Technical Report MPI-SWS-2021-003
Paul Francis

Feb. 2, 2021

Customer Documentation for Aircloak's Diffix Dogwood

This technical report contains selected portions of the Aircloak customer documentation for Diffix
Dogwood. The documentation is taken as-is from the online documentation provided by Aircloak.

Whereas the Diffix Dogwood description at MPI-SWS-2021-001 describes how the anonymization works,
this document is useful for understanding the features and limitations of Diffix Dogwood, as well as the
necessary steps in configuration.

Individual components

An Aircloak installation consists of a set of individual components. A subset of
these are provided by Aircloak. The remaining ones are provided by the
customer. Below follows a description of the individual components.

Components provided by Aircloak

Insights Air

Insights Air is the component that analysts and system administrators interact
with directly. It provides a web interface for managing users, user privileges,
and datasources, as well as for running queries. Additionally Insights Air
provides an HTTP API for connecting external tools to an Aircloak installation
as well as an endpoint for tools and plugins that support the PostgreSQL
message protocol.

Insights Air never handles sensitive user data. It can therefore safely be
deployed in a DMZ or made available to less privileged users.

Insights Cloak

Insights Cloak analyses and anonymizes sensitive data as requested by Insights
Air. It operates on raw and sensitive data and should therefore run in an
environment that is well protected. Insights Cloak does not require the ability
to receive inbound connections. Upon booting it will establish a connection to
the Insights Air instance it has been statically configured to trust. Multiple
Insights Cloak instances can all be connected to the same Insights Air instance,
and furthermore do not communicate with each other.

It is highly recommended that Insights Cloak is hosted within a restricted and
well protected network as it has access to and operates on sensitive and
restricted data.

Only anonymized and aggregated data is sent from Insights Cloak to Insights
Air.

Insights Datasource Connector

Insights Datasource Connector knows how to provide the data required by
Insights Cloak to run a query. It connects to the database server hosting the
datasource being queried and transfers the required data to Insights Cloak.
Insights Datasource Connector, like Insights Cloak, does not permanently store
any sensitive data.

Insights Datasource Connector is deployed and configured as part of Insights
Cloak. An Insights Datasource Connector instance therefore only serves a
single Insights Cloak. An Insights Cloak instance on the other hand may make
use of multiple distinct Insights Datasource Connectors in order to serve data
from distinct datasources.

Because Insights Datasource Connector needs access to the database server
hosting the data to be analysed, so does the Insights Cloak that it is a part of.

1/3

The Insights Datasource Connector has the ability to emulate database features
beyond what is supported natively by the database server itself. Examples of
this include the ability to work on encrypted fields and columns, converting
data to types not natively supported, and performing table joins where no
such support exists.

For more information about the supported datastores and what query features
are emulated, please have a look at the datastore page.

Diffix Explorer

Diffix Explorer is an optional open source component backed by the Max
Planck Institute for Software Systems, which integrates with Insights Air to

provide actionable information to analysts without the need to manually write
queries. Insights Air provides a built-in Ul integration to manage and display
these results, but Diffix Explorer can also be used through it's API to derive
useful information for other interfaces.

Components provided by the customer

PostgreSQL database

Insights Air requires access to a PostgreSQL database. This database is used to
store analyst accounts, system settings, as well as audit logs. No sensitive user
data nor access credentials to the datasources being queried are stored in this
database.

Datasource

The data being queried is made available through a database system of some
kind. In nearly all cases this system already exists and can directly be used by
the Aircloak Insights platform.

A list of supported datasources can be found here.

Logging infrastructure

Insights Air, and Insights Cloak (and through Insights Cloak also Insights
Datasource Connector) produce logs that can be used to determine if the
system is behaving as expected. These logs are automatically collected by the
infrastructure on which the individual components run, but can optionally be
forwarded to a centralized log storage and processing facility operated by the
customer.

Monitoring

Insights Air provides a monitoring API endpoint. This APl endpoint can be tied

into existing monitoring infrastructure, to improve the visibility into the
workings of the Aircloak Insights platform.

How the components interact

The following diagram shows the possible ways in which the components
interact. For common configurations, see the deployment guide.

2/3

@ External analyst through browser or API

. = Insights Cloak instance

In the diagram above the arrows point to the component being connected to.
For example it shows that Insights Cloak connects to Insights Air, rather than
the other way around.

Of special interest is that:

e An Insights Air instance can serve multiple Insights Cloak instances

e An Insights Cloak instance can connect to multiple datasources through
multiple Insights Datasource Connectors. These datasources might be
hosted in a single or in distinct database servers.

e The Insights Cloak and Insights Datasource Connectors should be hosted in
a protected environment, whereas it is generally safe to allow analysts
outside the customer organisation to access Insights Air

Aircloak - version 21.1.0 - Diffix Dogwood Changelog Third Party Licenses Privacy policy

3/3

Query Language

To write queries you use SQL. Aircloak supports a subset of standard SQL,
implemented in a way that prevents leakage of sensitive data.

Exploring the database

You can discover database tables and their structure using the suon

statement. To list the tables in the database, you can use the s#ow Tasies

statement. If you want to see the columns of a particular table, you can invoke

SHOW COLUMNS FROM table name

Querying the database

The sziecr statement can be used to obtain anonymized data from tables.

See Understanding_query results for an explanation of the effects of

anonymization on the results.

The syntax conforms to the standard SQL syntax (with some exceptions), but
only a subset of features is supported. The general shape of the query looks
like:

filename

Describing the query plan

To inspect a query without running it, you can prefix the uppermost szrzct
statement with exerarw . The =zxerazn query will return an overview with

information about the query and its subqueries.

The following example shows the result of describing an anonymizing
restricted query with an inner non-anonymizing_restricted subquery:

sql

EXPLAIN SELECT age, count(*) as individuals

SELECT uid, tl.age

FROM tablel tl

NNER JOIN table2 t2 ON tl.uid = t2.uid
) t

GROUP BY age

query (anonymized, statistics, 2 noise layers)
--> regular stats (Aircloak generated, restricted)
--> uid grouping (Aircloak generated, restricted)
--> t (restricted)
--> tl (personal table)

--> t2 (personal table)

Considerations

1/5

e The ~ argument can only be provided to the count and

aggregators and it specifies counting rows instead of otherwise counting
only non- wutr values. wurt values are ignored by all other aggregators.

e The operator o= is not supported.

e The operator wor can only be used in the cases mentioned above (1s
NOT NULL , NOIT N , NOT LIKE , NOI LIKE , and NOT
boolean column expression).

e You can restrict the range of returned rows by a query using the 1wt
and/or orzszT clauses, but you need to provide the orpez By clause to
ensure a stable order for the rows.

e Conditions in the navine clause must not refer to non-aggregated fields.

e Aliases can be used in the wirre , crour Bv , orper By and savine
clauses, as long as the alias doesn't conflict with a column name in one of
the selected tables.

e If an integer is specified in the crove zv or ompzr =v clause, it
represents a 1-based position in the select list. The corresponding
expression from the select list is used as the grouping or ordering
expression.

e Values of type datetime with timezone are not supported. The timezone
information will be dropped and the value will be exposed as a simple

datetime in the UTC format.

e The order of rows in subqueries is not preserved in the outer query. Add an

orpzr 2y clause in the outer query if you want a specific order.
e When wurr handling is not specified in an ozoez ev in a subquery
(either wuris rirst or wunns 1ast) the default handling for the

underlying datasource will be used. For PostgreSQL that means that uw:

values will be treated as larger than all other values. For MySQL and SQL
Server they will be treated as smaller than all other values. The top-level
query always defaults to treating wunr values as larger than other values.

° Using a column expression in place ofa rilter expression will

implicitly compare the value of that column expression to Trus . In other

words: wHERE active is equivalent to wsERE active = TRUE .

Query and subquery types

Aircloak Insights supports both queries over personal data and queries over
non-personal data. In this context personal data is data about a single
person (or entity, depending on what it is you want to protect through
anonymization), and rnon-personal data facts from a fact or lookup table (not
relating to any one individual) or the result of an anonymizing subquery over
personal data.

Queries that process persona1 data are subject to various restrictions, and
are called restricted queries. Restricted queries can be arbitrarily nested. The
top-most restricted query anonymizes the data. The anonymization produces a
result that is about groups of users rather than individuals, and filters out
values that could identify an individual. Such a top-most restricted query is
called an anonymizing query.

An anonymizing query can itself be a subquery to another query. In such a
case the data processed by the other query is already anonymous and hence

non-personal . Such a query is called a standard query. A standard query can
be used to further process an anonymized result set or, for example, to

combine anonymized data with data from a non-personal table such as a fact

or lookup table. Standard queries have the usual SQL validations applied to

2/5

them (such as type checking), but the restrictions that are enforced for queries
processing personal data do not apply. Standard queries can only refer to
=1 tables or to other standard or anonymizing subqueries.

non-persor

Distinguishing between query types

Being able to tell the query types apart helps you make sure you get the
results you expect and want. It is not uncommon that an analyst new to
Aircloak Insights ends up writing a subquery producing aggregates over
multiple users, which becomes an anonymizing subquery, where they needed
to write a subquery producing per-user aggregates, which becomes a non-
anonymizing restricted subquery. This mistake can cause most of the data to
get anonymized away, leading to results vastly different from what was
expected. It can be hard to debug and understand the cause of a situation like
this if you do not know of the different query types and how to distinguish
between them.

You can use the EXPLAIN statement to identify the type of a query and its
subqueries.

Non-anonymizing restricted subqueries

You can tell that a subquery produces a per-user aggregate (is a non-
anonymizing restricted subquery) if both of the following are true:

e it processes data from one or more personal tables or other non-
anonymizing restricted subqueries

o it explicitly selects or groups by the column that was specified as the user
id

Note that the top-most query can never be a non-anonymizing restricted
subquery. The reason for this is that all Aircloak queries have to produce an
anonymized result. This is incompatible with the results of a non-anonymized
restricted subquery which is always personal data.

Some examples

This query is a non-anonymizing restricted subquery as it is a subquery and
explicitly selects the user id column from a table containing personal data:

sql
(
SELECT uid, age
FROM personal_table

) subquery

This query is a non-anonymizing restricted subquery as it is a subquery and
explicitly creates a per-user aggregate (through selecting and grouping by the
user id column) from a table containing personal data:

sql

as numTransactions

GROUP BY uid

) subquery

3/5

This query is a non-anonymizing restricted subquery as it is a subquery and
explicitly creates per-user aggregates (through selecting and grouping by the
user id column) from a combination of tables containing personal data:

sql
(
SELECT t.uid, count(*) as numTransactions, count(distinct a.id)
as numAccounts

FROM transactions t INNER JOIN accounts a ON t.account_id =

) subquery

Anonymizing restricted queries

A query is an anonymizing query if it operates on personal data and either of
the following is true:

e it is the top-most query (Aircloak will never return a non-anonymized
result)

e it aggregates over multiple users (i.e. does not explicitly group by the user
id column)

Some examples

This query is anonymizing as it aggregates the personal data of multiple users
into a single aggregate. That the aggregate is over multiple users can be
deduced from the query not grouping by the user id column. Grouping by the
user id column would produce per-user aggregates.

Even if the query hadn't been an aggregate over the personal data of multiple
users, it would still have been an anonymizing query. This is the case because
it is the top-most query and processes personal data. Had it not been
anonymizing, it would have leaked personal information.

sql

SELECT count (*)

FROM personal_table

The following subquery is anonymizing, despite grouping by a column that, in
this particular example, likely is mostly unique to a user. The intent might have
been for the query to be a non-anonymizing restricted query producing a per-
user aggregate. It isn't marked as such by Aircloak Insights as it does not
select and group by the column specified as the user id column. This query is
likely to produce no (or very little) results after anonymization as there will
only be few cases where multiple distinct individuals share the same phone
number.

sql
(

SELECT phone_number, count(*) as numTransactions

3Y phone_ number

) per_phone_transactions

The following subquery is anonymizing as it produces an aggregate over the
data of multiple users. The resulting data can be further processed by a
standard query.

4/5

sql
(
SELECT city, count(*)
FROM personal_table
GROUP BY city

) city distribution

Somewhat counterintuitively the following query is rejected despite being
perfectly valid SQL. The reason is that it is a personal query due to creating a
per-user aggregate. We can tell that this is the case by observing that the
query selects (and groups by) the user id column. At the same time the query
is the top-most query and as such Aircloak is forced to anonymize its output.
Anonymizing the results of a query where each output row uniquely belongs
to a single user (the uid column is unique to a user) cannot be done without
having to filter away all the data. Aircloak therefore rejects the query.

sql
SELECT uid, count (*)

FROM personal_table

GROUP BY uid

Standard queries

A standard query is a query that executes over anonymized and/or non-
personal data. In fact any query which is not either an anonymizing query or a
non-anonymizing restricted query is a standard query.

The following query combines all query types into a single composite query
showing how they might relate:

sql

-- Standard query (only processes anonymized (and hence non-
personal) data)
SELECT
min (age), max(age),
count (age), sum(individuals) as num_users
FROM (
-- An anonymizing (and restricted) query as it produces an
aggregate
-- that spans the data of multiple persons
SELECT age, count(*) as individuals FROM (
-- Restricted query as processes per-user data and explicitly
-- selects the user id column (here named uid)

SELECT uid, tl.age

FROM tablel tl INNER JOIN table2 t2
ON tl.uid = t2.uid
) t
GROUP BY age

) b

Aircloak - version 21.1.0 - Diffix Dogwood Changelog Third Party Licenses Privacy policy

5/5

Restrictions

The Aircloak system imposes restrictions on the query language used in
anonymizing queries that go beyond those imposed by the ANSI SQL
standard. The restrictions, outlined below, do not apply to standard queries.
For an overview over the difference between anonymizing and standard

JOIN restrictions

To ensure that data can be reliably anonymized, some limitations exist in the
Jotn part of the query.

Comparison operators wor vixe , nor tnike , and <> are not allowed in

join conditions (i.e. the ow ... partofa Jsorn expression).

When analysing data across multiple tables, it is required that the data that is
joined is all about the same individual. This can either be achieved by adding a
waere -clause, or in the case of twer Jorw 'sand ourer gotn ‘s through a

corresponding restriction in the on -clause.

For example, assuming tables 1 and > both have a user id columns

called u:ia, you would write joins as follows:

o SELECT cl, c¢2 FROM tl, t2 WHERE tl.uid = t2.uid

o SELECT cl, c2 FROM tl CROSS JOIN t2 WHERE tl.uid = t2.uid
o SELECT cl, c2 FROM tl INNER JOIN t2 ON tl.uid t2.uid
Note:

e ourer is automatically implied when you use 1err, =icuaT joins. Writing
e ouTEr J01N s therefore equivalent to writing rzrr Jorw

e 1uuer s automatically implied when you use ot without any other
qualifiers. Writing «1 Jotn 2 is therefore the same as writing «1 runer

JOIN t2

Subquery restrictions

A subquery expression with an aggregate must always select a user id
column as well. For example, assuming there exists a table 1 with a

user_id column called wuia :

o Valid: T name FROM (SELECT name FROM t1)
e Valid: SELECT name FROM (SELECT uid, count (*) FROM tl G > BY uid)
S(l

e Invalid: SELECT name FrROM (SELECT count (*) FROM tl) sg
When using t1vir and orrseT in a subquery:

is required if orrser is specified
e vt will be adjusted to the closest number in the sequence (10, 20,
50, 100, 200, 500, 1000, ...] (i.e. 10e*n, 20e*n, 50e~n forany
natural number n larger than 0). For example: 1 or 14 become 10, etc
113

e orrser will automatically be adjusted to the nearest multiple of 11t
For example an orrser of 240 will be adjusted to 200 given a w1t of
100

Top-level HAVING clause

Any conditions specified in the uzvine clause of the top-level query (not a
subquery) are "safe" in the sense that they will only ever be applied to data
that has already been aggregated and anonymized. The clause will merely
affect which of the anonymized data to display, not how that data is obtained.
Because of this, many of the restrictions described in the following sections
don't apply to the top-level =xvine clause.

CASE statements

case statements over personal data have multiple restrictions:

e They are only allowed in the szzzct or crour v clauses of anonymizing
queries;

e They can not be post-processed in any way, other than aggregation;

e The wurn clauses can only consist of a single equality condition between a
clear expression and a constant. The constant has to be from the list of
frequent values in that column, unless the system administrator explicitly
allows usage of any value. Check the Insights Cloak configuration section

for information on how to enable it.
e The wu=n / erse clauses can only return constant values; furthermore,

when aggregated, they can only return the values 0, 1 or NULL.

A few examples:

2/13

sql

-- Correct - conditional selection and grouping:

SELECT
CASE
WHEN column = 'aaa' THEN 1
WHEN column = 'bbb' THEN 2
. NULL
END,
COUNT (*)

FROM table

GROUP BY 1

-- Correct - conditional aggregation:

SELECT SUM(CASE WHEN column = 'aaa' THEN 1 END) FROM table

-- Incorrect - multiple conditions are used in the same "WHEN"
clause:
SELECT CASE WHEN column = 'aaa' AND column = 'bbb' THEN TRUE END

FROM table

-- Incorrect - an unsupported condition is used in the "WHEN'
clause:

SELECT CASE WHEN column <> 'aaa' THEN TRUE END FROM table

-- Incorrect - the 'THEN' clause doesn't return a constant value:

SELECT CASE WHEN column = 'aaa' THEN other_column END FROM table

-- Incorrect - the 'ELSE’ clause returns an unsupported constant

during aggregation:

SELECT AVG (CASE WHEN column = 'aaa' THEN 0 ELSE 1000 END) FROM
table
-- Incorrect - 'CASE' statement is not used in the ‘SELECT or

"GROUP BY' clauses:

SELECT COUNT (*) FROM table WHERE C

WHEN column = 3 THEN TRUE

FALSE END

Math and function application restrictions

The usage of some functions is restricted. The scenarios when the restrictions
come into effect are when a database column is transformed by more than 5
such functions and the expression on which the functions operate also
contains a constant.

An expression containing two or more mathematical operators is considered to
be the equivalent of a constant. The reason for this is that one can easily
construct constants from pure database columns. For example po

- cole) equals the number 1.

The rules apply to the following functions:

° S.

e 4+, -, *, /, ~, %, pow, sqgrt

o year , quarter , month , day , hour , minute , , weekday ,
date_trunc

® Dptrim, ltrim, rtrim, left , right , substring

Below is an example of the restrictions in action:

3/13

The following query contains more than 5 restricted functions
well as a constant and

is therefore rejected.

. LECT

-- This expression contains a total of 7 restricted functions:
-- - 3 from valuel

-- - 3 from value2

-- - 1 from the addition of valuel and value2

valuel + value2

a

)

-- contains 3 restricted functions, namely:

-- - division with a constant

-- - abs on an expression containing a constant

-- - + where one of the arguments is an expression containing
constant

abs (age / 2) + height as valuel
FROM tablel

a INNER JOIN (

uid,

-- contains 3 restricted functions, namely:
-- - addition with a constant
-- - division with a constant

-- - multiplication where one of the arguments is an

expression containing a constant

)

Below

(birth _year + 1) / 11 * height as value2
FROM table

b ON a.uid = b.uid

is an example of a query being rejected because multiple math

operators have been interpreted as being a constant:

-- we have a total of 6 functions operating on an expression

containing a potential constant,

-- as a result the query is rejected.
floor (abs (sqrt (ceil (floor (sqrt(

-- Aircloak considers two or more math operations to

potentially be a constant

(age / age) / age
r2)) e 2))))

FROM table

Functions that can cause database exceptions when a database column

sql

sql

contains a certain value are prohibited. These functions include division and

sqrt when the divisor and the parameter respectively are expressions
containing a database column as well as a constant value.

Below is an example of the restrictions in action:

-- The following query is illegal as the divisor contains a
constant, in this case the number 1

SELECT age / (age + 1) FROM table

sql

4/13

Constant values

In order to prevent overflow errors, the following restrictions on constant

values are in place:

e Numeric values are limited to the range (-10718, 1071
e Date and datetime years are limited to the range (1900, 9999)

e Intervals are limited to 100 years.

Clear expressions
A clear expression is a simple expression that:

o references exactly one database column,
e uses at most one

'

e only uses the following allowed functions:

o string functions: 1ower , , substring , trim, ltrim, rtrim,
btrim , hex , left , right ;

o] date/ﬂn1efuncﬁons: year , quarter , month , kday , day , hour ,
minute , , date_trunc ,;

o numerical functions: trunc, floor , ceil , round, bucket ;

, STDDEV , VARIANCE).

o any aggregator (min , Mmax, NT , SUM, AV

Such expressions are considered to be safe in general and are exempt from

many of the following restrictions.

Aggregated expressions
All aggregated expressions have to be clear.

sql
-- Correct - aggregated expression is clear:

SELECT SUM (round(column)) FROM table

-- Incorrect - aggregated expression is not clear:

ECT SUM(1 / column) FROM table

IS [NOT] NULL conditions
The subject of an s [wor) wuzz condition has to be a clear expression.
sql
-- Correct - subject is a clear expression:

SELECT COUNT (*) FROM table WHERE column IS NOT NULL

-- Incorrect - subject is not a clear expression:

SELECT COUNT (*) FROM table WHERE 1 / column IS NULL

Constant ranges

Whenever a comparison (>, >=, < ,or <=) with a constant is used in a

ne -clause, that clause needs to contain two

WHERE -, JOIN - OF HAV
comparisons. These should form a constant range on a single clear expression.
That is, one >= comparison and one < comparison, limiting the expression

from bottom and top.

5/13

The following special cases are excluded from this restriction:

e comparisons with clear expressions on both sides;

e date comparisons between a clear expression and the current date.

e date comparisons between a constant, month-aligned date and a range of
clear expressions.

sql
-- Correct - a constant range is used:

SELECT COUNT (*) FROM table WHERE column > 10 AND column < 20

-- Correct - comparison between clear expressions:
SELECT COUNT (*) FROM table WHERE columnl > column2

SELECT COUNT (*) FROM table WHERE columnl < round(column2)

-- Incorrect - only one side of the constant range provided:

ECT COUNT (*) FROM table WHERE column > 10

-- Incorrect - the lower end of the constant range is bigger than

the upper end:

COUNT (*) FROM table WHERE column > 10 AND column < 0

-- Incorrect - the comparisons are over different expressions:
SELECT COUNT (*) FROM table WHERE column + 1 > 10 AND column - 1 <

20

-- Incorrect - multiple columns are referenced on one side of the
comparison:

SELECT COUNT (*) FROM table WHERE columnl - columnl < column2

-- Correct - comparison between a clear expression and the
current date:

SELECT COUNT (*) FROM table WHERE column <= cu date ()

-- Correct - comparison between a month-aligned date and a range
of clear expressions:
SELECT COUNT (*) FROM table WHERE date '2020-01-01' BETWEEN

columnl AND column2

Note that a condition using the szTwzzn operator automatically forms a

constant range:

sql

-- These two queries are equivalent:

SELECT COUNT (*) FROM table WHERE column BETWEEN 10 AND 20

SELECT COUNT (*) FROM table WHERE lumn >= 10 AND column < 20

Constant range alignment

The system will adjust constant ranges provided in queries. The adjustment will
"snap" the range to a fixed, predefined grid. It will always make sure that the
specified range is included in the adjusted range. The range will also be
modified to be closed on the left (>=) and open on the right (<).

If any such modifications take place an appropriate notice will be displayed in
the web interface. When using the API the notice will be included under the
info key of the result. When using the PostgreSQL interface, it will be sent

across the wire as a notice message.

6/13

The grid sizes available depend on the type of the column that is being limited
by the range:

e For numerical columns the grid sizes are |..

., 0.1, 0.2, 0.5, 1, 2, 5,

0, 20, 50, ...]

e For date/time columns they are:

o (1, 2, 3, 6, 9, 12, ...1 months
o (1, 2, 5, 10, 15, 201 days

o (1, 2, 5, 121 hours

°o (1, 2, 5, 15, 30] minutes

o (1, 2, 5, 15, 301 seconds.

The adjusted range will have the smallest size from the ones listed that can
contain the full range provided in the query. Furthermore the starting point of
the range will be changed so that it falls on a multiple of the adjusted range's
size from a zero point. That zero point is the number 0 for numbers, midnight
for times, and 1900-01-01 00:00:00 for dates and datetimes.

To better fit the range provided in the query the range might also be shifted
by half its size, however this will not happen in the following cases:

e Arange of 1 day on a date type - the underlying data type cannot
represent such a shift

e A range of 1 second on a time or datetime type - the underlying data type
cannot represent such a shift

e A range of 1 month - months have an irregular number of days and no
clear "half-point"

For best results design your queries so that they take this adjustment into
account and mostly use ranges that are already adjusted.

7/13

sql
SELECT COUNT (*) FROM table WHERE column > 10 AND column < 20

-- Adjusted to 10 <= column < 20

SELECT COUNT (*) FROM table WHERE column >= 10 AND column < 19

-- Adjusted to 10 <= column < 20

SELECT COUNT (*) FROM table WHERE column >= 9 AND column < 19

-- Adjusted to 0 <= column < 20

SELECT COUNT (*) FROM table WHERE column >= 16 AND column < 24

-- Adjusted to 15 <= column < 25

SELECT COUNT (*) FROM table WHERE date >= '2016-01-01' AND date <
'2016-01-29"

-- Adjusted to a full month - 2016-01-01 <= date < 2016-02-01

SELECT COUNT (*) FROM table WHERE datetime >= '2016-01-01
12:27:00" AND date < '2016-01-01 12:31:00"

-- Adjusted to a grid size of 5 minutes - 2016-01-01 12:22:30 <=
datetime < 2016-01-01 12:37:30

-- The 5 minute intervals can start on a full five-minute mark or

a 2 minutes 30 seconds mark

SELECT COUNT (*) FROM table WHERE date >= '2017-01-10' AND date <
12017-01-20"
-- Adjusted to 20 days - '2017-01-07' <= date < '2017-01-27'

-- The day-sized intervals can only start a multiple of their

size from 1900-01-01

SELECT COUNT (*) FROM table WHERE date >= '2017-01-07' AND date <
'2017-01-17"

-- Not adjusted -- see previous example

Implicit ranges

Some functions can be used to almost the same effect as a pair of inequalities.
For example the following two queries are roughly equivalent:
sql

SELECT COUNT (*) FROM table WHERE round (number) = 10

SELECT COUNT (*) FROM table WHERE number >= 9.5 AND number < 10.5

Because of this, usage of such functions must be restricted in a similar way to
inequalities and the e=zTwzzn operator. The restrictions disallow the usage of

most functions or mathematical operations before or after applying an implicit
range function, if the expression is not clear. The operations that can be
applied are a single cast, any aggregator (vin , MAx , COUNT , SUM, AVG,
stopEv , variance), and a sub-month date extraction function (dav ,
weekday , hour , minute , second ,

extract (day/weekday/hour/minute/second)) The restrictions apply when an
implicit range function is used in a wiere or Join clause, selected in the
top-level serzct clause or used in a non-top-level wavinc clause - see Top-

level HAVING clause.

The following functions are treated as implicit range functions: round ,
trunc , date trunc , and sub-month date extraction functions (day ,
weekday , hour , minute , second ,

extract (day/weekday/hour/minute/second))

8/13

-- Correct - no
SELECT COUNT (*)
-- Correct - an

SELECT COUNT (*)

sql
other function used

FROM table WHERE round (number) = 10

aggregate is used

FROM table GROUP BY category WHERE

10

round (max (number)) =
-- Incorrect - another operation (/) is applied in the same
expression as round

SELECT COUNT (*)

FROM table WHERE round (number / 2) = 10

-- Correct - used in the top-level HAVING, so restrictions don't
apply
FROM table

/2) =

SELECT COUNT (*) GROUP BY category HAVING

round (max (number) 10

-- Incorrect - used in a non-top-level HAVING

SELECT COUNT (*) FROM (SELECT uid FROM table GROUP BY category

HAVING round (max (number) / 2) = 10) x

-- Incorrect - another operation is used in top-level SELECT

SELECT round (abs (number)) FROM table

-- Correct - math on month-aligned expressions is allowed

SELECT COUNT (*) FROM table WHERE year (birthday) * 12 +

month (birthday) = 2000 * 12 + 3
-- Incorrect - math on sub-month-aligned expressions is rejected

SELECT COUNT (*) FROM table WHERE month (birthday) * 30 +

day (birthday) = 100

Text operations

Certain operations on textual data can be used to almost the same effect as a
pair of inequalities. For example the following two queries are roughly
equivalent:

sql
SELECT COUNT (*) FROM table WHERE number BETWEEN 10 AND 20

SELECT COUNT (*) FROM table WHERE

LEFT (CAST (number AS text), 1) = 'l' AND length (CAST (number AS

text)) = 2

Because of this, the usage of operations on textual data has to be restricted to
prevent circumvention of measures that would normally limit what can be
done with range conditions. The restrictions on expressions containing text
manipulation functions are the same as ones described for implicit ranges. In
addition, the result of text manipulation can only be compared to a clear
expression.

The following functions are treated as text manipulation functions: 1c:t ,

right , rtrim, ltrim, trim ,and substring

9/13

sql

-- Correct

SELECT COUNT (*) FROM table WHERE LEFT (name, 1) = 'A'

-- Incorrect - the results of a text operation are compared to a
complex expression

SELECT COUNT (*) FROM table WHERE LEFT (name, 1) = RIGHT (name ||

Furthermore, the aggregators «in and nax cannot be used on data of type

for more about this distinction). This is due to the mode of operation of these
aggregators and the fact that they require estimating the spread in subsets of
the data. See Aggregates for more on this topic.

IN, NOT IN, NOT LIKE, and <>

Any conditions using v, woT nikE , wor ILIKE , OF <> are subject to

additional restrictions. Note that wor 11 is treated just as <> , because there

is always an equivalent query using <> for every wor 1w query:
sql
-- These queries are equivalent
WHERE number NOT IN (1, 2, 3)
RE number <> 1 AND number <> 2 AND

number <> 3
Allowed expressions
Conditions using 11 or <> have to have a clear expression on the left-hand
side. Only a single count, wmin or max aggregator is allowed in such
conditions.
All items on the right-hand side of the 11 operator must be constants from

the list of frequent values in that column, unless the system administrator
explicitly allows usage of any value. Check the Insights Cloak configuration

section for information on how to enable it.

The right-hand side of a <> condition has to be a clear expression or a

constant from the list of frequent values in that column.

Conditions using wor nike or woT ILIKE cannot contain any functions

except for aggregators. A single czst is allowed.

The top-level uzvine clause is exempt from all these restrictions - see Top-
level HAVING clause.

10/13

sql

-- Correct - assuming 'alice' is a frequent value
SELECT COUNT (*) FROM table WHERE lower (name) <> 'alice'

SELECT COUNT (*) FROM table WHERE name IN ('alice', 'bob')
-- Incorrect - a disallowed operation was used
SELECT COUNT (*) FROM table WHERE length (name) <> 2

SELECT COUNT (*) FROM table WHERE length(name) IN (1, 2, 3)

-- Correct - top-level HAVING is exempt from restrictions

SELECT COUNT (*) FROM table GROUP BY name HAVING length(name) <> 2

-- Correct - comparing two clear expressions

T COUNT (*) FROM table WHERE name <> surname

SELEC

SELECT COUNT (*) FROM table WHERE round(columnl) <> round(column2)

-- Incorrect - multiple columns are referenced on one side of the
inequality:

SELECT COUNT (*) FROM table WHERE columnl - columnl <> column2

Negative conditions over rare values

By default, negative conditions (wor 1w, wor niks, wor L1k, and <>)
over rare personal values are forbidden. Conditions that match values
appearing frequently in a given column are excluded from this limitation.

This limitation can be relaxed, on a per data source basis, by increasing the
value of the max rare negative conditions configuration setting. Check the
Insights Cloak configuration section for information on how to modify it. Note
that a wor v condition will be counted multiple times - once for each rare

element on the right-hand side.

The examples below assume that the Insights Cloak is configured to allow one
negative condition at the most, and that the names 21ice and =on appear

frequently in the column nrane , while all other values appear only rarely.

sql
-- Allowed - only one negative condition matches a rare value
SELECT COUNT (*) FROM table

WHERE name <> 'Alice' AND name <> 'Bob' AND name <> 'Charles'

-- Allowed - there is only one negative conditions on a rare
value
SELECT COUNT (*) FROM table

WHERE name <> 'Charles'

-- Disallowed - there are three negative conditions matching rare
values
SELECT COUNT (*) FROM table

WHERE name <> 'Charles' AND name <> 'Damien' AND name <> 'Ecbert'

-- Disallowed - equivalent to the previous query
SELECT COUNT (*) FROM table

WHERE name NOT IN ('Charles', 'Damien', 'Ecbert')

-- Allowed - all conditions match frequent values
SELECT COUNT (*) FROM table
WHERE name NOT LIKE 'A%' AND name NOT LIKE 'B%' AND upper (name)

<> 'BOB'

11/13

Isolating columns

Some columns in the underlying data source might identify users despite not
being marked as a user id. For example a table might contain a user id

column and an enai1 column. The emails are in all likelihood unique per
user, and so can identify a user just as well as the user ia column. We call

these columns "isolating" and apply some additional restrictions to expressions
including them. Note that the user ia column is always isolating.

Only clear expressions are allowed on these columns. All other functions and
mathematical operations are forbidden.

Furthermore, conditions using the w11xz operator are limited to simple

patterns of the form =00 , foo% ,0r %foo

sql

-- These examples assume that the 'email' and 'social_ security'

columns are isolating

-- Correct

SELECT NT (*) FRO HERE trim(email) =
'alice@example.com'

-- Correct

SELECT COUNT (*) FROM table WHERE email <> 'alicelexample.com'

-- Incorrect - a function from outside the allowed list is used

SELECT COUNT (*) FROM table WHERE length(email) = 20

-- Incorrect - a mathematical operation is used

SELECT COUNT (*) FROM table WHERE social_security / 10 =

-- Correct

SELECT COUNT (*) FROM table WHERE BUCKET (social_security BY 10) =

100000000

-- Incorrect - a disallowed LIKE pattern is used

SELECT COUNT (*) FROM table WHERE email LIKE 'alice@%.com'

-- Correct

NT (*) FROM table WHERE email LIKE 'alice@example.%'

Insights Cloak will automatically discover which columns isolate users. This
computation might be very slow and resource-intensive for large data sources.
See Manually classifying_isolating columns for information on alternative

means of classifying isolating columns.

Column bounds

Some mathematical operations can cause an overflow and result in an error
when performed in the database. To avoid such cases, Insights Cloak analyzes
the query and finds potentially problematic operations, making sure that
either:

e The input columns to these operations have data distributed in such a way
that there won't be a problem. For example, dividing by a column that is
always positive will never result in a divide-by-zero error.

e The operations are performed using a potentially slower but safe method.

12/13

Insights Cloak needs the lower and upper bounds of the values in numeric
columns in order to perform this analysis. Note that the actual bounds used by
Insights Cloak will be based on the true bounds, but anonymized. Note also,
that any data found outside of these anonymized bounds will be treated as if
it had the maximum/minimum anonymized value instead. The bounds are
computed with some "extra room", so this can most often happen in the case
of a value being an extreme outlier.

So long as this analysis is not complete for a certain column, mathematical
operations on that column need to be performed using the safe method, wich
might be slower on some data sources. For certain data sources (Microsoft SQL
Server) these operations are safe by default, the analysis does not need to be
performed and it won't result in any slowdown. In Oracle DB these operations
are emulated by default. However, the database administrator can enable
Aircloak UDFs to avoid this emulation - see here for details.

Column analysis

In order to apply the restrictions described in Number of conditions, Isolating

columns, and Column bounds, Insights Cloak needs to analyze the contents of

the data source. This process might take some time, but the data source is
available for querying while the analysis is under way. While the analysis is
incomplete Insights Cloak needs to make conservative assumptions about the
data. As a result, all columns are treated as if they were isolating and had no
frequent values, until the analysis is completed for a particular column.

You can check the isolator status of a table by using the

statement:
sql

SHOW COLUMNS FROM users

name	pe	isolator?	comment
—mmmmmm	---m--- B	—mmmm--	
uid	int true		
first_name	te false		
last name	text true		
email	text pending		

In this case the columns uia

and 1ast name are isolating, while the column

first nanme IS not. The status of the cm=i1 column is not yet known, so it

will be treated as isolating until its analysis is complete.

Aircloak - version 21.1.0 - Diffix Dogwood Changelog Third Party Licenses Privacy policy

13/13

Best practices

Because Aircloak Insights anonymizes query results, it must be queried in a
slightly different way than one would query a normal database. This guide will
explain some of the peculiarities and show best practices which allow you to
gain the most value from the system.

In the following examples we will pretend we are querying a database
containing the following raw data:

first name last name age zip_code gender

Alice Anderson 10 10000 F
Amanda Anderson 20 11000 F
Amy Anderson 15 11000 F
Anna Anderson 20 11000 F
Bob Anderson 10 10000 M
Bob Barlow 10 10000 M
Bob Boyle 10 10000 M
Bob Buckner 10 10000 M

How anonymization alters results

Aircloak Insights' anonymization does not change the values in the columns
you select. Instead, it alters the aggregates resulting from your queries.

In other words, if you were to write the query:

sql

SELECT zip_code, gender, count (*)

Y zip_code, gender

you would be given the exact zip code and gender values as they appear in
the database. The anonymized result might look something like this:

zip_code gender count
11000 F 3

10000 M 4

What is anonymized is the aggregate - in this case the count. Instead of
getting a count of 4 for the zip code and gender pair 10000 and M you might
see a count between 2 and 6.

Aircloak Insights also filters out values that do not appear frequently enough.
We call this low count filtering. In the case of the query above we see that the
only female living in zip code 10000 is Alice. Instead of giving us an altered
count, the system will withold this information altogether.

More details about how the aggregates get altered can be found in the
understanding_query results chapter of these user guides.

1/9

Column selection and its effect on
anonymization

When querying a traditional database system it is common to run a query such
as sziect = or otherwise select a wide range of columns. This does not work

well with the approach Aircloak Insights takes to anonymization.

Aircloak Insights filters out rows from the result set where the combination of
values in the selected columns do not appear for enough distinct individuals in
the dataset. Aircloak Insights could give you information about males living in
zip code 10000 (there are 4 of them), but not about the sole female living in
the same zip code.

Running the query seizct = rrom table s, in the context of the dataset

above, the same as running the query:

sql

SELECT first name, last name, age, zip_code, gender

'ROM table

If we look at the example data, we see that the combination of these attributes
is always unique. For example while there are multiple Bob's, they all have
distinct last names, and while there are quite a number of individuals with the
last name Anderson, none of them share the same first name. Because of these
unique combinations of columns, effectively no results can be shown, and, as a
general rule, the more columns you select in a query, the lower the probability
that there is data from sufficiently many distinct users that share the same
attribute values and thereby won't get anonymized away.

Aircloak Insights will attempt to provide some value even in the cases where
you select many columns while there is not enough unique individuals to
provide values for the full set of column combinations. It will do so by
selectively replacing one column at a time with a + (indicating that the value
was anonymized away). This process takes place from the rightmost to the
leftmost selected column. For the following examples we will assume the
minimum threshold for the number of individuals needed to pass the low
count filter is 3. The reality is somewhat more complex, but it's enough for the
purposes of this example. In the example tables below we will add a metadata
column as the first column, showing how many unique users share a set of
column values. The initial value of 1 for each row indicates that each
combination of column values only exists once:

#individuals first. name last.name age zip_code gender

1 Alice Anderson 10 10000 F
1 Amanda Anderson 20 11000 F
1 Amy Anderson 15 11000 F
1 Anna Anderson 20 11000 F
1 Bob Anderson 10 10000 M
1 Bob Barlow 10 10000 M
1 Bob Boyle 10 10000 M
1 Bob Buckner 10 10000 M

The rightmost column is dropped first. In this case this is the gender column
since it was the rightmost selected column in the query:

individuals first name last name age zip_code gender

2/9

individuals
1

1

first_name
Alice
Amanda
Amy

Anna

Bob

Bob

Bob

Bob

last_name
Anderson
Anderson
Anderson
Anderson
Anderson
Barlow
Boyle

Buckner

age

10

20

zip_code
10000
11000
11000
11000
10000
10000
10000

10000

gender

*

Each set of column value combinations is still uniquely identifying a user, so

the next rightmost column gets replaced. In this case that is the zip code:

individuals

1

first_name
Alice
Amanda
Amy

Anna

Bob

Bob

Bob

Bob

last_name
Anderson
Anderson
Anderson
Anderson
Anderson
Barlow
Boyle

Buckner

age

10

20

15

20

10

10

10

10

zip_code

*

The zip code column is then followed by the age column:

individuals

1

Even replacing the age column does not produce rows with column values that

first_name
Alice
Amanda
Amy

Anna

Bob

Bob

Bob

Bob

last_name
Anderson
Anderson
Anderson
Anderson
Anderson
Barlow
Boyle

Buckner

age

*

zip_code

*

gender

*

gender

*

wouldn't be uniquely identifying. The next row to be taken away is the last

name column:

individuals

1

first_name
Alice
Amanda
Amy

Anna

Bob

last_name

*

age

zip_code

*

gender

*

3/9

When taking away the last name column, we see that there are sufficiently
many individuals named Bob that it can be reported. For the remaining rows
Aircloak Insights will then also try to take away the first name column, to at
least give an indication of how many rows had to be filtered away. That leaves
us with the final table:

individuals first name last name age zip_code gender

4 * * * * *

4 Bob * * * *

We can take away a number of things from this example:

1. The higher the number of distinct columns you select in your query, the
lower the likelihood that the set of individual attributes occur frequently
enough to pass the low count threshold.

2. Queries such as sezzct ... will usually not yield useful information in
the context of Aircloak Insights.

3. As an analyst you can directly influence the order in which Aircloak Insights
will drop columns. The process takes place from right to left. Therefore you
should order the columns from most to least important.

4. Selecting a column that has a unique value per user, or close to it, as one
of your first columns will automatically lead to all the columns right of it
being anonymized away. You are therefore likely better off selecting
columns with a high number of distinct values as one of your later
columns, as chances are they will get dropped.

Let us now revisit the same query again, but looking at what the result would
have been if we changed the order in which we selected the columns. Let's say
the query we ran was:

sql
ELECT gender, zip code, first name, age, last_ name

FROM table

Just like last time none of the rows occur frequently enough to pass the
anonymizer, and Aircloak Insights will drop the rightmost column, in this case
last name:

#individuals gender zip code first name age last_name

1 F 10000 Alice 10 *
1 F 11000 Amanda 20 *
1 F 11000 Amy 15 *
1 F 11000 Anna 20 *
4 M 10000 Bob 10 *

We already have a value that can be reported, namely that there are 4 male
Bob's living in zip code 10000 aged 10.

There are still a set of other rows that need further refining. Aircloak Insights
attempts to drop the next rightmost column, namely age:

#individuals gender zip_code first name age last_name

1 F 10000 Alice * *
1 F 11000 Amanda * *
1 F 11000 Amy * *

4/9

#individuals gender zip_code first name age last_name
1 F 11000 Anna * *

4 M 10000 Bob 10 *

Dropping the age column did not make any of the other rows reach the low
count threshold, so the next rightmost column is dropped: first name.

#individuals gender zip_code first name age last_name

1 F 10000 * * *
3 F 11000 * * *
4 M 10000 Bob 10 *

As a result of dropping the first name we now see that we can additionally
report that there are 3 females living in zip code 11000.

After removing the first name column there are too few individuals remaining
to produce further reportable rows, so the process is finished with the
following result:

#individuals gender zip_code first name age last_name
3 F 11000 * * *

4 M 10000 Bob 10 *
Which is quite a bit more informative than what we got previously:

individuals first. name last. name age zip_code gender

4 * * * * *

4 Bob * * * *

Grouping values

The problem shown above of there needing to be enough distinct users with a
given set of column values gets exacerbated when one of the columns
contains values that are prone to have a large spread like integer values, or
that are likely to be unique like floating point values or high resolution date
and time values.

As an analyst you have more knowledge about what your desired outcome is
than Aircloak Insights does. You might, for example, know that age groups
spanning 10 years would be perfectly fine, that you only care about the first
digit of a zip code or a salary amount rounded to the nearest thousand.

These types of explicit groupings of numerical values make it much more likely
that values will get past the low count filter, and can be achieved by using the
vucket function. The bucket function is described in more detail in the

Supported functions chapter, but suffice to say that bucket (age by 10)

would group the age values to the nearest 10. By default values are rounded
down, such that 11, 15, as well as 19 all become 10, while 20, 21, 25 all
become 20, etc.

In order to achieve our objective of getting ages by the nearest 10, and zip
codes by the first digit, we could run the query:

5/9

sql

SELECT

bucket (age by 10) as age_bucket,

bucket (zip_code by 10 as zip code_bucket

'ROM table

Which would result in the following table of values:

#individuals age zip_code
6 10 10000

2 20 10000

which after low count filtering, would become:

#individuals age zip_code

6 10 10000

where the age group 20 to 30 got removed because there were not enough
individuals within the given zip code group.

You can play similar tricks with times, dates, and datetimes by using the

functions year , month , day , hour , minute ,and -cond to extract

components from the date or time, or alternatively use date trunc(part,
dateTimeColunn) Which truncates everything going beyond a certain level of
accuracy. For example date trunc('hour', '12:22:44.004200") would turn

the time into one at hour resolution: 12:00:00.000000 . This value is more

likely to pass the low count filter than the high resolution time value would be.

Using grouping sets

A way to extract a good amount of data from Aircloak is to try different
groupings of columns with grouping sets. A quick way is to use the cuse

clause.
sql
SELECT firstiname, last_name, gender, count(*), sum(age)
FROM table
GROUP BY CUBE(firstiname, last_name, gender

The query above would, after low count filtering, produce the following table:

first name last name gender count sum(age)

Bob null M 4 40
Bob null null 4 40
null Anderson F 4 65
null Anderson null 5 75
null null F 4 65
null null M 4 40
null null null 8 105

Of course Aircloak would adjust the values of the aggregates, but it still is an
effective technique to get a wide view of the underlying data.

Another useful technique is by increasing resolution of timestamps:

6/9

sql

SELECT YEAR(date), MONTH(date), DAY (date), sum(price)

FROM sales

SROUP BY ROLLUP(1,2,3)

would neatly show breakdowns down to days on days where there is sufficient
data, but at least shows coarser aggregates for where data is insufficient.

Also Aircloak provides the grouping_id function that can help you identify

which grouping took place.

Null values and counts of 2

In most dialects of SQL all but the count aggregate may produce a nuil
value. The count aggregate would, lacking data to produce a count, return 0
rather than nu11 . Aircloak Insights behaves similarly. When there is

insufficient data to produce a properly anonymized aggregate but sufficient
data that the set of column values passed the low count filter, then nu11 will

be returned for all aggregates but the count . As tools expect a non- nul:
value for count s, Aircloak Insights will return a hardcoded lower bound value

of 2 instead.

Say we ran the query:

sql

SELECT last_name, avg(age)

GROUP BY last_name

last_name avg
Anderson null

* null

The low count filter would filter out all last names other than Anderson. In the
case of the 5 Andersons we have enough users to inform you as an analyst

that users with the last name of Anderson exist in the dataset, but not enough
to make a properly anomymized average age. The =vg(=ge) would therefore

be returned as nuil .

In the case of count we might have enough distinct users to produce a count

for the number of Anderson's, but not enough other users to generate a count
for the = row (the anonymized row). Unlike for avg Aircloak Insights cannot
reporta nuil value as that would be incompatible with most existing tools
and would return 2 instead. The presence of 2 ina count should therefore be
considered as information about the fact that there are users with the given
properties in the dataset, but not enough to produce a proper count. To
validate that this is what is going on, you could also request the matching
count noise() value, which in this case would be nu1:

If we ran the query:

sql

SELECT last_name, count(*), countinoise (*)

FR

OM table

P BY last_name

7/9

We can validate that the count of 2 for the * row is due to there being

insufficiently many users. The count noise being nuil confirms this.

last name count count_noise
Anderson 5 14

* 2 null

If you want to hide these 2 values from your result set you can add a

savine clause to your query like this:

sql
SELECT last_name, count (*)

'ROM players

P BY last_name

NG count (*) > 2

last_.name count

Anderson 5

Implicit aggregate count
If you write a query that does not contain an explicit aggregate, for example:

sql

SELECT last_name

FROM table

then Aircloak Insights will internally run this query as if you had included a
count () , namely the query:

sql
SELECT last_name, count (*)
able
> BY last_name
Each occurrence of 1ast name would then be repeated count (*) number of

times. For example the results of this query given the example dataset we have
been working with in this guide would be:

last name count

Anderson 5

* 3
which then would result in the following table being returned to you as an
analyst:

last_name

Anderson

Anderson

Anderson

Anderson

Anderson

8/9

last_name

*

When running these types of queries you might end up seeing a lot of rows
appearing exactly two times. This is an artifact of what was described above,
namely that the implicit count (+) added by Aircloak Insights returns 2 as a
placeholder for the value n~u11 as a means of indicating that the value did

not appear frequently enough to produce a properly anonymized aggregate.

Aircloak - version 21.1.0 - Diffix Dogwood Changelog Third Party Licenses Privacy policy

9/9

Understanding query results

All anonymization systems necessarily distort query results. While the amount
of distortion in Aircloak is remarkably small, the analyst must nevertheless
understand how and when distortion occurs to properly interpret query results.

This section describes how and when distortion occurs, and suggests strategies
for minimizing the impact of distortion.

Aircloak distorts data in the following ways:

e Adds zero mean noise to anonymizing aggregation function outputs

e May modify the values of outlying data (the highest or lowest values in a
column)

e May suppress certain results when too few users are represented (low-
count filtering)

Pro Tips

e Use the noise reporting functions (e.g. count noise()) to determine how
much noise is added.

e Remember that outlying values are flattened: sums, row counts, and maxes
may be quite inaccurate when users with extreme outlying values are in the
data.

e Look for the = output row to gauge how much data is being hidden.

e Output rows with Lt probably mean that there are not enough distinct
users to compute an anonymized aggregate.

e In the Aircloak web interface, output rows in italics have more relative
distortion.

e Queries with fewer and simpler conditions have less noise.

Zero-mean noise

Aircloak adds zero-mean Gaussian noise to the outputs of count , sum,

v ,and variance . The amount (standard deviation, or sigma) of

the noise may vary. As a rule, the noise is roughly proportional to the influence
that the most influential users have on the output. For example:

o |f the sum of salaries is being computed, and the highest salaries are
around $1,000,000, then the sigma will be proportional to $1,000,000.

o |f the count of distinct users is being computed, then the sigma will be
proportional to 1 (the maximum amount that any user contributes to the

count).

The reason for this is to hide the effect of the highest contributing users and
thereby protect their privacy.

Aircloak increases the noise with an increase in the number of certain query
conditions (for instance those found in the wzere and wzvine clauses).
Specifically, most conditions contribute a baseline of two noise samples, and
some conditions contribute additional samples. These noise samples are
summed together. We refer to the noise samples as noise layers. The following
table gives the noise layers produced by each condition:

Condition Noise Layers

1/6

Condition Noise Layers

equality (= or <) Baseline (two noise layers)
Any szzzcr ‘ed column Baseline
concat () in equality Baseline
range (>= and < ,or e&r Baseline

One layer plus one layer per
1 element

Two layers per wor 1n
NOT IN
element

One layer plus one layer per
wildcard

right , eft , ltrim, rtrim, btrim, .
Baseline plus one layer
trim , OF substring

upper , lower With <> Baseline plus one layer
coll <> col2 (special case of <>) No noise layer
None One noise layer

Aircloak provides functions that report the sigma of the zero-mean noise for

count () , sum() , avg() , 7 () ,and varian

c() . They are

count_noise() , sum_noise() , avg noise() , stddev_noise() , and

variance noise() respectively. Note that the reported sigma are themselves

rounded, but are generally within 5% of the true value.

Examples
Example 1

The answer to the following query indicates that noise with signa = 2 was

added to the count:

sql
SELECT count (*), count_noise (*)
FROM accounts
count count_noise
5368 2
This is because the zccounts table has only one row per user, and therefore
the amount contributed by the most influential user is just 1.
Example 2
By contrast, for the following query, noise with sigma of roughly 340 was
added:
sql

count count_noise

1262167 320

2/6

The reason is that the number of transactions per user varies substantially in
this table (the reported max is nearly 14000, the reported min is 5).

Example 3

The following query has noise with sigma of roughly 2:

sql

SELECT count (*), count_noise(*

FROM accounts

WHERE frequency = 'POPLATEK MESICNE' AND
disp_type = 'OWNER'

count count_noise

4167 4

This query has more noise than the query of example 1 above because each of
the two conditions adds two noise layers. Each layer has sigma = 2, so the

resulting cumulative sigmais sart(4) * 2 = 4.
Example 4
The following query produces answer rows with signa = 4 . This represents
16 noise layers: 2 for acct date , 6 for the r1xe condition, and 8 for the 1u
condition.
sql
CT acct_date, count(*), count noise(*)
FROM accounts

P BY acct_date

Low-count filtering

The Aircloak anonymizing aggregator computes outputs from the data of
multiple users. If the number of distinct users contributing to a single output
row is too small, the row is suppressed (not reported). This suppression is
called low-count filtering.

The threshold for the low-count filter is itself a noisy value with an average of
4. If there are 4 distinct users that comprise an output row, then there is a 50%
chance the row will be suppressed. Fewer users increases the chance of
suppression, and more users decreases the chance of suppression. Any
reported output row always has at least 2 distinct users.

For instance, suppose that a query counts the users with each given first name,
and that the names in the users table (before anonymization) are distributed

as follows:

Name Number of distinct users

Alice 100
Bob 2
John 150
Mary 1
Tom 2

3/6

Since there is only one Mary, she definitely won't appear in the output. Since
there are only two Bobs and Toms, their names probably won't appear in the
output. Therefore, the anonymized result returned by Aircloak may be
something like:

Name Number of distinct users

Alice 102
John 147
7

The « row provides the analyst with an indication that some names have
been suppressed because of low-count filtering. This indication is particularly
important in cases where a large number of values are low-count filtered: the
analyst can learn that a substantial amount of data is being hidden. Note that
the » row is itself anonymized: the anonymized aggregate associated with it
has noise, and it itself is low-count filtered. In other words, lack of a * row

does not mean that no data was suppressed, only that very little data was
suppressed.

When a large number of non-aggregated columns is selected in a query, the
chances of having lots of rows with very few users increase. That will lead to
lots of rows being suppressed, making the query result less useful. In order to
suppress as little information as possible, Aircloak will low-count filter columns
individually, from right to left. Rows that are suppressed in one iteration are
aggregated together and kept for the next round of filtering. That way, the
maximum number of rows will be sent back to the analysts.

If the following query is issued:

sql
SELECT name, age, COUNT (DISTINCT uid)

JP BY name, age

and the non-anonymized results are:

name age count sufficient users
Alice 10 2 false
Alice 20 2 false
Bob 30 1 false
Cynthia 40 2 false

and the system only allows through values where there 3 or more distinct
users in the answer set, then the Insights Cloak will attempt to group the low-
count values together by the age column, and, where necessary, also by the

name column, as follows:

Step 1: Suppress =ge where necessary

name age count sufficient users
Alice * 4 true
Bob * 1 false
Cynthia * 2 false
Step 2: Suppress name where necessary

4/6

name age count sufficient users
Alice * 4 true

* * 3 true

This process is time-consuming, so it is limited by default to a maximum of 3
columns. For details on how to change this limit, refer to the Configuring the
Insights Cloak section. A value of 1 results in a single bucket for suppressed
data, while a value of 0 will drop the low-count filtered data completely.

Anonymizing aggregation functions

These seven anonymizing aggregation functions may add additional distortion
besides the zero mean noise and low-count filtering already described. Note in
particular that Aircloak gives no indication of whether any additional distortion
occurred, or how severe this additional distortion is. This is because such
information itself may leak individual information.

Anonymizing aggregation functions make a variety of computations that
require some minimum number of distinct users. It can happen that there are
enough distinct users to pass a low-count filter, but not enough distinct users
to compute the aggregate. In these cases, Aircloak does not suppress the
output, but rather reports i for all aggregation functions and noise
reporting functions except count () . Aircloak reports 0 for count () because

wuzs is not a valid output for count () .

Note also that when there are fewer than 15 distinct users (anonymized
output) in a given output row, then the Aircloak web interfaces reports the
output in italics. This serves as a reminder to the analyst that the result likely
has high relative noise.

sum()

The sum() function selects a small number of the highest values, and flattens
them so that they are roughly the same. In other words, a few high values are
lowered, or in the case of negative numbers, a few low values are increased. As
a result, the users with high values become a homogeneous group of users
within which individual users can hide. The number of users chosen for
flattening is itself a noisy value.

By way of example, suppose that values in a given summed column contain
the following numbers of distinct users:

Value Number of distinct users

1 1000
500 20
500K 1

™ 1

Aircloak will flatten the high values by modifying them to fall within a group of
high value users. In this example, the high value group has the value 500, and
so the users with values 500K and 1M are replaced with 500. The resulting
values are these:

Value Number of distinct users

1 1000

5/6

Value Number of distinct users

500 22

The users with 500K and 1M have, essentially, disappeared from the system.
The affect is similar to outlier removal in statistics, and the analyst needs to be
aware that this is happening, and that there is no indication from Aircloak that
it has happened.

In addition, the sigma of the noise is proportional to the average value of the
modified group of high users (in this case 500). This can be observed from the
sum_noise () function.

In any event, as a result of this flattening, the answer distortion in this
particular extreme case is very large. The anonymized answer will be in the
neighborhood of 12K where the true answer is over 1.5M. More generally, the
amount of distortion depends on how big the outlying values are relative to
other values.

count()

The count() function actually uses the sun() function, where the number of

rows contributed by each user is the value being summed. As such, one or a
small number of users with a high number of rows will be flattened.

Note that when counting distinct users, there is no added distortion.

avg()

The avg(col) function is literally the result of the sum(co1) function divided
by the result of the count(co1) function. As such, it also flattens the high (or

negative low) users.

stddev() and variance()

The functions stddev() and variance() usethe avg() function, and so

flattening occurs.

max() and min()

The wax() function drops the rows for a small number of users with the
highest values (using a noisy number of users as with sun()). It then takes
the average value of the next small number of distinct users with the highest
values, and uses this average as the max (with potentially some additional
noise, if the spread among this set of values is high). As such, the anonymized
max may be very far from the true max.

The wmin() function operates the same as max() , except using low numbers.
Unless the data includes negative numbers, min() tends to have less

distortion than max () .

Aircloak - version 21.1.0 - Diffix Dogwood Changelog Third Party Licenses Privacy policy

6/6

Functions

Date/time functions

Current date/time functions

The functions current date , current time , current datetime , now and
current timestamp are supported. They are evaluated during query

compilation and replaced with the current date and/or time value.

sql
current_date ()
-- 2016-05-22
-- current_timestamp (), now() and current_datetime() are
identical
current t
-~ 2016-05-22 12:30:21.340
current_time ()
-- 12:22:44.220
Date extraction functions
The functions year , quarter , month , day , hour , minute, ond
day , and dow (a synonym for weekday) are supported. They extract the
named part from a date or time column.
Functions weekday and dow return values in interval 1 (Sunday) to 7
(Saturday). This behavior may change if database defaults are modified.
sql

SELECT YEAR (date_column), MONTH(date_ column), DAY (date_column)

FROM table;

SELECT EXTRACT (year FROM date_column) FROM table;

date trunc

"Rounds" the date or time to the given precision. Supported precision levels

are year , quarter , month , day, hour , minute , and second .
sql
DATE_TRUNC ('quarter', date)

-- 2016-05-22 12:30:00.000 -> 2016-04-01 00:00:00.000

DATE TRUNC ('hour', time)

-- 12:22:44.000 -> 12:00:00.000

Working with intervals

116

When subtracting two date or time columns the result is an interval. The
format Aircloak follows when representing intervals is 1ISO-8601.

sql
cast ('2017-01-02"' as date) - cast('2017-01-01"' as date)

-- P1D

cast ('12:33:44' as time) - cast('11:22:33' as time)

-- PT1H11M11S

cast ('2017-02-03 11:22:33" - cast('2016-01-02

12:33:44' as timestamp)

-- P1YIM2DT22H48M49S

-- Intervals do not have a sign

cast('12:00:00' as time) - cast('13:00:00' as time)
-- PT1H
cast ('13:00:00' as time) - cast('12:00:00' as time)
-- PT1H

Similarly, an interval can be added or subtracted from a date or time column.

sql
cast ('13:00:00' as time) + interval '"PT1H2M3S'

-- 14:02:03

cast ('2015-07-06 12:00:00' as timestamp) - interval
'P1YIMIDT1HIM1S'

-- 2014-06-05 10:58:59

-- Note that months in intervals will always have 30 days
cast ('2015-06-06"' as date) - interval 'PIM'

-- 2015-05-07 00:00:00

cast ('2015-07-06" as date) - interval 'P1IM'

-- 2015-06-06 00:00:00

-- Similarly years will always have 365 days
cast ('2015-06-06" as date) + interval 'P1lY'
-- 2016-06-05 00:00:00

cast ('2016-06-06" as date) + interval 'P1lY'

-- 2017-06-06 00:00:00

Intervals can be multiplied or divided by numbers to yield bigger or smaller
intervals.

sql
2 * interval 'P1Y'

-- P2Y

0.5 * interval 'PIM'

-- P15D

interval 'PT1H' / 2

-- PT30M

Restrictions in usage apply

Mathematical operators

2/16

The operators +, -, /,and * have their usual meaning of addition,

subtraction, division, and multiplication respectively.

1 -2+4*3/2

The operator ~ denotes exponentiation.

-- Note that ”~ is left-associative

2~ 3 "4
-- 4 096

27 (3 7~ 4

-- 2 417 851 639 229 258 300 000 000

The operator = computes the division remainder:

33 % 10

Restrictions in usage apply

Mathematical functions

abs

Computes the absolute value of the given number.

w

ABS (3)

-3

ABS (-3)

Restrictions in usage apply

bucket

sql

sql

Rounds the input to multiples of N, where N is provided in the =v argument.

It also accepts an aricn argument to specify if the rounding should occur

down (arzen tower - this is the default), up (2ntcn ueeer), or if an average

between the two should be returned (2r1cy wiooie).

3/16

BUCKET (180
-- 150
BUCKET (150
-- 150
BUCKET (200
-- 200
BUCKET (180
-- 100
BUCKET (180
-- 150
BUCKET (180
-- 200
BUCKET (180
-- 175

This function is

BY

BY

BY 5

BY

BY

BY

BY

sql

50)

100)

50 ALIGN LOWER)

50 ALIGN UPPER)

50 ALIGN MIDDLE)

useful to prepare buckets/bins for a histogram, for example in

a query like the following:

sql

SELECT BUCKET (price BY 5), COUNT (*)

FROM purchases

GROUP BY 1

-- bucket count

-0
-5
— 10

-- etc.

10
10
20

- all purchases priced below 5
- purchases priced at or above 5 and below 10

- purchases priced at or above 10 and below 15

The function can also help if the column you want to group by has many

unique values and many of the buckets get anonymized away. For example if

you have a column containing the length of a call in seconds:

FROM calls

GROUP BY 1

sql

LECT call duration, COUNT (*)

-- call_duration count

SELECT BUCKET (call duration BY 5),

FROM calls

GROUP BY 1

100

-- bucket count

20
10
10

Restrictions in usage apply

ceil / ceiling

Computes the smallest integer that is greater than or equal to its argument.

4/16

sql
CEIL(3.22)

-4

Restrictions in usage apply

floor
Computes the largest integer that is less than or equal to its argument.

sql
FLOOR (3.22)

-- 3

Restrictions in usage apply

sql
POW (2

]

;3)

-8

POW (2, 3.5)

-- 11.313708498984761

Restrictions in usage apply

round

Rounds the given floating-point value to the nearest integer. An optional
second argument signifies the precision. Halves are rounded away from zero

(towards the larger absolute value).

sql

ROUND (3.22)

Restrictions in usage apply

sqrt
Computes the square root.

sql
SQRT (2)

-- 1.4142135623730951

Restrictions in usage apply

b) computes = tothe © -th power. Returns NULL if - is negative.

5/16

trunc

Rounds the given floating-point value towards zero. An optional second
argument signifies the precision.

sql
TRUNC (3.22)
-3
TRUNC (-3.22)
-- -3
TRUNC (3.22, 1)
-- 3.2
Restrictions in usage apply
String operators
Joins two or more strings into one. It is internally translated to the concat
function.
sql
et] b 1] e
-- 'abc'

Restrictions in usage apply

LIKE / ILIKE

These operators match a text expression against a pattern. 1rix= is the case-

insensitive version of 11xz . Syntax: text expression [NOT] LIKE | ILIKE

E escape string] .

If the pattern does not contain any percent signs or underscores, then the
pattern only represents the string itself. In that case, t1zz acts like the equals
operator and 111k acts like a case-insensitive equals operator. An
underscore () in a pattern matches any single character. A percent sign (=)

matches any string of zero or more characters.

A pattern match needs to cover the entire string. To match a sequence
anywhere within a string, the pattern must therefore start and end with a
percent sign.

To match a literal underscore or percent sign without matching other
characters, the respective character in the pattern must be preceded by the
escape character. No escape character is set by default. To match the escape
character itself, write two escape characters.

6/16

sql
'abCD' LIKE 'ab%'

—-- TRUE

'abCD' NOT LIKE 'ab_ '

-- FALSE

email ILIKE 'a_b@%.com' ESCA

-- BOOLEAN

Restrictions in usage apply

String functions

btrim

Removes all of the given characters from the beginning and end of the string.
The default is to remove spaces.

sql

BTRIM (' some text ')

-- 'some text'
BTRIM('xyzsome textzyx', 'xyz')

-- 'some text'

Restrictions in usage apply.

concat
Joins the passed strings into one.
sql

CONCAT ('some ', 'text')

-- 'some text'

Restrictions in usage apply

left

LEFT (string, n) takes n characters from the beginning of the string. If n is

negative takes all but the last |n| characters.

sql
LEFT ('some text', 4)

-- 'some'

EFT ('some text', -2)

-- 'some te'

Restrictions in usage apply

7/16

length

Computes the number of characters in the string.

sql
LENGTH ('some text')
-9
Restrictions in usage apply
lower
Transforms all characters in the given string into lowercase.
sql
LOWER ('Some Text')
-- 'some text'
LCASE ('Some Text')
-- 'some text'
Itrim
Removes all of the given characters from the beginning of the string. The
default is to remove spaces.
sql
LTRIM(' some text ')
-- 'some text '
LTRIM('xyzsome textzyx', 'xyz')
-- 'some textzyx'
Restrictions in usage apply
right
RIGHT (string, n) takes n characters from the end of the string. If n is
negative takes all but the first |n| characters.
sql
RIGHT ('some text', 4)
-- 'text'
RIGHT ('some text', -2)
-- 'me text'

Restrictions in usage apply

rtrim

Removes all of the given characters from the end of the string. The default is
to remove spaces.

8/16

sql
RTRIM (' some text ')

-- ' some text'

RTRIM('xyzsome textzyx', 'xyz')

-- 'xyzsome text'

Restrictions in usage apply

substring
Takes a slice of a string.
sql

SUBSTRING ('some text' FROM 3)

-- 'me text'

SUBSTRING ('some text' FROM 3 FOR 5)

-- 'me te'

SUBSTRING ('some text' FOR 4)

-- 'some'
Restrictions in usage apply

trim

Removes all of the given characters from the beginning and/or end of the
string. The default is to remove spaces from both ends.

sql

TRIM(' some text ')

-- 'some text'

TRIM(LEADING ' some text ')

-- 'some text '

TRIM(TRAILING ' tx' FROM ' some text ')

-- ' some te'

TRIM(' osxt' ' some text ')

-- 'me te'
TRIM(BOTH FROM ' some text ')

-- 'some text'

Restrictions in usage apply

upper
Transforms all characters in the given string into uppercase.
sql

UPPER('Some Text')

—-- 'SOME TEXT'

UCASE ('"Some Text')

-- 'SOME TEXT'

9/16

Casting

You can convert values between different types using a cast expression.

CAST ('NOT A NUMBER', integer)

-- NULL

Restrictions in usage apply

sql

Types can be converted according to the following tables:

from\to
text
integer
real
boolean
date
time
datetime

interval

from\to
text
integer
real
boolean
date
time
datetime

interval

text

v

A N N N NN

date

v

integer

v

v
v
v

time

v

real

v

v
v
v

datetime

v

boolean

v

v
v
v

interval

v

v

A cast may fail even when it's valid according to the table. For example a text

field may contain data that does not have the correct format. In that case a

NULL IS returned.

Casting to/from text

Casting from text will accept the same format as the cast to text produces for

the given type. That means:

® 'TRUE' / 'FALSE

for booleans

e A base-10 notation for integers

10/16

e 1.23 or 1ec23 forreals

e |SO-8601 notation for dates, times, datetimes and intervals

Casting to integer

Casting a real to integer rounds the number to the closests integer.

Casting to/from boolean

When converting numbers to booleans non-zero numbers are converted to
truz and zero is converted to rarsz . When converting from booleans

truE is converted to 1 and raise is converted to

Casting from datetime

Casting from datetime to date or time will select the date/time part of the
datetime.

Aggregation functions

Note about noise

Unlike in regular database systems, the results of aggregation functions will
usually not be reported precisely. Instead, a small amount of noise will be
added or subtracted from the real value to preserve anonymity. See the
section about *_noise functions for more on how to get a measure of how

much noise is added.

avg

Computes the average of the given expression.

SELECT avg(age) FROM people

avg
29.44782928323982
SELECT lastname, avg(age) FROM people GROUP BY 1
lastname | avg
__________ oo
ABBOTT | 28.93011185
ACEVEDO | 29.9332550310

Note that the computed average is anonymized by introducing a certain
amount of noise. See Note about noise for more.

count

Computes the number of rows for which the given expression is non-NULL.
Use =+ as an argument to count all rows.

sql

11/16

sql

SELECT count (age) FROM people

ECT lastname, count(age) FROM people GROUP BY 1

lastname | count
__________ P
ABBOTT | 10
ACEVEDO | 12

Note that in order to preserve anonymity Insights Cloak will never report
"groups" of just one user and there will be noise added to the result. Because
of this, when you see a count of 2, it should be treated as a placeholder value
for "a small number, not lower than 2". See Note about noise for more.

maXx
Finds the maximum value of the given expression.

sql

SELECT max (age) FROM people

SELECT lastname, max(age) FROM people GROUP BY 1

ABBOTT | 30

ACEVEDO | 32

Note that the computed max value is anonymized - it requires a number of
users to share this value, so in many cases the true value will be larger.
Furthermore, Insights Cloak's anonymizing n=x function doesn't work on

textual values:

sql

SELECT max (lastname) FROM people

ERROR: Aggregator ‘max’ 1s not allowed over arguments of type
“text’ in anonymizing contexts.
For more information see the "Text operations" subsection of

the "Restrictions" section in the user guides.

However, you can still use n=x to postprocess textual results of an

anonymizing subquery:

12/16

sql

SELECT max (lastname) FROM (SELECT lastname FROM people GROUP BY

ZUNIGA

min
Finds the minimum value of the given expression.

sql

SELECT min (age) FROM people

SELECT lastname, min(age) FROM people GROUP BY 1

lastname | min
__________ bmm
ABBOTT | 26
ACEVEDO | 28

Note that the computed min value is anonymized - it requires a number of
users to share this value, so in many cases the true value will be smaller.
Furthermore, Insights Cloak's anonymizing nin function doesn't work on

textual values:

sql
SELECT min (lastname) FROM people
ERROR: Aggregator 'min’ is not allowed over arguments of type
‘text' in anonymizing contexts.
For more information see the "Text operations" subsection of
the "Restrictions" section in the user guides.
However, you can still use nin to postprocess textual results of an
anonymizing subquery:
sql

SELECT min (lastname) FROM (SELECT lastname FROM people GROUP BY

1) x
ABBOTT
stddev

Computes the sample standard deviation of the given numerical expression.

13/16

sql

SELECT stddev (age) FROM people

SELECT lastname, stddev(age) FROM people GROUP BY 1

lastname | stddev

ABBOTT | 7.2835052504058195

ACEVEDO | 1.587458159104735

Note that the computed standard deviation is anonymized by introducing a
certain amount of noise. See Note about noise for more.

sum
Computes the sum of the given numerical expression.

sql

SELECT sum(points) FROM games

6390144

SELECT date, sum(points) FROM games GROUP BY 1

2013-01-01 | 5510

2013-01-02

Note that the computed sum is anonymized by introducing a certain amount
of noise. See Note about noise for more.

variance
Computes the sample variance of the given numerical expression.

sql

SELECT variance (age) FROM people

varliance

SELECT lastname, variance (age) FROM people GROUP BY 1

lastname | variance
,,,,,,,,,, oo
ABBOTT | 53.04944873268914
ACEVEDO | 2.5200234069081944

Note that the computed variance is anonymized by introducing a certain
amount of noise. See Note about noise for more.

% .
_hoise

You can get a sense of how much noise is being added to an avg , count,
stddev , sum , OF variance expression by using an analogous * _noise

expression. The value returned is the standard deviation of the noise added
according to what's described in the section about noise.

sql

SELECT count (*), count _noise(*), avg(age), avg_noise(age) FROM

people
count | count_noise | avg | avg_noise
——————— B
0000 | 1.0 | 29.44782928323982 | 0.0029

CT lastname, count(*), count _noise(*), avg(age),

avg_noise(age) FROM players GROUP BY

lastname | count | count_noise avg

avg _noise

ABBOTT | 10 | 1.40 000000001 | 28.930111858960856
4.2

ACEVEDO | 12 | 1.4000000000000001 | 29.933255031072672

w

5

Note that the noise added depends on the expression inside the aggregation
function used, so you have to provide the exact same expression in the
+ noise function to get an accurate value:

sql
SELECT avg (age), avg noise(age),
avg(age * age) AS square, avg noise(age * age) AS square_noise

FROM people

avg avg_noise square
square_noise
——————————————————— R
29.44782928323982 | 0.0029 | 883.4329967124744

0.09

Special functions

grouping_id

Returns an integer bitmask for the columns used in the current grouping set.
Can only be used in the serzct, waving and orpez Bv clauses when the

crour ey clause is specified.

15/16

Each grouping ia argument must be an element of the crour =v list. Bits

are assigned with the rightmost argument being the least-significant bit; each
bit is 0 if the corresponding expression is included in the grouping criteria of
the grouping set generating the result row, and 1 if it is not.

sql
SELECT

alive,

bucket (age by 10) as age,

count (*),

grouping_id(alive, bucket (age by 10)

FROM demographics

CUBE (1, 2)

Hh
©
=
19}
o

*
[N
C
o

Hh
©
=
17}
[
N
o
-
o

true | 10 | 3 | 0
true | 20 | 2 | 0
I 30 | 4 | 0
| |14 | 1
true | | 13 | 1
| * | 2 | 2
| 10 | 7 | 2
| 20 | 10 | 2
| 30 | 6 | 2
| | 31 | 3

Aircloak - version 21.1.0 - Diffix Dogwood Changelog Third Party Licenses Privacy policy

16/16

Overview

Before starting the system, you need to configure the Insights Air and Insights

Cloak components. Both components are configured through a file called
config.ison . Each component requires its own contig.json file which must
be placed in a separate folder. In other words, you can't have a single
config.ison for both components. When starting each component, you need

to mount the folder containing this file, as explained in the Installation guide.

Insights Air configuration
The Insights Air configuration needs to provide the following information:

e database connection parameters (required) - see Database configuration
e web site configuration (required) - see Web site configuration

e Insights Air PostgreSQL interface parameters (optional) - see Insights Air
Postgresq| interface configuration

e LDAP configuration (optional) - see LDAP configuration
e Configuration for connecting to Diffix Explorer (optional) - see Diffix
Explorer configuration

ison is therefore:

The general shape of conrig

"name": string,
"database": {
b

"site": {

"psgl_server": ({

by
"ldap": |

b

"explorer™: {

The name property is used to uniquely identify the air instance in the system.
If you're running multiple instances, make sure to give each instance a unique
name.

Database configuration

The database configuration is used to specify connection parameters for the
database used by the Insights Air component to store data such as users,
groups, history of queries, and other. The database has to be hosted on a
PostgreSQL server version 9.4 or higher.

This section looks as follows:

1/22

"database": {
"host": string,
"port": integer,
"ssl": boolean,
"user": string,
"password": string,

"name": string

The following fields are optional:

® port - defaults to 5432
e 551 - defaults to true

-rd - defaults to empty string

Web site configuration

This part of the configuration is used to configure the web server of the
Insights Air component. The shape of this section is as follows:

"site": {
"auth_secret": secret_string,
"endpoint_key base": secret_string,
"endpoint_public_url": string,
"cloak_secret": secret_string,
"master_password": string,
"certfile": string,
"keyfile": string,
"privacy_policy_ file": string,
"license file": string,
"users_and_datasources_file": string,

"browser_ long_polling": boolean

In the snippet above, the type <ccret string indicates a string which should
consist of at least 64 characters. The corresponding parameters are used to
sign and encrypt various data. Make sure to choose values which are random
enough, or otherwise the security of the system might be compromised. For
example, to generate a random secret, you can use the following command:

cat /dev/urandom |
LC_ALL=C tr -dc 'a-zA-Z0-9' |

fold -w 64 |

head -n 1

Of the parameters above, the only required ones are the auth secret and

parameters, as well as one of master pa rd or

endpoint_key b

urces file . The other parameters such as the

s_file ,and license_file all

privacy policy file , users_and_datasourc

specify values that can also be configured in the Insights Air web interface.
These parameters can be used to fully configure a system ahead of time. This
is useful when performing automated deployments. For more information on

ahead of time configuration, please read the ahead of time configuration
guide.

2/22

The maste r p

required when creating the first administrator in the Insights Air web interface.

parameter specifies the password (in clear text) which is

If you attempt to access the Insights Air interface while no administrative user
has been setup, you will be prompted to create one. To do so you have to

type in the master po the system is configured with. This password will

no longer be needed once the first administrator has been created.

The endpoint punlic url should be the full root URL that the Insights Air
instance is accessible on the internet. It should be the address you would go
to when visiting Insights Air using the browser. In other words, it should also

include nttp:// or neeps:// . This parameter is used to generate correct
URLs.
The ciloax secret setting is optional. If not set (default) all Insights Cloak

instances will be allowed to connect to the Insights Air instance. If set, then
only instances with the same cioak secret setin their configuration files will

be allowed. See Insights Cloak configuration for more.

The final two parameters certfile and xeytile are optional. They are used
to specify the certificate and key for the HTTPS interface. If these parameters
are provided, you will also need to put the corresponding files in the same
folder as the config.json file. Once you do that, the site will accept HTTPS
traffic as well as HTTP traffic. If you omit these parameters, the site will only
accept HTTP traffic.

The ports on which the site will listen are hardcoded. HTTP traffic is served via
port 8080, while HTTPS is served via 8443. As explained in the Installation
guide, you can use the Docker port mapping option to decide under which
port numbers you want to expose these endpoints on the host server.

We strongly suggest only exposing the Insights Air interface to clients using
HTTPS. You might want to terminate the SSL connection at a reverse proxy
such as nginx or apache, or alternatively make use of the HTTPS server offered

as part of Insights Air.

By default, when Insights Air is accessed from the browser, a websocket
connection is established. This connection is used to push real-time
notifications in various situations. If Insights Air is behind a proxy, and you
don't want to allow forwarding of websocket connections, you can explicitly
force the long polling protocol. This can be done by setting the

browser long polling option to true .

Insights Air PostgreSQL interface configuration

This part of the configuration allows you to instruct the Insights Air component
to accept requests over the PostgreSQL wire protocol. If this is configured,
Insights Air can be queried from client applications which understand this
protocol, such as Tableau.

The configuration consists of the following parameters:

"psgl_server": ({
"require_ssl": boolean,
"certfile": string,
"keyfile": string,

"max_connections": positive_integer

3/22

The require ss1 parameter specifies whether the connection requires all

clients to connect over SSL. If this value is true , you also need to provide
certfile and keyrile parameters which specify the file names of the

certificate and the key. These files need to be placed in the same folder as the

config.json file.

If require ss1 s false, then the server will accept TCP connection as well as
SSL. However, if cercfile and keyrile parameters are not provided, then

the server will only work with unencrypted TCP connections.

Regardless of which transport protocol(s) are allowed, the server will always
accept requests on the port 8432. As explained in the Installation guide, you
can use the docker port mapping to expose this port to the outside world.

Once the component is started, you can test the connectivity with the psq1

command line tool:

psgl -h insights_air ip address -p postgresgl interface port -d

data_source_name -U user_name

Where postgresqgl interface port is the PostgreSQL interface port provided

when the component is started, as explained in the Installation Guide.

In order for the above command to work, the cloak component must be
started as well, and the user must have permissions to query the given data

source.

The max_connections property can be used to configure the maximum
allowed number of simultaneously open connections. The incoming
connections which would cause the limit to be exceeded are immediately
closed. This property is optional, and if not provided, the default value of 1024
is used.

LDAP configuration

Insights Air can be configured to allow users to login with credentials managed
in an LDAP directory service. Note that this feature is licensed separately. If you
would like to add LDAP sync to your license, contact support@aircloak.com.

The config.ison snippet below shows all possible configuration options

along with their default values where applicable. Note that the nost

value are indicated with a nu11 .

4/22

"ldap": |
"host": null,
"port": 389,
"bind_dn": "",
"password": "",
"encryption": "plain"
"verify server_ certificate": false,
"ca_certfile": null,
"client certfile": null,
"client_ keyfile": null,
"user_base": null,
"user_ filter": " (objectClass=*)",
"user_login": "cn",
"user_name": "cn",
"group_base": null,
"group_filter": " (objectClass=*)",
"group_name": "dn",
"group_member": "memberUid",
"group_member_key": "login",

"user_group": null

The options have the following meaning:

e 1ost - the hostname of the LDAP server.

e port - the port on which to connect to the LDAP server. Defaults to 389.

e 1ind dn - the DN of the user used to read from the LDAP server. We
recommend you set up a read-only user for this purpose. Defaults to " .

- the password of the user used to read from the LDAP server.

You can set both tind an and p rd to " to configure anonymous
access. Defaults to

e cncryption - the type of encryption to use. Possible values are "piain®
for no encryption, "ss1v for regular SSL, and "starc tist for StartTLS.
Set this to the type of encryption used by your server. We recommend you
use either "ssiv or vstart tisv . Defaults to "plaint .

® yerify server certificate - setthisto true to check the certificate of
the server for validity. Requires ca certcile to be configured. Defaults to

false .

® o certrile - the name of the CA certificate file with which to verify the
server certificate. Put the certificate file in the same folder as config.json .

e client certfile - the name of the client certificate file to use when

connecting to the server. Put the certificate file in the same folder as
onfig.ison . By default no client certificate is sent.

® client keyfile - the name of the file containing the key to

client_certfile . Put the key file in the same folder as con: ig.json .
® user base - the LDAP subtree in which to look for users.

e user filter - an LDAP filter to restrict which users to sync from

e

user ba

. See the LDAP page on filters for more on how to formulate

such filters. Defaults to " (opjectciass=+) ", which matches all objects.

® user login - the name of the attribute from which to take the user's

login. Note that users are required to have a valid login, so if this attribute
is empty for an object, it won't be synced as an Insights Air user. Defaults
to menv .

5/22

e user nane - the name of the attribute from which to take the user's name.
Defaults to "car .

® group base - the LDAP subtree in which to look for groups.

e group filter -an LDAP filter to restrict which groups to sync from
group base . See the LDAP page on filters for more on how to formulate
such filters. Defaults to " (obiectciass=+) " , which matches all objects.

e group name - the name of the attribute from which to take the group's
name. Note that groups are required to have a valid name, so if this
attribute is empty for an object, it won't be synced as an Insights Air group.
Defaults to "an"

e group member - the name of the attribute on a group object which lists
the group's members. Defaults to "membervidr .

® group member key - the user attribute which will be listed in group objects
under group member . Possible values are "1ogint and vant . Defaults to

"login

e user group - the name of the attribute on a user object which lists the
groups the user belongs to. The attribute is expected to contain the DNs of
the groups.

If a valid LDAP configuration is present, Insights Air will periodically sync with
the LDAP server to update the list of users and groups. The syncs will occur
immediately after Insights Air starts and every hour after that. You can also
trigger a sync manually by going to 2dmin -> Users Or Admin -> Groups

and clicking sync wow next to the LDAP section.

The users and groups created in this way can only be managed in LDAP. That
is, their details such as user logins, user names, and group names cannot be
altered through the Insights Air interface. Furthermore, group membership can
also only be altered through LDAP. The only property that can be modified
through the Insights Air interface is the list of data sources available to a given

group.

The users synchronized from LDAP will be able to login using their LDAP
password and the login configured with uscr 10gin . They cannot login using
an Insights Air-specific password nor can they change their password via
Insights Air.

When a user is removed from LDAP they will be disabled in Insights Air during

the next sync. Only then can the user be removed from Insights Air. Note that

if a user with the same LDAP DN appears again in LDAP then the user will be

enabled and synchronized with this new user. Users who do not match the
user filter are treated as non-existent, so you can disable users by

adjusting that filter.

When a group is removed from LDAP that group will be deleted in Insights Air
during the next sync.

Examples

If your LDAP data looks something like this:

6/22

dn: ou=users,dc=example,dc=org

objectClass: organizationalUnit

dn: cn=alice,ou=users,dc=example,dc=org
objectClass: simpleSecurityObject
objectClass: organizationalRole

cn: alice

description: Alice Liddell

dn: ou=groups,dc=example,dc=org

objectClass: organizationalUnit

dn: cn=analysts,ou=groups,dc=example,dc=org
objectClass: posixGroup

cn: analysts

description: Wonderland Analysts

memberUid: alice

You might have the following LDAP configuration:

"ldap": {
"host": "ldap.example.org",
"user_base": "ou=users,dc=example,dc=org",
"user_login": "cn",
"user_name": "description",
"group_base": "ou=groups,dc=example,dc=org",
"group_name": "description",
"group_member": "memberUid",
"group_member_ key": "login"

Your group membership might be specified in user attributes instead:

dn: ou=users,dc=example,dc=org

objectClass: organizationalUnit

dn: cn=alice,ou=users,dc=example,dc=org
objectClass: simpleSecurityObject
objectClass: organizationalRole

cn: alice

description: Alice Liddell

group: cn=analysts,ou=groups,dc=example,dc=org

dn: ou=groups,dc=example,dc=org

objectClass: organizationalUnit

dn: cn=analysts,ou=groups, dc=example,dc=org
objectClass: posixGroup
cn: analysts

description: Wonderland Analysts

In that case you'd use a configuration like this:

7/22

"ldap": {

"host": "ldap.example.org",

"user_base": "ou=users,dc=example,dc=org",
"user_login": "cn",

"user_name": "description"

"group_base": "ou=groups,dc=example,dc=org",
"group_name": "description",

"user_group": "group"

Diffix Explorer Configuration

The Diffix Explorer integration is optional. You can activate it by including the
explorer parameter in your configuration. It specifies the Diffix Explorer

instance Insights Air will connect to. The configuration looks like this:

"explorer™: {

"url™: string

The single property -1 is the URL where Insights Air can find a running
version of Diffix Explorer. Note that if your Diffix Explorer instance is running
behind a reverse proxy that sends an HTTP redirect (status code 301 or
equivalent) then the Diffix Explorer integration will fail. Please use the URL
being redirect to instead. This includes if your reverse proxy redirects from
HTTP to HTTPS. In the latter case, please explicitly include nttps:// in the
URL. For the Diffix Explorer integration to work properly, you will also need to
configure the site.endpoint public url setting.

In the admin control panel you can choose which tables Diffix Explorer should
analyze — by default none are.

Only tables meeting the following criteria can be analyzed:

e the table must contain a user-ia column, and

e the table must have a least one other column that is selectable (i.e. not
marked as unselectable) and not isolating

For more information about selectable and unselectable columns, please have
a look at the section on configuring tables in data sources. For more

information about isolating columns, read the section that describes what

they are and how they can be configured.

Some of Diffix Explorer's behaviors can only be configured through the use of
environment variables. For example, in order to limit the number of parallel
queries issued, you can use the Explorer MaxConcurrentQueries

environment variable.

A full overview of the configuration variables can be found in the project
documentation.

Insights Cloak configuration

The Insights Cloak configuration is used to provide the following information:

8/22

e URL where the Insights Air component can be reached
e Anonymization salt
e Data sources which can be queried - see Data source configuration

The generalshape of config.json is:

"air_site": string,
"salt": string,
"cloak_secret": string,
"data_sources": string,
"concurrency": integer,
"lcf buckets_aggregation limit": integer,
"max_parallel queries": positive_integer,
"allow_any value_in_when_clauses": boolean,
"allow_any value_in_in_clauses": boolean,
"connection_timeouts": {

"idle": integer,

"connect": integer,

"request": integer
b
"analysis_queries": {

"concurrency": positive integer,

"time between queries": integer,

"minimum_memory required": number

The =ir site parameter holds the URL where Insights Air component can be
reached. It can be in the form of "ws://ai r_host_nam ort"™ Or
" ://air_host_name:port" ,vvhere air_host_name is the address of the

machine where the Insights Air component is running. You should use the s
prefix if Insights Air is serving traffic over HTTP, while should be used for

the HTTPS protocol.

The sa1t parameter is used for anonymization purposes. If your Aircloak
Insights installation has multiple Insights Cloak instances you must make sure
they use the same salt. Failing to do so has a negative impact on the quality of
the anonymization. You can derive a strong sa1- parameter using a

command such as:

cat /dev/urandom |
LC_ALL=C tr -dc 'a-zA-Z0-9' |
fold -w 64 |

head -n 1

The cloak_se

setting is used to authenticate the Insights Cloak instance

when connecting to Insights Air. It is required only if cloak secret was

configured in Insights Air (see Web site configuration), and in that case it
needs to be set to the same value.

The cc

threads used for processing the selected data. The default setting is 0, which

rrency field is optional and controls the amount of additional

means a single thread processes the data coming in from the database server.
For small data sets, this is usually sufficient, but for bigger data sets, this might
turn out to be a bottleneck during query execution. By increasing this value (to

9/22

2 or 4 is recommended), additional threads will be used when ingesting the
data, executing the query faster, but also consuming more memory. This
setting can be overridden per data-source.

The 1cf buckets ag

regation limit is optional and controls the maximum

number of columns for which partial aggregation of low-count filtered rows is
done. The default value is 3. This setting can be overridden per data-source.
More details can be found in the Low-count filtering section.

The max parallel queries field is optional and controls the maximum
number of queries that the cloak will run simultaneously. The default value is
10.

The allow_any value_in_when_clauses field is optional and controls whether

restricted clauses are allowed or not to use any value in anonymizing

queries. The default value is false, which means only frequent values are
permitted.

The allow any value in in clauses field is optional and controls whether
restricted 111 clauses are allowed or not to use any value in anonymizing

queries. The default value is false, which means only frequent values are
permitted.

The <o

ection timeouts field is optional and it controls various database

connection timeouts.

The <o

seconds idle database connections are kept before they are closed. It needs to

on timeouts.idle field is optional and it determines how many

be an integer value between 1 and 86400 (1 day). If not set, a default timeout
value of 60 seconds (1 minute) is used.

The connection timeouts.connect field is optional and it determines how
many seconds the Insights Cloak waits for a database connection to be
established. It needs to be an integer value between 1 and 3600 (1 hour). If
not set, a default timeout value of 5 seconds is used.

The connection timeouts.request field is optional and it determines how
many seconds the Insights Cloak waits for a database request to complete. It
needs to be an integer value between 1 and 86400 (1 day). If not set, a default
timeout value of 43200 seconds (12 hours) is used.

The analysis queries field is optional and controls the rate of column

analysis queries. If Insights Cloak exhausts too many system resources while
analyzing columns, then you can specify these parameters to reduce overall
load.

The analysis_queries.concurrency field is optional and controls the number
of maximum concurrent analysis queries issued by Insights Cloak. It needs to
be an integer value between 1 and 3. The default value is 3.

The anziys field is optional and it

determines how many milliseconds to wait before issuing further analysis
queries. This waiting period can be useful to allow Insights Cloak and
databases to release resources before handling subsequent requests. It needs
to be a non-negative integer value. If not set, a default value of 0 is used,
meaning no delay between queries.

The analysis queries.minimum memory required field is optional and controls
the minimum relative system memory required to run analysis queries. If
available memory falls below this threshold, then further analysis queries will
be suspended until more memory becomes available. Requires a decimal value

10/22

between 0 and 1. For example, a value of 0.3 specifies that analysis queries will
not run when available memory is under 30%. If not set, a default value of 0 is
used, meaning analysis queries will run even when the system is low on
memory.

Data source configuration

The data_sour

folder where the Insights Cloak config is stored that contains the datasource

-s parameter should give the path to subfolder within the

configurations.

Each datasource configuration should be in JSON format and put in an
individual file with the

extension. The configuration takes the following

form:

"name": string,

"driver": string,

"parameters": {
"hostname": string,
"port": integer,
"username": string,
"database": string,

"password": string
}
"concurrency": integer,
"lcf buckets_aggregation_ limit": integer,
"max_rare_negative conditions": integer,
"analyst_tables_enabled": boolean,
"tables": tables,

"load_comments": boolean

The name parameter is a string which will be used to identify the data source

throughout the Insights Air interface and APIs.

The driver parameter can be one of the following:
e . The paramet

esgql , mysql ,

o

1 s json, then specifies the database

sglserver , o

connection parameters.

Some of these drivers use the ODBC protocol to talk to the database. These

drivers are sqlse

-rver ,and oracle . Since they rely on ODBC, they accept

some additional connection parameters:

® cnc

ing which has possible values of "latin1", "unicode", "utf8", "utf16",

"utf32", "utf16-big", "utf16-little", "utf32-big", "utf32-little".
® odbe paraneters - ODBC-specific parameters for the ODBC driver which is

used to talk to the database.

These parameters are optional, and are only required for particular
installations, where the default values do not suffice.

The rrency field is optional and controls the amount of additional

threads used for processing the selected data. If not present, the global setting
is used.

cgation limit field is optional and controls the

maximum number of columns for which partial aggregation of low-count
filtered rows is done. If not present, the global setting is used.

11/22

The max rare negative conditions affects how many negative conditions
containing rare values are allowed per anonymizing query. It defaults to a safe
value of 0, which rejects all rare negative conditions, and should, under most
circumstances, not be altered. Increasing the value above the default should

only be done if it has been deemed safe.

The analyst tables enabled can be set to true to enable creation of analyst

tables. By default, this parameter is set to false. See the Analyst tables section
for more details.

The 1cad comments flag indicates whether database level comments should
be loaded from configured tables during data source initialization. Defaults to
true , meaning comments will be loaded.

Tables

The database tables that should be made available for querying are defined in
the tzples section of the cloak config. The value of the tznies keyis a

JSON object that looks as follows:

"tables": {
"table_name_1": {

"db_name" | "query": string,
"content_type": "personal" | "non-personal",
"keys": [{"key_type_1": "column_name_ 1"}, ...],
"exclude_columns": ["columnl", "column2", ...],
"unselectable columns": ["columnl", "column2", ...],
"comments": {

"table": "Comment on table 1.",

"columns": {

"columnl": "Comment on column 1",

"column2": "Comment on column 2"

b

"table_name_2":

Each tabie name x key specifies the name the table will be available under

when querying the data source through Aircloak.

The content type is an optional field which determines whether the data in
the table is sensitive or not. It can have one of the following values: personal
(default) and non-personal . Tables with data about individuals or entities

whose anonymity should be preserved must be marked with the content type

. If any such table is included in a query, the query will underlie the

anonymization restrictions applied by Aircloak Insights and produce
anonymized results. If the content type field is set to non-personal , the table

will be classified as not containing data requiring anonymization. Queries over
such tables are not subject to the anonymization restrictions. No attempts will
be made to anonymize the data they contain!

The database table can be declared by either using av name or as an SQL

view using query . These options are mutually exclusive.

The db name is the name of the table in the underlying database. In most
situations you can use the same name (in which case the field can be omitted),

but the distinction allows some special scenarios, such as exposing a table

12/22

under a simpler name, or exposing the same database table multiple times
under different names. See the Referencing database tables section for details.

If the ouery field is present instead, a virtual table is created, similar to an

SQL view. The provided query can gather data from multiple tables, filter what
columns are exposed and pre-process, pre-filter or pre-aggregate the data.
The supported SQL features are the same as in other Aircloak queries, but the
anonymization-specific restrictions (like requiring a numerical range to have an
upper and lower bound, for example) do not apply. An example configuration
for a virtual table would look like this:

"table_name": {
"query": "

SELECT cast(t2.uid as integer), t2.age, tl.*

FROM tl INNER JOIN t2 ON tl.pk = t2.fk

WHERE t2.age > 18

"
v

"keys": [

{"user_id": "id"}

The query can only select data from existing tables (or views) in the source
database (it can not reference other virtual or projected tables from the
configuration file). If the virtual table contains columns with duplicated names,
only the first one is kept and the rest are dropped. Constant columns are also
dropped from the table.

The cxciude columns is an optional parameter. It takes the form of an array

and specifies columns to exclude from the underlying table. Excluded columns
will not appear in the data source and cannot be referenced in any way from
queries.

The unse

takes the form of an array and marks columns as unselectable. Unselectable

ectable colunns IS an optional parameter for personal tables. It

columns can only be joined together, counted, and/or grouped by.

The comments field is optional and can be used to attach a description to
tables and columns. Comments are visible in the Insights Air interface and are
also returned from s=zow statements. Database-level comments are

automatically retrieved and attached to tables.
Keys

Entities in a dataset, whether they be persons, transactions, or products, are
usually identifiable by a single column value. This could be a user, patient or
customer id in the case of a person, a transaction id for a transaction or a
product id for a product. We call these types of identifiers keys. When you
configure your tables you need to mark these columns as keys and declare
what type of entity they describe.

When querying tables containing personal data it is a requirement that at least
one of the tables queried contains a key of type user ia . Other tables that

are part of the query need to be joined with a table containing a use: ia key

via the pre-configured key-relationships.
The following restrictions are currently in place when configuring keys:

e A column can have one key tag at the most.
o A o o

21 table can have at most one user ia key.

=

13/22

e A non-personal table can't have any u

_id keys.

An example configuration file for a database containing information about
customers, accounts, transactions and bought products might look like this:

"tables": {
"customers": {
"keys": [

{"user id": "id"}

}
"accounts": {
"keys": [
{"user_id": "customer_id"},

{"account_id_key": "id"}

by
"transactions": {
"keys": [
{"account_id_key": "account_id"},

{"product_id key": "product_id"}

}

"products": {
"content_type": "non-personal"
"keys": [

{"product_id_ key": "id"}

while a valid query that accesses all tables might look like this:

sql
SELECT

customer.job,
AVG (transaction.price)
FROM

customer

JOIN accounts ON customer.id = accounts.customer_id

JOIN transactions ON accounts.id =

transactions.account_id

X JOIN products ON trar

actions.product_id = products.id
WHERE products.type = 'car'

OUP BY 1

Referencing database tables

Database tables are referenced when providing the b name property. They

can also be referenced in the query of virtual tables. The rules explained here
are the same for both cases.

When referencing a database table, two characters are considered as special:
the dot character (.) and the double quote character ("). If the name

contains any of these characters, the name has to be quoted inside double
quotes. Since the JSON string is already quoted inside double quotes, you
need to use the \" syntax:

"db_name": "\"some.table\""

14/22

If the » character is a part of the table name, you need to quote the table

name, and provide the double quote as \"\" inside the quoted name. For
example, if the table name is some"tanie , you can specify it as:
"db _name": "\"some\"\"table\""

In some cases you might need to specify a fully qualified name, for example to
provide a different database schema. In this case, you need to separate
different parts with the dot character:

"db_name": "some_schema.some_table"

When quoting a multi-part identifier, you need to quote each part separately.
For example, if the schema name is some.schena , and the table name is

some.table , you can specify it as follows:

"db name": "\"some.schema\".\"some.table\""

Also note that you only need to quote the part which contains special
characters. In the following example, we quote the schema name (because it
contains the dot character), but not the table name (because it doesn't contain
any special characters).

"db_name": "\"some.schema\".some_ table"

However, it's not an error if you quote each part, regardless of whether it
requires quoting or not.

It's also worth mentioning that v name is case sensitive, irrespective of

whether it's quoted or not. Therefore, you should use the exact capitalization
of the underlying database.

For example, let's say that the table is created with the following statement:

create table user data(uid integer, ...)

In PostgreSQL, the table name will be lower-cased, while in Oracle, it will be
upper-cased. Therefore, when providing <o name , you should specify

muser data" if the data source is a PostgreSQL database, or "vser parar if

the data source is an Oracle database.

Of course, if you explicitly used a non-default capitalization, then you need to
use the same capitalization when specifying the dn name . For example, let's

say that the following create statement was used to create a PostgreSQL table:

create table "UserData" (uid integer, ...)

In this case, you need to provide "userpata" asthe db name property.

Manually classifying isolating columns

15/22

Insights Cloak can automatically detect whether a column isolates users or not.
For large database tables this check can be slow and resource-intensive. An
administrator may choose to manually configure whether a given column
isolates users or not, removing the need for automated classification.

How Insights Cloak handles classifying columns is configured for each table

individually, using auto isolating column classification (defaulting to true)
and solating columns (empty by default). ng columns IS @
dictionary where each key is the name of a column, and the value of true or

indicates if the column should be considered as isolating users or not.

The behaviour for columns not included in that dictionary is guided by

auto isolating column classification - if it's setto true ,then Insights

Cloak will try to compute if the column is isolating as normal, if to raise

then it will assume it's isolating.

Take this example:

"tables": {
"regular_table": {
"db_name": "regular_ table"

b

"auto_table": {
"db_name": "auto_table",

"auto_isolating_column_classification": true,

"isolating_columns": {"telephone number": true,
"first_name": false}
b
"manual table": {
"db name": "manual_ table",
"auto_isolating _column_classification”: false,
"isolating_columns": {"first name": false}

In this case Insights Cloak will automatically compute which columns in
regular table are isolating. For zuto tabie it will treat telephone number
as isolating, first name as not isolating, and automatically handle all other

columns. manual has the automatic isolating column detection turned

off. All columns that have not been manually classified will therefore be treated
as if they isolate users.

Warning The safest option is to treat a column as isolating. Manually
classifying a column as not isolating may lead to privacy loss. It is safe to
classify columns as not isolating only when sure that most values in that

column appear for multiple users. Please contact support@aircloak.com if you
need help classifying your data.

Column value shadow database

Insights Cloak automatically maintains a cache of column values that occur
frequently. This allows certain anonymization practices to be relaxed when
doing so does not cause harm. The creation of this cache requires a set of
database queries to be run against the database that can become prohibitively
expensive for large databases. You can turn of the creation and maintenance of

16/22

this shadow database when you either do not need the extra capabilities this
feature offers, or operate in a resource constrained environment where running
the required database queries is of concern.

The shadow database which is created by default can be toggled on and off
on a per-table basis. If your data source configuration looked as follows and
you wanted to disable the shadow database creation for the

very large table table, you could include the wnaintain shadow an

parameter and give it the value false:

"tables": {

"regular_ table": {

"very large_table": {

"maintain_shadow_db": false

}

Analyst tables

Analyst tables make it possible for analysts to create additional tables in the
database via the Aircloak user interface. The main purpose of these tables is to
allow analysts to prepare a static snapshot of a potentially long running
intermediate query. For example, consider the following query:

SELECT col_a, col b

FROM (
possibly slow subquery
SELECT ...

) subquery

If the subquery is taking a long time to complete, running different kinds of
queries with variations in the top-level outer query can become very
cumbersome. This is where analyst tables can help. They allow analysts to
create a snapshot of the data returned by the inner query, and allow querying
that snapshot instead.

Analyst tables are created in the air user interface. A table is described via a
regular Aircloak serect query which defines the table structure and its

content.

The query must be anonymizing, which means that it must select at least one
user id column. Queries which lead to emulation (i.e. which can't be completely
offloaded to the database) can't be used to create analyst tables.

When an analyst table is submitted for creation via the user interface, the cloak
will create the corresponding table in the database and populate it. The table
population is running asynchronously, and depending on the query, it might
take a while. The table cannot be used for querying while it is being
populated.

Once the table is populated, it can be used as any other table in Aircloak
queries. The table can also be used from other analyst tables and views.

17/22

It's worth noting that each analyst tables is private, meaning that it can only be
used by the analyst who created it.

Analyst tables should conceptually be treated as snapshots. A table won't
update if data changes in the source tables. To update the content of the
table, an analyst must open it for editing in the air user interface, and then
press the "Update" button to trigger the table recreation. The table cannot be
used for querying until the recreation has completed.

Since analyst tables can potentially cause additional load on the database
server, both in terms of processing and disk-usage, they are by default
disabled. To enable this feature, set the "analyst_tables_enabled" property in
the data source configuration to true .

Currently, analyst tables are only supported on PostgreSQL and Oracle data

sources.

If the air name or the datasource name is changed, duplicate copies of analyst
tables might appear in the cloak database. This happens because the analyst
table name depends on the air name and the datasource name. The database
administrator can safely manually delete the obsolete analyst tables should
such an event happen.

The administrator can use the table ac znalyst tables x (where x is an
integer) to list analyst tables. This table contains the list of all currently known
analyst tables. The administrator can use the following columns to determine
which tables are no longer needed:

e .ir -name of the air instance

® data source - name of the data source where the table is created
e -nalyst - the numerical id of the table owner

e name - the table name, as seen in the air by its owner

e b name - the name of the table in the database

If the administrator is certain that some analyst tables are no longer needed,
for example if an air instance or some datasource have been renamed or
decommissioned, they can drop these tables, and delete the corresponding
entries from the ac analyst tables x table.

Tips and tricks

It is common to have multiple Insights Cloak instances sharing the same
datasource definitions. Maintaining separate copies of the datasource
definition for each Insights Cloak instance complicates maintenance, as you will
have to update multiple copies of files if a datasource definition changes.

The recommended, and common, solution to this problem is to create a single
copy of the datasource configuration files and symlink these into the
configuration folders of the individual Insights Cloak instances.

Here is an example of how one can do this in pratice:

Let's consider a scenario where we have a shared folder where we store all

datasource definitions. It is called data sources available . In the

configuration folder of each Insights Cloak instance we create a folder called
data sources enabled . For each datasource we want to enable for a given

Insights Cloak instance we create a symlink from the data s

folder to the datasource definition stored in the dzta sources availabie
folder.

If we have two Insights Cloak instances, the folder structure would look like
this:

18/22

$ tree configs

configs/

j— data_sources_available

| F—— data_sourcel.json

| L data source2.json
F—— insights-cloakl

| }— config.json

| L— data_sources_enabled
}—— insights-cloak2

| }— config.json

| L— data sources enabled

In order to have insichts-

akl serve data sourcel ,and data_source2 ,
and insights-cloak2 Server data sourcel , we would create the following

symlinks:

$ cd config/insights-cloakl/data_sources_enabled/

$ 1ln -s ../../data sources available/data sourcel.json
data_sourcel.json

$ 1n -s ../../data_sources_available/data_source2.json
data_source2.json

$ cd ../../insights-cloak2/data_sources_enabled

$ 1In -s ../../data_sources_available/data_sourcel.json

data_sourcel.json

The resulting file structure would then look as follows.

$ tree configs

configs/
}— data sources available
}— data_sourcel.json

L— data_source2.json

|

|

}— insights-cloakl
| f— config.json

| L data_sources_enabled

| L— data sourcel.json ->
./../data_sources_available/data_sourcel.json

| L— data source2.json ->

./data_sources_available/data_source2.json

F—— config.json

L/

F—— insights-cloak2
|

| L— data sources_enabled
|

— data_sourcel.json ->

../../data_sources_available/data_sourcel.json

Enabling or disabling further datasources for individual Insights Cloak instances
is then only a matter of adding or removing a symlink.

Hiding columns

In some cases, it might not be desirable that all of the columns in a table are
exposed to analysts. Virtual tables can be used to hide one or more columns,
by explicitly listing only the columns that are valid for querying.

19/22

For example, assuming we have the table « with columns wvia, =, v, =z,
and we wish to hide column from analysts, the following configuration file

will do the trick:

mer
"query": "SELECT uid, x, z FROM t",
"keys": [
{"user_id": "id"}

Alternatively, if the target table has a large number of columns and we don't
want to list all of them, we can explicitly select constants with the hidden
columns' names, then star-select everything else. This uses the fact that
duplicated columns are eliminated by only keeping the first instance and then
that constants are dropped from the list of exposed columns. For example:

et g
"query": "SELECT 0 AS y, t.* FROM t",
"keys": [

{"user_id": "id"}

Running without Docker containers

If you're running the system without Docker containers, there are some
additional things that need to be configured.

Insights Air shadow server

Insights Air requires access to two PostgreSQL database servers. One is used
for storing query results, audit logs and user accounts. This is the PostgreSQL
database server described in the Components of Aircloak Insights-chapter of

these guides. The second PostgreSQL database server normally runs as part of
the Insights Air docker container itself. When docker containers are not used
this database server needs to be provided separately. It should be a
PostgreSQL database server of version 9.6. The login credentials provided must
be for a superuser or for a user having been given privileges to create and
destroy databases (creaTepe -role) on this database server. They can be
configured in the config.json configuration file of the Air component under

the shadow_database key

"shadow_database": {
"host": string,
"port": integer,

"ssl": boolean,
"user": string,
"password": string,

"name": string

20/22

Here, the "name" parameter configures the name of the database to which

the given user can connect. The database name is needed because a
PostgreSQL connection can only be established to an existing database. For
this purpose, you can use either the postgres database, or create a dedicated

database. Make sure to grant connzct permission on the database to the

user

File permissions

The Aircloak Insights software is run inside a docker container under a user

called = . The privileges of the software are limited by those of the

user. In order for Aircloak Insights to read the configuration files

they need file permissions that allow everyone to read them.

Unix file permissions distinguish between the rights of the owner of a file, the

members of a particular group, and everyone else. The loyer user

belongs to the latter of the three, namely the everyone else category.

If you consider file permissions in their symbolic notation (like they are shown
when running 1s -1= in the terminal), then the permissions need to end in
r-- . If you consider the privileges in their numeric notation, then the last

digit needs to be at least a 4 (meaning it grants read privileges).

Below follows a set of file permissions that would work:

$ 1s -la

-rwxr--r-- 25 owner group 800 Jan 1 00:01 ideal
-rwxrwxr-- 25 owner group 800 Jan 1 00:01 ideal
-rwxr-xr-x 25 owner group 800 Jan 1 00:01 ok-but-too-
permissive

-rwxrw-rw- 25 owner group 800 Jan 1 00:01 ok-but-too-

permissive
—“rwXrwxrwx 25 owner group 800 Jan 1 00:01 ok-but-too-

permissive

whereas the following set of file permissions would not work because they do
not give the deployer user permission to read the file:

—rWXr—-—--- 25 owner group 800 Jan 1 00:01 missing-read-
privileges
-rwxrw---- 25 owner group 800 Jan 1 00:01 missing-read-
privileges
-rwxr-x--- 25 owner group 800 Jan 1 00:01 missing-read-
privileges
-rwxrwx--- 25 owner group 800 Jan 1 00:01 missing-read-

privileges

In a unix shell you can add the required read permission with the following
command: chmod o+r file-name . The o signifies the everyone else category

(also known as "other") and the +r grants read permission.

Aircloak - version 21.1.0 - Diffix Dogwood Changelog Third Party Licenses Privacy policy

21/22

22/22

	cover-documentation
	001-Components of Aircloak Insights
	002-Core language features
	003-Restrictions
	004-Best practices
	005-Understanding query results
	006-Supported functions
	007-configuration

