interval [0.5, 1). After that, job 7} ; is scheduled on

processor 2. Subsequent jobs of 7} are handled similarly.

In general, if an IPI is sent to some processor, then some newly released job must be scheduled

on that processor. The execution of the associated IPI service routine can be treated as the execution

13



of preempting task 7;. In the description of the task-centric and processor-centric methods below,
we assume that the maximum IPI cost is added to the worst-case execution time of each task. This

treatment is similar to accounting for scheduling overheads (Liu, 2000; Devi, 2006).

4.3 Task-Centric Accounting

Based on the observation that 7; ; is delayed by at most the total duration of ISRs that are invoked
while T; ; executes, the task-centric method analyzes the complete interval during which a job
T; ; can execute (instead of focusing on an individual quantum). In this paper, we describe this
method in conjunction with G-EDF scheduling, but it can be applied similarly to other scheduling
algorithms. Since the length of the analysis interval depends on 7; ;’s tardiness, the task-centric
method is more involved in the soft real-time case. We start by first considering the hard real-time

case.

4.3.1 Hard Real-Time Schedulability

The key concept behind the task-centric method is that, if jobs of T;(e;, p;) are delayed by at most
d;, then T; will meet all of its deadlines if T/ (e; + ¢;, p;) meets all of its deadlines assuming no
delays (Ha and Liu, 1994). Hence, schedulability in the presence of ISR invocations can be checked

with an existing schedulability test oblivious to interrupts if a bound on ¢; can be derived.

Definition 2. Let

T m Th
C(A) = dbf(I, A) + > ) dbf(I]}, A)
k=1 h=1 k=1

denote a bound on the maximum time consumed by local and global ISRs during a time interval of

length A.

If T; ; completes by its deadline (i.e., it is not tardy), then it can be directly delayed by ISRs

for at most C(d; ; — r; ;) = C(p;) time units.® However, T; ; can also be indirectly delayed by

®Note that in upper-bounding &; by C(p;), local interrupts on all processors are considered. A tighter bound on §;
can be derived if 77 is known to migrate at most 77 < mn times: only the 1) + 1 processors for which Y~;" | dbf(I}, A)

is maximized must be accounted for in this case.
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ISRs that were invoked prior to r; ; by “pushing” processor demand of higher-priority jobs into
7., d; ;). Both sources of delay can be accounted for by (pessimistically) assuming that all jobs

are maximally delayed.

Theorem 1. A task system 7 = {73,...,T,} is hard real-time schedulable with G-EDF in the
presence of interrupts if 7 = {77,..., T}, where ¢; = e; + C(p;), passes a sustainable (Baruah

and Burns, 2006) hard real-time schedulability test.

Proof. Follows from the preceding discussion. 0

4.3.2 Soft Real-Time Schedulability

Our notion of soft real-time schedulability requires jobs to have bounded maximum tardiness. If

all ISRs have zero cost, then the following holds.

Theorem 2. (Proved in (Devi, 2006).) If U(7) < m, then for each T; € 7 there exists b; > 0 such
that 7;’s maximum tardiness under G-EDF is at most b; (an expression for b; is given in (Devi,

2000)).

In the absence of interrupts, every job T; ; is known to only execute within [r; ;, d; ; + b;). How-
ever, in contrast to the hard real-time case, the analysis interval changes in the presence of interrupts
since inflating e; also inflates b;. Thus, an iterative approach such as the following procedure is re-
quired to break the cyclic dependency between the tardiness bound and delays due to ISRs in the
soft real-time case.

initialize b := 0 for all ¢

do

set by := b, for all ¢

set e, :=e; + C(p; +b7) forall ¢

set 7' = {17,..., T} where T = (€}, p;)
compute b, for all ¢ with Theorem 2 based on 7/

while (b, # b and ¢, < p;) foralliand U(7') < m
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Theorem 3. If U(7') < m and ¢, < p; for all T; € 7 after the above procedure terminates, then

deadline tardiness of each T; is at most b, under G-EDF scheduling in the presence of interrupts.

Proof. Follows from the preceding discussion. [

4.3.3 Over-Estimation of Interrupt Delays

While often less pessimistic than the quantum-centric method, the task-centric method is also likely
to over-charge for interrupts. In fact, the cause of the disappointing (lack of significant) perfor-
mance improvements observed in Figure 1 is utilization loss inherent in the task-centric method.

This loss is quadratic in the number of tasks, as shown below.

Definition 3. Let ¢, > 0 denote the worst-case execution time of a job-releasing ISR, i.e., the

worst-case overhead incurred due to a single job release.

Theorem 4. Consider an event-triggered system 7 of n sporadic tasks, where each job is released
by an interrupt of cost ¢, where min{p;} > ¢, > 0 and max{p;} is bounded by some constant.
Under task-centric interrupt accounting, U (7') = U(7) + Q(n?), where 7’ denotes the inflated task

set as defined in Theorems 1 and 3 (respectively).

Proof. First, we consider the hard real-time case. By Theorem 1 and Definition 2,

T m Th
¢, = e+ Cp) = e+ Y _dbf(li,pi) + > Y dbf(I}, p).
k=1 h=1 k=1
Without loss of generality, assume that the only sources of interrupts /4, ..., [,, are sporadic job

releases by 771, ..., T, where I; corresponds to releases of 7;. Hence ¢, = e; + ZZZl dbf (1, p;)

and thus
dbf (I, p;)

pi

Ur)y=U(r)+ Z Lict

By (2) and Definition 3,

dbf(Ix, p;) = L&J - ¢, + min (cr, D — {&J 'cr) .
Pk Pk
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If p; < py, then dbf ([}, p;) = min (¢, p;) = ¢,; otherwise, dbf(Iy, p;) > L’J’—;J - ¢, > c,. Hence,
dbf(Iy,p;) > ¢, and therefore

n?-c,
max{p;}

n

UW) 2 U@+ 3= 2 Ul +

This establishes a lower bound for the hard real-time case. The same lower bound applies in the
soft real-time case as well since C'(p; + b;) > C(p;) due to the monotonicity of dbf(/j, A) (recall

that, by definition, b; > 0). O]

If each (of n) tasks releases a constant number of jobs over some interval, then the time lost to
job releases over the interval is O(n). Hence, Theorem 4 shows that the task-centric method
asymptotically overestimates the time lost to interrupt processing. For sufficiently large n, reducing
the release overhead c, has comparably little impact—that is, optimizing the OS implementation
does not help to mitigate asymptotic inefficiencies in the analysis. Next, we discuss the remaining

processor-centric interrupt accounting method, which is designed to overcome this problem.

4.4 Processor-Centric Accounting

The final method, which involves subtracting the ISR time from the total available processing
capacity, introduces several difficulties.

First, even though an ISR makes a processor unavailable to ordinary real-time jobs, the currently-
running job cannot migrate to another processor. This differs from how limited processing capacity
has been treated in prior work (Leontyev and Anderson, 2007; Shin et al., 2008; Leontyev et al.,
2009).

Second, if a job is released as a result of an ISR, then it cannot be scheduled on any processor
before the respective ISR completes. Both aspects are illustrated by the following example, in
which tardiness may grow unboundedly even though tardiness is deemed bounded using traditional

reduced-capacity analysis (Leontyev and Anderson, 2007).

Example 2. Consider the task set 7 = {77(999,1000)} scheduled on two processors. Suppose

that the only ISR in the system, which releases 7}’s jobs, is invoked every 1000 time units and
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Figure 4: Interrupt handling scenarios from Example 2.

executes for at most 2 time units. In the schedule shown in Figure 4(a), job 7' ;, released at time
0, 1s not available for scheduling before time 2. At time 2, 77 ; is scheduled on processor 2 and
completes at time 1001, so its tardiness is 1. At time 1000, job 7' » arrives and the ISR is invoked
on processor 1 so job 77 o becomes available to the scheduler at time 1002 and completes at time
2001. Also, running jobs of task 7 are not paused in this schedule. In contrast to this, in the
schedule in Figure 4(b), the second interrupt is handled by processor 2 and thus preempts job 77 1,
rendering both processors unavailable to 7;. If the ISR is invoked on the processor that schedules a
job of 77, then the tardiness will grow unboundedly because only 998 execution units are available
to 77 while it requests 999 time units every 1000 time units (assuming that future jobs are released

periodically).

In order to re-use results for platforms with limited processor availability, we assume that, when
an interrupt occurs, all processors become unavailable to jobs in 7 for the duration of an ISR. While
pessimistic, the above example illustrates that this global capacity reduction is required in order to
achieve general applicability of the analysis. We next introduce some definitions to reason about

platforms with limited processing capacity.

Definition 4. Let supply, (¢, A) be the total amount of processor time available on processor A to
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the tasks in 7 during the interval [¢,¢ + A).

Definition 5. To deal with limited processor supply, the notion of service functions has been pro-
posed (Chakraborty et al., 2006). The service function 3} (A) lower-bounds supply, (¢, A) for each
time ¢ > 0. We require

B(2) = max(0, - (A = o)), (©6)

for uy, € (0,1] and op, > 0.

In the above definition, the superscript [ stands for “lower bound,” @y, is the total long-term
utilization available to the tasks in 7 on processor h, and o}, is the maximum length of time when
the processor can be unavailable. Note that, if processor A is fully available to the tasks in 7, then
Bi(A) = A.

Some schedulability tests for limited processing capacity platforms require that the total time

available on all processors be known (Shin et al., 2008).

Definition 6. Let Supply(t, A) = >  supply, (¢, A) be the cumulative processor supply during
the interval [¢,¢ + A). Let B(A) be the guaranteed total time that all processors can provide to the

tasks in 7 during any time interval of length A > 0.

If lower bounds on individual processor supply are known, then we can compute a lower bound

on the total supply using the following trivial claim.

Claim 1. If  individual processor service functions 3/(A) are known, then

Supply(t, A) > B(A), where B(A) = 371, 5,(A).

In the remainder of this section, we assume that individual processor service functions are
known. We will derive expressions for them later in Section 4.5.

Hard real-time schedulability of 7 on a platform with limited supply can be checked using
results from (Shin et al., 2008). This paper presents a sufficient pseudo-polynomial test that checks
whether the time between any job’s release time and its completion time does not exceed a pre-
defined bound. This test involves calculating the minimum guaranteed supply for different values

of A.
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To test soft real-time schedulability of 7 on a platform with limited supply we use the following

definition and theorem.
Definition 7. Let U (y) be the sum of min(|7|, y) largest task utilizations.

Theorem 5. (Proved in (Leontyev and Anderson, 2007)) Tasks in 7 have bounded deadline tar-

diness if the following inequalities hold

U(r) <> (7)
h=1
> g > max(H — 1,0) - max(u;) + Up(m — 1), (8)
h=1

where H is the number of processors for which 3} (A) # A.

In the above theorem, if (7) does not hold, then the long-term execution requirement for tasks
will exceed the total long-term guaranteed supply, and hence, the system will be overloaded. On the
other hand, (8) implicitly restricts the maximum per-task utilization in 7 due to the term max(H —
1,0) - max(u;), which could be large if the maximum per-task utilization is large. This is especially
the case if all processors can be unavailable to tasks in 7, i.e., H = m. Since we assumed that all
processors are unavailable to 7 for the duration of an ISR, this may result in pessimistically claiming
a system with large per-task utilizations to be unschedulable. In the next section, in Example 3, we

show that such a penalty may be unavoidable.

4.5 Deriving 3 Service Functions

We now establish a lower bound on the supply provided by processor i to 7 over an interval of

length A.

Definition8. Let /' = >, P(L;)+> - S P(I)and G = >, R(I1)+> 0, S R(ID).

Lemma 1. If interrupts are present in the system, then any processor h can supply at least

3,(A) = max (0,A — C(A)) 9)
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time units to the tasks in 7 over any interval of length A. Additionally, (6) holds for u;, = 1 — F

and 0, = 5.

Proof. We first prove (9). By Definition 4, processor h provides supply, (¢, A) time units to 7
during the interval [¢,¢ + A). By our assumption, processor A is unavailable for the total duration
of all local and global ISRs invoked during the interval [t, ¢ + A). From this and Definition 2, we

have
supply,(t, A) = A — C(A)

Because supply, (¢, A) cannot be negative, (9) follows from Definition 5. Our remaining proof

obligation is to find @, and o, such that (6) holds. From (9), we have

ﬁ,ll(A) = max (0,A — C(A))

{by Definition 2}
> max (O, A — Zdbf([k) + Z Zdbf([,?)] )
Lk=1 h=1 k=1
{by (D}

T

> max (0, A — Z(P(Ik) A+ R(Iy))

o-s )

m Th

+ D) (PUY - A+ R(I}))

h=1 k=1

{by Definition 8}

= max (0,A — (F- A+ G))
{by the definition of u;, and oy,
in the statement of the lemma}

> max (0,up - (A —oy)).
By Definition 8 and (3), uy, as defined in the statement of the lemma is positive. [

We next illustrate soft real-time schedulability analysis of a system with interrupts using Lemma 1

and Theorem 5.
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Example 3. Consider the system from Example 2. The maximum tardiness for 7}’s jobs may
or may not be bounded depending on how interrupts are dispatched. We now analyze this task
system using Theorem 5. By (2), the only global interrupt source I; considered has dbf(/;, A) =
| 85| -2+min (2, A — | 55| - 2). The parameters P(I;) and R(I;) for which (1) holds are 0.002
and 2, respectively. Setting these parameters into Lemma 1, we find u;, = 0.998, and 0, = 2.004
for h = 1 and 2. Applying Theorem 5 to this configuration, we find that (8) does not hold because
Yo up = 2-0.998 < max(2 — 1,0) - ug +u; = 2-0.999. Thus, bounded tardiness is not

guaranteed for 7.

5 Special Cases

In the previous section, we assumed that all processors execute both ISRs and real-time jobs and
made no assumptions about the type of interrupts. In this section, we discuss three special cases that
are commonly encountered in real systems: periodic timer interrupts, dedicated interrupt handling,

and timer multiplexing.

5.1 Timer Ticks under Task-Centric Accounting

Recall that, under task-centric accounting, the execution cost of a task 7;(e;, p;) is inflated to ac-
count for all local ISR invocations on all processors that may occur during the maximum interval
in which a single job of 7; can be active, i.e., a job of 7} is charged for all delays in the interval
in which it might execute. In the general case, this likely very pessimistic charge is unavoidable
because a job may execute on all processors (due to migrations) and be delayed by all invoked ISRs
on each processor (due to adverse timing of ISR invocations). In fact, such a scenario is trivial to
construct assuming sporadic interrupt sources (in which case all ISR invocations may occur simul-
taneously) and sporadic job releases. However, a less-pessimistic bound can be derived for timer

ticks (and similar interrupt sources) due to the regularity of their occurrence.

Definition 9. An interrupt is periodic if its minimum invocation separation equals its maximum

invocation separation, and replicated if a corresponding ISR is invoked on each processor. Note
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that ISRs are not necessarily invoked on each processor simultaneously (i.e., “staggered” ISR in-
vocations are allowed), but invocations on each processor must be periodic (i.e., the “staggering”

is constant).

Periodic ISR delay. Periodic interrupts differ from the more general model discussed in Section 3
in that we can assume an exact separation of ISR invocations, which enables us to apply techniques
of classic response-time analysis (see (Liu, 2000) for an introduction). Let I, denote a periodic,
replicated interrupt source that, on each processor, triggers every p,. time units an ISR that executes
for at most ¢, time units.

Consider a job T; ; of task T;(e;, p;) such that e; already accounts for all other sources of delays
(e.g., non-periodic global and local interrupts). If 7; ; is not preempted while it executes, then, based
on the response-time analysis of an equivalent two-task system under static-priority scheduling,
T; ;’s inflated execution cost due to [, is given by the smallest €] that satisfies

!/
e, =e; + [i—‘ - Cy. (10)

Dz

Migrations. If 7; ; migrates, then (10) may not hold in all cases—each time 7; ; migrates, it might
incur one additional ISR invocation because ISR invocations are not required to occur simultane-
ously on all processors. Similarly, if 7; ; is preempted (but does not migrate), then it might still
incur one additional ISR invocation when it resumes because its completion was delayed. Hence,
if T; ; is preempted or migrates at most ) times, then 7; ;’s inflated execution cost is given by the
smallest €, that satisfies

/

egzeﬁ[ﬁ]cﬁn-cgg (11)

Under G-EDF, jobs are only preempted by newly-released higher-priority jobs, i.e., every job
release causes at most one preemption to occur. Thus, 7 can be bounded based on the number of
jobs with earlier deadlines that can be released while a job 7; ; is pending using standard tech-

niques (Liu, 2000).
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5.2 Interrupt Handling on a Dedicated Processor

As discussed earlier in Section 4, both task-centric and processor-centric accounting methods can
be pessimistic. For the task-centric method, we have assumed that each job of a task can be delayed
by all (non-timer) ISRs invoked between its release time and deadline. For the processor-centric
method, we have assumed that each processor is not available for scheduling real-time tasks during
the execution of an ISR. We made these assumptions because, in general, it is neither known on
exactly which processor a job executes, nor which processor handles an ISR corresponding to a
global interrupt source.

Having more control over ISR execution may reduce ISR interference and improve the anal-
ysis. In this section, we consider a multiprocessor system in which all interrupts (except repli-
cated timer ticks) are dispatched to a dedicated (master) processor that does not schedule real-time
jobs (Stankovic and Ramamritham, 1991). (Without loss of generality we assume that this is pro-
cessor 1.) The remaining m — 1 (slave) processors are used for running real-time tasks and only
service IPI and timer-tick ISRs. The intuition behind this scheme is the following: by dispatching
most interrupts in the system to the master processor, slave processors can service real-time jobs
mostly undisturbed. The tradeoff is that one processor is “lost” to interrupt processing, with the
benefit that pessimistic overhead accounting is (mostly) avoided on all slave processors. Thus, if
accounting for all interrupt sources causes a utilization loss of greater than one due to pessimistic
analysis, then dedicated interrupt processing should yield improved overall schedulability.

We assume that the ISRs on the master processor execute in FIFO order. When a job-release
ISR completes on the master processor and some job running on a slave processor needs to be
preempted, an IPI is dispatched to that processor. Thus, even though the majority of interrupt
processing work has been moved to the master processor, the IPI service routines are still executed

on slave processors.
Definition 10. In this section, we assume that the maximum cost of a job-release ISR is 1,

Example 4. Consider a task set 7 = {77(1,4),75(1,4),75(2,12)} running on a two-processor

platform. Suppose that jobs of tasks in 7 are released by ISRs executed on processor 1. Suppose
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that the maximum job-release ISR cost and IPI service routine cost is c//) = 0.5 and rescheduling
has zero cost. An example schedule for this system is shown in Figure 5. At time zero, job-release
interrupts from the three sources [, I, and /3 are dispatched to processor 1. An ISR for /5 executes
during the interval [0, 0.5). At time 0.5, job 75 ; is available for execution so an IPI is dispatched to
processor 2. The IPI service routine executes on processor 2 during the interval [0.5,0.75) and job

T5; commences execution at time 0.75. Similarly, the releases of jobs 75 ; and 77 ; are processed.

In order to reduce the interference caused by IPIs, these interrupts are fired only if rescheduling
needs to be done. In the schedule shown in Figure 5, the IPI corresponding to job 75 5 is not sent
at time 4.5 (when the respective job-release ISR completes) because job 77 5 has higher priority
than 75 » and thus does not need to be preempted. Since IPIs are only sent when rescheduling is
required, their cost can be charged on per-job basis. As discussed in Section 4.1, we assume that
said cost is included in each task’s worst case execution time. Next, we need to account for the

delay introduced by sequential interrupt processing on the master processor.

Definition 11. Let p; ; be the time when T; ; is available for scheduling. We call p; ; the effective

release time of T ;.

Example 5. Consider jobs 7531, T3, and T} ; from Example 4. Since the IPIs for these jobs are
treated as job execution, these jobs have effective release times p3 1 = 0.5, po1 = 1, and p; ; = 1.5,
respectively, as shown in Figure 5. However, since the absolute deadlines for these jobs remain
unchanged, the effective relative deadlines for these three jobs are 10.5, 3, and 2.5, respectively.
For task 77, the effective relative deadline is given by D] = Dy —3- Ml = p1—3- cl = 2.5 as shown
in Figure 5. Similarly, for task T3, the effective relative deadline is given by D} = D3 — 3 - Ml =

ps — 3 - clfl = 10.5 (see job Ty, in Figure 5).

Definition 12. Let max;>;(p;; — r;;) be the maximum distance between the release time and
effective release time of 7;’s jobs. This distance depends on the total time the execution of a job-

release ISR of 7; can be delayed. Let

J = max (dﬂ, sup (Z dbf(Z,, ) + > dbf(I}, \) — A)) .
r=1

A20 x=1
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Figure 5: Interrupts processed on a dedicated processor (see Examples 4-5).

Lemma 2. maszl(pi,j — ri,j) < J.

Proof. The result of this lemma is similar to the formula for the maximum event delay from Net-
work Calculus (LeBoudec and Thiran, 2001). However, our setting 1s slightly different due to the
definition of service demand in Definition 1. Consider a job 7}, such that p;, — 1y, > !l Let
ceq be the cost of Tj ,’s release ISR. Consider the latest time instant ¢, < 7, such that no local
or global ISR is pending on the master processor before ty. 1} ,’s release ISR completes at or be-

fore all ISRs arriving within [to, 7, that are either global or local to processor 1 complete. From

Definition 1, we have

pra <to+ Y dbf(Ip g —to) + Y dbf(I1 1o, — to)
r=1

=1
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Subtracting 7, , from the inequality above, we have

Pra—Teg <to—Tog+ Y _dbf(L e, —to) + > dbf(IL 1o — to)
rx=1

=1

{setting 7, — to = A}
T T1
=) dbf(I;,A)+ ) dbf(I},)) — A
=1 r=1

{by the selection of t; and A\, A > 0}

T 71
< sup (Z dbf(Z,, A) + > dbf(I}, ) — >\> : O
r=1

A20 r=1
The example below shows that sequential execution of job-release ISRs changes the minimum

time between effective release times of subsequent jobs of a task.

Example 6. Consider jobs 77 ; and 75 in the previous example. Their effective release times are
p11 = 1.5 and py; = 4.25 as shown in Figure 5. As seen, the effective job releases of subsequent

jobs of T} are separated by at least 2.5 time units. This distance is denoted with p].

The theorem below presents a schedulability test. From an analysis standpoint, this test is a
combination of the task- and processor-centric methods in the sense that both interrupt costs are

charged on a per-task basis and that the available processor capacity is reduced.

Theorem 6. If 7' = {T7,..., T}, where T/ (e;, p; — J), is hard real-time schedulable (respectively,
has bounded tardiness) on m — 1 processors, then 7 is hard real-time schedulable (respectively, has

bounded tardiness) on m-processor platform with all ISRs processed on a dedicated processor.

Proof. When interrupts are handled on a dedicated processor the minimum time between consecu-
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tive effective job releases of 7; is

Pij+1 = Pij = Pij+1 = Tij T Tij = Pij
{by Lemma 2}
> piger —Tig—J
{because p; j 11 > i1}
> Tije1 —Tij—J
{because 7T; is sporadic}

>pi—J.

If 7 is not hard real-time schedulable or has unbounded tardiness, then an offending schedule for 7/
can be constructed from an offending schedule for 7 by mapping each job T; ; to the job 77 ; such

that Pij = 7’2’]- and di,j = d;,j' O

Note that, in contrast to Theorem 1, we have subtracted the interrupt-induced delay J from the
task’s period. This is beneficial because p%] < % for all positive p and non-negative e and .J such
that p > e+ J. If p < e + J, then the task set is claimed unschedulable.

Finally, if slave processors service timer ISRs, then the schedulability of the transformed task
set 7" on m — 1 processors should be checked after applying the task-centric analysis of timer ticks

(Section 5.1).

5.3 Timer Multiplexing

Up to this point, we have made no assumptions regarding the type of ISRs that cause jobs to be
released, i.e., the above analysis applies to any system in which job releases are triggered by either
DI and T1 sources (recall Section 2.1).

An important special case are systems in which all job releases are time-triggered. For example,
in multimedia systems, video processing is usually frame-based, where each frame corresponds

to a point in time. Similarly, process control applications typically require each controller to be
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activated periodically (Liu, 2000). Further, if devices are operated in polling mode, then each job
that polls a device is invoked in response to an expiring timer.

Since the number of programmable timer devices is typically small (e.g., there is only one
(processor-local) timer guaranteed to be available in Sun’s sun4v architecture (Saulsbury, 2008)),
operating systems are commonly designed such that a (possibly large) number of software timers
1s multiplexed onto a single (or few) hardware timer(s) (Varghese and Lauck, 1987). For example,
in recent versions of Linux, this is accomplished by programming a one-shot hardware timer to
generate an interrupt at the earliest future expiration time and then processing all expired software
timers during each timer ISR invocation (Gleixner and Niehaus, 2006). If timers expire while an
ISR is being serviced, then such expirations are handled before re-programming the hardware timer.
Hence, job releases that occur “almost together” only require a single interrupt to be serviced.

If all job releases are triggered by software timers and if all interrupts are serviced by a dedicated
processor (as discussed in Section 5.2 above) then such multiplexing of a hardware timer can be
exploited for better analysis as follows. As before, let c//! denote the maximum cost of a job-release
ISR, i.e., the maximum time required to service a single one-shot timer interrupt, and let .J denote
the maximum release delay due to ISR processing as in Lemma 2.

According to Definition 12 and Lemma 2, in the absence of interrupt sources other than those
corresponding to the job releases of each task, J > n - 1| ie., if there are up to n — 1 earlier
ISRs of length ¢!}, then the effective release time of a job can be delayed by at least n - cl! time
units. This is a lower bound in the general case, wherein each task might correspond to a different
DI source.

However, this is not the case under timer multiplexing: if all job releases are triggered by
(software) timers, then coinciding job releases are handled by the same ISR and thus J = cl/l. If
n is large, then this observation can amount to a substantially reduced bound on worst-case release

jitter.
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6 Experimental Evaluation

To assess the effectiveness of the interrupt accounting approaches described above, we conducted
an experimental evaluation in which the methods were compared based on how many randomly-
generated task sets could be claimed schedulable (both hard and soft) if interrupts are accounted

for using each method.

6.1 Experimental Setup

Similarly to the experiments previously performed in (Brandenburg et al., 2008; Brandenburg and
Anderson, 2009), we used distributions proposed by Baker (2005) to generate task sets randomly.
Task periods were uniformly distributed over [10ms, 100ms]. Task utilizations were distributed
differently for each experiment using three uniform and three bimodal distributions. The ranges
for the uniform distributions were [0.001, 0.1] (light), [0.1, 0.4] (medium), and [0.5, 0.9] (heavy),
respectively. In the three bimodal distributions, utilizations were distributed uniformly over either
[0.001, 0.5) or [0.5, 0.9] with respective probabilities of 8/9 and 1/9 (light), 6/9 and 3/9 (medium),
and 4/9 and 5/9 (heavy).

We considered ISRs that were previously measured on a Sun Niagara multicore processor
in (Brandenburg and Anderson, 2009); namely, the one-shot timer ISR (global, unless handled
by dedicated processor), the periodic, replicated timer tick ISR signaling the beginning of a new
quantum (local; () = 1000us), and the IPI delay (see Section 4.2). The Niagara is a 64-bit machine
containing eight cores on one chip clocked at 1.2 GHz. Each core supports four hardware threads,
for a total of 32 logical processors. These hardware threads are real-time-friendly because each
core distributes cycles in a round-robin manner—in the worst case, a hardware thread can utilize
every fourth cycle. On-chip caches include a 16K (resp., 8K) four-way set associative L1 instruc-
tion (resp., data) cache per core, and a shared, unified 3 MB 12-way set associative L2 cache. Our
test system is configured with 16 GB of off-chip main memory.

We assumed worst-case (resp., average-case) ISR costs as given in (Brandenburg and Anderson,

2009) and reproduced in Table 1 when testing hard (resp., soft) schedulability. As we are only
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Average Case Worst Case
n || Release | Timer Tick | IPI delay || Release | Timer Tick | IPI delay
50 13.49 1.73 3.62 45.38 8.88 6.55
100 | 20.40 1.78 3.37 88.88 9.23 5.00
150 || 28.43 1.84 3.31 135.91 9.38 5.16
200 || 36.11 1.89 3.29 150.63 9.57 5.02
250 || 44.96 1.92 3.30 164.73 9.61 5.08
300 | 51.64 1.95 3.33 174.49 9.71 7.15
350 || 60.85 1.98 3.35 186.64 9.85 5.40
400 || 69.75 2.01 3.40 200.14 9.90 9.43
450 | 78.90 2.04 3.49 217.46 10.03 7.52

Table 1: Worst-case and average-case ISR invocation costs under G-EDF (in us) as a function of
the task set size n (from (Brandenburg and Anderson, 2009)). We used non-decreasing piece-wise

linear interpolation to derive ISR costs for values of n between measured task set sizes.

concerned with interrupt accounting, all other sources of overhead (scheduling, cache-related, efc.)
were considered negligible.’

To assess the impact (or lack thereof) of possible improvements in the OS implementation, we
tested each method twice: once assuming full ISR costs as given in (Brandenburg and Anderson,
2009), and once assuming ISR costs had been reduced by 80%. We consider the latter to be an
approximate upper bound on the best-case scenario based on the conjecture that overheads likely
cannot be reduced by more than 80%.

For each task set, we applied each of the accounting methods described in Section 4, and also
assuming dedicated interrupt handling (Section 5.2) and timer multiplexing (Section 5.3). To de-
termine whether an inflated task system 7’ is hard real-time schedulable under the quantum-centric
and task-centric methods and dedicated interrupt handling, we used all major published sufficient

(but not necessary) hard real-time schedulability tests for G-EDF (Goossens et al., 2003; Baker,

7 An implementation study considering full overheads and other implementation choices beyond the scope of this

paper has recently been completed (Brandenburg and Anderson, 2009).
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2003; Bertogna et al., 2005; Baruah, 2007; Bertogna et al., 2009) and deemed 7’ to be schedulable
if it passes at least one of these five tests. We assumed a quantum size of 1 millisecond, which is a
common choice in Linux-based systems such as the one considered in (Brandenburg and Anderson,
2009).

To determine hard real-time schedulability under the processor-centric method, we used Shin et
al.’s Multiprocessor Resource (MPR) test (Shin et al., 2008) and chose max{p;} as the MPR period
for analysis purposes. As an optimization, we used the supply-bound function given in (12) below,

which is less pessimistic than the (more general) one given by Shin et al. (2008).

sbf(A) =m (A =) 0> dbf(If, A) = > " dbf(I;, A)) (12)
h=1 k=1 k=1

Note that in (Shin et al., 2008) the supply-bound function is derived based on a given period and
supply. In contrast, we compute the supply for a chosen period with (12) (for A = max{p;}).
Recall from Section 4.1 that the scheduling model underlying quantum-centric analysis is dif-
ferent from the event-driven model assumed by task- and processor-centric analysis. Thus, schedu-
lability under quantum-centric accounting is affected not only by interrupt delays, but also by uti-
lization loss due to the quantization of task parameters. This is reflected in our results since it is
fundamental to quantum-driven scheduling and hence an inherent source of pessimism that should

be considered when comparing analysis methods.

6.2 Results

Our schedulability results are shown in Figures 6-17: Figures 6—11 depict hard real-time results,
and Figures 12—17 depict soft real-time results. Inset (a) of each figure shows schedulability assum-
ing full ISR costs, whereas inset (b) of each figure shows schedulability of the same collection of
task sets assuming ISR costs reduced by 80%. Sampling points were chosen such that the sampling
density is high in areas where curves change rapidly. For each sampling point, we tested 1,000 task

sets, for a total of over 2,100,000 task sets.
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6.2.1 Hard Real-Time Results Assuming Full ISR Costs

Figures 6-11 show the ratio of task sets claimed hard real-time schedulable by the five methods.
In all scenarios, the quantum-centric method shows consistently disappointing performance. In
Figure 6(a), which corresponds to the motivating example in Section 1, even with utilization less
than two, most task sets were deemed unschedulable using this method. Performance improves
with heavier task sets (e.g., see Figure 10(a)), but never becomes competitive due to the overall
high number of tasks.

The processor-centric method works best if there are no heavy tasks (see Figure 6(a)), but does
not perform better than the task-centric accounting method in any of the considered scenarios—
unfortunately, the pessimism in the processor-centric method’s adaptation of Shin et al. (2008)’s
MPR test exceeds the pessimism of the task-centric method. In the case of bimodal utilization
distributions (inset (a) of Figures 7, 9, and 11), the processor-centric method does not perform
significantly better than quantum-centric accounting due to the presence of heavy tasks in almost
all task sets. Similar trends are apparent for uniform distributions in inset (a) of Figures 8 and 10.

In Figure 6(a), the task-centric accounting method is pessimistic due to large inflation costs in
accordance with Theorem 4, but as the number of tasks decreases (the average per-task utilization
increases), its performance improves significantly, as can be seen in inset (a) of Figures 7-11.

Dedicated interrupt handling is preferable to task-centric accounting if task counts are high, and
particularly so if timer multiplexing is assumed. For example, in Figure 6(a), the combination of a
dedicated processor and timer multiplexing can support loads five times larger than those supported
by task-centric accounting. The differences are less pronounced under bimodal distributions (in-
sets (a) of Figures 7 and 9), which generally feature lower task counts than their uniform counter
parts. Also note that timer multiplexing does not yield improved schedulability compared to regular
dedicated interrupt processing in these cases.

Dedicated interrupt handling is not preferable under both uniform and bimodal heavy distribu-
tions, as can be seen in inset (a) of Figures 10 and 11. In these cases, the utilization lost due to
dedicating a processor is not outweighed by the benefits of avoiding interrupts on the processors on

which real-time jobs execute.
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6.2.2 Soft Real-Time Results Assuming Full ISR Costs

Figures 12—-17 show soft real-time schedulability results. In a reversal of the hard real-time trends,
for the uniform light and medium utilization ranges, the performance of the processor-centric
method is superior to the performance of the task-centric method (see inset (a) of Figures 12 and
14). This is because (7) and (8) in Theorem 5 are likely to hold in the absence of heavy tasks. In
contrast, the processor-centric method is exceptionally pessimistic in the case of the uniform heavy
distribution (see Figure 16(a)). This is because we assumed that all processors are not available
for the duration of an ISR, which leads to a violation of (8) if heavy tasks are present, due to the
term max(H — 1,0) - max(u;) (note that H = m). For the same reason, task sets are pessimisti-
cally claimed unschedulable under the bimodal utilization distributions (inset (a) of Figures 13,
15, and 17). In fact, the processor-centric method offers (almost) no advantage over the quantum-
centric method in the soft real-time case if heavy tasks are present at all. This is in stark contrast
to the task-centric method, which is consistently the best of the three general interrupt accounting
methods unless task counts are high (inset (a) of Figures 13, 15, 16, and 17).

Dedicated interrupt handling is preferable to task-centric accounting for all considered utiliza-
tion distributions. However, in the cases in which processor-centric accounting performs well (inset
(a) of Figures 12 and 14), processor-centric accounting is preferable to regular dedicated interrupt
handling. This is not the case for dedicated interrupt processing in combination with timer multi-

plexing, which always yields the best soft real-time schedulability.

6.2.3 Results Assuming Reduced ISR Costs

The experiments assuming reduced release overhead reveals six major trends:

1. under the considered bimodal distributions, hard real-time schedulability of the best-performing
methods does not significantly improve with reduced ISR costs (Figures 7, 9, 11)—this is
likely indicative of fundamental limitations of the G-EDF schedulability tests published to

date (or, possibly, G-EDF itself) with regard to scheduling mixed-utilization task sets;

2. reducing overhead helps only little to overcome the task-centric method’s asymptotic growth
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(Figures 6 and 12);

3. even with reduced overhead, the quantum-centric and processor-centric methods are not com-

petitive in the hard real-time case;

4. in the soft real-time case, the processor-centric method performs equally badly assuming

either 100% or 20% overhead if heavy tasks are present (see Figures 13, 15, 16, and 17);

5. the quantum-centric method’s competitiveness is much improved in the soft real-time case if

overhead is reduced; and

6. in the soft real-time case, dedicated interrupt handling in combination with timer multiplex-
ing is almost always the best-performing method, with only Figure 14(b) as a notable excep-

tion.

These results show that the choice of interrupt accounting method can have significant impact
on schedulability. Further, it appears worthwhile to improve both OS implementations (to reduce
overheads) and analysis techniques (to reduce inherent pessimism). Especially promising is the
performance of the processor-centric accounting method in the soft real-time case in the absence
of heavy tasks—further research is warranted to identify and remove the limitations that impede
processor-centric accounting in the presence of heavy tasks.

Limitations. Because the focus of this paper is primarily the analysis of interrupt accounting meth-
ods (and since this is not an implementation study), we have made the simplifying assumption that
ISR costs are equal under both quantum-driven scheduling, event-driven scheduling, and dedicated
interrupt handling. Thus, results may deviate somewhat in practice depending on hardware and
OS characteristics; however, the fundamental tradeoffs and limitations exposed by our experiments

remain valid.

7 Conclusion

This paper surveyed various types of interrupts that occur in multiprocessor real-time systems and

summarized Devi’s quantum-based accounting method. Two recently-developed approaches to
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accounting for interrupt-related delays under G-EDF scheduling for both hard and soft real-time
systems were presented: the task-centric method and the processor-centric method. Further, anal-
ysis for the common practice of dedicating a processor to interrupts to shield real-time jobs from
delays was presented, including the special case of timer multiplexing.

In an empirical comparison, the task-centric method performed well in most of the tested sce-
narios; however, it is subject to utilization loss that is quadratic in the number of tasks. Hence, it has
inferior performance for large task sets. In contrast, in the soft real-time case, the processor-centric
method performed well for task systems with many light tasks, but yielded overly pessimistic re-
sults in the presence of heavy tasks. In all considered scenarios, at least one of the two new methods
performed significantly better than the previously-proposed quantum-centric method.

Further, the experiments revealed that dedicating a processor to interrupt handling can be bene-
ficial to schedulability in many cases—especially so if all job releases are time-triggered. However,
dedicated interrupt handling is likely much less competitive for lower processor counts, and is also
not always the best choice if overheads are low. Thus, accounting for interrupts remains an impor-
tant component of schedulability analysis.

In future work, we would like to refine the processor-centric method to be less pessimistic with
regard to both maximum task utilization and reductions in supply. Further, it may be beneficial
to investigate whether multiprocessor real-time calculus (Leontyev et al., 2009) can be applied to

account for interrupt delays.
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Figure 12: Soft schedulability (the ratio of task sets deemed schedulable) results for the uniform

utilization uniformly in [0.001, 0.1]; 100% ISR costs
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Figure 14: Soft schedulability (the ratio of task sets deemed schedulable) results for the uniform

utilization uniformly in [0.1, 0.4]; 100% ISR costs
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