
The FMLP+: An Asymptotically Optimal Real-Time
Locking Protocol for Suspension-Aware Analysis

Björn B. Brandenburg
Max Planck Institute for Software Systems (MPI-SWS)

Abstract—Multiprocessor real-time locking protocols that are
asymptotically optimal under suspension-oblivious schedulability
analysis (where suspensions are pessimistically modeled as pro-
cessor demand) are known for partitioned, global, and clustered
job-level fixed priority (JLFP) scheduling. However, for the case
of more accurate suspension-aware schedulability analysis (where
suspensions are accounted for explicitly), asymptotically optimal
protocols are known only for partitioned JLFP scheduling. In this
paper, the gap is closed with the introduction of the first semaphore
protocol for suspension-aware analysis that is asymptotically opti-
mal under global and clustered JLFP scheduling. To this end, a
new progress mechanism that avoids repeated priority inversions
is developed and analyzed, based on the key observation that if
lock-holding, low-priority jobs are priority-boosted, then certain
other non-lock-holding, higher-priority jobs must be co-boosted.

I. INTRODUCTION

The purpose of suspension-based real-time locking protocols
is to limit priority inversions [22], which, intuitively, occur
when a high-priority task that should be scheduled is instead
delayed by a remote or lower-priority task. Such locking-related
delay, also called priority inversion blocking (pi-blocking), is
problematic because it can result in deadline misses. However,
some pi-blocking is unavoidable when using locks and thus must
be bounded and accounted for during schedulability analysis.

Clearly, an “optimal” locking protocol should minimize pi-
blocking to the extent possible. Formally, a locking protocol is
asymptotically optimal if it ensures that, for any task set, maxi-
mum pi-blocking is bounded within a constant factor of the pi-
blocking unavoidable in some task set [11]. Interestingly, there
exist two classes of schedulability analysis that yield different
lower bounds: under suspension-oblivious (s-oblivious) analysis,
Ω(m) pi-blocking is fundamental, whereas under suspension-
aware (s-aware) analysis, Ω(n) pi-blocking is unavoidable in
the general case [7, 11], where m and n denote the number of
processors and tasks, respectively. As the names imply, the key
difference is that suspensions are accounted for explicitly under
s-aware analysis, whereas they are (pessimistically) modeled as
processor demand in the s-oblivious case. In principle, s-aware
schedulability analysis is preferable, but s-oblivious analysis is
easier to derive and permits simpler pi-blocking bounds.

And indeed, for the simpler s-oblivious case, asymptotically
optimal locking protocols are known for partitioned, global, and
clustered job-level fixed-priority1 (JLFP) scheduling [9, 11, 12].
In contrast, the s-aware case is analytically much more challeng-
ing and less understood: asymptotically optimal protocols are
known so far only for partitioned JLFP scheduling [7, 11]. The

1See Sec. II for definitions and a review of essential background.

general problem of optimal s-aware locking under global and
clustered JLFP scheduling, however, has remained unsolved.

A. Contributions

We answer this fundamental question by introducing the
generalized FIFO Multiprocessor Locking Protocol (FMLP+),
the first semaphore protocol for clustered scheduling that ensures
O(n) maximum s-aware pi-blocking under any JLFP policy.

While it was initially assumed [11] that a variant of Block
et al.’s Flexible Multiprocessor Locking Protocol (FMLP) [6]—
which uses O(n) FIFO queues together with priority inheri-
tance [22]—is asymptotically optimal under global scheduling,
we show in Sec. III that this holds only under some, but not
all global JLFP schedulers. In fact, we show that both priority
inheritance and (unrestricted) priority boosting [22], which are
the two mechanisms used in all prior locking protocols for s-
aware analysis to avoid unbounded pi-blocking, can give rise
to non-optimal Ω(Φ) pi-blocking, where Φ is the ratio of the
longest and the shortest period (and not bounded by m or n).

To overcome this lower bound, we introduce in Sec. IV-A a
new progress mechanism called “restricted segment boosting,”
which boosts at most one carefully chosen lock-holding job in
each cluster while simultaneously “co-boosting” certain other,
non-lock-holding jobs to interfere with the underlying JLFP
schedule as little as possible. Together with simple FIFO queues,
this ensures O(n) maximum s-aware pi-blocking (within about
a factor of two of the lower bound, see Sec. IV-C). Notably, our
analysis permits non-uniform cluster sizes, allows each cluster
to use a different JLFP policy, supports self-suspensions within
critical sections (Sec. IV-F), and can be easily combined with
prior work [25] to support nested critical sections (Sec. IV-G).

Finally, while answering the s-aware blocking optimality
question in the general case is the main contribution of this
paper, Sec. V presents a schedulability study that shows the
FMLP+ to outperform s-oblivious approaches if the underlying
s-aware schedulability analysis is sufficiently accurate.

B. Related Work

On uniprocessors, the blocking optimality problem has long
been solved: both the classic Stack Resource Policy [3] and the
Priority Ceiling Protocol [22, 24] limit pi-blocking to at most
one (outermost) critical section, which is obviously optimal.

On multiprocessors, there are two major lock types: spin
locks, wherein blocked jobs busy-wait, and suspension-based
semaphores. Spin locks are well understood and it is not difficult
to see that non-preemptable FIFO spin locks, which ensureO(m)

1

blocking [6, 13, 15], are asymptotically optimal. Intuitively, spin
locks are appropriate for short critical sections, whereas busy-
waiting becomes problematic with longer critical sections (and
especially if critical sections contain self-suspensions).

Numerous semaphore protocols have been proposed in recent
years (e.g., [6, 14, 16, 17, 19, 20]; see [7, 8, 13] for recent
overviews); due to space constraints, we focus here on the most
relevant related work pertaining to blocking optimality.

Blocking optimality in multiprocessor real-time systems was
first considered in [11], which established lower bounds on
s-aware and s-oblivious pi-blocking and introduced protocols
with (asymptotically) matching upper bounds, namely the O(m)
Locking Protocol (OMLP) for partitioned and global scheduling
under s-oblivious analysis, and a simple, but impractical proof-
of-existence protocol for partitioned scheduling under s-aware
analysis. It was also suggested in [11] that the global FMLP [6]
is asymptotically optimal under global scheduling w.r.t. s-
aware analysis, which, however, is only the case under certain
JLFP schedulers, as we discuss in Sec. III. The OMLP was
later extended to clustered scheduling [12], and the O(m)
Independence-Preserving Locking Protocol (OMIP) [9] was
introduced as an (also asymptotically optimal) alternative to the
OMLP for systems with stringent latency requirements.

A precursor to this paper is the partitioned FIFO Multiproces-
sor Locking Protocol (P-FMLP+), which was introduced in [7]
as a refinement of Block et al.’s earlier partitioned FMLP [6].
The original partitioned FMLP [6] is not asymptotically optimal
under s-aware analysis due to a limiting tie-breaking rule,
which the P-FMLP+ corrects to ensure asymptotically optimal
s-aware pi-blocking [7]. However, the P-FMLP+ is based on
priority boosting and hence achieves asymptotic optimality only
under partitioned scheduling. In this paper, we generalize the
P-FMLP+ to clustered scheduling, starting from first principles.
To disambiguate the earlier variant from the generalized version
developed in this paper, we refer to the earlier partitioned
version [7] exclusively as the P-FMLP+ and reserve the name
FMLP+ for the new, generalized protocol introduced in Sec. IV.

Most recently, Ward and Anderson [25, 26] presented the
RNLP, which is the first multiprocessor real-time locking pro-
tocol to support fine-grained locking. The generalized FMLP+

presented in this paper can be integrated with the RNLP to
support nested critical sections, which we discuss in Sec. IV-G.

Finally, to the best of our knowledge, no asymptotically
optimal s-aware locking protocol for the general case of clustered
JLFP scheduling has been proposed in prior work. We present
our solution in Sec. IV after first introducing needed background
in Sec. II and demonstrating the sub-optimality of existing
progress mechanisms in Sec. III.

II. DEFINITIONS AND ASSUMPTIONS

We consider a real-time workload consisting of n sporadic
tasks τ = {T1, . . . , Tn} scheduled on m identical processors.
We denote a task Ti’s worst-case execution cost as ei, its
minimum inter-arrival time (or period) as pi, and its relative
deadline as di. Task Ti has an implicit deadline if di = pi,
a constrained deadline if di ≤ pi, and an arbitrary deadline

otherwise. We let Ji,j denote the jth job of Ti, and let Ji
denote an arbitrary job of Ti. A task’s utilization is defined
as ui = ei/pi. A job Ji is pending from its release until
it completes. Ti’s worst-case response time ri denotes the
maximum duration that any Ji remains pending. If a job Ji,j+1

is released before its predecessor Ji,j has completed (i.e., due
to a deadline miss or if di > pi), then Ji,j+1 is not eligible to
execute until Ji,j has completed (i.e., tasks are sequential).

While pending, a job is either ready (and can be scheduled)
or suspended (and not available for scheduling). Jobs suspend
either when waiting for a contended lock (Sec. II-A), or may
also self-suspend for other, locking-unrelated reasons. We model
locking-unrelated self-suspensions explicitly because they affect
the locking protocol presented in Sec. IV. To this end, we let wi
denote the maximum number of self-suspensions of any Ji.

For simplicity, we assume integral time: all points in time and
all task parameters are integer multiples of a smallest quantum
(e.g., a processor cycle), and a point in time t represents the
interval [t, t+ 1).

A. Shared Resources

Besides the m processors, the tasks share nr serially-reusable
shared resources `1, . . . , `nr (e.g., I/O ports, network links, data
structures, etc.). We let Ni,q denote the maximum number
of times that any Ji accesses `q, and let Li,q denote Ti’s
maximum critical section length, that is, the maximum time
that any Ji uses `q as part of a single access (Li,q = 0 if
Ni,q = 0). As a shorthand, we define Ni ,

∑nr
q=1Ni,q and

Lmax , max {Li,q | Ti ∈ τ ∧ 1 ≤ q ≤ nr }. The worst-case
execution cost ei includes all critical sections.

A request for a shared resource is nested if the requesting job
already holds a resource, and outermost otherwise. We assume
that jobs release all resources before completion, and that they
must be scheduled to issue requests for shared resources.

To ensure mutual exclusion, shared resources are protected by
a locking protocol. If a job Ji needs a resource `q that is already
in use, Ji must wait and incurs acquisition delay until its request
for `q is satisfied (i.e., until Ji holds `q’s lock). In this paper, we
focus on semaphore protocols, wherein waiting jobs suspend.

B. Multiprocessor Real-Time Scheduling

We consider the general class of clustered job-level fixed-
priority (JLFP) schedulers. Under a JLFP policy, the priorities
of tasks may change over time, but each job is assigned a
fixed, unique priority. The two most commonly used JLFP
policies are earliest-deadline first (EDF) and fixed-priority (FP)
scheduling. We let Y(Ji) denote the (fixed) priority of job Ji,
where Y(Jh) < Y(Jl) indicates that Jh has higher priority
than Jl. We assume that priorities are unique (e.g., by breaking
any ties in favor of lower-indexed tasks) and transitive (i.e., if
Y(Ja) < Y(Jb) and Y(Jb) < Y(Jc), then Y(Ja) < Y(Jc)).

Under clustered scheduling the m processors are organized
into K disjoint subsets (or clusters) of processors C1, . . . , CK ,
where mk denotes the number of processors in the kth cluster
and

∑K
k=1mk = m. Each task is statically assigned to one

of the clusters; we let C(Ti) denote the cluster that Ti has

2

been assigned to, define nk , |{Ti | C(Ti) = Ck }|, and let
ready(Ck, t) denote the set of ready jobs in cluster Ck at time t.

In each cluster, at any point in time the mk highest-priority
ready jobs are selected for scheduling (if that many exist) as
determined by the employed JLFP policy, unless the regular
prioritization is overruled by a locking protocol’s progress
mechanism (see Sec. II-D). Jobs may migrate freely within each
cluster, but not across cluster boundaries. Clusters may be of
non-uniform size and may each employ a different JLFP policy.

Two prominent special cases are partitioned scheduling
(where K = m and mk = 1 for all Ck) and global scheduling
(where K = 1 and m1 = m). We consider clustered EDF (C-
EDF) as a representative JLFP policy, and further discuss global
EDF (G-EDF) and global FP (G-FP) scheduling in Sec. III, and
partitioned FP (P-FP) scheduling in Sec. V. The main result of
this paper (Sec. IV), however, applies to any JLFP policy.

C. Priority Inversions, PI-Blocking, and Asymptotic Bounds

Locking protocols give rise to priority inversions [11, 22, 24],
which intuitively occur if a job that should be scheduled (i.e., one
among the mk highest-priority jobs in its assigned cluster) is not
scheduled (e.g., while waiting for a lock). Priority inversions are
problematic as they constitute “blocking” that increases a task’s
worst-case response time [22, 24]; a real-time locking protocol’s
primary purpose is to limit such priority inversion blocking
(pi-blocking) so that it can be accounted for by schedulability
tests. Pi-blocking includes any locking-related delay that is not
anticipated by a schedulability analysis assuming independent
jobs, that is, any delay that cannot be attributed to the regular
processor demand of higher-priority jobs. Consequently, the
exact definition of “priority inversion” depends on the type of
the employed schedulability analysis [11].

Schedulability tests are either suspension-aware (s-aware) or
suspension-oblivious (s-oblivious). An s-aware schedulability
test (such as uniprocessor FP response-time analysis [1]) models
self-suspensions and locking-related suspensions explicitly,
whereas s-oblivious analysis (such as Baruah’s G-EDF schedu-
lability test [4]) assumes that jobs are always ready. S-oblivious
analysis can still be used in the presence of suspensions, but
any suspensions must be pessimistically modeled as processor
demand by inflating each job’s execution cost by the maximum
suspension time prior to applying a schedulability test, which
affects the definition of pi-blocking [11].

Def. 1. A job Ji incurs s-aware (resp., s-oblivious) pi-blocking
at time t if (i) Ji is not scheduled at time t and (ii) there are
fewer than mk higher-priority jobs scheduled (resp., pending)
in Ji’s assigned cluster Ck = C(Ti) at time t.

The difference between the two types of blocking is illustrated
in Fig. 1 for mk = 2. During [2, 3), job J3 incurs s-aware pi-
blocking, but not s-oblivious pi-blocking, as there are mk = 2
higher-priority pending jobs (which rules out s-oblivious pi-
blocking), but only one higher-priority scheduled job, namely
J2. Note that it follows from Def. 1 that whenever a job incurs
s-oblivious pi-blocking it also incurs s-aware pi-blocking (there
cannot be more scheduled jobs than there are pending jobs). As a

w
/

lo
ck

scheduled on
processor

job release

job finished
deadline

suspended

1
2w

/o
 lo

ck

50

J1

J2

J3

both s-oblivious and
s-aware pi-blocking

only s-aware
pi-blocking

Fig. 1. Example of s-oblivious and s-aware pi-blocking of three jobs sharing
one resource on m1 = 2 G-EDF-scheduled processors. J1 suffers acquisition
delay during [1, 3), and since no higher-priority jobs exist it is pi-blocked under
either definition. J3, suspended during [2, 4), suffers pi-blocking under either
definition during [3, 4) since it is among the m1 highest-priority pending jobs,
but only s-aware pi-blocking during [2, 3) as J1 is pending but not ready then.

result, any safe upper bound on s-aware pi-blocking is implicitly
also an upper bound on s-oblivious pi-blocking [11].

The focus of this paper is s-aware analysis. We let bi denote a
bound on the maximum total pi-blocking incurred by any Ji.

An “optimal” real-time locking protocol should minimize
priority inversions to the extent possible. To study the funda-
mental limits of real-time synchronization, prior work [7, 11]
proposed maximum pi-blocking (formally, maxTi∈τ{bi}) as a
blocking complexity metric and established lower bounds of
Ω(n) maximum s-aware (resp., Ω(m) maximum s-oblivious) pi-
blocking. In other words, there exist pathological task sets such
that maximum s-aware (resp., s-oblivious) pi-blocking is linear
in the number of tasks (resp., number of processors) under any
semaphore protocol [7, 11]. When stating asymptotic bounds,
it is assumed that the number and duration of critical sections
and self-suspensions per job are bounded by constants (i.e.,
Lmax = O(1), Ni = O(1), and wi = O(1)).

To be asymptotically optimal, a locking protocol must ensure
that maximum pi-blocking for any task set is always within
a constant factor of the lower bound, which requires a careful
choice of progress mechanism to prevent unbounded pi-blocking
without causing “too much” pi-blocking itself.

D. Prior Progress Mechanisms and Optimal Locking Protocols

Several progress mechanisms that prevent unbounded pi-
blocking by temporarily overruling the underlying JLFP policy
have been developed in the past. Under classic priority inher-
itance [22, 24], which is effective only on uniprocessors and
under global scheduling [7, 12], a lock-holder’s priority is raised
to that of the highest-priority job that it blocks (if any). Under
unrestricted priority boosting [21, 23], which is also effective
under clustered and partitioned scheduling, a lock-holders’s
priority unconditionally exceeds that of non-lock-holding jobs.

In the s-oblivious case, a bound of O(m) maximum pi-
blocking is asymptotically optimal, which is achieved by the
OMLP [12] and the OMIP [9] under any clustered JLFP sched-
uler. The OMLP is based on priority donation [12], a variant of
priority boosting that is suitable only for s-oblivious analysis [7].
The OMIP is based on migratory priority inheritance, a simple
priority inheritance extension wherein jobs inherit not only the
priorities, but also the cluster assignment of blocked jobs.

In the s-aware case, O(n) maximum pi-blocking is asymp-
totically optimal, which is achieved by the P-FMLP+ [7], but
only under partitioned JLFP scheduling. The P-FMLP+ is a
fairly simple protocol based on priority boosting, where each

3

resource is protected by a FIFO queue and priority-boosted
jobs are scheduled (on each core) in order of non-decreasing
lock request times (i.e., jobs executing earlier-issued requests
may preempt jobs executing later-issued requests). Key to the
analysis of the P-FMLP+ is that local lower-priority jobs are
not scheduled (and hence cannot issue requests) while a higher-
priority job executes, which, however, is not the case if mk > 1.

Finally, this paper covers the remaining two cases—O(n)
maximum s-aware pi-blocking under global and clustered
JLFP scheduling—by introducing a novel locking protocol
and progress mechanism. We call this new locking protocol
the generalized FMLP+ because it effectively reduces to the
(simpler) P-FMLP+ under partitioned scheduling, in the sense
that they generate the same schedule if mk = 1.

Next, we motivate that a new progress mechanism is needed
for the generalized FMLP+ by showing that neither priority
inheritance nor unrestricted priority boosting is a suitable foun-
dation for asymptotic optimality under global JLFP scheduling.

III. SUBOPTIMAL S-AWARE PI-BLOCKING

In prior work [11], it was suggested that the global FMLP [6],
which simply combines per-resource FIFO queues with priority
inheritance, ensures O(n) maximum s-aware pi-blocking under
global scheduling. This is indeed the case under G-EDF with
implicit deadlines and if all jobs complete by their deadline
(see [7, Ch. 6] for a proof). That is, there indeed exist global
JLFP policies and common workloads under which the FMLP
is asymptotically optimal under s-aware analysis.

However, there also exist global JLFP policies and workloads
under which it is not. For instance, under G-FP scheduling, in
the presence of arbitrary deadlines, or if jobs may complete after
their deadlines, priority inheritance can give rise to non-optimal
maximum s-aware pi-blocking since it may cause lock-holding
jobs to preempt higher-priority jobs repeatedly. Further, a similar
effect occurs also with unrestricted priority boosting. In general,
it is thus impossible to construct semaphore protocols that are
asymptotically optimal w.r.t. the entire class of JLFP policies
using either progress mechanism.

To show this, we construct a task set τφ for which there exists
an arrival sequence such that an independent job incurs φ time
units of s-aware pi-blocking under G-EDF or G-FP scheduling
on m = 2 processors, where φ can be chosen arbitrarily (i.e.,
maxTi∈τφ{bi} cannot be bounded in terms of m or n).

Def. 2. Let τφ = {T1, . . . , T4} denote a set of four tasks with
parameters as given in Table I that share nr = 1 resource.

Note that max{pi}
min{pi} ≈ φ (for large φ). This permits an arrival

sequence such that a job of T3 incurs s-aware pi-blocking each
time that T1, T2, and T4 release jobs in a certain pattern, which,
by design, can occur up to φ times while a job of T3 is pending.

Lemma 1. Under G-EDF or G-FP scheduling on m = 2 pro-
cessors, if priority inheritance or unrestricted priority boosting
is used as a progress mechanism, then maxTi∈τφ{bi} = Ω(φ).

Proof: We first consider priority inheritance under G-EDF
and construct a legal arrival sequence such that b3 = Ω(φ) for
any integer φ > 0 under s-aware analysis. Note that the order

TABLE I

Task ei pi di Ni,1 Li,1

T1 3 5 5 0 0
T2 2 5 5 1 1
T3 1.5 + 2 · (φ− 1) 1 + 5 · φ 1 + 5 · φ 0 0
T4 1.5 5 5 + 5 · φ 1 1.5

in which waiting jobs are queued is irrelevant since the single
resource is shared only among two tasks. Suppose jobs of T4
require `1 for the entirety of their execution, and that jobs of T2
require `1 for the latter half of their execution. Further, suppose
each job executes for exactly ei time units. If T3 releases its first
job at time 0, T4 at time 0.5, and T1 and T2 at time 1, and all
tasks release a job periodically every pi time units, then J3,1
(the first job of T3) incurs φ time units of s-aware pi-blocking.
The resulting schedule for φ = 4 is shown in Fig. 2(a). By
construction, the first φ jobs of T4 have lower priority than J3,1,
whereas the first φ jobs of T1 and T2 have higher priority than
J3,1 (assuming w.l.o.g. that deadline ties are resolved in favor of
lower-indexed tasks). As a result, J3,1 is preempted whenever
a job of T2 requests the shared resource, thereby incurring one
time unit of s-aware pi-blocking for each of the φ jobs of T4 that
are released while J3,1 is pending.

By construction, the schedule of the relevant jobs remains
unchanged if G-FP scheduling is assumed and tasks are pri-
oritized in index order (i.e., if T1 has the highest priority and
T4 the lowest). Hence, maxTi∈τφ{bi} = Ω(φ) under priority
inheritance and either G-EDF or G-FP.

Finally, a similar schedule arises if unrestricted priority
boosting is used instead of priority inheritance: if jobs of T4
are priority-boosted while holding a lock, then J3,1 is preempted
whenever higher-priority jobs of T1 are released, as illustrated
in Fig. 2(b). As a result, J3,1 still incurs s-aware pi-blocking
for one time unit for each of the φ jobs of T4 that are released
while J3,1 is pending. Hence, maxTi∈τφ{bi} = Ω(φ) under
unrestricted priority boosting and either G-EDF or G-FP.

In the general case, it is thus not possible to ensure O(n)
maximum s-aware pi-blocking when using priority inheritance
or unrestricted priority boosting. However, while some s-aware
pi-blocking is clearly unavoidable in the depicted schedule, it is
possible to distribute the pi-blocking among the jobs such that
no job accumulates “too much” pi-blocking. Such a schedule
is shown in Fig. 2(c). In this example, J3,1 incurs no s-aware
pi-blocking at all since pi-blocking is incurred only by new
jobs that arrive after a request is issued. The key observation
is that in JLFP schedules pi-blocking is fundamentally tied to
preemptions, which occur only if a job is released or resumed.
It is thus possible to shift pi-blocking to newly arrived jobs
instead of accumulating it in “long-running” jobs such as J3,1
We formalize this idea next.

IV. THE FIFO MULTIPROCESSOR LOCKING PROTOCOL

In this section, we formally introduce the generalized FMLP+

and “restricted segment boosting,” the underlying progress
mechanism, and prove them to ensure O(n) maximum s-aware
pi-blocking. For the sake of simplicity, we initially assume that
critical sections do not contain self-suspensions (jobs may still

4

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI PI

(a) T3 incurs φ = 4 time units s-aware pi-blocking under priority inheritance.

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI PI

(b) T3 incurs φ = 4 time units s-aware pi-blocking under priority boosting.

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI

(c) A schedule in which the per-job s-aware pi-blocking bi is indepent of φ.

Fig. 2. G-EDF example schedules for m = 2 illustrating τφ for φ = 4.

self-suspend outside of critical sections) and that critical sections
are non-nested (i.e., jobs request never more than one shared
resource at a time). We discuss how to integrate self-suspensions
in Sec. IV-F and lift the latter restriction in Sec. IV-G by showing
that “restricted segment boosting” seamlessly integrates with
Ward and Anderson’s asymptotically optimal RNLP [25] for
fine-grained nested resource sharing.

We begin by establishing required definitions.

A. Definition of the FMLP+

Central to the FMLP+ is the notion of job segments, which are
non-overlapping intervals of a job’s execution that correspond
to critical and non-critical sections. Correspondingly, there are
two types of job segments: independent segments, during which
a job is not using any shared resources, and request segments,
during which a job requires a shared resource to progress.
Def. 3. An interval [t0, t1] is an independent segment of a job
Ji iff
• Ji is ready and not holding a resource throughout [t0, t1],
• Ji is either released or resumed at time t0, or Ji releases a

lock at time t0 − 1 (i.e., just prior to the beginning of the
interval), and

• Ji completes, suspends, or issues a lock request at time t1.
Note that it follows from the above definition that a job is

always scheduled at the end of an independent segment since an

independent segment ends only when a job suspends, completes,
or when it issues a lock request, each of which requires invoking
OS services, which in turn a job can do only when it is scheduled.

Complementary to independent segments, request segments
denote times during which Ji interacts with the locking protocol.
Def. 4. An interval [t0, t1] is a request segment of a job Ji iff
Ji issues a lock request at time t0 − 1 (i.e., just prior to the
beginning of the interval) and releases the lock it requested at
time t1. During [t0, t1], Ji is either suspended and waiting to
acquire a lock, or ready and holding a lock.

Explicitly separating a job’s execution into individual seg-
ments allows bounding the pi-blocking incurred during each
segment, which at times requires “protecting” certain jobs
executing earlier-started segments. To this end, we let tr(Ji, t)
denote the current segment start time of Ji, where tr(Ji, t) = t0
iff [t0, t1] is an independent or a request segment of Ji and
t0 ≤ t ≤ t1. For brevity, we further define the predicate is(Ji, t)
to hold iff there exists an independent segment [t0, t1] of Ji such
that t0 ≤ t ≤ t1. Analogously, rs(Ji, t) holds iff [t0, t1] is a
request segment of Ji and t0 ≤ t ≤ t1.

Under the FMLP+ (which will be formally defined in Def. 6),
lock-holding jobs become eligible for priority boosting in
order of non-decreasing segment start times. We therefore let
boosted(Ck, t) denote the lock-holding, ready job in cluster
Ck with the earliest segment start time (with ties in segment
start time broken arbitrarily but consistently, e.g., in favor of
lower-indexed tasks). If no such job exists at time t, then
boosted(Ck, t) = ⊥. Formally, if boosted(Ck, t) = Jx, then
Jx ∈ ready(Ck, t), rs(Jx, t), and tr(Jx, t) ≤ tr(Jy, t) for each
Jy ∈ {Jy | Jy ∈ ready(Ck, t) ∧ rs(Jy, t)}.

Further, whenever a lock-holding job is priority boosted,
certain other jobs must be co-boosted to protect them from
being repeatedly pi-blocked (i.e., to prevent the accumulation
of pi-blocking in particular jobs, as is the case in the examples
shown in Sec. III). To this end, we let cb(Ji, t) denote the co-
boosting set of job Ji at time t, which is the set of higher-
priority jobs executing independent segments that started before
tr(Ji, t); formally cb(Ji, t) = {Jy | is(Jy, t) ∧ Y(Jy) <
Y(Ji) ∧ tr(Jy, t) < tr(Ji, t) ∧ C(Ji) = C(Jy)}.

Finally, we let cb′(Ji, t) denote the mk − 1 jobs in cb(Ji, t)
with the earliest segment start times (with ties broken arbitrarily),
where mk denotes the number of processors in Ti’s cluster (i.e.,
Ck = C(Ti)). If cb(Ji, t) contains only mk − 1 or fewer jobs,
then simply cb′(Ji, t) = cb(Ji, t).

With these definitions in place, we are finally ready to define
the progress mechanism underlying the generalized FMLP+.
Def. 5. Let scheduled(Ck, t) denote the set of jobs scheduled
in cluster Ck at time t. Under restricted segment boosting,
scheduled(Ck, t) is selected as follows.

1) Let Jb = boosted(Ck, t). If Jb 6= ⊥, then let B(Ck, t) =
{Jb} ∪ cb′(Jb, t); otherwise, if Jb = ⊥, let B(Ck, t) = ∅.

2) Let H(Ck, t) denote the mk − |B(Ck, t)| highest-priority
tasks in ready(Ck, t) \ B(Ck, t) (if that many exist;
otherwise H(Ck, t) = ready(Ck, t) \B(Ck, t)).

3) The set of jobs scheduled(Ck , t) = B(Ck , t) ∪H (Ck , t)
is scheduled at time t.

5

cr
iti

ca
l s

ec
tio

n

3

scheduled on
processor

job release

job finished
deadline

suspended

4

1
2

`1

`2

accessed
resources

no
n-

cr
iti

ca
l s

ec
tio

n

C1

C2

5 10 150

co-boosted

pi-blocked

J1

J2

J3

J4

J5

J6

J7

`1

`2

`1

`2

Fig. 3. C-EDF schedule of seven jobs in two two-processor clusters sharing two
resources (`1 and `2) under the FMLP+. The example is discussed in Sec. IV-B.

In other words, in each cluster Ck and at any point in time
t, the set of priority-boosted jobs B(Ck, t) includes at most
one lock-holding job Jb, and, if Jb exists, the (up to) mk − 1
highest-priority jobs in Jb’s co-boosting set cb(Jb, t). Finally,
if B(Ck, t) contains fewer than mk jobs, then the remaining
mk − |B(Ck, t)| processors are used to service the highest-
priority jobs in ready(Ck, t) that are not already scheduled. An
example schedule illustrating restricted segment boosting is
shown in Fig. 3 and discussed shortly in Sec. IV-B below.

Restricted segment boosting strikes a balance between
progress and pi-blocking by forcing the progress of at least one
lock-holding job, thus preventing unbounded priority inversions,
but without disturbing the regular, priority-based schedule “too
much” by boosting at most one lock-holding job.2 This provides
a strong analytical foundation, which together with the following
simple protocol leads to asymptotic optimality.
Def. 6. Under the generalized FIFO Multiprocessor Locking
Protocol (FMLP+), there is one FIFO queue FQq for each
resource `q . Resource requests are satisfied as follows.

1) A scheduled job may request a resource at any time. When
a job Ji requests resource `q, it is enqueued in FQq and
suspended if FQq was previously not empty.

2) Ji holds the resource `q when it becomes the head of FQq .
While holding `q, Ji is eligible for restricted segment
boosting, as defined in Def. 5.

3) When Ji releases `q, it becomes ineligible for restricted
segment boosting and is dequeued from FQq , and the new
head of FQq (if any) is resumed.

Next, we briefly illustrate how the FMLP+ works with an
example, and then establish its asymptotic optimality.

B. Example Schedule

Fig. 3 shows a C-EDF schedule (with K = 2 and m1 =
m2 = 2) of seven jobs sharing two resources under the FMLP+.

We focus on the locking-related events in clusterC1. At time 2,
J4 suspends because it requested `1, which is being used by J7
at the time. J3 similarly suspends at time 3 when it requests `2.

At time 5, J3 and J4 are resumed simultaneously and co-
boosting takes effect. First, note that boosted(C1, 5) = J4 even
though J3 has higher priority (i.e., an earlier deadline) because

2It is worth emphasizing that Def. 5 does not artificially serialize critical
sections: H(Ck, t) may contain lock-holding jobs and thus multiple jobs may
concurrently execute critical sections (protected by different locks) if they have
a sufficiently high priority to be scheduled without being boosted.

tr(J4, 5) = 2 < tr(J3, 5) = 3. Further, cb(J4, 5) = {J2}
as tr(J2, 5) = 0 < tr(J3, 5) = 3 and Y(J2) < Y(J3),
and thus B(C1, 5) = {J2, J4} and H(C1, 5) = ∅. Note that
under unrestricted priority boosting, both J1 and J2 would have
been preempted and incurred pi-blocking, whereas here only
J1 is preempted and J2 is left undisturbed because it is co-
boosted. In contrast, J1 /∈ cb(J4, 5) since J1’s current segment
started at time 4, which is later than J4’s current segment start
time, and J5 /∈ cb(J4, 5) because it has lower priority than J4.
Analogously, J2 remains scheduled at time 6. Note that because
J2 benefits from co-boosting, J1 incurs pi-blocking instead.

While it may appear counter-intuitive that the higher-priority
job J1 incurs pi-blocking in place of the lower-priority job J2,
this is deliberate and highlights a key property of the FMLP+

with restricted segment boosting: whenever there is a choice,
pi-blocking affects jobs with later segment start times instead of
jobs with earlier segment start times.

In general, to expedite the completion of critical sections in
lower-priority jobs (e.g., J3 and J4 in Fig. 3), inevitably some
jobs have to incur pi-blocking. By shifting the negative effects
of priority boosting to later-arrived jobs, restricted segment
boosting prevents the accumulation of pi-blocking in individual
“long-running” jobs (Fig. 2(c) is in fact an FMLP+ schedule).
This design choice is key to attaining asymptotic optimality, as
will become apparent in the following analysis of the FMLP+.

C. Asymptotic Optimality: Proof Overview
We next establish that the FMLP+ in conjunction with

restricted segment boosting ensures O(n) maximum s-aware
pi-blocking under clustered JLFP scheduling, which matches the
known lower bound of Ω(n) maximum s-aware pi-blocking [11].

In the remainder of this section, let Ji denote an arbitrary
job of the task under analysis Ti, and let Ck = C(Ti) denote
the cluster in which Ji executes. We first show that s-aware
pi-blocking is limited to n− 1 = O(n) critical section lengths
in each request segment (Lemma 5), and then show that Ji
incurs s-aware pi-blocking for the cumulative duration of at most
nk − 1 = O(n) critical section lengths during each independent
segment as well (Lemma 13). Asymptotic optimality follows if
the number of segments is bounded by a constant (Theorem 1).

A source of complexity in the proof is that co-boosted jobs
may issue lock requests. As a result, it is not immediately clear
that Ji is not pi-blocked multiple times by a lower-priority job
that manages to repeatedly issue requests while being co-boosted
(although this is in fact impossible). Key to the proof is hence
Lemma 11, which establishes that, if a lower-priority job Jb
causes Ji to incur pi-blocking for (hypothetically) a second time
during one of Ji’s independent segments, then Jb was not among
the priority-boosted jobs when it issued its request. Intuitively,
the main argument of the proof is that if Ji is not scheduled when
Jb executes its critical section, then this implies the presence
of higher-priority jobs, which would have already prevented Jb
from being scheduled at the time that it issued its request. This
property lies at the heart of the FMLP+ and stems from the fact
that it resolves all contention strictly in FIFO order.

We begin by bounding pi-blocking during request segments,
which are easier to analyze than independent segments.

6

D. S-Aware PI-Blocking during Request Segments

In Lemma 5 below, we show that maximum s-aware pi-
blocking is limited to (n − 1) critical section lengths during
each request. In preparation, we first establish three simple
lemmas that together encapsulate the observation that, once
Ji has “waited long enough,” there are no more earlier-issued
requests that could delay Ji. We begin by noting that the current
segment start time always increases when a lock is released.

Lemma 2. Let Jb denote a job of task Tb pending at time t. If
Jb or an earlier job of Tb unlocks a shared resource at time tu
and tu < t, then tr(Jb, t) > tu.

Proof: Recall that tr(Jb, t) denotes the start time of Jb’s
current segment. If Jb itself releases a resource at time tu, then
by Defs. 3 and 4 it starts a new segment at time tu+1, and hence
Jb’s current segment at time t cannot have started prior to time
tu+ 1. If Jb is not yet pending at time tu (i.e., if an earlier job of
Tb unlocks a resource at time tu), then Jb arrives later at some
time ta, where tu < ta, which implies tu < ta ≤ tr(Jb, t).

Next, we observe that any pi-blocking during a request
segment implies the existence of another lock-holding job with
an earlier-or-equal segment start time.

Lemma 3. If rs(Ji, t) and Ji incurs s-aware pi-blocking at time
t, then there exists a Jx s.th. rs(Jx , t) and tr(Jx, t) ≤ tr(Ji, t).

Proof: There are two cases to consider.
Case 1: Ji is ready at time t. Then it holds a resource, but

is not scheduled. As exactly one lock-holding job is priority-
boosted according to Def. 5, and since jobs are boosted in order
of non-decreasing segment start times (recall the definition of
boosted(Ck, t)), it follows that another lock-holding job with a
segment start time no later than tr(Ji, t) is boosted at time t.

Case 2: Ji is not ready at time t. Then it is waiting for the
requested resource, which implies that some other job holds
the resource at time t. Since under the FMLP+ resource access
is granted in FIFO order, it follows that the job holding the
requested resource issued its request no later than Ji.

We observe next that restricted segment boosting guarantees
the progress of at least one lock-holding job.

Lemma 4. If there exists a lock-holding job at time t, then
(one of) the lock-holding, ready job(s) with the earliest segment
start time (with ties in segment start time broken arbitrarily)
progresses towards completion of its critical section at time t.

Proof: The progress guarantee of restricted segment boost-
ing follows immediately from Def. 5. A job is prevented from
progressing towards the completion of its critical section if
it is ready but not scheduled. By Def. 5, in each cluster Ck,
(one of) the job(s) with the earliest segment start time, namely
boosted(Ck, t), is scheduled whenever it is ready.

Finally, with Lemmas 2–4 in place, it is possible to bound the
maximum pi-blocking during any individual request segment.

Lemma 5. Let [t0, t1] denote a request segment of Ji. During
[t0, t1], Ji incurs s-aware pi-blocking for the cumulative duration
of at most one critical section per each other task (in any cluster),
for a total of at most n− 1 critical sections.

Proof: By Lemma 3, Ji incurs s-aware pi-blocking at time
t ∈ [t0, t1] only if a lock-holding job with a segment start time
no later than tr(Ji, t) = t0 exists at time t. It follows from
Lemma 4 that at least one lock-holding job with a segment start
time no later than t0 progresses towards the completion of its
critical section at any time t that Ji is pi-blocked. By Lemma 2,
once a task unlocks a resource at some time tu after time t0, it
has a segment start time later than t0. Therefore, after a task has
completed a critical section at some time tu after time t0, it can
no longer pi-block Ji during [tu, t1]. Thus at most one critical
section per each task other than Ti causes Ji to incur pi-blocking
during [t0, t1], for a total of at most n− 1 critical sections.

This concludes our analysis of request segments. Next, we
consider independent segments.

E. S-Aware PI-Blocking during Independent Segments

The maximum pi-blocking incurred by Ji during an inde-
pendent segment is substantially more challenging to analyze
because jobs that issue a request after Ji started its independent
segment may still pi-block Ji (but only once, as we are going to
show in Lemma 12). To begin, we establish two simple lemmas
on the conditions necessary for Ji to incur s-aware pi-blocking.
In the following discussion, we let B(Ck, t) denote the set of
boosted jobs and H(Ck, t) the set of non-boosted jobs selected
for scheduling at time t in cluster Ck, as defined in Def. 5.

Lemma 6. If is(Ji, t) and Ji incurs s-aware pi-blocking at time
t, then boosted(Ck, t) 6= ⊥.

Proof: Follows from the definition of restricted segment
boosting. Recall from Def. 1 that, to incur s-aware pi-blocking at
time t, two conditions must be met: (i) Ji must not be scheduled
and (ii) fewer than mk higher-priority jobs are scheduled in
Ji’s cluster at time t. Suppose no ready, lock-holding job exists
at time t in Ck (i.e., boosted(Ck, t) = ⊥). Then, according to
Def. 5, B(Ck, t) = ∅. Since Ji is ready and, according to (i),
not scheduled, this implies that H(Ck, t) = scheduled(Ck, t)
contains mk higher-priority jobs, which contradicts (ii).

Next we establish that any lock-holding, ready job that
is priority-boosted in cluster Ck while Ji incurs s-aware pi-
blocking has lower priority than Ji.

Lemma 7. If is(Ji, t), Ji incurs s-aware pi-blocking at time t,
and Jb = boosted(Ck, t), then Y(Ji) < Y(Jb).

Proof: By Lemma 6, Jb exists. Suppose Ji does not have a
higher priority than Jb (i.e., Y(Jb) < Y(Ji) since job priorities
are unique). Then, assuming that the job priority order is
transitive, each Jy ∈ cb(Jb, t) has higher priority than Ji since,
by the definition of cb(Jb, t), for each such Jy, Y(Jy) < Y(Jb)
and, by assumption, Y(Jb) < Y(Ji). Hence all jobs in B(Ck, t)
have higher priority than Ji and, since Ji is not scheduled at time
t, all jobs in H(Ck, t) also have higher priority than Ji. Thus
there are mk higher-priority jobs scheduled, which contradicts
the assumption that Ji incurs pi-blocking at time t.

Having established that Ji is only pi-blocked when a lower-
priority job Jb is priority-boosted, we next analyze in Lemmas 8–
12 the conditions that exist when Jb issues its request. In the end,
the conditions established in the following lemmas will allow

7

us to conclude that no task can block Ji more than once. In the
following, refer to Fig. 4 for an illustration of Lemmas 8–11.
Def. 7. In Lemmas 8–12, let Jb = boosted(Ck, t), Jb 6= ⊥, and
let tx = tr(Jb, t)− 1 denote the time when Jb issued its request.

First, we establish that any job that is in Jb’s co-boosting set
at time t is also ready at time tx and already executing the same
independent segment that it is still executing at time t.

Lemma 8. Define Jb and tx as in Def. 7. If Jy ∈ cb(Jb, t), then
is(Jy, tx) and tr(Jy, tx) = tr(Jy, t).

Proof: By the definition of cb(Jb, t), if Jy ∈ cb(Jb, t), then
is(Jy, t) and tr(Jy, t) < tr(Jb, t) ≤ tr(Jb, t) − 1 = tx. From
tr(Jy, t) ≤ tx, it follows that each Jy is still executing the same
segment at time t that it was executing at time tx. Hence from
Def. 3 we have is(Jy, tx) and tr(Jy, tx) = tr(Jy, t).

Next, we observe that if Ji is in Jb’s co-boosting set but not
scheduled, then at least mk jobs are eligible for co-boosting.

Lemma 9. Define Jb and tx as in Def. 7. If Ji ∈ cb(Jb, t), but
Ji /∈ cb′(Jb, t), then |cb(Jb, t)| ≥ mk.

Proof: Recall that cb′(Jb, t) ⊆ cb(Jb, t) is the set of the
(up to)mk−1 jobs in cb(Jb, t) with the earliest segment starting
times. As Ji /∈ cb′(Jb, t), it follows that cb′(Jb, t) ⊂ cb(Jb, t),
|cb′(Jb, t)| = mk − 1, and hence |cb(Jb, t)| ≥ mk.

Based on Lemmas 8 and 9, it is possible to rule out that Jb
was scheduled at time tx due to having a high priority.

Lemma 10. Define Jb and tx as in Def. 7. If Ji ∈ cb(Jb, t), but
Ji /∈ cb′(Jb, t), then Jb /∈ H(Ck, tx).

Proof: Recall from Def. 5 that H(Ck, tx) denotes the set of
the (up to) mk − |B(Ck, tx)| highest-priority, non-boosted jobs
ready at time tx. Obviously, |H(Ck, tx)|+ |B(Ck, tx)| ≤ mk.

Consider the jobs in cb(Jb, t). By Lemma 8, each job Jy ∈
cb(Jb, t) is also ready at time tx. By the definition of cb(Jb, t),
each such Jy has a higher priority than Jb: Y(Jy) < Y(Jb).
Thus, by Def. 5, for Jb to be included in H(Ck, tx), each such
higher-priority Jy ∈ cb(Jb, t) must be included in H(Ck, tx) or
B(Ck, tx). However, by Lemma 9, there exist at least mk such
jobs Jy ∈ cb(Jb, t), which implies Jb /∈ H(Ck, tx).

Finally, consider B(Ck, tx), the set of jobs priority-boosted
at time tx. It follows from Lemma 10 that Jb must be part of
B(Ck, tx) when it issues its request at time tx. We next establish
that this is impossible if Tb releases a lock at a time tu on or
after time tr(Ji, t)—that is, if Tb causes Ji to incur pi-blocking
with a second critical section—since this implies a lower bound
on Jb’s current segment start time at time tx.

Lemma 11. Define Jb and tx as in Def. 7. If Ji ∈ cb(Jb, t),
Ji /∈ cb′(Jb, t), a job of Tb unlocked a resource at time tu, and
tr(Ji, t) ≤ tu < tx, then Jb /∈ B(Ck, tx).

Proof: By contradiction. Suppose Jb ∈ B(Ck, tx), and let
Jx = boosted(Ck, tx). According to Def. 5, if Jx = ⊥, then
B(Ck, tx) = ∅, so assume otherwise.

As Jb holds a lock at time t that it requested at time tx, and
since lock-holding jobs do not issue further lock requests, Jb
does not hold a lock at time tx, which implies Jb 6= Jx. Since
by assumption Jb ∈ B(Ck, tx), we have Jb ∈ cb′(Jx, tx).

Consider the jobs in cb′(Jb, t). By Lemma 8, each job in
cb(Jb, t), and hence also each Jy ∈ cb′(Jb, t), is ready and not
holding a lock at time tx, and, by the definition of cb(Jb, t), each
such Jy has higher priority than Jb: Y(Jy) < Y(Jb).

By assumption, Tb unlocks a resource at time tu; it thus
follows from Lemma 2 that tu < tr(Jb, tx). And since by
assumption tr(Ji, t) ≤ tu, we have tr(Ji, t) < tr(Jb, tx).
Further, recall that cb′(Jb, t) denotes themk−1 jobs in cb(Jb, t)
with the earliest segment start times. Since Ji ∈ cb(Jb, t),
but Ji /∈ cb′(Jb, t), we have tr(Jy, t) ≤ tr(Ji, t) for each
Jy ∈ cb′(Jb, t), and therefore also tr(Jy, t) < tr(Jb, tx).

Thus, each Jy ∈ cb′(Jb, t) has a higher priority than
Jb, has an earlier segment start time than Jb, and is ready
and not holding a lock at time tx (i.e., is(Jy, tx)). Thus, by
the definition of cb′(Jx, tx), if Jb ∈ cb′(Jx, tx), then also
Jy ∈ cb′(Jx, tx) for each Jy ∈ cb′(Jb, t), which implies
|cb′(Jx, tx)| ≥ |cb′(Jb, t)|+1 (since Jb /∈ cb′(Jb, t)). However,
by definition, |cb′(Jx, tx)| ≤ mk − 1 and, since Ji /∈ cb′(Jb, t),
|cb′(Jb, t)| = mk− 1, which implies mk− 1 ≥ |cb′(Jx, tx)| ≥
|cb′(Jb, t)|+ 1 = (mk − 1) + 1 = mk. Contradiction.

Lemma 10 shows that Jb is not among the regularly scheduled
jobs at time tx, and Lemma 11 shows that, under certain
conditions, Jb is not priority-boosted at time tx. Together, they
imply that Jb cannot be scheduled at time tx, which conflicts
with the assumption that tx is the time at which Jb issues the
request that blocks Ji at time t. Next, we establish that the
conditions required to apply Lemma 11 would in fact be met if
Ji would be blocked twice by the same task.

Lemma 12. If is(Ji, t), Ji incurs s-aware pi-blocking at time
t, and Jb = boosted(Ck, t), then no job of task Tb unlocked a
resource during [tr(Ji, t), t).

Proof: By contradiction. Suppose there exists a time tu ∈
[tr(Ji, t), t) at which a job of Tb unlocked a resource. Let tx =
tr(Jb, t) denote the time at which Jb issued its request. We are
going to show that Jb cannot have been scheduled at time tx if a
job of Tb unlocked a resource at time tu.

By Lemma 6, Jb exists. By Lemma 7, we have Y(Ji) <
Y(Jb). Since by initial assumption tr(Ji, t) ≤ tu, and by
Lemma 2 tu < tr(Jb, t), we further have tr(Ji, t) < tr(Jb, t).
Hence, by the definition of cb(Jb, t), Ji ∈ cb(Jb, t).

Since Ji incurs s-aware pi-blocking at time t, it cannot be
scheduled at time t, which implies that Ji /∈ cb′(Jb, t).

Therefore, by Lemma 10, Jb /∈ H(Ck, tx), and, by Lemma 11,
Jb /∈ B(Ck, tx). Since according to Def. 5 scheduled(Ck, tx) =
B(Ck, tx)∪H(Ck, tx), Jb was not scheduled at time tx and thus
cannot have issued its request at time tx. Contradiction.

Lemma 12 implies that no task can block Ji more than once
during a single independent segment, which yields the desired
O(n) bound on per-segment pi-blocking.

Lemma 13. Let [t0, t1] denote an independent segment of
job Ji. During [t0, t1], Ji incurs s-aware pi-blocking for the
cumulative duration of at most one critical section per each other
task in cluster Ck = C(Ti), for a total of nk−1 critical sections.

Proof: By Lemma 6, whenever Ji incurs s-aware pi-
blocking, a lock-holding job Jb is scheduled, which implies

8

ttx

boosted(Ck, t) = Jbboosted(Ck, tx) = Jx

cb(Jb, t)cb0(Jb, t)

Ji JbJy

cb0(Jx, tx)

tr(Jy, tx) = tr(Jy, t)  tr(Ji, t)  tu < tr(Jb, tx)

Ji segment startsJy segment starts

Jb segment startsTb unlocks resource

Fig. 4. Illustration of the conditions assumed and established in Lemmas 8–11. At time t, Ji is not scheduled and pi-blocked, Jb is priority-boosted, and Ji is part
of Jb’s co-boosting set (Ji ∈ cb(Jb, t)), but not among the co-boosted jobs with the mk − 1 earliest segment starting times (Ji /∈ cb′(Jb, t)). At time tx, Jb
requests the lock for the resource that it uses at time t. Lemma 8: each job Jy ∈ cb′(Jb, t) is executing the same segment at times t and tx. Lemma 9: there exist at
least mk − 1 such jobs. Lemma 10: at time tx, there must exist some Jx 6= Jb that is priority-boosted and Jb is included in Jx’s co-boosting set cb(Jx, tx).
Lemma 11: if a job of task Tb unlocks a resource at time tu prior to tx, but not before tr(Ji, t), each job Jy ∈ cb′(Jb, t) is also an element of cb(Jx, tx) since,
by the definition of the co-boosting set, each such job Jy has a higher priority than both Jb and Jx (priorities not shown), since Ji ∈ cb(Jb, t) but Ji ∈ cb′(Jb, t)
implies that each such Jy has a segment start time no later than Ji, and since time tu establishes a lower bound on the segment start time of Jb at time tx.

that Jb progresses towards the completion of its critical section.
Thus, for more than nk − 1 critical sections to block Ji, some
task Tx assigned toCk needs to block Ji with at least two critical
sections during [t0, t1]. Let t ∈ [t0, t1] denote a point in time at
which a job of Tx blocks Ji with a second critical section. Since
tasks request at most one lock at a time, this implies that Tx
unlocked a resource at some point in time tu before t and after
tr(Ji, t) = t0, which by Lemma 12 is impossible.

Having established a bound on maximum s-aware pi-blocking
during independent segments, we are finally ready to state the
main result that establishes the FMLP+’s asymptotic optimality.

Theorem 1. Under clustered JLFP scheduling with the FMLP+,
maxTi∈τ{bi} = O(n) for any τ .

Proof: By Lemma 13, during each independent segment, a
job Ji of a task assigned to clusterCk = C(Ti) incurs s-aware pi-
blocking for the total duration of at most nk− 1 = O(n) critical
sections. By Lemma 5, during each request segment, Ji incurs
s-aware pi-blocking for the total duration of at most n − 1 =
O(n) critical sections. Recall from Sec. II that wi denotes the
maximum number of locking-unrelated self-suspensions and
Ni the maximum number of requests for any resource. From
Defs. 3 and 4, it follows that any job Ji has at most Ni request
segments and 1 + wi +Ni independent segments since any two
independent segments must be separated by a locking-unrelated
self-suspension or a request segment. Thus bi ≤ Ni · (n− 1) ·
Lmax + (1 + wi + Ni) · (nk − 1) · Lmax = O(n), assuming
wi +Ni = O(1) and Lmax = O(1) as explained in Sec. II.

The lower bound on maximum s-aware pi-blocking is (n− 1)
critical section lengths per request [11]. Assuming wi = 0, the
FMLP+ is hence asymptotically optimal within a factor of

(1 + 2Ni) · (n− 1) · Lmax

Ni · (n− 1) · Lmax
= 2 +

1

Ni
≈ 2.

In the remainder of this section, we lift the two simplifying
assumptions made so far, namely that critical sections do not
contain self-suspensions and that critical sections are non-nested.

F. Critical Sections with Self-Suspensions

When synchronizing access to physical resources (e.g., I/O
devices), jobs may need to self-suspend during a critical section.
For example, a device driver might first acquire a lock serializing
access to a device, then prepare buffer contents and request
an I/O transaction, self-suspend to wait for the transaction to

complete, finally perform cleanup activities when resumed, and
only then release the lock. Fortunately, such self-suspensions
within critical sections do not invalidate the preceding analysis.

First, note that jobs do not start a new segment when resuming
while holding a lock since by Def. 3 a job does not hold a
lock during an independent segment, and because by Def. 4 a
request segment extends until the lock is released, regardless of
whether a job is ready. Second, when a lock-holding job self-
suspends, it no longer requires a processor to progress towards
completion of its critical section. It therefore does not need
to be priority-boosted, and thus does not cause jobs executing
independent segments to incur pi-blocking. Thus, provided the
maximum self-suspension time is bounded by a constant and
appropriately reflected in the maximum critical section length,
the preceding analysis remains valid. More precisely, if Lsq,i
denotes the maximum self-suspension length of any Ji while
using `q and Leq,i denotes maximum execution time of any Ji
while using `q (both w.r.t. a single critical section), then Lq,i =
Lsq,i+Leq,i, but other jobs executing independent segments incur
at most Leq,i pi-blocking due to Ji being priority-boosted.

Next, we consider nested lock requests.

G. Nested Critical Sections

Ward and Anderson showed how to permit fine-grained
nesting such that asymptotic optimality is retained with the
RNLP [25]. The RNLP consists of two key components, a token
lock and a request satisfaction mechanism (RSM), and is generic
in the sense that it can be instantiated with different token
locks and RSMs to be asymptotically optimal under various
scheduling and analysis approaches. Under s-aware analysis, the
RNLP’s token lock essentially serves to record a timestamp of
an outermost critical section, similar to the segment start time of
a request segment in this paper. The RSM ensures progress and
determines in which order (nested) requests are satisfied.

Ward and Anderson developed RSMs for spin locks, s-
oblivious analysis, and, most relevant to this paper, also for
s-aware analysis [25]. In particular, they introduced the B-RSM,
which employs the P-FMLP+’s notion of priority boosting [7]
to ensure O(n) maximum s-aware pi-blocking under partitioned
scheduling. However, they also left open the case of clustered
scheduling under s-aware analysis due to the lack of a suitable
progress mechanism [25]. Since restricted segment boosting, the
progress mechanism introduced in this paper, ensures progress

9

while causing onlyO(n) s-aware pi-blocking itself, it can simply
be substituted into Ward and Anderson’s B-RSM.

To summarize, nested critical sections can be supported by
redefining request segments to correspond to the start and end
of outermost requests, by adopting the generalized FMLP+’s
restricted segment boosting (instead of the P-FMLP+’s unre-
stricted priority boosting) in the RNLP’s B-RSM for s-aware
analysis, and by replacing the FMLP+’s simple FIFO queues
with the RNLP’s queue structure and access rules (which are
also based on FIFO queueing). This concludes our discussion of
blocking optimality. We present an empirical comparison of the
s-aware FMLP+ with prior s-oblivious locking protocols next.

V. EMPIRICAL EVALUATION

Prior work [8] has shown the P-FMLP+ [7] to be competitive
with and—depending on the task set parameters—superior to the
two classic locking protocols for P-FP scheduling under s-aware
analysis, namely the MPCP [17, 21, 22] and the DPCP [22, 23].
Since the FMLP+ generalizes the P-FMLP+ considered in [8],
we compare it instead with two s-oblivious locking protocols for
clustered JLFP scheduling: the OMLP [12] and the OMIP [9].

Effective schedulability analysis requires fined-grained block-
ing bounds that take into account constant factors (e.g., job
arrival rates, individual critical section lengths, etc.) that are
omitted from the asymptotic bound derived in Sec. IV. We
derived suitable bounds (provided online [10]) using a previously
introduced analysis technique based on linear programming [8].

A. Experimental Setup

Our experimental setup closely resembles those used in
several prior studies [8, 9, 12]. In short, we considered systems
with m ∈ {4, 8, 16, 32} processors and, for each system,
generated task sets ranging in size from n = m to n = 10m.
For a given n, tasks were generated by randomly choosing
a period pi and utilization ui, and then setting ei = pi · ui
(rounding to the next-largest microsecond). Periods were chosen
randomly from either a uniform or a log-uniform distribution
ranging over [10ms, 100ms]; utilizations were chosen from two
exponential distributions ranging over [0, 1] with mean 0.1 (light)
and mean 0.25 (medium), and two uniform distributions ranging
over [0.1, 0.2] (light) and [0.1, 0.4] (medium).

Critical sections were generated according to three parameters:
the number of resources nr, the access probability pacc , and the
maximum requests parameter Nmax . Each of the nr resources
was accessed by a task Ti with probability pacc and, if Ti was
determined to access `q, then Ni,q was randomly chosen from
{1, . . . , Nmax}, and set to zero otherwise. In our study, we
considered nr ∈ {m/4,m/2,m, 2m}, pacc ∈ {0.1, 0.25, 0.5},
and set Nmax = 5. For each Ni,q > 0, the corresponding
maximum critical section length Li,q was randomly chosen
using three uniform distributions ranging over [1µs, 15µs]
(short), [1µs, 100µs] (moderate), and [5µs, 1280µs] (long).

We evaluated each parameter combination under both P-FP
(using s-aware response-time analysis [1]) and C-EDF with
uniform clusters of sizemk ∈ {2, 4}. For s-aware analysis under
C-EDF, we used Liu and Anderson’s s-aware G-EDF schedu-
lability test [18] on a per-cluster basis; for s-oblivious analysis,

we additionally used three s-oblivious G-EDF schedulability
tests [2, 4, 5], claiming a task set schedulable if it passed at least
one of the tests. We tested at least 400 task sets for each n and
each of the 3,456 possible combinations of the listed parameters.
All resulting graphs are available online [10]; we focus on major
trends in select example graphs due to space constraints.

B. Results

Whether an s-aware locking protocol yields higher schedula-
bility than an s-oblivious locking protocol inevitably depends on
the accuracy of the underlying schedulability test (i.e., whether
the impact of suspensions is overestimated) and on the tested
parameter ranges (i.e., the simpler s-oblivious analysis benefits
from m being small). Our results confirm this dependency.

Response-time analysis for uniprocessor fixed-priority
scheduling [1] is arguably one of the most accurate s-aware
schedulability tests currently known. Consequently, under P-FP
scheduling, using locking protocols specifically designed for
s-aware analysis can result in substantially higher schedulability
than using locking protocols intended for s-oblivious analysis.
One such case is shown in Fig. 5(a). The FMLP+ maintains high
schedulability until n ≈ 100, whereas schedulability under the
OMIP and the OMLP starts decreasing rapidly already at n ≈ 80.
This is due to the s-oblivious approach of inflating execution
times, which results in pessimistic response-time bounds for low-
priority tasks with long periods (since each higher-priority task
contributes with multiple inflated execution costs). In contrast,
the more accurate s-aware analysis under the FMLP+ counts
only actual execution as interference, which results in tighter
response-time bounds in this scenario. While there also exist
of course scenarios without discernible differences between the
protocols (e.g., if there is only little contention and blocking
is not the “schedulability bottleneck”) and even scenarios in
which the s-oblivious protocols outperform the FMLP+ (e.g., the
structure of the OMIP and the OMLP, and s-oblivious analysis
in general, are favored if m is small and contention is high), our
experiments generally show the P-FP/FMLP+ combination to
perform well compared to both s-oblivious protocols.

In contrast, this is not the case if the underlying analysis is
Liu and Anderson’s s-aware schedulability test for G-EDF [18],
which is the best-performing s-aware schedulability test for G-
EDF currently available [18]. For example, Fig. 5(b) depicts
a scenario where the FMLP+ under s-aware analysis clearly
performs significantly worse than both the OMLP and the OMIP.

To confirm that this is due to the underlying analysis of
suspensions, and not due to the FMLP+ itself, we also compared
the FMLP+ under s-aware analysis with the FMLP+ under s-
oblivious analysis. That is, given a task set τ , we first computed
for each task Ti a bound bi on s-aware pi-blocking, and then
tested τ for schedulability once with s-aware analysis [18] and
once with s-oblivious analysis [2, 4, 5] using the same bound.3

The results are shown in Fig. 5(c). Interestingly, the FMLP+

under s-oblivious analysis outperforms the FMLP+ under s-
aware analysis, even though the FMLP+ is asymptotically

3Recall from Sec. II-C that any bound on s-aware pi-blocking also bounds
s-oblivious pi-blocking because the latter implies the former [11].

10

��

����

����

����

����

��

��� ��� ��� ��� ��� ��� ��� ��� ��� ������������������������

��
���
��
��
�
�
�
�
�
�
��
�
��
��
�
�
�
��
�
��

�������������������

������������������
���������������

������������������
������������������

(a) Schedulability under P-FP (mk = 1)

��

����

����

����

����

��

��� ��� ��� ��� ��� ��� ��� ��� ��� ������������������������

��
���
��
��
�
�
�
�
�
�
��
�
��
��
�
�
�
��
�
��

�������������������

�������������������
���������������

������������������
������������������

(b) Schedulability under C-EDF (mk = 4)

��

����

����

����

����

��

��� ��� ��� ��� ��� ��� ��� ��� ��� ������������������������

��
���
��
��
�
�
�
�
�
�
��
�
��
��
�
�
�
��
�
��

�������������������

�������������������
���������������

�������������������

(c) S-aware vs. s-oblivious analysis of the FMLP+

Fig. 5. Schedulability under the FMLP+, the OMLP, the OMIP, and without blocking under P-FP scheduling and C-EDF scheduling with mk = 4 as a function
of n for for m = 16, nr = 4 resources, moderate critical sections, pacc = 0.1, exponentially light utilizations, and uniformly distributed periods.

optimal under s-aware analysis, but not under s-oblivious
analysis. In other words, simply treating the identical bound
as execution time rather than self-suspension time leads to
improved results. This shows that the state-of-the-art analysis
of self-suspensions under global scheduling [18] has not yet
progressed to the point where self-suspensions due to locking
protocols can be efficiently analyzed.

Given the general difficulty of deriving effective multiproces-
sor schedulability analysis, this is perhaps not too surprising;
it does, however, indicate that substantial advances are still
required before the analysis of multiprocessor real-time systems
can match the current understanding of uniprocessor systems.

VI. CONCLUSION

Prior to this work, it was not known whether it is possible
to construct real-time semaphore protocols that ensure O(n)
maximum s-aware pi-blocking under global and clustered
JLFP scheduling. We have answered this question positively
with the generalized FMLP+, the first asymptotically optimal
locking protocol for clustered scheduling under s-aware analysis.
Notably, the generalized FMLP+ supports non-uniform cluster
sizes, non-uniform JLFP policies, self-suspensions, and can be
combined with the RNLP [25] to support nested critical sections.

The generalized FMLP+ uses a number of new techniques.
Rather than priority inheritance or unrestricted priority boosting,
it relies on restricted segment boosting, a novel progress
mechanism that tracks the individual independent and request
segments of a job at runtime and imposes a FIFO order w.r.t.
segment start times. Perhaps counterintuitively, at most one lock-
holding job is boosted in each cluster Ck, but up to mk − 1
other, non-lock-holding jobs may be co-boosted to prevent the
accumulation of pi-blocking in individual jobs.

In future algorithmic work, it will be interesting to explore
these techniques in the context of reader-writer and k-exclusion
protocols [12]. In future systems-oriented work, it will be
interesting to assess the practicality of the generalized FMLP+

from the point of view of runtime overheads. While keeping track
of segment start times is not problematic (the OS is involved
in suspending and resuming jobs and acquiring and releasing
semaphores anyway), co-boosting may cause additional preemp-
tions, the overheads of which must be accounted for.

REFERENCES
[1] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. Wellings,

“Applying new scheduling theory to static priority pre-emptive
scheduling,” Software Eng. J., vol. 8, no. 5, pp. 284–292, 1993.

[2] T. Baker, “Multiprocessor EDF and deadline monotonic schedulabil-
ity analysis,” in RTSS’03, 2003, pp. 120–129.

[3] ——, “Stack-based scheduling for realtime processes,” Real-Time
Systems, vol. 3, no. 1, pp. 67–99, 1991.

[4] S. Baruah, “Techniques for multiprocessor global schedulability anal-
ysis,” in RTSS’07, 2007, pp. 119–128.

[5] M. Bertogna and M. Cirinei, “Response-time analysis for globally
scheduled symmetric multiprocessor platforms,” in RTSS’07, 2007,
pp. 149–160.

[6] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, “A flexible
real-time locking protocol for multiprocessors,” in RTCSA’07, 2007,
pp. 47–57.

[7] B. Brandenburg, “Scheduling and locking in multiprocessor real-
time operating systems,” Ph.D. dissertation, UNC Chapel Hill, 2011.

[8] ——, “Improved analysis and evaluation of real-time semaphore
protocols for P-FP scheduling,” in RTAS’13, 2013.

[9] ——, “A fully preemptive multiprocessor semaphore protocol for
latency-sensitive real-time applications,” in ECRTS’13, 2013.

[10] ——, “The FMLP+: An asymptotically optimal real-time locking
protocol for suspension-aware analysis (online appendix),” available
at http://www.mpi-sws.org/∼bbb/papers/.

[11] B. Brandenburg and J. Anderson, “Optimality results for multipro-
cessor real-time locking,” in RTSS’10, 2010, pp. 49–60.

[12] ——, “The OMLP family of optimal multiprocessor real-time lock-
ing protocols,” Design Automation for Embedded Sys, 2012.

[13] A. Burns and A. Wellings, “A schedulability compatible multipro-
cessor resource sharing protocol — MrsP,” in ECRTS’13, 2013, pp.
282–291.

[14] D. Faggioli, G. Lipari, and T. Cucinotta, “Analysis and implemen-
tation of the multiprocessor bandwidth inheritance protocol,” Real-
Time Sys., vol. 48, no. 6, pp. 789–825, 2012.

[15] P. Gai, M. di Natale, G. Lipari, A. Ferrari, C. Gabellini, and
P. Marceca, “A comparison of MPCP and MSRP when sharing
resources in the Janus multiple processor on a chip platform,” in
RTAS’03, 2003, pp. 189–198.

[16] P.-C. Hsiu, D.-N. Lee, and T.-W. Kuo, “Task Synchronization and
Allocation for Many-Core Real-Time Systems,” in EMSOFT’11,
2011, pp. 79–88.

[17] K. Lakshmanan, D. Niz, and R. Rajkumar, “Coordinated task
scheduling, allocation and synchronization on multiprocessors,” in
RTSS’09, 2009, pp. 469–478.

[18] C. Liu and J. Anderson, “Suspension-aware analysis for hard real-
time multiprocessor scheduling,” in ECRTS’13, 2013, pp. 271–281.

[19] G. Macariu and V. Cretu, “Limited blocking resource sharing for
global multiprocessor scheduling,” in ECRTS’11, 2011, pp. 262–271.

[20] F. Nemati, M. Behnam, and T. Nolte, “Independently-developed real-
time systems on multi-cores with shared resources,” in ECRTS’11,
2011, pp. 251–261.

[21] R. Rajkumar, “Real-time synchronization protocols for shared mem-
ory multiprocessors,” ICDCS’90, pp. 116–123, 1990.

[22] ——, Synchronization In Real-Time Systems—A Priority Inheritance
Approach. Kluwer Academic Publishers, 1991.

[23] R. Rajkumar, L. Sha, and J. Lehoczky, “Real-time synchronization
protocols for multiprocessors,” in RTSS’88, 1988, pp. 259–269.

[24] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols:
an approach to real-time synchronization,” IEEE Trans. Comput.,
vol. 39, no. 9, pp. 1175–1185, 1990.

[25] B. Ward and J. Anderson, “Supporting nested locking in multiproces-
sor real-time systems,” in ECRTS’12, 2012, pp. 223–232.

[26] ——, “Fine-grained multiprocessor real-time locking with improved
blocking,” in RTNS’13, 2013.

11

http://www.mpi-sws.org/~bbb/papers/

	Introduction
	Contributions
	Related Work

	Definitions and Assumptions
	Shared Resources
	Multiprocessor Real-Time Scheduling
	Priority Inversions, PI-Blocking, and Asymptotic Bounds
	Prior Progress Mechanisms and Optimal Locking Protocols

	Suboptimal S-Aware PI-Blocking
	The FIFO Multiprocessor Locking Protocol
	Definition of the FMLP+
	Example Schedule
	Asymptotic Optimality: Proof Overview
	S-Aware PI-Blocking during Request Segments
	S-Aware PI-Blocking during Independent Segments
	Critical Sections with Self-Suspensions
	Nested Critical Sections

	Empirical Evaluation
	Experimental Setup
	Results

	Conclusion

