
An Overview of Interrupt Accounting Techniques

for Multiprocessor Real-Time Systems∗

Björn B. Brandenburg Hennadiy Leontyev James H. Anderson

Abstract

The importance of accounting for interrupts in multiprocessor real-time schedulability anal-

sysis is discussed and three interrupt accounting methods, namely quantum-centric, task-centric,

and processor-centric accounting, are analyzed and contrasted. Additionally, two special cases,

dedicated interrupt handling (i.e., all interrupts are processed by one processor) and timer multi-

plexing (i.e., all jobs are released by a single hardware timer), are considered and corresponding

analysis is derived. All discussed approaches are evaluated in terms of schedulability based on

interrupt costs previously measured on a Sun Niagara multicore processor. The results show

that there is no single “best” accounting technique that is always preferable, but rather that the

relative performance of each approach varies significantly based on task set composition, i.e.,

the number of tasks and the maximum utilization.

1 Introduction

System overheads such as time lost to task switches and scheduling decisions must be accounted

for in real-time systems if temporal correctness is to be guaranteed (Cofer and Rangarajan, 2002;

Liu, 2000). Of these overheads, interrupts are notoriously troublesome for real-time systems since

they are not subject to scheduling and can significantly delay real-time tasks.
∗Work supported by IBM, Intel, and Sun Corps.; NSF grants CNS 0834270, CNS 0834132, and CNS 0615197; and

ARO grant W911NF-06-1-0425.

1

In work on uniprocessor real-time systems, methods have been developed to account for inter-

rupts under the two most-commonly considered real-time scheduling policies (Liu and Layland,

1973): under static-priority scheduling, interrupts can be analyzed as higher-priority tasks (Liu,

2000), and under earliest-deadline-first (EDF) scheduling, schedulability can be tested by treating

time lost to processing interrupts as a source of blocking (Jeffay and Stone, 1993).

Properly—but not too pessimistically—accounting for interrupts is even more crucial in mul-

tiprocessor real-time systems. Due to their increased processing capacity, such systems are likely

to support much higher task counts, and since real-time tasks are usually invoked in response to

interrupts, multiprocessor systems are likely to service interrupts much more frequently. Further,

systematic pessimism in the analysis has a much larger impact on multiprocessors, as is shown

below.

Unfortunately, interrupts have not received sufficient attention in work on multiprocessor real-

time systems. The first and, to the best of our knowledge, only published approach to date was

proposed by Devi (2006). Devi presented a quantum-centric accounting method in which the length

of the system’s scheduling quantum is reduced to reflect time lost to overheads. In this paper, we

consider this method, as well as two others, in the context of global scheduling algorithms. When

the quantum-centric method is applied in this context, it is usually necessary to assume that all

possible interrupts occur on all processors in every quantum. This assumption is obviously quite

pessimistic and motivates the consideration of other approaches.

Motivating example. In a recent case study on a 32-processor platform involving up to 600 light1

tasks, the release overhead (i.e., the time taken to process a timer interrupt and invoke a real-

time task) of a global EDF (G-EDF) implementation was measured to exceed 50µs in the worst

case (Brandenburg et al., 2008). Given the system’s quantum size of 1000µs, the quantum-centric

method would have deemed any task set of 20 or more tasks unschedulable—with fewer tasks than

processors, this is clearly excessively pessimistic.

In the above case study, a new, less pessimistic “task-centric” accounting method (see Section 4)

1The utilization of the tasks was distributed uniformly in [0.001, 0.1]. Please see Section 6.1 and (Brandenburg

et al., 2008) for a detailed description of these experiments.

2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

[h
ar

d]

task set utilization cap (prior to inflation)

G-EDF overhead speculation: uniformly distributed in [0.001, 0.1]

[1]

[2]

[3]

[4]

[6]

[5]

[3] 50% release overhead[1] 100% release overhead [2] 75% release overhead

[4] 25% release overhead [5] 0% release overhead [6] all overheads neglible

Figure 1: Hard real-time schedulability under G-EDF on a 32-processor platform assuming re-

duced release overhead, which is accounted for using the task-centric method. Note that all task

sets are schedulable if all overheads are assumed to be negligible. (This graph corresponds to

Figure 2(a) in (Brandenburg et al., 2008); see Section 6 for details.)

was developed. However, even with “task-centric” accounting, G-EDF performed worse than ex-

pected. Suspecting high job release overhead to be the cause, we conducted simulations to estimate

performance assuming reduced overhead. Surprisingly, we found that even with a 75% reduction in

release overhead, schedulability increases very little (see Figure 1). However, the experiments also

confirmed release overhead as the leading cause of reduced schedulability—performance improved

dramatically assuming overhead-free releases. This discrepancy stems from quadratically-growing

pessimism in the “task-centric method,” as is shown in Section 4.3.3. Figure 1 highlights that

accurate accounting for overheads is crucial to multiprocessor real-time performance, and that sys-

tematic pessimism can have a significant impact on multiprocessor systems due to high task counts.

Contributions. This paper provides an overview of all currently-known multiprocessor interrupt

accounting techniques for global schedulers. In particular, we

• highlight the importance of accurate interrupt accounting for multiprocessor real-time sys-

tems and survey commonly-encountered interrupt sources in current multiprocessor systems

3

(Section 2, formalized in Section 3);

• summarize “quantum-centric” interrupt accounting (Section 4.1) and describe “task-centric”

interrupt accounting (Section 4.3), which has been used—but not described in detail—in

previous studies (Brandenburg et al., 2008; Brandenburg and Anderson, 2008, 2009) to

overcome the limitations of “quantum-centric” accounting, and show that the “task-centric”

method still over-estimates interrupt delays by a factor that is quadratic in the number of

tasks (Section 4.3.3);

• show how interrupt accounting is fundamentally different from previous work on reduced-

capacity scheduling and, by addressing these differences, propose “processor-centric” inter-

rupt accounting, which is designed to overcome the pessimism inherent in “task-centric”

accounting (Section 4.4);

• discuss two common special cases, namely how job releases are delayed if interrupts are

handled by a dedicated processor (Section 5.2), and further how said delays change if all job

releases are triggered by a single hardware timer (Section 5.3); and

• evaluate the effectiveness of all considered approaches in terms of schedulability for both

hard and soft real-time systems and show that none of the proposed approaches strictly dom-

inates the others, i.e., there is no single “best” approach (Section 6).

This paper extends a previous conference version (Brandenburg et al., 2009); in particular, a dis-

cussion of delays due to “inter-processor interrupts” (Section 4.2) and common special cases (Sec-

tion 5) has been added, and the experiments (Section 6) were augmented to include all special cases

and repeated with more-recent overhead measurements (Brandenburg and Anderson, 2009), thus

reflecting over a year of implementation improvements.

Next, we provide a survey of common interrupt types and describe how they are usually serviced

by operating systems.

4

2 Interrupts

To motivate our system model, we begin by providing a high-level overview of interrupts in a mod-

ern multiprocessor architecture. We focus on Intel’s x86 architecture because it is in widespread

use and well-documented (Intel Corp., 2008a,b), but the discussion similarly applies to other mul-

tiprocessor architectures as well (Weaver and Germond, 1994; Saulsbury, 2008).

Interrupts notify processors of asynchronous events and may occur between (almost) any two

instructions. If an interrupt is detected, the processor temporarily pauses the execution of the

currently-scheduled task and executes a designated interrupt service routine (ISR) instead. This

can cause the interrupted task to incur undesirable delays that must be accounted for during schedu-

lability analysis.

Most interrupts are maskable, i.e., the processor can be instructed by the OS to delay the in-

vocation of ISRs until interrupts are unmasked again. However, non-maskable interrupts (NMIs),

which can be used for “watch dog” functionality to detect system hangs, cannot be suppressed by

the OS (Intel Corp., 2008b).

In multiprocessor systems, some interrupts may be local to a specific processor (e.g., register-

based timers (Weaver and Germond, 1994)), whereas others may be serviced by multiple or all

processors.

Interrupts differ from normal preemptions in that a task cannot migrate while it is being delayed

by an ISR, i.e., a task cannot resume execution on another processor to reduce its delay. This

limitation arises due to the way context switching is commonly implemented in OSs. For example,

in Linux (and Linux-derived systems such as the one considered in (Brandenburg et al., 2008)),

there is only a single function in which context switching can be performed, and it is only invoked

at the end of an ISR (if a preemption is required). From a software engineering point of view,

limiting context switches in this way is desirable because it significantly reduces code complexity.

In terms of performance, ISRs tend to be so short (in well-designed systems) that context-switching

and migration costs dominate ISR execution times. Hence, delaying tasks is usually preferable to

allowing migrations unless either migration and scheduling costs are negligible or ISR execution

times are excessively long.

5

Delays due to ISRs are fundamentally different from scheduling and preemption overheads: the

occurrence of scheduling and preemption overheads is controlled by the OS and can be carefully

planned to not occur at inopportune times. In contrast, ISRs execute with a statically-higher pri-

ority than any real-time task in the system and cannot be scheduled, i.e., while interrupts can be

temporarily masked by the OS, they cannot be selectively delayed2, and thus are not subject to the

scheduling policy of the OS.

2.1 Interrupt Categories

Interrupts can be broadly categorized into four classes: device interrupts (DIs), timer interrupts

(TIs), cycle-stealing interrupts (CSIs), and inter-processor interrupts (IPIs). We briefly discuss the

purpose of each next.

DIs are triggered by hardware devices when a timely reaction by the OS is required or to avoid

costly “polling” (see below). In real-time systems, DIs may cause jobs to be released, e.g., a sensor

may trigger a DI to indicate the availability of newly-acquired data, in response to which a job is

released to process said data.

TIs are used by the OS to initiate some action in the future. For example, TIs are used to support

high-resolution delays (“sleeping”) in Linux. They can also be used for periodic job releases and

to enforce execution time budgets. In networking protocols, TIs are commonly employed to trigger

timeouts and packet re-transmissions.

CSIs are an artifact of the way that modern hardware architectures are commonly implemented

and differ from the other categories in that they are neither controlled nor handled by the OS.

CSIs are used to “steal” processing time for some component that is—from the point of view of

the OS—hardware, but that is implemented as a combination of hardware and software (so called

“firmware”) and that lacks its own processor. CSIs are intended to be transparent from a logical

correctness point of view, but of course do affect temporal correctness.3 They are usually non-

2Masking may create non-trivial timing dependencies because it usually affects physical interrupt lines, which are

oftentimes shared among multiple interrupt sources.
3CSIs are especially problematic if the code that is being executed is unknown—for example, a CSI could flush

instruction and data caches and thereby unexpectedly increase task execution costs.

6

maskable and the OS is generally unaware if and when CSIs occur. A well-known example for

the use of CSIs is the system management mode (SMM) in Intel’s x86 architecture (Intel Corp.,

2008a,b): when a system management interrupt (SMI) occurs, the system switches into the SMM

to execute ISRs stored in firmware. For example, on some chip sets the SMM is entered to control

the speed of fans for cooling purposes. CSIs can also occur in architectures in which raw hardware

access is mediated by a hypervisor (such as Sony’s PlayStation 3 (Kurzak et al., 2008) and SUN’s

sun4v architecture (Saulsbury, 2008))—the hypervisor may become active at any time to handle

interrupts or perform services for devices “invisible” to the OS.

In contrast to DIs, TIs, and CSIs, the final category considered, IPIs, are specific to multiproces-

sor systems. IPIs are used to synchronize state changes across processors and are generated by the

OS. For example, the modification of memory mappings (i.e., changes to address spaces) on one

processor can require software-initiated TLB flushes on multiple processors (Intel Corp., 2008b,c).

IPIs are also commonly used to cause a remote processor to reschedule.

2.2 Delay Avoidance

There are four implementation choices that help to limit interrupt-related delays: split interrupt

handling, polling, interrupt masking, and, in multiprocessor systems, dedicating a processor to

interrupt handling.

Split interrupt handling can be used to reduce the length of ISRs. With split interrupt handling,

the work required to handle an interrupt is divided into two parts: a short ISR only acknowledges the

interrupt and does the minimum amount of work necessary for correct operation, whereas the main

work is carried out by an interrupt thread that is subject to OS scheduling (Liu, 2000). However,

even with split interrupt handling, some work, such as releasing jobs or activating interrupt threads,

must be carried out in the ISRs themselves, and this work must be accounted for.

DIs can be avoided altogether through polling, whereby hardware devices are probed periodi-

cally for state changes and pending events. However, TIs are still required to invoke the scheduler

and initiate polling periodically.

In embedded systems that execute real-time tasks in privileged mode, interrupts can be masked

7

whenever a real-time job is executing. Once a job completes, interrupts are unmasked and pending

interrupts handled. While this helps to make interrupts more predictable, it does not reduce the time

lost to ISRs. Further, this approach does not apply to NMIs and, for security and safety reasons, it is

highly undesirable to run real-time tasks in privileged mode. Additionally, if timing constraints are

stringent, then the associated increase in interrupt latency may be prohibitive. If IPIs are masked

for prolonged times, then concurrency may be reduced while processors wait to synchronize.

Both polling and masking interrupts for prolonged times can drastically reduce the maximum

I/O throughput by increasing device idle time. Such throughput losses may be economically unde-

sirable or even unacceptable (especially in soft real-time systems). Finally, neither approach is a

viable choice in the increasingly-relevant class of general purpose operating systems with real-time

properties (such as real-time variants of Linux). Further, if a hardware platform makes use of CSIs,

then, by definition, they cannot be avoided by any OS design.

With dedicated interrupt handling (Stankovic and Ramamritham, 1991), a processor that does

not schedule real-time tasks is reserved for servicing all DIs and most4 TIs. Thus, real-time applica-

tions are shielded from interrupts other than CSIs and IPIs and hence incur fewer delays. However,

such a design may lead to an increased reliance on IPIs since interrupt-triggered scheduling deci-

sions must be relayed from the dedicated processor to the processors on which real-time applica-

tions execute. Such IPIs can increase release latencies and must be accounted for in schedulability

analysis.

In practice, dedicated interrupt handling is commonly used. Variants of dedicated interrupt

handling have been developed for several real-time Linux variants (Brosky and Rotolo, 2003; Piel

et al., 2005; Betti et al., 2008); dedicated interrupt handling is also supported in recent standard

versions of Linux.

To summarize, interrupts can delay real-time tasks and cannot be avoided completely on most

(if not all) modern multiprocessor architectures; hence, they must be accounted for in schedulability

analysis.

4Depending on the particular implementation, periodic timer ticks may still be serviced by all processors. For

example, this is the case with standard Linux.

8

2.3 Bounding Interrupt Interference

Bounding ISR activations may be difficult in practice. The number of distinct interrupts is often

limited (to reduce hardware costs), and hence interrupts may be shared among devices. Further,

many devices and interrupts are commonly multiplexed among many logical tasks. For example, a

single timer (and its corresponding ISR) is likely to be shared among multiple real-time tasks and

potentially even best-effort tasks.

As a result, it may be impractical to characterize a system’s worst-case interrupt behavior by

modeling the individual (hardware) interrupts. Instead, it may be more illuminating to consider

logical “interrupt sources” that cause one or more ISRs to be invoked in some pattern, but do not

necessarily correspond to any particular device. This approach is formalized in the next section.

3 System Model

We consider the problem of scheduling a set of n implicit-deadline sporadic tasks τ = {T1, . . . , Tn}

on m processors; we let Ti(ei, pi) denote a task where ei is Ti’s worst-case per-job execution time

and pi is its period. Ti,j denotes the jth job (j ≥ 1) of Ti. Ti,j is released at time ri,j ≥ 0 and

should complete by its absolute deadline di,j = ri,j + pi. If j > 1, then ri,j ≥ ri,j−1 + pi. If

Ti,j completes at time t, then its tardiness is max(0, t − di,j). A task’s tardiness is the maximum

of the tardiness of any of its jobs. Note that, even if Ti,j misses its deadline, ri,j+1 is not altered.

However, tasks are sequential: Ti,j+1 cannot start execution until Ti,j completes. Ti’s utilization is

ui=ei/pi; τ ’s total utilization is U(τ)=
∑n

i=1 ui. We assume U(τ) ≤ m; otherwise, tardiness may

grow unboundedly (Devi, 2006).

Scheduler. In this paper, we assume preemptive G-EDF scheduling (i.e., jobs with smaller di,j

values have higher priority). In an event-driven system, the scheduler is invoked whenever a job is

released (to check if a preemption is required) or completes (to select the next job, if any). In con-

trast, in a quantum-driven system, the scheduler is invoked only at integer multiples of a scheduling

quantum Q (see (Devi, 2006; Liu, 2000) for overviews). Hence, job releases and completions may

9

be processed with a delay of up to Q time units5 and all task parameters must be integer multiples

of Q.

Interrupts. An interrupt source causes ISRs to be invoked. An interrupt source is local if all

invoked ISRs are serviced on the same processor, and global otherwise. We consider a system with

r global interrupt sources I1, . . . , Ir, and, on each processor h, where 1 ≤ h ≤ m, rh local interrupt

sources Ih1 , . . . , I
h
rh

.

When an ISR is invoked on a processor, the job currently running on that processor is temporar-

ily stopped and its completion is delayed. In contrast to a regular preemption, a stopped job cannot

migrate to another processor while the interfering ISR executes.

Definition 1. We assume that for each interrupt source Ix (either global or local) there is a mono-

tonic function dbf(Ix,∆) that bounds the maximum service time required by all ISRs invoked by

Ix over an interval of length ∆ ≥ 0.

Additionally, we assume that, for each interrupt source Ix (either local or global), dbf(Ix,∆) is

upper-bounded by a linear function of ∆, i.e., there exist P (Ix) ≤ 1 and R(Ix) ≥ 0 such that (1)

below holds for all ∆ ≥ 0.

dbf(Ix,∆) ≤ P (Ix) ·∆ +R(Ix) (1)

As an example, for a sporadic interrupt source Ix that invokes an ISR of maximum length cx at

most once every px time units, the demand bound function is given by

dbf(Ix,∆) =

⌊
∆

px

⌋
· cx + min

(
cx, ∆−

⌊
∆

px

⌋
· px
)
, (2)

as illustrated in Figure 2, in which case, P (Ix) = cx
px

and R(Ix) = cx.

We require that, in total, the time spent on interrupt handling does not exceed the capacity of

one processor for sufficiently long time intervals. This assumption holds if

r∑
k=1

P (Ik) +
m∑
h=1

rh∑
k=1

P (Ihk) < 1. (3)

5This delay can be accounted for by shortening a task’s period (and hence relative deadline) by Q time units. A

choice of Q = 1ms is common (Devi, 2006).

10

t
1 2 3 54 6 7 8 109 11 12 13 14 150

∆
px

a

b

cx cxcx

Figure 2: Illustration of (2) for cx = 3, px = 5, and ∆ = 12, where a = px ·
⌊

∆
px

⌋
and b =

∆−
⌊

∆
px

⌋
· px. At most

⌊
∆
px

⌋
= 2 complete ISR invocations execute in ∆ (times 0–3 and 5–8), and

b = 2 time units of a third invocation fit within ∆ (time 10–12).

Note that systems that violate (3) likely have sufficiently-high processor and task counts to render

global scheduling impractical. We expect such large systems to be scheduled using a clustered

approach (Baker and Baruah, 2007; Calandrino et al., 2007; Brandenburg et al., 2008), wherein (3)

applies only on a per-cluster basis (and hence is not a serious limitation).

Schedulability. In a hard real-time system, each job must complete by its absolute deadline and,

in a soft real-time system, each job must have bounded deadline tardiness. We are interested in

developing a validation procedure—or schedulability test—for determining whether hard or soft

real-time constraints are met for a task set τ that is scheduled on m processors using G-EDF in the

presence of interrupts.

Many hard and soft real-time schedulability tests for G-EDF without interrupts have been pro-

posed in prior work (Goossens et al., 2003; Baker, 2003; Bertogna et al., 2005; Baruah, 2007; Devi,

2006; Leontyev and Anderson, 2008; Bertogna et al., 2009). In the next section, we describe three

methods for incorporating interrupts in existing analysis, Devi’s “quantum-centric” method and

two recently-developed methods.

4 Schedulability Analysis

Because interrupt handlers effectively have higher priority than ordinary jobs, they may delay job

completions. This can be accounted for in three different ways. Under quantum-centric account-

ing (Devi, 2006), interrupts are understood to reduce the “effective quantum length,” i.e., the service

11

time available in each quantum to real-time jobs. Each task’s worst-case execution cost is inflated

to ensure completion given a lower-bound on the effective quantum length. Under task-centric

accounting, interrupts are considered to extend each job’s actual execution time and worst-case ex-

ecution times are inflated accordingly. Under processor-centric accounting, task parameters remain

unchanged and interrupts are considered to reduce the processing capacity available to tasks.

The first two methods are not G-EDF-specific—a task system is deemed schedulable if it passes

an existing sustainable (Baruah and Burns, 2006) schedulability test assuming inflated worst-case

execution times for all tasks.

Processor-centric accounting requires a two-step process: (i) reduce the processing capacity

of the platform by accounting for the time consumed by interrupt handlers in the worst case; and

(ii) analyze the schedulability of the original task set on the reduced-capacity platform. While

general in principle, the reduced-capacity analysis used in Step (ii) has been developed only for a

limited number of scheduling algorithms to date, G-EDF prominently among them (Leontyev and

Anderson, 2007; Shin et al., 2008).

4.1 Quantum-Centric Accounting

Recall from Section 3 that under quantum-based scheduling all task parameters are multiples of a

quantum size Q and that scheduling decisions are only made at multiples of Q. In practice, some

processor time is lost due to system overheads during each quantum; the remaining time is called

the effective quantum length Q′. With Devi’s quantum-based accounting method (Devi, 2006), Q′

is derived by assuming that all interrupt sources require maximum service time in each quantum,

i.e., on processor h,

Q′h = Q−
rh∑
k=1

dbf(Ihk , Q)−
r∑

k=1

dbf(Ik, Q). (4)

Under G-EDF, it generally cannot be predicted on which processor(s) a job will execute, hence

the system-wide effective quantum length is the minimum of the per-processor effective quantum

lengths, i.e., Q′ = min{Q′h}. If Q′ > 0, then task Ti’s inflated worst-case execution time e′i is given

12

time

T
1

I
1

0 5 10 15 20

job release ISR release time deadlineinter-processor ISR job execution

Figure 3: Usage of IPIs for rescheduling in Example 1.

by

e′i = Q ·
⌈
ei
Q′

⌉
. (5)

If Q′ ≤ 0 or e′i > pi for some Ti, then τ is deemed unschedulable. This technique does not

depend on the scheduling algorithm in use—in fact, it has been used by Devi to analyze a range

of algorithms (Devi, 2006). A major limitation of the quantum-centric method is that it tends to

overestimate interrupt frequencies due to the short analysis interval Q. This is especially a concern

on large multiprocessor platforms due to the (likely) high number of interrupt sources.

4.2 IPI Delay

Before considering the task- and processor-centric methods in detail, we make the following ob-

servation. If scheduling is not quantum-based, then a job release is typically triggered by a TI or

DI. In this situation, the processor executing the job-release ISR and the processor on which the

newly released job is scheduled may be different. To initiate rescheduling, an IPI is sent to the

target processor as the example below illustrates.

Example 1. Consider a task set τ = {T1(3, 8)} scheduled on two processors. Suppose that an ISR

serving interrupts from source I1, which is invoked every 8 time units and executes for 0.5 time

unit, releases jobs of T1. In the schedule shown in Figure 3, job T1,1 is released by the ISR that

executes within the interval [0, 0.5) on processor 1. At time 0.5, an IPI is sent to processor 2 and

thus the IPI service routine executes during the interval [0.5, 1). After that, job T1,1 is scheduled on

processor 2. Subsequent jobs of T1 are handled similarly.

In general, if an IPI is sent to some processor, then some newly released job must be scheduled

on that processor. The execution of the associated IPI service routine can be treated as the execution

13

of preempting task Ti. In the description of the task-centric and processor-centric methods below,

we assume that the maximum IPI cost is added to the worst-case execution time of each task. This

treatment is similar to accounting for scheduling overheads (Liu, 2000; Devi, 2006).

4.3 Task-Centric Accounting

Based on the observation that Ti,j is delayed by at most the total duration of ISRs that are invoked

while Ti,j executes, the task-centric method analyzes the complete interval during which a job

Ti,j can execute (instead of focusing on an individual quantum). In this paper, we describe this

method in conjunction with G-EDF scheduling, but it can be applied similarly to other scheduling

algorithms. Since the length of the analysis interval depends on Ti,j’s tardiness, the task-centric

method is more involved in the soft real-time case. We start by first considering the hard real-time

case.

4.3.1 Hard Real-Time Schedulability

The key concept behind the task-centric method is that, if jobs of Ti(ei, pi) are delayed by at most

δi, then Ti will meet all of its deadlines if T ′i (ei + δi, pi) meets all of its deadlines assuming no

delays (Ha and Liu, 1994). Hence, schedulability in the presence of ISR invocations can be checked

with an existing schedulability test oblivious to interrupts if a bound on δi can be derived.

Definition 2. Let

C(∆) =
r∑

k=1

dbf(Ik,∆) +
m∑
h=1

rh∑
k=1

dbf(Ihk ,∆)

denote a bound on the maximum time consumed by local and global ISRs during a time interval of

length ∆.

If Ti,j completes by its deadline (i.e., it is not tardy), then it can be directly delayed by ISRs

for at most C(di,j − ri,j) = C(pi) time units.6 However, Ti,j can also be indirectly delayed by

6Note that in upper-bounding δi by C(pi), local interrupts on all processors are considered. A tighter bound on δi

can be derived if Ti is known to migrate at most η < m times: only the η + 1 processors for which
∑rh

k=1 dbf(Ih
k ,∆)

is maximized must be accounted for in this case.

14

ISRs that were invoked prior to ri,j by “pushing” processor demand of higher-priority jobs into

[ri,j, di,j). Both sources of delay can be accounted for by (pessimistically) assuming that all jobs

are maximally delayed.

Theorem 1. A task system τ = {T1, . . . , Tn} is hard real-time schedulable with G-EDF in the

presence of interrupts if τ ′ = {T ′1, . . . , T ′n}, where e′i = ei + C(pi), passes a sustainable (Baruah

and Burns, 2006) hard real-time schedulability test.

Proof. Follows from the preceding discussion.

4.3.2 Soft Real-Time Schedulability

Our notion of soft real-time schedulability requires jobs to have bounded maximum tardiness. If

all ISRs have zero cost, then the following holds.

Theorem 2. (Proved in (Devi, 2006).) If U(τ) ≤ m, then for each Ti ∈ τ there exists bi ≥ 0 such

that Ti’s maximum tardiness under G-EDF is at most bi (an expression for bi is given in (Devi,

2006)).

In the absence of interrupts, every job Ti,j is known to only execute within [ri,j, di,j + bi). How-

ever, in contrast to the hard real-time case, the analysis interval changes in the presence of interrupts

since inflating ei also inflates bi. Thus, an iterative approach such as the following procedure is re-

quired to break the cyclic dependency between the tardiness bound and delays due to ISRs in the

soft real-time case.

initialize b′i := 0 for all i

do

set boi := b′i for all i

set e′i := ei + C(pi + boi) for all i

set τ ′ := {T ′1, . . . , T ′n} where T ′i = (e′i, pi)

compute b′i for all i with Theorem 2 based on τ ′

while (b′i 6= boi and e′i ≤ pi) for all i and U(τ ′) ≤ m

15

Theorem 3. If U(τ ′) ≤ m and e′i ≤ pi for all Ti ∈ τ after the above procedure terminates, then

deadline tardiness of each Ti is at most b′i under G-EDF scheduling in the presence of interrupts.

Proof. Follows from the preceding discussion.

4.3.3 Over-Estimation of Interrupt Delays

While often less pessimistic than the quantum-centric method, the task-centric method is also likely

to over-charge for interrupts. In fact, the cause of the disappointing (lack of significant) perfor-

mance improvements observed in Figure 1 is utilization loss inherent in the task-centric method.

This loss is quadratic in the number of tasks, as shown below.

Definition 3. Let cr > 0 denote the worst-case execution time of a job-releasing ISR, i.e., the

worst-case overhead incurred due to a single job release.

Theorem 4. Consider an event-triggered system τ of n sporadic tasks, where each job is released

by an interrupt of cost cr, where min{pi} > cr > 0 and max{pi} is bounded by some constant.

Under task-centric interrupt accounting, U(τ ′) = U(τ) + Ω(n2), where τ ′ denotes the inflated task

set as defined in Theorems 1 and 3 (respectively).

Proof. First, we consider the hard real-time case. By Theorem 1 and Definition 2,

e′i = ei + C(pi) = ei +
r∑

k=1

dbf(Ik, pi) +
m∑
h=1

rh∑
k=1

dbf(Ihk , pi).

Without loss of generality, assume that the only sources of interrupts I1, . . . , In are sporadic job

releases by T1, . . . , Tn, where Ii corresponds to releases of Ti. Hence e′i = ei +
∑n

k=1 dbf(Ik, pi)

and thus

U(τ ′) = U(τ) +
n∑
i=1

∑n
k=1 dbf(Ik, pi)

pi
.

By (2) and Definition 3,

dbf(Ik, pi) =

⌊
pi
pk

⌋
· cr + min

(
cr, pi −

⌊
pi
pk

⌋
· cr
)
.

16

If pi < pk, then dbf(Ik, pi) = min (cr, pi) = cr; otherwise, dbf(Ik, pi) ≥
⌊
pi

pk

⌋
· cr ≥ cr. Hence,

dbf(Ik, pi) ≥ cr, and therefore

U(τ ′) ≥ U(τ) +
n∑
i=1

n · cr
pi
≥ U(τ) +

n2 · cr
max{pi}

.

This establishes a lower bound for the hard real-time case. The same lower bound applies in the

soft real-time case as well since C(pi + bi) ≥ C(pi) due to the monotonicity of dbf(Ik,∆) (recall

that, by definition, bi ≥ 0).

If each (of n) tasks releases a constant number of jobs over some interval, then the time lost to

job releases over the interval is O(n). Hence, Theorem 4 shows that the task-centric method

asymptotically overestimates the time lost to interrupt processing. For sufficiently large n, reducing

the release overhead cr has comparably little impact—that is, optimizing the OS implementation

does not help to mitigate asymptotic inefficiencies in the analysis. Next, we discuss the remaining

processor-centric interrupt accounting method, which is designed to overcome this problem.

4.4 Processor-Centric Accounting

The final method, which involves subtracting the ISR time from the total available processing

capacity, introduces several difficulties.

First, even though an ISR makes a processor unavailable to ordinary real-time jobs, the currently-

running job cannot migrate to another processor. This differs from how limited processing capacity

has been treated in prior work (Leontyev and Anderson, 2007; Shin et al., 2008; Leontyev et al.,

2009).

Second, if a job is released as a result of an ISR, then it cannot be scheduled on any processor

before the respective ISR completes. Both aspects are illustrated by the following example, in

which tardiness may grow unboundedly even though tardiness is deemed bounded using traditional

reduced-capacity analysis (Leontyev and Anderson, 2007).

Example 2. Consider the task set τ = {T1(999, 1000)} scheduled on two processors. Suppose

that the only ISR in the system, which releases T1’s jobs, is invoked every 1000 time units and

17

0 1000 2000

t

P1

P2

T1,1
T1,2

interrupt handlerregular task

0 1000 2000

t

P1

P2 T1,2T1,1

(a)

(b)

Figure 4: Interrupt handling scenarios from Example 2.

executes for at most 2 time units. In the schedule shown in Figure 4(a), job T1,1, released at time

0, is not available for scheduling before time 2. At time 2, T1,1 is scheduled on processor 2 and

completes at time 1001, so its tardiness is 1. At time 1000, job T1,2 arrives and the ISR is invoked

on processor 1 so job T1,2 becomes available to the scheduler at time 1002 and completes at time

2001. Also, running jobs of task T1 are not paused in this schedule. In contrast to this, in the

schedule in Figure 4(b), the second interrupt is handled by processor 2 and thus preempts job T1,1,

rendering both processors unavailable to T1. If the ISR is invoked on the processor that schedules a

job of T1, then the tardiness will grow unboundedly because only 998 execution units are available

to T1 while it requests 999 time units every 1000 time units (assuming that future jobs are released

periodically).

In order to re-use results for platforms with limited processor availability, we assume that, when

an interrupt occurs, all processors become unavailable to jobs in τ for the duration of an ISR. While

pessimistic, the above example illustrates that this global capacity reduction is required in order to

achieve general applicability of the analysis. We next introduce some definitions to reason about

platforms with limited processing capacity.

Definition 4. Let supplyh(t,∆) be the total amount of processor time available on processor h to

18

the tasks in τ during the interval [t, t+ ∆).

Definition 5. To deal with limited processor supply, the notion of service functions has been pro-

posed (Chakraborty et al., 2006). The service function βlh(∆) lower-bounds supplyh(t,∆) for each

time t ≥ 0. We require

βlh(∆) ≥ max(0, ûh · (∆− σh)), (6)

for ûh ∈ (0, 1] and σh ≥ 0.

In the above definition, the superscript l stands for “lower bound,” ûh is the total long-term

utilization available to the tasks in τ on processor h, and σh is the maximum length of time when

the processor can be unavailable. Note that, if processor h is fully available to the tasks in τ , then

βlh(∆) = ∆.

Some schedulability tests for limited processing capacity platforms require that the total time

available on all processors be known (Shin et al., 2008).

Definition 6. Let Supply(t,∆) =
∑m

h=1 supplyh(t,∆) be the cumulative processor supply during

the interval [t, t+ ∆). Let B(∆) be the guaranteed total time that all processors can provide to the

tasks in τ during any time interval of length ∆ ≥ 0.

If lower bounds on individual processor supply are known, then we can compute a lower bound

on the total supply using the following trivial claim.

Claim 1. If individual processor service functions βlh(∆) are known, then

Supply(t,∆) ≥ B(∆), where B(∆) =
∑m

h=1 β
l
h(∆).

In the remainder of this section, we assume that individual processor service functions are

known. We will derive expressions for them later in Section 4.5.

Hard real-time schedulability of τ on a platform with limited supply can be checked using

results from (Shin et al., 2008). This paper presents a sufficient pseudo-polynomial test that checks

whether the time between any job’s release time and its completion time does not exceed a pre-

defined bound. This test involves calculating the minimum guaranteed supply for different values

of ∆.

19

To test soft real-time schedulability of τ on a platform with limited supply we use the following

definition and theorem.

Definition 7. Let UL(y) be the sum of min(|τ |, y) largest task utilizations.

Theorem 5. (Proved in (Leontyev and Anderson, 2007)) Tasks in τ have bounded deadline tar-

diness if the following inequalities hold

U(τ) ≤
m∑
h=1

ûh (7)

m∑
h=1

ûh > max(H − 1, 0) ·max(ui) + UL(m− 1), (8)

where H is the number of processors for which βlh(∆) 6= ∆.

In the above theorem, if (7) does not hold, then the long-term execution requirement for tasks

will exceed the total long-term guaranteed supply, and hence, the system will be overloaded. On the

other hand, (8) implicitly restricts the maximum per-task utilization in τ due to the term max(H −

1, 0) ·max(ui), which could be large if the maximum per-task utilization is large. This is especially

the case if all processors can be unavailable to tasks in τ , i.e., H = m. Since we assumed that all

processors are unavailable to τ for the duration of an ISR, this may result in pessimistically claiming

a system with large per-task utilizations to be unschedulable. In the next section, in Example 3, we

show that such a penalty may be unavoidable.

4.5 Deriving β Service Functions

We now establish a lower bound on the supply provided by processor h to τ over an interval of

length ∆.

Definition 8. LetF =
∑r

k=1 P (Ik)+
∑m

h=1

∑rh
k=1 P (Ihk) andG =

∑r
k=1 R(Ik)+

∑m
h=1

∑rh
k=1R(Ihk).

Lemma 1. If interrupts are present in the system, then any processor h can supply at least

βlh(∆) = max (0,∆− C(∆)) (9)

20

time units to the tasks in τ over any interval of length ∆. Additionally, (6) holds for ûh = 1 − F

and σh = G
1−F .

Proof. We first prove (9). By Definition 4, processor h provides supplyh(t,∆) time units to τ

during the interval [t, t + ∆). By our assumption, processor h is unavailable for the total duration

of all local and global ISRs invoked during the interval [t, t + ∆). From this and Definition 2, we

have

supplyh(t,∆) ≥ ∆− C(∆)

Because supplyh(t,∆) cannot be negative, (9) follows from Definition 5. Our remaining proof

obligation is to find ûh and σh such that (6) holds. From (9), we have

βlh(∆) = max (0,∆− C(∆))

{by Definition 2}

≥ max

(
0,∆−

[
r∑

k=1

dbf(Ik) +
m∑
h=1

rh∑
k=1

dbf(Ihk)

])

{by (1)}

≥ max

(
0,∆−

[
r∑

k=1

(P (Ik) ·∆ +R(Ik))

+
m∑
h=1

rh∑
k=1

(P (Ihk) ·∆ +R(Ihk))

])

{by Definition 8}

= max (0,∆− (F ·∆ +G))

{by the definition of ûh and σh

in the statement of the lemma}

≥ max (0, ûh · (∆− σh)) .

By Definition 8 and (3), ûh as defined in the statement of the lemma is positive.

We next illustrate soft real-time schedulability analysis of a system with interrupts using Lemma 1

and Theorem 5.

21

Example 3. Consider the system from Example 2. The maximum tardiness for T1’s jobs may

or may not be bounded depending on how interrupts are dispatched. We now analyze this task

system using Theorem 5. By (2), the only global interrupt source I1 considered has dbf(I1,∆) =⌊
∆

1000

⌋
·2+min

(
2, ∆−

⌊
∆

1000

⌋
· 2
)
. The parameters P (I1) andR(I1) for which (1) holds are 0.002

and 2, respectively. Setting these parameters into Lemma 1, we find ûh = 0.998, and σh = 2.004

for h = 1 and 2. Applying Theorem 5 to this configuration, we find that (8) does not hold because∑m
h=1 ûh = 2 · 0.998 < max(2 − 1, 0) · u1 + u1 = 2 · 0.999. Thus, bounded tardiness is not

guaranteed for τ .

5 Special Cases

In the previous section, we assumed that all processors execute both ISRs and real-time jobs and

made no assumptions about the type of interrupts. In this section, we discuss three special cases that

are commonly encountered in real systems: periodic timer interrupts, dedicated interrupt handling,

and timer multiplexing.

5.1 Timer Ticks under Task-Centric Accounting

Recall that, under task-centric accounting, the execution cost of a task Ti(ei, pi) is inflated to ac-

count for all local ISR invocations on all processors that may occur during the maximum interval

in which a single job of Ti can be active, i.e., a job of Ti is charged for all delays in the interval

in which it might execute. In the general case, this likely very pessimistic charge is unavoidable

because a job may execute on all processors (due to migrations) and be delayed by all invoked ISRs

on each processor (due to adverse timing of ISR invocations). In fact, such a scenario is trivial to

construct assuming sporadic interrupt sources (in which case all ISR invocations may occur simul-

taneously) and sporadic job releases. However, a less-pessimistic bound can be derived for timer

ticks (and similar interrupt sources) due to the regularity of their occurrence.

Definition 9. An interrupt is periodic if its minimum invocation separation equals its maximum

invocation separation, and replicated if a corresponding ISR is invoked on each processor. Note

22

that ISRs are not necessarily invoked on each processor simultaneously (i.e., “staggered” ISR in-

vocations are allowed), but invocations on each processor must be periodic (i.e., the “staggering”

is constant).

Periodic ISR delay. Periodic interrupts differ from the more general model discussed in Section 3

in that we can assume an exact separation of ISR invocations, which enables us to apply techniques

of classic response-time analysis (see (Liu, 2000) for an introduction). Let Ix denote a periodic,

replicated interrupt source that, on each processor, triggers every px time units an ISR that executes

for at most cx time units.

Consider a job Ti,j of task Ti(ei, pi) such that ei already accounts for all other sources of delays

(e.g., non-periodic global and local interrupts). If Ti,j is not preempted while it executes, then, based

on the response-time analysis of an equivalent two-task system under static-priority scheduling,

Ti,j’s inflated execution cost due to Ix is given by the smallest e′i that satisfies

e′i = ei +

⌈
e′i
px

⌉
· cx. (10)

Migrations. If Ti,j migrates, then (10) may not hold in all cases—each time Ti,j migrates, it might

incur one additional ISR invocation because ISR invocations are not required to occur simultane-

ously on all processors. Similarly, if Ti,j is preempted (but does not migrate), then it might still

incur one additional ISR invocation when it resumes because its completion was delayed. Hence,

if Ti,j is preempted or migrates at most η times, then Ti,j’s inflated execution cost is given by the

smallest e′i that satisfies

e′i = ei +

⌈
e′i
px

⌉
· cx + η · cx (11)

Under G-EDF, jobs are only preempted by newly-released higher-priority jobs, i.e., every job

release causes at most one preemption to occur. Thus, η can be bounded based on the number of

jobs with earlier deadlines that can be released while a job Ti,j is pending using standard tech-

niques (Liu, 2000).

23

5.2 Interrupt Handling on a Dedicated Processor

As discussed earlier in Section 4, both task-centric and processor-centric accounting methods can

be pessimistic. For the task-centric method, we have assumed that each job of a task can be delayed

by all (non-timer) ISRs invoked between its release time and deadline. For the processor-centric

method, we have assumed that each processor is not available for scheduling real-time tasks during

the execution of an ISR. We made these assumptions because, in general, it is neither known on

exactly which processor a job executes, nor which processor handles an ISR corresponding to a

global interrupt source.

Having more control over ISR execution may reduce ISR interference and improve the anal-

ysis. In this section, we consider a multiprocessor system in which all interrupts (except repli-

cated timer ticks) are dispatched to a dedicated (master) processor that does not schedule real-time

jobs (Stankovic and Ramamritham, 1991). (Without loss of generality we assume that this is pro-

cessor 1.) The remaining m − 1 (slave) processors are used for running real-time tasks and only

service IPI and timer-tick ISRs. The intuition behind this scheme is the following: by dispatching

most interrupts in the system to the master processor, slave processors can service real-time jobs

mostly undisturbed. The tradeoff is that one processor is “lost” to interrupt processing, with the

benefit that pessimistic overhead accounting is (mostly) avoided on all slave processors. Thus, if

accounting for all interrupt sources causes a utilization loss of greater than one due to pessimistic

analysis, then dedicated interrupt processing should yield improved overall schedulability.

We assume that the ISRs on the master processor execute in FIFO order. When a job-release

ISR completes on the master processor and some job running on a slave processor needs to be

preempted, an IPI is dispatched to that processor. Thus, even though the majority of interrupt

processing work has been moved to the master processor, the IPI service routines are still executed

on slave processors.

Definition 10. In this section, we assume that the maximum cost of a job-release ISR is c[I].

Example 4. Consider a task set τ = {T1(1, 4), T2(1, 4), T3(2, 12)} running on a two-processor

platform. Suppose that jobs of tasks in τ are released by ISRs executed on processor 1. Suppose

24

that the maximum job-release ISR cost and IPI service routine cost is c[I] = 0.5 and rescheduling

has zero cost. An example schedule for this system is shown in Figure 5. At time zero, job-release

interrupts from the three sources I1, I2, and I3 are dispatched to processor 1. An ISR for I3 executes

during the interval [0, 0.5). At time 0.5, job T3,1 is available for execution so an IPI is dispatched to

processor 2. The IPI service routine executes on processor 2 during the interval [0.5, 0.75) and job

T3,1 commences execution at time 0.75. Similarly, the releases of jobs T2,1 and T1,1 are processed.

In order to reduce the interference caused by IPIs, these interrupts are fired only if rescheduling

needs to be done. In the schedule shown in Figure 5, the IPI corresponding to job T2,2 is not sent

at time 4.5 (when the respective job-release ISR completes) because job T1,2 has higher priority

than T2,2 and thus does not need to be preempted. Since IPIs are only sent when rescheduling is

required, their cost can be charged on per-job basis. As discussed in Section 4.1, we assume that

said cost is included in each task’s worst case execution time. Next, we need to account for the

delay introduced by sequential interrupt processing on the master processor.

Definition 11. Let ρi,j be the time when Ti,j is available for scheduling. We call ρi,j the effective

release time of Ti,j .

Example 5. Consider jobs T3,1, T2,1, and T1,1 from Example 4. Since the IPIs for these jobs are

treated as job execution, these jobs have effective release times ρ3,1 = 0.5, ρ2,1 = 1, and ρ1,1 = 1.5,

respectively, as shown in Figure 5. However, since the absolute deadlines for these jobs remain

unchanged, the effective relative deadlines for these three jobs are 10.5, 3, and 2.5, respectively.

For task T1, the effective relative deadline is given byD′1 = D1−3·c[I] = p1−3·c[I] = 2.5 as shown

in Figure 5. Similarly, for task T3, the effective relative deadline is given by D′3 = D3 − 3 · c[I] =

p3 − 3 · c[I] = 10.5 (see job T3,2 in Figure 5).

Definition 12. Let maxj≥1(ρi,j − ri,j) be the maximum distance between the release time and

effective release time of Ti’s jobs. This distance depends on the total time the execution of a job-

release ISR of Ti can be delayed. Let

J = max

(
c[I], sup

λ≥0

(
r∑

x=1

dbf(Ix, λ) +

r1∑
x=1

dbf(I1
x, λ)− λ

))
.

25

time

T
1

I
1

T
2

I
2

T
3

I
3

0 5 10 15 20

job release ISR

release time effective release time deadline

inter-processor ISR job execution

D ’1 D ’3

p ’1 p ’3J ’1 J ’3

Figure 5: Interrupts processed on a dedicated processor (see Examples 4–5).

Lemma 2. maxj≥1(ρi,j − ri,j) ≤ J .

Proof. The result of this lemma is similar to the formula for the maximum event delay from Net-

work Calculus (LeBoudec and Thiran, 2001). However, our setting is slightly different due to the

definition of service demand in Definition 1. Consider a job T`,q such that ρ`,q − r`,q ≥ c[I]. Let

c`,q be the cost of T`,q’s release ISR. Consider the latest time instant t0 ≤ r`,q such that no local

or global ISR is pending on the master processor before t0. T`,q’s release ISR completes at or be-

fore all ISRs arriving within [t0, r`,q] that are either global or local to processor 1 complete. From

Definition 1, we have

ρ`,q ≤ t0 +
r∑

x=1

dbf(Ix, r`,q − t0) +

r1∑
x=1

dbf(I1
x, r`,q − t0)

26

Subtracting r`,q from the inequality above, we have

ρ`,q − r`,q ≤ t0 − r`,q +
r∑

x=1

dbf(Ix, r`,q − t0) +

r1∑
x=1

dbf(I1
x, r`,q − t0)

{setting r`,q − t0 = λ}

=
r∑

x=1

dbf(Ix, λ) +

r1∑
x=1

dbf(I1
x, λ)− λ

{by the selection of t0 and λ, λ ≥ 0}

≤ sup
λ≥0

(
r∑

x=1

dbf(Ix, λ) +

r1∑
x=1

dbf(I1
x, λ)− λ

)
.

The example below shows that sequential execution of job-release ISRs changes the minimum

time between effective release times of subsequent jobs of a task.

Example 6. Consider jobs T1,1 and T2,1 in the previous example. Their effective release times are

ρ1,1 = 1.5 and ρ2,1 = 4.25 as shown in Figure 5. As seen, the effective job releases of subsequent

jobs of T1 are separated by at least 2.5 time units. This distance is denoted with p′1.

The theorem below presents a schedulability test. From an analysis standpoint, this test is a

combination of the task- and processor-centric methods in the sense that both interrupt costs are

charged on a per-task basis and that the available processor capacity is reduced.

Theorem 6. If τ ′ = {T ′1, . . . , T ′n}, where T ′i (ei, pi−J), is hard real-time schedulable (respectively,

has bounded tardiness) on m− 1 processors, then τ is hard real-time schedulable (respectively, has

bounded tardiness) on m-processor platform with all ISRs processed on a dedicated processor.

Proof. When interrupts are handled on a dedicated processor the minimum time between consecu-

27

tive effective job releases of Ti is

ρi,j+1 − ρi,j = ρi,j+1 − ri,j + ri,j − ρi,j

{by Lemma 2}

≥ ρi,j+1 − ri,j − J

{because ρi,j+1 ≥ ri,j+1}

≥ ri,j+1 − ri,j − J

{because Ti is sporadic}

≥ pi − J.

If τ is not hard real-time schedulable or has unbounded tardiness, then an offending schedule for τ ′

can be constructed from an offending schedule for τ by mapping each job Ti,j to the job T ′i,j such

that ρi,j = r′i,j and di,j = d′i,j .

Note that, in contrast to Theorem 1, we have subtracted the interrupt-induced delay J from the

task’s period. This is beneficial because e
p−J ≤

e+J
p

for all positive p and non-negative e and J such

that p ≥ e+ J . If p < e+ J , then the task set is claimed unschedulable.

Finally, if slave processors service timer ISRs, then the schedulability of the transformed task

set τ ′ on m− 1 processors should be checked after applying the task-centric analysis of timer ticks

(Section 5.1).

5.3 Timer Multiplexing

Up to this point, we have made no assumptions regarding the type of ISRs that cause jobs to be

released, i.e., the above analysis applies to any system in which job releases are triggered by either

DI and TI sources (recall Section 2.1).

An important special case are systems in which all job releases are time-triggered. For example,

in multimedia systems, video processing is usually frame-based, where each frame corresponds

to a point in time. Similarly, process control applications typically require each controller to be

28

activated periodically (Liu, 2000). Further, if devices are operated in polling mode, then each job

that polls a device is invoked in response to an expiring timer.

Since the number of programmable timer devices is typically small (e.g., there is only one

(processor-local) timer guaranteed to be available in Sun’s sun4v architecture (Saulsbury, 2008)),

operating systems are commonly designed such that a (possibly large) number of software timers

is multiplexed onto a single (or few) hardware timer(s) (Varghese and Lauck, 1987). For example,

in recent versions of Linux, this is accomplished by programming a one-shot hardware timer to

generate an interrupt at the earliest future expiration time and then processing all expired software

timers during each timer ISR invocation (Gleixner and Niehaus, 2006). If timers expire while an

ISR is being serviced, then such expirations are handled before re-programming the hardware timer.

Hence, job releases that occur “almost together” only require a single interrupt to be serviced.

If all job releases are triggered by software timers and if all interrupts are serviced by a dedicated

processor (as discussed in Section 5.2 above) then such multiplexing of a hardware timer can be

exploited for better analysis as follows. As before, let c[I] denote the maximum cost of a job-release

ISR, i.e., the maximum time required to service a single one-shot timer interrupt, and let J denote

the maximum release delay due to ISR processing as in Lemma 2.

According to Definition 12 and Lemma 2, in the absence of interrupt sources other than those

corresponding to the job releases of each task, J ≥ n · c[I] , i.e., if there are up to n − 1 earlier

ISRs of length c[I], then the effective release time of a job can be delayed by at least n · c[I] time

units. This is a lower bound in the general case, wherein each task might correspond to a different

DI source.

However, this is not the case under timer multiplexing: if all job releases are triggered by

(software) timers, then coinciding job releases are handled by the same ISR and thus J = c[I]. If

n is large, then this observation can amount to a substantially reduced bound on worst-case release

jitter.

29

6 Experimental Evaluation

To assess the effectiveness of the interrupt accounting approaches described above, we conducted

an experimental evaluation in which the methods were compared based on how many randomly-

generated task sets could be claimed schedulable (both hard and soft) if interrupts are accounted

for using each method.

6.1 Experimental Setup

Similarly to the experiments previously performed in (Brandenburg et al., 2008; Brandenburg and

Anderson, 2009), we used distributions proposed by Baker (2005) to generate task sets randomly.

Task periods were uniformly distributed over [10ms, 100ms]. Task utilizations were distributed

differently for each experiment using three uniform and three bimodal distributions. The ranges

for the uniform distributions were [0.001, 0.1] (light), [0.1, 0.4] (medium), and [0.5, 0.9] (heavy),

respectively. In the three bimodal distributions, utilizations were distributed uniformly over either

[0.001, 0.5) or [0.5, 0.9] with respective probabilities of 8/9 and 1/9 (light), 6/9 and 3/9 (medium),

and 4/9 and 5/9 (heavy).

We considered ISRs that were previously measured on a Sun Niagara multicore processor

in (Brandenburg and Anderson, 2009); namely, the one-shot timer ISR (global, unless handled

by dedicated processor), the periodic, replicated timer tick ISR signaling the beginning of a new

quantum (local; Q = 1000µs), and the IPI delay (see Section 4.2). The Niagara is a 64-bit machine

containing eight cores on one chip clocked at 1.2 GHz. Each core supports four hardware threads,

for a total of 32 logical processors. These hardware threads are real-time-friendly because each

core distributes cycles in a round-robin manner—in the worst case, a hardware thread can utilize

every fourth cycle. On-chip caches include a 16K (resp., 8K) four-way set associative L1 instruc-

tion (resp., data) cache per core, and a shared, unified 3 MB 12-way set associative L2 cache. Our

test system is configured with 16 GB of off-chip main memory.

We assumed worst-case (resp., average-case) ISR costs as given in (Brandenburg and Anderson,

2009) and reproduced in Table 1 when testing hard (resp., soft) schedulability. As we are only

30

Average Case Worst Case

n Release Timer Tick IPI delay Release Timer Tick IPI delay

50 13.49 1.73 3.62 45.38 8.88 6.55

100 20.40 1.78 3.37 88.88 9.23 5.00

150 28.43 1.84 3.31 135.91 9.38 5.16

200 36.11 1.89 3.29 150.63 9.57 5.02

250 44.96 1.92 3.30 164.73 9.61 5.08

300 51.64 1.95 3.33 174.49 9.71 7.15

350 60.85 1.98 3.35 186.64 9.85 5.40

400 69.75 2.01 3.40 200.14 9.90 9.43

450 78.90 2.04 3.49 217.46 10.03 7.52

Table 1: Worst-case and average-case ISR invocation costs under G-EDF (in µs) as a function of

the task set size n (from (Brandenburg and Anderson, 2009)). We used non-decreasing piece-wise

linear interpolation to derive ISR costs for values of n between measured task set sizes.

concerned with interrupt accounting, all other sources of overhead (scheduling, cache-related, etc.)

were considered negligible.7

To assess the impact (or lack thereof) of possible improvements in the OS implementation, we

tested each method twice: once assuming full ISR costs as given in (Brandenburg and Anderson,

2009), and once assuming ISR costs had been reduced by 80%. We consider the latter to be an

approximate upper bound on the best-case scenario based on the conjecture that overheads likely

cannot be reduced by more than 80%.

For each task set, we applied each of the accounting methods described in Section 4, and also

assuming dedicated interrupt handling (Section 5.2) and timer multiplexing (Section 5.3). To de-

termine whether an inflated task system τ ′ is hard real-time schedulable under the quantum-centric

and task-centric methods and dedicated interrupt handling, we used all major published sufficient

(but not necessary) hard real-time schedulability tests for G-EDF (Goossens et al., 2003; Baker,

7An implementation study considering full overheads and other implementation choices beyond the scope of this

paper has recently been completed (Brandenburg and Anderson, 2009).

31

2003; Bertogna et al., 2005; Baruah, 2007; Bertogna et al., 2009) and deemed τ ′ to be schedulable

if it passes at least one of these five tests. We assumed a quantum size of 1 millisecond, which is a

common choice in Linux-based systems such as the one considered in (Brandenburg and Anderson,

2009).

To determine hard real-time schedulability under the processor-centric method, we used Shin et

al.’s Multiprocessor Resource (MPR) test (Shin et al., 2008) and chose max{pi} as the MPR period

for analysis purposes. As an optimization, we used the supply-bound function given in (12) below,

which is less pessimistic than the (more general) one given by Shin et al. (2008).

sbf(∆) = m

(
∆−

m∑
h=1

rh∑
k=1

dbf(Ihk ,∆)−
r∑

k=1

dbf(Ik,∆)

)
(12)

Note that in (Shin et al., 2008) the supply-bound function is derived based on a given period and

supply. In contrast, we compute the supply for a chosen period with (12) (for ∆ = max{pi}).

Recall from Section 4.1 that the scheduling model underlying quantum-centric analysis is dif-

ferent from the event-driven model assumed by task- and processor-centric analysis. Thus, schedu-

lability under quantum-centric accounting is affected not only by interrupt delays, but also by uti-

lization loss due to the quantization of task parameters. This is reflected in our results since it is

fundamental to quantum-driven scheduling and hence an inherent source of pessimism that should

be considered when comparing analysis methods.

6.2 Results

Our schedulability results are shown in Figures 6–17: Figures 6–11 depict hard real-time results,

and Figures 12–17 depict soft real-time results. Inset (a) of each figure shows schedulability assum-

ing full ISR costs, whereas inset (b) of each figure shows schedulability of the same collection of

task sets assuming ISR costs reduced by 80%. Sampling points were chosen such that the sampling

density is high in areas where curves change rapidly. For each sampling point, we tested 1,000 task

sets, for a total of over 2,100,000 task sets.

32

6.2.1 Hard Real-Time Results Assuming Full ISR Costs

Figures 6–11 show the ratio of task sets claimed hard real-time schedulable by the five methods.

In all scenarios, the quantum-centric method shows consistently disappointing performance. In

Figure 6(a), which corresponds to the motivating example in Section 1, even with utilization less

than two, most task sets were deemed unschedulable using this method. Performance improves

with heavier task sets (e.g., see Figure 10(a)), but never becomes competitive due to the overall

high number of tasks.

The processor-centric method works best if there are no heavy tasks (see Figure 6(a)), but does

not perform better than the task-centric accounting method in any of the considered scenarios—

unfortunately, the pessimism in the processor-centric method’s adaptation of Shin et al. (2008)’s

MPR test exceeds the pessimism of the task-centric method. In the case of bimodal utilization

distributions (inset (a) of Figures 7, 9, and 11), the processor-centric method does not perform

significantly better than quantum-centric accounting due to the presence of heavy tasks in almost

all task sets. Similar trends are apparent for uniform distributions in inset (a) of Figures 8 and 10.

In Figure 6(a), the task-centric accounting method is pessimistic due to large inflation costs in

accordance with Theorem 4, but as the number of tasks decreases (the average per-task utilization

increases), its performance improves significantly, as can be seen in inset (a) of Figures 7–11.

Dedicated interrupt handling is preferable to task-centric accounting if task counts are high, and

particularly so if timer multiplexing is assumed. For example, in Figure 6(a), the combination of a

dedicated processor and timer multiplexing can support loads five times larger than those supported

by task-centric accounting. The differences are less pronounced under bimodal distributions (in-

sets (a) of Figures 7 and 9), which generally feature lower task counts than their uniform counter

parts. Also note that timer multiplexing does not yield improved schedulability compared to regular

dedicated interrupt processing in these cases.

Dedicated interrupt handling is not preferable under both uniform and bimodal heavy distribu-

tions, as can be seen in inset (a) of Figures 10 and 11. In these cases, the utilization lost due to

dedicating a processor is not outweighed by the benefits of avoiding interrupts on the processors on

which real-time jobs execute.

33

6.2.2 Soft Real-Time Results Assuming Full ISR Costs

Figures 12–17 show soft real-time schedulability results. In a reversal of the hard real-time trends,

for the uniform light and medium utilization ranges, the performance of the processor-centric

method is superior to the performance of the task-centric method (see inset (a) of Figures 12 and

14). This is because (7) and (8) in Theorem 5 are likely to hold in the absence of heavy tasks. In

contrast, the processor-centric method is exceptionally pessimistic in the case of the uniform heavy

distribution (see Figure 16(a)). This is because we assumed that all processors are not available

for the duration of an ISR, which leads to a violation of (8) if heavy tasks are present, due to the

term max(H − 1, 0) · max(ui) (note that H = m). For the same reason, task sets are pessimisti-

cally claimed unschedulable under the bimodal utilization distributions (inset (a) of Figures 13,

15, and 17). In fact, the processor-centric method offers (almost) no advantage over the quantum-

centric method in the soft real-time case if heavy tasks are present at all. This is in stark contrast

to the task-centric method, which is consistently the best of the three general interrupt accounting

methods unless task counts are high (inset (a) of Figures 13, 15, 16, and 17).

Dedicated interrupt handling is preferable to task-centric accounting for all considered utiliza-

tion distributions. However, in the cases in which processor-centric accounting performs well (inset

(a) of Figures 12 and 14), processor-centric accounting is preferable to regular dedicated interrupt

handling. This is not the case for dedicated interrupt processing in combination with timer multi-

plexing, which always yields the best soft real-time schedulability.

6.2.3 Results Assuming Reduced ISR Costs

The experiments assuming reduced release overhead reveals six major trends:

1. under the considered bimodal distributions, hard real-time schedulability of the best-performing

methods does not significantly improve with reduced ISR costs (Figures 7, 9, 11)—this is

likely indicative of fundamental limitations of the G-EDF schedulability tests published to

date (or, possibly, G-EDF itself) with regard to scheduling mixed-utilization task sets;

2. reducing overhead helps only little to overcome the task-centric method’s asymptotic growth

34

(Figures 6 and 12);

3. even with reduced overhead, the quantum-centric and processor-centric methods are not com-

petitive in the hard real-time case;

4. in the soft real-time case, the processor-centric method performs equally badly assuming

either 100% or 20% overhead if heavy tasks are present (see Figures 13, 15, 16, and 17);

5. the quantum-centric method’s competitiveness is much improved in the soft real-time case if

overhead is reduced; and

6. in the soft real-time case, dedicated interrupt handling in combination with timer multiplex-

ing is almost always the best-performing method, with only Figure 14(b) as a notable excep-

tion.

These results show that the choice of interrupt accounting method can have significant impact

on schedulability. Further, it appears worthwhile to improve both OS implementations (to reduce

overheads) and analysis techniques (to reduce inherent pessimism). Especially promising is the

performance of the processor-centric accounting method in the soft real-time case in the absence

of heavy tasks—further research is warranted to identify and remove the limitations that impede

processor-centric accounting in the presence of heavy tasks.

Limitations. Because the focus of this paper is primarily the analysis of interrupt accounting meth-

ods (and since this is not an implementation study), we have made the simplifying assumption that

ISR costs are equal under both quantum-driven scheduling, event-driven scheduling, and dedicated

interrupt handling. Thus, results may deviate somewhat in practice depending on hardware and

OS characteristics; however, the fundamental tradeoffs and limitations exposed by our experiments

remain valid.

7 Conclusion

This paper surveyed various types of interrupts that occur in multiprocessor real-time systems and

summarized Devi’s quantum-based accounting method. Two recently-developed approaches to

35

accounting for interrupt-related delays under G-EDF scheduling for both hard and soft real-time

systems were presented: the task-centric method and the processor-centric method. Further, anal-

ysis for the common practice of dedicating a processor to interrupts to shield real-time jobs from

delays was presented, including the special case of timer multiplexing.

In an empirical comparison, the task-centric method performed well in most of the tested sce-

narios; however, it is subject to utilization loss that is quadratic in the number of tasks. Hence, it has

inferior performance for large task sets. In contrast, in the soft real-time case, the processor-centric

method performed well for task systems with many light tasks, but yielded overly pessimistic re-

sults in the presence of heavy tasks. In all considered scenarios, at least one of the two new methods

performed significantly better than the previously-proposed quantum-centric method.

Further, the experiments revealed that dedicating a processor to interrupt handling can be bene-

ficial to schedulability in many cases—especially so if all job releases are time-triggered. However,

dedicated interrupt handling is likely much less competitive for lower processor counts, and is also

not always the best choice if overheads are low. Thus, accounting for interrupts remains an impor-

tant component of schedulability analysis.

In future work, we would like to refine the processor-centric method to be less pessimistic with

regard to both maximum task utilization and reductions in supply. Further, it may be beneficial

to investigate whether multiprocessor real-time calculus (Leontyev et al., 2009) can be applied to

account for interrupt delays.

36

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [h

ar
d]

task set utilization cap (prior to overhead accounting)

utilization uniformly in [0.001, 0.1]; 100% ISR costs

[1]

[2]

[3]

[4] [5]

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [h

ar
d]

task set utilization cap (prior to overhead accounting)

utilization uniformly in [0.001, 0.1]; 20% ISR costs

[1]

[2]

[3]

[4]

[5]

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es
EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

[1] quantum-centric [2] task-centric [3] processor-centric
[4] dedicated processor [5] dedicated proc. + timer multiplexing

Figure 6: Hard schedulability (the ratio of task sets deemed schedulable) results for the uniform

light utilization distribution. (a) Full ISR costs; (b) reduced ISR costs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [h

ar
d]

task set utilization cap (prior to overhead accounting)

util. bimodially in [0.001, 0.5] (8/9) and [0.5, 0.9] (1/9); 100% ISR costs

[1]

[2]

[3] [4,5]

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [h

ar
d]

task set utilization cap (prior to overhead accounting)

util. bimodially in [0.001, 0.5] (8/9) and [0.5, 0.9] (1/9); 20% ISR costs

[1]

[3]

[2,4,5]

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

[1] quantum-centric [2] task-centric [3] processor-centric
[4] dedicated processor [5] dedicated proc. + timer multiplexing

Figure 7: Hard schedulability (the ratio of task sets deemed schedulable) results for the bimodal

light utilization distribution. (a) Full ISR costs; (b) reduced ISR costs.

37

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [h

ar
d]

task set utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; 100% ISR costs

[1]

[2]

[3] [4]

[5]

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [h

ar
d]

task set utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; 20% ISR costs

[1]

[2][3]

[4]

[5]

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es
EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

[1] quantum-centric [2] task-centric [3] processor-centric
[4] dedicated processor [5] dedicated proc. + timer multiplexing

Figure 8: Hard schedulability (the ratio of task sets deemed schedulable) results for the uniform

medium utilization distribution. (a) Full ISR costs; (b) reduced ISR costs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [h

ar
d]

task set utilization cap (prior to overhead accounting)

util. bimodially in [0.001, 0.5] (6/9) and [0.5, 0.9] (3/9); 100% ISR costs

[1]

[2]

[3]

[4,5]

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [h

ar
d]

task set utilization cap (prior to overhead accounting)

util. bimodially in [0.001, 0.5] (6/9) and [0.5, 0.9] (3/9); 20% ISR costs

[1]

[2]

[3]

[4,5]

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

[1] quantum-centric [2] task-centric [3] processor-centric
[4] dedicated processor [5] dedicated proc. + timer multiplexing

Figure 9: Hard schedulability (the ratio of task sets deemed schedulable) results for the bimodal

medium utilization distribution. (a) Full ISR costs; (b) reduced ISR costs.

38

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [h

ar
d]

task set utilization cap (prior to overhead accounting)

utilization uniformly in [0.5, 0.9]; 100% ISR costs

[1]

[2][3]

[4,5]

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [h

ar
d]

task set utilization cap (prior to overhead accounting)

utilization uniformly in [0.5, 0.9]; 20% ISR costs

[1]
[2]

[3]
[4,5]

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es
EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

[1] quantum-centric [2] task-centric [3] processor-centric
[4] dedicated processor [5] dedicated proc. + timer multiplexing

Figure 10: Hard schedulability (the ratio of task sets deemed schedulable) results for the uniform

heavy utilization distribution. (a) Full ISR costs; (b) reduced ISR costs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [h

ar
d]

task set utilization cap (prior to overhead accounting)

util. bimodially in [0.001, 0.5] (4/9) and [0.5, 0.9] (5/9); 100% ISR costs

[1]

[3]

[2,4,5]

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [h

ar
d]

task set utilization cap (prior to overhead accounting)

util. bimodially in [0.001, 0.5] (4/9) and [0.5, 0.9] (5/9); 20% ISR costs

[1]

[2]

[3]

[4,5]

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

[1] quantum-centric [2] task-centric [3] processor-centric
[4] dedicated processor [5] dedicated proc. + timer multiplexing

Figure 11: Hard schedulability (the ratio of task sets deemed schedulable) results for the bimodal

heavy utilization distribution. (a) Full ISR costs; (b) reduced ISR costs.

39

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [s

of
t]

task set utilization cap (prior to overhead accounting)

utilization uniformly in [0.001, 0.1]; 100% ISR costs

[1]

[2]

[3]

[4]

[5]

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [s

of
t]

task set utilization cap (prior to overhead accounting)

utilization uniformly in [0.001, 0.1]; 20% ISR costs

[1]

[2]

[3]

[4]

[5]

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es
EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

[1] quantum-centric [2] task-centric [3] processor-centric
[4] dedicated processor [5] dedicated proc. + timer multiplexing

Figure 12: Soft schedulability (the ratio of task sets deemed schedulable) results for the uniform

light utilization distribution. (a) Full ISR costs; (b) reduced ISR costs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [s

of
t]

task set utilization cap (prior to overhead accounting)

util. bimodially in [0.001, 0.5] (8/9) and [0.5, 0.9] (1/9); 100% ISR costs

[1]

[2]

[3]

[4]

[5]

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [s

of
t]

task set utilization cap (prior to overhead accounting)

util. bimodially in [0.001, 0.5] (8/9) and [0.5, 0.9] (1/9); 20% ISR costs

[1]

[2]

[3]

[4]

[5]

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

[1] quantum-centric [2] task-centric [3] processor-centric
[4] dedicated processor [5] dedicated proc. + timer multiplexing

Figure 13: Soft schedulability (the ratio of task sets deemed schedulable) results for the bimodal

light utilization distribution. (a) Full ISR costs; (b) reduced ISR costs.

40

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [s

of
t]

task set utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; 100% ISR costs

[1]

[2]

3

[4]

[5]

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [s

of
t]

task set utilization cap (prior to overhead accounting)

utilization uniformly in [0.1, 0.4]; 20% ISR costs

[1]

[2]

[3]

[4]

[5]

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es
EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

[1] quantum-centric [2] task-centric [3] processor-centric
[4] dedicated processor [5] dedicated proc. + timer multiplexing

Figure 14: Soft schedulability (the ratio of task sets deemed schedulable) results for the uniform

medium utilization distribution. (a) Full ISR costs; (b) reduced ISR costs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [s

of
t]

task set utilization cap (prior to overhead accounting)

util. bimodially in [0.001, 0.5] (6/9) and [0.5, 0.9] (3/9); 100% ISR costs

[1]

[2]

[3]

[4]

[5]

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [s

of
t]

task set utilization cap (prior to overhead accounting)

util. bimodially in [0.001, 0.5] (6/9) and [0.5, 0.9] (3/9); 20% ISR costs

[1]

[2]

[3]

[5]

[4]

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

[1] quantum-centric [2] task-centric [3] processor-centric
[4] dedicated processor [5] dedicated proc. + timer multiplexing

Figure 15: Soft schedulability (the ratio of task sets deemed schedulable) results for the bimodal

medium utilization distribution. (a) Full ISR costs; (b) reduced ISR costs.

41

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [s

of
t]

task set utilization cap (prior to overhead accounting)

utilization uniformly in [0.5, 0.9]; 100% ISR costs

[1]

[2]

[3]

[4]

[5]

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [s

of
t]

task set utilization cap (prior to overhead accounting)

utilization uniformly in [0.5, 0.9]; 20% ISR costs

[1]

[3]

[2,4,5]

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es
EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

[1] quantum-centric [2] task-centric [3] processor-centric
[4] dedicated processor [5] dedicated proc. + timer multiplexing

Figure 16: Soft schedulability (the ratio of task sets deemed schedulable) results for the uniform

heavy utilization distribution. (a) Full ISR costs; (b) reduced ISR costs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [s

of
t]

task set utilization cap (prior to overhead accounting)

util. bimodially in [0.001, 0.5] (4/9) and [0.5, 0.9] (5/9); 100% ISR costs

[1]

[2]

[3]

[4]

[5]

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

sc
he

du
la

bi
lit

y
 [s

of
t]

task set utilization cap (prior to overhead accounting)

util. bimodially in [0.001, 0.5] (4/9) and [0.5, 0.9] (5/9); 20% ISR costs

[1]

[2]

[3]

[4]

[5]

(b)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10

St
yl

es

EPS Default Line Styles

ls 1
ls 2

ls 3
ls 4

ls 5
ls 6

ls 7
ls 8

ls 9

[1] quantum-centric [2] task-centric [3] processor-centric
[4] dedicated processor [5] dedicated proc. + timer multiplexing

Figure 17: Soft schedulability (the ratio of task sets deemed schedulable) results for the bimodal

heavy utilization distribution. (a) Full ISR costs; (b) reduced ISR costs.

42

References

D. Cofer, M. Rangarajan, Formal Verification of Overhead Accounting in an Avionics RTOS, in:

Proceedings of the 23rd IEEE Real-Time Systems Symposium, 181–190, 2002.

J. Liu, Real-Time Systems, Prentice Hall, 2000.

C. Liu, J. Layland, Scheduling Algorithms for multiprogramming in a Hard Real-Time Environ-

ment, Journal of the ACM 30 (1973) 46–61.

K. Jeffay, D. Stone, Accounting for interrupt handling costs in dynamic priority task systems,

Proceedings of the 14th Real-Time Systems Symposium (1993) 212–221.

U. Devi, Soft Real-Time Scheduling on Multiprocessors, Ph.D. thesis, University of North Car-

olina, Chapel Hill, North Carolina, 2006.

B. Brandenburg, J. Calandrino, J. Anderson, On the Scalability of Real-Time Scheduling Algo-

rithms on Multicore Platforms: A Case Study, in: Proceedings of the 29th IEEE Real-Time

Systems Symposium, 157–169, 2008.

B. Brandenburg, J. Anderson, A Comparison of the M-PCP, D-PCP, and FMLP on LITMUSRT, in:

Proceedings of the 12th International Conference On Principles Of Distributed Systems, 105–

124, 2008.

B. Brandenburg, J. Anderson, On the Implementation of Global Real-Time Schedulers, in: Pro-

ceedings of the 30th IEEE Real-Time Systems Symposium, 214–224, 2009.

B. Brandenburg, H. Leontyev, J. Anderson, Accounting for Interrupts in Multiprocessor Real-Time

Systems, in: Proceedings of the 15th International Conference on Embedded and Real-Time

Computing Systems and Applications, 273–283, 2009.

Intel Corp., Intel 64 and IA-32 Architectures Software Developer’s Manual. Volume 1: Basic Ar-

chitecture, Intel Corp., 2008a.

43

Intel Corp., Intel 64 and IA-32 Architectures Software Developer’s Manual. Volume 3: System

Programming Guide, Intel Corp., 2008b.

D. Weaver, T. Germond (Eds.), The SPARC Architecture Manual. Version 9, PTR Prentice Hall,

1994.

A. Saulsbury, UltraSPARC Virtual Machine Specification, SUN Corp., 2008.

J. Kurzak, A. Buttari, P. Luszczek, J. Dongarra, The PlayStation 3 for High-Performance Scientific

Computing, Computing in Science & Engineering 10 (3) (2008) 84–87.

Intel Corp., TLBs, Paging-Structure Caches, and Their Invalidation, Intel Corp., 2008c.

J. Stankovic, K. Ramamritham, The Spring Kernel: A New Paradigm for Real-Time Systems, IEEE

Software 8 (3) (1991) 62–72.

S. Brosky, S. Rotolo, Shielded Processors: Guaranteeing Sub-millisecond Response in Standard

Linux, in: Proceedings of the 17th International Symposium on Parallel and Distributed Pro-

cessing (CD-ROM/Abstracts), 120.1, 2003.

E. Piel, P. Marquet, J. Soula, J.-L. Dekeyser, Asymmetric Scheduling and Load Balancing for Real-

Time on Linux SMP, in: Proceedings of the Workshop on Scheduling for Parallel Computing

(LNCS 3911), Springer Verlag, 869–903, 2005.

E. Betti, D. P. Bovet, M. Cesati, R. Gioiosa, Hard Real-Time Performances in Multiprocessor-

Embedded Systems using ASMP-Linux, EURASIP Journal of Embedded Systems 2008 (2008)

1–16.

T. Baker, S. Baruah, Schedulability Analysis of Multiprocessor Sporadic Task Systems, in: S. H.

Son, I. Lee, J. Y. Leung (Eds.), Handbook of Real-Time and Embedded Systems, Chapman

Hall/CRC, Boca Raton, Florida, 2007.

J. Calandrino, J. Anderson, D. Baumberger, A Hybrid Real-Time Scheduling Approach for Large-

Scale Multicore Platforms, in: Proceedings of the 19th Euromicro Conference on Real-Time

Systems, 247–256, 2007.

44

J. Goossens, S. Funk, S. Baruah, Priority-driven scheduling of periodic task systems on multipro-

cessors, Real-Time Systems 25 (2-3) (2003) 187–205.

T. Baker, Multiprocessor EDF and deadline monotonic schedulability analysis, in: Proceedings of

the 24th IEEE Real-Time Systems Symposium, 120–129, 2003.

M. Bertogna, M. Cirinei, G. Lipari, Improved Schedulability Analysis of EDF on Multiprocessor

Platforms, in: Proceedings of the 17th Euromicro Conference on Real-Time Systems, 209–218,

2005.

S. Baruah, Techniques for multiprocessor global schedulability analysis, in: Proceedings of the

28th IEEE Real-Time Systems Symposium, 119–128, 2007.

H. Leontyev, J. Anderson, A Unified Hard/Soft Real-Time Schedulability Test for Global EDF

Multiprocessor Scheduling, in: Proceedings of the 29th IEEE Real-Time Systems Symposium,

375–384, 2008.

M. Bertogna, M. Cirinei, G. Lipari, Schedulability analysis of global scheduling algorithms on

multiprocessor platforms, IEEE Transactions on Parallel and Distributed Systems 20 (4) (2009)

553–566.

S. Baruah, A. Burns, Sustainable Scheduling Analysis, in: Proceedings of the 27th IEEE Real-Time

Systems Symposium, 159–168, 2006.

H. Leontyev, J. Anderson, Generalized Tardiness Bounds for Global Multiprocessor Scheduling,

in: Proceedings of the 28th IEEE Real-Time Systems Symposium, 413–422, 2007.

I. Shin, A. Easwaran, I. Lee, Hierarchical Scheduling Framework for Virtual Clustering of Multi-

processors, in: Proceedings of the 20th Euromicro Conference on Real-Time Systems, 181–190,

2008.

R. Ha, J. Liu, Validating timing constraints in multiprocessor and distributed real-Time systems,

in: Proceedings of the 14th IEEE International Conference on Distributed Computing Systems,

162–171, 1994.

45

H. Leontyev, S. Chakraborty, J. Anderson, Multiprocessor Extensions to Real-Time Calculus, in:

Proceedings of the 30th IEEE Real-Time Systems Symposium, to appear, 2009.

S. Chakraborty, Y. Liu, N. Stoimenov, L. Thiele, E. Wandeler, Interface-based Rate Analysis of

Embedded Systems, in: Proceedings of the 27th IEEE Real-Time Systems Symposium, 25–34,

2006.

J. Y. LeBoudec, P. Thiran, Network Calculus - A Theory of Deterministic Queuing Systems for the

Internet., 2050, Springer Verlag, 2001.

G. Varghese, T. Lauck, Hashed and hierarchical timing wheels: data structures for the efficient

implementation of a timer facility, SIGOPS Operating Systems Review 21 (5) (1987) 25–38.

T. Gleixner, D. Niehaus, hrtimers and beyond: transformation of the Linux time(r) system, in:

Proceedings of the 8th Linux Symposium, 333–346, 2006.

T. Baker, A Comparison of Global and Partitioned EDF Schedulability Tests for Multiprocessors,

Tech. Rep. TR-051101, Florida State University, 2005.

46

