
Assume-Guarantee Synthesis of
Decentralised Supervisory Control ⋆

Technical Report MPI-SWS-2022-001, April 2022

Ana Maria Mainhardt ∗ Anne-Kathrin Schmuck ∗

∗ Max Planck Institute for Software Systems, Kaiserslautern, Germany
(e-mail: {amainhardt,akschmuck}@mpi-sws.org).

Abstract: We address the problem of synthesising local supervisors for decentralised discrete
event systems by designing a framework for the negotiation of assume-guarantee contracts. We
set the theoretical foundations of contract-based supervisory control and establish the sufficient
local conditions – as well as a method to verify and, if needed, enforce them – in order to
guarantee nonconflict and cooperation among the synthesised local supervisors, which are also
globally maximally permissive if those conditions are immediately satisfied. Our approach has a
strong emphasis on information integrity : both during synthesis and execution, the dynamics of a
subsystem are only partially observed by others through the events they actually share, without
the communication of exclusively local events or the use of a coordinator for their supervisors.
We have implemented our framework in Supremica and show preliminary experimental results.
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1. INTRODUCTION

Assume-Guarantee (A/G) contracts are a well established
paradigm for dealing with large-scale decentralised sys-
tems and have a longstanding history and well established
theoretical foundations (see e.g. Sangiovanni-Vincentelli
et al. (2012); Benveniste et al. (2018)). Its main idea is
to decouple dependent decentralised processes, or subsys-
tems, by making use of a set of compatible local contracts
consisting of an assumption and a guarantee. If the rest
of the system fulfils a process’ assumption, this process
must ensure its local guarantee holds, which in turn im-
plies that the corresponding assumptions induced on the
others also hold. The implications of this methodology
are very appealing from a practical perspective, as they
allow for (i) efficient design, i.e., local controllers can be
synthesised in a decentralised and concurrent fashion; (ii)
information integrity, meaning that, apart from what is
specified by the contracts, no detailed information about
a local behaviour is shared with the rest of the plant;
and (iii) decoupled maintenance, as contract-compatible
adaptations in a component do not affect others.

Motivated by these desirable features, we develop in this
work an assume-guarantee synthesis framework for su-
pervisory control of decentralised discrete event systems.
A crucial challenge of employing this paradigm in such
setting is the synchronisation of physical components dur-
ing operation. It is essential, then, not only to design
compatible contracts that encode the interaction between
the subsystems solely in terms of their shared events, but
also to identify and be able to enforce the local conditions
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that are sufficient to guarantee cooperative control and
nonblocking global behaviour.

The method we propose here is inspired by the recent
work of Majumdar et al. (2020) in the context of reactive
synthesis, and is based on the negotiation of contracts. The
idea is the following. An initial local supervisor is designed
for each process by assuming some cooperation from the
rest of the plant, and then translated into contracts to
be exchanged between the subsystems. Iteratively, our
algorithm refines the local supervisors and generates new
contracts to be negotiated. Termination occurs when com-
patible contracts are achieved and sufficient properties for
nonconflict are locally guaranteed. Our framework results,
then, in purely local supervisors correctly enforcing a joint
global behaviour without a coordinator or communication
of exclusively local events.

1.1 Motivating Example

To illustrate our negotiation framework, consider the two
interconnected manufacturing lines depicted in Fig. 1.
Each line is a chain of different modules (dashed boxes),
which in turn consist of linked components such as ma-
chines, assembly units and robot manipulators. In addi-
tion, multiple buffers (depicted as arrows in Fig. 1) connect
neighbouring modules, both within the same line as well
as among different lines. Assume that a buffer Bij may be
fed with different kinds of workpieces by Modulei, while
Modulej takes the pieces from this buffer in a first-in-first-
out manner; the latter can only control whether to take a
piece or not, but it is the former that controls the kind of
piece that appears there.

The adjacent modules (or lines) interact only through the
synchronisation of shared events, namely, the push/pop
events of the buffer(s) connecting them. Nevertheless,
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Fig. 1. Illustration of the motivating example.

the different modules do not agree on the controllability
status of these events: while Modulei can control the
order of workpieces in Bij , Modulej cannot. Moreover, the
dynamics of Modulei might influence which workpiece is
produced and subsequently fed to Bij , while the dynamics
of Modulej might depend on the order of workpieces got
from Bij . Hence, given a supervisor for Modulei, we can
extract a language of workpiece orderings possible in Bij ,
which is a guarantee Modulei gives to Modulej . The latter,
on the other hand, might require a different language of
workpiece orderings in Bij to achieve its local specification;
this would then be an assumption on Modulei induced by
Modulej . Our negotiation framework iteratively restricts
the local supervisors until all assumptions and guarantees
over shared events coincide, that is, until each module
guarantees what the others assume about its behaviour
with respect to the shared buffer, i.e., to the shared events.
As we see in Fig. 1, there can be circular dependencies
which require multiple rounds of negotiation.

1.2 Related Work and Contribution

Due to the decentralised nature of the resulting local
supervisors, our framework has to cope with similar chal-
lenges as other decentralised, distributed, or modular su-
pervisor synthesis techniques. One of the main challenges
is to ensure nonconflict, an intrinsically global property
stating that the entire plant in closed loop with its decen-
tralised controllers can always reach desired, or marked,
states. Some of these approaches require this property to
be verified over the composition of the controlled subsys-
tems – e.g., Wonham and Ramadge (1988); Queiroz and
Cury (2000) – bringing a computational cost that, in the
worst case, is of the same order as that of the mono-
lithic approach (Ramadge and Wonham (1987)). There are
works, such as that of Schmidt et al. (2008), in which such
verification over the entire model is not required; this is
done by establishing sufficient conditions for nonconflict
over the local components, such that the verification pro-
cess also becomes decentralised. Either way, if conflict is
detected, it needs to be resolved somehow. One way is
by designing a coordinator – i.e., an additional supervisor
that coordinates the control actions of the local ones (see
Wonham and Cai (2019)). Alternatively, if it is feasible
to communicate the occurrence of events which are a
priori nonshared from one supervisor to another – by the
addition of sensors, for example – then it is possible to de-
termine a set of external events that each local supervisor
needs to observe to guarantee nonconflict – e.g. Su and
Thistle (2006); Cai and Wonham (2016); Komenda and
Masopust (2017), to cite a few.

Our method, on the other hand, guarantees nonconflict
by construction without a coordinator or communication,
being a suitable solution when communication is not desir-
able for security reasons, or is not physically or financially
viable. To ensure nonconflict, we introduce here a new,
targeted property called relative unambiguity, which is

inspired by existing conditions for decomposability, such
as relative observability from Cai et al. (2015) and lo-
cally nonblocking condition from Schmidt et al. (2008). In
addition, we adopt the cooperative controllability setting
by Su and Thistle (2006) to obtain maximally permissive
local supervisors whenever the aforementioned property is
immediately satisfied, i.e., does not need to be enforced.

Our framework is closely related to other iterative A/G-
based synthesis approaches from the formal methods com-
munity, e.g. Apaza-Perez et al. (2020); Majumdar et al.
(2020); Finkbeiner and Passing (2021). The particularity
of our work in this context is the use of synchronised
deterministic finite automata (DFA) over finite words as
system models, compared to input/output ω-automata
over infinite words. This brings interesting consequences.
Firstly, to the best of our knowledge, there does not yet
exist a sound assume-guarantee framework allowing ω-
automata with arbitrary markings as contracts: existing
work only uses fully marked (safety) automata for this pur-
pose. Our method circumvents this problem, as the syn-
chronisation of DFA ensures that liveness requirements,
encoded by marked states in the involved automata, must
be enforced by all subsystems at the same time. Secondly,
synchronisation of automata leads to blocking situations in
a decentralised setting – which requires special attention –
while interacting input/output ω-automata never block.

2. PRELIMINARIES

In this section, we briefly introduce the notation and
definitions relevant for this document. For a complete
and more didactic coverage on supervisory control, see
the textbooks by Cassandras and Lafortune (2021) and
Wonham and Cai (2019).

2.1 Languages and Automata Basics

Strings. Let Σ be a finite alphabet, i.e., a finite set of
symbols σ ∈ Σ – which, when modelling a DES, represent
the events of the system. The Kleene-closure Σ∗ is the set
of finite strings s = σ1σ2 · · ·σn, with n ∈ N and σi ∈ Σ,
including the empty string ϵ ∈ Σ∗, with ϵ ̸∈ Σ. If, for two
strings s, r ∈ Σ∗, there exists t ∈ Σ∗ such that s = rt, we
say r is a prefix of s, and write r ≤ s.

Languages. A language over Σ is a subset L ⊆ Σ∗.
The prefix of a language L ⊆ Σ∗ is defined by L := {r ∈
Σ∗ | ∃ s ∈ L : r ≤ s}. The prefix operator is also referred
to as the prefix-closure, and a language L is closed if
L = L. A language K is relatively closed with respect to
L, or simply L-closed, if K = K ∩ L. The prefix operator
distributes over arbitrary unions of languages. However,
for the intersection of two languages L and M , we have
L ∩M ⊆ L ∩ M . If equality holds, L and M are said to
be nonconflicting.

Projections. Given two alphabets Σ and Σi ⊆ Σ, the
natural projection Pi : Σ∗ → Σ∗

i is defined recursively
by Pi(ϵ) = ϵ and for all σ ∈ Σ, s ∈ Σ∗ s.t. Pi(sσ) =
Pi(s) if σ /∈ Σi and Pi(s)σ if σ ∈ Σi. We define the
inverse projection P−1

i : Σ∗
i → 2Σ

∗
by P−1

i (si) = {s ∈
Σ∗ | Pi(s) = si} for all si ∈ Σ∗

i . These definitions can

be extended to languages, with Pi : 2Σ
∗ → 2Σ

∗
i defined



such that, for any L ⊆ Σ∗, Pi(L) = {si ∈ Σ∗
i | ∃ s ∈

L : Pi(s) = si}. In turn, P−1
i : 2Σ

∗
i → 2Σ

∗
is given by

P−1
i (Li) = {s ∈ Σ∗ | Pi(s) ∈ Li} for any Li ⊆ Σ∗

i . The
synchronous product of languages L1 ⊆ Σ∗

1 and L2 ⊆ Σ∗
2,

where Σ1 and Σ2 are arbitrary alphabets, is defined as
L1 ∥ L2 := P−1

1 (L1) ∩ P−1
2 (L2).

Automata. A deterministic finite automaton (automaton
for short) is a tupleΛ = (Q, Σ, δ, q0, Qm), with finite state
set Q, initial state q0 ∈ Q, marked states Qm ⊆ Q, and
the deterministic transition function δ : Q×Σ → Q. This
function is partial, i.e., δ(q, σ) is not necessarily defined
for all q ∈ Q and σ ∈ Σ; in the case it is, we say it is total.
We identify δ with its common extension to the domain
Q×Σ∗. Let δ(q, s)! indicate that δ is defined for q ∈ Q and
s ∈ Σ∗; for all q ∈ Q, we have δ(q, ϵ) = q; for s ∈ Σ∗ and
σ ∈ Σ, we have δ(q, sσ)!, with δ(q, sσ) = δ(δ(q, s), σ)), if
and only if δ(q, s)! and δ(δ(q, s), σ))!.

Reachability and nonblockingness. A state q ∈ Q is
reachable if there exists s ∈ Σ∗ such that q = δ(q0, s),
and it is coreachable if there exists s ∈ Σ∗ such that
δ(q, s) ∈ Qm. States which are not coreachable are also
referred to as blocking states. If all reachable states in Λ
are coreachable, then Λ is nonblocking. Moreover, Λ is
called reachable (respectively coreachable) if all states are
reachable (resp. coreachable), and Λ is called trim if it is
reachable and coreachable. The reachable (resp. coreach-
able) subautomaton Re(Λ) (resp. CoRe(Λ)) is obtained by
eliminating all nonreachable (resp. blocking) states from Λ
and, accordingly, adapting the transition function δ in the
obvious way. The trim subautomaton Trim(Λ) is given by
Re(CoRe(Λ)) = CoRe(Re(Λ)).

Semantics. With the automaton Λ = (Q, Σ, δ, q0, Qm),
we associate the generated language L(Λ) := { s ∈ Σ∗ | δ(q0,
s)! } and the marked language Lm(Λ) := { s ∈ Σ∗ | δ(q0, s)
∈ Qm } . We say these two languages are the semantics
of Λ, and that Λ recognizes, or accepts, the language
Lm(Λ). Moreover, we say any two automata are equivalent
if their semantics coincide. Note that Λ is nonblocking if
and only if L(Λ) = Lm(Λ). To simplify notation, we use
boldface characters, e.g. Λ, to denote an automaton, and
the corresponding normal character, e.g. Λ, for its marked
language.

Composition. Given two automata Λi = (Qi,Σi, δi, qi0 ,
Qim), i ∈ {1, 2}, their synchronous composition Λ1 ∥ Λ2

is defined as the standard synchronous product of finite
automata, that is, events σ ∈ Σs = Σ1 ∩ Σ2 require syn-
chronisation of the corresponding transitions, while transi-
tions over nonshared events σi ∈ Σi\Σs are not restricted
by the product. We use here the same symbol to denote
the synchronous product of languages and the synchronous
composition of automata; thus, L(Λ1 ∥ Λ2) = L(Λ1) ∥
L(Λ2) and Lm(Λ1 ∥ Λ2) = Λ1 ∥ Λ2.

2.2 Supervisory Control

Plant Model. A plant is a system to be supervised, and
it is modelled as an automaton M = (Q, Σ, δ, q0, Qm)
whose alphabet Σ can be partitioned as Σ = Σc∪̇Σuc,
where Σc is the set of controllable events – those that can
be prevented from happening, or disabled – and Σuc is the
set of uncontrollable ones – that cannot be disabled.

Specification. A specification for a plant M over the
alphabet Σ is modelled by a trim automaton E over
Σ′ ⊆ Σ. The purpose of E is to model merely which
sequences of events in Σ′ are allowed to occur in the
closed-loop behaviour, without taking into account the
sequences that are indeed possible in the free (open-
loop) behaviour of M. A plant can be composed with
multiple specifications, and the resulting automaton is
then called its desired behaviour. It is useful to design the
specifications such that their transition function is total;
this is done by adding a blocking state reached by all
sequences of events undesirable in the controlled dynamics.
Here, we only consider specifications where this is the case,
and where all the states but the blocking one are marked.
The desired behaviour is, then, a blocking automaton K
whose semantics are contained in the semantics of the
plant, and whose marked language is M -closed. We call
K a plantified specification. Please note that specification
and plantified specification are not interchangeable terms.

Controllability. A language L over Σ is controllable with
respect to L(M) and Σuc if, for all σ ∈ Σuc, s ∈ L ∧
sσ ∈ L(M) ⇒ sσ ∈ L . Define the set C(L) := {L′ ⊆
L |L′ is controllable w.r.t. L(M) and Σuc}, whether L
is controllable or not. This set is nonempty, since the
empty language is trivially controllable. As controllability
is closed under union of languages, it can be shown that
the supremum element of C(L), denoted supC(L), is given
by

⋃
L′∈C(L) L

′ and is controllable, i.e., belongs to C(L).
Observability. A language L over Σ is observable with
respect to L(M), Σ′ and Ps : Σ

∗ → (Σs)∗, where Σs,Σ′ ⊆
Σ, if, for any σ ∈ Σ′ and s, s′ ∈ L such that Ps(s) = Ps(s

′),
we have that

[
sσ ∈ L and s′σ ∈ L(M)

]
⇒ s′σ ∈ L.

Supervisor. A supervisor for a plant M with alphabet
Σ := Σc∪̇Σuc is a mapping f : L(M) → Γ, where Γ := {γ ⊆
Σ |Σuc ⊆ γ} ⊆ 2Σ is the set of control patterns. Let us
denote by f/M the plant M under supervision of f . The
generated language of f/M is defined recursively such that
ϵ ∈ L(f/M) and, for all s ∈ Σ∗ and σ ∈ Σ, sσ ∈ L(f/M)
iff (i) s ∈ L(f/M), (ii) sσ ∈ L(M), and (iii) σ ∈ f(s). This
induces the marked language Lm(f/M) := L(f/M)∩M ,
which is controllable by definition. Note that L(f/M)
is closed and L(f/M) ⊆ L(M). We call f nonblocking

if L(f/M) = Lm(f/M). In this case, the closed loop
can be represented by a trim automaton S that accepts
Lm(f/M); we then say that S realises f/M and denote
this by S ∼ f .

Supervisor Synthesis Problem. Given a plant M
and a plantified specification K over an alphabet Σ :=
Σc∪̇Σuc, the control problem is to design a maximally
permissive supervisor f that respects the specifications
– i.e., Lm(f/M) = supC(K), where K is the language
accepted by K – and that imposes a nonblocking closed-
loop behaviour – that is, L(f/M) = Lm(f/M).

Supervisor Computation. There exist many different
procedures to algorithmically solve the stated synthesis
problem. In particular, from a plantified specification K it
is possible to compute a trim automaton S ∼ f only by
manipulating the first automaton, without the plant M
as an additional input – see (Cassandras and Lafortune,



2021, p.186) for details. With that in mind, let us define
the function Synth.

Definition 1. For a plant M and a plantified specification
K over an alphabet Σ := Σc∪̇Σuc, we define the function
Synth such that Synth(K) = S, where S is a trim au-
tomaton that accepts the language supC(K) with respect
to M and Σuc.

3. ASSUME-GUARANTEE SYNTHESIS

This section introduces the decentralised supervisor syn-
thesis problem we tackle in this report and formalises the
concept of assume-guarantee synthesis in this particular
setting. In order to simplify notation, we only consider
the special case of two decentralised processes. However,
as all computations for synthesis are done fully locally,
an extension to other plant structures is straightforward.
Please note that the proofs of all the results presented in
this document can be found in Appendix A.

3.1 Decentralised Supervisor Synthesis Problem

We consider a system composed of two processes, both
modelled as plant automata Mi = (Qi,Σi, δi, qi0 , Qim),
i ∈ {1, 2}. Each local alphabet is partitioned into Σi =
Σℓ

i ∪̇Σs, where Σs is the set of shared events – i.e., Σs =
Σ1 ∩ Σ2 – and Σℓ

i is the set of local events exclusive
to Mi, i.e., Σℓ

i = Σi \ Σs. We assume that Σℓ
i may

contain controllable and uncontrollable events, meaning
Σℓ

i = Σℓ
i,uc∪̇Σℓ

i,c. To further simplify the presentation, we
assume that all shared events are controllable by at least
one subsystem 1 . Yet we do not require both processes to
agree on the controllability status of shared events, that
is, we have Σs = Σs

1,c ∪ Σs
2,c, where Σs

i,c := Σi,c \ Σℓ
i and

Σi,c is the set of all events controllable by Mi. Finally,
each process is equipped with a plantified specification
Ki over the alphabet Σi. To simplify notation throughout
the document, we use the convention that the indices i, j
are understood from the context such that i ̸= j for all
i, j ∈ {1, 2}.

3.2 Contract-based Supervisor Synthesis.

The fundamental feature that assume-guarantee synthesis
exploits is the use of contracts to ensure the necessary
cooperation between decentralised components. Since each
local process can observe the other’s dynamics solely
by the occurrence of events they share, contracts are
defined by automata over such events and they represent
both what one local supervisor expects from and what
it promises to the other controlled process in terms of
disabling those events. In our motivating example in
Sec. 1.1, if we consider each manufacturing line as a
subsystem, the type of workpiece arriving in a line through
a shared buffer is dependent on decisions made locally in
the other line; in this case, a contract specifies – in terms of
a language over Σs – which sequences of workpieces in the
shared buffer allow both lines to fulfil their specification.

Assume-Guarantee Contracts. Towards a formalisa-
tion of this insight, we start by modelling a contract for
1 In principle, the set of shared events could contain events which are
uncontrollable to both systems; this case requires special treatment.

the subsystem Mi as a tuple of automata (Ai,Gi) over
the shared alphabet Σs. The automaton Gi represents the
guarantee the subsystem needs to provide for the rest of
the plant. This guarantee is an additional local specifi-
cation, in the sense defined in Sec. 2.2: it solely informs
which sequences of events – in this case, shared ones –
are allowed to occur in the local closed-loop behaviour,
disregarding which ones are actually generated by Mi.

The automatonAi is the assumption. It models the closed-
loop behaviour of the rest of the plant as perceived by
subsystem i. Thus, the local supervisor fi does not enforce
over its subsystem the restrictions that are needed to
satisfy its local specifications but that are assumed to
be already imposed by the rest of the plant – since all
controlled subsystems synchronise over shared events in
the global dynamics.

For the local specifications and also the guarantee to be
satisfied, the contracts should therefore be obtained in
such a way that a local supervisor does not assume that
more restrictions are being imposed by the other closed-
loop subsystem than the latter actually guarantees. We
state this by writing that their contracts are compatible
if L(Gj) ⊆ L(Ai) and Gj ⊆ Ai. Finally, by interpreting
Gi and Ai respectively as an extra specification and as
an extra plant model, we see that the single automaton
Ci = Ai ∥ Gi captures all the information needed for
the contract 2 . This leads to the following contract-based
supervisor synthesis problem.

Definition 2. Given a plant M with a plantified specifica-
tion K over Σ and a contract C over Σ′ ⊆ Σ, we define
S := Synth(K ∥ C) as the contract-based supervisor
automaton for M with respect to K and C, inducing the
contract-based supervisor f such that S ∼ f .

Thus, it directly follows from the definition of Synth that
Lm(f/M) = S = supC(K ∥ C).

Maximal Permissiveness. For we are interested in
designing local supervisors such that the global closed-
loop behaviour is maximally permissive, the contracts
should not only be compatible as defined before, but their
guarantees should be the least restrictive possible, i.e.,
L(Gj) = L(Ai) and Gj = Ai. This implies that the
contract automata C1 and C2 have the same semantics,
that is, they are equivalent.

Outline. In Sec. 4, we introduce an algorithm for contract
negotiation which computes maximally permissive local
supervisors fi in a decentralised manner. Then, in Sec. 5,
we show how this algorithm must be adapted to ensure
that the marked language of the global behaviour of the
system in closed-loop with these supervisors is nonblock-
ing. As expected, this might sacrifice optimality, i.e., this
language may become a strict subset of supC(K1 ∥ K2)
with respect to L(M1 ∥ M2) and Σℓ

1,uc ∪ Σℓ
2,uc.

4. CONTRACT NEGOTIATION

This section introduces a negotiation framework to com-
pute maximally permissive supervisors fi for each sub-
2 This is conceptually similar to the plantified specification Ki

capturing all the information needed for the supervisory synthesis
problem for plant model Mi with respect to specification Ei.



system in a decentralised manner. This is achieved by
a local iterative refinement of the plantified specification
automata Ki. At each iteration and for each subsystem,
states and transitions are removed from Ki to prevent
blocking, ensure controllability, and to satisfy the guar-
antees Gi for the other subsystem, while relying on the
latter to enforce the assumptions Ai. The negotiation
takes place in a way that avoids the plant to be overly
restricted, resulting in maximally permissive supervisors.
Yet, as we discuss in the next section, they may still be
conflicting, which can be both tested and fixed fully locally,
even though the latter may cost the maximally permissive
trait.

4.1 Cooperative Supervisor Synthesis

Let us recall that, in the setting we consider here, the
local systems may not agree on the controllability status
of their shared events. Inspired by Su and Thistle (2006),
the idea is therefore that their local supervisors cooperate
in such a way as to assist each other in disabling shared
events that are uncontrollable for one, but controllable for
the other – otherwise, control actions designed locally may
over-restrict the behaviour of the plant.

To understand why cooperative local supervisor synthesis
is needed to preserve maximal permissiveness, note that,
for each subsystem Mi, its set of uncontrollable events is
Σℓ

i,uc∪̇(Σs\Σs
i,c). If we consider controllability with respect

to those events while computing Synth(Ki), states from
Ki where the only uncontrollable events being disabled are
precisely the ones the other system can control are elim-
inated, since they disrespect the controllability property.
However, theses states would not be removed in the mono-
lithic approach, unless they were blocking or unreachable
states; the reason is that events controllable either by
one or by the other subsystem would be considered as
controllable by the global plant. To illustrate, suppose a
trivial example where both subsystems have exactly the
same behaviour and already respect their specification –
that is, M1, M2, K1 and K2 all have the same semantics.
Both subsystems have full knowledge about each other
without further exchange of contracts, as all events are
shared – which also implies that all events are controlled
by some subsystem. Even so, without cooperation it may
not be possible to locally design optimal supervisors, as
depicted in Figure 2.

K1 = K2 :

21
a
c

eb
d

f

S1 :
a
c

S2 :

b
d

S1||S2 :

Fig. 2. Lack of cooperation may cause over-restrictive
behaviour. Consider that b, e ∈ Σs

1,c\Σs
2,c and a, f ∈

Σs
2,c\Σs

1,c; then, the elimination of blocking states in
K1,2, as depicted in gray colour, generates a controlla-
bility problem in different states for each subsystem,
which in turn have to be removed as well; thus, the
languages supC(Ki) – recognised by the automata Si

– are conflicting. If cooperation was assumed, states
1 and 2 would be preserved, and S1 ∥ S2 would
be equivalent to the automaton K1,2 apart from its
blocking states in gray.

Formally, this cooperation requires to perform Synth of
Ki with respect to the uncontrollable event set Σℓ

i,uc, in-
stead of the actual locally uncontrollable event set Σi,uc =
Σℓ

i,uc∪̇(Σs\Σs
i,c). In order to avoid confusion, let us define

a cooperative version of this function below.

Definition 3. For the plantified specification Ki, we define
the function CSynth such that CSynth(Ki) = Si, where
Si is a trim automaton that accepts the language supC(Ki)
with respect to Mi and Σℓ

i,uc.

4.2 Contract Extraction

Consider the automaton Si := CSynth(Ki). This au-
tomaton implicitly disables shared events that are not
controllable in Mi but are in Mj , presuming that the
supervisor of the latter will assist that of the former in
disabling them. At the same time, Si also disables locally
controllable events to achieve its own local specifications,
ensure controllability and local nonblockingness. This, in
turn, may also restrict the occurrence of shared events in
Sj due to the synchronisation in the global behaviour.

Motivated by the discussion in Sec. 3.2, a natural choice
for the first draft of a contract automaton Ci – that is,
the contract generated by Mj to be used by Mi during
the next round of negotiation – is the observer automaton
of Sj over Σs, defined as follows.

Definition 4. (Cassandras and Lafortune (2021)). For an
automaton Λ = (Q, Σ, δ, q0, Qm), an alphabet Σ′ ⊆ Σ,

and a natural projection P : 2Σ
∗ → 2(Σ

′)∗ , we define
the observer automaton OΛ := (Q′, Σ′, δ′, q′0, Q

′
m) whose

elements are as follows. For each p ∈ P (L(Λ)), there is a
state q′ ∈ Q′ ⊆ 2Q such that

q′ = {q ∈ Q | ∃s ∈ L(Λ) : P (s) = p and q = δ(q0, s)}.
Further, δ′(q′1, σ) = q′2 if there exists q1 ∈ q′1 and q2 ∈ q′2
such that δ(q1, σ) = q2; otherwise, δ

′(q′1, σ) is undefined.
The initial state q′0 ∈ Q′ is such that q0 ∈ q′0, and the set
of marked states is Q′

m = {q′ ∈ Q′ | ∃q ∈ q′ : q ∈ Qm}.

By defining Ci := OSj
, the contract generates and accepts

the languages Pjs(L(Sj)) and Pjs(Sj), respectively, consid-

ering the natural projection Pjs : 2
Σ∗

j → 2(Σ
s)∗ .

4.3 Negotiation

Based on the foregoing discussion, we propose the follow-
ing iterative procedure for the negotiation of contracts.
Initially, we compute S0

i := CSynth(Ki) and extract the
first contract drafts C0

i . Next, we compute new supervi-
sors restricted to the latest drafts of contracts, namely,
S0
i ∥ C0

i ; however, as this composition might introduce new
controllability or blocking problems, we perform CSynth
again. Inducing this argument for an arbitrary step k > 0,
we have that Sk

i := CSynth(Sk−1
i ∥ Ck−1

i ), which gener-
ates a new draft of contract given by Ck

i := OSk
j
.

The entire procedure, called Negotiation, is detailed
in Algorithm 1. It iteratively refines Si and Ci until
Sk
i = Sk−1

i ∥ Ck−1
i , implying that no new controllability or

blocking issues need to be solved. Thus, upon termination
we have that the automata Si are trim and that C2 =
P1s(S1) = P2s(S2) = C1, that is, the resulting contracts



Algorithm 1 Negotiation

Require: Automata Sinit
1 and Sinit

2
1: S1 ← CSynth(Sinit

1 ) and S2 ← CSynth(Sinit
2 )

2: C1 ← OS2
and C2 ← OS1

3: cond← True

4: while cond do
5: if S1 ̸≡ (S1 ∥ C1) or S2 ̸≡ (S2 ∥ C2) then
6: for i ∈ {1, 2} do
7: if Si ̸≡ Si ∥ Ci then
8: Si ← CSynth(Si ∥ Ci) and Cj ← OSi

(j ̸= i)
9: end if
10: end for
11: else cond← False

12: end if
13: end while
14: return S1 and S2

are equivalent. Furthermore, the algorithm does not overly
restrict the behaviour of the system, as stated in the
theorem below.

Theorem 1. Consider a plant composed of two subsys-
tems Mi and their corresponding plantified specifications
Ki, as described in Sec. 3.1. Let Si be the outputs
of Algorithm 1 for the inputs Ki, namely, (S1,S2) =
Negotiation(K1,K2). Then, we have that

supC(S1 ∥ S2) = supC(K1 ∥ K2),

where supC is taken with respect to L(M1 ∥ M2) and
Σℓ

1,uc ∪ Σℓ
2,uc.

Since the function Negotiation refines the automata
given as inputs, we have that Si ⊆ Ki; hence, it is trivial
that supC(S1 ∥ S2) ⊆ supC(K1 ∥ K2). The result of
the theorem above shows the set inclusion in the other
direction, proving that the iterative refinements of the
inputs do not remove any more states and transitions than
the necessary to obtain supC(K1 ∥ K2) – note that they
may remove less, though, in which case we further need
to guarantee that the resulting composed system is not
blocking, as discussed later in Sec. 5. However, due to
the definition of CSynth, each fixed point Si is locally
nonblocking.

4.4 Supervisor extraction

As Si is a cooperative supervisor, it remains to extract a
local supervisor fi which only disables locally controllable
events in the set Σi,c, as defined below.

Definition 5. Given the premisses of Thm. 1 and if Si

are nonempty automata, we define each local supervisor
fi : L(Mi) → Γi, with Γi ⊆ 2Σi , such that fi(s) =
{σ | sσ ∈ Si} ∪ Σs\Σs

i,c.

The resulting supervisors fi are less restrictive than Si,
but if the proposed cooperation can be assured, then their
composed closed-loop behaviour is the same. The simple
example depicted in Fig. ?? illustrates why cooperation
may fail. However, an observability condition is sufficient
to eliminate the possibility of such scenario and, hence,
guarantee the local controllers indeed cooperate in dis-
abling shared events, as formalised in the following lemma.

Lemma 1. In the context of Definition 5, the following
equalities hold if and only if Si are observable with respect
to L(Mi), Σ

s\Σs
i,c and Pis : Σ

∗
i → (Σs)∗:

Si :

0 1 2
a α

α
Cj = Oi :

{0,1} {2}
α

Fig. 3. Scenario where cooperation fails. The event a is
local, while α is shared but locally uncontrollable
for Si (and controllable for Sj); the transition with
alpha from state 0 needs to be disabled and fi cannot
do this, so cooperation is needed; however, since a
transition by the same event is enabled in state 1,
it is not possible to represent that disabling in the
observer of Si, i.e., in contract Cj .

(1) Lm(f1/M1) ∥ Lm(f2/M2) = S1 ∥ S2 and
(2) L(f1/M1) ∥ L(f2/M2) = S1 ∥ S2.

From this lemma, the next result immediately holds.

Corollary 1. In the context of Definition 5, the global
behaviour of the plant in closed loop with the supervisors
fi is nonblocking, that is,

L(f1/M1) ∥ L(f2/M2) = Lm(f1/M1) ∥ Lm(f2/M2),

if and only if S1 and S2 are nonconflicting and Si observ-
able with respect to L(Mi), Σ

s\Σs
i,c and Pis : Σ

∗
i → (Σs)∗.

Furthermore, from Thm. 1 we immediately get the main
result of this section, as follows.

Theorem 2. Given the premisses of Thm. 1, if S1 and S2

are nonconflicting we have that

S1 ∥ S2 = supC(K1 ∥ K2),

where supC is taken with respect to L(M1 ∥ M2) and
Σℓ

1,uc ∪ Σℓ
2,uc.

5. ASSURING NONCONFLICTING LOCAL
SUPERVISORS

This section shows how local supervisors resulting from
negotiation may have to be further restricted to ensure a
nonblocking behaviour of the resulting global closed-loop
system. As we aim at computing necessary restrictions
fully locally, we might sacrifice maximal permissiveness.

5.1 Motivating Example

Consider the example in Fig. 4, where S1 and S2 are non-
blocking automata with shared alphabet Σs = {α, β, θ};
assume controllability (with cooperation) is not being dis-
respected. They satisfy the fixed point property for Nego-
tiation; however, their composed behaviour is blocking.

S1 :

α γ β

α

β, θ

α

S2 :

α λ θ

α

β, θ

α

S1||S2 :

α
γ

λ

λ

γ

β

θ β, θ

α

Fig. 4. Conflicting supervisors computed by Alg. 1.

To understand the reason behind this conflict, note that
the strings α and αλ in S2 look the same to S1, as
P2s(α) = P2s(αλ) = α. This conceals the fact that β can
occur in S2 after α, but not after αλ. Analogously, α and
αγ look the same to S2, hiding the fact that θ can occur
in S1 after α, but not after αγ. Thus, strings like αγλ or
αλγ can occur in S1 ∥ S2 and lead to blocking states.



5.2 The Unambiguity Property

In order to ensure nonconflict in the global behaviour of
the plant whose subsystems are in closed loop with their
respective local supervisor – that is, to prevent situations
as the one just described in the last subsection – it is
sufficient to guarantee that each controlled subsystem
satisfies the following property, here named unambiguity.

Definition 6. The language Si is unambiguous with re-
spect to Σs and the natural projection Pis : Σ∗

i → (Σs)∗

if, for any s, s′ ∈ Si such that Pis(s) = Pis(s
′),

(1) (∀σ ∈ Σs) sσ ∈ Si ⇒ (∃s′′ ∈ Σ∗
i )

s′ ≤ s′′, Pis(s
′′) = Pis(s

′) and s′′σ ∈ Si;
(2) s ∈ Si ⇒ (∃s′′ ∈ Σ∗

i )
s′′ ≤ s′or s′ < s′′, Pis(s

′′) = Pis(s
′) and s′′ ∈ Si.

The reasons for the name are the following. A string
ss over the shared alphabet Σs can be the projection
of different strings over a local alphabet Σi; some may
allow a shared event σ to eventually happen, possibly
after a suffix string of nonshared events, while others
may not; thus, this ambiguity of ss makes it possible for
conflict to happen – e.g., consider as ss the projection α
in the example from Fig. 4. This scenario is prevented
by condition (1), which also appears in Schmidt et al.
(2008), where it is called locally nonblocking condition
– in our context, though, the supervisors are designed
locally and can observe the entire local alphabet, i.e.,
they can guarantee local nonblockingness without further
assumptions.

Now, assume each automaton Si satisfies condition (1),
but not the (2); then, their marking is ambiguous and,
although all marked states of each automaton can be
reached in the composed behaviour, conflict may still arise
if for some path they are never reached simultaneously in
both automata.

To better explain this notion, let us take a look at the
Fig. 5, where Si are trim automata and Σs = {α, β};
assume controllability and the observability condition for
cooperation are not being disrespected. Let us consider
here two different markings. In the first one, indicated by
the colours black and red, only the states 3 and 5 are
marked in S1, the states {1, 2, 5} and {3, 4} in O1, the
states 2 and 4 in S2, and the states {1, 4} and {2, 3} in
O2. The second marking is shown by the colours black
and blue, so the only marked states in S1 are 2 and 5, in
O1 the state {1, 2, 5}, in S2, the states 1 and 4, and in O2,
the state {1, 4}.
As in the example from the previous subsection, the
supervisors from Fig. 5 satisfy, in both marking scenarios,
the fixed point property for Negotiation, i.e., their
semantics are the same under the projection over shared
events; moreover, the unambiguity condition (1) is also
satisfied. For the first marking, though, the condition (2)
is not. The reason is that from the perspective of one
subsystem, the only marking that can be observed from
the other one is through its observer. Then, for instance,
we have that the sequence α is in the marked language
of the observer, while S1 could be in the state 1 or 2,
and neither is marked; moreover, if a β is observed after
α, S1 could be in the state 3 or 4, and again it is not

possible to know just by looking at O1 whether a marked
state was actually reached in S1. This leads to conflict in
this example simply because the markings of Si do not
synchronise; although marked states in each automaton
can always be reached even in the composed behaviour,
both automata are never in a marked state at the same
time. Indeed, in the global behaviour S2 may get locked in
the loop between the states 3 and 4, while S1 is locked in
the cycle with its states 1, 2 and 3, which indicates that
Si are conflicting.

Now consider the example with the second marking. Then,
note that there is no conflict and that unambiguity is
satisfied – e.g., states 1, 2 and 5 from S1 correspond to
the same state in O1, and although 1 is the only one
not marked, it can reach 2 by local event b. It is also
worth noting that condition (2) from unambiguity is not
equivalent to the marked string acceptance from Schmidt
et al. (2008); indeed, in the second scenario from this
example, the former is satisfied while the latter is not –
because state 1 in S1 can be followed by β and it is not
marked.

S1 :

0

1 2 3

4 5

α
b β

β

α

a

α
β

S2 :

0

1 2

3 4

α β
α

c

α
β

O1 :

{0,4} {1,2,5} {3,4}
α

β
α

O2 :

{0,3} {1,4} {2,3}
α

β
α

Fig. 5. Another example of conflicting supervisors com-
puted by Alg. 1; each one of them does not satisfy
condition (2) from the unambiguity property.

Based on the intuition from the foregoing discussion, we
state the following result.

Proposition 1. For trim automata S1 and S2 as in Thm. 1,
if their marked languages S1 and S2 are unambiguous with
respect to Σs and the natural projection Pis : Σ

∗
i → (Σs)∗,

then these languages are nonconflicting.

5.3 Locally Enforcing Unambiguity

Note that unambiguity is not retained under union of
languages and therefore a supremal unambiguous sub-
language of Si may not exist. The same is true for the
observability condition stated on Lem. 1, necessary for
the cooperation between the supervisors. Since we do not
want to just check whether each subsystem satisfies such
properties, but rather enforce them over the languages Si,
we are interested in a supremal sublanguage of Si that
satisfies a sufficient condition for nonconflict and also for
cooperation. Inspired by the concept of relative observabil-
ity (Cai et al. (2015)), we introduce relative unambiguity.

Definition 7. The language S′
i ⊆ Si is relatively unambigu-

ous with respect to Si, alphabets Σ
s and Σs

i,uc = Σs\Σs
i,c,

L(Mi) and the projection Pis : Σ∗
i → (Σs)∗ if, for any

s, s′ ∈ Si such that Pis(s) = Pis(s
′),

(1) (∀σ ∈ Σs) sσ ∈ S′
i ⇒ (∃s′′ ∈ Σ∗

i )

s′ ≤ s′′, Pis(s
′′) = Pis(s

′) and s′′σ ∈ S′
i;

(2) s ∈ S′
i ⇒ (∃s′′ ∈ Σ∗

i )
s′′ ≤ s′or s′ < s′′, Pis(s

′′) = Pis(s
′), and s′′ ∈ S′

i;



ΛI :

0

1

2

3

4

5

678

α

γ

γ

α

αγ

γα
βλα

OI
Λ : 0,2,7 1,3,8 5,6 3,4α β

α
β

ΛII :

0

1

2

3 4

5

6

789

α

γ

γ

α
β

α

γ

γ

α
βλα

OII
Λ : 0,2,8 1,3,9 4,6 5,7α β

α
β

ΛIII :

0

1

2

389

α

γ

γ

α
λα

OIII
Λ : 0,2,8 1,3,9α

Fig. 6. Illustrative example for Alg. 2 showing Λ (top) andOΛ (bottom). ΛI does not satisfy Cond. 1 – state 3 appears in
more than one state ofOΛ. ThenΛII showsOΛ ∥ Λ, where Cond. 1 holds.ΛIII shows EnforceUnambiguity(Λ).

(3) (∀σ ∈ Σs
i,uc)

[
sσ ∈ S′

i and s′σ ∈ L(Mi)
]
⇒ s′σ ∈ S′

i.

Algorithm 2 EnforceUnambiguity(Λ)

Require: Automaton Λ, its plant Mℓ, subalphabet Σs = Σs
c∪̇Σs

uc

1: Compute OΛ

2: if ∃q, q′ ∈ OΛ.Q, with q ̸= q′, such that q ∩ q′ ̸= ∅ then
3: Λ← Λ ||OΛ and recompute OΛ

4: end if
5: MO ← ∅
6: for all q ∈ OΛ.Qm do
7: qm ← {x ∈ q | x ∈ Λ.Qm} and qm? ← q\qm
8: if AmbigMarking(Λ, qm?, qm) then
9: MO ←MO ∪ {q}
10: end if
11: end for
12: OΛ.Qm←OΛ.Qm\MO and OΛ←trim(OΛ) and O← ∅
13: Λ̃← plantify(Λ,Mℓ,Σs

uc) and Λ̃←Λ̃ ∥ OΛ

14: while OΛ ̸= O do
15: O← OΛ and RO ← ∅
16: for all q ∈ O.Q do
17: for all σ ∈ Σs such that O.δ(q, σ)! do
18: qσ ← {x ∈ q | Λ̃.δ(x, σ) ∈ O.δ(q, σ)} and qσ? ← q\qσ
19: if σ ∈ Σs

uc then
20: qu ← {x ∈ q | Λ̃.δ(x, σ)! and Λ̃.δ(x, σ) /∈ O.δ(q, σ)}
21: else qu ← ∅
22: end if
23: if qu ̸= ∅ or AmbigPath(Λ̃, qσ?, qσ) then

24: RO ← RO ∪
{(

q, σ,O.δ(q, σ)
)}

25: end if
26: end for
27: end for
28: OΛ.δ ← OΛ.δ\RO

29: OΛ ← trim(OΛ) and Λ̃← Λ̃ ∥ OΛ

30: end while
31: if Λ̃ ̸= Λ then return Λ̃ and True

32: else return Λ̃ and False

33: end if

In order to enforce relative unambiguity – hence, also en-
forcing unambiguity and the observability condition from
Lem. 1 – we define the function EnforceUnambiguity,
in Alg. 2, which manipulates a given automaton Λ into
an automaton Λ̃ such that Λ̃ is the supremal relatively
unambiguous sublanguage of Λ, denoted by Λ̃ = supU(Λ).
To start explaining Alg. 2, first consider an automaton
Λ and a natural projection P : Σ∗ → Σs. Let us define
the uncertainty set of states that a string s in L(Λ) can
reach (Cai et al. (2015)) by U(s) :=

{
δ(q0, s

′) | ∃s′ ∈ L(Λ) :

P (s′) = P (s)
}
⊆ Q. Now, take as Λ the example in Fig. 7,

where only the event a is not in the shared alphabet Σs.
The automaton Λ is ambiguous, because the strings λζ
and aλζ look the same under the projection P , but the
former can be followed by θ, while the latter cannot. To
obtain the automaton that accepts supU(Λ), the event θ
must be removed after the string λζ. However, if we do that

in the automaton Λ, the event θ would be unnecessarily
removed after the string γα – and therefore would have
to be removed after aγα as well, overly restricting the
behaviour. In order to obtain the supremal sublanguage,
we need to adopt for the automaton at hand the same
condition as used in Cai et al. (2015); Takai and Ushio
(2003).

Cond. 1.
(
∀s, t ∈ L(Λ)

)
δ(q0, s) = δ(q0, t) ⇒ U(s) = U(t)

If this is not satisfied by Λ, as in our example, it can
be imposed with no loss of generality – but at a high
computational cost – by replacing Λ with OΛ ∥ Λ –
see Takai and Ushio (2003) for the proof. We guarantee
Cond. 1 holds in the if-loop starting in line 2 of Alg. 2.

Λ : λ ζ

γ α
θa

λ
ζ

γ
αθ

Fig. 7. Example illustrating why Cond. 1 is needed.

Besides being used for Cond. 1, the observer OΛ also
informs which states in Λ are reached from the initial
state by strings with the same projection over the shared
alphabet, which is needed to check relative unambiguity.
The first condition of this property that is enforced is (2).
In the loop starting in line 6, we check each marked state
q in OΛ. If q contains a nonmarked state from Λ that
does not satisfy that condition, q and all the states it
contains are respectively unmarked in OΛ and, through
the synchronous product, in Λ (on lines 12 and 13). For
such check over the states of q, we call the function
AmbigMarking, which performs backward and forward
searches to detect if for each state in qm? there is a sequence
of nonshared events that connects this state to any state in
qm, either from the former to the latter, or the other way
round; if there is no such sequence, then and only then the
function returns true, i.e., the condition is not satisfied.

Now, note that we intend Si to be the inputΛ for this algo-
rithm, where Si is the output from Negotiation, which
is computed assuming all shared events are controllable.
Therefore, to check (3) from Def. 7 we need to remember
which transitions by events in Σs

i,uc that are possible in
the local plant Mi were removed from Si. This is done
by the plantify function in line 13. This function adds
a blocking state to a copy of Λ denoted by Λ̃ and, for
every state where an event in Σs

uc (which is Σs
i,uc for Si)

is not enabled, adds a transition by such event from this
state to the blocking one; finally, it composes the modified
automaton with Mℓ (i.e., Mi for Si), so the only newly
added transitions left are the ones allowed in the local
plant. Notice that when the automaton Λ̃ resulting from
this function is composed with OΛ, only the newly added
transitions by shared events that are not relevant for the



condition (3) from Def. 7 are removed – because if they

are not in OΛ, the premise denoted by “sσ ∈ S′
i ” in that

condition is false, and the implication is satisfied; to avoid
confusion, note that here the term “S′

i ” from the definition

refers to Λ̃.

To check if conditions (1) and (3) from Def. 7 hold, in
the loop starting in line 16 we inspect each state q in
OΛ, which is a set of states in Λ̃. If a shared event σ
is enabled from q, there is at least one state in q from
which a transition with σ is defined in Λ̃. We can thus
partition q into a set qσ of states in Λ̃ from which σ is
enabled, and a set qσ? with the remaining states. Then
(1) is not disrespected if from every state in qσ? it is
possible to reach (by a sequence of nonshared events) some
state in qσ; this is checked by the function AmbigPath
through a backward search from states in qσ – the function
returns true if and only if such reach is not possible. If (1)
is disrespected, the transitions with σ from q and from
the states in qσ need to be removed from OΛ and Λ̃,
respectively, which is done in lines 28 and 29. In order
to impose condition (3), such transitions also need to be
removed if σ is an uncontrollable event in Σs

uc and if
for some state in qσ? this event is enabled, which means
it leads to the blocking state added by the plantify
function.

As an illustrative example for this algorithm, see Fig. 6.
It is worth to notice that an automaton resulting from
this algorithm may not be trim, for we only eliminate
from Λ̃ transitions by shared events – that disrespect
relative unambiguity – by taking its composition with OΛ.
There are two reasons for that. Firstly, transitions by local
events can only be removed if we take into account the
controllability issues it may bring; thus, this trimming
problem is left for the Negotiation function. Secondly,
although it is correct to remove states from the observer
to enforce the property in question, we cannot remove
states from Λ̃ contained in a state of OΛ that survived
the trimming; such states are needed to remember the
original sequences generated byΛ – that form the language
denoted by Si in Def. 7 – in order to compare them to the
sequences generated by the iteratively refined automaton
Λ̃ – that form the language denoted by S′

i in Def. 7.
As a last remark, note that all the transitions added by
the function plantify are removed from Λ̃ before it is
returned by Alg. 2: either they are not possible in the
respective states in OΛ – which is computed over Λ, where
these transitions are not present – or they are, which means
they disrespect (3) from Def. 7 and, therefore, are finally
removed.

5.4 Negotiation of Controllable & Unambiguous Supervisors

Now that we can enforce the relative unambiguity property
to guarantee nonconflict and cooperation, we can combine
the functions Negotiation and EnforceUnambiguity
to compute local supervisors which ensure a nonblocking
global closed-loop behaviour. This might, though, sacri-
fice maximal permissiveness in order to prevent blocking
situations in a purely decentralised manner. The final

algorithm, given in Alg. 3, is denoted by CBSS as an
initialism for Contract-Based Supervisor Synthesis 3 .

Algorithm 3 CBSS
Require: Automata K1 and K2

1: (S′
1,S

′
2)← Negociate(K1,K2)

2: (S1, cond1)← EnforceUnambiguity(S′
1)

3: (S2, cond2)← EnforceUnambiguity(S′
2)

4: while cond1 or cond2 do
5: (S′

1,S
′
2)← Negociate(S1,S2)

6: for i ∈ {1, 2} do
7: if Si ̸≡ S′

i then
8: (Si, condi)← EnforceUnambiguity(S′

i)
9: end if
10: end for
11: end while
12: return S1 and S2

Combining multiple previous results, we have the following
soundness result of Alg. 3. It is the main implication of this
section, for it shows that the fully local supervisors impose
a globally nonblocking closed-loop behaviour that respects
the local specifications.

Theorem 3. Consider a plant composed of two subsystems
Mi with plantified specifications Ki, as in Sec. 3.1. Let
(S1,S2) = CBSS(K1, K2). Further, let fi be the local
supervisors defined from Si via Def. 5. Then, it holds that

(1) Lm(f1/M1) ∥ Lm(f2/M2) ∈ C(K1 ∥ K2), and

(2) L(f1/M1) ∥ L(f2/M2) = Lm(f1/M1) ∥ Lm(f2/M2).

6. EXPERIMENTAL RESULTS

We have implemented our negotiation framework in
Supremica (Malik et al. (2017)) and run it on a modified
version of the classical cat & mouse example from Moody
and Antsaklis (1998). Here, an equal number of cats and
mice move in a building with multiple rooms connected by
doors and passages, and the goal is to ensure that cat and
mouse are never simultaneously in the same room.

The building is designed as follows. For an integer n ≥ 0,
it consists of 1+2n blocks, which are divided into 5 rooms
and identified by a number k ∈ [−n, n], with k = 0 being
the central block. If the building has more than one block,
i.e., if n > 0, then for all room r ∈ [1, 4], and for all
block k ∈ [−n, n) such that k ≡ 4 − r (mod 4), there is
a bidirectional passage both for cats and mice connecting

3 Note that, in Alg. 3, each boolean variables condi is set to False

only if the function EnforceUnambiguity does not change the
corresponding output of Negotiation, in this case denoted by S′

i.
However, if condi = False and condj = True for i ̸= j, Negotiation
is called again and perform CSynth(S′

i) = S′
i before entering the

main loop, which is a wasteful execution. To avoid this, we can
simply add optional arguments to the function Negotiation and
replace line 1 in Alg. 1 by the preamble below; then, in line 5 from
Alg. 3, we call Negotiation(S1, S2, (cond1, cond2)).

Optional: Pair of boolean arguments (opt1, opt2); default value
(true, true)
if opt1 then S1 ← CSynth(Sinit

1 )
else S1 ← Sinit

1
end if
if opt2 then S2 ← CSynth(Sinit

2 )
else S2 ← Sinit

2
end if



the rooms r from the blocks k and k + 1. As depicted in
Fig. 8, a passage or door may allow either cats, mice, or
both to go from a room to the other; the arrows indicate
the possible direction for each type of animal — dashed
arrows for mice and solid ones for cats. The events in our
model are all possible combinations of a passage or a door,
an animal – not just a type of animal – and a direction
allowed by that passage or door. For any block, the events
related to the door between rooms 1 and 3 are (always
local and) uncontrollable, while all the other events in the
plant are controllable by some subsystem. The initial and
the marked state are characterised by all the cats being in
room 2 of block n and all the mice in room 4 of block −n,
while all the other rooms are empty.

Fig. 8. Building design used for the cat & mouse example.

Due to the restriction of only two subsystems in this work,
we divide the given building into two parts, so that only
the events associated with the doors that connect rooms
from different subsystems are observable by both, making
them shared events. We see the plant as a ground-floor
(horizontal) building, where the blocks lie next to one
another – for an even k, the block k is identical to the
central one, and for an odd k, the block is mirrored. Then,
the first subsystem is composed by all the blocks with
k < 0 and by the rooms r ∈ {1, 3} of block 0 – indicated by
pink colour in Fig. 8 – while the second one is composed by
the blocks with k > 0 and by the rooms r ∈ {0, 2, 4} in the
central block – indicated by yellow. The shared doors that
allow mice are controllable only by the first subsystem,
whilst the shared doors that allow cats, only by the second,
so that both of them control the same number of shared
events. The contract we compute for this example models
the opening and closing behaviour of doors connecting the
two parts of the building.

Taking the scenario of a single cat and mouse in a single
block building as reference, we varied the example such
that we increase the total number of events in the system
(Σ = Σ1∪Σ2) but, in Case A (single-block plant, multiple
cats and mice), we keep the number of shared events
proportional, and, in Case B (3-block plant, single cat
and mouse), this number remains fixed. The results are
reported in Table 1, where |A| denotes the size of a set A,
and Λ.Q the state set of an automaton Λ; the last row is
the execution time in milliseconds. All experiments were
run on a 2 GHz Quad-Core Intel i5.

Our experiments should be viewed as a proof-of-concept.
We are computing local supervisors monolithically per
subsystem, which obviously does not scale when subsystem
sizes increase. Improvements that use existing scalable
approaches – such as Mohajerani et al. (2014), for example

Table 1. Cat & Mouse experimental results

Case A Case B

# cats 1 2 5 10 1

|Σs|/|Σ| 8/22 16/44 40/110 80/220 8/58

|M1.Q| 16 36 144 484 10240

|M2.Q| 56 189 1512 9317 39256

|C0
1.Q| 26 108 1073 8870 8464

|C0
2.Q| 6 13 46 141 126

|C1.Q| =
|C2.Q|

4 8 26 76 17

|S1.Q| 5 11 41 131 85

|S2.Q| 5 11 41 131 74

Time
(ms)

33 100 1133 78548 10100

– along with additional dynamic algorithms that reuse
computations from previous iterations of the negotiation
algorithm are currently under development. Nevertheless,
in these preliminary results we already see that the ratio
of shared to nonshared events largely impacts the com-
putation time when looking at instances of Case A and
Case B with similar subsystem sizes. A larger number of
shared events leads to larger contracts. It is therefore ex-
pected that our negotiation-based decentralised synthesis
approach works best if the number of shared events is
comparably low.
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Appendix A. PROOFS

Remark 1. Let Si be the automata defined on Alg. 1 at
any stage of its execution given the inputs Ki, which are
the plantified specifications for the subsystems Mi. Then
Si ⊆ Ki ⊆ Mi.

Proof. As explained in Sec. 2, each plantified specification
Ki is the composition of Mi and all the local specifications
Ei, so clearly Ki ⊆ Mi. Negotiation only performs,
iteratively, composition and CSynth operations, which
only remove strings in the semantics of its inputs Ki, so
the semantics of Si are subsets of the former languages.
Thus, we have that Si ⊆ Ki. 2

Remark 2. (Result used in the proof of Theorem 1.) Given
languages A,B and C = C over Σ = Σc∪̇Σuc such that
A,B ⊆ C, we have that

supC(A) ⊆ B ⇔ supC(A) ⊆ supC(B) ,

where controllability is taken with respect to Σuc and C.

Proof.
(⇒) supC(A) is a sublanguage ofB by the premiss; besides,
it is controllable, so supC(A) ∈ C(B). Since controllability
is closed with respect to union, supC(B) =

⋃
L∈C(B) L ⊇

supC(A).

(⇐) Assume supC(A) ⊆ supC(B). Then, supC(A) ∈ C(B),
so supC(A) ⊆ B. 2

Remark 3. (Result used in the proof of Theorem 1.) In
the context of the plant defined in Sec. 3.1, and for any
languages Λi over Σi such that Λi ⊆ Ki, i ∈ {1, 2}, we
have that

Pi

(
supCM,Σuc(Λ1 ∥ Λ2)

)
⊆ supCMi,Σℓ

i,uc
(Λi),

where we denote by Pi the projection Pi : (Σ1∪Σ2)
∗ → Σ∗

i ,
the global plant by M = M1 ∥ M2, with uncontrollable
events Σuc = Σℓ

1,uc∪̇Σℓ
2,uc, and where supCΛ,Σu indicates

that controllability is taken with respect to a language Λ
and and uncontrollable alphabet Σu.

Proof.
(i) supCM,Σuc

(Λ1 ∥ Λ2) ⊆ Λ1 ∥ Λ2, so supCM,Σuc
(Λ1 ∥

Λ2) ⊆ P−1
i (Λi) ⇒ Pi

(
supCM,Σuc

(Λ1 ∥ Λ2)
)
⊆ Λi.

(ii) By the definition of supC and controllability, we have

that, for all u ∈ supCM,Σuc(Λ1 ∥ Λ2) and σ ∈ Σuc, if

uσ ∈ L(M), then uσ ∈ supCM,Σuc(Λ1 ∥ Λ2). Besides, Pi(u)

∈ Pi

(
supCM,Σuc

(Λ1 ∥ Λ2)
)
= Pi

(
supCM,Σuc

(Λ1 ∥ Λ2)
)
, and

u ∈ L(M), because supCM,Σuc
(Λ1 ∥ Λ2) ⊆ K1 ∥

K2 ⊆ L(M), which is prefix-closed by definition. Note
that σ ∈ Σℓ

i,uc for some i, that is, σ is a local
event and hence σ /∈ Σj for j ̸= i; then Pi(u)σ ∈
L(Mi) ⇔ uσ ∈ L(M). Now, by the definition of
supCM,Σuc

(Λ1 ∥ Λ2), we have that Pi(u)σ ∈ L(Mi) ⇔
uσ ∈ L(M) ⇒ uσ ∈ supCM,Σuc

(Λ1 ∥ Λ2) ⇒ Pi(u)σ ∈
Pi

(
supCM,Σuc

(Λ1 ∥ Λ2)
)

= Pi

(
supCM,Σuc

(Λ1 ∥ Λ2)
)
, im-

plying Pi

(
supCM,Σuc

(Λ1 ∥ Λ2

)
is controllable with respect

to L(Mi) and Σℓ
i,uc.

From (i) and (ii), we have that Pi

(
supCM,Σuc

(Λ1 ∥ Λ2)
)
⊆

supCMi,Σℓ
i,uc

(Λi). 2

Theorem 1. Consider a plant composed of two subsys-
tems Mi and their corresponding plantified specifications
Ki, as described in Sec. 3.1. Let Si be the outputs
of Algorithm 1 for the inputs Ki, namely, (S1,S2) =
Negotiation(K1,K2). Then, we have that

supC(S1 ∥ S2) = supC(K1 ∥ K2),

where supC is taken with respect to L(M1 ∥ M2) and
Σℓ

1,uc ∪ Σℓ
2,uc.

Proof.
(⇒) From Remark 1, it is straightforward to see that
supC(S1 ∥ S2) ⊆ supC(K1 ∥ K2), as S1 ∥ S2 ⊆ K1 ∥ K2.

(⇐) Let us now show that supC(K1 ∥ K2) ⊆ supC(S1 ∥
S2). The proof is by induction over the steps (rounds) of
the Alg. 1. We denote by Sk

i the language accepted by
the automaton Si from Negotiation at the end of each
round k ≥ 1, which we consider to be at line 10. Moreover,
we use the notation M, Σuc, and supCΛ,Σu as in Remark
3.

Step 1:

S1
1 ∥ S1

2 = supCM1,Σℓ
1,uc

(K1) ∥ P2s(supCM2,Σℓ
2,uc

(K2)) ∥
supCM2,Σℓ

2,uc
(K2) ∥ P1s(supCM1,Σℓ

1,uc
(K1))

= supCM1,Σℓ
1,uc

(K1) ∥ supCM2,Σℓ
2,uc

(K2)

⊇ supCM,Σuc(K1 ∥ K2) . (by Remark 3)

Hence, from Remark 2 we have that supCM,Σuc
(K1 ∥ K2) ⊆

supCM,Σuc
(S1

1 ∥ S1
2).

Step k: assume supCM,Σuc
(K1 ∥ K2) ⊆ supCM,Σuc

(Sk
1 ∥

Sk
2 ).

Step k + 1:



Sk+1
1 ∥ Sk+1

2 = supCM1,Σℓ
1,uc

(Sk
1 ) ∥ P2s(supCM2,Σℓ

2,uc
(Sk

2 )) ∥
supCM2,Σℓ

2,uc
(Sk

2 ) ∥ P1s(supCM1,Σℓ
1,uc

(Sk
1 ))

= supCM1,Σℓ
1,uc

(Sk
1 ) ∥ supCM2,Σℓ

2,uc
(Sk

2 )

⊇ supCM,Σuc(S
k
1 ∥ Sk

2 ) (by Remark 3)

⊇ supCM,Σuc
(K1 ∥ K2) .

So, supCM,Σuc
(K1 ∥ K2) ⊆ supCM,Σuc

(Sk+1
1 ∥ Sk+1

2 ). 2

Lemma 1. In the context of Definition 5, the following
equalities hold if and only if Si are observable with respect
to L(Mi), Σ

s\Σs
i,c and Pis : Σ

∗
i → (Σs)∗:

(1) Lm(f1/M1) ∥ Lm(f2/M2) = S1 ∥ S2 and
(2) L(f1/M1) ∥ L(f2/M2) = S1 ∥ S2.

Proof. For this proof, we define the projections Pi : (Σ1∪
Σ2)

∗ → Σ∗
i (as in Remark 3), and Ps : (Σ1∪Σ2)

∗ → (Σs)∗.

(⇒) Let us first show that the observability property at
hand implies that (1) and (2) are valid.

(a) S1 ∥ S2 ⊆ L(f1/M1) ∥ L(f2/M2):

If there exists i ∈ {1, 2} such that Si = ∅, then S1 ∥ S2 = ∅
and it trivially holds. Consider then Si ̸= ∅ for all i ∈
{1, 2}. Then, ϵ ∈ S1 ∥ S2, but ϵ ∈ L(f1/M1) ∥ L(f2/M2)
by definition of L(fi/Mi).

Let us say S1 ∥ S2 ⊃ {ϵ}, and let us prove that for any
s ∈ S1 ∥ S2 such that s ̸= ϵ, s ∈ L(f1/M1) ∥ L(f2/M2).
This proof is by induction over the lenght of s ̸= ϵ.
Note that Si ⊆ L(Mi), so s ∈ L(M1) ∥ L(M2), i.e.,
Pi(s) ∈ L(Mi) for all i.

Base case. If s = α ∈ Σℓ
i for some i, then Pi(s) =

α = ϵα ∈ Si, so α ∈ fi(ϵ). Besides, ϵα ∈ L(Mi). Since
ϵ ∈ L(fi/Mi), ϵα = s ∈ L(Mi), and α ∈ fi(ϵ), we
have that ϵα ∈ L(fi/Mi) by definition of this language.
Now, because α is a local event and by definition of
synchronous composition, ϵα ∈ L(f1/M1) ∥ L(f2/M2).
On the other hand, if s = α ∈ Σs, then for all i we
have that Pi(s) = α = ϵα ∈ Si, so α ∈ fi(ϵ). By the
same arguments as above, ϵα ∈ L(fi/Mi) for all i, so
s ∈ L(f1/M1) ∥ L(f2/M2).

Now, suppose s ∈ Σ∗\(Σ∪{ϵ}). We can write s = s′α, with
s′ ̸= ϵ, s′ ∈ S1 ∥ S2. Assume s′ ∈ L(f1/M1) ∥ L(f2/M2)
(inductive hypothesis), then Pi(s

′) ∈ L(fi/Mi) for all i.
Besides, Pi(s) ∈ Si for all i, so α ∈ fi(Pi(s

′)) for all i if
α ∈ Σs, or for some i if α ∈ Σℓ

i . Thus, as in the base case,
we can argue that s ∈ L(f1/M1) ∥ L(f2/M2).

(b) L(f1/M1) ∥ L(f2/M2) ⊆ S1 ∥ S2:

By definition, ϵ ∈ L(f1/M1) ∥ L(f2/M2), and since Si are
the marked languages of nonempty automata, ϵ ∈ S1 ∥ S2.

Consider the case where L(f1/M1) ∥ L(f2/M2) ⊃ {ϵ}; let
us prove, again by induction, that for any s ∈ L(f1/M1) ∥
L(f2/M2) with s ̸= ϵ, s ∈ S1 ∥ S2.

Base case: s = α ∈ Σ. If α ∈ Σℓ
i for some i, then

Pi(s) = α ∈ L(fi/Mi), so α ∈ fi(ϵ). Since α /∈ Σs,
by definition of fi, Pi(s) = α = ϵα ∈ Si, therefore

s ∈ P−1
i (Si). Besides, Pj(s) = ϵ for j ̸= i, so s ∈ P−1

j (Sj).

Thus, s ∈ S1 ∥ S2. If α ∈ Σs, then for all i we have
that Pi(s) = α ∈ L(fi/Mi). Moreover, if for all i it is
true that α ∈ Σi,c, then by definition of fi we have that

Pi(s) = ϵα ∈ Si, so s ∈ S1 ∥ S2. Else, there exists i such
that α ∈ Σs\Σi,c. Then, α ∈ Σs

j,c for j ̸= i, so by the same

argument as above Pj(s) ∈ Sj . Since P1s(S1) = P2s(S2) ⇒
P1s(S1) = P1s(S2), there is a string ŝ ∈ Σ∗ such that
Ps(ŝ) = Ps(s) = α and Pi(ŝ) ∈ Si. If ŝ = s, Pi(s) ∈ Si so
s ∈ S1 ∥ S2. Else, we can take u ∈ Σ∗ such that uα ≤ ŝ
and Ps(uα) = Ps(ŝ) (so Ps(u) = ϵ). Thus, Pi(u) ∈ Si and
Pi(uα) = Pi(u)α ∈ Si. Moreover, ϵα = Pi(s) ∈ L(Mi)
(because Pi(s) ∈ L(fi/Mi) ⊆ L(Mi)), ϵ ∈ Si, α ∈ Σi,uc,
and Si is observable with respect to uncontrollable events
Σs\Σi,c and L(Mi). Therefore, Pi(s) = α = ϵα ∈ Si and

hence s ∈ S1 ∥ S2.

Now, let us prove for any s such that s = s′α and s ∈
L(f1/M1) ∥ L(f2/M2), with s′ ∈ Σ∗\{ϵ} and α ∈ Σ, that
s ∈ S1 ∥ S2, assuming s′ ∈ S1 ∥ S2 (inductive hypothesis).
Noting that Pi(s) = Pi(s

′)Pi(α), we can apply the same
arguments (and follow the same scenarios for the event α)
as we did in the base case. The single difference is that
Pi(s

′) ̸= ϵ, but thanks to the inductive hypothesis, we
have that Pi(s

′) ∈ Si for all i, so the same conclusions
hold. This implies s ∈ S1 ∥ S2.

(c) S1 ∥ S2 ⊆ Lm(f1/M1) ∥ Lm(f2/M2):

For any s ∈ S1 ∥ S2, Pi(s) ∈ Si ⊆ Lm(Mi) for all i.
Moreover, because S1 ∥ S2 ⊆ S1 ∥ S2 = L(f1/M1) ∥
L(f2/M2), we have that s ∈ L(f1/M1) ∥ L(f2/M2),
i.e., Pi(s) ∈ L(fi/Mi). Thus, Pi(s) ∈ Lm(fi/Mi) by
the definition of this language, so s ∈ Lm(f1/M1) ∥
Lm(f2/M2).

(d) Lm(f1/M1) ∥ Lm(f2/M2) ⊆ S1 ∥ S2:

For any s ∈ Lm(f1/M1) ∥ Lm(f2/M2), Pi(s) ∈
Lm(fi/Mi) ⊆ Lm(Mi) for all i. Since Lm(f1/M1) ∥
Lm(f2/M2) ⊆ L(f1/M1) ∥ L(f2/M2) = S1 ∥ S2, Pi(s) ∈
Si for all i. Because Si are relatively closed with respect to
Lm(Mi), i.e., Si = Si ∩Lm(Mi), we have that Pi(s) ∈ Si,
implying s ∈ P−1

i (Si) for all i and therefore s ∈ S1 ∥ S2.

(⇐) Let us now show that if (1) and (2) are valid, then
the observability property at hand also holds.

Suppose observability is not valid for some Si. Then, for
some i, there are strings s, s′ ∈ Si, with Pis(s) = Pis(s

′),
and σ ∈ Σs\Σi,c such that s′σ ∈ Si, sσ ∈ L(Mi) and

sσ /∈ Si. But then, because σ ∈ Σs\Σi,c, we have that
σ ∈ fi(s), so sσ ∈ L(fi/Mi) since sσ ∈ L(Mi). Moreover,
because P1s(S1) = P2s(S2) ⇒ P1s(S1) = P1s(S2), and
s′σ ∈ Si, and σ ∈ Σs, there is a string ŝ ∈ Σ∗

j such

that ŝσ ∈ Sj and Pjs(ŝ) = Pis(s
′). Thus, σ ∈ fj(ŝ); plus,

we know Sj ⊆ L(Mj), implying ŝσ ∈ L(fj/Mj). Since
Pjs(ŝ) = Pis(s

′) = Pis(s), we have that Pis(sσ) = Pjs(ŝσ),

so P−1
is (sσ) ∩ P−1

js (ŝσ) ̸= ∅, which implies ∃u ∈ Σ∗ such

that Pi(u) = sσ and Pj(u) = ŝσ. Hence, u ∈ L(f1/M1) ∥
L(f2/M2), but u /∈ S1 ∥ S2, as Pi(u) = sσ /∈ Si. 2



Corollary 1. In the context of Definition 5, the global
behaviour of the plant in closed loop with the supervisors
fi is nonblocking, that is,

L(f1/M1) ∥ L(f2/M2) = Lm(f1/M1) ∥ Lm(f2/M2),

if and only if S1 and S2 are nonconflicting and Si observ-
able with respect to L(Mi), Σ

s\Σs
i,c and Pis : Σ

∗
i → (Σs)∗.

Proof. This result follows directly from the definition of
conflict and from Lem. 1. 2

Theorem 2. Given the premisses of Thm. 1, if S1 and S2

are nonconflicting we have that

S1 ∥ S2 = supC(K1 ∥ K2),

where supC is taken with respect to L(M1 ∥ M2) and
Σℓ

1,uc ∪ Σℓ
2,uc.

Proof. Let us denote by S the composition S1 ∥ S2. The
languages S1 and S2 are nonconflicting, so S = S1 ∥ S2.
Moreover, each language Si is controllable with respect
to L(Mi) and Σℓ

i,uc, because Si is the output of the
CSynth function used in Negotiation. Thus, since the
synchronisation in S1 ∥ S2 only occurs over shared events,
which are considered controllable, it is straightforward to
show that S is controllable with respect to L(M1 ∥ M2)
and Σℓ

1,uc ∪ Σℓ
2,uc. Then, for there is no language L such

that S ⊂ L ⊆ S, we have that S = supC(S). Finally, by
Thm. 1, it follows that S = supC(K1 ∥ K2). 2

Proposition 1. For trim automata S1 and S2 as in Thm. 1,
if their marked languages S1 and S2 are unambiguous with
respect to Σs and the natural projection Pis : Σ

∗
i → (Σs)∗,

then these languages are nonconflicting.

Proof. For any language Si, it is always true (and trivial

to show) that S1 ∥ S2 ⊆ S1 ∥ S2. Let us then prove the

other direction, i.e., that S1 ∥ S2 ⊆ S1 ∥ S2. Once more, we
use the definitions of Pi and Ps as in the proof of Lemma
1.

Let t be any string in S1 ∥ S2 = P−1
1 (S1) ∩ P−1

2 (S2).
Then, for any i ∈ {1, 2} there exists ui ∈ Σ∗

i such that
tiui ∈ Si, where ti = Pi(t). If P1s(u1) = P2s(u2) = ϵ, take
w ∈ Σ∗ such that w = u1u2. Then, Pi(tw) = tiui ∈ Si, so

tw ∈ S1 ∥ S2 and hence t ∈ S1 ∥ S2.

Else, there is i such that Pis(ui) ̸= ϵ. Now, because
P1s(S1) = P2s(S2), there exist t̂j and ûj such that

Pjs(t̂j) = Pis(ti), Pjs(ûj) = Pis(ui), and t̂j ûj ∈ Sj (note

that we might have t̂j ̸= tj = Pj(t)). Thus, in sum-

mary, we have that tj ∈ Sj (from the initial assumption),

t̂j ∈ Sj , and Pjs(t̂j) = [Pis(ti) = Ps(t) =]Pjs(tj). Because
Pjs(ûj) = Pis(ui) ̸= ϵ, there exist α ∈ Σs and v̂j < ûj

such that Pjs(v̂j) = ϵ and v̂jα ≤ ûj . Then, t̂j v̂j ∈ Sj ,

Pjs(t̂j v̂j) = [Pjs(t̂j) =]Pjs(tj), and t̂j v̂jα ∈ Sj . There-
fore, by condition (1) of unambiguity we have that there
exists vj ∈ (Σℓ

j)
∗ such that tjvjα ∈ Sj . Note that, since

Pjs(ûj) ̸= ϵ, there exist λ ∈ Σs and v′j ∈ Σ∗
j such that

v′jλ ≤ ûj and Pjs(v
′
jλ) = Pjs(ûj), (∗)

i.e., there is an event λ which is the last shared event
that occurs in ûj . It may also be that v′j = v̂j and λ = α.

Nonetheless, if Pjs(ûj) ̸= α — i.e., v̂j < v′j — note that we
can reapply the same argument as before (where we use
the unambiguity property) as many times as the length
of Pjs(ûj) minus 1 — i.e., in total, we apply condition (1)
from unambiguity as many times as there are shared events
in ui (or, equivalently, in ûj). This implies that there exists

ṽj ∈ Σ∗
j such that Pjs(ṽj) = Pjs(v

′
j) and tj ṽjλ ∈ Sj .

From (∗), we have that there exists w′ ∈ (Σℓ
j)

∗ such that

v′jλw
′ = ûj , which implies t̂jv

′
jλw

′ = t̂j ûj ∈ Sj . But

Pjs(t̂jv
′
jλw

′) = Pjs(t̂jv
′
jλ) = Pjs(tj ṽjλ); thus, by condition

(2) of unambiguity there exists w ∈ (Σℓ
j)

∗ such that
tj ṽjλw ∈ Sj , implying Pjs(ṽjλw) = Pjs(v

′
jλ) = Pjs(ûj) =

Pis(ui), so P
−1
i (ui)∩P−1

j (ṽjλw) ̸= ∅ and hence there exists

u ∈ Σ∗ such that Pi(u) = ui and Pj(u) = ṽjλw. Then, we
have Pi(tu) = tiui ∈ Si and Pj(tu) = Pj(tj ṽjλw) ∈ Sj ,

which implies tu ∈ S1 ∥ S2 and so t ∈ S1 ∥ S2. 2

Remark 4. Let S̃i be an automaton over Σi such that
S̃i ⊆ Ki, L(S̃i) ⊆ L(Ki) and such that the partition of Σi

with respect to controllability and shared/local events is

the same as we defined in Sec. 3.1. Then supC(S̃1 ∥ S̃2) =

supC(Ŝ1 ∥ Ŝ2), where (Ŝ1, Ŝ2) = Negotiation(S̃1, S̃2)
and supC is taken with respect to L(M1 ∥ M2) and
Σℓ

1,uc ∪ Σℓ
2,uc.

Proof. Just note that, for this scenario, the same proof
as the one used for Thm. 1 holds. 2

Theorem 3. Consider a plant composed of two subsystems
Mi with plantified specifications Ki, as in Sec. 3.1. Let
(S1,S2) = CBSS(K1, K2). Further, let fi be the local
supervisors defined from Si via Def. 5. Then, it holds that

(1) Lm(f1/M1) ∥ Lm(f2/M2) ∈ C(K1 ∥ K2), and

(2) L(f1/M1) ∥ L(f2/M2) = Lm(f1/M1) ∥ Lm(f2/M2).

Proof. First, note the following remarks:

▷ The output of EnforceUnambiguity in general
may not be a trim automaton, for the composition
of Λ̃ with OΛ, which is trimmed, only removes mark-
ings and transitions by shared events from the first
automaton. Nevertheless, the fixed point of CBSS
is also a fixed point for (the last call of) Negotia-
tion. Thus, each automaton Si is trim and thus non-
blocking; moreover, it is controllable with respect to
L(Mi) and Σℓ

i,uc, while the supervisor fi from Def. 5

cannot control events in Σℓ
i,uc∪̇(Σs\Σs

i,c). Therefore,
the same proof as the one used for Lem. 1 also
holds if, instead of taking languages Si such that
(S1,S2) = Negotiation(K1,K2), we take Si such
that (S1,S2) = CBSS(K1,K2). Hence, Lem. 1 and
Cor. 1 are also valid for such languages.

▷ From the definitions of observability, unambiguity
and relative unambiguity we have that, given a lan-
guage Li ⊆ Ki, if another language L ⊆ Li is
relatively unambiguous with respect to Li, alphabets
Σs and Σs

i,uc = Σs\Σs
i,c, L(Mi) and the projection

Pis : Σ
∗
i → (Σs)∗, then in particular L is: (i) observ-

able with respect to L(Mi), Σ
s
i,uc and Pis; and (ii)

unambiguous with respect to Σs and Pis.



▷ As the fixed point for CBSS is also a fixed point for
(the last call of) EnforceUnambiguity, and this
procedure enforces relative unambiguity, as explained
in Sec. 5.3, then we have that each language Si is
observable with respect to L(Mi), Σ

s
i,uc and Pis, and

unambiguous with respect to Σs and Pis. Further-
more, being unambiguous, by Prop. 1 we also have
that S1 and S2 are nonconflicting.

▷ Each call of the EnforceUnambiguity procedure in
the CBSS algorithm only removes states, transitions
and marking from the automaton given as input, so
if for this input we have that its marked language is
contained or equal toKi, then the same is also true for
the output. This fact together with Remark 1 implies
that Si ⊆ Ki and, therefore, that S = S1 ∥ S2 ⊆
K1 ∥ K2 = K. Because S1 and S2 are nonconflicting,
we can use the same arguments as in the proof of
Thm. 2 to show that S is controllable with respect to
L(M1 ∥ M2) and Σℓ

1,uc ∪ Σℓ
2,uc, i.e., S ∈ C(K).

Now, because S ∈ C(K) and because each language Si

is observable as stated above, we can apply Lem. 1 to
prove condition (1) from Thm. 3. Finally, given that Si are
nonconflicting and observable, as explained above, from
Cor. 1 we prove condition (2). 2


