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Pirouette: Higher-Order Typed Functional Choreographies
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We present Pirouette, a language for typed higher-order functional choreographic programming. Pirouette

offers programmers the ability to write a centralized functional program and compile it via endpoint projection

into programs for each node in a distributed system. Moreover, Pirouette is defined generically over a (local)

language of messages, and lifts guarantees about the message type system to its own. Message type soundness

also guarantees deadlock freedom. All of our results are verified in Coq.

1 INTRODUCTION
Higher-order typed functional programming has proven to be a powerful technique for writing

single-machine programs. It allows for strong guarantees through types along with code reuse

through higher-order programming. However, currently, writing distributed programs using func-

tional programming requires writing separate code for each node in the distributed system, then

using send and receive expressions to transmit data between nodes. This makes it easy to write

code that deadlocks, or gets stuck because patterns of sends and receives do not match.

Session types [Carbone et al. 2007; Dardha et al. 2012; DeYoung et al. 2012; Scalas and Yoshida

2019; Toninho et al. 2012; Wadler 2012] offer one solution. Session types describe the pattern of

sends and receives in a program, allowing a compiler to catch the possibility of deadlock. However,

session types are complicated to work with, and the programmer is still left trying to match up

send and receive patterns by hand.

Choreographic programming [Cruz-Filipe and Montesi 2017a,b; Dalla Preda et al. 2015; Lanese

et al. 2013; Montesi 2013, 2020] offers another solution. This is a programming paradigm that

writes the distributed program as a single program, ensuring that sends and receives match by

combining send and receive into one construct. Choreographic languages guarantee deadlock

freedom by design, so the programmer gets strong guarantees on the communication patterns

in their program. Until now, however, choreographic programming forced the user into a lower-

order, imperative, and un(i)typed universe. This paper presents Pirouette, the first language for

choreographic programming which is also higher-order, functional, and typed.

Consider a standard example: the bookseller protocol. In this protocol, a buyer is looking to buy

a book, so they send the book’s title to a bookseller. The bookseller returns its price, and the buyer

checks if that price is within their budget. If they can afford the book, they inform the bookseller

who tells them a delivery date for their book; otherwise, they tell the seller they will not buy the

book. After this, the protocol ends.

To write this program with session types, we first create a type describing the interactions from

both points of view. That is, we create a type for the buyer that includes “send the title to the seller,

and then receive back a price” along with a (dual) type for the seller that includes “receive the title

from the buyer, then send them the price.” First, we must ensure that the two types match: when

the buyer sends to the seller, the seller receives from the buyer. These types do not describe details
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like “if the book is within budget, tell the seller yes.” Instead, it says “either send the seller ‘yes’ and

receive a delivery date, or send them ‘no’ and end the protocol”. We then write a program for the

buyer and another for the seller, which contain all the nasty details, and a type-checker ensures

that these programs have the correct communication patterns.

In contrast, a choreographic programmer would write a single program, and expect the language

and compiler to ensure that the resulting programs for the buyer and bookseller are deadlock free.

For instance, such a programmer might write the following:

Buyer.book_title⇝ Seller.𝑏;
Seller.prices[𝑏] ⇝ Buyer.𝑝;
if Buyer.(𝑝 < budget)
then Buyer[L] ⇝ Seller;

Seller.get_delivery_date(𝑏) ⇝ Buyer.d_date;
Buyer.(Some d_date)

else Buyer[R] ⇝ Seller;
Buyer.None

Note that the choreography is a program, not merely the type of another program. In this program,

Buyer sends a string book_title to Seller, who binds that string to the variable 𝑏. Seller then sends

a message to Buyer, which is the result of looking up the price of the book in a map that Seller
holds. Note that this message is written in a separate programming language, which defines the

map-lookup syntax. Once Buyer has the price, they decide whether or not to buy based on their

budget. Either way, they inform Seller whether they took the left (L) or the right (R) branch. In
the left branch, Seller calls some function in the local language to get the delivery date. (We use

the syntax 𝑓 (𝑥) for function calls in the local syntax to emphasize that these are function calls in

the local language, whereas Pirouette uses the syntax 𝐹 𝑋 for its function calls.) Seller transmits

the result of this function call to Buyer, who returns the date, wrapped so that the entire program

returns a value on buyer of type option date. In the right branch, Buyer simply returns None.
Note that communication is always matched up: sends and receives are combined, which guar-

antees deadlock freedom. The return value on Buyer makes this closer to functional programming

than previous work on choreographies. Note that choreographies returning values and having

standard simple types (i.e., not session types) are both innovations of this work.

Choreographies excel when more than two parties must interact. For instance, Carbone and

Montesi [2013] suggest a change to the bookseller protocol similar to the following: Seller sends
the price to two buyers who want to share the purchase of a book, Buyer

1
and Buyer

2
. Buyer

2
then

tells Buyer
1
how much they are willing to contribute to the purchase, who then responds to Seller

as before. We can write a modified choreography as follows:

Buyer
1
.book_title⇝ Seller.𝑏;

Seller.prices[𝑏] ⇝ Buyer
1
.𝑝;

Seller.prices[𝑏] ⇝ Buyer
2
.𝑝;

Buyer
2
.(𝑝/2) ⇝ Buyer

1
.contrib;

if Buyer
1
.(𝑝 − contrib < budget)

then Buyer
1
[L] ⇝ Seller;

Seller.get_delivery_date(𝑏) ⇝ Buyer
1
.d_date;

Buyer
1
.(Some d_date)

else Buyer
1
[R] ⇝ Seller;

Buyer
1
.None



Pirouette: Higher-Order Typed Functional Choreographies 3

In order to use session types to describe this communication pattern, we must usemultiparty session

types, a major increase in complexity [Carbone et al. 2007; Scalas and Yoshida 2019]. However,

choreographies handle this without difficulty.

The choreographies explained so far can be expressed in prior work. This paper introduces

functional choreographies. To understand the need for these, notice how we can abstract out a

pattern from our two protocols. A buyer (say Buyer) sends a book title to Seller, who looks up its

price. There is then some process, possibly involving communications, which results in a decision

by Buyer, who then informs Seller of that decision. If Buyer decides to buy the book, they get back

a delivery date, otherwise they get nothing. We can modify the choreography so that the decision

is its own function as follows:

fun Bookseller(𝐹 ) B Buyer.book_title⇝ Seller.𝑏;
let Buyer.decision B 𝐹 Seller.(prices[𝑏])
in if Buyer.decision

then Buyer[L] ⇝ Seller;
Seller.get_delivery_date(𝑏) ⇝ Buyer.the_date;
Buyer.(Some the_date)

else Buyer[R] ⇝ Seller;
Buyer.None

Here, 𝐹 is a function with a choreographic body which takes a price on Seller as input and outputs

a Boolean on Buyer. We can implement either of the previous protocols by changing 𝐹 :

fun 𝐹 (Seller.𝑝) B Seller.𝑝 ⇝ Buyer.𝑝;
Buyer.(𝑝 < budget)

fun 𝐹 (Seller.𝑝) B Seller.𝑝 ⇝ Buyer.𝑝;
Seller.𝑝 ⇝ Buyer

2
.𝑝;

Buyer
2
.(𝑝/2) ⇝ Buyer.contrib;

Buyer.(𝑝 − contrib < budget)
Moreover, we can give 𝐹 a type which enforces that it takes a price located on Seller to a Boolean

value on Buyer, as desired. We write this type price@Seller → Buyer.bool. Then we can give

Bookseller the type (price@Seller → Buyer.bool) → Buyer.date, indicating that it is a higher-order
functionwhich expects an input that abstracts the decision in the bookseller example. This illustrates

the programming convenience gained by combining higher-order functional programming with

the choreographic-programming paradigm. For instance, previous works on choreographies could

not treat choreographic functions as data, preventing this form of abstraction [Cruz-Filipe and

Montesi 2017b].

Contributions. As stated before, Pirouette is the first (higher-order) choreographic functional

programming language. Pirouette features simple located types of the form Buyer.bool and familiar

type constructs like function spaces. Following the choreography philosophy, Pirouette guarantees

deadlock freedom by design, without the use of complicated session types. Previously, higher-

order choreographic programming was only supported through the informal development in

Choral [Giallorenzo et al. 2020], which is useful despite offering no guarantees. In the following,

we point out some salient technical contributions of our design.

First, Pirouette is generic in the language of messages. Note that, sometimes, locations send

non-atomic messages like 𝑝/2, which can be arbitrary expressions. In previous work, messages

were either from a particular (and very simple) language [Cruz-Filipe and Montesi 2017a] or were

assumed to compute to a value in finite time [Carbone and Montesi 2013]. Pirouette is defined

generically on top of any message language (which we refer to as the local language), with very

few syntactic constraints. We further show that a sound type system for the expression language

can be lifted to the level of choreographies.
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Two key features of choreographies are out-of-order execution and endpoint projection. We can

think of a choreography as an arbitrary interleaving of communication between programs running

at different locations. However, programs with the same communication pattern can have other

interleavings as well. Choreographies, despite syntactically being one arbitrary interleaving are

able to semantically represent all interleavings by allowing out-of-order execution. We follow

previous work by defining an equivalence relation ≡ on choreographies to reason about out-of-

order execution. However, unlike previous work, we are able to show that defining our operational

semantics by appealing to ≡ gives a weaker-than-desired semantics. Pirouette’s semantics provides

a stronger form of out-of-order execution via a novel combination of a labeled-transition system

and a block set, which guarantees that out-of-order execution does not violate causality.

Endpoint projection formalizes the intuition of a choreography as representing a collection of

programs running at different locations by extracting a program for each location (later, we use the

term control program for the projected program at each location). This justifies choreographies as a

way of writing distributed programs, and allows us to state and prove that Pirouette programs are

deadlock free. We follow a new design principle for choreographies: equivalence begets equality.

That is, equivalent choreographies always project to exactly the same program for each location.

In previous work, equivalence was used more liberally which prevented such a clean theorem. For

instance, Cruz-Filipe and Montesi [2017a] use equivalence to reason about recursion unfolding, so

equivalent programs may project to programs where unfolding has and has not been applied.

Moreover, somewhat surprisingly, we show that deadlock freedom is a corollary to the soundness

of our type system as well as the soundness and completeness of endpoint projection. Previous

work was able to take advantage of the assumption that messages always produce a value along

with the lower-order nature of their choreographies. Because our choreographies are higher-order

and our messages are not assumed to compute, we have to appeal to the soundness of our type

system to ensure that our choreographies are always able to take a step.

We have formalized our entire development in Coq and mechanically verified proofs of all of our

theorems. As mentioned by Cruz-Filipe et al. [2019], there have been several instances of flaws

found in proofs of major theorems in concurrency theory in recent years. Therefore, in order

to show that Pirouette’s guarantees about deadlock freedom are trustworthy, we formalize our

arguments. In soon-to-be-published work, a small choreography language has been formalized

along with its endpoint-projection operation [Cruz-Filipe et al. 2021b,c]. However, Pirouette is a

much more substantial language than was formalized in that work.

To summarize, we make the following contributions:

• We introduce Pirouette, the first functional choreography language.We present its operational

semantics and a (simple) type system. The operational semantics allow for out-of-order

execution, mimicking the execution of a distributed program. These semantics are based on

a novel idea of blocking sets – locations that are blocked on other operations and cannot

reduce (Section 3).

• We describe a general set of constraints on the local (message) language, allowing almost

any expression-based language to be used as the local language (Section 2). Type soundness

for functional choreographies lifts from type soundness for the local language (Section 3.2).

• We study equivalence for functional choreographies, which allows for reasoning about out-of-

order execution.We show that defining out-of-order execution based on this equivalence leads

to a weaker-than-desired operational semantics when local reduction is allowed (Section 4).

• We show how endpoint projection extracts programs with explicit send and receive constructs

from functional choreographies. This translation is sound and complete. Moreover, we show

that well-typed, projected systems are deadlock free by design, and that this deadlock freedom
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follows from the soundness of the type system and the soundness and completeness of

endpoint projection (Section 5).

• All our metatheory has been formalized in Coq and all our theorems have been mechanically

verified. We discuss the particularities of our Coq implementation in Section 6.

Concurrent, independent work [Cruz-Filipe et al. 2021a] also explores higher-order functional

choreographies. However, they have a very different design philosophy, which leads to a very

different technical setup. For more comparison, see the discussion of related work in Section 7.

2 SYSTEMMODEL
We begin by discussing the assumptions we make about the system that Pirouette programs run

on. We have made these assumptions as lightweight as possible. In particular, we assume that the

system consists of a collection of nodes, each of which can run local programs and which can send

and receive messages from other nodes. We also allow local programs to be typed, so that we can

lift the type system to the choreography level.

2.1 Locations
We assume a set L of locations, which we write as ℓ , ℓ1, ℓ2, and so on. These names are treated

atomically, so we do not assume any additional operations on locations. However, we do assume

that location equality is decidable, so we can distinguish different locations.

Intuitively, locations refer to nodes in a distributed system. However, it’s worth noting that there

is nothing that prevents a node from being a thread, or a process, or any other entity that can run

Turing-complete programs and send and receive messages.

2.2 Communication
We assume that every location can communicate with every other location synchronously. That is,

if ℓ1 sends a message to ℓ2, then ℓ1 does not continue until ℓ2 has received the message, and then ℓ1
may continue. Message sending is instantaneous and certain: messages do not get “lost in the air.”

Nodes should be able to send and receive two kinds of messages: values of local programs

(described below) and two special synchronization messages, written L and R. These will be used in

the choreography language to ensure that different locations stay in lock-step with each other.

We also require that each node be able to run a functional control program which can send

and receive messages, while also running programs in the local language. We describe the precise

requirements in Section 5.1, when we have the necessary background.

2.3 Local Programs
We assume that every node runs programs in a local expression-based language. Our design treats

this language generically, requiring only that it allows certain operations and equations.

Our first requirement is that expressions include variables. We model messages as values, and

receipt as binding a value to a variable. We implement variable binding via substitution, which we

write 𝑒1 [𝑥 ↦→ 𝑒2]. Substitution must satisfy three standard equations:

• 𝑥 [𝑥 ↦→ 𝑒] = 𝑒

• 𝑒 [𝑥 ↦→ 𝑥] = 𝑒

• 𝑒1 [𝑥 ↦→ 𝑒2] [𝑦 ↦→ 𝑒3] = 𝑒1 [𝑦 ↦→ 𝑒3] [𝑥 ↦→ (𝑒2 [𝑦 ↦→ 𝑒3])] whenever 𝑥 ∉ FV(𝑒3)

We require a function 𝐹𝑉 (𝑒) which returns the set of free variables in 𝑒 . We require that if

𝑥 ∉ FV(𝑒1), then 𝑒1 [𝑥 ↦→ 𝑒2] = 𝑒1.



6 Andrew K. Hirsch and Deepak Garg

We only send values as messages, so we assume a predicate Value(𝑒) which determines whether

𝑒 is a value. We require two special values, true and false, which we use for branching in choreogra-

phies. We additionally require that all values are closed, in order to allow them to be sent. To see

why, imagine that we send some open expression 𝑒 from ℓ1 to ℓ2. Since 𝑒 is open, 𝑒 contains some

free variable 𝑥 , which refers to some data on ℓ1. However, when we send 𝑒 to ℓ2, this information is

lost and 𝑥 might be captured by a binder in ℓ2’s program.

Finally, we require that an operational semantics be defined relationally for local expressions.

We write 𝑒1 ⇒e 𝑒2 to denote that 𝑒1 steps to 𝑒2 in the operational semantics. The only requirement

on this semantics is that values do not take steps: if Value(𝑣), then 𝑣 ̸⇒e 𝑒 for any 𝑒 .

2.3.1 Examples. Simply-typed functional languages easily satisfy the requirements above. However,

any expression-based language can be used, not only ones which define functions. We discuss two

examples here.

Example 1 (Call-by-Value 𝜆-Calculus). The call-by-value 𝜆-calculus, extended with recursive

functions, Boolean values and if-then-else expression, almost fits our requirements. However, we

must restrict values to be closed.

Example 2 (A Natural-Number Language). We provide a language with the following syntax:

Expressions 𝑒 ::= 𝑥 | 0 | 𝑆 𝑒 | true | false

Intuitively, 0 stands for 0 as a natural number, 𝑆 is the successor operation on natural numbers,

and true and false stand for Boolean truth and falsity, respectively. Since there are no binders,

substitution is easy to define. Any closed term is a value.

This is similar to the language of messages in Cruz-Filipe and Montesi [2017a], but modified

to fit our requirements. In particular, we (a) allow more than one variable, which is treated via

substitution instead of as a reference to state, and (b) add the true and false terms.

We include this language to demonstrate that our requirements do not force the choice of 𝜆-

calculus as an expression language. Indeed, we will see later that we can equip this language with

a type system which results in a sound choreographic type system.

2.4 Typed Local Programs
The guarantees we provide for Pirouette depend on the guarantees provided by the local language’s

type system. If we do not consider the local type system, then we are able to provide a sound and

complete translation to a language with explicit send and receive constructs. If the local type system

guarantees preservation, but not progress (as in a unityped system), then we are also able to prove

preservation of the choreographic type system. Finally, soundness of the local type system implies

not only type soundness for Pirouette, but also deadlock freedom.

We allow the types for the local language to be any language of simple types. We require that

true and false have the same type, which we refer to as bool. Note, however, that this type may not

be called bool, as we will see in Example 5.

We assume that the type system can be presented in terms of a judgment Γ ⊢ 𝑒 : 𝑡 , where Γ is

a sequence of variable-type pairs written 𝑥 : 𝑡 . We additionally require that typing be unique: if

Γ ⊢ 𝑒 : 𝑡1 and Γ ⊢ 𝑒 : 𝑡2, then 𝑡1 = 𝑡2. We only use this requirement to show that types play well with

equational reasoning (Theorem 3). While this requirement is unusual, we note that it is usually

satisfied by simple-type systems. We conjecture that this requirement could be removed with a

small change to our choreographic language; we return to this point in Section 4.

The other requirements can all be framed as admissible rules; those rules can be found in Figure 1.

Since these rules should be admissible, we do not require that these are actual rules in the type
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Var

Γ, 𝑥 : 𝑡 ⊢ 𝑥 : 𝑡

True

Γ ⊢ true : bool

False

Γ ⊢ false : bool

Exchange

Γ, 𝑥 : 𝑡1, 𝑦 : 𝑡2 ⊢ 𝑒 : 𝑡3
Γ, 𝑦 : 𝑡2, 𝑥 : 𝑡1 ⊢ 𝑒 : 𝑡3

Weakening

Γ ⊢ 𝑒 : 𝑡1
Γ, 𝑦 : 𝑡2 ⊢ 𝑒 : 𝑡1

Strengthening

Γ, 𝑥 : 𝑡 ⊢ 𝑒 : 𝑡 𝑥 ∉ FV(𝑒)
Γ ⊢ 𝑒 : 𝑡

Substitution

Γ ⊢ 𝑒1 : 𝑡1 Γ, 𝑥 : 𝑡1 ⊢ 𝑒2 : 𝑡2
Γ ⊢ 𝑒2 [𝑥 ↦→ 𝑒1] : 𝑡2

Fig. 1. Required-Admissible Rules for Local Type Systems

system; merely that we can use them to build typing proofs. This will be important when building

typing proofs for choreographies on top of typing proofs for the local language.

First, we require that variables be typed according to the context, and that true and false be typed
in the bool type. We also require that the standard structural rules of Exchange and Weakening

be allowed. The Strengthening rule is unusually-presented, but is common in most type systems:

non-free variables can be safely removed from the typing context. Finally, we require the standard

property of Substitution: substituting a well-typed variable into a well-typed expression yields a

well-typed expression.

Sound Type Systems. We say that a local type system is sound if it additionally satisfies the

following three requirements:

• (Boolean Invertibility) The type bool is invertible for values: if 𝑣 is a value and ⊢ 𝑣 : bool
then either 𝑣 = true or 𝑣 = false.

• (Preservation) If 𝑒1 ⇒e 𝑒2 and Γ ⊢ 𝑒1 : 𝑡 , then Γ ⊢ 𝑒2 : 𝑡 .
• (Progress) If 𝑒1 is closed and ⊢ 𝑒1 : 𝑡 , then either 𝑒1 is a value or there is an 𝑒2 such that

𝑒1 ⇒e 𝑒2.

2.4.1 Examples. Each of the languages that served as examples above can be given type systems

that satisfy the requirements above. In fact, we can give the 𝜆-calculus two type systems, though

one is not sound.

Example 3 (Simply-Typed 𝜆-Calculus). This is the paradigmatic example of a typed local language.

None of the rules in Figure 1 are difficult; most of the proofs are completely standard. Moreover, it

is sound: the progress and preservation proofs are standard, and the invertability proof is easy.

Example 4 (Typed Natural-Numbers). We use two types: int and bool. Then, we have the following
rules:

𝑥 : 𝑡 ∈ Γ

Γ ⊢ 𝑥 : 𝜏 Γ ⊢ 0 : int
Γ ⊢ 𝑡 : int
Γ ⊢ 𝑆 𝑡 : int Γ ⊢ true : bool Γ ⊢ false : bool

This makes the rules in Figure 1 easy to prove, and soundness is trivial.

Example 5 (Unityped 𝜆-Calculus). Using the idea of “untyped is unityped”, we develop a type

system for 𝜆-calculus with only one type, ∗, and only one typing rule:

Trivial

Γ ⊢ 𝑒 : ∗
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Locations ℓ ∈ L
Synchronization Labels 𝑑 ::= L | R
Choreographies 𝐶 ::= 𝑋 | ℓ .𝑒 | ℓ1.𝑒 ⇝ ℓ2.𝑥 ; 𝐶

| if ℓ .𝑒 then 𝐶1 else 𝐶2 | ℓ1 [𝑑] ⇝ ℓ2; 𝐶

| let ℓ .𝑥 B 𝐶1 in 𝐶2 | fun 𝐹 (ℓ .𝑥) B 𝐶 | fun 𝐹 (𝑋 ) B 𝐶

| 𝐶 ℓ.𝑒 | 𝐶1 𝐶2

Fig. 2. Functional Choreographies Syntax

Here, we satisfy the requirement to have a type for Boolean values by setting bool = ∗. The rules
in Figure 1 are trivial, as is Preservation. However, this system is not sound: bool is not invertible,
and uni-typed 𝜆-calculus does not satisfy progress (programs may get stuck).

3 FUNCTIONAL CHOREOGRAPHIES
We introduce Pirouette, our language for writing distributed programs in a functional, choreographic

style. We guarantee deadlock freedom along with the standard static guarantees of simple-type

systems. Moreover, we allow higher-order computations by allowing choreographies to be passed

to other choreographies as inputs.

The syntax of Pirouette can be found in Figure 2. Note that choreographies contain two types of

variables: choreography variables, which stand for the result of a distributed computation (i.e., a

choreography), and local variables which are the variables of the local language seen in Section 2.

We write choreography variables in upper case (𝑋 , 𝑌 , etc.) and choreography variables in lower

case (𝑥 , 𝑦, etc.).

Every location has its own namespace of local variables, so ℓ1 .𝑥 ≠ ℓ2.𝑥 . This is reflected in the

defintion of substitution: substitution of choreography variables has the standard form𝐶1 [𝑋 ↦→ 𝐶2],
while substitution of local variables has the form 𝐶 [ℓ | 𝑥 ↦→ 𝑒]. The first notion of substitution is

standard. The second walks through a term looking for a subterm of the form ℓ .𝑒 ′, and then replaces

𝑒 ′ with 𝑒 ′[𝑥 ↦→ 𝑒]. (Note that the location name ℓ must be the same as the one in the substitution!)

We write ℓ .𝑒 to represent the choreography that returns the result of running 𝑒 on ℓ . To use this

value in a future choreography, we use the syntax let ℓ .𝑥 B 𝐶1 in 𝐶2. This runs 𝐶1 until it returns

a value on ℓ , and then binds that value to 𝑥 under ℓ in 𝐶2.

We write ℓ1.𝑒 ⇝ ℓ2 .𝑥 ; 𝐶 to represent ℓ1 evaluating 𝑒 and then sending the resulting value 𝑣 to ℓ2.

The variable ℓ2.𝑥 is bound to 𝑣 in the continuation choreography 𝐶 , representing ℓ2’s receipt of the

message.

The distributed program can branch based on the result of a test on a local machine. We write this

if ℓ .𝑒 then 𝐶1 else 𝐶2. However, this can quickly break causality. To see why, consider the program

if ℓ1.𝑒 then ℓ2.3 else ℓ2 .4. In this program, ℓ2 behaves differently depending on the behavior of a

test performed on ℓ1, but ℓ2 has never been told about the result of that test! In order to fix this

problem, we require that ℓ1 inform ℓ2 of which branch was taken before ℓ2 can behave differently in

the two branches. We do this using the syntax ℓ1 [𝑑] ⇝ ℓ2; 𝐶 . Here 𝑑 can either be L or R, where L
represents taking the then branch, while R represents taking the else branch. Thus, we can safely

write the following program:

if ℓ1 .𝑒
then ℓ1 [L] ⇝ ℓ2; ℓ2.3

else ℓ1 [R] ⇝ ℓ2; ℓ2.4



Pirouette: Higher-Order Typed Functional Choreographies 9

Note that this is only required because ℓ2’s behavior differs in the two branches. If ℓ2 behaves the

same, no synchronization is required. Thus, the following program is okay:

if ℓ1 .𝑒
then ℓ3.𝑒

′⇝ ℓ2 .𝑥 ;

ℓ1 [L] ⇝ ℓ2; ℓ2.𝑥 + 2

else ℓ3.𝑒 ′⇝ ℓ2 .𝑥 ;

ℓ1 [R] ⇝ ℓ2; ℓ2.𝑥 + 3

Because it behaves the same in both branches, ℓ3 never needs to be informed about which branch is

taken, even though it appears in the branches. Moreover, ℓ2 only needs to be informed about which

branch is taken after it receives its message from ℓ3.

There are two types of functions available in Pirouette, local and global functions. Local functions

expect a local value as input, stored on some particular node, whereas global functions expect a

choreography as input. Both types of functions may be recursive. We write fun 𝐹 (ℓ .𝑥) B 𝐶 for

the (recursive) function named 𝐹 which expects a local value on ℓ as input, and has body 𝐶 . We

write 𝐶 ℓ.𝑒 for the application of function 𝐶 to input 𝑒 which is stored on ℓ . For the global function

named 𝐹 which takes an input named 𝑋 and has body 𝐶 , we write fun 𝐹 (𝑋 ) B 𝐶 . As is traditional,

we write 𝐶1 𝐶2 for the application of function 𝐶1 to 𝐶2.

We adopt a call-by-value semantics, so we evaluate inputs to values before applying functions. As

described in Section 2, local values are defined by the local language and are always closed. Choreog-

raphy values are programs of any of the forms: (a) ℓ .𝑣 (where 𝑣 is a local value), (b) fun 𝐹 (ℓ .𝑥) B 𝐶

(where the only free variables in𝐶 are 𝐹 and ℓ .𝑥 ), or (c) fun 𝐹 (𝑋 ) B 𝐶 (where the only free variables

in 𝐶 are 𝐹 and 𝑋 ).

We define an operation LN (𝐶) which collects all of the location names in 𝐶 in a set. We write

FCV(𝐶) for the free choreography variables in 𝐶 , and FEV(𝐶) for the collection of free expression

variables in 𝐶 , tagged with the locations that own them. We write FEVℓ (𝐶) for the collection of

expression variables free under ℓ in C.

3.1 Operational Semantics
Intuitively, if two locations ℓ1 and ℓ2 both take actions, they should be able to do this in either

order. For instance, consider the Pirouette program ℓ1.2 + 3⇝ ℓ2.𝑥 ; ℓ3.3 ∗ 4⇝ ℓ2 .𝑦; 𝐶 . Here, ℓ1
and ℓ3 are both working on computations whose results they expect to send to ℓ2. Since these are

different locations, both should be able to work on their programs at the same time. Thus in the

semantics we should be able to reduce this program to either ℓ1.5⇝ ℓ2 .𝑥 ; ℓ3.3 ∗ 4⇝ ℓ2.𝑦; 𝐶 or

ℓ1 .2 + 3⇝ ℓ2.𝑥 ; ℓ3 .12⇝ ℓ2 .𝑦; 𝐶 , performing the local reductions in either order. However, ℓ2 is

just one location, so it cannot listen for two messages at once. Thus, even if we reduce the above

program to ℓ1.5⇝ ℓ2.𝑥 ; ℓ3.12⇝ ℓ2.𝑦; 𝐶 we are forced to reduce the send from ℓ1 before the send

from ℓ3, since the second is waiting on ℓ2.

In order to allow for this behavior, we keep track of a set of blocked locations in our operational

semantics. Intuitively, blocked locations cannot take a step. By keeping track of what locations are

blocked, we can allow out-of-order-execution among non-blocked locations.

However, this is not quite enough to get the behavior we want. Consider this program, which

represents a system where ℓ1 branches on 𝑒 and then does nothing, while ℓ2 returns the result

of 3+5 independent of ℓ1’s choice: if ℓ1.𝑒 then ℓ2 .3 + 5 else ℓ2 .3 + 5. Here, ℓ2 ought to be able to make

progress, reducing this program to if ℓ1 .𝑒 then ℓ2.8 else ℓ2.8. Note that this progress was atomic.

Thus, it would be illegitimate to reduce different programs in the two branches. For instance,

reducing if ℓ1 .𝑒 then ℓ2.3 + 5 else ℓ2.3 ∗ 4 to if ℓ1 .𝑒 then ℓ2.8 else ℓ2.12 requires reducing different
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SendE

ℓ1 ∉ 𝐵 ℓ1 ≠ ℓ2 𝑒1 ⇒e 𝑒2

ℓ1.𝑒1 ⇝ ℓ2.𝑥 ; 𝐶
ℓ1 .(𝑒1⇒𝑒2)⇝ℓ2 𝐵
==============⇒

c
ℓ1 .𝑒2 ⇝ ℓ2.𝑥 ; 𝐶

SendI

𝐶1

𝑅 𝐵∪{ℓ1,ℓ2 }
=========⇒

c
𝐶2

ℓ1 .𝑒 ⇝ ℓ2.𝑥 ; 𝐶1

𝑅 𝐵
===⇒

c
ℓ1.𝑒 ⇝ ℓ2.𝑥 ; 𝐶2

SendV

ℓ1 ∉ 𝐵 ℓ2 ∉ 𝐵 Value(𝑣) ℓ1 ≠ ℓ2

ℓ1.𝑣 ⇝ ℓ2 .𝑥 ; 𝐶
ℓ1 .(𝑣 value)⇝ℓ2 𝐵
==============⇒

c
𝐶 [ℓ2| 𝑥 ↦→ 𝑣]

IfI

𝐶1

𝑅 𝐵∪{ℓ }
=======⇒

c
𝐶 ′
1

𝐶2

𝑅 𝐵∪{ℓ }
=======⇒

c
𝐶 ′
2

if ℓ .𝑒 then 𝐶1 else 𝐶2

𝑅 𝐵
===⇒

c
if ℓ .𝑒 then 𝐶 ′

1
else 𝐶 ′

2

SyncI

𝐶1

𝑅 𝐵∪{ℓ,ℓ2 }
=========⇒

c
𝐶2

ℓ1 [𝑑] ⇝ ℓ2; 𝐶1

𝑅 𝐵
===⇒

c
ℓ1 [𝑑] ⇝ ℓ2; 𝐶2

Sync

ℓ1 ∉ 𝐵 ℓ2 ∉ 𝐵 ℓ1 ≠ ℓ2

ℓ1 [𝑑] ⇝ ℓ2; 𝐶
ℓ1 [𝑑 ]⇝ℓ2 𝐵
=========⇒

c
𝐶

AppGlobalFun

𝐶1

𝑅 𝐵
===⇒

c
𝐶 ′
1

𝐶1 𝐶2

Fun(𝑅) 𝐵
=======⇒

c
𝐶 ′
1
𝐶2

AppGlobalArg

𝐶2

𝑅 𝐵
===⇒

c
𝐶 ′
2

𝐶1 𝐶2

Arg(𝑅) 𝐵
=======⇒

c
𝐶1 𝐶

′
2

AppGlobal

Value(𝑉 )

(fun 𝐹 (𝑋 ) B 𝐶) 𝑉 GlobalFun ∅
==========⇒

c
𝐶 [𝑋 ↦→ 𝑉 , 𝐹 ↦→ fun 𝐹 (𝑋 ) B 𝐶]

Fig. 3. Selected Choreography Operational Semantics

programs in the two branches, whereas, in reality, only one of those two programs should be

reduced and that program should be chosen by ℓ1.

In order to prevent this type of reduction, we track what reduction is happening, resulting in

a labeled transition system. We refer to labels in Pirouette as “redices,” and to a single label as a

“redex.” In the second-to-last example above, we note that in each branch, we reduce a 3+5 to 8 on

ℓ2. Since we are doing the same reduction in each branch, we can reduce the whole program.

Selected rules from the operational semantics can be found in Figure 3. The full rules, along with

the syntax of redices, can be found in Appendix A.2.

Each rule has the form 𝐶1

𝑅 𝐵
===⇒

c
𝐶2, where 𝑅 is a redex, 𝐵 is a set of locations, and 𝐶1 and 𝐶2 are

choreographies. Intuitively, this says that 𝐶1 can reduce to 𝐶2 using redex 𝑅 even if every location

in 𝐵 is blocked. With this interpretation, the rule SendE allows a location to reduce a message to a

value before sending it. The notation ℓ1 .(𝑒1 ⇒ 𝑒2) ⇝ ℓ2 is the redex for this reduction rule. Note

that we check both that ℓ1 ∉ 𝐵 and that ℓ1 ≠ ℓ2 in the premise of this rule. The first check ensures
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Choreography Types 𝜏 ::= ℓ1.𝑡 | 𝑡1@ℓ → 𝜏2 | 𝜏1 → 𝜏2
Local Contexts Γ ::= · | Γ, ℓ .𝑥 : 𝑡

Choreography Contexts Δ ::= · | Δ, 𝑋 : 𝜏

Send

Γ |ℓ1 ⊢ 𝑒 : 𝑡1 Γ, ℓ2.𝑥 : 𝑡1; Δ ⊢ 𝐶 : 𝜏2 ℓ ≠ ℓ2

Γ; Δ ⊢ ℓ1.𝑒 ⇝ ℓ2.𝑥 ; 𝐶 : 𝜏2

DefLocal

Γ; Δ ⊢ 𝐶1 : ℓ .𝑡1 Γ, ℓ .𝑥 : 𝑡1; Δ ⊢ 𝐶2 : 𝜏2

Γ; Δ ⊢ let ℓ .𝑥 B 𝐶1 in 𝐶2 : 𝜏2

FunLocal

Γ, ℓ .𝑥 : 𝑡1; Δ, 𝐹 : 𝑡1@ℓ → 𝜏2 ⊢ 𝐶 : 𝜏2

Γ; Δ ⊢ fun 𝐹 (ℓ .𝑥) B 𝐶 : 𝑡1@ℓ → 𝜏2

FunGlobal

Γ; Δ, 𝐹 : 𝜏1 → 𝜏2, 𝑋 : 𝜏1 ⊢ 𝐶 : 𝜏2

Γ; Δ ⊢ fun 𝐹 (𝑋 ) B 𝐶 : 𝜏1 → 𝜏2

Fig. 4. Pirouette Types (Syntax and Selected Rules)

that ℓ1 is not blocked, since the reduction happens at that location. The second check reflects the

fact that sends from a node to itself is not meaningful.

The rule SendI allows reductions under a send construct, but only when the reduction can take

place with both the sender and the receiver blocked. This formalizes the intuition that while some

locations are waiting, other locations can take actions. Sending is formalized with the rule SendV.

This removes a send entirely. Note that in the substitution, ℓ2’s variable is substituted with the

message. This formalizes the intuition that sends are modeled by binding the message to a variable

in the receiver’s program.

The IfI rule is the only rule that makes use of redices. By ensuring that the same redex is reduced

on each branch of the if, we make sure that the only reductions that can be made are those which

are invariant under which branch is taken. Note that we again ensure that ℓ1 is not taking an action

in this reduction step, since it is currently occupied with the if itself.

The rules SyncI and Sync demonstrate the rather subtle effect that Sync has on the semantics. The

first rule demonstrates that synchronization induces blocking on the relevant locations. However,

Sync shows that this is the only effect that it has on the semantics of the choreography.

Finally, the rules AppGlobalFun, AppGlobalArg, and AppGlobal demonstrate how functions

are treated. Both the function and its argument can be evaluated in any order, but the redex is

tagged with which choice is made. This ensures that if statements don’t reduce a function in one

branch and its argument in the other. Finally, the AppGlobal rule shows that the semantics of a

function is given as standard, with a parallel substitution. However, we require that there be no

blockers. This comes from the fact that all of the locations work together to reduce functions at the

same time.

3.2 Type System
Assuming that the local expression language has a type system as described in Section 2.4, we can

develop a language of types for Pirouette. The syntax of Pirouette types can be found in Figure 4,

along with selected typing rules. The full typing rules are in Appendix B.

There are three categories of Pirouette types, corresponding to the three categories of chore-

ographic values. The first category is a local type at some location, which we write ℓ .𝑡 . This is

the type given to values of the form ℓ .𝑣 . Then there is the type of local functions, which we write

𝑡1@ℓ → 𝜏2. Here, 𝑡1 is an expression type, corresponding to the type of the input to the function,

which is expected to be located on ℓ . The function then returns a 𝜏2, which is a choreography type.
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Finally, there is the type of global functions which take an arbitrary choreographic type as an input.

Thus, we write 𝜏1 → 𝜏2, where 𝜏1 and 𝜏2 are both Pirouette types.

The choreographic type judgment is of the form Γ; Δ ⊢ 𝐶 : 𝜏 where Γ is a local context, Δ is

a global context, 𝐶 is a choreography, and 𝜏 is a choreographic type. Global contexts are normal

typing contexts relating choreography variables to choreography types. However, local contexts

have to relate variables to types, but must also keep track of the location of the variable. Since

each location is its own namespace, we relate variables paired with locations to local types (see the

syntax of Γ in Figure 4).

For any location ℓ , we can recursively project the typing context of the location from a local

context Γ as follows:

Γ |ℓ1 =


· if Γ = ·
Γ′ |ℓ1 , 𝑥 : 𝑡 if Γ = Γ, ℓ1.𝑥 : 𝑡

Γ′ |ℓ1 if Γ = Γ, ℓ2.𝑥 : 𝑡 where ℓ1 ≠ ℓ2

Intuitively, this gives the context for the namespace ℓ .

We can see projection in action in the Send rule. Here, we check that 𝑒 has the local type 𝑡 at

the location ℓ . We then check the remainder of the choreography under the assumption that 𝑥 has

type 𝑡 at ℓ2, since after the send 𝑥 will be bound to the result of evaluating 𝑒 . Note that this works

because values are closed; otherwise, 𝑣 might not typecheck in ℓ2’s namespace.

The rule DefLocal shows how the program let ℓ .𝑥 B 𝐶1 in 𝐶2 acts as an elimination rule for the

type ℓ .𝑡 . We ensure that𝐶1 has the type ℓ .𝑡 , and then we bind 𝑥 to 𝑡 locally in𝐶2. Finally, FunLocal

and FunGlobal produce local and global function types, respectively. Both also bind the function

name to the appropriate function type, allowing for recursive function definitions.

The choreographic type system enjoys progress and preservation if the local type system is

sound. However, we can get more-precise guarantees, which we call relative progress and relative

preservation.

Theorem 1 (Relative Preservation). If the local type system enjoys Preservation, then for every

choreography 𝐶1 such that Γ; Δ ⊢ 𝐶1 : 𝜏 and 𝐶1

𝑅 𝐵
===⇒

c
𝐶2, Γ; Δ ⊢ 𝐶2 : 𝜏 .

Theorem 2 (Relative Progress). If the local type system enjoys Boolean Invertability and Progress,

then for every choreography 𝐶1 such that ·; · ⊢ 𝐶1 : 𝜏 , either 𝐶1 is a choreography value or there are

some 𝑅, 𝐵, and 𝐶2 such that 𝐶1

𝑅 𝐵
===⇒

c
𝐶2.

Corollary 1 (Relative Soundness). If the local type system is sound, as defined in Section 2.4, then

the choreographic type system enjoys progress and preservation.

By dividing up the result into more-precise theorems, we are able to get some guarantees even

when the local type system is not sound. For instance, the unityped 𝜆-calculus example (Example 5)

is not sound, but does guarantee preservation. Thus, Theorem 1 allows us to lift preservation to

the choreographic system. In this case, we do not get choreographic progress, intuitively because

we may get stuck when trying to evaluate a local expression, or when an if expression tries to

discriminate on a non-boolean value.

4 EQUATIONAL REASONING
Choreographies represent collections of programs running in parallel. In order to represent these

programs serially, we are forced to decide what behavior to write first. For instance, consider

the program ℓ1.2 + 3 ⇝ ℓ2.𝑥 ; ℓ3 .3 ∗ 4 ⇝ ℓ4.𝑦; 𝐶 . The program represents ℓ1 sending a message

to ℓ2 while ℓ3 sends a message to ℓ4. We could have just as well represented that program as
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SwapSendSend

ℓ1 ≠ ℓ3 ℓ2 ≠ ℓ3 ℓ1 ≠ ℓ4 ℓ2 ≠ ℓ4

ℓ1.𝑒1 ⇝ ℓ2.𝑥 ;

ℓ3.𝑒2 ⇝ ℓ4.𝑦; 𝐶
≡ ℓ3 .𝑒2 ⇝ ℓ4.𝑦;

ℓ1 .𝑒1 ⇝ ℓ2.𝑥 ; 𝐶

SwapSendSync

ℓ1 ≠ ℓ3 ℓ2 ≠ ℓ3 ℓ1 ≠ ℓ4 ℓ2 ≠ ℓ4

ℓ1.𝑒 ⇝ ℓ2.𝑥 ;

ℓ3 [𝑑] ⇝ ℓ4; 𝐶
≡ ℓ3 [𝑑] ⇝ ℓ4;

ℓ1.𝑒 ⇝ ℓ2 .𝑥 ; 𝐶

SwapSendIf

ℓ1 ≠ ℓ3 ℓ2 ≠ ℓ3

ℓ1.𝑒1 ⇝ ℓ2.𝑥 ;

if ℓ3 .𝑒2
then 𝐶1

else 𝐶2

≡
if ℓ3 .𝑒2
then ℓ1 .𝑒1 ⇝ ℓ2.𝑥 ; 𝐶1

else ℓ1.𝑒1 ⇝ ℓ2.𝑥 ; 𝐶2

SwapSyncSync

ℓ1 ≠ ℓ3 ℓ2 ≠ ℓ3 ℓ1 ≠ ℓ4 ℓ2 ≠ ℓ4

ℓ1 [𝑑] ⇝ ℓ2;

ℓ3 [𝑑 ′] ⇝ ℓ4; 𝐶
≡ ℓ3 [𝑑 ′] ⇝ ℓ4;

ℓ1 [𝑑] ⇝ ℓ2; 𝐶

SwapSyncIf

ℓ1 ≠ ℓ3 ℓ2 ≠ ℓ3

ℓ1 [𝑑] ⇝ ℓ2;

if ℓ3.𝑒
then 𝐶1

else 𝐶2

≡
if ℓ3.𝑒
then ℓ1 [𝑑] ⇝ ℓ2; 𝐶1

else ℓ1 [𝑑] ⇝ ℓ2; 𝐶2

SwapIfIf

ℓ1 ≠ ℓ2

if ℓ1.𝑒1
then if ℓ2.𝑒2

then 𝐶1

else 𝐶2

else if ℓ2.𝑒2
then 𝐶3

else 𝐶4

≡

if ℓ2 .𝑒2
then if ℓ1 .𝑒1

then 𝐶1

else 𝐶3

else if ℓ1 .𝑒1
then 𝐶2

else 𝐶4

Fig. 5. Selected Choreography Equivalence Rules

ℓ3 .3 ∗ 4⇝ ℓ4.𝑦; ℓ1 .2 + 3⇝ ℓ2 .𝑥 ; 𝐶 . Since these choreographies represent the same collection of

programs, all of our constructs treat them the same way. In prior work on choreographies, this fact

is typically formalized using a separate notion of equivalence, which says when two choreographies

represent the same collection of programs [Cruz-Filipe and Montesi 2017a,b; Lanese et al. 2013;

Montesi 2013]. Following that tradition, we define a notion of structural equivalence for Pirouette

and study its properties.

We define choreography equivalence as the smallest equivalence relation which is also a congru-

ence and satisfies the rules in Figure 5. The complete formal definition can be found in Appendix C.

Choreography equivalence respects types, even for open programs:

Theorem 3 (Equivalence Respects Types). If Γ; Δ ⊢ 𝐶1 : 𝜏 and 𝐶1 ≡ 𝐶2, then Γ; Δ ⊢ 𝐶2 : 𝜏

Interestingly, Theorem 3 has an outsized influence on our system model. In particular, in order

to prove that the rule SwapSendIf respects types, we need to know that expressions have unique

types. After all, if 𝑒2 is given type 𝑡1 in the true branch, but type 𝑡2 in the false branch, there might

not be a type that we could assign to 𝑒2 that makes both branches type check. Including a typing

annotation on send statements might solve this problem. However, this would require mixing the

type system with the syntax of choreographies. While this is a reasonable choice in many situations,

here we choose to keep them separate, since that makes it easy to tell when our results rely on the

type system and when they do not.

Finally, our operational semantics respects equivalence, allowing us to prove the following

simulation theorem:
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Theorem 4 (Operational Semantics Simulates Equivalence). If 𝐶1

𝑅 𝐵
===⇒

c
𝐶2 and 𝐶1 ≡ 𝐶 ′

1
, then there

is a 𝐶 ′
2
such that 𝐶2 ≡ 𝐶 ′

2
and 𝐶 ′

1

𝑅 𝐵
===⇒

c
𝐶 ′
2
.

Equivalence can be used to define a new, seemingly simpler operational semantics for chore-

ographies. This new semantics, which we write⇒≡, has no redices or block sets and it replaces

internal steps from our semantics with the following rule:

EqivStep

𝐶1 ≡ 𝐶 ′
1

𝐶 ′
1
⇒≡ 𝐶 ′

2
𝐶 ′
2
≡ 𝐶2

𝐶1 ⇒≡ 𝐶2

We formalize this semantics in Appendix A.4.

In fact, much of the prior work on choreographies defined their operational semantics in precisely

this way [Carbone et al. 2014; Cruz-Filipe and Montesi 2017a,b; Lanese et al. 2013; Montesi 2013].

While this new semantics is good for prior work, it is too weak for Pirouette, which allows reduction

of local expressions. To see why, consider the program ℓ1 .𝑒1 ⇝ ℓ2.𝑥 ; ℓ3.𝑒2. It should be possible for

ℓ3 to evaluate its return value, even though ℓ1 has not yet sent its message to ℓ2. However, under

the equivalence-based semantics, there is no way to reduce 𝑒2, since we cannot use an equivalence

to bring it up to the top.

A similar problem appears for sends. Consider the program ℓ1.𝑒1 ⇝ ℓ2.𝑥 ; ℓ3 .𝑒2 ⇝ ℓ2.𝑥 ; 𝐶 . In this

example, both ℓ1 and ℓ3 are trying to send a message to ℓ2. If 𝑒2 can be reduced further, then ℓ3 ought

to be able to reduce 𝑒2 while waiting for ℓ2 to be ready to receive the second message. However, in

the equivalence-based semantics, we cannot use SwapSendSend to bring up the second send, since

that would swap the order of ℓ2’s receives.

Finally, consider programs that contain function applications, such as

ℓ1 .𝑒1 ⇝ ℓ2.𝑥 ;

(fun 𝐹 (𝑋 ) B 𝑋 ) (ℓ3.𝑒2 ⇝ ℓ4.𝑦; ℓ4 .𝑦)
This program allows ℓ1 to send a message to ℓ2 and then applies the identity function to another

choreography. Importantly, the argument choreography does not mention ℓ1 or ℓ2. Therefore, ℓ3
should be able to reduce 𝑒2 before ℓ1 completes its send. However, it is not possible to do this in the

equivalence-based definition mentioned before.

This makes reasoning with ≡ much less powerful here than in previous choreographic systems.

However, the difficulty is limited to the problems mentioned above.

Theorem 5 (Weak Semantics). Let

𝑅 𝐵
===⇒

w
be the relation obtained by modifying the relation

𝑅 𝐵
===⇒

c
as

follows:

• ℓ .𝑒 can only reduce when the block set is empty,

• messages can only be reduced when neither the sender nor the receiver are in the block set, and

• in let ℓ .𝑥 B 𝐶1 in 𝐶2 and function application, subchoreographies can only reduce when the

block set is empty.

(The semantics

𝑅 𝐵
===⇒

w
is formalized in Appendix A.3.) Then whenever𝐶1

𝑅 𝐵
===⇒

w
𝐶2,𝐶1 ⇒≡ 𝐶2. Moreover,

whenever 𝐶1 ⇒≡ 𝐶2, there is a redex 𝑅 and choreography 𝐶 ′
2
such that 𝐶1

𝑅 ∅
==⇒

w
𝐶 ′
2
and 𝐶2 ≡ 𝐶 ′

2
.

While this makes our connection to previous work more clear, we prefer to work with the

𝑅 𝐵
===⇒

c

relation defined in Section 3 due to its extra power.
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Control Expression 𝐸 ::= 𝑋 | funl 𝐹 (𝑥) B 𝐸 | fung 𝐹 (𝑋 ) B 𝐸 | 𝐸 𝑒 | 𝐸1 𝐸2
| ( ) | ret(𝑒) | let ret(𝑥) B 𝐸1 in 𝐸2
| send 𝑒 to ℓ ; 𝐸 | receive 𝑥 from ℓ ; 𝐸

| if 𝑒 then 𝐸1 else 𝐸2 | choose 𝑑 for ℓ ; 𝐸
| allow ℓ choice | L ⇒ 𝐸1 | R ⇒ 𝐸2

Systems Π ::= ℓ1 ⊲ 𝐸1 ∥ · · · ∥ ℓ𝑛 ⊲ 𝐸𝑛

Fig. 6. Control Language Syntax

5 ENDPOINT PROJECTION
While Pirouette programs are designed to represent a collection of concurrently-executing programs,

so far that has been a guiding intuition rather than a formal property. In order to change that,

we define the endpoint projection operation, which extracts a program for each location from a

choreography, if it is possible to do so. This extracted program is expressed in a language called the

control language which features local execution and explicit constructs for message passing. The

extracted programs of all locations are composed in parallel. Here, we explain the control language,

then explain the extraction and finally show that the parallel composition of all extracted programs

reflects and preserves the operational semantics of the choreography.

5.1 The Control Language
Our control language (Figure 6) is a concurrent 𝜆-calculus where messages are values of local

programs. It is inspired both by work on process calculi and by concurrent ML.

Like with Pirouette, control programs have two types of variable: local variables and control

variables. We write control variables with capital letters, because they play a role similar to that

played by choreography variables. Local variables are the variables of local programs. There are

correspondingly two types of functions, local functions and global functions (written funl 𝐹 (𝑥) B 𝐸

and fung 𝐹 (𝑋 ) B 𝐸, respectively). Note that because in the control language—unlike in Pirouette—

every local program is at the same location, local substitution does not take location into account.

Control programs can return the result of evaluating a local program, which we write ret(𝑒). We

can use the result of such a program in another program using the syntax let ret(𝑥) B 𝐸1 in 𝐸2.

However, unlike choreographies, control programs can also return the trivial value ( ). This is used
for control programs that do not have a return value on them.

Communication happens between control programs composed in parallel through explicit send

and receive commands. We will see later how parallel composition works, and how communication

takes place.

There are two forms of branching in the control language. “If” statements are standard, and

are a sequential form of branching. We also have external choice, which is a distributed form of

branching. The program allow ℓ choice | L ⇒ 𝐸1 | R ⇒ 𝐸2 represents allowing ℓ to choose which

branch to take: 𝐸1, labeled L, or 𝐸2, labeled R. The syntax choose 𝑑 for ℓ ; 𝐸 represents telling ℓ to

take the branch labeled 𝑑 .

We refer to the parallel composition of a control program for each location as a system (we use

the symbol Π to refer to systems). The notation ℓ ⊲ 𝐸 says that program 𝐸 is running on the node ℓ .

As can be seen in Figure 6, a system is a finite parallel compositions of such ℓ ⊲ 𝐸.

We often use the syntax ∥
ℓ∈𝔏

𝐸ℓ to refer to a system where 𝔏 is a finite set of locations and 𝐸− is a

function from locations to control program expressions.
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Label 𝑙 ::= 𝜄 | 𝑣 ⇝ ℓ | ℓ : 𝑣 ⇝ | [𝑑] ⇝ ℓ | ℓ : [𝑑] | 𝜄sync | Fun(𝑙) | Arg(𝑙)
SendE

𝑒1 ⇒e 𝑒2

send 𝑒1 to ℓ ; 𝐸
𝜄
=⇒

E
send 𝑒2 to ℓ ; 𝐸

SendV

Value(𝑣)

send 𝑣 to ℓ ; 𝐸
𝑣⇝ℓ
====⇒

E
𝐸

RecvV

Value(𝑣)

receive 𝑥 from ℓ ; 𝐸
ℓ : 𝑣⇝
=====⇒

E
𝐸 [𝑥 ↦→ 𝑣]

Choose

choose 𝑑 for ℓ ; 𝐸
[𝑑 ]⇝ℓ
======⇒

E
𝐸

AllowChoiceL

allow ℓ choice | L ⇒ 𝐸1 | R ⇒ 𝐸2
ℓ : [L]
=====⇒

E
𝐸1

LetRet

Value(𝑣)

let ret(𝑥) B ret(𝑣) in 𝐸2
𝜄sync
====⇒

E
𝐸2 [𝑥 ↦→ 𝑣]

AppLocal

Value(𝑣)

(funl 𝐹 (𝑥) B 𝐸) 𝑣
𝜄sync
====⇒

E
𝐸 [𝑥 ↦→ 𝑣]

AppGlobal

Value(𝑉 )(
fung 𝐹 (𝑋 ) B 𝐸

)
𝑉

𝜄sync
====⇒

E
𝐸 [𝑋 ↦→ 𝑉 ]

Fig. 7. Control Programs Semantics (Selected Rules)

Location semantics. In defining the operational semantics of systems, two syntactic operations

will be useful. The first is system lookup (written Π(A)), which refers to the control program bound

to a particular location A. The second is system update (written Π[A ↦→ 𝐸]), which replaces the

program bound to A. We define them as follows:(
∥

ℓ∈𝔏
𝐸ℓ

)
(A) = 𝐸A

(
∥

ℓ∈𝔏
𝐸ℓ

)
[A ↦→ 𝐸] = ∥

ℓ∈𝔏
𝐸 ′
ℓ where 𝐸

′
ℓ =

{
𝐸 ℓ = A
𝐸ℓ otherwise

The semantics of control programs is given via a labeled transition system. This allows systems

to match up corresponding rules in their semantics. The syntax of labels and selected rules can be

found in Figure 7, and the full set of rules can be found in Appendix D.

Internal steps that do not interact with the outside are given the label 𝜄1. For instance, the rule

SendE takes a local step in a message to be sent to ℓ , which is an internal step. Every step of a local

program corresponds to an 𝜄 step.

Sends and receives are labeled with matching labels: 𝑣 ⇝ ℓ2 for sends, and ℓ1 : 𝑣 ⇝ for

receives. Note that from the perspective of a single control-language program, receives are treated

nondeterministically—any value could be received. Our system semantics will force sends and

receives to match up. Similarly, external choice and its resolution have matching labels: ℓ : [𝑑] for
external choice and [𝑑] ⇝ ℓ for its resolution.

1
It is standard to use 𝜏 to refer to internal steps. However, 𝜏 already represents Pirouette types. We thus use 𝜄 for “internal.”
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System Label 𝐿 ::= 𝜄 | ℓ1.𝑣 −→ ℓ2 | ℓ1 [𝑑] −→ ℓ2 | 𝜄sync
Label Merge

MergeIota

𝜄 ⊲⊳𝜄 𝜄

MergeSync

𝜄sync ⊲⊳𝜄sync 𝜄sync

MergeComm

𝑣 ⇝ ℓ2 ⊲⊳ℓ1 .𝑣−→ℓ2 ℓ1 : 𝑣 ⇝

MergeChoice

[𝑑] ⇝ ℓ2 ⊲⊳ℓ1 [𝑑 ]−→ℓ2 ℓ1 : [𝑑]

MergeFun

𝑙1 ⊲⊳𝐿 𝑙2

Fun(𝑙1) ⊲⊳𝐿 Fun(𝑙2)

MergeArg

𝑙1 ⊲⊳𝐿 𝑙2

Arg(𝑙1) ⊲⊳𝐿 Arg(𝑙2)
System Steps

Internal

Π(ℓ) 𝜄
=⇒

E
𝐸

Π
𝜄
=⇒

S
Π[ℓ ↦→ 𝐸]

Synchronized Internal

𝑙 ⊲⊳𝜄sync 𝑙 ∀ℓ ∈ 𝔏, 𝐸ℓ
𝑙
=⇒

E
𝐸 ′
ℓ

∥
ℓ∈𝔏

𝐸ℓ
𝜄sync
====⇒

S
∥

ℓ∈𝔏
𝐸 ′
ℓ

Comm

ℓ1 ≠ ℓ2 𝑙1 ⊲⊳ℓ1 .𝑣−→ℓ2 𝑙2

Π(ℓ1)
𝑙1
=⇒

E
𝐸1 Π(ℓ2)

𝑙2
=⇒

E
𝐸2

Π
ℓ1 .𝑣−→ℓ2
=======⇒

S
Π[ℓ1 ↦→ 𝐸1, ℓ2 ↦→ 𝐸2]

Choice

ℓ1 ≠ ℓ2 𝑙1 ⊲⊳ℓ1 [𝑑 ]−→ℓ2 𝑙2

Π(ℓ1)
𝑙1
=⇒

E
𝐸1 Π(ℓ2)

𝑙2
=⇒

E
𝐸2

Π
ℓ1 [𝑑 ]−→ℓ2
=========⇒

S
Π[ℓ1 ↦→ 𝐸1, ℓ2 ↦→ 𝐸2]

Fig. 8. System Semantics

In choreographies, all participants must 𝛽-reduce function applications together. For instance,

consider reducing a local function:

(fun 𝐹 (ℓ .𝑥) B 𝐶) ℓ .𝑒
LocalFun(ℓ .𝑣) ∅
=============⇒

c
𝐶 [ℓ | 𝑥 ↦→ 𝑣] [𝐹 ↦→ fun 𝐹 (ℓ .𝑥) B 𝐶]

Because the choreography steps from a choreography with a function application to one without,

every location’s control program changes. In order to accommodate this, we use a new label, 𝜄sync.

The only three rules labeled with 𝜄sync are LetRet, AppLocal, and AppGlobal, all of which can be

found in Figure 7.

System semantics. Systems are also given semantics via a labeled transition system. The system

labels arise from a merging operator on control-language labels, where 𝑙1 ⊲⊳𝐿 𝑙2 ensures that labels

𝑙1 and 𝑙2 match, producing an output system label 𝐿. It also ensures that, in a function application,

either both steps reduce the function or both reduce its argument. The syntax of system labels,

label merge operator, and system semantics can all be found in Figure 8.

The labels 𝜄 and 𝜄sync both refer to internal steps of a production. Hence, they can be merged

with themselves to yield the corresponding system label. The rule Internal allows any location ℓ

to take an internal step without interfering with any other location. Synchronized steps require the

use of the Synchronized Internal rule, which requires that every location take a 𝜄sync step.

Send and receive labels must be matched together. If ℓ1 sends 𝑣 to ℓ2, their labels merge together

to a system label ℓ1 .𝑣 −→ ℓ2 in rule MergeComm. The rule Comm then allows both ℓ1 and ℓ2 to take

their corresponding steps together, without interfering with any other locations. The Choice rule

behaves similarly, but for choice-based branching.
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(
allow ℓ choice
|L ⇒ 𝐸1

)
⊔

(
allow ℓ choice
|L ⇒ 𝐸2

)
≜

allow ℓ choice
|L ⇒ 𝐸1 ⊔ 𝐸2

(
allow ℓ choice
|L ⇒ 𝐸1

)
⊔

(
allow ℓ choice
|R ⇒ 𝐸2

)
≜

allow ℓ choice
|L ⇒ 𝐸1
|R ⇒ 𝐸2

(
allow ℓ choice
|L ⇒ 𝐸1

)
⊔
©­­­«
allow ℓ choice
|L ⇒ 𝐸2,1
|R ⇒ 𝐸2,2

ª®®®¬ ≜
allow ℓ choice
|L ⇒ 𝐸1 ⊔ 𝐸2,1
|R ⇒ 𝐸2,2

Fig. 9. Merge Operator Definition (Selected Parts)

5.2 Merging Control Programs
Our goal is to extract a control program for every location in a choreography compositionally.

However, compositionality is greatly complicated by if branches. To see why, consider the following

choreography:

if ℓ1 .𝑒
then ℓ2.3⇝ ℓ1.𝑥 ; ℓ1 [L] ⇝ ℓ2; ℓ2 .0

else ℓ2.3⇝ ℓ1.𝑥 ; ℓ1 [R] ⇝ ℓ2; ℓ2 .1

Intuitively, we want ℓ2 to be associated with the control program

send 3 to ℓ1; allow ℓ1 choice | L ⇒ ret(0) | R ⇒ ret(1)

However, when defining our procedure formally, we want to extract a program for each branch of

the if expression, and combine them together to get the final program.

This leads to two issues. First, we need to be able to define a program for each branch. Second,

we need to be able to merge those two programs into a single program.

To see why it is difficult to define a program for each branch, consider the true branch of the

program above. We know that ℓ1 will send a synchronization message to ℓ2. Thus, ℓ2 must allow ℓ1
to make a choice for it, as we saw earlier. However, here we only have the L branch available; the R
branch will not be available until we merge.

To solve this problem, we add one-branch choice constructs to our control language:

allow ℓ choice
|L ⇒ 𝐸

and

allow ℓ choice
|R ⇒ 𝐸

These act precisely like the two-choice construct, except that they only allow their one branch to

be taken. With these, we now have a program for ℓ2 we intend to extract from the branch above:

send 3 to ℓ1; allow ℓ1 choice | L ⇒ ret(0)

We now need a way to merge the extracted programs from each branch into a single program.

We define a partial merge operator ⊔, which ensures that two programs are the same until they

allow both choices. We adopt notation from computability theory and write 𝑓 (𝑥) ↑ when 𝑓 is a

partial function to denote that the function is undefined. So we would write 𝐸1 ⊔ 𝐸2 ↑ if the merge

of 𝐸1 and 𝐸2 is undefined. We further write 𝑓 (𝑥) ↓ (so 𝐸1 ⊔ 𝐸2 ↓) if 𝑓 (𝑥) is defined, but we do
not care about the value. In Figure 9, you can find the definition of the merge operator when the
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left-hand side is allow ℓ choice | L ⇒ 𝐸1. The remaining parts of the definition can be found in

Appendix E. Additional properties can be found in Appendix G.3.

5.3 Endpoint Projection, Defined
We are now ready to define endpoint projection, or EPP. Merging is an important part of the

definition of EPP, and EPP inherits partiality from merging. We continue to use 𝑓 (𝑥) ↑ if 𝑓 (𝑥) is
undefined and 𝑓 (𝑥) ↓ if 𝑓 (𝑥) is defined, but we do not care about the value.

Endpoint projection is defined as follows:

Jℓ1.𝑒Kℓ2 =
{
ret(𝑒) if ℓ1 = ℓ2
( ) otherwise

J𝑋 Kℓ = 𝑋

Jℓ1 .𝑒 ⇝ ℓ2.𝑥 ; 𝐶Kℓ3 =


↑ if ℓ1 = ℓ2 = ℓ3
send 𝑒 to ℓ2; J𝐶Kℓ3 if ℓ1 = ℓ3 ≠ ℓ2
receive 𝑥 from ℓ1; J𝐶Kℓ3 if ℓ1 ≠ ℓ3 = ℓ2
J𝐶Kℓ3 if ℓ1 ≠ ℓ3 and ℓ2 ≠ ℓ3

Jif ℓ1 .𝑒 then 𝐶1 else 𝐶2Kℓ2 =
{
if 𝑒 then J𝐶1Kℓ2 else J𝐶2Kℓ2 if ℓ1 = ℓ2
J𝐶1Kℓ2 ⊔ J𝐶2Kℓ2 otherwise

Jℓ1 [𝑑] ⇝ ℓ2; 𝐶Kℓ3 =


↑ if ℓ1 = ℓ2 = ℓ3
choose 𝑑 for ℓ2; J𝐶Kℓ3 if ℓ1 = ℓ3 ≠ ℓ2
allow ℓ1 choice | L ⇒ J𝐶Kℓ3 if ℓ1 ≠ ℓ3 = ℓ2 and 𝑑 = L
allow ℓ1 choice | R ⇒ J𝐶Kℓ3 if ℓ1 ≠ ℓ3 = ℓ2 and 𝑑 = R
J𝐶Kℓ3 otherwise

Jlet ℓ1 .𝑥 B 𝐶1 in 𝐶2Kℓ2 =
{
let ret(𝑥) B J𝐶1Kℓ2 in J𝐶2Kℓ2 if ℓ1 = ℓ2
(fung 𝐹 (𝑋 ) B J𝐶2Kℓ2 ) J𝐶1Kℓ2 where 𝐹, 𝑋 are fresh, otherwise

Jfun 𝐹 (ℓ1 .𝑥) B 𝐶Kℓ2 =
{
funl 𝐹 (𝑥) B J𝐶Kℓ2 if ℓ1 = ℓ2
fung 𝐹 (𝑋 ) B J𝐶Kℓ2 where 𝑋 is fresh, otherwise

J𝐶 ℓ1 .𝑒Kℓ2 =
{

J𝐶Kℓ2 𝑒 if ℓ1 = ℓ2
J𝐶Kℓ2 ( ) otherwise

Jfun 𝐹 (𝑋 ) B 𝐶Kℓ = fung 𝐹 (𝑋 ) B J𝐶Kℓ

J𝐶1 𝐶2Kℓ = J𝐶1Kℓ J𝐶2Kℓ

Note a simple design principle: local expressions owned by a location other than the one being

projected to are projected to ( ). This allows us to define a control program with the same control

flow, but which does not know about the precise local expressions held at other locations.

This definition tells us what the control program for a single location is. However, we are

interested in a system of control programs. We can lift the single-location definition to a multi-

location system definition: J𝐶K𝔏 = ∥
ℓ∈𝔏

ℓ ⊲ J𝐶Kℓ .

One way of thinking about J𝐶Kℓ is that it gives ℓ ’s view of𝐶 . From this perspective, it makes sense

to ask what ℓ ’s view of a step of computation is. We can provide this by projecting a choreography

redex to a control-language label, as follows:
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Jℓ1 .(𝑒1 ⇒ 𝑒2)Kℓ2 =
{
𝜄 if ℓ1 = ℓ2
↑ otherwise

Jif ℓ1.(𝑒1 ⇒ 𝑒2)Kℓ2 =
{
𝜄 if ℓ1 = ℓ2
↑ otherwise

Jif ℓ1 .trueKℓ2 =
{
𝜄 if ℓ1 = ℓ2
↑ otherwise

Jif ℓ1.falseKℓ2 =
{
𝜄 if ℓ1 = ℓ2
↑ otherwise

JLocalArg(ℓ1.(𝑒1 ⇒ 𝑒2))Kℓ2 =
{
𝜄 if ℓ1 = ℓ2
↑ otherwise

Jℓ1.(𝑒1 ⇒ 𝑒2) ⇝ ℓ2Kℓ3 =
{
𝜏 if ℓ1 = ℓ3
↑ otherwise

Jℓ1.(𝑣 value) ⇝ ℓ2Kℓ3 =


𝑣 ⇝ ℓ2 if ℓ1 = ℓ3 ≠ ℓ2
ℓ1 : 𝑣 ⇝ if ℓ1 ≠ ℓ3 = ℓ2
↑ otherwise

Jℓ1 [𝑑] ⇝ ℓ2Kℓ3 =


[𝑑] ⇝ ℓ2 if ℓ1 = ℓ3 ≠ ℓ2
ℓ1 : [𝑑] if ℓ1 ≠ ℓ3 = ℓ2
↑ otherwise

Jlet ℓ1 ≔ (𝑣 value)Kℓ2 = 𝜄sync

JLocalFun(ℓ1 .𝑣)Kℓ2 = 𝜄sync JGlobalFunKℓ = 𝜄sync JArg(𝑅)Kℓ = Arg(J𝑅Kℓ )

JFun(𝑅)Kℓ = Fun(J𝑅Kℓ )
Just as we can ask what some location’s view of a step of computation is, we can ask what a

system’s view of a step of computation is. Interestingly, this does not rely on which locations are

in the system, and it is therefore a total operation.

Jℓ1.(𝑒1 ⇒ 𝑒2)K = 𝜄 Jif ℓ1.(𝑒1 ⇒ 𝑒2)K = 𝜄 Jif ℓ1.trueK = 𝜄 Jif ℓ1 .falseK = 𝜄

JLocalArg(ℓ1.(𝑒1 ⇒ 𝑒2))K = 𝜄 Jℓ1 .(𝑒1 ⇒ 𝑒2) ⇝ ℓ2K = 𝜄 Jℓ1.(𝑣 value) ⇝ ℓ2K = ℓ1.𝑣 −→ ℓ2

Jℓ1 [𝑑] ⇝ ℓ2K = ℓ1 [𝑑] −→ ℓ2 Jlet ℓ1 ≔ (𝑣 value)K = 𝜄sync JLocalFun(ℓ1.𝑣)K = 𝜄sync

JGlobalFunK = 𝜄sync JArg(𝑅)K = J𝑅K JFun(𝑅)K = J𝑅K

5.4 Properties of Endpoint Projection
EPP is one of the most-important operations on choreographies. It is what gives them a ground-truth

interpretation as a parallel composition of programs. In fact, without EPP it would be almost impos-

sible to state one of our most-important theorems: deadlock freedom by construction (Theorem 12

below).

The first property we examine is how EPP treats equivalence. As with every other operation on

choreographies, we would like it if EPP treated equivalent choreographies the same. Note that we

have no notion of equivalence on control-language programs, so we get a strong notion of “treating

the same”:

Theorem 6 (Equivalence Begets Equality). If 𝐶1 ≡ 𝐶2, then J𝐶1Kℓ = J𝐶2Kℓ for every ℓ ∈ L.

Next we would like to examine the relationship between the semantics of a choreography and the

semantics of its projection. However, there is still one remaining disconnect between the semantics
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of choreographies and that of systems that comes into play. Yet again, it has to do with the semantics

of external choice. To see the issue, consider the following example:

𝐶1 ≜
if ℓ1 .true
then ℓ1 [L] ⇝ ℓ2; ℓ2.0

else ℓ1 [R] ⇝ ℓ2; ℓ2.1

𝐶2 ≜ ℓ1 [L] ⇝ ℓ2; ℓ2.0 J𝐶1Kℓ2 =

allow ℓ1 choice
|L ⇒ ret(0)
|R ⇒ ret(1)

J𝐶2Kℓ2 =
allow ℓ1 choice
|L ⇒ ret(0)

𝐶1

if ℓ1 .true ∅
========⇒

c
𝐶2

As you can see, by taking a choreography step which corresponds to a completely internal step on

ℓ1, we have lost information about a possible path on ℓ2. This comes because the choice of the path

is up to ℓ1, who “makes up their mind” in that internal step.

One way to view this is from ℓ2’s point of view. In the program 𝐶1, ℓ2 has a nondeterministic

program: a message will come in to tell them which of two branches to take. This is evident in

the semantics of the control language, since J𝐶1Kℓ2 can take either of two steps. However, 𝐶1 is

deterministic from ℓ2’s point of view, since only one message is possible. Hence, this step has

resolved some nondeterminism.

We formalize this notion of “the same program, but with some nondeterminism resolved” in a

new relation called ≤nd. This is nearly defined as the smallest relation that commutes with all of

the control-language constructs and also fulfills the following extra rules:

𝐸1 ≤nd 𝐸2,1

allow ℓ choice
|L ⇒ 𝐸1

≤nd

allow ℓ choice
|L ⇒ 𝐸2,1
|R ⇒ 𝐸2,2

𝐸1 ≤nd 𝐸2,2

allow ℓ choice
|R ⇒ 𝐸1

≤nd

allow ℓ choice
|L ⇒ 𝐸2,1
|R ⇒ 𝐸2,2

However, there is a small complication: functions are only related to themselves. The full definition

can be found in Appendix F. The relation ≤nd is a partial order.

We extend the ≤nd relation to systems pointwise, so Π1 ≤nd Π2 if for every ℓ such that Π1 (ℓ) ↓,
Π2 (ℓ) ↓ and Π1 (ℓ) ≤nd Π2 (ℓ). The following theorem relates ≤nd to the semantics of systems. It

may look complicated, but is not. Its two bullet points respectively say: (1) If a less nondeterministic

system takes a step, then that step is available to any more-nondeterministic system, and (2) If a

more nondeterministic system takes a step but the less nondeterministic system is the result of

projecting some choreography, then we can take advantage of the fact that choices are always

paired in choreographies to mimic the step in the less nondeterministic system.

Theorem 7 (Lifting and Lowering System Steps Across ≤nd). If Π1 ≤nd Π2, then the following are

both true:

• If Π1

𝐿
=⇒

S
Π′
1
, then there is a Π′

2
such that Π′

1
≤nd Π

′
2
and Π2

𝐿
=⇒

S
Π′
2
.

• If Π2

𝐿
=⇒

S
Π′
2
and Π1 = J𝐶K𝔏, then there is a Π′

1
such that Π′

1
≤nd Π

′
2
and Π1

𝐿
=⇒

S
Π′
1
.

Finally, the less-nondeterminism relation allows us to connect the semantics of choreographies

with the semantics of our control language. Steps in the choreographies correspond to actions by

one or more locations. If a step involves a location, then that location’s control program also takes

a step; the label of that step is the projection of the redex of the choreographic step. However, if a

step does not involve a location, then that location’s control program does not take a step and the

projection of the redex for that location is undefined. While an uninvolved location does not take a
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step, it may find its nondeterminism reduced as other locations “make up their minds” about what

branch it should take in the future.

Theorem8 (Local Completeness). If𝐶1

𝑅 𝐵
===⇒

c
𝐶2, then for any location ℓ , either (a) J𝐶1Kℓ

J𝑅Kℓ
====⇒

E
J𝐶2Kℓ ,

or (b) J𝑅Kℓ ↑ and J𝐶2Kℓ ≤nd J𝐶1Kℓ .

Theorem 9 (Global Completeness). If 𝐶1

𝑅 𝐵
===⇒

c
𝐶2 and every location named in 𝑅 is in 𝔏, then there

is a Π such that J𝐶1K𝔏
J𝑅K
===⇒

S
Π and J𝐶2K𝔏 ≤nd Π.

The requirement that every location named in 𝑅 is in 𝔏 is important: if 𝑅 represents ℓ1 sending a

message to ℓ2, but ℓ2 is not in 𝔏, then there is no one in J𝐶K𝔏 to do the receiving. This blocks ℓ1
from sending its message (since message passing is synchronous) and thus blocks the system step

from taking place. However, if both ℓ1 and ℓ2 are in 𝔏, then Theorem 8 tells us that ℓ2 is guaranteed

to be ready to receive ℓ1’s message.

A similar difficulty comes when trying to go in the other direction: it is not enough to know

that ℓ1’s projection sends a message for a choreography to take a step; we must also know that ℓ2’s

projection receives it. This means that we have to state local soundness differently depending on

the label of the control-program step:

Theorem 10 (Local Soundness). All of the following are true:

• If J𝐶1Kℓ
𝑙
=⇒

E
𝐸 where 𝑙 ⊲⊳𝜄 𝑙 , then there are 𝑅 and 𝐶2 such that J𝑅Kℓ = 𝑙 , J𝐶2Kℓ = 𝐸, and

𝐶1

𝑅 ∅
==⇒

c
𝐶2.

• If J𝐶1Kℓ1
𝑙1
=⇒

E
𝐸1 and J𝐶2Kℓ2

𝑙2
=⇒

E
𝐸2 where 𝑙1 ⊲⊳ℓ1 .𝑣−→ℓ2 𝑙2, then there are 𝑅 and 𝐶2 such that

(a) J𝐶2Kℓ1 = 𝐸1, (b) J𝐶2Kℓ2 = 𝐸2, (c) J𝑅Kℓ1 = 𝑙1, (d) J𝑅Kℓ2 = 𝑙2, and (e) 𝐶1

𝑅 ∅
==⇒

c
𝐶2.

• If J𝐶1Kℓ1
𝑙1
=⇒

E
𝐸1 and J𝐶2Kℓ2

𝑙2
=⇒

E
𝐸2 where 𝑙1 ⊲⊳ℓ1 [𝑑 ]−→ℓ2 𝑙2, then there are 𝑅 and 𝐶2 such that

(a) J𝐶2Kℓ1 = 𝐸1, (b) J𝐶2Kℓ2 = 𝐸2, (c) J𝑅Kℓ1 = 𝑙1, (d) J𝑅Kℓ2 = 𝑙2, and (e) 𝐶1

𝑅 ∅
==⇒

c
𝐶2.

• If LN (𝐶1) ⊆ 𝔏 ≠ ∅, 𝑙 ⊲⊳𝜄sync 𝑙 , and for every ℓ ∈ 𝔏 J𝐶1Kℓ
𝑙
=⇒

E
𝐸ℓ , then there are 𝑅 and 𝐶2 such

that (a) for every ℓ ∈ 𝔏, J𝑅Kℓ = 𝑙ℓ , and (b) 𝐶1

𝑅 ∅
==⇒

c
𝐶2

The requirement that LN (𝐶1) ⊆ 𝔏 ≠ ∅ may seem unusual in the last case of Theorem 10. In

order to 𝛽-reduce a function call or a subexpression let ℓ .𝑥 B 𝐶1 in 𝐶2 inside a choreography 𝐶 ,

every location in 𝐶 must be able to perform the same 𝛽-reduction. However, if we only require

that every location in LN (𝐶) be able to make a step, the requirement might be trivial if 𝐶 does not

name any locations. Therefore, we require that every location in some nonempty set of locations 𝔏

which contains every location in LN (𝐶) be able to make a step. In the common case where LN (𝐶)
is nonempty, this restriction is the same as the simpler requirement.

Lifting soundness from control programs to systems yields a much simpler theorem. However,

note how the strange requirement for 𝛽-reduction steps infects the theorem:

Theorem 11 (Global Soundness). If LN (𝐶1) ⊆ 𝔏 ≠ ∅ and J𝐶1K𝔏
𝐿
=⇒

S
Π then there is an 𝑅 and 𝐶2

such that (a) J𝐶2K𝔏 ↓, (b) J𝐶2K𝔏 ≤nd Π, (c) J𝑅K = 𝐿, and (d) 𝐶1

𝑅 ∅
==⇒

c
𝐶2.
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We use these to develop the most important theorem for Pirouette (and choreographies in

general): deadlock freedom by design. Interestingly, the proof is a simple interplay of soundness

and completeness for our translation along with type soundness.

Theorem 12 (Deadlock Freedom By Design). If choreography typing enjoys both progress and

preservation (e.g., if local typing is sound), ·; · ⊢ 𝐶1 : 𝜏 , and J𝐶1K𝔏
𝐿𝑠
==⇒

∗

S
Π, then either every location

in Π maps to a control-language value, or there are 𝐿 and Π′
such that Π

𝐿
=⇒

S
Π′

.

Sketch of the mechanized proof. By soundness, there are a list of redices 𝑅𝑠 and a choreog-

raphy 𝐶2 such that 𝐶1

𝑅𝑠 ∅
===⇒

c
𝐶2 and J𝐶2K𝔏 ≤nd Π. By preservation, ·; · ⊢ 𝐶2 : 𝜏 , and by progress

either 𝐶2 is a choreography value or there are 𝑅 and 𝐶3 such that 𝐶2

𝑅 ∅
==⇒

c
𝐶3. If 𝐶2 is a value, then

every location in Π maps to a control-language value, and we are done. Otherwise, completeness

tells us there is a Π′′
such that J𝐶2K𝔏

J𝑅K
===⇒

S
Π′′

. We can then use Theorem 7 to get a Π′
such that

Π
J𝑅K
===⇒

S
Π′

, as desired. □

6 NOTES ON THE COQ CODE
In this paper, we have presented all of our work in a standard, named style. However, in our Coq

code we use a nameless style with de Bruijn indices. While normally this would not pose any

difficulties, we have taken the unusual step of treating the local language generically. Here, we

give the nameless version of our requirements on the local language, ensuring that the transition

to the named style does not create undue confusion.

First, we require that expressions have decidable syntactic equality—usually a trivial requirement,

since programs are usually sentences from a context-free grammar. Next, we formalize the fact that

variables must be expressions by requiring a mathematical function var from natural numbers to

expressions. In all of our examples, this is a terminal in the language, but this is not required. Instead

of the ability to compute the set of free variables of an expression, we require a predicate Closed𝑛 (𝑒),
which means that there are no free variables above 𝑛 in 𝑒 . We require that Closed𝑛 (var(𝑚)) if and
only if𝑚 < 𝑛, and we write Closed(𝑒) for Closed0 (𝑒).

Substitution is changed to allow for infinite parallel substitution. Formally, we require an opera-

tion 𝑒 [𝜎] where 𝜎 is a mathematical function from natural numbers to expressions. This must obey

the following equations:

• var(𝑛) [𝜎] = 𝜎 (𝑛)
• 𝑒 [𝑛 ↦→ var(𝑛)] = 𝑒

• (𝑒 [𝜎1]) [𝜎2] = 𝑒 [𝑛 ↦→ (𝜎1 (𝑛) [𝜎2])]
• if 𝜎1 (𝑛) = 𝜎2 (𝑛) for every natural number 𝑛, then 𝑒 [𝜎1] = 𝑒 [𝜎2]

The last requirement is important because Coq is an intensional type theory, so functions that

behave the same on all inputs are not necessarily equal. The other three equations are nameless

versions of the equations in Section 2.

Finally, we require an additional renaming operation, which we write 𝑒 ⟨𝜉⟩, where 𝜉 is a math-

ematical function from natural numbers to natural numbers. This must satisfy the equation

𝑒 ⟨𝜉⟩ = 𝑒 [𝑛 ↦→ var(𝜉 (𝑛))]. While this equation could serve as a definition of renaming, it is

often useful to define and reason about it separately. For instance, we can use renaming to define

exchange and weakening in typing.
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Typing judgments in the nameless setting use contexts which are mathematical functions from

natural numbers to types. The requirements in Figure 1 are then equivalent to the following

requirements:

Var

Γ ⊢ var(𝑛) : Γ(𝑛)

Extensionality

∀𝑛, Γ(𝑛) = Δ(𝑛) Γ ⊢ 𝑒 : 𝑡
Δ ⊢ 𝑒 : 𝑡

Weakening

Γ ⊢ 𝑒 : 𝑡
Γ ◦ 𝜉 ⊢ 𝑒 ⟨𝜉⟩ : 𝑡

Strengthening

Closed𝑛 (𝑒) ∀𝑚 < 𝑛, Γ(𝑚) = Δ(𝑚) Γ ⊢ 𝑒 : 𝑡
Δ ⊢ 𝑒 : 𝑡

Substitution

∀𝑛, Γ ⊢ 𝜎 (𝑛) : Δ(𝑛) Δ ⊢ 𝑒 : 𝑡
Γ ⊢ 𝑒 [𝜎] : 𝑡

Note that both Exchange and Weakening are absorbed into the more-general Weakening rule.

Moreover, we made Substitution infinitary. The Var and Strengthening rules are straightfor-

ward transformations of the named versions in Figure 1.

7 RELATEDWORK
7.1 Choreographies
Choreographies originate as a way of writing web services. The W3C released a report on chore-

ographies as a way to write web services [(W3C) 2004], which originated the idea of endpoint

projection [Zongyan et al. 2007] (see Cruz-Filipe and Montesi [2017a] for the historical note). Soon,

there was work formalizing and understanding choreographies from this point of view.

Choreographic programming as a paradigm originates withMontesi’s Ph.D. thesis [Montesi 2013].

There, he develops the first choreographic programming language and begins exploring the formal

properties thereof. Later works extend this idea, with Cruz-Filipe and Montesi [2017a] creating

a core calculus of choreographies and Carbone and Montesi [2013] combining choreographies

with session types to ensure that endpoint projection never fails. However these works were all

lower-order, used equivalence-based semantics, and had no mechanized metatheory.

More closely related with this project, Cruz-Filipe and Montesi [2017b] create a choreographic

language with procedures and the ability to make procedure calls. While parts of our endpoint

projection definition are inspired by this work, procedural choreographies remain resolutely lower-

order. Procedures are global and shared, but cannot be treated as data; moreover, they cannot take

other choreographies as inputs nor return them as outputs. However, unlike our functions, these

procedures are able to take locations as inputs. This is harder in our setting because locations are

part of types; we consider polymorphism (including location polymorphism) to be future work.

Some work has been done on higher-order choreographies. The Choral Project [Giallorenzo et al.

2020] builds choreographies on top of object-oriented programming. However, Choral has never

been formalized, and so the theoretical underpinnings of higher-order choreographies were left

unexplored.

Significantly, concurrent and completely independent work on functional choreographies has

recently been undertaken by Cruz-Filipe et al. [2021a]. This work resembles Pirouette in several

ways, but has a significantly different design. Most importantly, they identify the local language with

the choreography language. This design choice allows functions to be sent as messages, but they

require that messages only mention a single location, preventing functions sent as messages from

including communication. It also leads to a simpler system, but prevents them from identifying the

core features of the local language which allow for type soundness of the choreographic language.

Moreover, their operational semantics allows for functions to be reduced; this allows them to not

need as many synchronizations as Pirouette projection requires. However, it violates the common

requirement of call-by-value languages that functions be treated as values and makes execution
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more unpredictable. We preferred to keep the simpler and more-traditional operational semantics.

Finally, they do not have any mechanized formalization of their system.

Mechanization. Two very recent papers have mechanized the metatheory of core choreographies,

but both are lower-order. Cruz-Filipe et al. [2021c] use Coq to formalize the core calculus of

choreographies developed by Cruz-Filipe and Montesi [2017a], modified so that the language of

local computations is a parameter. The focus is on proving that the language is Turing-complete. In

the meantime, Cruz-Filipe et al. [2021b] extend that work to verify (in Coq) endpoint projection

and deadlock freedom of the same language.

Interestingly, both these papers formalize out-of-order execution for choreographies using a

labeled-transition system, similar to ours. As far as we are aware, they, along with a forthcoming

book on choreographies [Montesi 2020] were the first to do so, though our work was formalized

before we discovered their concurrent work. Their work takes inspiration from Honda et al. [2016],

who use a similar labeled-transition system semantics for multiparty session types. Thus, they

do not use any construct similar to our block sets. This means that they cannot allow locations

to locally reduce their messages when the receiver of that message is blocked. While for their

language this does not matter (since messages do not reduce at all), in our setting this would be

problematic.

7.2 Functional Concurrent Programming
There is a long tradition of mixing functional and concurrent programming in principled ways.

In practice, this often leads to languages that look a lot like our control language, including the

concurrency features in Racket [The Racket Team 2021]. The first academic language with channels

and communication in a functional language was Facile [Giacalone et al. 1989]. Even before then,

work on parallelizing compilers for functional programming was popular. Burton [1987] considered

adding annotations to functions describing when arguments should be evaluated at what location.

Currently, the most related academic project might be Links [Cooper et al. 2006] and its core

language, the RPC calculus [Cooper and Wadler 2009]. Links also provides for a mixture of higher-

order typed functional programming and concurrency. However, in Links, communication always

happens at function boundaries, unlike Pirouette. Moreover, the RPC calculus only allows for one

thread of execution, even when multiple unrelated locations can profitably be taking actions. This

is in contradiction to the work on choreographies—and Pirouette in particular—where unrelated

locations can compute and even pass messages concurrently.

Another language which mixes functional and concurrent programming is Murphy VII et al.’s

ML5 [Licata and Harper 2010; Murphy VII et al. 2007]. ML5 has a type system for communication

based on the Kripke semantics of modal logic. Interestingly, our type system also takes inspiration

from modal logic: our type system can be seen as (the Curry-Howard analogue of) a degenerate

form of the proof system for modal logic. Their use of the Kripke semantics makes sense, however,

because different worlds can be viewed as different machines. Unfortunately, this led to difficulties

in shipping some data that could be treated as code, so ML5 focuses on annotating mobile code,

which includes static types like strings and integers, but not functions or local resources like arrays.

This restriction is necessary due to their use of local state. Since Pirouette has no state, is has no

such constraint.
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APPENDICES
A FULL PIROUETTE OPERATIONAL SEMANTICS
A.1 Local Substitution, Defined

𝑋 [ℓ | 𝑥 ↦→ 𝑒] = 𝑋 (ℓ1.𝑒1) [ℓ2| 𝑥 ↦→ 𝑒2] =
{
ℓ1.𝑒1 [𝑥 ↦→ 𝑒2] if ℓ1 = ℓ2
ℓ1.𝑒1 otherwise

(ℓ1 .𝑒1 ⇝ ℓ2.𝑥 ; 𝐶) [ℓ3| 𝑦 ↦→ 𝑒] =



ℓ1 .𝑒1 [𝑥 ↦→ 𝑒2] ⇝ ℓ2.𝑦; 𝐶
if ℓ1 = ℓ2 = ℓ3
and 𝑥 = 𝑦

ℓ1.𝑒1 [𝑦 ↦→ 𝑒2] ⇝ ℓ2 .𝑥 ;

(𝐶 [ℓ3| 𝑦 ↦→ 𝑒])

if ℓ1 = ℓ3
and either ℓ2 ≠ ℓ3

or 𝑥 ≠ 𝑦

ℓ1 .𝑒1 ⇝ ℓ2.𝑥 ; 𝐶

if ℓ1 ≠ ℓ3
and ℓ2 = ℓ3
and 𝑥 = 𝑦

ℓ1.𝑒1 ⇝ ℓ2.𝑥 ;

(𝐶 [ℓ3| 𝑦 ↦→ 𝑒])

if ℓ1 ≠ ℓ3
and either ℓ2 ≠ ℓ3

or 𝑥 ≠ 𝑦

(if ℓ1 .𝑒 then 𝐶1 else 𝐶2) [ℓ2| 𝑥 ↦→ 𝑒] =



if ℓ1 .(𝑒 [𝑥 ↦→ 𝑒])
then (𝐶1 [ℓ2| 𝑥 ↦→ 𝑒])
else (𝐶2 [ℓ2| 𝑥 ↦→ 𝑒])

if ℓ1 = ℓ2

if ℓ1 .𝑒
then (𝐶1 [ℓ2| 𝑥 ↦→ 𝑒])
else (𝐶2 [ℓ2| 𝑥 ↦→ 𝑒])

otherwise

(ℓ1 [𝑑] ⇝ ℓ2; 𝐶) [ℓ3| 𝑥 ↦→ 𝑒] = ℓ1 [𝑑] ⇝ ℓ2; (𝐶 [ℓ3| 𝑥 ↦→ 𝑒])

(let ℓ1.𝑥 B 𝐶1 in 𝐶2) [ℓ2| 𝑦 ↦→ 𝑒] =


let ℓ1 .𝑥 B (𝐶1 [ℓ2| 𝑦 ↦→ 𝑒])
in 𝐶2

if ℓ1 = ℓ2
and 𝑥 = 𝑦

let ℓ1 .𝑥 B (𝐶1 [ℓ2| 𝑦 ↦→ 𝑒])
in (𝐶2 [ℓ2| 𝑦 ↦→ 𝑒]) otherwise

(fun 𝐹 (ℓ1.𝑋 ) B 𝐶) [ℓ2| 𝑦 ↦→ 𝑒] =
{
fun 𝐹 (ℓ1.𝑋 ) B 𝐶 if ℓ1 = ℓ2 and 𝑥 = 𝑦

fun 𝐹 (ℓ1.𝑋 ) B (𝐶 [ℓ2| 𝑦 ↦→ 𝑒]) otherwise

(𝐶 ℓ1.𝑒1) [ℓ2| 𝑥 ↦→ 𝑒2] =
{

(𝐶 [ℓ2| 𝑥 ↦→ 𝑒2]) ℓ1.(𝑒1 [𝑥 ↦→ 𝑒2]) if ℓ1 = ℓ2
(𝐶 [ℓ2| 𝑥 ↦→ 𝑒2]) ℓ1.𝑒1 otherwise

(fun 𝐹 (𝑋 ) B 𝐶) [ℓ | 𝑥 ↦→ 𝑒] = fun 𝐹 (𝑋 ) B (𝐶 [ℓ | 𝑥 ↦→ 𝑒])

(𝐶1 𝐶2) [=] (𝐶1 [ℓ | 𝑥 ↦→ 𝑒]) (𝐶2 [ℓ | 𝑥 ↦→ 𝑒])

A.2 Block-Set Semantics
See Section 3.1 for discussion.
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Redices 𝑅 ::= ℓ .(𝑒1 ⇒ 𝑒2) | if ℓ .(𝑒1 ⇒ 𝑒2) | if ℓ .true | if ℓ .false
| ℓ .(𝑒1 ⇒ 𝑒2) ⇝ ℓ2 | ℓ .(𝑣 value) ⇝ ℓ2 | ℓ [𝑑] ⇝ ℓ2
| let ℓ ≔ (𝑣 value) | LocalArg(ℓ .(𝑒1 ⇒ 𝑒2)) | LocalFun(ℓ .𝑣)
| GlobalFun | Arg(𝑅) | Fun(𝑅)

DoneE

ℓ ∉ 𝐵 𝑒1 ⇒e 𝑒2

ℓ .𝑒1
ℓ .(𝑒1⇒𝑒2) 𝐵
==========⇒

c
ℓ .𝑒2

SendE

ℓ1 ∉ 𝐵 ℓ1 ≠ ℓ2 𝑒1 ⇒e 𝑒2

ℓ1.𝑒1 ⇝ ℓ2.𝑥 ; 𝐶
ℓ1 .(𝑒1⇒𝑒2)⇝ℓ2 𝐵
==============⇒

c
ℓ1 .𝑒2 ⇝ ℓ2.𝑥 ; 𝐶

SendI

𝐶1

𝑅 𝐵∪{ℓ1,ℓ2 }
=========⇒

c
𝐶2

ℓ1 .𝑒 ⇝ ℓ2.𝑥 ; 𝐶1

𝑅 𝐵
===⇒

c
ℓ1.𝑒 ⇝ ℓ2.𝑥 ; 𝐶2

SendV

ℓ1 ∉ 𝐵 ℓ2 ∉ 𝐵 Value(𝑣) ℓ1 ≠ ℓ2

ℓ1.𝑣 ⇝ ℓ2 .𝑥 ; 𝐶
ℓ1 .(𝑣 value)⇝ℓ2 𝐵
==============⇒

c
𝐶 [ℓ2| 𝑥 ↦→ 𝑣]

IfE

ℓ ∉ 𝐵 𝑒1 ⇒e 𝑒2

if ℓ .𝑒1 then 𝐶1 else 𝐶2

if ℓ .(𝑒1⇒𝑒2) 𝐵
===========⇒

c
if ℓ .𝑒2 then 𝐶1 else 𝐶2

IfI

𝐶1

𝑅 𝐵∪{ℓ }
=======⇒

c
𝐶 ′
1

𝐶2

𝑅 𝐵∪{ℓ }
=======⇒

c
𝐶 ′
2

if ℓ .𝑒 then 𝐶1 else 𝐶2

𝑅 𝐵
===⇒

c
if ℓ .𝑒 then 𝐶 ′

1
else 𝐶 ′

2

IfT

ℓ ∉ 𝐵

if ℓ .true then 𝐶1 else 𝐶2

if ℓ .true 𝐵
========⇒

c
𝐶1

IfF

ℓ ∉ 𝐵

if ℓ .false then 𝐶1 else 𝐶2

if ℓ .true 𝐵
========⇒

c
𝐶2

DefLocalI

𝐶1

𝑅 𝐵
===⇒

c
𝐶 ′
1

let ℓ .𝑥 B 𝐶1 in 𝐶2

Arg(𝑅) 𝐵
=======⇒

c
let ℓ .𝑥 B 𝐶 ′

1
in 𝐶2

DefLocal

Value(𝑣)

let ℓ .𝑥 B ℓ .𝑣 in 𝐶
let ℓ≔(𝑣 value) 𝐵
==============⇒

c
𝐶 [ℓ | 𝑥 ↦→ 𝑣]

AppLocalFun

𝐶1

𝑅 𝐵
===⇒

c
𝐶2

𝐶1 ℓ .𝑒
Fun(𝑅) 𝐵
=======⇒

c
𝐶2 ℓ .𝑒
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AppLocalArg

ℓ ∉ 𝐵 𝑒1 ⇒e 𝑒2

𝐶 ℓ.𝑒1
LocalArg(ℓ .(𝑒1⇒𝑒2)) 𝐵
===================⇒

c
𝐶 ℓ.𝑒2

AppLocal

Value(𝑣)

(fun 𝐹 (ℓ .𝑥) B 𝐶) ℓ .𝑒
LocalFun(ℓ .𝑣) ∅
=============⇒

c
𝐶 [ℓ | 𝑥 ↦→ 𝑣] [𝐹 ↦→ fun 𝐹 (ℓ .𝑥) B 𝐶]

AppGlobalFun

𝐶1

𝑅 𝐵
===⇒

c
𝐶 ′
1

𝐶1 𝐶2

Fun(𝑅) 𝐵
=======⇒

c
𝐶 ′
1
𝐶2

AppGlobalArg

𝐶2

𝑅 𝐵
===⇒

c
𝐶 ′
2

𝐶1 𝐶2

Arg(𝑅) 𝐵
=======⇒

c
𝐶1 𝐶

′
2

AppGlobal

Value(𝑉 )

(fun 𝐹 (𝑋 ) B 𝐶) 𝑉 GlobalFun ∅
==========⇒

c
𝐶 [𝑋 ↦→ 𝑉 , 𝐹 ↦→ fun 𝐹 (𝑋 ) B 𝐶]

SyncI

𝐶1

𝑅 𝐵∪{ℓ1,ℓ2 }
=========⇒

c
𝐶2

ℓ1 [𝑑] ⇝ ℓ2; 𝐶1

𝑅 𝐵
===⇒

c
ℓ1 [𝑑] ⇝ ℓ2; 𝐶2

Sync

ℓ1 ∉ 𝐵 ℓ2 ∉ 𝐵 ℓ1 ≠ ℓ2

ℓ1 [𝑑] ⇝ ℓ2; 𝐶
𝑅 𝐵
===⇒

c
𝐶

A.3 Weak Block-Set Semantics
See Section 4 for discussion.

DoneE

𝑒1 ⇒e 𝑒2

ℓ .𝑒1
ℓ .(𝑒1⇒𝑒2) ∅
==========⇒

w
ℓ .𝑒2

SendE

ℓ1 ∉ 𝐵 ℓ2 ∉ 𝐵 ℓ1 ≠ ℓ2 𝑒1 ⇒e 𝑒2

ℓ1.𝑒1 ⇝ ℓ2.𝑥 ; 𝐶
ℓ1 .(𝑒1⇒𝑒2)⇝ℓ2 𝐵
==============⇒

w
ℓ1.𝑒2 ⇝ ℓ2 .𝑥 ; 𝐶

SendI

𝐶1

𝑅 𝐵∪{ℓ1,ℓ2 }
=========⇒

w
𝐶2

ℓ1.𝑒 ⇝ ℓ2.𝑥 ; 𝐶1

𝑅 𝐵
===⇒

w
ℓ1.𝑒 ⇝ ℓ2.𝑥 ; 𝐶2

SendV

ℓ1 ∉ 𝐵 ℓ2 ∉ 𝐵 Value(𝑣) ℓ1 ≠ ℓ2

ℓ1 .𝑣 ⇝ ℓ2.𝑥 ; 𝐶
ℓ1 .(𝑣 value)⇝ℓ2 𝐵
==============⇒

w
𝐶 [ℓ2| 𝑥 ↦→ 𝑣]

IfE

ℓ ∉ 𝐵 𝑒1 ⇒e 𝑒2

if ℓ .𝑒1 then 𝐶1 else 𝐶2

if ℓ .(𝑒1⇒𝑒2) 𝐵
===========⇒

w
if ℓ .𝑒2 then 𝐶1 else 𝐶2
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IfI

𝐶1

𝑅 𝐵∪{ℓ }
=======⇒

w
𝐶 ′
1

𝐶2

𝑅 𝐵∪{ℓ }
=======⇒

w
𝐶 ′
2

if ℓ .𝑒 then 𝐶1 else 𝐶2

𝑅 𝐵
===⇒

w
if ℓ .𝑒 then 𝐶 ′

1
else 𝐶 ′

2

IfT

ℓ ∉ 𝐵

if ℓ .true then 𝐶1 else 𝐶2

if ℓ .true 𝐵
========⇒

w
𝐶1

IfF

ℓ ∉ 𝐵

if ℓ .false then 𝐶1 else 𝐶2

if ℓ .true 𝐵
========⇒

w
𝐶2

DefLocalI

𝐶1

𝑅 ∅
==⇒

w
𝐶 ′
1

let ℓ .𝑥 B 𝐶1 in 𝐶2

Arg(𝑅) ∅
=======⇒

w
let ℓ .𝑥 B 𝐶 ′

1
in 𝐶2

DefLocal

Value(𝑣)

let ℓ .𝑥 B ℓ .𝑣 in 𝐶
let ℓ≔(𝑣 value) ∅
==============⇒

w
𝐶 [𝑐 | ℓ | 𝑥 ↦→ 𝑣]

AppLocalFun

𝐶1

𝑅 ∅
==⇒

w
𝐶2

𝐶1 ℓ .𝑒
Fun(𝑅) ∅
=======⇒

w
𝐶2 ℓ .𝑒

AppLocalArg

𝑒1 ⇒e 𝑒2

𝐶 ℓ.𝑒1
LocalArg(ℓ .(𝑒1⇒𝑒2)) ∅
===================⇒

w
𝐶 ℓ.𝑒2

AppLocal

Value(𝑣)

(fun 𝐹 (ℓ .𝑥) B 𝐶) ℓ .𝑒
LocalFun(ℓ .𝑣) ∅
=============⇒

w
𝐶 [ℓ | 𝑥 ↦→ 𝑣] [𝐹 ↦→ fun 𝐹 (ℓ .𝑥) B 𝐶]

AppGlobalFun

𝐶1

𝑅 ∅
==⇒

w
𝐶 ′
1

𝐶1 𝐶2

Fun(𝑅) ∅
=======⇒

w
𝐶 ′
1
𝐶2

AppGlobalArg

𝐶2

𝑅 ∅
==⇒

w
𝐶 ′
2

𝐶1 𝐶2

Arg(𝑅) ∅
=======⇒

w
𝐶1 𝐶

′
2

AppGlobal

Value(𝑉 )

(fun 𝐹 (𝑋 ) B 𝐶) 𝑉 GlobalFun ∅
==========⇒

w
𝐶 [𝑋 ↦→ 𝑉 , 𝐹 ↦→ fun 𝐹 (𝑋 ) B 𝐶]

SyncI

𝐶1

𝑅 𝐵∪{ℓ1,ℓ2 }
=========⇒

w
𝐶2

ℓ1 [𝑑] ⇝ ℓ2; 𝐶1

𝑅 𝐵
===⇒

w
ℓ1 [𝑑] ⇝ ℓ2; 𝐶2

Sync

ℓ1 ∉ 𝐵 ℓ2 ∉ 𝐵 ℓ1 ≠ ℓ2

ℓ1 [𝑑] ⇝ ℓ2; 𝐶
𝑅 𝐵
===⇒

w
𝐶
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A.4 Equivalence-Based Semantics
See Section 4 for discussion.

EqivStep

𝐶1 ≡ 𝐶 ′
1

𝐶 ′
1
⇒≡ 𝐶 ′

2
𝐶 ′
2
≡ 𝐶2

𝐶1 ⇒≡ 𝐶2

DoneE

𝑒1 ⇒e 𝑒2

ℓ .𝑒1 ⇒≡ ℓ .𝑒2

SendE

𝑒1 ⇒e 𝑒2 ℓ1 ≠ ℓ2

ℓ1.𝑒1 ⇝ ℓ2.𝑥 ; 𝐶 ⇒≡ ℓ1.𝑒2 ⇝ ℓ2.𝑥 ; 𝐶

SendV

Value(𝑣) ℓ1 ≠ ℓ2

ℓ1.𝑣 ⇝ ℓ2.𝑥 ; 𝐶 ⇒≡ 𝐶 [ℓ2| 𝑥 ↦→ 𝑣]

IfE

𝑒1 ⇒e 𝑒2

if ℓ .𝑒1 then 𝐶1 else 𝐶2 ⇒≡ if ℓ .𝑒2 then 𝐶1 else 𝐶2

IfTrue

if ℓ .true then 𝐶1 else 𝐶2 ⇒≡ 𝐶1

IfFalse

if ℓ .false then 𝐶1 else 𝐶2 ⇒≡ 𝐶2

Sync

ℓ1 ≠ ℓ2

ℓ1 [𝑑] ⇝ ℓ2; 𝐶 ⇒≡ 𝐶

DefLocalArg

𝐶1 ⇒≡ 𝐶 ′
1

let ℓ .𝑥 B 𝐶1 in 𝐶2 ⇒≡ let ℓ .𝑥 B 𝐶 ′
1
in 𝐶2

DefLocal

Value(𝑣)
let ℓ .𝑥 B ℓ .𝑣 in 𝐶 ⇒≡ 𝐶 [ℓ | 𝑥 ↦→ 𝑣]

AppLocalFun

𝐶1 ⇒≡ 𝐶2

𝐶1 ℓ .𝑒 ⇒≡ 𝐶2 ℓ .𝑒

AppLocalArg

𝑒1 ⇒e 𝑒2

𝐶 ℓ.𝑒1 ⇒≡ 𝐶 ℓ.𝑒2

AppLocal

Value(𝑣)
(fun 𝐹 (ℓ .𝑥) B 𝐶) ℓ .𝑣 ⇒≡ 𝐶 [ℓ | 𝑥 ↦→ 𝑣]

AppGlobalFun

𝐶1 ⇒≡ 𝐶 ′
1

𝐶1 𝐶2 ⇒≡ 𝐶 ′
1
𝐶2

AppGlobalArg

𝐶2 ⇒≡ 𝐶 ′
2

𝐶1 𝐶2 ⇒≡ 𝐶1 𝐶
′
2

AppGlobal

Value(𝑉 )
(fun 𝐹 (𝑋 ) B 𝐶) 𝑉 ⇒≡ 𝐶 [𝑋 ↦→ 𝐶]

B FULL CHOREOGRAPHY TYPE SYSTEM
Done

Γ |ℓ ⊢ 𝑒 : 𝑡
Γ; Δ ⊢ ℓ .𝑒 : ℓ .𝑡

Var

𝑋 : 𝜏 ∈ Δ

Γ; Δ ⊢ 𝑋 : 𝜏

Send

Γ |ℓ ⊢ 𝑒 : 𝑡1 Γ, ℓ2.𝑥 : 𝑡1; Δ ⊢ 𝐶 : 𝜏2 ℓ ≠ ℓ2

Γ; Δ ⊢ ℓ .𝑒 ⇝ ℓ2.𝑥 ; 𝐶 : 𝜏2

Sync

Γ; Δ ⊢ 𝐶 : 𝜏 ℓ ≠ ℓ2

Γ; Δ ⊢ ℓ [𝑑] ⇝ ℓ2; 𝐶 : 𝜏

If

Γ |ℓ ⊢ 𝑒 : bool Γ; Δ ⊢ 𝐶1 : 𝜏 Γ; Δ ⊢ 𝐶2 : 𝜏

Γ; Δ ⊢ if ℓ .𝑒 then 𝐶1 else 𝐶2 : 𝜏

DefLocal

Γ; Δ ⊢ 𝐶1 : ℓ .𝑡1 Γ, ℓ .𝑥 : 𝑡1; Δ ⊢ 𝐶2 : 𝜏2

Γ; Δ ⊢ let ℓ .𝑥 B 𝐶1 in 𝐶2 : 𝜏2

FunLocal

Γ, ℓ .𝑥 : 𝑡1; Δ, 𝐹 : 𝑡1@ℓ → 𝜏2 ⊢ 𝐶 : 𝜏2

Γ; Δ ⊢ fun 𝐹 (ℓ .𝑥) B 𝐶 : 𝑡1@ℓ → 𝜏2

FunGlobal

Γ; Δ, 𝐹 : 𝜏1 → 𝜏2, 𝑋 : 𝜏1 ⊢ 𝐶 : 𝜏2

Γ; Δ ⊢ fun 𝐹 (𝑋 ) B 𝐶 : 𝜏1 → 𝜏2

AppLocal

Γ |ℓ ⊢ 𝑒 : 𝑡1 Γ; Δ ⊢ 𝐶 : 𝑡1@ℓ → 𝜏2

Γ; Δ ⊢ 𝐶 ℓ.𝑒 :

AppGlobal

Γ; Δ ⊢ 𝐶1 : 𝜏1 → 𝜏2 Γ; Δ ⊢ 𝐶2 : 𝜏1

Γ; Δ ⊢ 𝐶1 𝐶2 : 𝜏2
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C FULL DEFINITION OF CHOREOGRAPHY EQUIVALENCE

Trans

𝐶1 ≡ 𝐶2 𝐶2 ≡ 𝐶3

𝐶1 ≡ 𝐶3

VarRefl

𝑋 ≡ 𝑋

DoneRefl

ℓ .𝑒 ≡ ℓ .𝑒

SendCong

𝐶1 ≡ 𝐶2

ℓ1.𝑒 ⇝ ℓ2.𝑥 ; 𝐶1 ≡ ℓ1 .𝑒 ⇝ ℓ2 .𝑥 ; 𝐶2

SyncCong

𝐶1 ≡ 𝐶2

ℓ1 [𝑑] ⇝ ℓ2; 𝐶1 ≡ ℓ1 [𝑑] ⇝ ℓ2; 𝐶2

IfCong

𝐶1,1 ≡ 𝐶1,2 𝐶2,1 ≡ 𝐶2,2

if ℓ .𝑒 then 𝐶1,1 else 𝐶2,1 ≡ if ℓ .𝑒 then 𝐶1,2 else 𝐶2,2

DefLocalCong

𝐶1,1 ≡ 𝐶1,2 𝐶2,1 ≡ 𝐶2,2

let ℓ .𝑥 B 𝐶1,1 in 𝐶2,1 ≡ let ℓ .𝑥 B 𝐶1,2 in 𝐶2,2

FunLocalCong

𝐶1 ≡ 𝐶2

fun 𝐹 (ℓ .𝑥) B 𝐶1 ≡ fun 𝐹 (ℓ .𝑥) B 𝐶2

FunGlobalCong

𝐶1 ≡ 𝐶2

fun 𝐹 (𝑋 ) B 𝐶1 ≡ fun 𝐹 (𝑋 ) B 𝐶2

AppLocalCong

𝐶1 ≡ 𝐶2

𝐶1 ℓ .𝑒 ≡ 𝐶2 ℓ .𝑒

AppGlobalCong

𝐶1,1 ≡ 𝐶1,2 𝐶2,1 ≡ 𝐶2,2

𝐶1,1 𝐶2,1 ≡ 𝐶1,2 𝐶2,2

SwapSendSend

ℓ1 ≠ ℓ3 ℓ2 ≠ ℓ3 ℓ1 ≠ ℓ4 ℓ2 ≠ ℓ4

ℓ1.𝑒1 ⇝ ℓ2.𝑥 ;

ℓ3.𝑒2 ⇝ ℓ4.𝑦;

𝐶

≡
ℓ3.𝑒2 ⇝ ℓ4 .𝑦;

ℓ1.𝑒1 ⇝ ℓ2 .𝑥 ;

𝐶

SwapSendSync

ℓ1 ≠ ℓ3 ℓ2 ≠ ℓ3 ℓ1 ≠ ℓ4 ℓ2 ≠ ℓ4

ℓ1 .𝑒 ⇝ ℓ2 .𝑥 ;

ℓ3 [𝑑] ⇝ ℓ4;

𝐶

≡
ℓ3 [𝑑] ⇝ ℓ4;

ℓ1.𝑒 ⇝ ℓ2.𝑥 ;

𝐶

SwapSyncSend

ℓ1 ≠ ℓ3 ℓ2 ≠ ℓ3 ℓ1 ≠ ℓ4 ℓ2 ≠ ℓ4

ℓ1 [𝑑] ⇝ ℓ2;

ℓ3 .𝑒 ⇝ ℓ4.𝑥 ;

𝐶

≡
ℓ3.𝑒 ⇝ ℓ4.𝑥 ;

ℓ1 [𝑑] ⇝ ℓ2;

𝐶

SwapSendIf

ℓ1 ≠ ℓ3 ℓ2 ≠ ℓ3

ℓ1 .𝑒1 ⇝ ℓ2.𝑥 ;

if ℓ3 .𝑒2
then 𝐶1

else 𝐶2

≡

if ℓ3.𝑒2
then ℓ1.𝑒1 ⇝ ℓ2.𝑥 ;

𝐶1

else ℓ1 .𝑒1 ⇝ ℓ2.𝑥 ;

𝐶2

SwapIfSend

ℓ1 ≠ ℓ2 ℓ1 ≠ ℓ3

if ℓ1.𝑒1
then ℓ2.𝑒2 ⇝ ℓ3 .𝑥 ;

𝐶1

else ℓ2.𝑒2 ⇝ ℓ3 .𝑥 ;

𝐶2

≡

ℓ2.𝑒2 ⇝ ℓ3.𝑥 ;

if ℓ1 .𝑒
then 𝐶1

else 𝐶2

SwapSyncSync

ℓ1 ≠ ℓ3 ℓ2 ≠ ℓ3 ℓ1 ≠ ℓ4 ℓ2 ≠ ℓ4

ℓ1 [𝑑] ⇝ ℓ2;

ℓ3 [𝑑 ′] ⇝ ℓ4;

𝐶

≡
ℓ3 [𝑑 ′] ⇝ ℓ4;

ℓ1 [𝑑] ⇝ ℓ2;

𝐶
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SwapSyncIf

ℓ1 ≠ ℓ3 ℓ2 ≠ ℓ3

ℓ1 [𝑑] ⇝ ℓ2;

if ℓ3.𝑒
then 𝐶1

else 𝐶2

≡

if ℓ3.𝑒
then ℓ1 [𝑑] ⇝ ℓ2;

𝐶1

else ℓ1 [𝑑] ⇝ ℓ2;

𝐶2

SwapIfSync

ℓ1 ≠ ℓ2 ℓ1 ≠ ℓ3

if ℓ1.𝑒
then ℓ2 [𝑑] ⇝ ℓ3;

𝐶1

else ℓ2 [𝑑] ⇝ ℓ3;

𝐶2

≡

ℓ2 [𝑑] ⇝ ℓ3;

if ℓ1.𝑒
then 𝐶1

else 𝐶2

SwapIfIf

ℓ1 ≠ ℓ2

if ℓ1 .𝑒1
then if ℓ2 .𝑒2

then 𝐶1

else 𝐶2

else if ℓ2.𝑒2
then 𝐶3

else 𝐶4

≡

if ℓ2.𝑒2
then if ℓ1.𝑒1

then 𝐶1

else 𝐶3

else if ℓ1.𝑒1
then 𝐶2

else 𝐶4

D CONTROL LANGUAGE OPERATIONAL SEMANTICS

Label 𝑙 ::= 𝜄 | 𝑣 ⇝ ℓ | ℓ : 𝑣 ⇝ 𝑥 | [𝑑] ⇝ ℓ | ℓ : [𝑑] | 𝜄sync | Fun(𝑙) | Arg(𝑙)

RetE

𝑒1 ⇒e 𝑒2

ret(𝑒1)
𝜄
=⇒

E
ret(𝑒2)

IfE

𝑒1 ⇒e 𝑒2

if 𝑒1 then 𝐸1 else 𝐸2
𝜄
=⇒

E
if 𝑒2 then 𝐸1 else 𝐸2

IfTrue

if true then 𝐸1 else 𝐸2
𝜄
=⇒

E
𝐸1

IfFalse

if false then 𝐸1 else 𝐸2
𝜄
=⇒

E
𝐸2

SendE

𝑒1 ⇒e 𝑒2

send 𝑒1 to ℓ ; 𝐸
𝜄
=⇒

E
send 𝑒2 to ℓ ; 𝐸

SendV

Value(𝑣)

send 𝑣 to ℓ ; 𝐸
𝑣⇝ℓ
====⇒

E
𝐸

RecvV

Value(𝑣)

receive 𝑥 from ℓ ; 𝐸
ℓ : 𝑣⇝𝑥
======⇒

E
𝐸 [𝑥 ↦→ 𝑣]

Choose

choose 𝑑 for ℓ ; 𝐸
[𝑑 ]⇝ℓ
======⇒

E
𝐸

AllowChoiceL

allow ℓ choice | L ⇒ 𝐸1 | R ⇒ 𝐸2
ℓ : [L]
=====⇒

E
𝐸1

AllowChoiceR

allow ℓ choice | L ⇒ 𝐸1 | R ⇒ 𝐸2
ℓ : [R]
=====⇒

E
𝐸2

LetRetArg

𝐸1
𝑙
=⇒

E
𝐸 ′
1

let ret(𝑥) B 𝐸1 in 𝐸2
Arg(𝑙)
=====⇒

E
let ret(𝑥) B 𝐸 ′

1
in 𝐸2

LetRet

Value(𝑣)

let ret(𝑥) B ret(𝑣) in 𝐸2
𝜄sync
====⇒

E
𝐸2 [𝑥 ↦→ 𝑣]
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AppLocalFun

𝐹1
𝑙
=⇒

E
𝐹2

𝐹1 𝑒
Fun(𝑙)
======⇒

E
𝐹2 𝑒

AppLocalArg

𝑒1 ⇒e 𝑒2

𝐹 𝑒1
𝜄
=⇒

E
𝐹 𝑒2

AppLocal

Value(𝑣)

(funl 𝐹 (𝑥) B 𝐸) 𝑣
𝜄sync
====⇒

E
𝐸 [𝑥 ↦→ 𝑣]

AppGlobalFun

𝐹1
𝑙
=⇒

E
𝐹2

𝐹1 𝐴
Fun(𝑙)
======⇒

E
𝐹2 𝐴

AppGlobalArg

𝐴1

𝑙
=⇒

E
𝐴2

𝐹 𝐴1

Arg(𝑙)
=====⇒

E
𝐹 𝐴2

AppGlobal

Value(𝑉 )(
fung 𝐹 (𝑋 ) B 𝐸

)
𝑉

𝜄sync
====⇒

E
𝐸 [𝑋 ↦→ 𝑉 ]

E CONTROL PROGRAMMERGE DEFINITION
If there is no pattern below such that 𝐸1 ⊔ 𝐸2 = 𝐸3, then (𝐸1 ⊔ 𝐸2) ↑.

𝑋 ⊔ 𝑋 ≜ 𝑋 ( ) ⊔ ( ) ≜ ( ) ret(𝑒) ⊔ ret(𝑒) ≜ ret(𝑒)

(if 𝑒 then 𝐸1,1 else 𝐸1,2) ⊔ (if 𝑒 then 𝐸2,1 else 𝐸2,2) ≜ if 𝑒 then 𝐸1,1 ⊔ 𝐸2,1 else 𝐸1,2 ⊔ 𝐸2,2

(send 𝑒 to ℓ ; 𝐸1) ⊔ (send 𝑒 to ℓ ; 𝐸2) ≜ send 𝑒 to ℓ ; 𝐸1 ⊔ 𝐸2

(receive 𝑥 from ℓ ; 𝐸1) ⊔ (receive 𝑥 from ℓ ; 𝐸2) ≜ receive 𝑥 from ℓ ; 𝐸1 ⊔ 𝐸2

(choose 𝑑 for ℓ ; 𝐸1) ⊔ (choose 𝑑 for ℓ ; 𝐸2) ≜ choose 𝑑 for ℓ ; 𝐸1 ⊔ 𝐸2(
allow ℓ choice
|L ⇒ 𝐸1

)
⊔

(
allow ℓ choice
|L ⇒ 𝐸2

)
≜

allow ℓ choice
|L ⇒ 𝐸1 ⊔ 𝐸2

(
allow ℓ choice
|L ⇒ 𝐸1

)
⊔

(
allow ℓ choice
|R ⇒ 𝐸2

)
≜

allow ℓ choice
|L ⇒ 𝐸1
|R ⇒ 𝐸2

(
allow ℓ choice
|L ⇒ 𝐸1

)
⊔
©­­­«
allow ℓ choice
|L ⇒ 𝐸2,1
|R ⇒ 𝐸2,2

ª®®®¬ ≜
allow ℓ choice
|L ⇒ 𝐸1 ⊔ 𝐸2,1
|R ⇒ 𝐸2,2

(
allow ℓ choice
|R ⇒ 𝐸1

)
⊔

(
allow ℓ choice
|L ⇒ 𝐸2

)
≜

allow ℓ choice
|L ⇒ 𝐸2
|R ⇒ 𝐸1

(
allow ℓ choice
|R ⇒ 𝐸1

)
⊔

(
allow ℓ choice
|R ⇒ 𝐸2

)
≜

allow ℓ choice
|R ⇒ 𝐸1 ⊔ 𝐸2

(
allow ℓ choice
|R ⇒ 𝐸1

)
⊔
©­­­«
allow ℓ choice
|L ⇒ 𝐸2,1
|R ⇒ 𝐸2,2

ª®®®¬ ≜
allow ℓ choice
|L ⇒ 𝐸2,1
|R ⇒ 𝐸1 ⊔ 𝐸2,2
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©­­­«
allow ℓ choice
|L ⇒ 𝐸1,1
|R ⇒ 𝐸1,2

ª®®®¬ ⊔
(
allow ℓ choice
|L ⇒ 𝐸2

)
≜

allow ℓ choice
|L ⇒ 𝐸1,1 ⊔ 𝐸2
|R ⇒ 𝐸1,2

©­­­«
allow ℓ choice
|L ⇒ 𝐸1,1
|R ⇒ 𝐸1,2

ª®®®¬ ⊔
(
allow ℓ choice
|R ⇒ 𝐸2

)
≜

allow ℓ choice
|L ⇒ 𝐸1,1
|R ⇒ 𝐸1,2 ⊔ 𝐸2

©­­­«
allow ℓ choice
|L ⇒ 𝐸1,1
|R ⇒ 𝐸1,2

ª®®®¬ ⊔
©­­­«
allow ℓ choice
|L ⇒ 𝐸2,1
|R ⇒ 𝐸2,2

ª®®®¬ ≜
allow ℓ choice
|L ⇒ 𝐸1,1 ⊔ 𝐸2,1
|R ⇒ 𝐸1,2 ⊔ 𝐸2,2

(let ret(𝑥) B 𝐸1,1 in 𝐸1,2) ⊔ (let ret(𝑥) B 𝐸2,1 in 𝐸2,2) ≜ let ret(𝑥) B 𝐸1,1 ⊔ 𝐸2,1 in 𝐸1,2 ⊔ 𝐸2,2

(fun 𝐹 (ℓ .𝑥) B 𝐸) ⊔ (fun 𝐹 (ℓ .𝑥) B 𝐸) ≜ fun 𝐹 (ℓ .𝑥) B 𝐸

(fun 𝐹 (𝑋 ) B 𝐸) ⊔ (fun 𝐹 (𝑋 ) B 𝐸) ≜ fun 𝐹 (𝑋 ) B 𝐸

(𝐸1 ℓ .𝑒) ⊔ (𝐸2 ℓ .𝑒) ≜ 𝐸1 ⊔ 𝐸2 ℓ .𝑒 (𝐸1,1 𝐸1,2) ⊔ (𝐸2,1 𝐸2,2) ≜ (𝐸1,1 ⊔ 𝐸2,1) (𝐸1,2 ⊔ 𝐸2,2)

F THE LESS-NONDETERMINISM RELATION

𝑋 ≤nd 𝑋 ( ) ≤nd ( ) ret(𝑒) ≤nd ret(𝑒)

𝐸1,1 ≤nd 𝐸2,1 𝐸1,2 ≤nd 𝐸2,2

if 𝑒 then 𝐸1,1 else 𝐸1,2 ≤nd if 𝑒 then 𝐸2,1 else 𝐸2,2

𝐸1 ≤nd 𝐸2

send 𝑒 to ℓ ; 𝐸1 ≤nd send 𝑒 to ℓ ; 𝐸2

𝐸1 ≤nd 𝐸2

receive 𝑥 from ℓ ; 𝐸1 ≤nd receive 𝑥 from ℓ ; 𝐸2

𝐸1 ≤nd 𝐸2

choose 𝑑 for ℓ ; 𝐸1 ≤nd choose 𝑑 for ℓ ; 𝐸2

𝐸1 ≤nd 𝐸2

allow ℓ choice | L ⇒ 𝐸1 ≤nd allow ℓ choice | L ⇒ 𝐸2,1

𝐸1 ≤nd 𝐸2,1

allow ℓ choice | L ⇒ 𝐸1 ≤nd allow ℓ choice | L ⇒ 𝐸2,1 | R ⇒ 𝐸2,2

𝐸1 ≤nd 𝐸2

allow ℓ choice | R ⇒ 𝐸1 ≤nd allow ℓ choice | R ⇒ 𝐸2,1

𝐸1 ≤nd 𝐸2,2

allow ℓ choice | R ⇒ 𝐸1 ≤nd allow ℓ choice | L ⇒ 𝐸2,1 | R ⇒ 𝐸2,2
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𝐸1,1 ≤nd 𝐸2,1 𝐸1,2 ≤nd 𝐸2,2

allow ℓ choice | L ⇒ 𝐸1,1 | R ⇒ 𝐸1,2 ≤nd allow ℓ choice | L ⇒ 𝐸2,1 | R ⇒ 𝐸2,2

𝐸1,1 ≤nd 𝐸2,1 𝐸1,2 ≤nd 𝐸2,2

let ret(𝑥) B 𝐸1,1 in 𝐸1,2 ≤nd let ret(𝑥) B 𝐸2,1 in 𝐸2,2 funl 𝐹 (𝑥) B 𝐸 ≤nd funl 𝐹 (𝑥) B 𝐸

𝐸1 ≤nd 𝐸2

𝐸1 𝑒 ≤nd 𝐸2 𝑒 fung 𝐹 (𝑋 ) B 𝐸 ≤nd fung 𝐹 (𝑋 ) B 𝐸

𝐸1,1 ≤nd 𝐸2,1 𝐸1,2 ≤nd 𝐸2,2

𝐸1,1 𝐸1,2 ≤nd 𝐸2,1 𝐸2,2

G ADDITIONAL THEOREMS
G.1 Additional Properties of the Pirouette Type System
While we do not explicitly supply the structural rules, our type system admits them:

Theorem 13 (Pirouette Types Structural Rules). The choreographic type system admits weakening,

exchange, and strengthening in both contexts. In other words, the following rules are admissible:

Local Exchange

Γ, ℓ1 .𝑥 : 𝑡1, ℓ2.𝑦 : 𝑡2, Γ
′
; Δ ⊢ 𝐶 : 𝜏3

Γ, ℓ2 .𝑦 : 𝑡2, ℓ1 .𝑥 : 𝑡1, Γ
′
; Δ ⊢ 𝐶 : 𝜏3

Global Exchange

Γ; Δ, 𝑋 : 𝜏1, 𝑌 : 𝜏2,Δ
′ ⊢ 𝐶 : 𝜏3

Γ; Δ, 𝑌 : 𝜏2, 𝑋 : 𝜏1,Δ
′ ⊢ 𝐶 : 𝜏3

Local Weakening

Γ; Δ ⊢ 𝐶 : 𝜏1

Γ, ℓ .𝑥 : 𝑡2; Δ ⊢ 𝐶 : 𝜏1

Global Weakening

Γ; Δ ⊢ 𝐶 : 𝜏1

Γ; Δ, 𝑋 : 𝜏2 ⊢ 𝐶 : 𝜏1

Local Strengthening

Γ, ℓ .𝑥 : 𝑡1; Δ ⊢ 𝐶 : 𝜏2 𝑥 ∉ FEVℓ (𝐶)
Γ; Δ ⊢ 𝐶 : 𝜏2

Global Strengthening

Γ; Δ, 𝑋 : 𝜏1 ⊢ 𝐶 : 𝜏2 𝑋 ∉ FCV(𝐶)
Γ; Δ ⊢ 𝐶 : 𝜏2

G.2 Additional Properties of Choreography Equivalence
Our syntactic operations respect choreography equivalence:

Theorem 14 (Equivalence of Syntactic Operations). If𝐶1 ≡ 𝐶 ′
1
and𝐶2 ≡ 𝐶 ′

2
, then all of the following

statements are true:

• FEV(𝐶1) = FEV(𝐶 ′
1
)

• 𝐹𝐶𝑉 (𝐶1) = FCV(𝐶 ′
1
)

• LN (𝐶1) = LN
(
𝐶 ′
1

)
• if 𝐶1 is a value, then so is 𝐶 ′

1

• 𝐶1 [ℓ | 𝑥 ↦→ 𝑒] ≡ 𝐶 ′
1
[ℓ | 𝑥 ↦→ 𝑒]

• 𝐶1 [𝑋 ↦→ 𝐶2] ≡ 𝐶 ′
1
[𝑋 ↦→ 𝐶 ′

2
]

G.3 Additional Properties of Merging
Theorem 15. The following are true for all 𝐸, 𝐸1, 𝐸2, and 𝐸3:

• 𝐸 ⊔ 𝐸 = 𝐸

• 𝐸1 ⊔ 𝐸2 = 𝐸2 ⊔ 𝐸1
• (𝐸1 ⊔ 𝐸2) ⊔ 𝐸3 = 𝐸1 ⊔ (𝐸2 ⊔ 𝐸3)

Theorem 16. The following are true for all control-language expressions 𝐸, 𝐸1, and 𝐸2, along with
all control-language values 𝑉 .
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• FV(𝐸1 ⊔ 𝐸2) = FV(𝐸1) ∪ FV(𝐸2)
• FEV(𝐸1 ⊔ 𝐸2) = FEV(𝐸1) ∪ FEV(𝐸2)
• (𝐸1 [𝑥 ↦→ 𝑒]) ⊔ (𝐸2 [𝑥 ↦→ 𝑒]) = (𝐸1 ⊔ 𝐸2) [𝑥 ↦→ 𝑒]
• (𝐸1 [𝑋 ↦→ 𝐸]) ⊔ (𝐸2 [𝑋 ↦→ 𝐸]) = (𝐸1 ⊔ 𝐸2) [𝑋 ↦→ 𝐸]
• Either (𝑉 ⊔ 𝐸) ↑ or 𝐸 = 𝑉 = 𝑉 ⊔ 𝐸 = 𝐸 ⊔ 𝑉

• If 𝐸1 ⊔ 𝐸2 = 𝑉 , then 𝐸1 = 𝐸2 = 𝑉

Theorem 17. If 𝐸1
𝐿
=⇒

E
𝐸 ′
1
, 𝐸2

𝐿
=⇒

E
𝐸 ′
2
, and (𝐸1 ⊔ 𝐸2) ↓, then (𝐸 ′

1
⊔ 𝐸 ′

2
) ↓ and 𝐸1 ⊔ 𝐸2

𝐿
=⇒

E
𝐸 ′
1
⊔ 𝐸 ′

2
.

G.4 Additional Properties of Endpoint Projection
Our second property tells us that projection plays nicely with all of the syntactic operations that

we have defined on choreographies:

Theorem 18. All of the following are true:
• FEVℓ (𝐶) = FEV(J𝐶Kℓ )
• FCV(𝐶) = FV(J𝐶Kℓ )
• J𝐶1 [𝑋 ↦→ 𝐶2]Kℓ = J𝐶1Kℓ [𝑋 ↦→ J𝐶2Kℓ ]

• J𝐶 [ℓ1| 𝑥 ↦→ 𝑒]Kℓ2 =
{

J𝐶Kℓ1 [𝑥 ↦→ 𝑒] if ℓ1 = ℓ2
J𝐶Kℓ1 otherwise

• If 𝑉 is a value, then so is J𝑉 Kℓ .
• If J𝐶Kℓ is a value for every ℓ ∈ L, then 𝐶 is a value.

G.5 Additional Properties of ≤nd

Theorem 19 (≤nd is a Partial Order). The following are all true for all 𝐸, 𝐸1, 𝐸2, and 𝐸3.
• 𝐸 ≤nd 𝐸

• if 𝐸1 ≤nd 𝐸2 and 𝐸2 ≤nd 𝐸1, then 𝐸1 = 𝐸2
• if 𝐸1 ≤nd 𝐸2 and 𝐸2 ≤nd 𝐸3, then 𝐸1 ≤nd 𝐸3

Theorem 20. The following are all true for all choices of 𝐸𝑖 .
• If 𝐸1 ≤nd 𝐸2, then (𝐸1 [𝑥 ↦→ 𝑒]) ≤nd (𝐸2 [𝑥 ↦→ 𝑒])
• If 𝐸1 ≤nd 𝐸2, then (𝐸1 [𝑋 ↦→ 𝐸3]) ≤nd (𝐸2 [𝑋 ↦→ 𝐸3])
• 𝐸1 ≤nd 𝐸1 ⊔ 𝐸2 and 𝐸2 ≤nd 𝐸1 ⊔ 𝐸2
• If 𝐸1 ≤nd 𝐸2 and 𝐸3 ≤nd 𝐸4 and (𝐸1 ⊔ 𝐸3) ↓ then (𝐸2 ⊔ 𝐸4) ↓ and 𝐸1 ⊔ 𝐸3 ≤nd 𝐸2 ⊔ 𝐸4
• If 𝐸1 ≤nd 𝐸2 and either of 𝐸1 or 𝐸2 is a value, then 𝐸1 = 𝐸2.

Theorem 21 (Steps Lift Across ≤nd). If 𝐸1 ≤nd 𝐸2 and 𝐸1
𝑙
=⇒

E
𝐸 ′
1
, then there is a 𝐸 ′

2
such that

𝐸 ′
1
≤nd 𝐸

′
2
and 𝐸2

𝑙
=⇒

E
𝐸 ′
2
.

When a more-nondeterministic expression takes a step, it may be taking advantage of the extra

nondeterminism to take a step not available to the original. We can take advantage of the fact

that our operational semantics is defined via a labeled-transition system to lift steps which do

not resolve nondeterminism. In order to turn this into a theorem, we need to determine when a

label may reduce an external choice. We do this with the predicate Choice𝑑 (𝑙), which we define as

follows:

Choice𝑑 (ℓ : [𝑑])
Choice𝑑 (𝑙)

Choice𝑑 (Fun(𝑙))
Choice𝑑 (𝑙)

Choice𝑑 (Arg(𝑙))
With the definition of Choice𝑑 (−) in hand, we can prove the following theorem:
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Theorem 22 (Lowering Steps Across ≤nd). If 𝐸1 ≤nd 𝐸2 and 𝐸2
𝑙
=⇒

E
𝐸 ′
2
where ¬Choice𝑑 (𝑙), then

there is a 𝐸 ′
1
such that 𝐸 ′

1
≤nd 𝐸

′
2
and 𝐸1

𝑙
=⇒

E
𝐸 ′
1
.
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