
Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness
Technical Report MPI-SWS-2020-007r
July 2021

TAMAJIT BANERJEE, IIT Delhi, India

RUPAK MAJUMDAR,MPI-SWS, Germany

KAUSHIK MALLIK,MPI-SWS, Germany

ANNE-KATHRIN SCHMUCK,MPI-SWS, Germany

SADEGH SOUDJANI, Newcastle University, UK

We consider fixpoint algorithms for two-player games on graphs with 𝜔-regular winning conditions, where

the environment is constrained by a strong transition fairness assumption. Strong transition fairness is a widely

occurring special case of strong fairness, which requires that any execution is strongly fair with respect to a

specified set of live edges: whenever the source vertex of a live edge is visited infinitely often along a play, the

edge itself is traversed infinitely often along the play as well.

We show that, surprisingly, strong transition fairness retains the algorithmic characteristics of the fixpoint

algorithms for 𝜔-regular games—the new algorithms can be obtained simply by replacing certain occurrences

of the controllable predecessor by a new almost sure predecessor operator. For Rabin games with 𝑘 pairs, the

complexity of the new algorithm is 𝑂 (𝑛𝑘+2𝑘!) symbolic steps, which is independent of the number of live

edges in the strong transition fairness assumption. Further, we show that GR(1) specifications with strong

transition fairness assumptions can be solved with a 3-nested fixpoint algorithm, same as the usual algorithm.

In contrast, strong fairness necessarily requires increasing the alternation depth depending on the number of

fairness assumptions.

We get symbolic algorithms for (generalized) Rabin, parity and GR(1) objectives under strong transition

fairness assumptions as well as a direct symbolic algorithm for qualitative winning in stochastic 𝜔-regular

games that runs in𝑂 (𝑛𝑘+2𝑘!) symbolic steps, improving the state of the art. Previous approaches for handling

fairness assumptions would either increase the alternation depth of the fixpoint algorithm or require an

up-front automata-theoretic construction that would increase the state space, or both.

Finally, we have implemented a BDD-based synthesis engine based on our algorithm. We show on a set

of synthetic and real benchmarks that our algorithm is scalable, parallelizable, and outperforms previous

algorithms by orders of magnitude.

All proofs can be found in the appendix.

1 INTRODUCTION
Symbolic algorithms for two-player graph games are at the heart of many problems in the automatic

synthesis of correct-by-construction hardware, software, and cyber-physical systems from logical

specifications. The problem has a rich pedigree, going back to Church [Church 1963] and a se-

quence of seminal results [Buchi and Landweber 1969; Emerson and Jutla 1988, 1991; Gurevich and

Harrington 1982; Kupferman and Vardi 2005; Pnueli and Rosner 1989; Rabin 1969; Zielonka 1998].

A chain of reductions can be used to reduce the synthesis problem for 𝜔-regular specifications

to finding winning strategies in two-player games on graphs, for which (symbolic) algorithms

are known (see, e.g., [Emerson and Jutla 1991; Piterman and Pnueli 2006; Pnueli and Rosner 1988;

Zielonka 1998]). These reductions and algorithms form the basis for algorithmic reactive synthesis.

This report refines and supersedes the original version published in February 2021 as Technical Report MPI-SWS-2020-007.

Authors’ addresses: Tamajit Banerjee, Department of Computer Science and Engineering, IIT Delhi, India, cs1190408@iitd.ac.

in; Rupak Majumdar, MPI-SWS, Germany, rupak@mpi-sws.org; Kaushik Mallik, MPI-SWS, Germany, kmallik@mpi-sws.org;

Anne-Kathrin Schmuck, MPI-SWS, Germany, akschmuck@mpi-sws.org; Sadegh Soudjani, Newcastle University, UK,

sadegh.soudjani@ncl.ac.uk.

HTTPS://ORCID.ORG/0000-0003-2136-0542
HTTPS://ORCID.ORG/0000-0001-9864-7475
HTTPS://ORCID.ORG/0000-0003-2801-639X
HTTPS://ORCID.ORG/0000-0003-1922-6678
https://orcid.org/0000-0003-2136-0542
https://orcid.org/0000-0001-9864-7475
https://orcid.org/0000-0003-2801-639X
https://orcid.org/0000-0003-1922-6678

2 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

In practice, it is often the case that no solution exists to a given synthesis problem, but for

“uninteresting” reasons. For example, consider synthesizing a mutual exclusion protocol from a

specification that requires (1) that at most one of two processes can be in the critical section at any

time and (2) that a process wishing to enter the critical section is eventually allowed to do so. As

stated, there may not be a feasible solution to the problem because a process within the critical

section may decide to stay there forever. Similarly, in a synthesis problem involving concurrent

threads, no solution may exist simply because the scheduler may decide never to pick a particular

thread. Fairness assumptions rule out such uninteresting conditions by constraining the possible

behaviors of the environment. The winning condition under fairness is of the form

Fairness Assumption ⇒ 𝜔−regular Specification. (1)

For example, a fairness constraint can state that whenever a process is in its critical section, it must

eventually leave it or that, if a thread is enabled infinitely often, then it is picked by the scheduler

infinitely often. These two examples, and in fact many other practical instances of fairness, actually

fall into a particular subclass of fairness assumptions, called strong transition fairness [Baier and
Katoen 2008; Francez 1986; Queille and Sifakis 1983]. A strong transition fairness assumption can

be modeled by a set of live environment transitions in the underlying two-player game graph.

Whenever the source vertex of a live transition is visited infinitely often, the transition will be

taken infinitely often by the environment. Unfortunately, despite the widespread prevalence of

strong transition fairness, current symbolic algorithms for solving games do not take advantage of

their special structure in the winning condition (1) and no algorithm better than those for general

(Streett) liveness conditions is known.

In this paper, we show a surprising syntactic transformation that modifies well-known symbolic

fixpoint algorithms for solving two-player games on graphs without fairness assumptions, such

that the modified fixed point solves the game for the winning condition (1) whenever the given

fairness assumption can be specified as strong transition fairness. To appreciate the simplicity of

our modification, let us consider the well-known fixpoint algorithm for parity games [Emerson

and Jutla 1991] given by the 𝜇-calculus formula

𝜈𝑌2𝑘 . 𝜇𝑋2𝑘−1. . . . 𝜈𝑌2 . 𝜇𝑋1 (𝐶1 ∩ Cpre(𝑋1)) ∪ (𝐶2 ∩ Cpre(𝑌2)) ∪ . . . ∪ (𝐶2𝑘 ∩ Cpre(𝑌2𝑘)), (2a)

where Cpre(𝑋) denotes the controllable predecessor operator. In the presence of strong transition

fairness, the new algorithm becomes

𝜈𝑌2𝑘 . 𝜇𝑋2𝑘−1 . . . 𝜈𝑌2 . 𝜇𝑋1 . (2b)

(𝐶1 ∩ Apre(𝑌2, 𝑋1)) ∪ (𝐶2 ∩ Cpre(𝑌2)) ∪ (𝐶3 ∩ Apre(𝑌4, 𝑋3)) . . . ∪ (𝐶2𝑘 ∩ Cpre(𝑌2𝑘)).
The only syntactic change we make is to substitute every controllable predecessor for each 𝜇

variable 𝑋𝑖 by a new almost sure predecessor operator Apre(𝑌𝑖+1, 𝑋𝑖) incorporating also the previous
𝜈 variable 𝑌𝑖+1.

In a nutshell, our results show that one can solve games under strong transition fairness assump-

tions on environment behaviors while retaining the algorithmic characteristics of known symbolic

fixpoint algorithms when fairness assumptions are not considered. We prove the correctness of

our syntactic fixpoint transformation for solving Rabin games [Piterman and Pnueli 2006; Rabin

1969] and generalized Rabin games. Further, we also show its correctness for Reachability, Safety,

(generalized) Büchi, (generalized) co-Büchi, Rabin-chain, parity [Emerson and Jutla 1991; Maler

et al. 1995], and GR(1) games [Piterman et al. 2006] as special cases. While our proofs are subtle,

symbolic implementations of our algorithms require very small changes to existing code. Moreover,

our empirical evaluation demonstrates that our new algorithm can be orders of magnitude more

efficient than previous algorithms based on strong fairness.

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

3
Now, let us get into more details.

Recall that symbolic algorithms solve two-player games by finding the set of states of the un-

derlying game graph from which the game can be won. They do so by manipulating sets of states

and computing fixed points of monotone operators. The benefit of symbolic approaches is that

they allow efficient implementations based on manipulations of formulas (often represented using

data structures such as BDDs). Such implementations can scale to very large finite state spaces

or to infinite, but symbolically representable, state spaces. Indeed, these fixpoint expressions are

the cornerstone of many reactive synthesis tools [Brenguier et al. 2014; Ehlers and Raman 2016;

Michaud and Colange 2018]. Our approach allows existing symbolic implementations of reactive

synthesis to be only slightly modified to incorporate strong transition fairness assumptions.

A symbolic fixpoint algorithm for Rabin games is given by Piterman and Pnueli [2006]. A Rabin

game is played between two players Player 0 and Player 1, which move a token along the edges of

a directed graph whose vertices are partitioned between them. If the token is in a vertex owned

by Player 0, she moves the token along some outgoing edge. If, on the other hand, the vertex is

owned by Player 1, he decides the edge. Whether the resulting infinite play is winning for Player 0

is decided by the Rabin winning condition which is defined using a set of pairs of subsets of the the

graph vertices, {⟨𝐺1, 𝑅1⟩, . . . , ⟨𝐺𝑘 , 𝑅𝑘⟩}. Player 0 wins the Rabin game if there is some 𝑖 ∈ {1, . . . , 𝑘},
such that the set of vertices visited infinitely often intersects 𝐺𝑖 and does not intersect 𝑅𝑖 . The

fixpoint algorithm of Piterman and Pnueli [2006] has alternation depth 2𝑘 + 1 for a Rabin condition

with 𝑘 pairs and runs in time 𝑂 (𝑛𝑘+1𝑘!).
Rabin conditions form a class of a canonical acceptance condition for all 𝜔-regular objectives,

thus, solving a game with any 𝜔-regular objective can be reduced to solving a Rabin game after a

product constructionwith a suitable deterministic automaton. Therefore, our new fixpoint algorithm

for Rabin games under strong transition fairness solves the winning condition (1) whenever the

environment assumption can be expressed by live edges. Live edges are edges of the game graph

originating in Player 1 vertices such that whenever the source vertex of a live edge is visited

infinitely often, the edge will be taken infinitely often by Player 1.

A Rabin game under strong transition fairness is a special case of a Rabin game under a strong
fairness (compassion) assumption [Baier and Katoen 2008, p.364]. A compassion assumption is

described by a Streett winning condition, which is the dual of a Rabin winning condition. A Streett

condition is also specified by a set of pairs of subsets of vertices {⟨𝐺1, 𝑅1⟩, . . . , ⟨𝐺𝑙 , 𝑅𝑙 ⟩}. It is satisfied
by an infinite play if for each 𝑖 ∈ {1, . . . , 𝑙}, whenever the set of vectices visited infinitely often

intersects 𝐺𝑖 , it also intersects 𝑅𝑖 . Since the dual of a Streett condition is a Rabin condition, a Rabin

game with 𝑘 Rabin pairs under a compassion assumption with 𝑙 Streett pairs is equivalent to a

Rabin game (without environment assumptions) with 𝑘 + 𝑙 Rabin pairs. Hence, it can be solved

by the algorithm of Piterman and Pnueli [2006] with alternation depth 2(𝑘 + 𝑙) + 1 that runs in

𝑂 (𝑛𝑘+𝑙+1 (𝑘 + 𝑙)!) symbolic steps. In a well-defined sense, one cannot expect a general fixpoint

solution of lower alternation depth [Bradfield 1998]. In contrast, our algorithm for the special case

of strong transition fairness has alternation depth 2(𝑘 + 1) and runs in 𝑂 (𝑛𝑘+2𝑘!) symbolic steps.

Hence, our algorithm has almost the same complexity as Piterman and Pnueli’s algorithm for Rabin

games without environment assumptions—independent of the number of transitions in the strong

transition fairness assumption. In many practical cases, including the example of synthesizing

mutual exclusion protocols, finding schedulers for concurrent threads, and many other applications,

strong transition fairness is sufficient to express the interesting environment assumptions.

The idea to consider strong transition fairness as a tractable fragment of strong fairness (com-
passion) assumptions is inspired by work on the synthesis of supervisory controllers for non-

terminating processes by Thistle and Malhamé [1998]. Here, a fixed-point algorithm for the general

4 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

problem [Thistle 1995] which manipulates Rabin automata, is shown to significantly simplify

under a slightly weaker transition fairness assumption. While our algorithm shares the underlying

intuition behind the simplification of Thistle and Malhamé [1998], it is syntactically very different

due to the symbolic manipulation of sets of states rather then automata.

Next, we consider the GR(1) fragment of LTL introduced by Piterman et al. [2006]. Formulas in the

GR(1) fragment consist of environment assumptions expressible as a conjunction of Büchi and safety

constraints, and specifications also given as a conjunction of Büchi and safety constraints. GR(1)

was introduced as an efficient fragment for synthesis problems in the presence of weak fairness

assumptions; in particular, Piterman et al. [2006] show a 3-nested fixpoint algorithm . Over the

years, the GR(1) fragment has been extensively used as a useful logical fragment of LTL for reactive

synthesis, especially in the cyber-physical and robotics domains [Alur et al. 2013; Kress-Gazit

et al. 2007, 2009; Maoz and Ringert 2015; Svoreňová et al. 2017]. In fact, there are several reactive

synthesis tools which only support the GR(1) fragment for its tractability [Ehlers and Raman 2016;

Finucane et al. 2010; Wongpiromsarn et al. 2011]. By applying the same syntactic modification as

outlined in (2b), we generalize the 3-nested fixpoint alogirthm for GR(1) objectives to a new 3-nested

fixpoint algorithm for GR(1) objectives with additional strong transition fairness constraints! Recall

that the GR(1) fragment is designed explicitly to rule out strong fairness constraints because of the

absence of suitable low-depth fixpoint algorithms. Our result shows that, in contrast to full strong

fairness, strong transition fairness retains algorithmic efficiency while enabling many expressive

fairness constraints that go beyond the ones expressible in GR(1).

Another byproduct of our algorithm is a fully symbolic algorithm for qualitative winning in

stochastic generalized Rabin games. Stochastic two-player games (also known as 2
1/2-player games)

generalize two-player graph games with an additional category of “random” vertices: whenever

the game reaches a random vertex, a random process picks one of the outgoing edges (uniformly

at random, w.l.o.g.). The qualitative winning problem asks whether a vertex of the game graph is

almost surely winning for Player 0. Stochastic Rabin games were studied by Chatterjee et al. [2005],

who showed that the problem remains NP-complete and that winning strategies can be restricted

to be pure and memoryless. Moreover, they showed a reduction from qualitative winning in an

𝑛-vertex 𝑘-pair stochastic Rabin game to an 𝑂 (𝑛(𝑘 + 1))-vertex (𝑘 + 1)-pair (deterministic) Rabin

game, resulting in an 𝑂
(
(𝑛(𝑘 + 1))𝑘+2 (𝑘 + 1)!

)
algorithm. In contrast, we get a direct 𝑂 (𝑛𝑘+2𝑘!)

symbolic algorithm for the problem.

Our result yields a symbolic algorithm in the following way. We replace the probabilistic transi-

tions with transitions of the environment constrained by extreme fairness as described by Pnueli

[1983]. Extreme fairness is a special case of strong transition fairness, and is specified via a set of

Player 1 vertices. A run is extremely fair if it is strongly transition fair for every outgoing edge

from these vertices. We show that, to solve a qualitative stochastic generalized Rabin game, we can

equivalently solve the generalized Rabin game under extreme fairness. Thus, our algorithm gives a

direct symbolic algorithm for this problem.

We have implemented our algorithm in a symbolic reactive synthesis tool called Fairsyn. Fairsyn
uses a multi-threaded BDD library [van Dijk and van de Pol 2015] and implements an acceleration

technique for the fixpoints [Long et al. 1994]. We show on a number of synthetic benchmarks

from the very large transition systems benchmark suite [Garavel and Descoubes 2003] that our

algorithm, with the improvements, can scale to large Rabin games and the performance scales with

the number of cores. Additionally, we evaluate our tool on two case studies, one from software

synthesis [Chatterjee et al. 2013] and the other from stochastic control synthesis [Dutreix et al.

2020]. We show that Fairsyn scales well on these case studies, and outperforms a state-of-the-art

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

5

stochastic game solver by an order of magnitude. In contrast, a solver that treats transition fairness

as Streett fairness does not finish on these case studies.

In conclusion, the contributions of the paper are as follows.

(1) We provide a direct symbolic fixpoint algorithm for Rabin and generalized Rabin games

under a strong transition fairness assumption on the environment. The alternation depth of

the fixpoint expression depends only on the number of Rabin pairs and not on the number of

transition fairness constraints. This is in contrast to strong fairness (Streett) assumptions on

the environment.

(2) As special cases, we show that our fixpoint formula generalizes fixpoint algorithms for well-

known sub-cases: Reachability, Safety, (generalized) Büchi, (generalized) co-Büchi, Rabin-

chain or parity, and GR(1) games—all under strong transition fairness. In all cases, the

recipe for the new algorithm is surprisingly simple: it replaces some controllable predecessor

operators in the “usual” fixpoint algorithms with an almost sure predecessor operator while

possibly including an additional leading 𝜈 variable.

(3) Since extreme fairness is a special case, we obtain a direct symbolic algorithm for qualitative

generalized Rabin conditions for stochastic two-player games.

(4) We have implemented our algorithm in a BDD-based synthesis tool Fairsyn. We demonstrate

on a number of synthetic and real benchmarks that our algorithm scales to large state spaces,

whereas a naive encoding into Streett games does not finish on the larger examples.

2 PRELIMINARIES
Notation: We use the notation N0 to denote the set of natural numbers including “0”. Given

𝑎, 𝑏 ∈ N0, we use the notation [𝑎;𝑏] to denote the set {𝑛 ∈ N0 | 𝑎 ≤ 𝑛 ≤ 𝑏}. Observe that, by
definition, [𝑎;𝑏] is an empty set if 𝑎 > 𝑏. For any set 𝐴 ⊆ 𝑈 defined on the universe𝑈 , we use the

notation 𝐴 to denote the complement of 𝐴.

Let 𝐴 and 𝐵 be two sets and 𝑅 ⊆ 𝐴 × 𝐵 be a relation. We use the notation dom(𝑅) to denote

the domain of 𝑅, which is the set {𝑎 ∈ 𝐴 | ∃𝑏 ∈ 𝐵 . (𝑎, 𝑏) ∈ 𝑅}. For any element 𝑎 ∈ 𝐴, we use

the notation 𝑅(𝑎) to denote the set {𝑏 ∈ 𝐵 | (𝑎, 𝑏) ∈ 𝑅}, and for any element 𝑏 ∈ 𝐵, we use the

notation 𝑅−1 (𝑏) to denote the set {𝑎 ∈ 𝐴 | (𝑎, 𝑏) ∈ 𝑅}. We generalize 𝑅(·) to operate on sets in

the following way: for any 𝐴′ ⊆ 𝐴, we write 𝑅(𝐴′) B ∪𝑎∈𝐴′𝑅(𝑎), and for any 𝐵′ ⊆ 𝐵, we write

𝑅−1 (𝐵′) B ∪𝑏∈𝐵′𝑅−1 (𝑏).
Given an alphabet 𝐴, we use the notation 𝐴∗

and 𝐴𝜔
to denote respectively the set of all finite

words and the set of all infinite words formed using the letters of the alphabet 𝐴. We use 𝐴∞

to denote the set 𝐴∗ ∪ 𝐴𝜔
. Given two words 𝑎 ∈ 𝐴∗

and 𝑏 ∈ 𝐴∞
, we use 𝑎 · 𝑏 to denote their

concatenation.

2.1 Two-Player Games
GameGraphs:We define a two-player game graph as a tupleG = ⟨𝑉 ,𝑉0,𝑉1, 𝐸⟩, where (i)𝑉 = 𝑉0⊎𝑉1

is a finite set of vertices
1
that is partitioned into the sets 𝑉0 and 𝑉1; (ii) 𝐸 ⊆ (𝑉 ×𝑉) is a relation

denoting the set of edges; The two players are called Player 0 and Player 1, who control the vertices

𝑉0 and 𝑉1 respectively.

Strategies: A strategy of Player 0 is a function 𝜌0 : 𝑉 ∗ ·𝑉0 → 𝑉 with the constraint 𝜌0 (𝑤 ·𝑣) ∈ 𝐸 (𝑣)
for every 𝑤 · 𝑣 ∈ 𝑉 ∗ ×𝑉0. Likewise, a strategy of Player 1 is a function 𝜌1 : 𝑉 ∗ ·𝑉1 → 𝑉 with the

constraint 𝜌1 (𝑤 · 𝑣) ∈ 𝐸 (𝑣) for every𝑤 · 𝑣 ∈ 𝑉 ∗ ×𝑉1. Of special interest is the class of memoryless

strategies: a strategy 𝜌0 of Player 0 is memoryless if for every 𝑤1 · 𝑣,𝑤2 · 𝑣 ∈ 𝑉 ∗ × 𝑉0, we have

𝜌0 (𝑤1 · 𝑣) = 𝜌0 (𝑤2 · 𝑣).
1
We use the terms ’vertex’ and ’state’ interchangeably in this paper.

6 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

Plays: Consider an infinite sequence of vertices 𝜋 = 𝑣0𝑣1𝑣2 . . . ∈ 𝑉𝜔
. The sequence 𝜋 is called a

play over G starting at the vertex 𝑣0
if for every 𝑖 ∈ N0, we have 𝑣

𝑖 ∈ 𝑉 and (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸. In our

convention for denoting vertices, superscripts (ranging over N0) will denote the position of a vertex

within a given play, whereas subscripts, either 0 or 1, will denote the membership of a vertex in

the sets 𝑉0 or 𝑉1 respectively. Let 𝜌0 and 𝜌1 be a given pair of strategies of Player 0 and Player 1,

respectively, and let 𝑣0
be a given initial vertex. The play compliant with 𝜌0 and 𝜌1 is the unique

play 𝜋 = 𝑣0𝑣1𝑣2 . . . for which for every 𝑖 ∈ N0, if 𝑣
𝑖 ∈ 𝑉0 then 𝑣

𝑖+1 = 𝜌0 (𝑣0 . . . 𝑣𝑖), and if 𝑣𝑖 ∈ 𝑉1 then

𝑣𝑖+1 = 𝜌1 (𝑣0 . . . 𝑣𝑖).
Winning Conditions:Awinning condition𝜑 is a set of infinite plays over G, i.e.,𝜑 ⊆ 𝑉𝜔

. We adopt

Linear Temporal Logic (LTL) notation for describing winning conditions. The atomic propositions

for the LTL formulae are sets of vertices, i.e., elements of the set 2
𝑉
. We use the standard symbols

for the Boolean and the temporal operators: “¬” for negation, “∧” for conjunction, “∨” for disjunction,
“→” for implication, “U” for until (𝐴U 𝐵 means “the play remains inside the set 𝐴 until it moves to

the set 𝐵”), “⃝” for next (⃝𝐴 means “the next vertex is in the set 𝐴”), “♢” for eventually (♢𝐴 means

“the play will eventually visit a vertex from the set 𝐴”), and “□” for always (□𝐴 means “the play

will only visit vertices from the set 𝐴”). The syntax and semantics of LTL can be found in standard

textbooks [Baier and Katoen 2008]. By slightly abusing notation, we will use 𝜑 interchangeably to

denote both the LTL formula and the set of plays satisfying 𝜑 . Hence, we write 𝜋 ∈ 𝜑 (instead of

𝜋 |= 𝜑) to denote the satisfaction of the formula 𝜑 by the play 𝜋 .

WinningRegions: Player 0wins a two-player game over the game graphG for awinning condition

𝜑 from a vertex 𝑣0 ∈ 𝑉 if there is a Player 0 strategy 𝜌0 such that for all Player 1 strategies 𝜌1, the

play 𝜋 from 𝑣0
compliant with 𝜌0 and 𝜌1 satisfies 𝜑 , i.e., 𝜋 ∈ 𝜑 . The winning region W ⊆ 𝑉 for

Player 0 is the set of vertices from which Player 0 wins the game.

2.2 Fair Adversarial Games
Let G be a two-player game graph and let 𝐸ℓ ⊆ (𝑉1 × 𝑉) ∩ 𝐸 be a given set of live edges. Let
𝑉 ℓ B dom(𝐸ℓ) denote the set of Player 1 vertices in the domain of 𝐸ℓ . Intuitively, the edges in 𝐸ℓ

represent fairness assumptions on Player 1: for every edge (𝑣, 𝑣 ′) ∈ 𝐸ℓ , if 𝑣 is visited infinitely often

along a play, we expect that the edge (𝑣, 𝑣 ′) is picked infinitely often by Player 1. I.e., if a vertex 𝑣

is visited infinitely often, every outgoing live edge of 𝑣 is expected to be taken infinitely often.

We write Gℓ = ⟨G, 𝐸ℓ⟩ to denote a game graph with live edges, and extend notions such as plays,

strategies, winning conditions, winning region, etc., from game graphs to those with live edges. A

play 𝜋 over Gℓ
is strongly transition fair if it satisfies the LTL formula:

𝛼 B
∧

(𝑣,𝑣′) ∈𝐸ℓ (□♢𝑣 → □♢(𝑣 ∧ ⃝𝑣 ′)) . (3)

Given Gℓ
and a winning condition 𝜑 , Player 0 wins the fair adversarial game over Gℓ

for the

winning condition 𝜑 from a vertex 𝑣0 ∈ 𝑉 if Player 0 wins the game over Gℓ
for the winning

condition 𝛼 → 𝜑 from 𝑣0
.

We have two interesting observations about fair adversarial games. First, live edges allow to

rule out particular strategies of Player 1, making it easier for Player 0 to win in certain situations.

Consider for example a game graph (Fig. 1 (top)) with two vertices 𝑝 and 𝑞. Vertex 𝑝 (square) is

a Player 1 vertex and vertex 𝑞 is a Player 0 vertex (circle). The edge (𝑝, 𝑞) is a live edge (dashed).
Suppose the specification for Player 0 is 𝜑 = □♢𝑞. In the absence of the live edge, Player 0 does not

win for this specification from 𝑝 , because Player 1 can trap the game in 𝑝 by always choosing 𝑝

itself as the successor. In contrast, Player 0 wins from 𝑝 in the fair adversarial game, because the

assumption on the live edge (𝑝, 𝑞) forces Player 1 to infinitely often choose the transition to 𝑞.

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

7

𝑝 𝑞

𝑝

𝑞

𝑞′

Fig. 1. Two fair adversarial games.

Second, fairness assumptions modeled by live edges restrict the strategy choices of Player 1 less

than assuming that Player 1 chooses probabilistically between these edges. Consider for example

a fair adversarial game with one Player 1 vertex 𝑝 (square) which has two outgoing live edges to

states 𝑞 and 𝑞′ (see Fig. 1 (bottom). If Player 1 chooses randomly between edges (𝑝, 𝑞) and (𝑝, 𝑞′),
every finite sequence of visits to states 𝑞 and 𝑞′ will happen infinitely often with probability one.

This is not true in the fair adversarial game. Here Player 1 is allowed to choose a particular sequence

of visits to states 𝑞 and 𝑞′ (e.g., only 𝑞𝑞′𝑞𝑞′𝑞𝑞′𝑞𝑞′ . . .), as long as both are visited infinitely often.

2.3 Symbolic Computations over Game Graphs

Set Transformers:Our goal is to develop symbolic fixpoint algorithms to characterize the winning

region of a fair adversarial game over a game graph with live edges. As a first step, given Gℓ
, we

define the required symbolic transformers of sets of states. We define the existential, universal, and

controllable predecessor operators as follows. For 𝑆 ⊆ 𝑉 , we have

Pre
∃
0
(𝑆) B {𝑣 ∈ 𝑉0 | 𝐸 (𝑣) ∩ 𝑆 ≠ ∅}, (4a)

Pre
∀
1
(𝑆) B {𝑣 ∈ 𝑉1 | 𝐸 (𝑣) ⊆ 𝑆}, and (4b)

Cpre(𝑆) B Pre
∃
0
(𝑆) ∪ Pre

∀
1
(𝑆). (4c)

Intuitively, the controllable predecessor operator Cpre(𝑆) computes the set of all states that can be

controlled by Player 0 to stay in 𝑆 after one step regardless of the strategy of Player 1. Additionally,

we define two operators which take advantage of the fairness assumption on the live edges. Given

two sets 𝑆,𝑇 ⊆ 𝑉 , we define the live-existential and almost sure predecessor operators:

Lpre
∃ (𝑆) B {𝑣 ∈ 𝑉 ℓ | 𝐸ℓ (𝑣) ∩ 𝑆 ≠ ∅}, and (5a)

Apre(𝑆,𝑇) B Cpre(𝑇) ∪
(
Lpre

∃ (𝑇) ∩ Pre
∀
1
(𝑆)

)
. (5b)

Intuitively, the almost sure predecessor operator
2

Apre(𝑆,𝑇) computes the set of all states that

can be controlled by Player 0 to stay in 𝑇 (via Cpre(𝑇)) as well as all Player 1 states in 𝑉 ℓ
that

(a) will eventually make progress towards 𝑇 if Player 1 obeys its fairness-assumptions encoded

in 𝛼 (via Lpre
∃ (𝑇)) and (b) will never leave 𝑆 in the “meantime” (via Pre

∀
1
(𝑆)). We see that all set

transformers are monotonic with respect to set inclusion. Further, Cpre(𝑇) ⊆ Apre(𝑆,𝑇) always
holds, Cpre(𝑇) = Apre(𝑆,𝑇) if 𝑉 ℓ = ∅, and Apre(𝑆,𝑇) ⊆ Cpre(𝑆) if 𝑇 ⊆ 𝑆 (see Lem. B.1 for a

proof).

Fixpoint Algorithms in the 𝜇-calculus: We use the 𝜇-calculus [Kozen 1983] as a convenient

logical notation used to define a symbolic algorithm (i.e., an algorithm that manipulates sets of

states rather then individual states) for computing a set of states with a particular property over a

2
We will justify the naming of this operator later in Rem. 1.

8 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

given game graph G. The formulas of the 𝜇-calculus, interpreted over a two-player game graph G,

are given by the grammar

𝜑 F 𝑝 | 𝑋 | 𝜑 ∪ 𝜑 | 𝜑 ∩ 𝜑 | pre(𝜑) | 𝜇𝑋 .𝜑 | 𝜈𝑋 .𝜑

where 𝑝 ranges over subsets of𝑉 ,𝑋 ranges over a set of formal variables, pre ranges over monotone

set transformers in {Pre
∃
0
, Pre

∀
1
,Cpre, Lpre

∃,Apre}, and 𝜇 and 𝜈 denote, respectively, the least and

the greatest fixed point of the functional defined as 𝑋 ↦→ 𝜑 (𝑋). Since the operations ∪, ∩, and
the set transformers pre are all monotonic, the fixed points are guaranteed to exist. A 𝜇-calculus

formula evaluates to a set of states over G, and the set can be computed by induction over the

structure of the formula, where the fixed points are evaluated by iteration. We omit the (standard)

semantics of formulas (see [Kozen 1983]).

3 FAIR ADVERSARIAL RABIN GAMES
This section presents the main result of this paper, which is a symbolic fixpoint algorithm that

computes the winning region of Player 0 in the fair adversarial game over Gℓ
with respect to any

𝜔-regular property formalized as a Rabin winning condition.

Our new fixpoint algorithm has multiple unique features.

(I) It works directly over Gℓ
, without requiring any pre-processing step to reduce Gℓ

to a “normal”

two-player game. This feature allows us to obtain a direct symbolic algorithm for stochastic games

as a by-product (see Sec. 5).

(II) Conceptually, our symbolic algorithm is not more complex than the known algorithm solving

Rabin games over “normal” two-player game graphs by Piterman and Pnueli [2006] (see Sec. 3.3).

(III) Our new fixpoint algorithm is obtained from the known algorithm of Piterman and Pnueli

[2006] by a simple syntactic change (as previewed in (2)). We simply replace all controllable

predecessor operators over least fixpoint variables by the almost sure predecessor operator invoking

the preceding maximal fixpoint variable. This makes the proof of our new fixpoint algorithm

conceptually simple (see Sec. 3.2).

At a higher level, our syntactic change is a very simple yet efficient transformation to incorpo-

rate environment assumptions expressible by live edges into reactive synthesis while retaining

computational efficiency. Most remarkably, this transformation also works directly for fixpoint

algorithms solving reachability, safety, Büchi, (generalized) co-Büchi, Rabin-chain and parity games,

as these can be formalized as particular instances of a Rabin game (see Sec. 3.4). Moreover, it also

works for generalized Büchi and GR(1) games. However, as these games are particular instances of a

generalized Rabin game, we prove these special cases separately in Sec. 4 after formally introducing

generalized Rabin games.

3.1 The Symbolic Algorithm
Fair adversarial Rabin Games: A Rabin winning condition is defined by the set

R = {⟨𝐺1, 𝑅1⟩, . . . , ⟨𝐺𝑘 , 𝑅𝑘⟩}, where 𝐺𝑖 , 𝑅𝑖 ⊆ 𝑉 for all 𝑖 ∈ [1;𝑘]. We say that R has index set

𝑃 = [1;𝑘]. A play 𝜋 satisfies the Rabin condition R if 𝜋 satisfies the LTL formula

𝜑 B
∨

𝑖∈𝑃

(
^□𝑅𝑖 ∧ □^𝐺𝑖

)
. (6)

We now present our new symbolic fixpoint algorithm to compute the winning region of Player 0

in the fair adversarial game over Gℓ
with respect to a Rabin winning condition R.

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

9

Theorem 3.1. Let Gℓ = ⟨G, 𝐸ℓ⟩ be a game graph with live edges and R be a Rabin condition over
G with index set 𝑃 = [1;𝑘]. Further, let 𝑍 ∗ denote the fixed point

𝜈𝑌𝑝0
.𝜇𝑋𝑝0

.
⋃
𝑝1∈𝑃

𝜈𝑌𝑝1
.𝜇𝑋𝑝1

.
⋃

𝑝2∈𝑃\{𝑝1 }
𝜈𝑌𝑝2

.𝜇𝑋𝑝2
. . . .

⋃
𝑝𝑘 ∈𝑃\{𝑝1,...,𝑝𝑘−1 }

𝜈𝑌𝑝𝑘 .𝜇𝑋𝑝𝑘 .

[
𝑘⋃
𝑗=0

C𝑝 𝑗

]
, (7a)

where C𝑝 𝑗
B

(⋂𝑗

𝑖=0
𝑅𝑝𝑖

)
∩

[(
𝐺𝑝 𝑗

∩ Cpre(𝑌𝑝 𝑗
)
)
∪

(
Apre(𝑌𝑝 𝑗

, 𝑋𝑝 𝑗
)
)]

, (7b)

with3 𝑝0 = 0,𝐺𝑝0
B ∅ and 𝑅𝑝0

B ∅. Then 𝑍 ∗ is equivalent to the winning regionW of Player 0 in the
fair adversarial game over Gℓ for the winning condition 𝜑 in (6). Moreover, the fixpoint algorithm runs
in 𝑂 (𝑛𝑘+2𝑘!) symbolic steps, and a memoryless winning strategy for Player 0 can be extracted from it.

3.2 Proof Outline
Given a Rabin winning condition over a “normal” two-player game, Piterman and Pnueli [2006]

provided a symbolic fixpoint algorithm which computes the winning region for Player 0. The

fixpoint algorithm in their paper is almost identical to our fixpoint algorithm in (7): it only differs in

the last term of the constructed C-terms in (7b). Piterman and Pnueli [2006] define the term C𝑝 𝑗
as(⋂𝑗

𝑖=0
𝑅𝑝𝑖

)
∩

[(
𝐺𝑝 𝑗

∩ Cpre(𝑌𝑝 𝑗
)
)
∪

(
Cpre(𝑋𝑝 𝑗

)
)]

.

Intuitively, a single term C𝑝 𝑗
computes the set of states that always remain within 𝑄𝑝 𝑗

:=
⋂𝑗

𝑖=0
𝑅𝑝𝑖

while always re-visiting 𝐺𝑝 𝑗
. I.e, given the simpler (local) winning condition

𝜓 := □𝑄 ∧ □^𝐺 (8)

for two sets 𝑄,𝐺 ⊆ 𝑉 , the set

𝜈𝑌 . 𝜇𝑋 . 𝑄 ∩ [(𝐺 ∩ Cpre(𝑌)) ∪ (Cpre(𝑋))] (9)

is known to define exactly the states of a “normal” two-player game G from which Player 0 has a

strategy to win the game with winning condition𝜓 [Maler et al. 1995]. Such games are typically

called Safe Büchi Games. The key insight in the proof of Thm. 3.1 is to show that the new definition

of C-terms in (7b) via the new almost sure predecessor operator Apre actually computes the winning

state sets of fair adversarial safe Büchi games. Subsequently, we generalize this intuition to the

fixpoint for the Rabin games.

Fair Adversarial Safe Büchi Games: A fair adversarial safe Büchi game is formalized in the

following theorem.

Theorem 3.2. Let Gℓ = ⟨G, 𝐸ℓ⟩ be a game graph with live edges and 𝑄,𝐺 ⊆ 𝑉 be two state sets
over G. Further, let

𝑍 ∗ B 𝜈𝑌 . 𝜇𝑋 . 𝑄 ∩ [(𝐺 ∩ Cpre(𝑌)) ∪ (Apre(𝑌,𝑋))] . (10)

Then 𝑍 ∗ is equivalent to the winning region of Player 0 in the fair adversarial game over Gℓ for the
winning condition 𝜓 in (8). Moreover, the fixpoint algorithm runs in 𝑂 (𝑛2) symbolic steps, and a
memoryless winning strategy for Player 0 can be extracted from it.

Intuitively, the fixed points in (9) and (10) consist of two parts: (a) A minimal fixed point over

𝑋 which computes (for any fixed value of 𝑌) the set of states that can reach the “target state set”

𝑇 B 𝑄 ∩𝐺 ∩ Cpre(𝑌) while staying inside the safe set 𝑄 , and (b) a maximal fixed point over 𝑌

3
The Rabin pair ⟨𝐺𝑝0

, 𝑅𝑝0
⟩ = ⟨∅, ∅⟩ in (7) is artificially introduced to make the fixpoint representation more compact. It is

not part of R.

10 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

which ensures that the only states considered in the target 𝑇 are those that allow to re-visit a state

in 𝑇 while staying in 𝑄 .

By comparing (9) and (10) we see that our syntactic transformation only changes part (a). Hence,

in order to prove Thm. 3.2 it essentially remains to show that this transformation works for the

even simpler safe reachability games.
Fair Adversarial Safe Reachability Games: A safe reachability condition is a tuple ⟨𝑇,𝑄⟩ with
𝑇,𝑄 ⊆ 𝑉 and a play 𝜋 satisfies the safe reachability condition ⟨𝑇,𝑄⟩ if 𝜋 satisfies the LTL formula

𝜓 := 𝑄U𝑇 . (11)

A safe reachability game is often called a reach-while-avoid game, where the safe sets are specified

by an unsafe set 𝑅 := 𝑄 that needs to be avoided. Their fair adversarial version is formalized in the

following theorem, proved in App. B.2.1.

Theorem 3.3. Let Gℓ = ⟨G, 𝐸ℓ⟩ be a game graph with live edges and ⟨𝑇,𝑄⟩ be a safe reachability
winning condition. Further, let

𝑍 ∗ B 𝜈𝑌 . 𝜇𝑋 . 𝑇 ∪ (𝑄 ∩ Apre(𝑌,𝑋)). (12)

Then 𝑍 ∗ is equivalent to the winning region of Player 0 in the fair adversarial game over Gℓ for the
winning condition 𝜓 in (11). Moreover, the fixpoint algorithm runs in 𝑂 (𝑛2) symbolic steps, and a
memoryless winning strategy for Player 0 can be extracted from it.

To gain some intuition on the correctness of Thm. 3.3, let us recall that the fixed-point for safe

reachability games without live edges is given by:

𝜇𝑋 . 𝑇 ∪ (𝑄 ∩ Cpre(𝑋)) . (13)

Intuitively, the fixed point in (13) is initialized with 𝑋 0 = ∅ and computes a sequence 𝑋 0, 𝑋 1, . . . , 𝑋𝑘

of increasing sets until 𝑋𝑘 = 𝑋𝑘+1
. We say that 𝑣 has rank 𝑟 if 𝑣 ∈ 𝑋 𝑟 \ 𝑋 𝑟−1

. All states contained

in 𝑋 𝑟
allow Player 0 to force the play to reach 𝑇 in at most 𝑟 − 1 steps while staying in 𝑄 . The

corresponding Player 0 strategy 𝜌0 is known to be winning w.r.t. (11) and along every play 𝜋

compliant with 𝜌0, the path 𝜋 remains in 𝑄 and the rank is always decreasing.

To see why the same strategy is also sound in the fair adversarial safe reachability game Gℓ
, first

recall that for vertices 𝑣 ∉ 𝑉 ℓ
of Gℓ

, the almost sure pre-operator Apre(𝑋,𝑌) simplifies to Cpre(𝑋).
With this, we see that for every 𝑣 ∉ 𝑉 ℓ

a Player 0 winning strategy 𝜌0 in Gℓ
can always force plays

to stay in 𝑄 and to decrease their rank, similar to 𝜌0. With this, we see that plays 𝜋 which are

compliant with such a strategy 𝜌0 and visit a vertex in 𝑉 ℓ
only finitely often satisfy (11).

The only interesting case for soundness of Thm. 3.3 are therefore plays 𝜋 that visits states in 𝑉 ℓ

infinitely often. However, as the number of vertices is finite, we only have a finite number of ranks

and hence a certain vertex 𝑣 ∈ 𝑉 ℓ
with a finite rank 𝑟 needs to get visited by 𝜋 infinitely often. Due

to the definition of Apre we however know that only states 𝑣 ∈ 𝑉 ℓ
are contained in 𝑋 𝑟

if 𝑣 has an

outgoing live edge reaching 𝑋𝑘
with 𝑘 < 𝑟 . With this, reaching 𝑣 infinitely often implies that also a

state with rank 𝑘 s.t. 𝑘 < 𝑟 will get visited infinitely often. As 𝑋 1 = 𝑇 we can show by induction

that 𝑇 is eventually visited along 𝜋 while 𝜋 always remains in 𝑄 until then.

In order to prove completeness of Thm. 3.3 we need to show that all states in 𝑉 \ 𝑍 ∗
are loosing

for Player 0. Here, again the reasoning is equivalent to the “normal” safe reachability game for

𝑣 ∉ 𝑉 ℓ
. For vertices 𝑣 ∈ 𝑉 ℓ

, we see that 𝑣 is not added to 𝑍 ∗
via Apre if 𝑣 ∉ 𝑇 and either (i) all its

outgoing live transitions do not make progress towards 𝑇 or, (ii) it has some outgoing edge (not

necessarily a live one) that makes it leave 𝑍 ∗
). One can therefore construct a Player 1 strategy that

for (i)-vertexes always chooses a live transition and thereby never makes progress towards 𝑇 (also

if 𝑣 is visited infinitely often), and for (ii)-vertexes ensures that they are only visited once on plays

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

11

1 2 3

4 5

6

7

8

9

Fig. 2. Fair adversarial game graph discussed in Examples 3.4 and 3.5 with vertex sets 𝐺 = {6, 9} (double
cycled, green), 𝑄 = {1} (red,dotted) and live edges 𝐸ℓ = {(2, 3), (3, 6), (5, 4), (5, 6), (7, 9))} (dashed, blue).
Player 0 and Player 1 vertices are indicated by cycles and boxes, respectively.

which remain in𝑄 . This ensures that (ii)-vertexes never make progress towards𝑇 via their possibly

existing rank-decreasing live edges.

A detailed soundness and completeness proof of Thm. 3.3 along with the respective Player 0 and

Player 1 strategy construction is provided in App. B.2.1. In addition, Thm. 3.2 is proven in Sec. B.2.2

by a reduction to Thm. 3.3 for every iteration over 𝑌 .

Example 3.4 (Fair adversarial safe reachability game). We consider a fair adversarial safe reacha-

bility game over the game graph depicted in Fig. 2 with target vertex set 𝑇 = 𝐺 = {6, 9} and safe

vertex set 𝑄 = 𝑉 \ {1}.
We denote by 𝑌𝑚

the𝑚-th iteration over the fixpoint variable 𝑌 in (12), where 𝑌 0 = 𝑉 . Further,

we denote by 𝑋𝑚𝑖
the set computed in the 𝑖-th iteration over the fixpoint variable 𝑋 in (12) during

the computation of 𝑌𝑚
where 𝑋𝑚0 = ∅. We further have 𝑋𝑚1 = 𝑇 = {6, 9} as Apre(·, ∅) = ∅. Now

we compute

𝑋 12 = 𝑇 ∪ (𝑄 ∩ Apre(𝑌 0, 𝑋 11))
= {6, 9} ∪ (𝑉 \ {1} ∩ [Cpre(𝑋 11)︸ ︷︷ ︸

{8}

∪ (Lpre
∃ (𝑋 11) ∩ Pre

∀
1
(𝑉))︸ ︷︷ ︸

{3,5,7}

]) = {5, 6, 7, 8, 9} (14)

We observe that the only vertex added to 𝑋 via the Cpre term is vertex 8. States {3, 5, 7} are added
due to the existing live edge leading to a target vertex. Here, we note that vertex 7 is added due to

its live edge to vertex 9. The additional requirement Pre
∀
1
(𝑉) in Apre(𝑌 0, 𝑋 11) is trivially satisfied

for all vertices at this point as 𝑌 0 = 𝑉 and can therefore be ignored. Doing one more iteration

over 𝑋 we see that now vertex 4 gets added via the Cpre term (as it is a Player 0 vertex that allows

progress towards 5) and vertex 2 is added via the Apre term (as it allows progress to 3 via a live

edge). The iteration over 𝑋 terminates with 𝑌 1 = 𝑋 1∗ = 𝑉 \ {1}.
Re-iterating over 𝑋 for 𝑌 1

gives 𝑋 22 = 𝑋 12 = {5, 6, 7, 8, 9} as before. However, now vertex 2 does

not get added to 𝑋 23
because vertex 2 has an edge leading to 𝑉 \ 𝑌 1 = {1}. Therefore the iteration

over 𝑋 terminates with 𝑌 2 = 𝑋 2∗ = 𝑉 \ {1, 2}. When we now re-iterate over 𝑋 for 𝑌 2
we see that

vertex 3 is not added to 𝑋 32
any more, as vertex 3 has a transition to 𝑉 \ 𝑌 2 = {1, 2}. Therefore the

iteration over 𝑋 now terminates with 𝑌 3 = 𝑋 3∗ = 𝑉 \ {1, 2, 3}. Now re-iterating over 𝑋 does not

change the vertex set anymore and the fixed-point terminates with 𝑌 ∗ = 𝑌 3 = 𝑉 \ {1, 2, 3}.
We note that the fixed-point formula (13) for “normal” safe reachability games terminates after

two iterations over 𝑋 with 𝑋 ∗ = {6, 8, 9}, as vertex 8 is the only vertex added via the Cpre operator

in (14). Due to the stricter notion of Cpre requiring that all outgoing edges of Player 0 vertices

make process towards the target, (13) does not require an outer largest fixed-point over 𝑌 to “trap”

the play in a set of vertices which allow progress when “waiting long enough”. This “trapping”

required in (12) via the outer fixed-point over 𝑌 actually fails for vertices 2 and 3 (as they are

excluded form the winning set of (12)). Here, Player 1 can enforce to “escape” to the unsafe vertex

1 in two steps before 2 and 3 are visited infinitely often (which would imply progress towards 6 via

the existing live edges).

12 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

We see that the winning region in the “normal” game is significantly smaller than the winning

region for the fair adversarial game, as adding live transitions restricts the strategy choices of

Player 1, making it easier for Player 0 to win the game.

Example 3.5 (Fair adversarial safe Büchi game). We now consider a fair adversarial safe Büchi

game over the game graph depicted in Fig. 2 with sets 𝐺 = {6, 9} and 𝑄 = 𝑉 \ {1}.
We first observe that we can rewrite the fixed-point in (10) as

𝜈𝑌 . 𝜇𝑋 . [𝑄 ∩𝐺 ∩ Cpre(𝑌)] ∪ [𝑄 ∩ (Apre(𝑌,𝑋))] . (15)

Using (15) we see that for 𝑌 0 = 𝑉 we can define 𝑇 0
:= 𝑄 ∩𝐺 ∩ Cpre(𝑉) = 𝐺 = {6, 9}. Therefore

the first iteration over 𝑋 is equivalent to (14) and terminates with 𝑌 1 = 𝑋 1∗ = 𝑉 \ {1}.
Now, however, we need to re-compute 𝑇 for the next iteration over 𝑋 and obtain 𝑇 1 = 𝑄 ∩𝐺 ∩

Cpre(𝑌 1) = 𝑉 \ {1} ∩ {6, 9} ∩𝑉 \ {1, 2, 9} = {6}. This re-computation of 𝑇 1
checks which target

vertices are re-reachable, as required by the Büchi condition. As vertex 9 has no outgoing edge it is

trivially not re-reachable.

With this, we see that for the next iteration over𝑋 we only have one target vertex𝑇 1 = {6}. If we
recall that vertex 7 is added to 𝑋 22

due to its live edge to 9, we see that it is now not added anymore.

Intuitively, we have to exclude 7 as Player 1 can always decide to take the live edge towards 9 from

7 (also if 7 only gets visited once), and therefore prevents to re-visit a target state.

Now, vertices 2 and 3 get eliminated for the same reason as in the safe reachability game within

the second and third iteration over 𝑌 . The overall fixed-point computation therefore terminates

with 𝑌 ∗ = 𝑌 3 = {4, 5, 6, 8}.

Proof of Thm. 3.1: With Thm. 3.3 and Thm. 3.2 in place, the proof of Thm. 3.1 is essentially

equivalent to the proof of Piterman and Pnueli [2006] while utilizing Thm. 3.3 and Thm. 3.2 at all

suitable places. For completeness, we give the full proof of Thm. 3.1, including the memoryless

strategy construction, in App. B.3. In addition, we illustrate the steps of the fixed-point algorithm

in (7) with a simple fair adversarial Rabin game (depicted in Fig. 9) which has two acceptance pairs

in App. A.

Remark 1. We remark that the fixpoint (12), as well as the Apre operator, are similar in structure
to the solution of almost surely winning states in concurrent reachability games [de Alfaro et al. 1998].
In concurrent games, the fixed point captures the largest set of states in which the game can be trapped
while maintaining a positive probability of reaching the target. In our case, the fixed point captures
the largest set of states in which Player 0 can keep the game while ensuring a visit to the target either
directly or through the live edges. The commonality justifies our notation and terminology for Apre.

Remark 2. Aminof et al. [2004] studied fair CTL and LTL model checking where the fairness
condition is given by a transition fairness with all edges of the transition system live. They show that
CTL model checking under this all-live fairness condition, can be syntactically transformed to non-fair
CTL model checking. A similar transformation is possible for fair model checking of Büchi, Rabin, and
Streett formulas. The correctness of their transformation is based on reasoning similar to our Apre

operator. For example, a state satisfies the CTL formula ∀^𝑝 under fairness iff all paths starting from
the state either eventually visits 𝑝 or always visits states from which a visit to 𝑝 is possible.

3.3 Complexity

Complexity Analysis of (7): For Rabin games with 𝑘 Rabin pairs, Piterman and Pnueli [2006]

show a fixpoint formula with alternation depth 2𝑘 + 1 . Using the accelerated fixpoint computation

technique of Long et al. [1994], they deduce a bound of𝑂 (𝑛𝑘+1𝑘!) symbolic steps. We show in App. C

that this accelerated fixpoint computation can also be applied to (7) yielding a bound of 𝑂 (𝑛𝑘+2𝑘!)

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

13

𝑣 𝑣′ ⇒ 𝑣 𝑣𝑣′ 𝑣′

Fig. 3. Left: A live edge (𝑣, 𝑣 ′) in Gℓ . Right: The gadget used to replace (𝑣, 𝑣 ′) in Ĝ. The vertex named 𝑣𝑣 ′ is a
newly added vertex in Ĝ; 𝑣 belongs to 𝑉1, 𝑣𝑣 ′ belongs to 𝑉0, but 𝑣 ′ may belong to either 𝑉0 or 𝑉1.

𝑎 𝑏 𝑐 𝑑

Fig. 4. Counterexample to the equality of strong transition fairness and strong fairness (compassion).

symbolic steps. (The additional complexity is because of an additional outermost 𝜈-fixpoint.) Thus

our algorithm is almost as efficient as the original algorithm for Rabin games without environment

assumptions—independent of the number of strong transition fairness assumptions!

Comparison with a Naïve Solution: We show a naïve reduction from fair adversarial Ra-

bin games to usual Rabin games. Suppose Gℓ = ⟨G, 𝐸ℓ⟩ is a game graph with live edges, R =

{⟨𝐺1, 𝑅1⟩, . . . , ⟨𝐺𝑘 , 𝑅𝑘⟩} is a Rabin winning condition defined over Gℓ
, and 𝜑 is the corresponding

LTL specification as defined in (6). Let Ĝ = ⟨𝑉 ,𝑉0,𝑉1, 𝐸⟩ be a game graph obtained by just replac-

ing every live edge of Gℓ
with a gadget shown in Fig. 3 and explained next. For every live edge

(𝑣, 𝑣 ′) ∈ 𝐸ℓ we introduce a new intermediate vertex named 𝑣𝑣 ′ ∈ 𝑉 , and without loss of generality

we assume that 𝑣𝑣 ′ ∈ 𝑉0. (We could have equivalently used the convention that 𝑣𝑣 ′ ∈ 𝑉1.) Then we

replace the edge (𝑣, 𝑣 ′) with a pair of new edges (𝑣, 𝑣𝑣 ′) ∈ 𝐸 and (𝑣𝑣 ′, 𝑣 ′) ∈ 𝐸; the rest remains the

same as in G. Assuming that |𝐸ℓ | = 𝑙 and |𝑉 | = 𝑛, the number of vertices of Ĝ is 𝑛 + 𝑙 .
Intuitively, the event of the newly introduced vertices being reached in Ĝ simulates the event

of the corresponding live edge being taken in Gℓ
, and vice versa. We are now ready to transfer

the specification 𝛼 → 𝜑 to a new Rabin winning condition R̂ for Ĝ. First observe that 𝛼 → 𝜑

is equivalent to ¬𝛼 ∨ 𝜑 , and ¬𝛼 can be expressed in LTL as

∨
(𝑣,𝑣′) ∈𝐸ℓ (□♢{𝑣} ∧ ♢□{𝑣𝑣 ′}). and is

therefore equivalent to the Rabin winning condition Rℓ B {⟨{𝑣}, {𝑣𝑣 ′}⟩ | (𝑣, 𝑣 ′) ∈ 𝐸ℓ }. Since Rabin
winning conditions are closed under union, we obtain the new Rabin condition R̂ B R ∪ Rℓ

.

Once Ĝ and R̂ are obtained, one can use the fixpoint algorithm of Piterman and Pnueli [2006]

for “normal” two-player Rabin games. This whole process yields a symbolic algorithm for fair

adversarial Rabin games with 2(𝑘 + 𝑙) + 1 alternations of fixpoint operators on a set of (𝑛 + 𝑙)
vertices that runs in time 𝑂 ((𝑛 + 𝑙)𝑘+𝑙+1 (𝑘 + 𝑙)!). In contrast, our main theorem shows that we get

a symbolic fixpoint expression with 2(𝑘 + 1) alternations that runs in 𝑂 (𝑛𝑘+2𝑘!) symbolic steps. In

many applications, we expect 𝑙 = Θ(𝑛), for which our algorithm is significantly faster.

Remark 3. As already mentioned in the introduction, not all strong fairness assumptions (Streett
assumptions) can be translated into live edges (see e.g., [Baier and Katoen 2008, p.264]). As an example,
consider the two-player game graph depicted in Fig. 4. Player 0 and Player 1 vertices are indicated by
a circle and a box, respectively. Now consider the following one-pair Streett assumption

𝜑𝐴 B □^{𝑎, 𝑏, 𝑐} → □^{𝑎} = ^□{𝑑} ∨ □^{𝑎}. (16)

This fairness assumption states that it is not possible for a game to infinitely stay inside the set {𝑎, 𝑏, 𝑐}
if Player 0 decides to not transition from 𝑏 to 𝑎 anymore from some point onward. We see that we
cannot model this behavior by a fair edge leaving a Player 1 (square) state. If we mark the edge (𝑐, 𝑑)
live, any fair play will transition to 𝑑 no matter if 𝑎 is visited infinitely often or not. Let us call this
fair edge assumption 𝛼𝐴. Then we see that 𝛼𝐴 → 𝜑𝐴 but not vice versa.

3.4 Specialized Rabin Games
This section shows that the known fixpoint algorithms for Rabin chain, Parity, and Generalized

Co-Büchi winning conditions allow for the same “syntactic transfomation” as in the Rabin case to

14 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

get the right algoirthm for their fair adversarial version. We prove these claims by reducing the

fixed point in (7) to the special cases induced by the aforementioned winning conditions.

We note that the fixpoint algorithm for fair adversarial Rabin games in (7) reduces to the normal

fixed point for Rabin games if 𝐸ℓ = ∅. Therefore, our reductions of (7) to fixpoint algorithms for

other winning conditions also proves these reductions in the usual case. We are not aware of such

reductions proved elsewhere in the literature.

Fair Adversarial Rabin Chain Games: A Rabin chain winning condition [Mostowski 1984] is a

Rabin condition R = {⟨𝐺1, 𝑅1⟩, . . . , ⟨𝐺𝑘 , 𝑅𝑘⟩}, with the additional chain condition

𝑅1 ⊇ 𝑅2 ⊇ . . . ⊇ 𝑅𝑘 and 𝐺1 ⊇ 𝐺2 ⊇ . . . ⊇ 𝐺𝑘 . (17)

Intuitively, the fixpoint algorithm computing 𝑍 ∗
in (7) simplifies to a single permutation sequence,

namely 𝑝1 = 𝑘 , 𝑝2 = 𝑘 − 1, . . ., 𝑝𝑘 = 1, if (17) holds. This is formalized in the following theorem

which is proved in App. B.4.1.

Theorem 3.6. Let Gℓ = ⟨G, 𝐸ℓ⟩ be a game graph with live edges and R be a Rabin condition over
G with 𝑘 pairs for which the chain condition (17) holds. Further, let

𝑍 ∗ B𝜈𝑌0 . 𝜇𝑋0 . 𝜈𝑌𝑘 . 𝜇𝑋𝑘 . 𝜈𝑌𝑘−1. . . . 𝜇𝑋1.
⋃𝑘

𝑗=0
C̃𝑗 , (18a)

where C̃𝑗 B𝑅 𝑗 ∩
[(
𝐺 𝑗 ∩ Cpre(𝑌𝑗)

)
∪ Apre(𝑌𝑗 , 𝑋 𝑗)

]
(18b)

with 𝐺𝑝0
B ∅ and 𝑅𝑝0

B ∅. Then 𝑍 ∗ is equivalent to the winning region W of Player 0 in the fair
adversarial game over Gℓ for the winning condition 𝜑 in (6). Moreover, the fixpoint algorithm runs in
𝑂 (𝑛𝑘+2) symbolic steps, and a memoryless winning strategy for Player 0 can be extracted from it.

Fair Adversarial Parity Games: A Parity winning condition [Emerson and Jutla 1989] is defined

by a set C = {𝐶1,𝐶2, . . .𝐶2𝑘 } of colors, where each 𝐶𝑖 ⊆ 𝑉 is the set of vertices of G with color 𝑖 .

Further, C partitions the state space, i.e.,

⋃
𝑖∈[1;2𝑘] 𝐶𝑖 = 𝑉 and 𝐶𝑖 ∩𝐶 𝑗 = ∅ for all 𝑖, 𝑗 ∈ [1; 2𝑘] with

𝑖 ≠ 𝑗 . A play 𝜋 satisfies the Parity condition C if 𝜋 satisfies the LTL formula

𝜑 B
∧

𝑖∈[1;𝑘]
(
□♢𝐶2𝑖−1 →

∨
𝑗 ∈[𝑖;𝑘] □♢𝐶2𝑗

)
. (19)

That is, the maximal color visited infinitely often along 𝜋 is even. A Parity winning condition C
with 2𝑘 colors corresponds to the Rabin chain winning condition

{⟨𝐹2, 𝐹3⟩, . . . , ⟨𝐹2𝑘 , ∅⟩} s.t. 𝐹𝑖 :=
⋃

2𝑘
𝑗=𝑖 𝐶 𝑗 , (20)

which has 𝑘 pairs. Due to C forming a partition of the state space one can further simplify the

Rabin chain fixpoint algorithm in (18). Indeed, the resulting fixpoint algorithm coincides with the

one obtained from applying our syntactic transfomation to the well-known algorithm for Parity

games (see (2)). This is formalized in the next theorem, which is proved in App. B.4.2.

Theorem 3.7. Let Gℓ = ⟨G, 𝐸ℓ⟩ be a game graph with live edges and C be a Parity condition over
G with 2𝑘 colors. Further, let

𝑍 ∗ B𝜈𝑌2𝑘 . 𝜇𝑋2𝑘−1 . . . 𝜈𝑌2 . 𝜇𝑋1 . (21)

(𝐶1 ∩ Apre(𝑌2, 𝑋1)) ∪ (𝐶2 ∩ Cpre(𝑌2)) ∪ (𝐶3 ∩ Apre(𝑌4, 𝑋3)) . . . ∪ (𝐶2𝑘 ∩ Cpre(𝑌2𝑘)) .

Then 𝑍 ∗ is equivalent to the winning regionW of Player 0 in the fair adversarial game over Gℓ for
the winning condition 𝜑 in (19). Moreover, the fixpoint algorithm runs in 𝑂 (𝑛𝑘+1) symbolic steps, and
a memoryless winning strategy for Player 0 can be extracted from it.

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

15

Fair Adversarial (Generalized) Co-Büchi Games: A Co-Büchi winning condition is defined by

a subset 𝐴 ⊆ 𝑉 of vertices of G. A play 𝜋 satisfies the Co-Büchi condition 𝐴 if 𝜋 satisfies

𝜑 B ♢□𝐴. (22)

A Generalized Co-Büchi winning condition is defined by a set A = {𝐴1, . . . 𝐴𝑟 }, where each 𝐴𝑖 ⊆ 𝑉

is a subset of vertices of G. A play 𝜋 satisfies the Generalized Co-Büchi condition A if 𝜋 satisfies

𝜑 B
∨

𝑎∈[1;𝑟] ♢□𝐴𝑎 . (23)

Generalized Co-Büchi winning conditions correspond to a Rabin condition R with 𝑟 pairs s.t.

∀𝑗 ∈ [1; 𝑟] . 𝑅 𝑗 B 𝐴 𝑗 and 𝐺 𝑗 B 𝑉 . (24)

Intuitively, the fact that 𝐺 𝑗 B 𝑉 for all 𝑗 leads to a cancelation of all Apre terms in C𝑗 and all

terms become ordered, i.e., we have C𝑝 𝑗+1
⊆ C𝑝 𝑗

for every permutation sequence used in (7). As

we take the union over all C𝑝 𝑗
-s in (7a), the term C𝑝1

absorbs all others for every permutation

sequence. Hence, for every permutation sequence we only have two terms left, one for 𝑗 = 0 (over

the artificially introduced Rabin pairs𝐺𝑝0
= 𝑅𝑝0

= ∅) and one for the first choice 𝑝1 made in this

particular permutation. This is formalized in the following theorem which is proved in App. B.4.3.

Theorem 3.8. Let Gℓ = ⟨G, 𝐸ℓ⟩ be a game graph with live edges and A be a generalized Co-Büchi
winning condition G with 𝑟 pairs. Further, let

𝑍 ∗ B𝜈𝑌0. 𝜇𝑋0 .
⋃

𝑎∈[1;𝑟]
𝜈𝑌𝑎 . Apre(𝑌0, 𝑋0) ∪ (𝐴𝑎 ∩ Cpre(𝑌𝑎)) . (25)

Then 𝑍 ∗ is equivalent to the winning regionW of Player 0 in the fair adversarial game over Gℓ for
the winning condition 𝜑 in (23). Moreover, the fixpoint algorithm runs in𝑂 (𝑟𝑛2) symbolic steps, and a
memoryless winning strategy for Player 0 can be extracted from it.

4 GENERALIZED RABIN GAMES
In this section, we slightly generalize our main result, Thm. 3.1, to fair adversarial generalized
Rabin games. That is, for each Rabin pair, we allow the goal set 𝐺𝑖 to be a set of goal sets G𝑗 =

{ 1𝐺 𝑗 , . . . ,
𝑚 𝑗𝐺 𝑗 }. Then a play fulfills the winning condition if there exists one generalized Rabin

pair ⟨G𝑖 , 𝑅𝑖⟩ such that the play eventually remains in 𝑅𝑖 and visits all sets 𝑙𝐺𝑖 infinitely often.

The motivation of this generalization is to show that our syntactic transformation also works for

fair adversarial games with a generalized reactivity winning condition of rank 1 (GR(1) games for

short) [Piterman et al. 2006]. Generalized Rabin games allow us to see a GR(1) winning condition

as a particularly simple instantiation of a Rabin game as shown in Sec. 4.2.

4.1 Fair Adversarial Generalized Rabin Games
Generalized Rabin Conditions: A generalized Rabin condition is defined by a set

R̃ = {⟨G1, 𝑅1⟩, . . . , ⟨G𝑘 , 𝑅𝑘⟩} where each G𝑗 = { 1𝐺 𝑗 , . . . ,
𝑚 𝑗𝐺 𝑗 } is a finite set s.t.

𝑙𝐺 𝑗 ⊆ 𝑉 for

all 𝑗 ∈ [1;𝑘] and all 𝑙 ∈ [1;𝑚 𝑗]. We say that R̃ has global index set 𝑃 = [1;𝑘]. A play 𝜋 satisfies the

generalized Rabin condition R̃ if 𝜋 satisfies the LTL formula

𝜑 :=
∨

𝑗 ∈𝑃

(
^□𝑅 𝑗 ∧

∧
𝑙 ∈[1;𝑚 𝑗] □^

𝑙𝐺 𝑗

)
. (26)

Recalling the discussion of Sec. 3.1, we know that the proof of Thm. 3.1 fundamentally relies

on the correctness of our transformation for safe Büchi (Thm. 3.2) and safe reachability (Thm. 3.3)

games. Similarly, one needs to prove correctness of our syntactic transformation for safe generalized
Büchi games in the case of generalized Rabin games.

16 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

Safe Generalized Büchi Games A safe generalized Büchi condition is defined by a tuple ⟨F , 𝑄⟩
where 𝑄 ⊆ 𝑉 is a set of safe states and F = { 1𝐹, . . . , 𝑠𝐹 } is a set of goal sets. A play 𝜋 satisfies the

safe generalized Büchi condition ⟨F , 𝑄⟩ if 𝜋 satisfies the LTL formula

𝜑 := □𝑄 ∧ ∧
𝑙 ∈[1;𝑠] □^

𝑙𝐹 . (27)

Now we can apply our syntactic transformation to the usual fixpoint algorithm for solving safe

generalized Büchi games and prove its correctness for all fair adversarial plays. This is formalized

in the next theorem and proved in App. B.5.1.

Theorem 4.1. Let Gℓ = ⟨G, 𝐸ℓ⟩ be a game graph with live edges and ⟨F , 𝑄⟩ with F = { 1𝐹, . . . , 𝑠𝐹 }
a safe generalized Büchi winning condition. Further, let

𝑍 ∗ B𝜈𝑌 .
⋂

𝑏∈[1;𝑠]
𝜇 𝑏𝑋 . 𝑄 ∩

[
(𝑏𝐹 ∩ Cpre(𝑌)) ∪ Apre(𝑌, 𝑏𝑋)

]
. (28)

Then 𝑍 ∗ is equivalent to the winning regionW of Player 0 in the fair adversarial game over Gℓ for
the winning condition 𝜑 in (27). Moreover, the fixpoint algorithm runs in𝑂 (𝑠𝑛2) symbolic steps, and a
finite-memory winning strategy for Player 0 can be extracted from it.

Intuitively, the proof of Thm. 4.1 reduces to Thm. 3.2 in a similar manner as the proof of Thm. 3.2

reduces to Thm. 3.3. However, the challenge in proving Thm. 4.1 is to show that it is indeed sound

to use the fixpoint variable 𝑌 which is actually the intersection of fixpoint variables 𝑋 both within

Cpre and Apre. The proof of this correctness essentially requires to show that upon termination

we have 𝑌 ∗ = 𝑏𝑋 ∗
for all 𝑏 ∈ [1; 𝑠] (see App. B.5.1 for a formal proof).

The Symbolic Algorithm: By knowing that (28) allows to correctly solve safe generalized Büchi

games, we can immediately generalize this observation to Rabin games. This is formalized in the

following theorem which is an immediate consequence of Thm. 3.1 and Thm. 4.1.

Theorem 4.2. Let Gℓ = ⟨G, 𝐸ℓ⟩ be a game graph with live edges and R̃ be a generalized Rabin
condition over G with index set 𝑃 = [1;𝑘]. Further, let

𝑍 ∗
:= 𝜈𝑌0. 𝜇𝑋0.

⋃
𝑝1∈𝑃

𝜈𝑌𝑝1
.

⋂
𝑙1∈[1;𝑚𝑝

1
]
𝜇 𝑙1𝑋𝑝1

.
⋃

𝑝𝑘 ∈𝑃\{𝑝1,...,𝑝𝑘−1 }
𝜈𝑌𝑝𝑘 .

⋂
𝑙𝑘 ∈[1;𝑚𝑝𝑘

]
𝜇 𝑙𝑘𝑋𝑝𝑘 .

𝑘⋃
𝑗=0

𝑙 𝑗C𝑝 𝑗
,

(29a)

where 𝑙 𝑗C𝑝 𝑗
:=

(⋂𝑗

𝑖=0
𝑅𝑝𝑖

)
∩

[(
𝑙 𝑗𝐺𝑝 𝑗

∩ Cpre(𝑌𝑝 𝑗
)
)
∪ Apre(𝑌𝑝 𝑗

, 𝑙 𝑗𝑋𝑝 𝑗
)
]

(29b)

with4 𝑝0 = 0, 𝐺𝑝0
B {∅} and 𝑅𝑝0

B ∅. Then 𝑍 ∗ is equivalent to the winning region W of Player 0 in
the fair adversarial game over Gℓ for the winning condition 𝜑 in (26). Moreover, the fixpoint algorithm
runs in 𝑂 (𝑛𝑘+2𝑘!𝑚1 . . .𝑚𝑘) symbolic steps, and yields a finite-memory winning strategy for Player 0.

The proof of Thm. 4.2 is almost identical to the proof of Thm. 3.1 in App. B.3, when using Thm. 4.1

instead of Thm. 3.2 in all appropriate places. This, yields a finite memory winning strategy by

suitably “stacking” the individual finite-memory strategies constructed in the proof of Thm. 4.1.

(See App. B.5.2 for a complete proof of Thm. 4.2.)

4
Again, the generalized Rabin pair ⟨G𝑝0

, 𝑅𝑝0
⟩ in (7) is artificially introduced and not part of R̃.

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

17

4.2 Fair Adversarial GR(1) Games
Within this section, we show how fair adversarial Rabin games can be reduced to fair adversarial

games with GR(1) winning conditions.

GR(1) winning condition: A GR(1) winning condition is defined by two sets A = {𝐴1, . . ., 𝐴𝑟 }
and F = {𝐹1, . . ., 𝐹𝑠 }, where for every 𝑖 ∈ [1; 𝑟] and 𝑗 ∈ [1; 𝑠], 𝐴𝑖 , 𝐹 𝑗 ⊆ 𝑉 . A play 𝜋 satisfies the

GR(1) condition (A, F) if it satisfies the LTL formula

𝜑 B
(∧

𝑎∈[1;𝑟] □^𝐴𝑎

)
→

(∧
𝑏∈[1;𝑠] □^𝐹𝑏

)
=

(∨
𝑎∈[1;𝑟] ^□𝐴𝑎

)
∨

(∧
𝑏∈[1;𝑠] □^𝐹𝑏

)
. (30)

By comparing 𝜑 in (30) with 𝜑 in (26), we see that a GR(1) condition (A, F) can be transformed

into a generalized Rabin condition R̃ with 𝑘 = 𝑟 + 1 pairs, such that

∀𝑗 ∈ [1; 𝑟] . 𝑅 𝑗 B 𝐴 𝑗 and G𝑗 B {𝑉 }, and (31a)

𝑅𝑘 B ∅ and G𝑘 B F . (31b)

Fixpoint Algorithm: We first observe that the first 𝑟 Rabin pairs with trivial goal sets actually

correspond to a generalized Co-Büchi condition (compare (24)) which can be solved by the fixed

point in Thm. 3.8 (see Sec. 3.4). Intuitively, the fixed point in Thm. 3.8 only needs to consider

single indices form 𝑃 = [1; 𝑟] rather then full permutation sequences as in Thm. 3.1. By adding

the last tuple ⟨G𝑘 , 𝑅𝑘⟩ to the winning condition, we essentially need to consider two indices in

each conjunct of (18), i.e., 𝑝 𝑗 (with 𝑗 ∈ [1; 𝑟]) and 𝑝𝑘 . In principle, we would need to consider both

possible orderings of these two indices (compare (29)). However, by inspecting (31) we see that the

sets corresponding to these indices always fulfill a (generalized) chain condition (compare (17)).

That is, we have 𝑅 𝑗 ⊇ 𝑅𝑘 and 𝑉 = 1𝐺 𝑗 ⊇ 𝑏𝐹 for any 𝑗 ∈ [1; 𝑟] and 𝑏 ∈ [1; 𝑠]. Hence, we only need

to consider the permutation sequence 𝑝𝑘𝑝 𝑗 (compare (18)). Using this insight, along with some

additional simplifications, we indeed yield the fixed point that we would obtain by simply applying

our transformation to the well-known GR(1) fixed point (compare e.g. [Piterman et al. 2006]). This

observation is formalized in the next theorem and proved in App. B.5.3.

Theorem 4.3. Let Gℓ = ⟨G, 𝐸ℓ⟩ be a game graph with live edges and (A, F) a GR(1) winning
condition. Further, let

𝑍 ∗ =𝜈𝑌𝑘 .
⋂

𝑏∈[1;𝑠]
𝜇 𝑏𝑋𝑘 .

⋃
𝑎∈[1;𝑟]

𝜈𝑌𝑎 . (𝐹𝑏 ∩ Cpre(𝑌𝑘)) ∪ Apre(𝑌𝑘 , 𝑏𝑋𝑘) ∪ (𝐴𝑎 ∩ Cpre(𝑌𝑎)) . (32)

Then 𝑍 ∗ is equivalent to the winning regionW of Player 0 in the fair adversarial game over Gℓ for
the winning condition 𝜑 in (30). Moreover, the fixpoint algorithm runs in 𝑂 (𝑛2𝑟𝑠) symbolic steps, and
a finite-memory winning strategy for Player 0 can be extracted from it.

In particular, the strategy extraction is performed in the same way as by Piterman et al. [2006]

for a “normal” GR(1) game.

Remark 4. Svoreňová et al. [2017] presented a symbolic fixpoint algorithm for stochastic games
(which can be modeled using fair adversarial games, see Sec. 5) with respect to GR(1) winning conditions.
While one can show that the output of their algorithm coincides with the output of our newly derived
fixpoint algorithm in (32), their algorithm is structurally more involved. On a conceptual level, we feel
our insight about simply “swapping” predecessor operators in the right manner is insightful even if
one can also use their algorithm to find a solution to this problem.

Fair Adversarial vs. Environmentally-Friendly GR(1) Games: The idea of the simple “prede-

cessor operator swapping trick” shares resemblence with environmentally-friendly GR(1) synthesis,

proposed byMajumdar et al. [2019]. There, the authors show a direct symbolic algorithm to compute

18 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

Player 0 strategies which do not win a given GR(1) game vacuously, by rendering the assumptions

false. More precisely, given a synthesis game for the specification 𝜑 B (𝜑𝐴 → 𝜑𝐺) with 𝜑𝐴 and

𝜑𝐺 being LTL formulas modeling respectively environment assumptions and system guarantees,

Player 0 can win by violating 𝜑𝐴 and thereby satisfying 𝜑 vacuously. Environmentally-friendly

synthesis rules out such undesired strategies by only computing so called non-conflicting winning

strategies. Interestingly, the fixpoint algorithm introduced by Majumdar et al. [2019] also swaps

Cpre and Apre operators, but in a slightly different way.

The GR(1) fragment considered byMajumdar et al. [2019] corresponds to a specification𝜑𝐴 → 𝜑𝐺
where both 𝜑𝐴 and 𝜑𝐺 can be realized by a deterministic generalized Büchi automaton. Hence, they

provide an algorithm to compute non-conflicting winning strategies in a deterministic generalized

Büchi game under deterministic generalized Büchi assumptions. If the used deterministic Büchi

assumptions can be translated into live edges over the same game graph, the resulting fair adversarial

game is a generalized Büchi game (not a GR(1) game), solvable by the fixed point in (28) for 𝑄 = 𝑉 .

By reducing a GR(1) game to a fair adversarial game, one transforms the given assumption

into one expressed by fair edges which cannot be falsified by Player 0 and therefore yields a

simpler algorithm to compute non-conflicting strategies. However, the direct relationship between

deterministic generalized Büchi assumptions and live-edge assumptions is not known, i.e., we do

not know if all environmentally-friendly GR(1) games can be reduced to fair adversarial generalized

Büchi games.

Finally, we want to point out that fair adversarial GR(1) games compute winning strategies that

are only non-conflicting with respect to the environment assumptions encoded in the live edges.

Player 0 can still win a fair adversarial GR(1) game vacuously by falsifying 𝜑𝐴, i.e., never visiting

any set 𝐴𝑖 in A (see (30)) infinitely often.

5 STOCHASTIC GENERALIZED RABIN GAMES
We present an important application of our fixpoint algorithm in solving stochastic two-player

games, commonly known as 2
1/2-player games. 2

1/2-player games form an important subclass

of stochastic games, and have been studied quite extensively in the literature [Chatterjee et al.

2005; Condon 1992; Zielonka 2004]. They can be seen as a generalization of two-player games

by additionally capturing the environmental randomness inside the game. In order to do so, in

addition to Player 0 and Player 1 vertices as in a two-player game, they include a new set of vertices

called the random vertices. Whenever the game reaches a random vertex, one of the outgoing edges

is picked uniformly at random. Player 0 is said to win an 2
1/2-player game almost surely if she

wins the game with probability 1; the respective Player 0 strategy is called an almost sure winning

strategy. We only consider stochastic games with a uniform probability distribution over edges

which originate from a random vertex. This is indeed without loss of generality since it is known

that stochastic games with other probability distributions over random edges have exactly the same

almost sure winning sets as 2
1/2-player games [Chatterjee et al. 2005].

We present a reduction from the computation of almost sure winning strategies in 2
1/2-player

generalized Rabin games to the computation of winning strategies in fair adversarial generalized

Rabin games. This yields a direct symbolic algorithm for solving 2
1/2-player generalized Rabin

games.

5.1 Preliminaries: 2
1/2-player games

We introduce the basic setup of the 2
1/2-player games.

The game graph:We consider usual 2
1/2-player games played between Player 0, Player 1, and a

third player representing environmental randomness. Formally, a 2
1/2-player game graph is a tuple

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

19

G = ⟨𝑉 ,𝑉0,𝑉1,𝑉𝑟 , 𝐸⟩ where (i) 𝑉 is a finite set of vertices, (ii) 𝑉0, 𝑉1, and 𝑉𝑟 are subsets of 𝑉 which

form a partition of 𝑉 , and (iii) 𝐸 ⊆ 𝑉 ×𝑉 is the set of directed edges. The vertices in 𝑉𝑟 are called

random vertices, and the edges originating in a random vertex are called random edges. The set of
all random edges is denoted by 𝐸𝑟 B 𝐸 (𝑉𝑟).
Strategies and plays:We define strategies for Player 0 and Player 1 in exactly the same way as

the strategies in two-player games. While in principle, we could consider randomized strategies,

it is known that optimal strategies for 𝜔-regular winning conditions are pure [Chatterjee et al.

2005]. The new part is when the 2
1/2-player game reaches a random vertex, the game chooses one

of the random edges uniformly at random. A play is, as usual, an infinite sequence of vertices

(𝑣0, 𝑣1, . . .) that satisfies the edge relation between two consecutive vertices in the sequence. Due

to the presence of random edges, given an initial vertex 𝑣0 ∈ 𝑉 and given a pair of strategies 𝜌0

and 𝜌1 of Player 0 and Player 1 respectively, we will obtain a probability distribution over the set of
plays. We denote the set of strategies of Player 0 and Player 1 by Π0 and Π1, respectively.

Almost sure winning: Let 𝜑 be any 𝜔-regular specification over 𝑉 . Let us denote the event that

the runs of a 2
1/2-player game graph G satisfies 𝜑 using the symbol G |= 𝜑 For a given initial

vertex 𝑣0 ∈ 𝑉 and for a given pair of strategies 𝜌0 and 𝜌1 of Player 0 and Player 1, we denote the

probability of the occurrence of the event G |= 𝜑 by 𝑃
𝜌0,𝜌1

𝑣0
(G |= 𝜑). We define the set of almost

sure winning states of Player 0 for the specification 𝜑 as the set of verticesWa.s. ⊆ 𝑉 such that for

every 𝑣 ∈ Wa.s.
,

sup𝜌0∈Π0

inf𝜌1∈Π1
𝑃
𝜌0,𝜌1

𝑣 (G |= 𝜑) = 1. (33)

5.2 The reduction
Suppose G is a 2

1/2-player game graph and R̃ is a generalized Rabin winning condition. To obtain

the reduced two-player game graph, we simply reinterpret the random vertices as Player 1 vertices

and the random edges as live edges. Let us first formalize this notion of the reduced game graph.

Definition 5.1 (Reduction to two-player game with live edges). Let G = ⟨𝑉 ,𝑉0,𝑉1,𝑉𝑟 , 𝐸⟩ be a

2
1/2-player game graph. Define Derand (G) B ⟨⟨𝑉 ,𝑉0,𝑉1, 𝐸⟩, 𝐸ℓ⟩ as follows:

• 𝑉 = 𝑉 , 𝑉0 = 𝑉0, 𝑉1 = 𝑉1 ∪𝑉𝑟 , 𝐸 = 𝐸, and 𝐸ℓ = 𝐸𝑟 .

It remains to show that the almost sure winning set of Player 0 in G for the generalized Rabin

winning condition R̃ is the same as the winning set of Player 0 in the fair adversarial game over

Derand (G) for the winning condition R̃. This is formalized in the following theorem, which is

proved in App. B.6. The proof essentially shows that the random edges of G simulate the live edges

of Derand (G), and vice versa.

Theorem 5.2. Let G be a 2
1/2-player game graph, R̃ be a generalized Rabin condition, 𝜑 ⊆ 𝑉𝜔 be

the corresponding LTL specification (Eq. (26)) over the set of vertices 𝑉 of G, and Derand (G) be the
reduced two-player game graph. Let W ⊆ 𝑉 be the set of all the vertices from where Player 0 wins
the fair adversarial game over Derand (G) for the winning condition 𝜑 , andWa.s. be the almost sure
winning set of Player 0 in the game graph G for the specification 𝜑 . Then,W = Wa.s.. Moreover, a
winning strategy in Derand (G) is also a winning strategy in G, and vice versa.

The above theorem generalizes [Glabbeek and Höfner 2019, Thm. 11.1] from liveness properties to

all LTL specifications on 2
1/2-player games. Together with our symbolic algorithm for fair adversarial

Rabin games, the reduction implies a 𝑂 (𝑛𝑘+2𝑘!) algorithm for stochastic Rabin games for a game

with 𝑛 states and 𝑘 Rabin pairs. This improves the previous best algorithm from [Chatterjee et al.

2005], which reduces the problem to a normal two-player game with 𝑂 (𝑛(𝑘 + 1)) states and 𝑘 + 1

Rabin conditions, and therefore has a complexity of 𝑂
(
(𝑛(𝑘 + 1))𝑘+2 (𝑘 + 1)!

)
.

20 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

Remark 5. The idea underlying this section is to replace random edges with live edges to compute
almost sure winning states. We recall again that probabilistic choice is different from (i.e., stronger
than) strong transition fairness studied in our paper. See Sec. 2.2 for an illustrative example in Fig. 1.

6 EXPERIMENTAL EVALUATION
We have developed a C++-based tool Fairsyn, which implements the symbolic fair adversarial Rabin

fixpoint from Eq. (7) using BDDs. We developed two versions of Fairsyn: A single-threaded version

using the (single-threaded) CUDD library [Somenzi 2019], and a multi-threaded version using the

(multi-threaded) Sylvan library [van Dijk and van de Pol 2015].

Our tool implements a well-known acceleration technique for fixpoint computations [Long et al.

1994]. It exploits certain monotonicity properties of the fixpoint variables, and “warm-starts” the

inner fixpoint iterations by initializing them with earlier computed values for similar configurations

of the leading fixpoint variables’ iteration indices (see App. C for a formal explanation). The

acceleration procedure trades memory for time; it can avoid computations if all the intermediate

values of the fixpoint variables for all possible configurations of the fixpoint iteration indices are

stored. In practice, this creates an inordinate amount of overhead on the memory requirement: The

original algorithm would already run out of memory when solving the smallest instance of the

case study reported in Table 1 (first line) on a computer with 1.5 TB of memory. We have therefore

adapted the acceleration technique to achieve a novel (space-)bounded acceleration algorithm that

we utilize within Fairsyn. Our new algorithm takes an acceleration parameter 𝑀 as input, which

bounds the extent to which intermediate values of fixpoint variables are cached (see App. C for

details). Whenever no cached value is available during the computation, our algorithm falls back to

the default way of initializing fixpoint variables and recomputations.

To show the effectiveness of our proposed symbolic algorithm for fair adversarial Rabin games,

we performed various experiments with Fairsyn which fall into two different categories. First, in

Sec. 6.1, we demonstrate the merits of utilizing parallelization and acceleration within Fairsyn.
Second, in Sec. 6.2, we show the practical relevance of our algorithm by solving two large practical

case-studies stemming from the areas of software engineering and control systems.

The experiments in Sec. 6.1 and Sec. 6.2.1 were performed using Sylvan-based Fairsyn on a

computer equipped with a 3 GHz Intel Xeon E7 v2 processor with 48 CPU cores and 1.5 TiB RAM.

The experiments in Sec. 6.2.2 were performed using CUDD-based Fairsyn on a Macbook Pro (2015)

laptop equipped with a 2.7 GHz Dual-Core Intel Core i5 processor with 16 GiB RAM.

6.1 Performance Evaluation
This section discusses a benchmark suite used to empirically evaluate themerits of the two important

aspects of Fairsyn, namely the parallelization and the acceleration. Our benchmark suite is build on

transition systems taken from the Very Large Transition Systems (VLTS) benchmark suite [Garavel

and Descoubes 2003]. For each chosen transition system, we randomly generated benchmark

instances of fair adversarial Rabin games with up to 3 Rabin pairs. To transform a given transition

systems into a fair adversarial Rabin game, we labeled (i) 50% of randomly chosen vertices as system

vertices, (ii) the remaining vertices as environment vertices, (iii) up to 5% of randomly selected

environment edges as live edges, and (iv) for every set in R = {⟨𝐺1, 𝑅1⟩, . . . , ⟨𝐺𝑘 , 𝑅𝑘⟩} we randomly

selected up to 5% of all vertices to be contained. We have summarized the relevant details of all the

randomly generated instances of the fair adversarial Rabin games in Table 3 and Table 4 in App. D.

In these examples, the number of vertices were 289–566,639, the number of BDD variables were

9–20, the number of transitions were 1224–3,984,160, and number of live edges were 1–42,757. For

all benchmark instances with more than 4 live edges, the naïve version of Fairsyn which treats live

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

21

0 500 1,000 1,500 2,000

0

2,000

4,000

6,000

Parallel (s)

N
o
n
-
p
a
r
a
l
l
e
l
(
s
)

0 500 1,000 1,500 2,000

0

2,000

4,000

6,000

Accelerated (s)

N
o
n
-
a
c
c
e
l
e
r
a
t
e
d
(
s
)

Fig. 5. (Left) Comparison between the computation times for the non-parallel (1 worker thread) and parallel (48
worker threads) version of Fairsyn, with acceleration being enabled in both cases. (Right) Comparison between
the computation times for the non-accelerated and the accelerated version of Fairsyn, with parallelization
being enabled in both cases. (Both) The points on the solid red line represent the same computation time.
The points on the dashed red line represent an order of magnitude improvement.

edges as Streett conditions and transforms them into additional Rabin pairs as discussed in Sec. 3.3,

did not terminate after 2 hours.

Merits of parallelization. We ran Fairsyn on 10 different benchmark instances with 1 or 2 Rabin

pairs, and varied the number of parallel worker threads used in Fairsyn between 1–48, while

keeping the acceleration enabled. The left scatter plot in Fig. 5 plots the computation times with 48

threads (parallel) versus the computation times with 1 thread (non-parallel). Observe that in almost

all the experiments, the parallelized version outperforms the non-parallelized version (points above

the solid red line). In addition, in many cases the speedup achieved due to the parallelization was

more than one order of magnitude (points above the dashed red line).

A more fine-grained analysis of the benefits of parallelization is shown in Fig. 6.(a). Here compu-

tation time (in logarithmic scale) is plotted over the number of worker threads used. We observe

that the saving due to parallelization is more significant for the curves lying in the top half which

correspond to larger examples. This is due to the better utilization of the available pool of worker

threads by the larger examples.

Merits of acceleration.We ran Fairsyn on 10 different benchmark instances with 1–3 Rabin pairs,

and varied the acceleration parameter𝑀 between 2–15, while the number of worker threads was

fixed to 48. The right scatter plot in Fig. 5 plots the computation times with 𝑀 = 15 versus the

computation times with no acceleration. Observe that in almost all the experiments, the accelerated

version outperformed the non-accelerated version (points above the solid red line), and in many

cases the achieved speedup is close to an order of magnitude (points near the dashed red line). See

Fig. 10 in App. D for a zoomed-in version of Fig. 5.

A more fine-grained analysis of the benefits of acceleration is shown in Fig. 6.(b)–(e). Here we

have plotted the total computation time (Plots (b),(d)) and the initialization time (Plots (c),(e)) in

logarithmic scale over 𝑀 for benchmark instances with 2 Rabin pairs (Plots (b),(c)) and 3 Rabin

pairs (Plots (d),(e)). Plots for instances with 1 Rabin pair can be found in Fig. 11 in App. D.

The plotted initialization time is needed by the accelerated algorithm for allocating memory to

store intermediate fixpoint values. We observe that this initialization time grows exponentially with

𝑀 , which is due to the O(𝑀𝑘+1𝑘!) space complexity of the acceleration algorithm. As a result, the

computational savings due to the use of acceleration get undermined by the high initialization cost

22 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

(a)

1 12 24 36 48

10
−2

10
0

10
2

Number of threads

C
o
m
p
u
t
a
t
i
o
n
t
i
m
e
(
s
)

(b)

0 5 10 15

10
0

10
2

𝑀

C
o
m
p
.
t
i
m
e
(
s
) (c)

2 5 10 15

10
−4

10
−1

10
2

𝑀

I
n
i
t
.
t
i
m
e
(
s
)

(d)

0 5 10 15

10
−1

10
0

10
1

10
2

𝑀

C
o
m
p
.
t
i
m
e
(
s
) (e)

2 5 10 15

10
−4

10
−1

10
2

𝑀

I
n
i
t
.
t
i
m
e
(
s
)

Fig. 6. (a) Effect of parallelization on computation time, with the acceleration enabled. (b,d) Effect of variation
of the acceleration parameter𝑀 on the total computation time (parallelization being enabled) for 2 and 3

Rabin pairs respectively. (c,e) Effect of variation of the acceleration parameter𝑀 on the initialization time for
2 and 3 Rabin pairs respectively. The computation time (Y-axis) is always shown in the logarithmic scale.

for large𝑀 . We note that, due to their random generation, the considered benchmark instances are

not well structured. This results in low iteration numbers over involved fixed-point variables. Due

to this, the allocated memory gets underutilized for large values of𝑀 . In the practically relevant

examples discussed in Sec. 6.2 the game graph is naturally structured, resulting in a large number

of fixpoint iterations and thereby showing superior performance for larger values of𝑀 .

6.2 Practical Benchmarks
This section shows that Fairsyn is able to efficiently solve two practical case studies stemming from

the areas of software engineering (Sec. 6.2.1) and control systems (Sec. 6.2.2).

6.2.1 Code-Aware Resource Management. We consider a case study introduced by Chatterjee et al.

[2013]. It considers the problem of synthesizing a code-aware resource manager for a network

protocol, i.e., multi-threaded program running on a single CPU. The task of the resource manager

is to grant different threads access to different shared synchronization resources (mutexes and

counting semaphores). The specification is deadlock freedom across all threads at all time while

assuming a fair scheduler (scheduling every thread always eventually) and fair progress in every

thread (i.e., taking every existing execution branch always eventually). By making the resource

manager code-aware, it can avoid deadlocks by utilizing its knowledge about the require and release

characteristics of all treads for different resources.

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

23

Chatterjee et al. [2013] showed that the problem of synthesizing a code-aware resource manager

can be approximated using a 1
1/2-player game

5
generated from the known require and release

characteristics of all threads. We used Fairsyn to synthesize a code-aware resource manager for

this problem, where the live edges model the aforementioned fairness conditions imposed on the

scheduler and the threads.

Motivated by the case study conducted by Chatterjee et al. [2013], we consider a network protocol

consisting of 3 threads and 2 queues of bounded capacity, as depicted in Fig. 7. The threads (shown

as oval-shaped nodes) are called generator, sender, and delay, and the queues (shown as rectangular

nodes) are called broadcast and output. The generator generates data packets and dispatches them to

either the broadcast queue or the output queue. Packets from the broadcast queue are added to the

output queue after a random delay, introduced by the delay thread. The purpose of this delay is to

avoid packet collisions during broadcasting. The packets in the output queue are in transit and get

processed by the sender process. The sender process attempts to transmit packets from the output

queue via the network, and when the transmission fails, it adds the respective data packet back to the

broadcast queue, so that another transmission attempt can bemade after a delay. Access to all queues

is protected by mutexes and semaphores. Each queue has one mutex and two semaphores, one for

counting the number of empty places and another for counting the number of packets present.

generator

sender

broadcast

output

delay

to network

Fig. 7. Structure of network protocol.

As discussed by Chatterjee et al. [2013], the outlined

network protocol may deadlock when both queues are

full, a transmission via sender fails, and the sender tries to

insert the packet back to the broadcast queue. In this case,

due to the output queue being full, the broadcast queue

will not be able to make space for the incoming packet,

leading to a deadlock situation. The correct strategy for

the resourcemanager to prevent this deadlock is to ensure

that the generator never adds packets to the broadcast

queue if the output queue is full.

We used the parallel and accelerated version of Fairsyn with𝑀 = 15 to automatically synthesize

the resource manager for the outlined network protocol case study. Indeed, Fairsyn was successful

in discovering the outlined managing strategy. To showcase Fairsyn’s performance on this case

study, we report the number of vertices of the problem instance and Fairsyn’s computation time

to solve it for different queue capacities in Table 1; an extended version of the table with more

number of cases has been included in Table 5 in App. D. In all cases, Fairsyn was able to provide

expected strategies within a reasonable amount of time. Note that treating the live edges as Streett

conditions would result in a game with several million Rabin pairs, making all these examples go

far beyond the scope of any synthesis tool for Rabin games.

6.2.2 Controller Synthesis for Stochastically Perturbed Dynamical Systems. Synthesizing verified
symbolic controllers for continuous dynamical systems is an active area in cyber-physical systems

research [Tabuada 2009]. Recently, it was shown by Majumdar et al. [2021], that the symbolic

controller synthesis problem for stochastic continuous dynamical systems can be approximated

using a strategy synthesis problem over a (finite) 2
1/2-player game graph. This result, together with

our reduction in Sec. 5, enables us to use Fairsyn to synthesize a symbolic controller for stochastic

continuous dynamical systems. We show in this section, that on different instances of an established

case study for this synthesis problem, Fairsyn outperforms state-of-the art synthesis techniques by

margins varying between 1 order of magnitude to up to 2.5 orders of magnitude.

5
A 1

1/2-player game is a 2
1/2-player game without any Player 1 vertices.

24 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

Broadcast

Queue

Capacity

Output

Queue

Capacity

Number of

Vertices

Number of

Transitions

Number of

Live edges

Number

of BDD

variables

Time

(seconds)

1 1 5,307,840 10,135,300 5,124,100 25 7.38

2 1 21,231,400 40,541,200 20,496,400 27 24.90

3 1 21,414,100 42,080,300 21,265,900 27 28.98

1 2 21,340,800 40,879,100 20,834,300 27 38.26

1 3 21,559,400 42,756,100 21,772,800 27 51.56

2 2 85,363,200 163,516,000 83,337,200 29 133.20

3 2 86,061,400 169,673,000 86,415,400 29 144.28

2 3 86,237,400 171,024,000 87,091,200 29 163.62

3 3 86,870,100 177,181,000 90,169,300 29 203.15

Table 1. Performance of Fairsyn on the code-aware resource management benchmark experiment.

In the following, we first formalize the case study, which was proposed by Dutreix et al. [2020].

Consider the dynamic model of a bistable switch which is a tuple Σ = (𝑋,𝑈 ,𝑊 , 𝑓) with a two-

dimensional compact state space 𝑋 = [0, 4] × [0, 4] ∈ R2
, a finite input space𝑈 = {−0.5, 0, 0.5} ×

{−0.5, 0, 0.5}, a two-dimensional bounded disturbance space𝑊 = [−0.4,−0.2] × [−0.4,−0.2] ∈ R2
,

and a transition function 𝑓 : 𝑋 ×𝑈 → 𝑋 . Suppose 𝑥 : N→ 𝑋 , 𝑢 : N→ 𝑈 , and𝑤 : N→𝑊 denote

the system’s state, input, and disturbance trajectories, given as functions of (discrete) time. Note

that the functions 𝑥 ,𝑢,𝑤 , and 𝑓 are vector-valued, and we will denote each element of vectors using

the element index in the suffix. For instance, 𝑥1, 𝑥2 are the first and the second element of the state

trajectory 𝑥 respectively, and 𝑓1 (𝑥,𝑢), 𝑓2 (𝑥,𝑢) are the first and the second element of the valuation

of the transition function 𝑓 (𝑥,𝑢) respectively. At each time step 𝑘 , we assume that 𝑤 (𝑘) ∈ 𝑊

is drawn from a probability distribution with the support𝑊 ; for our purpose, the shape of the

distribution is irrelevant. The state evolution of the system is modeled using a set of difference

equations of the following form:

𝑥1 (𝑘 + 1) = 𝑓1 (𝑥 (𝑘), 𝑢 (𝑘)) +𝑤1 (𝑘) = 𝑥1 (𝑘) + 0.05 (−1.3𝑥1 (𝑘) + 𝑥2 (𝑘)) + 𝑢1 (𝑘) +𝑤1 (𝑘), (34)

𝑥2 (𝑘 + 1) = 𝑓2 (𝑥 (𝑘), 𝑢 (𝑘)) +𝑤2 (𝑘) = 𝑥2 (𝑘) + 0.05

(
(𝑥1 (𝑘))2

(𝑥1 (𝑘))2 + 1

− 0.25𝑥2 (𝑘)
)
+ 𝑢2 (𝑘) +𝑤2 (𝑘).

A controller for a dynamical system Σ is a function𝐶 : 𝑋 → 𝑈 that determines the control inputs

𝑢1 (𝑘) := 𝐶1 (𝑥 (𝑘)) and 𝑢2 (𝑘) := 𝐶2 (𝑥 (𝑘)) in (34) for all time steps 𝑘 . Recalling that 𝑤 (𝑘) ∈ 𝑊 is

drawn from a probability distribution with the support𝑊 in every time step, we see that, for a

given initial state 𝑥 (0) = init ∈ 𝑋 , a fixed controller 𝐶 induces a probability measure 𝑃𝐶init over all

state trajectories starting at 𝑥 (0) = init and evolving in accordance to (34).

𝐴,𝐶 𝐴

𝐴

𝐵

𝐶

𝐶

𝐶 𝐷

Fig. 8. Predicates over 𝑋 .

In order to formalize a control specification for Σ in (34), the

state subsets 𝐴, 𝐵,𝐶, 𝐷 ⊆ 𝑋 whose shape is illustrated in Fig. 8 are

considered. Given the LTL formulas over these predicates

𝜑1 B □ ((¬𝐴 ∧ ⃝𝐴) → (⃝ ⃝ 𝐴 ∧ ⃝ ⃝ ⃝𝐴)) , and
𝜑2 B (□♢𝐵 → ♢𝐶) ∧ (♢𝐷 → □¬𝐶) ,

the set L(𝜑𝑖) ⊆ 2
N→𝑋

collects all state trajectories of Σ that fulfill

𝜑𝑖 . With this, we define the almost sure winning region of Σ for

the specification 𝜑 as the largest (in term of set inclusion) set of

states𝑊in for which there exists a controller 𝐶 s.t. 𝑃𝐶𝛼 (L(𝜑𝑖)) = 1

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

25

Spec.

vertices in

2
1/2-game

abstraction

Total synthesis time Peak memory footprint

Fairsyn Fairsyn
w/o accl.

SS Fairsyn Fairsyn
w/o accl.

SS

𝜑1

(1

Rabin

pair)

3.8 × 10
3

0.02 s 0.02 s 8 s 65 MiB 65 MiB 125 MiB

2.2 × 10
4

0.2 s 0.4 s 18 s 68 MiB 68 MiB 1 GiB

1.1 × 10
5

1.3 s 3.7 s 9 min 18 s 79 MiB 81 MiB 80 GiB

6.6 × 10
5

5.4 s 16.8 s OoM 128 MiB 126 MiB 127 GiB

4.3 × 10
6

35 s 1 min 32 s OoM 479 MiB 478 MiB 127 GiB

𝜑2

(2

Rabin

pairs)

3.8 × 10
3

0.4 s 1 s 30 s 66 MiB 66 MiB 156 MiB

2.2 × 10
4

8.2 s 41 s 55 s 72 MiB 69 MiB 1 GiB

1.1 × 10
5

1 min 23 s 12 min 38 s 16 min 1 s 108 MiB 102 MiB 81 GiB

6.6 × 10
5

5 min 27 s 1 h 1 min OoM 166 MiB 237 MiB 126 GiB

4.3 × 10
6

41 min 7 s 6 h 5 min OoM 517 MiB 509 MiB 127 GiB

Table 2. Performance comparison between Fairsyn and StochasticSynthesis (abbreviated as SS) [Dutreix et al.
2020] on a comparable implementation of the abstract fair adversarial game (uniform grid-based abstraction).
Col. 1 shows the specifications considered and the respective numbers of Rabin pairs, Col. 2 shows the size of
the resulting 2

1/2-player game graph (computed using the algorithm given in [Majumdar et al. 2021], Col. 3, 4,
and 5 compare the total synthesis times and Col. 6, 7, and 8 compare the peak memory footprint (as measured
using the “time” command) for Fairsyn, Fairsyn w/o acceleration, and SS respectively. “OoM” stands for
out-of-memory.

for every state 𝛼 ∈𝑊in. The synthesis task for this case study then

amounts to computing controllers 𝐶1 and 𝐶2 which have the almost sure winning region of Σ w.r.t.

𝜑𝑖 and𝑊in as their initial domain.

It was shown by Majumdar et al. [2021] that this synthesis problem can be approximately solved

by lifting the system Σ to a finite 2
1/2-player game. The almost sure winning region of the resulting

controller obtained by solving the abstract 2
1/2-player game under-approximates the almost sure

winning region of Σ. We employ our fixpoint algorithm for solving this abstract 2
1/2-player game,

which can be reduced to a fair adversarial game by following the procedure in Sec. 5. In Table 2, we

compare both the accelerated and the non-accelerated versions of our fixpoint algorithm against

the state-of-the-art algorithm for solving this problem, which is implemented in the tool called

StochasticSynthesis (SS) [Dutreix et al. 2020].

7 CONCLUSION
Many practical problems in reactive synthesis give rise to two-player games on graphs with a

winning condition of the form

Fairness Assumption ⇒ 𝜔−regular Specification
The prevalent way to solve games with fairness assumptions is to either “compile” to a new 𝜔-

regular specification for the implication or to identify selected fragments for which a “direct”

symbolic algorithm has been devised. The former can handle arbitrary fairness assumptions (e.g.,

general Streett conditions) but yields an algorithm of high complexity (e.g., adding the number

of Streett conditions in the exponent). The latter, exemplified by the GR(1) fragment, can only

handle weak fairness (conjunctions of Büchi conditions). Our observation is that many practical

fairness assumptions fall into the category of strong transition liveness, and for this class, one can

construct a symbolic algorithm that with a slight additional penalty that is independent of the size

(number of live edges) of the liveness assumption. As a byproduct, our algorithm improves the

26 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

state-of-the-art in the symbolic solution of stochastic Rabin games. We experimentally demonstrate

that a symbolic implementation of our algorithm based on BDDs can scale to large instances derived

from deterministic and stochastic synthesis problems.

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

27

REFERENCES
Rajeev Alur, Salar Moarref, and Ufuk Topcu. 2013. Counter-strategy guided refinement of GR(1) temporal logic specifications.

In Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013. IEEE, 26–33. http:

//ieeexplore.ieee.org/document/6679387/

Benjamin Aminof, Thomas Ball, and Orna Kupferman. 2004. Reasoning About Systems with Transition Fairness. In Logic
for Programming, Artificial Intelligence, and Reasoning, 11th International Conference, LPAR 2004, Montevideo, Uruguay,
March 14-18, 2005, Proceedings (Lecture Notes in Computer Science), Franz Baader and Andrei Voronkov (Eds.), Vol. 3452.

Springer, 194–208. https://doi.org/10.1007/978-3-540-32275-7_14

Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT press.

Julian C. Bradfield. 1998. The Modal 𝜇-Calculus Alternation Hierarchy is Strict. Theor. Comput. Sci. 195, 2 (1998), 133–153.
https://doi.org/10.1016/S0304-3975(97)00217-X

Romain Brenguier, Guillermo A Pérez, Jean-François Raskin, and Ocan Sankur. 2014. AbsSynthe: abstract synthesis from

succinct safety specifications. arXiv preprint arXiv:1407.5961 (2014).
J. Richard Buchi and Lawrence H. Landweber. 1969. Solving Sequential Conditions by Finite-State Strategies. Trans. Amer.

Math. Soc. 138 (1969), 295–311.
Krishnendu Chatterjee, Luca De Alfaro, Marco Faella, Rupak Majumdar, and Vishwanath Raman. 2013. Code aware resource

management. Formal Methods in System Design 42, 2 (2013), 146–174.

Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. 2005. The Complexity of Stochastic Rabin and Streett

Games. In Proceedings of the 32nd International Colloquium on Automata, Languages and Programming (ICALP) (Lecture
Notes in Computer Science), Vol. 3580. Springer, 878–890.

Alonzo Church. 1963. Logic, arithmetic, and automata. Proceedings of the International Congress of Mathematicians, 1962
(1963), 23–35.

Anne Condon. 1992. The complexity of stochastic games. Information and Computation 96, 2 (1992), 203–224.

Luca De Alfaro. 1997. Formal verification of probabilistic systems. Number 1601. Citeseer.

Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. 1998. Concurrent Reachability Games. In 39th Annual
Symposium on Foundations of Computer Science, FOCS. IEEE Computer Society, 564–575.

Maxence Dutreix, Jeongmin Huh, and Samuel Coogan. 2020. Abstraction-based synthesis for stochastic systems with

omega-regular objectives. arXiv preprint arXiv:2001.09236 (2020).
Rüdiger Ehlers and Vasumathi Raman. 2016. Slugs: Extensible GR(1) synthesis. In International Conference on Computer

Aided Verification. Springer, 333–339.
E Allen Emerson and Charanjit S Jutla. 1988. The complexity of tree automata and logics of programs. In FoCS, Vol. 88.

328–337.

E. Allen Emerson and Charanjit S. Jutla. 1989. On Simultaneously Determinizing and Complementing omega-Automata

(Extended Abstract). In Proceedings of the Fourth Annual Symposium on Logic in Computer Science. IEEE Computer Society,

333–342.

E Allen Emerson and Charanjit S Jutla. 1991. Tree automata, mu-calculus and determinacy. In FoCS, Vol. 91. 368–377.
Cameron Finucane, Gangyuan Jing, and Hadas Kress-Gazit. 2010. LTLMoP: Experimenting with language, temporal logic

and robot control. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 1988–1993.
Nissim Francez. 1986. Fairness. Springer, Berlin.
Hubert Garavel and Nicolas Descoubes. 2003. Very large transition systems. (2003). http://tinyurl.com/yuroxx

Rob Van Glabbeek and Peter Höfner. 2019. Progress, Justness, and Fairness. ACM Comput. Surv. 52, 4, Article 69 (2019),
38 pages.

Yuri Gurevich and Leo Harrington. 1982. Trees, automata, and games. In Proceedings of the fourteenth annual ACM symposium
on Theory of computing. 60–65.

Dexter Kozen. 1983. Results on the propositional 𝜇-calculus. Theoretical Computer Science 27, 3 (1983), 333 – 354. International
Colloquium on Automata, Languages and Programming (ICALP).

Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. 2007. Where’s waldo? sensor-based temporal logic motion

planning. In Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE, 3116–3121.
Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. 2009. Temporal-logic-based reactive mission and motion

planning. IEEE transactions on robotics 25, 6 (2009), 1370–1381.
Orna Kupferman and Moshe Y Vardi. 2005. Safraless decision procedures. In 46th Annual IEEE Symposium on Foundations of

Computer Science (FOCS’05). IEEE, 531–540.
David E Long, Anca Browne, Edmund M Clarke, Somesh Jha, and Wilfredo R Marrero. 1994. An improved algorithm for the

evaluation of fixpoint expressions. In International Conference on Computer Aided Verification. Springer, 338–350.
Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani. 2021. Symbolic Qualitative Control for

Stochastic Systems via Finite Parity Games. In ADHS 2021.

http://ieeexplore.ieee.org/document/6679387/
http://ieeexplore.ieee.org/document/6679387/
https://doi.org/10.1007/978-3-540-32275-7_14
https://doi.org/10.1016/S0304-3975(97)00217-X
http://tinyurl.com/yuroxx

28 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

Rupak Majumdar, Nir Piterman, and Anne-Kathrin Schmuck. 2019. Environmentally-Friendly GR(1) Synthesis. In Tools and
Algorithms for the Construction and Analysis of Systems. Springer International Publishing, Cham, 229–246.

Oded Maler, Amir Pnueli, and Joseph Sifakis. 1995. On the synthesis of discrete controllers for timed systems. In Annual
Symposium on Theoretical Aspects of Computer Science. Springer Berlin Heidelberg, 229–242.

Shahar Maoz and Jan Oliver Ringert. 2015. Synthesizing a Lego Forklift Controller in GR (1): A Case Study. SYNT 2015
(2015), 5.

Thibaud Michaud and Maximilien Colange. 2018. Reactive synthesis from LTL specification with Spot. In Proceedings of the
7th Workshop on Synthesis, SYNT@ CAV.

Andrzej Wlodzimierz Mostowski. 1984. Regular expressions for infinite trees and a standard form of automata. In Symposium
on computation theory. Springer, 157–168.

N. Piterman and A. Pnueli. 2006. Faster Solutions of Rabin and Streett Games. In 21st Annual IEEE Symposium on Logic in
Computer Science (LICS’06). 275–284.

Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. 2006. Synthesis of reactive (1) designs. In International Workshop on Verification,
Model Checking, and Abstract Interpretation. Springer, 364–380.

Amir Pnueli. 1983. On the extremely fair treatment of probabilistic algorithms. In Proceedings of the fifteenth annual ACM
symposium on Theory of computing. 278–290.

Amir Pnueli and Roni Rosner. 1988. A Framework for the Synthesis of Reactive Modules. In International Conference on
Concurrency, Proceedings (LNCS), Friedrich H. Vogt (Ed.), Vol. 335. Springer, 4–17.

Amir Pnueli and Roni Rosner. 1989. On the Synthesis of a Reactive Module. In Annual ACM Symposium on Principles of
Programming Languages. ACM Press, 179–190.

Jean-Pierre Queille and Joseph Sifakis. 1983. Fairness and related properties in transition systems–a temporal logic to deal

with fairness. Acta Informatica 19, 3 (1983), 195–220.
Michael O Rabin. 1969. Decidability of second-order theories and automata on infinite trees. Trans. Amer. Math. Soc. 141

(1969), 1–35.

Fabio Somenzi. 2019. CUDD 3.0. 0. URL http://vlsi. colorado. edu/˜ fabio/CUDD/html/. Also available at https://github.
com/ivmai/cudd (2019).

Mária Svoreňová, Jan Křetínskỳ, Martin Chmelík, Krishnendu Chatterjee, Ivana Černá, and Calin Belta. 2017. Temporal

logic control for stochastic linear systems using abstraction refinement of probabilistic games. Nonlinear Analysis: Hybrid
Systems 23 (2017), 230–253.

Paulo Tabuada. 2009. Verification and control of hybrid systems: a symbolic approach. Springer Science & Business Media.

John G Thistle. 1995. On control of systems modelled as deterministic Rabin automata. Discrete Event Dyn. Systems 5, 4
(1995), 357–381.

John G Thistle and RP Malhamé. 1998. Control of 𝜔-automata under state fairness assumptions. Systems & control letters 33,
4 (1998), 265–274.

Tom van Dijk and Jaco van de Pol. 2015. Sylvan: Multi-core decision diagrams. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 677–691.

Tichakorn Wongpiromsarn, Ufuk Topcu, Necmiye Ozay, Huan Xu, and Richard M. Murray. 2011. TuLiP: a software toolbox

for receding horizon temporal logic planning. In Proceedings of the 14th ACM International Conference on Hybrid Systems:
Computation and Control, HSCC 2011, Chicago, IL, USA, April 12-14, 2011, Marco Caccamo, Emilio Frazzoli, and Radu

Grosu (Eds.). ACM, 313–314. https://doi.org/10.1145/1967701.1967747

Wieslaw Zielonka. 1998. Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees.

Theor. Comput. Sci. 200, 1-2 (1998), 135–183.
Wieslaw Zielonka. 2004. Perfect-Information Stochastic Parity Games. In International Conference on Foundations of Software

Science and Computation Structures (FOSSACS) (LNCS), Vol. 2987. Springer, 499–513.

https://doi.org/10.1145/1967701.1967747

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

29

A EXAMPLE-COMPUTATION OF THE RABIN FIXED-POINT
Consider the game graph depicted in Fig. 9, where circles and squares denote Player 0 and Player 1

vertices, respectively. We are given a Rabin condition with two pairs R = {⟨𝐺1, 𝑅1⟩, ⟨𝐺2, 𝑅2⟩} s.t.

𝑅1 = {𝑞1, 𝑞3, 𝑞4, 𝑞6, 𝑞7} 𝐺1 = {𝑞1, 𝑞4} 𝑅2 = {𝑞2, 𝑞3, 𝑞5, 𝑞6} 𝐺2 = {𝑞3}

which are indicated in green and orange, respectively, in Fig. 9. The only live edge in the game

graph is indicated in dashed blue from 𝑞2 to 𝑞3. We assert that Player 0 wins from every vertex.

However, in the absence of the live edge, she wins only from {𝑞3, 𝑞4, 𝑞5, 𝑞6, 𝑞7}. (This is because
Player 1 can force the game to stay forever in 𝑞2 from the remaining states.)

We first flatten the algorithm in (7) for two Rabin pairs. This yields the following algorithm:

𝜈𝑌0. 𝜇𝑋0. (35a){
𝜈𝑌1 .𝜇𝑋1. 𝜈𝑌2.𝜇𝑋2 . (35b)

Apre(𝑌0, 𝑋0)

∪
(
𝑅1 ∩ [(𝐺1 ∩ Cpre(𝑌1)) ∪ (Apre(𝑌1, 𝑋1))]

)
∪

(
𝑅1 ∩ 𝑅2 ∩ [(𝐺2 ∩ Cpre(𝑌2)) ∪ (Apre(𝑌2, 𝑋2))]

)
∪ 𝜈𝑌 ′

2
.𝜇𝑋 ′

2
. 𝜈𝑌 ′

1
.𝜇𝑋 ′

1
. (35c)

Apre(𝑌0, 𝑋0)

∪
(
𝑅2 ∩

[(
𝐺2 ∩ Cpre(𝑌 ′

2
)
)
∪

(
Apre(𝑌 ′

2
, 𝑋 ′

2
)
)])

∪
(
𝑅1 ∩ 𝑅2 ∩

[(
𝐺1 ∩ Cpre(𝑌 ′

1
)
)
∪

(
Apre(𝑌 ′

1
, 𝑋 ′

1
)
)]) }

We first consider the upper part of (35), i.e., the permutation sequence 𝛿 = 012 (labeled by (35b)).

We first recall that the computation is initialized with 𝑌 0

𝑖 = 𝑉 and 𝑋 0

𝑖 = ∅ and we see from the

structure of the game graph that Cpre(𝑉) = 𝑉 . Further, we see from the definition of Apre that

Apre(·, ∅) = ∅. So, we have

𝑋 1

2
= (𝑅1 ∩𝐺1) ∪ (𝑅1 ∩ 𝑅2 ∩𝐺2) = {𝑞1, 𝑞4} ∪ {𝑞3} = {𝑞1, 𝑞3, 𝑞4}.

As 𝑞6 is the only other state in 𝑅1 ∩𝑅2 ∩𝐺2 and 𝑞6 does not have an edge to {𝑞1, 𝑞3, 𝑞4} the iteration
over 𝑋2 terminates and we get 𝑌 1

2
= {𝑞1, 𝑞3, 𝑞4}. As 𝑞3 ∉ Cpre(𝑌 1

2
) the last line of the upper part

R1 R2 R1

q1 q2 q3 q4

q5 q6 q7

Fig. 9. Example of a fair adversarial Rabin game with two pairs ⟨𝐺1, 𝑅1⟩ = ⟨{𝑞1, 𝑞4}, {𝑞2, 𝑞5}⟩ (𝐺1 and 𝑅1 are
indicated in green) and ⟨𝐺2, 𝑅2⟩ = ⟨{𝑞3}, {𝑞1, 𝑞4, 𝑞7}⟩ (𝐺2 and 𝑅2 are indicated in orange), and one live edge
𝐸ℓ = {(𝑞2, 𝑞3)} (dashed blue).

30 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

of (35) becomes the empty set and we terminate with 𝑌 ∗
2
= 𝑋 ∗

2
= (𝑅1 ∩𝐺1) = {𝑞1, 𝑞4}. This gives

𝑋 1

1
= {𝑞1, 𝑞4} and resets 𝑌2 and 𝑋2 to 𝑉 and ∅, respectively. Therefore, we now get

𝑋 1

2
= (𝑅1 ∩𝐺1) ∪ Apre(𝑄,𝑋 1

1
) ∪ (𝑅1 ∩ 𝑅2 ∩𝐺2) = {𝑞1, 𝑞4} ∪ {𝑞7} ∪ {𝑞3}.

Now, as 𝑞7 ∈ 𝑋 1

2
, also 𝑞6 is added before 𝑋2 terminates. This now gives 𝑌 1

2
= {𝑞1, 𝑞3, 𝑞4, 𝑞6, 𝑞7}

and hence 𝑞3 ∈ Cpre(𝑌 1

2
). As there are no other states in 𝑅1 ∩ 𝑅2 ∩𝐺2 that can be added to this

set, the iteration over 𝑋2 terminates and we get 𝑌 2

2
= {𝑞1, 𝑞3, 𝑞4, 𝑞6, 𝑞7}, which also terminates the

iteration over 𝑌2, resulting in 𝑋 2

1
= {𝑞1, 𝑞3, 𝑞4, 𝑞6, 𝑞7}. As there are again no other states inside 𝑅1

that could be added, this iteration over 𝑋1 terminates, giving 𝑌 1

1
= {𝑞1, 𝑞3, 𝑞4, 𝑞6, 𝑞7}. Now we see

that Cpre(𝑌 1

1
) = {𝑞3, 𝑞4, 𝑞6, 𝑞7}. As the exclusion of 𝑞1 from 𝑌1 does not influence the reasoning

about {𝑞3, 𝑞4, 𝑞6, 𝑞7} the iteration terminates with 𝑌 ∗
1
= {𝑞3, 𝑞4, 𝑞6, 𝑞7}.

Now we consider the lower part of (35), i.e., the permutation sequence 𝛿 = 021 (labeled by (35c)).

Here, we get

𝑋 ′
1

1

= (𝑅2 ∩𝐺2) ∪ (𝑅1 ∩ 𝑅2 ∩𝐺1) = {𝑞3} ∪ ∅ = {𝑞3}.

For the same reason as before we see again that the last line of the lower part of (35) becomes the

empty set and we terminate with 𝑌 ′
1

∗ = 𝑋 ′
1

∗ = (𝑅2 ∩𝐺2) = {𝑞3}. This gives 𝑋 ′
2

1 = {𝑞3} and resets

𝑌 ′
1
and 𝑋 ′

1
to 𝑉 and ∅, respectively. With this, we now get

𝑋 ′
1

2

= (𝑅2 ∩𝐺2) ∪ Apre(𝑄,𝑋 ′
2

1) ∪ (𝑅1 ∩ 𝑅2 ∩𝐺1) = {𝑞3} ∪ {𝑞2, 𝑞5} ∪ ∅.

Here, for the first time, the live edge from 𝑞2 to 𝑞3 comes into play. If this would not be a live edge,

𝑞2 would not be added to 𝑋
′
1
, as in this case the environment could trap the game in 𝑞2, and thereby

prevent the second Rabin pair to hold. However, due to the edge from 𝑞2 to 𝑞3 being live, we know

that the environment will always eventually transition from 𝑞2 to 𝑞3. With this, now also 𝑞6 is

added to 𝑋 ′
1
, finally leading to a termination of the iteration over 𝑋 ′

2
with {𝑞2, 𝑞3, 𝑞5, 𝑞6} and hence

𝑌 ′
2

1 = {𝑞2, 𝑞3, 𝑞5, 𝑞6}. As 𝑞3 ∈ Cpre(𝑌 ′
2

1) the iteration over 𝑌 ′
2
terminates with 𝑌 ′

2

∗ = {𝑞2, 𝑞3, 𝑞5, 𝑞6}.
With both the upper and the lower part of (35) terminated, we can now take the union of

𝑌 ∗
1

= {𝑞3, 𝑞4, 𝑞6, 𝑞7} and 𝑌 ′
2

∗ = {𝑞2, 𝑞3, 𝑞5, 𝑞6} to get 𝑋 1

0
= {𝑞2 . . . 𝑞7} (reaching the part of the

formula labeled with (35a)). After this update of 𝑋0 all inner fixpoint variables (in (35b) and (35c))

are reset, and the upper and lower expressions in (35) are re-evaluated. As Apre(𝑄,𝑋 1

0
) = {𝑞2 . . . 𝑞7},

we see that every iteration over 𝑋𝑖 in (35b) and (35c) is essentially initialized with a set containing

{𝑞2 . . . 𝑞7}. This implies that 𝑞1 will actually remain within 𝑌1, leading to 𝑌 ∗
1
= 𝑉 , and with this

𝑋 2

0
= 𝑉 . As this implies 𝑌 1

0
= 𝑉 = 𝑌 0

0
, the computation terminates with 𝑍 ∗ = 𝑉 .

Despite all states being winning, we see that Player 0 has to play appropriately to enforce winning.

Intuitively, from state 𝑞5 she must go to 𝑞3 and from 𝑞6 she has to consistently either (i) always

go to 𝑞2 or (ii) always go to 𝑞7. If she picks option (i), the play is won by satisfying the second

Rabin pair, i.e., always eventually visiting 𝑞3 while remaining within 𝑅2. If she picks option (ii), it is

up to the environment whether the game is won by satisfying the first or the second Rabin pair.

Intuitively, if the environment plays such that either (a) the game eventually remains in 𝑞4 or (b)

the edges (𝑞4, 𝑞3) and (𝑞3, 𝑞6) are taken infinitely often, the game fulfills the first Rabin condition.

If, however, (c), the environment decides to trap the game in 𝑞3, the game is won by satisfying

the second Rabin pair. This influence of the environment on the selection of the satisfied Rabin

pair intuitively requires the evaluation of all possible permutation sequences in the evaluation

of the fixpoint algorithm. We will see later that for Rabin pairs which are ordered by inclusion

(corresponding to the special case of a Rabin-chain condition), no permutation is required.

We comment that the strategy construction outlined in Thm. B.7 provided in App. B.3 chooses

to enforce a transition from 𝑞6 to 𝑞7 (see Example B.8 in App. B.3 for a detailed discussion).

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

31

B DETAILED PROOFS
CONTENTS

B.1 General Lemmas 31

B.2 Additional Proofs for Sec. 3 35

B.2.1 Proof of Thm. 3.3 35

B.2.2 Proof of Thm. 3.2 39

B.3 Proof of Thm. 3.1 40

B.3.1 Strategy Extraction 40

B.3.2 Soundness 43

B.3.3 Completeness 45

B.3.4 Additional Lemmas and Proofs 45

B.3.5 Proof of Prop. B.3 46

B.3.6 Proof of (61) 46

B.4 Additional Proofs for Sec. 3.4 48

B.4.1 Fair Adversarial Rabin Chain Games 48

B.4.2 Fair Adversarial Parity Games 52

B.4.3 Fair Adversarial Generalized Co-Büchi Games 54

B.5 Additional Proofs for Sec. 4 55

B.5.1 Proof of Thm. 4.1 55

B.5.2 Proof for Thm. 4.2 58

B.5.3 Proof of Thm. 4.3 60

B.6 Additional Proofs for Sec. 5 61

B.6.1 Preliminaries 61

B.6.2 Proof of Thm. 5.2 62

B.1 General Lemmas
We first introduce some useful general lemmas.

Lemma B.1. If 𝑌 ⊇ 𝑋 then Cpre(𝑌) ∪ Apre(𝑌,𝑋) = Cpre(𝑌).

Proof. The claim follows from the following derivation

Cpre(𝑌) ∪ Apre(𝑌,𝑋) = Cpre(𝑌) ∪ Cpre(𝑋) ∪
(
Lpre

∃ (𝑋) ∩ Pre
∀
1
(𝑌)

)
= Cpre(𝑌) ∪

(
Lpre

∃ (𝑋) ∩ Pre
∀
1
(𝑌)

)
=

(
Cpre(𝑌) ∪ Lpre

∃ (𝑋)
)
∩

(
Cpre(𝑌) ∪ Pre

∀
1
(𝑌)

)
=

(
Cpre(𝑌) ∪ Lpre

∃ (𝑋)
)
∩ Cpre(𝑌)

= Cpre(𝑌)

where the second line follows from Cpre(𝑋) ⊆ Cpre(𝑌) (as 𝑋 ⊆ 𝑌) and the forth line follows as

Cpre(𝑌) = Pre
∃
0
(𝑌) ∪ Pre

∀
1
(𝑌) ⊇ Pre

∀
1
(𝑌). □

Lemma B.2. If 𝑌 ⊆ 𝑋 then Apre(𝑌,𝑋) = Cpre(𝑋).

32 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

Proof. The claim follows from the following derivation

Apre(𝑌,𝑋) = Cpre(𝑋) ∪
(
Lpre

∃ (𝑋) ∩ Pre
∀
1
(𝑌)

)
=

(
Cpre(𝑋) ∪ Lpre

∃ (𝑋)
)
∩

(
Cpre(𝑋) ∪ Pre

∀
1
(𝑌)

)
=

(
Cpre(𝑋) ∪ Lpre

∃ (𝑋)
)
∩ Cpre(𝑋)

= Cpre(𝑋)

where the fourth line follows as Cpre(𝑋) = Pre
∃
0
(𝑋) ∪ Pre

∀
1
(𝑋) ⊇ Pre

∀
1
(𝑌) as 𝑌 ⊆ 𝑋 . □

Lemma B.3. Let 𝑓 (𝑋,𝑌), 𝑔(𝑋,𝑌), ℎ𝑎 (𝑋,𝑌) and ℎ𝑏 (𝑋,𝑌) be functions which are monotone in both
𝑋 ⊆ 𝑉 and 𝑌 ⊆ 𝑉 . Further, let

𝑍 :=𝜈𝑌𝑎 . 𝜇𝑋𝑎 . 𝜈𝑌𝑏 . 𝜇𝑋𝑏 . (ℎ𝑎 (𝑋𝑎, 𝑌𝑎) ∪ 𝑓 (𝑋𝑎, 𝑌𝑎)) ∪ (ℎ𝑏 (𝑋𝑏, 𝑌𝑏) ∪ 𝑔(𝑋𝑏, 𝑌𝑏))

𝑍 :=𝜈𝑌𝑎 . 𝜇𝑋𝑎 . 𝜈𝑌𝑏 . 𝜇𝑋𝑏 .

(
ℎ𝑎 (𝑋𝑎, 𝑌𝑎) ∪ 𝑓 (𝑋𝑎, 𝑌𝑎)

)
∪ 𝑔(𝑋𝑏, 𝑌𝑏)

𝑍 :=𝜈𝑌𝑎 . 𝜇𝑋𝑎 . 𝜈𝑌𝑏 . 𝜇𝑋𝑏 . 𝑓 (𝑋𝑎, 𝑌𝑎) ∪
(
ℎ𝑏 (𝑋𝑏, 𝑌𝑏) ∪ 𝑔(𝑋𝑏, 𝑌𝑏)

)
Then
(i) 𝑍 = 𝑍 if ℎ𝑏 (𝑋,𝑌) ⊆ ℎ𝑎 (𝑋,𝑌) for all 𝑋,𝑌 ⊆ 𝑉 ,
(ii) 𝑍 = 𝑍 if ℎ𝑎 (𝑋,𝑌) ⊆ ℎ𝑏 (𝑋,𝑌) for all 𝑋,𝑌 ⊆ 𝑉 , and
(iii) 𝑍 = 𝑍 = 𝑍 if ℎ𝑎 (𝑋,𝑌) = ℎ𝑏 (𝑋,𝑌) for all 𝑋,𝑌 ⊆ 𝑉 .

Proof. We first observe that (iii) is a direct consequence of (i) and (ii). We prove (i) in step 1-2

and (ii) in step 3-4 below.

Within these proofs we denote by 𝑌 𝑙
𝑎 the set computed in the 𝑙-th iteration over the fixpoint

variable 𝑌𝑎 , where 𝑌
0

𝑎 = 𝑉 . Further, we denote by 𝑋
𝑙 𝑗
𝑎 the set computed in the 𝑗-th iteration over

the fixpoint variable 𝑋𝑎 during the computation of 𝑌 𝑙
𝑎 where 𝑋 𝑙0

𝑎 = ∅. In a very similar way 𝑌
𝑙 𝑗𝑚

𝑏

and 𝑋
𝑙 𝑗𝑚𝑖

𝑏
are defined, as well as their tilded and checked versions in (ii) and (iii).

▶ Step 1: First we show that if ℎ𝑏 (𝑋,𝑌) ⊆ ℎ𝑎 (𝑋,𝑌) it holds for all 𝑙 > 0 that

𝑌 𝑙+1

𝑎 = ℎ𝑎 (𝑌 𝑙+1

𝑎 , 𝑌 𝑙
𝑎) ∪ 𝑓 (𝑌 𝑙+1

𝑎 , 𝑌 𝑙
𝑎) ∪ 𝑔(𝑌 𝑙+1

𝑎 , 𝑌 𝑙+1

𝑎). (36)

For this purpose observe that

𝑋
𝑙 𝑗𝑚1

𝑏
= ℎ𝑎 (𝑋 𝑙 𝑗

𝑎 , 𝑌 𝑙
𝑎) ∪ 𝑓 (𝑋 𝑙 𝑗

𝑎 , 𝑌 𝑙
𝑎) ∪ ℎ𝑏 (∅, 𝑌 𝑙 𝑗𝑚

𝑏
) ∪ 𝑔(∅, 𝑌 𝑙 𝑗𝑚

𝑏
).

Now recall that 𝑋
𝑙 𝑗𝑚0

𝑏
= ∅ ⊆ 𝑋

𝑙 𝑗𝑚1

𝑏
. We can generalize this inclusion to arbitrary 𝑖 > 1 by utilizing

the monotonicity of 𝑓 , 𝑔, ℎ to observe the following derivation:

𝑋
𝑙 𝑗𝑚𝑖+1

𝑏
=ℎ𝑎 (𝑋 𝑙 𝑗

𝑎 , 𝑌 𝑙
𝑎) ∪ 𝑓 (𝑋 𝑙 𝑗

𝑎 , 𝑌 𝑙
𝑎) ∪ ℎ𝑏 (𝑋 𝑙 𝑗𝑚𝑖

𝑏
, 𝑌

𝑙 𝑗𝑚

𝑏
) ∪ 𝑔(𝑋 𝑙 𝑗𝑚𝑖

𝑏
, 𝑌

𝑙 𝑗𝑚

𝑏
)

=ℎ𝑎 (𝑋 𝑙 𝑗
𝑎 , 𝑌 𝑙

𝑎) ∪ 𝑓 (𝑋 𝑙 𝑗
𝑎 , 𝑌 𝑙

𝑎) ∪ ℎ𝑏 (𝑋 𝑙 𝑗𝑚𝑖−1

𝑏
, 𝑌

𝑙 𝑗𝑚

𝑏
) ∪ 𝑔(𝑋 𝑙 𝑗𝑚𝑖−1

𝑏
, 𝑌

𝑙 𝑗𝑚

𝑏
) ∪ ℎ𝑏 (𝑋 𝑙 𝑗𝑚𝑖

𝑏
, 𝑌

𝑙 𝑗𝑚

𝑏
) ∪ 𝑔(𝑋 𝑙 𝑗𝑚𝑖

𝑏
, 𝑌

𝑙 𝑗𝑚

𝑏
)

=𝑋
𝑙 𝑗𝑚𝑖

𝑏
∪ ℎ𝑏 (𝑋 𝑙 𝑗𝑚𝑖

𝑏
, 𝑌

𝑙 𝑗𝑚

𝑏
) ∪ 𝑔(𝑋 𝑙 𝑗𝑚𝑖

𝑏
, 𝑌

𝑙 𝑗𝑚

𝑏
)

obviously implying 𝑋
𝑙 𝑗𝑚𝑖

𝑏
⊆ 𝑋

𝑙 𝑗𝑚𝑖+1

𝑏
for all 𝑖 ≥ 0.

With this we have

𝑌
𝑙 𝑗𝑚+1

𝑏
=

⋃
𝑖≥0

𝑋
𝑙 𝑗𝑚𝑖

𝑏
= 𝑋

𝑙 𝑗𝑚∗
𝑏

= ℎ𝑎 (𝑋 𝑙 𝑗
𝑎 , 𝑌 𝑙

𝑎) ∪ 𝑓 (𝑋 𝑙 𝑗
𝑎 , 𝑌 𝑙

𝑎) ∪ ℎ𝑏 (𝑋 𝑙 𝑗𝑚∗
𝑏

, 𝑌
𝑙 𝑗𝑚

𝑏
) ∪ 𝑔(𝑋 𝑙 𝑗𝑚∗

𝑏
, 𝑌

𝑙 𝑗𝑚

𝑏
). (37)

Here, 𝑋
𝑙 𝑗𝑚∗
𝑏

:= 𝑋
𝑙 𝑗𝑚𝑖↑

𝑏
where 𝑖↑ is the iteration in which the fixed point over 𝑋

𝑙 𝑗𝑚𝑖

𝑏
is attained.

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

33

Now recall that 𝑌
𝑙 𝑗0

𝑏
= 𝑉 and therefore 𝑌

𝑙 𝑗1

𝑏
⊆ 𝑌

𝑙 𝑗0

𝑏
. Hence, we can assume that 𝑌

𝑙 𝑗𝑚

𝑏
⊆ 𝑌

𝑙 𝑗𝑚−1

𝑏

to see that 𝑋
𝑙 𝑗𝑚1

𝑏
⊆ 𝑋

𝑙 𝑗𝑚−11

𝑏
and therefore, subsequently, that 𝑌

𝑙 𝑗𝑚+1

𝑏
⊆ 𝑌

𝑙 𝑗𝑚

𝑏
(again due to the

monotonicity of ℎ, 𝑓 , 𝑔). With this we see that

𝑋
𝑙 𝑗+1

𝑎 =
⋂
𝑚≥0

𝑌
𝑙 𝑗𝑚

𝑏
= 𝑌

𝑙 𝑗∗
𝑏

= ℎ𝑎 (𝑋 𝑙 𝑗
𝑎 , 𝑌 𝑙

𝑎) ∪ 𝑓 (𝑋 𝑙 𝑗
𝑎 , 𝑌 𝑙

𝑎) ∪
(
ℎ𝑏 (𝑌 𝑙 𝑗∗

𝑏
, 𝑌

𝑙 𝑗∗
𝑏

) ∪ 𝑔(𝑌 𝑙 𝑗∗
𝑏

, 𝑌
𝑙 𝑗∗
𝑏

)
)
.

Again, 𝑌
𝑙 𝑗∗
𝑏

= 𝑌
𝑙 𝑗𝑚↑

𝑏
where𝑚↑

is the iteration in which the fixed point over 𝑌
𝑙 𝑗𝑚

𝑏
is attained. As we

know that 𝑌
𝑙 𝑗𝑚↑

𝑏
= 𝑋

𝑙 𝑗𝑚↑∗
𝑏

we can replace 𝑋
𝑙 𝑗𝑚↑∗
𝑏

with 𝑌
𝑙 𝑗∗
𝑏

above. With this, we proved that

𝑋
𝑙 𝑗+1

𝑎 =ℎ𝑎 (𝑋 𝑙 𝑗
𝑎 , 𝑌 𝑙

𝑎) ∪ 𝑓 (𝑋 𝑙 𝑗
𝑎 , 𝑌 𝑙

𝑎) ∪ ℎ𝑏 (𝑋 𝑙 𝑗+1

𝑎 , 𝑋
𝑙 𝑗+1

𝑎) ∪ 𝑔(𝑋 𝑙 𝑗+1

𝑎 , 𝑋
𝑙 𝑗+1

𝑎) (38)

for any 𝑗 ≥ 0. Using the same monotonicity argument as before we again get 𝑋
𝑙 𝑗+1

𝑎 ⊇ 𝑋
𝑙 𝑗
𝑎 and

therefore

𝑌 𝑙+1

𝑎 =
⋃
𝑗>0

𝑋
𝑙 𝑗+1

𝑎 = 𝑋 𝑙∗
𝑎 = ℎ𝑎 (𝑌 𝑙+1

𝑎 , 𝑌 𝑙
𝑎) ∪ 𝑓 (𝑌 𝑙+1

𝑎 , 𝑌 𝑙
𝑎) ∪ ℎ𝑏 (𝑌 𝑙+1

𝑎 , 𝑌 𝑙+1

𝑎) ∪ 𝑔(𝑌 𝑙+1

𝑎 , 𝑌 𝑙+1

𝑎). (39)

Utilizing the monotonicity argument one more time we get that 𝑌 𝑙
𝑎 ⊇ 𝑌 𝑙+1

𝑎 . With this it follows

from the monotonicity of ℎ𝑏 that

ℎ𝑏 (𝑌 𝑙+1

𝑎 , 𝑌 𝑙+1

𝑎) ⊆ ℎ𝑏 (𝑌 𝑙+1

𝑎 , 𝑌 𝑙
𝑎) ⊆ ℎ𝑎 (𝑌 𝑙+1

𝑎 , 𝑌 𝑙
𝑎)

and therefore

𝑌 𝑙+1

𝑎 =ℎ𝑎 (𝑌 𝑙+1

𝑎 , 𝑌 𝑙
𝑎) ∪ 𝑓 (𝑌 𝑙+1

𝑎 , 𝑌 𝑙
𝑎) ∪ 𝑔(𝑌 𝑙+1

𝑎 , 𝑌 𝑙+1

𝑎), (40)

which proves the claim.

▶ Step 2: By utilizing (40), we now show that 𝑍 = 𝑍 .

As 𝑍 = 𝑌 ∗
𝑏
, it follows from the fixpoint equation defining 𝑍 that 𝑍 is the unique largest set of states

s.t. 𝑌 𝑙
𝑎 = 𝑌 𝑙+1

𝑎 and

𝑍 =ℎ(𝑍, 𝑍) ∪ 𝑓 (𝑍, 𝑍) ∪ 𝑔(𝑍, 𝑍). (41)

It now follows from (40) and the fact that 𝑍 = 𝑌 ∗
𝑎 , that 𝑍 is also the unique largest set s.t. 𝑌 𝑙

𝑎 = 𝑌 𝑙+1

𝑎

and thereby fulfills equation (41). Hence 𝑍 and 𝑍 must be equivalent.

▶ Step 3:We now show that if ℎ𝑎 (𝑋,𝑌) ⊆ ℎ𝑏 (𝑋,𝑌), it holds for 𝑙 = 𝑙 ↑, the corresponding 𝑗 = 𝑗 ↑

and any𝑚 ≥ 0 that

𝑌
𝑙↑ 𝑗↑𝑚+1

𝑏
=𝑓 (𝑋 𝑙↑ 𝑗↑

𝑎 , 𝑌 𝑙↑
𝑎) ∪ ℎ𝑏 (𝑌 𝑙↑ 𝑗↑𝑚+1

𝑏
, 𝑌

𝑙↑ 𝑗↑𝑚
𝑏

) ∪ 𝑔(𝑌 𝑙↑ 𝑗↑𝑚+1

𝑏
, 𝑌

𝑙↑ 𝑗↑𝑚
𝑏

). (42)

First observe that for arbitrary 𝑙, 𝑗,𝑚, 𝑖 ≥ 0 it holds that

𝑋
𝑙 𝑗𝑚𝑖+1

𝑏
= ℎ𝑎 (𝑋 𝑙 𝑗

𝑎 , 𝑌 𝑙
𝑎) ∪ 𝑓 (𝑋 𝑙 𝑗

𝑎 , 𝑌 𝑙
𝑎) ∪ ℎ𝑏 (𝑋 𝑙 𝑗𝑚𝑖

𝑏
, 𝑌

𝑙 𝑗𝑚

𝑏
) ∪ 𝑔(𝑋 𝑙 𝑗𝑚𝑖

𝑏
, 𝑌

𝑙 𝑗𝑚

𝑏
).

When re-initializing the inner FP, we have 𝑋
𝑙 𝑗
𝑎 ⊇ 𝑋 𝑙000

𝑏
= ∅ and 𝑌 𝑙

𝑎 ⊆ 𝑌
𝑙 𝑗0

𝑏
= 𝑉 . Hence, the two

ℎ-terms are incomparable. However, we see that whenever 𝑋
𝑙 𝑗𝑚𝑖

𝑏
⊇ 𝑋

𝑙 𝑗
𝑎 (while still 𝑌 𝑙

𝑎 ⊆ 𝑌
𝑙 𝑗0

𝑏
) we

have

ℎ𝑎 (𝑋 𝑙 𝑗
𝑎 , 𝑌 𝑙

𝑎) ⊆ ℎ𝑏 (𝑋 𝑙 𝑗
𝑎 , 𝑌 𝑙

𝑎) ⊆ ℎ𝑏 (𝑋 𝑙 𝑗𝑚𝑖

𝑏
, 𝑌

𝑙 𝑗𝑚

𝑏
)

and we get

𝑋
𝑙 𝑗𝑚𝑖+1

𝑏
= 𝑓 (𝑋 𝑙 𝑗

𝑎 , 𝑌 𝑙
𝑎) ∪ ℎ𝑏 (𝑋 𝑙 𝑗𝑚𝑖

𝑏
, 𝑌

𝑙 𝑗𝑚

𝑏
) ∪ 𝑔(𝑋 𝑙 𝑗𝑚𝑖

𝑏
, 𝑌

𝑙 𝑗𝑚

𝑏
).

Now we know from the structure of this fixed point that we keep increasing 𝑋𝑏 until

𝑋
𝑙 𝑗𝑚∗
𝑏

= 𝑓 (𝑋 𝑙 𝑗
𝑎 , 𝑌 𝑙

𝑎) ∪ ℎ𝑏 (𝑋 𝑙 𝑗𝑚∗
𝑏

, 𝑌
𝑙 𝑗𝑚

𝑏
) ∪ 𝑔(𝑋 𝑙 𝑗𝑚∗

𝑏
, 𝑌

𝑙 𝑗𝑚

𝑏
),

34 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

where 𝑌
𝑙 𝑗𝑚+1

𝑏
= 𝑋

𝑙 𝑗𝑚∗
𝑏

⊆ 𝑌
𝑙 𝑗𝑚

𝑏
. Further, we know that the fixed point is attained over 𝑌𝑏 if equality

holds. It remains to show that for 𝑙 = 𝑙 ↑ and 𝑗 = 𝑗 ↑ the set 𝑌𝑏 will never get smaller then 𝑌𝑎 (as this

would render the two ℎ terms incomparable again). I.e., we need to show that for all𝑚 we have

𝑌 𝑙↑
𝑎 ⊆ 𝑌

𝑙↑ 𝑗↑𝑚
𝑏

. To see this, recall that 𝑙 and 𝑗 are such that the fixed point over 𝑋𝑎 and 𝑌𝑎 is already

attained. That is, we know that 𝑋
𝑙↑ 𝑗↑+1

𝑎 = 𝑋
𝑙↑ 𝑗↑
𝑎 . It further follows from the structure of the fixed

point that 𝑌
𝑙↑ 𝑗↑∗
𝑏

= 𝑋
𝑙↑ 𝑗↑+1

𝑎 = 𝑋
𝑙↑ 𝑗↑
𝑎 . With this, it follows from the monotonicity of the fixed point

that 𝑌 𝑙↑
𝑎 ⊆ 𝑌

𝑙↑ 𝑗↑𝑚
𝑏

for every𝑚 ≥ 0.

▶ Step 4: By utilizing (42), we now show that 𝑍 = 𝑍 .

It immediately follows from the structure of the fixpoint equation defining 𝑍 that we similarly have

𝑌
𝑙↑ 𝑗↑𝑚+1

𝑏
= 𝑓 (𝑋 𝑙↑ 𝑗↑

𝑎 , 𝑌 𝑙↑
𝑎) ∪ ℎ(𝑌 𝑙↑ 𝑗↑𝑚+1

𝑏
, 𝑌

𝑙↑ 𝑗↑𝑚
𝑏

) ∪ 𝑔(𝑌 𝑙↑ 𝑗↑𝑚+1

𝑏
, 𝑌

𝑙↑ 𝑗↑𝑚
𝑏

) . (43)

By further observing that 𝑍 = 𝑌 𝑙↑
𝑎 = 𝑋

𝑙↑ 𝑗↑
𝑎 and 𝑍 = 𝑌 𝑙↑

𝑎 = 𝑋
𝑙↑ 𝑗↑
𝑎 we see that both 𝑍 and 𝑍 are the

unique largest sets s.t. the inner fixpoint computations over 𝑋𝑏 and 𝑌𝑏 (resp. 𝑋𝑏 and 𝑌𝑏) converge

to 𝑍 (resp. 𝑍) via the same fix-point equation in (42) (resp. (43)). This proves that 𝑍 = 𝑍 . □

Lemma B.4. Let 𝑓 (𝑋,𝑌) and 𝑔(𝑋,𝑌) be two functions which are monotone in both 𝑋 ⊆ 𝑉 and
𝑌 ⊆ 𝑉 . Further, let

𝑍𝑎 :=𝜈𝑌𝑎 . 𝜇𝑋𝑎 . 𝜈𝑌𝑏 . 𝜇𝑋𝑏 . 𝑓 (𝑋𝑎, 𝑌𝑎) ∪ 𝑔(𝑋𝑏, 𝑌𝑏)
𝑍𝑏 :=𝜈𝑌𝑎 . 𝜇𝑋𝑎 . 𝜈𝑌𝑏 . 𝜇𝑋𝑏 . 𝑔(𝑋𝑎, 𝑌𝑎) ∪ 𝑓 (𝑋𝑏, 𝑌𝑏)
𝑍𝑐 :=𝜈𝑌𝑐 . 𝜇𝑋𝑐 . 𝑓 (𝑋𝑐 , 𝑌𝑐)

Then it holds that
(i) 𝑍𝑐 ⊆ 𝑍𝑎 and
(ii) 𝑍𝑐 ⊆ 𝑍𝑏 .
If, in addition, 𝑔(𝑋,𝑌) ⊆ 𝑓 (𝑋,𝑌) for all 𝑋,𝑌 ⊆ 𝑉 , then it holds that
(iii) 𝑍𝑎 = 𝑍𝑐 and
(iv) 𝑍𝑏 = 𝑍𝑐 .

Proof. We prove all claims separately:

▶ (i) “𝑍𝑐 ⊆ 𝑍𝑎” : First, consider a stage of the fixed point evaluation where 𝑌𝑎 and 𝑋𝑎 have their

initialization value 𝑌 0

𝑎 := 𝑉 and 𝑋 00

𝑎 := ∅ (here, the notation 𝑋 𝑙𝑘
𝑎 refers to the value of 𝑋𝑎 computed

in the 𝑘’th iteration over 𝑋𝑎 using the value for 𝑌𝑎 computed in the 𝑙 ’th iteration over 𝑌𝑎). Then we

see that𝑋 01

𝑎 = 𝑌 00∗
𝑏

where𝑌 00∗
𝑏

= 𝑓 (∅,𝑉)∪𝑔(𝑌 00∗
𝑏

, 𝑌 00∗
𝑏

). We therefore see that𝑋 01

𝑎 ⊇ 𝑋 01

𝑐 = 𝑓 (∅,𝑉).
With this, it follows from the monotonicity of 𝑓 and 𝑔 that 𝑌 01

𝑎 = 𝑋 0∗
𝑎 ⊇ 𝑋 0∗

𝑐 = 𝑌 1

𝑐 . With this, we

see that 𝑋𝑚1

𝑎 ⊇ 𝑋𝑚1

𝑐 for all𝑚 > 0 and therefore 𝑍𝑎 = 𝑌 ∗
𝑎 ⊇ 𝑌 ∗

𝑐 = 𝑍𝑐 .

▶ (ii) “𝑍𝑐 ⊆ 𝑍𝑏” : Consider arbitrary values 𝑌𝑚
𝑎 and 𝑋𝑚𝑛

𝑎 and assume that 𝑌𝑏 and 𝑋𝑏 have their

initialisation value, i.e., 𝑌𝑚𝑛0

𝑏
:= 𝑉 and 𝑋𝑚𝑛00

𝑏
:= ∅. Then we have

𝑋𝑚𝑛01

𝑏
= 𝑔(𝑋𝑚𝑛

𝑎 , 𝑌𝑚
𝑎) ∪ 𝑓 (∅,𝑉) ⊇ 𝑋 01

𝑐 .

Using the same reasoning as in the previous part, we see that this implies 𝑌𝑚𝑛∗
𝑏

⊇ 𝑌 ∗
𝑐 = 𝑍𝑐 . As this

holds for any𝑚 and 𝑛 it also holds when the fixed point over 𝑌𝑎 and 𝑋𝑎 is obtained, i.e., when we

have 𝑍𝑎 = 𝑌 ∗
𝑎 = 𝑌 ∗∗∗

𝑏
, which proves the statement.

▶ (iii)-(iv) This is a simple consequence of Lem. B.3 (iii). It follows by choosing 𝑓 (𝑋,𝑌) = ∅ and

𝑔(𝑋,𝑌) = ∅ in Lem. B.3 and interpreting ℎ𝑎 as 𝑓 and ℎ𝑏 as 𝑔 to show (iii) and ℎ𝑎 as 𝑔 and ℎ𝑏 as 𝑓 to

show (iv). □

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

35

B.2 Additional Proofs for Sec. 3
B.2.1 Proof of Thm. 3.3.

Theorem (Thm. 3.3 restated for convenience). Let Gℓ = ⟨G, 𝐸ℓ⟩ be a game graph with live
edges and ⟨𝑇,𝑄⟩ be a safe reachability winning condition. Further, let

𝑍 ∗ B 𝜈𝑌 . 𝜇𝑋 . 𝑇 ∪ (𝑄 ∩ Apre(𝑌,𝑋)). (44)

Then 𝑍 ∗ is equivalent to the winning region of Player 0 in the fair adversarial game over Gℓ for the
winning condition 𝜓 in (11). Moreover, the fixpoint algorithm runs in 𝑂 (𝑛2) symbolic steps, and a
memoryless winning strategy for Player 0 can be extracted from it.

We denote by 𝑌𝑚
the𝑚-th iteration over the fixpoint variable 𝑌 in (44), where 𝑌 0 = 𝑉 . Further,

we denote by 𝑋𝑚𝑖
the set computed in the 𝑖-th iteration over the fixpoint variable 𝑋 in (44) during

the computation of 𝑌𝑚
where 𝑋𝑚0 = ∅. Then it follows form (44) that

𝑋𝑚1 = 𝑋𝑚0 ∪𝑇 ∪ (𝑄 ∩ Apre(𝑌𝑚−1, 𝑋𝑚0)) = ∅ ∪𝑇 ∪ (𝑄 ∩ Apre(𝑌𝑚, ∅)) = 𝑇,

𝑋𝑚2 = 𝑋𝑚1 ∪𝑇 ∪ (𝑄 ∩ Apre(𝑌𝑚−1, 𝑋𝑚1)) = 𝑇 ∪ (𝑄 ∩ Apre(𝑌𝑚−1, 𝑋𝑚1)) ⊇ 𝑋𝑚1,

and therefore, in general,

𝑋𝑚𝑖+1 = 𝑇 ∪ (𝑄 ∩ Apre(𝑌𝑚−1, 𝑋𝑚𝑖)) ⊇ 𝑋𝑚𝑖 .

With this, the fixed point over 𝑋 corresponds to the set 𝑋𝑚∗ =
⋃

𝑖>0
𝑋𝑚𝑖 = 𝑋𝑚𝑖↑

, where 𝑖↑ is the
iteration where the fixed point over 𝑋𝑚𝑖

is attained.

Now consider the computation of 𝑌 . Here we have 𝑌 0 = 𝑉 and 𝑌𝑚 = 𝑌𝑚−1 ∩𝑋𝑚∗ ⊆ 𝑌𝑚−1
where

equality holds when a fixed point is reached. Hence, in particular we have 𝑌 ∗ = 𝑋 ∗∗ = 𝑍 ∗
. For

simplicity we denote 𝑋 ∗𝑖
by 𝑋 𝑖

.

Strategy construction. In order to construct awinning strategy for Player 0 from (44), we construct

a ranking over 𝑉 by choosing

rank(𝑣) = 𝑖 ⇔ 𝑣 ∈ 𝑋 𝑖 \ 𝑋 𝑖−1
and rank(𝑣) = ∞ ⇔ 𝑣 ∉ 𝑍 ∗ . (45)

As 𝑋 0 = ∅, 𝑋 1 = 𝑇 (from above) and 𝑍 ∗ =
⋃

𝑖>0
𝑋 𝑖

, it follows that rank(𝑣) = 1 iff 𝑣 ∈ 𝑇 and

1 < rank(𝑣) < ∞ iff 𝑣 ∈ 𝑍 ∗ \𝑇 . Using this ranking we define a Player 0 strategy 𝜌0 : 𝑉0 → 𝑉 s.t.

𝜌0 (𝑣) = min

(𝑣,𝑤) ∈𝐸
rank(𝑤) . (46)

We next show that this player 0 strategy is actually winning w.r.t.𝜓 (in (11)) in every fair adversarial

play over Gℓ
.

Soundness. To prove soundness, we need to show 𝑍 ∗ ⊆ W. That is, we need to show that for all

𝑣 ∈ 𝑍 ∗
there exists a strategy for player 0 s.t. the goal set 𝑇 is eventually reached along all live

compliant plays 𝜋 starting at 𝑣 while staying in 𝑄 . We choose 𝜌0 in (46) and show that the claim

holds.

First, it follows from the definition of Apre that for a vertex 𝑣 ∈ 𝑍 ∗
exactly one of the following

cases holds:

(a) 𝑣 ∈ 𝑇 and hence rank(𝑣) = 1,

(b) 𝑣 ∈ (𝑉0 ∩ 𝑍 ∗) \ 𝑇 , i.e., 1 < rank(𝑣) < ∞ and 𝑣 ∈ 𝑄 and there exists a 𝑣 ′ ∈ 𝐸 (𝑣) with
rank(𝑣 ′) < rank(𝑣),
(c) 𝑣 ∈ ((𝑉1 \ 𝑉 ℓ) ∩ 𝑍 ∗)) \ 𝑇 , i.e., 1 < rank(𝑣) < ∞ and 𝑣 ∈ 𝑄 and for all 𝑣 ′ ∈ 𝐸 (𝑣) it holds that
rank(𝑣 ′) < rank(𝑣), or
(ℓ) 𝑣 ∈ (𝑉 ℓ ∩ 𝑍 ∗) \ 𝑇 , i.e., 1 < rank(𝑣) < ∞ and 𝑣 ∈ 𝑄 and there exists a 𝑣 ′ ∈ 𝐸ℓ (𝑣) with
rank(𝑣 ′) < rank(𝑣) and 𝐸 (𝑣) ⊆ 𝑍 ∗

.

36 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

We see that 𝜌0 (𝑣) chooses one existentially quantified edge in (b) vertices. In all other cases player

1 chooses the successor.

Further, we see that any play 𝜋 which starts in 𝜋 (0) = 𝑣 ∈ 𝑍 ∗
and obeys 𝜌0 has the property that

𝜋 (𝑘) ∈ 𝑍 ∗ \𝑇 implies 𝜋 (𝑘) ∈ 𝑄 and 𝜋 (𝑘 + 1) ∈ 𝑍 ∗
for all 𝑘 ≥ 0. This, in turn, means that for any

such state 𝑣 = 𝜋 (𝑘) ∈ 𝑍 ∗ \𝑇 as well as for its successor 𝜋 (𝑘 + 1) a rank is defined, i.e., 𝜋 (𝑘) ∈ 𝑋 𝑖

for some 0 < 𝑖 < ∞ and exactly one of the cases (b)-(ℓ) applies. We call a vertex for which case (𝛼)

applies, an (𝛼) vertex.

Now observe that the above reasoning implies that whenever an (a) vertex is hit along a play 𝜋

the claim holds. We therefore need to show that any play starting in 𝑣 ∈ 𝑍 ∗
eventually reaches an

(a) vertex. First, consider a play in which no (ℓ) vertex occurs. Then constantly hitting (b) and (c)

vertices always reduces the rank of visited states (as we assume that 𝜋 obays 𝜌0 in (46)). As the

maximal rank is finite, we see that we must eventually hit a state with rank 1, which is an (a) state.

Note that the same argument holds when only a finite number of (ℓ) vertices is visited along 𝜋 .

In this case we know that from some time onward no more (ℓ) vertex occurs. As the last (ℓ) vertex

has a finite rank, there can only be a finite sequence of (b) and (c) vertices afterwards until finally

an (a) vertex is reached.

We are therefore left with showing that on every path with an infinite number of (ℓ) vertices,

eventually an (a) vertex will be reached. We prove this claim by contradiction. I.e., we show that

there cannot exist a path with infinitely many (ℓ) vertices and no (a) vertex.

We first show that infinitely many (ℓ) vertices and no (a) vertices in 𝜋 imply that vertices with

rank 2 can only occur finitely often along 𝜋 .

▶ Recall that the construction of 𝜌0 ensures that whenever we visit a state 𝑣 ∈ 𝑉0 ∩ 𝑍 ∗
with

rank(𝑣) = 2 we will surely visit a state with rank 1 afterwards, implying the occurrence of a vertex

labeled (a). As no (a) labeled vertices are assumed to occur along 𝜋 , no (b) vertices with rank(𝑣) = 2

occur along 𝜋 .

▶ Now assume that 𝑣 ∈ 𝑉1 ∩ 𝑍 ∗
with rank(𝑣) = 2. If 𝑣 is a (c) vertex all successor states will have

rank 1. With the same reasoning as before, this cannot occur.

▶ Now assume that 𝑣 ∈ 𝑉1 ∩ 𝑍 ∗
with rank(𝑣) = 2 is labeled with (ℓ). In this case there surely exists

a successor 𝑣 ′ of 𝑣 s.t. (𝑣, 𝑣 ′) ∈ 𝐸ℓ and rank(𝑣 ′) = 1. But there might also exist another successor 𝑣 ′′

of 𝑣 (i.e., (𝑣 ′′ ∈ 𝐸 (𝑣)) s.t. rank(𝑣 ′′) > 1. If there does not exists such a successor 𝑣 ′′, all successors
have rank 1 and we again cannot visit 𝑣 .

▶ Now assume that 𝑣 ∈ 𝑉1 ∩ 𝑍 ∗
with rank(𝑣) = 2, labeled with (ℓ) and there exists a successor

𝑣 ′′ ∈ 𝐸 (𝑣) s.t. rank(𝑣 ′′) > 1. Now let us assume that such a state 𝑣 is visited infinitely often along

𝜋 . As 𝜋 is a fair adversarial play over 𝐺 we know that visiting 𝑣 infinitely often along 𝜋 implies

that 𝑣 ′ with (𝑣, 𝑣 ′) ∈ 𝐸ℓ and rank(𝑣 ′) = 1 (which surely exists by the definition of Apre) will also be

visited infinitely often along 𝜋 . This is again a contradiction to the above hypothesis and implies

that such 𝑣 ’s can only be visited finitely often.

▶ As𝑉 is a finite set, the set of states with rank 2 is finite. Hence, the occurrence of infinitely many

states with rank 2 along 𝜋 implies that one of the above cases must occur infinitely often, which

gives a contradiction to the above hypothesis. Using the same arguments, we can inductively show

that states with any fixed rank can only occur finitely often if states with rank 1 (i.e., (a)-labeled

vertices) never occur. As the maximal rank is finite (due to the finiteness of 𝑉) this contradicts the

assumption that 𝜋 is an infinite play.

We therefore conclude that along any infinite fair adversarial play 𝜋 with infinitely many vertices

labeled by (ℓ) we will eventually see a vertex labeled by (a).

Completeness.We now show that the fixpoint in (44) is complete, i.e., that every state in 𝑍
∗

:=

𝑉 \ 𝑍 ∗
is loosing for Player 0. In particular, we show that from every vertex 𝑣 ∈ 𝑍

∗
Player 1 has a

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

37

memoryless strategy 𝜌1 s.t. all fair adversarial plays compliant with 𝜌1 satisfy

𝜓 := ¬𝜓 = ¬(𝑄U𝑇) = □¬𝑇 ∨ ¬𝑇U¬𝑄 (47)

and are hence loosing for Player 0.

In order to prove the latter claim we fist compute 𝑍
∗

:= 𝑉 \ 𝑍 ∗
by negating the fixed-point

formula in (44). For this, we define 𝑋
∗

:= 𝑉 \ 𝑋 , 𝑌 ∗
:= 𝑉 \ 𝑌 and use the negation rule of the

𝜇-calculus, i.e., ¬(𝜇𝑋 .𝑓 (𝑋)) = 𝜈𝑋 .𝑉 \ 𝑓 (𝑋) along with common De-Morgan laws. This results in

the following derivation.

𝑍
∗
= 𝜇𝑌 . 𝜈𝑋 . 𝑇 ∩ (𝑄 ∪𝑉 \ Apre(𝑌,𝑋))

where

𝑉 \ Apre(𝑌,𝑋)

= 𝑉 \
[
Cpre(𝑋) ∪

(
Lpre

∃ (𝑋) ∩ Pre
∀
1
(𝑌)

)]
= [𝑉 \ Cpre(𝑋)] ∩

[
𝑉 \

(
Lpre

∃ (𝑋) ∩ Pre
∀
1
(𝑌)

)]
=

[
Pre

∃
1
(𝑋) ∪ Pre

∀
0
(𝑋)

]
∩

[
𝑉0 ∪ (𝑉1 \𝑉 ℓ) ∪

(
𝑉 ℓ \

(
Lpre

∃ (𝑋) ∩ Pre
∀
ℓ (𝑌)

))]
=

[
Pre

∃
1
(𝑋) ∪ Pre

∀
0
(𝑋)

]
∩

[
𝑉0 ∪ (𝑉1 \𝑉 ℓ) ∪

(
Lpre

∀(𝑋) ∪ Pre
∃
ℓ (𝑌)

)]
= Pre

∀
0
(𝑋) ∪ Pre

∃
1\ℓ (𝑋) ∪

[
Pre

∃
1
(𝑋) ∩

(
Lpre

∀(𝑋) ∪ Pre
∃
ℓ (𝑌)

)]
= Pre

∀
0
(𝑋) ∪ Pre

∃
1\ℓ (𝑋) ∪

[
Pre

∃
ℓ (𝑋) ∩

(
Lpre

∀(𝑋) ∪ Pre
∃
ℓ (𝑌)

)]
= Pre

∀
0
(𝑋) ∪ Pre

∃
1\ℓ (𝑋) ∪ Lpre

∀(𝑋) ∪ Pre
∃
ℓ (𝑌).

The last line in the above derivation follows from the observation that Lpre
∀(𝑋) ⊆ Pre

∃
𝑙
(𝑋) and

𝑌 ⊆ 𝑋 for all iterations of the fixed-point. The additionally introduced pre-operators are defined in

close analogy to (4) and (5) as follows:

Pre
∃
1
(𝑆) B {𝑣 ∈ 𝑉1 | 𝐸 (𝑣) ∩ 𝑆 ≠ ∅},

Pre
∀
0
(𝑆) B {𝑣 ∈ 𝑉0 | 𝐸 (𝑣) ⊆ 𝑆},

Pre
∃
1\ℓ (𝑆) B {𝑣 ∈ 𝑉1 \𝑉 ℓ | 𝐸 (𝑣) ∩ 𝑆 ≠ ∅},

Pre
∃
ℓ (𝑆) B {𝑣 ∈ 𝑉 ℓ | 𝐸 (𝑣) ∩ 𝑆 ≠ ∅},

Pre
∀
ℓ (𝑆) B {𝑣 ∈ 𝑉 ℓ | 𝐸 (𝑣) ⊆ 𝑆},

Lpre
∀(𝑆) B {𝑣 ∈ 𝑉 ℓ | 𝐸ℓ (𝑣) ⊆ 𝑆}.

With this, we can conclude that

𝑍
∗
= 𝜇𝑌 . 𝜈𝑋 . 𝑇 ∩

(
𝑄 ∪ Pre

∀
0
(𝑋) ∪ Pre

∃
1\ℓ (𝑋) ∪ Lpre

∀(𝑋) ∪ Pre
∃
𝑙
(𝑌)

)
. (48)

where 𝑇 = 𝑉 \𝑇 and 𝑄 = 𝑉 \𝑄 .
Now denote by 𝑌

𝑚
the𝑚-th iteration over the fixpoint variable 𝑌 in (48), where 𝑌

0

= ∅. Further,
we denote by 𝑋

𝑚𝑖
the set computed in the 𝑖-th iteration over the fixpoint variable 𝑋 in (48) during

the computation of 𝑌
𝑚
where 𝑋

𝑚0

= 𝑉 . After termination of the inner fixed point over 𝑋
𝑚𝑖

we

38 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

have by construction that 𝑌
𝑚
= 𝑋

𝑚∗
and therefore

𝑌
𝑚
= 𝑇 ∩

(
𝑄 ∪ Pre

∀
0
(𝑌𝑚) ∪ Pre

∃
1\ℓ (𝑌

𝑚) ∪ Lpre
∀(𝑌𝑚) ∪ Lpre

∃ (𝑌𝑚−1)
)
. (49)

Similar to the soundness proof, we define a ranking over 𝑉 induced by the iterations of the

smallest fixed-point, which now is 𝑌 :

rank(𝑣) =𝑚 ↔ 𝑣 ∈ 𝑌
𝑚 \ 𝑌𝑚−1

and rank(𝑣) = ∞ ↔ 𝑣 ∉ 𝑍
∗
.

This ranking can now be used to define a memoryless Player 1 strategy 𝜌1 : 𝑉1 → 𝑉 s.t.

𝜌1 (𝑣) = min

(𝑣,𝑤) ∈𝐸
rank(𝑤) . (50)

Towards proving that 𝜌1 is winning for𝜓 in (47) we first observe that for every vertex 𝑣 ∈ 𝑍
∗

exactly one of the following cases holds:

(a) 𝑣 ∈ (𝑉0∩𝑍
∗∩𝑇), i.e., rank(𝑣) < ∞ and 𝑣 ∈ 𝑄 or for all 𝑣 ′ ∈ 𝐸 (𝑣) it holds that rank(𝑣 ′) ≤ rank(𝑣),

(b) 𝑣 ∈ ((𝑉1 \𝑉 ℓ) ∩ 𝑍
∗ ∩𝑇)), i.e., rank(𝑣) < ∞ and 𝑣 ∈ 𝑄 or there exists 𝑣 ′ ∈ 𝐸 (𝑣) s.t. rank(𝑣 ′) ≤

rank(𝑣), or
(ℓ∀) 𝑣 ∈ (𝑉 ℓ∩𝑍 ∗∩𝑇) and rank(𝑣) < ∞ and 𝑣 ∈ 𝑄 or for all 𝑣 ′ ∈ 𝐸ℓ (𝑣) holds that rank(𝑣 ′) ≤ rank(𝑣)
(ℓ∃) 𝑣 ∈ (𝑉 ℓ ∩ 𝑍 ∗ ∩𝑇) and rank(𝑣) > 1 (and rank(𝑣) < ∞), and (ℓ∀) does not hold, but there exists
a 𝑣 ′ ∈ 𝐸 (𝑣) s.t. rank(𝑣 ′) < rank(𝑣).

Using this observation, we now show that every fair adversarial play 𝜋 compliant with 𝜌1 satisfies

𝜓 in (47), that is, either stays in 𝑇 forever, or eventually visits 𝑄 before visiting 𝑇 .

First, observe that for every node 𝑣 ∈ 𝑍
∗
one of the cases (a),(b),(ℓ∀), or (ℓ∃) holds. If 𝑣 is an (a)

vertex, we see that either 𝑣 ∈ 𝑄 or for all choices of Player 0 (i.e., for any Player 0 strategy), the

play remains in 𝑍
∗ ⊆ 𝑇 . Further, it is obvious that 𝜌1 ensures, that whenever a (b) vertex is seen,

the play remains in 𝑍
∗ ⊆ 𝑇 if we do not already have 𝑣 ∈ 𝑄 . The same is true for (ℓ∀) vertexes.

Now consider a fair adversarial play 𝜋 that is compliant with 𝜌1 and 𝜋 (0) ∈ 𝑍
∗ ⊆ 𝑇 . Then it

follows from the above intuition that for all visits to (a),(b),(ℓ∀) we have two cases: (i) Either𝜓 is

immediately true on 𝜋 by visiting 𝑄 (and having been in 𝑍
∗ ⊆ 𝑇 in all previous time steps). In this

case the suffix of 𝜋 is irrelevant, because Player 0 has already lost (by visiting 𝑄 without seeing 𝑇).

Or (ii) the play remains in 𝑍
∗ ⊆ 𝑇 . Now observe that this is also true for infinite visits to (a),(b),(ℓ∀)

vertexes. As 𝜋 is fair adversarial, visiting a (ℓ∀) vertex infinitely often, implies that all live edges are

taking infinitely often, which all ensure that the play remains in 𝑍
∗ ⊆ 𝑇 or is immediately lost by

visiting 𝑄 . Therefore, the only interesting case occurs if 𝜋 visits (ℓ∃) vertexes. If such a vertex is

visited finitely often, 𝜌1 ensures that the play stays in 𝑍
∗ ⊆ 𝑇 . However, if they are visited infinitely

often, a live edge that leaves 𝑍
∗
will also be taken infinitely often. Hence, in order to ensure that 𝜋

is loosing for Player 0, we need to show that 𝜌1 enforces that (ℓ∃) vertexes are only visited finitely

often.

To see this, let 𝑣 be an (ℓ∃) vertex and observe that rank(𝑣) is finite and larger than 1. At the first

visit of 𝜋 to 𝑣 , 𝜌1 decreases the rank as it chooses by definition one of the existentially quantified

successors 𝑣 ′ ∈ 𝐸ℓ (𝑣) with rank(𝑣 ′) < rank(𝑣). Now observe that for all other cases (a),(b),(ℓ∀)
either 𝑄 is visited and the play is immediately loosing for Player 0 or the play is kept in 𝑍

∗ ⊆ 𝑇

and the strategy 𝜌1 never increases the rank. As every vertex has a unique rank, 𝜌1 ensures that

every (ℓ∃) vertex is visited at most once along every compliant fair adversarial play that remains in

𝑍
∗ ⊆ 𝑇 . This proves the claim.

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

39

B.2.2 Proof of Thm. 3.2.

Theorem (Thm. 3.2 restated for convenience). Let Gℓ = ⟨G, 𝐸ℓ⟩ be a game graph with live
edges and 𝑄,𝐺 ⊆ 𝑉 be two state sets over G. Further, let

𝑍 ∗ B 𝜈𝑌 . 𝜇𝑋 . 𝑄 ∩ [(𝐺 ∩ Cpre(𝑌)) ∪ (Apre(𝑌,𝑋))] . (51)

Then 𝑍 ∗ is equivalent to the winning region of Player 0 in the fair adversarial game over Gℓ for the
winning condition 𝜓 in (8). Moreover, the fixpoint algorithm runs in 𝑂 (𝑛2) symbolic steps, and a
memoryless winning strategy for Player 0 can be extracted from it.

In order to simplify the proof of Prop. B.2.2, we first prove the following lemma.

Lemma B.5. Let 𝑄,𝐺 ⊆ 𝑉 and

𝑍 ∗ B𝜈𝑌 .𝜇𝑋 .𝑄 ∩ [(𝐺 ∩ Cpre(𝑌)) ∪ Apre(𝑌,𝑋)] (52a)

𝑍 ∗ B𝜈𝑌 .𝜈𝑌 .𝜇𝑋 .𝑄 ∩
[(
𝐺 ∩ Cpre(𝑌)

)
∪ Apre(𝑌,𝑋)

]
. (52b)

Then 𝑍 ∗ = 𝑍 ∗.

Proof. We prove this lemma by a reduction to Lem. B.3 (iii). For this purpose, we define

𝑓 (𝑋,𝑌) := ∅, ℎ𝑎 (𝑋,𝑌) := 𝑄 ∩𝐺 ∩ Cpre(𝑌),
𝑔(𝑋,𝑌) := 𝑄 ∩ Apre(𝑌,𝑋), and ℎ𝑏 (𝑋,𝑌) := 𝑄 ∩𝐺 ∩ Cpre(𝑌).

With this we see that (52a) can be equivalently written as

𝜈𝑌 . 𝜈𝑋 . 𝜈𝑌 . 𝜇𝑋 . 𝑓 (𝑋,𝑌) ∪ ℎ𝑏 (𝑋,𝑌) ∪ 𝑔(𝑋,𝑌)
while (52b) can be written as

𝜈𝑌 . 𝜈𝑋 . 𝜈𝑌 . 𝜇𝑋 . ℎ𝑎 (𝑋,𝑌) ∪ 𝑓 (𝑋,𝑌) ∪ 𝑔(𝑋,𝑌).
With this, it follows from Lem. B.3 (iii) that both equations are equivalent. □

With Lem. B.5 in place, we can use (52b) instead of (51) to prove Thm. 3.2. Further, let us define

𝑍 ∗ (⟨𝑇,𝑄⟩) to be the set of states computed by the fixpoint algorithm in (12). Then we know that

upon termination we have

𝑍 ∗ = 𝑌 ∗ = 𝑍 ∗ (⟨𝑄 ∩𝐺 ∩ Cpre(𝑌 ∗), 𝑄⟩). (53)

Now we will use (53) to prove soundness and completeness of Thm. 3.2.

Soundness Let us now define 𝑇 := 𝑄 ∩𝐺 ∩ Cpre(𝑌 ∗)). Pick any state 𝑣 ∈ 𝑍 ∗
and the strategy 𝜌0

defined as in (46) over the sets𝑋 𝑖
computed in the last iteration over𝑋 when computing 𝑍 ∗ (⟨𝑇,𝑄⟩).

Further, let 𝜋 be an arbitrary fair adversarial play starting in 𝑣 and being compliant with 𝜌0. Then

we need to show that 𝜋 fulfills𝜓 in (8).

Using (53) and the fact that 𝑣 ∈ 𝑍 ∗
we know from Thm. 3.3 that 𝜋 fulfills 𝑄U𝑇 . That is, there

exists a 𝑘 ∈ N s.t. 𝜋 (𝑖) ∈ 𝑄 for all 𝑖 < 𝑘 and 𝜋 (𝑘) ∈ 𝑇 = 𝑄 ∩ 𝐺 ∩ Cpre(𝑌 ∗)). With this we

know that (a) 𝜋 (𝑘) ∈ 𝑄 , (b) 𝜋 (𝑘) ∈ 𝐺 and (c) 𝑣 ∈ Cpre(𝑌 ∗). Now we have two cases: (c.1) If

𝜋 (𝑘) ∈ 𝑉 1
, then it follows from the definition of Cpre that 𝐸 (𝜋 (𝑘)) ⊆ 𝑌 ∗

. As 𝑌 ∗ = 𝑍 ∗
, we know

𝜋 (𝑘 + 1) ∈ 𝑍 ∗
. (c.2) If 𝜋 (𝑘) ∈ 𝑉 0

we know that rank(𝜋 (𝑘)) = 𝑚𝑖𝑛𝑣′∈𝐸 (𝜋 (𝑘)) rank(𝑣 ′). Now recall

that 𝑍 ∗ = 𝑌 ∗ = 𝑌 ∗ =
⋃

𝑖>0
𝑋 𝑖

. Hence, any state with rank 0 < 𝑛 < ∞ is contained in 𝑍 ∗
and hence,

we have 𝜋 (𝑘 + 1) ∈ 𝑍 ∗
. With this, we can successively re-apply Thm. 3.3 to 𝜋 (𝑘 + 1). This shows

that 𝐺 is visited infinitely often along 𝜋 while 𝜋 always remains within 𝑄 .

Completeness LetW ⊆ 𝑉 be the set of states from which Player 0 has a winning strategy w.r.t.

𝜓 in (8). In order to prove completeness, we need to show thatW ⊆ 𝑍 ∗
.

40 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

Recall, that for all states 𝑣 ∈ W there exists a strategy 𝜌0 s.t. all compliant fair adversarial plays

𝜋 fulfill𝜓 . Now consider the weaker LTL formula𝜓 := 𝑄U(𝑄 ∩𝐺) and let W̃ be the winning state

set for𝜓 . Then we know by construction that𝜓 holds for 𝜋 (0) and for every 𝜋 (𝑘) ⊆ 𝑄 ∩𝐺 while

𝜋 always remains in 𝑄 . We can therefore strengthen 𝜓 to 𝜓 := 𝑄U(𝑄 ∩𝐺 ∩ Cpre(W̃)) and see

that still𝜓 → 𝜓 and therefore W ⊆ W̃.

Now observe that it follows from Thm. 3.3 that W̃ = 𝑍 ∗ (⟨𝑄 ∩𝐺 ∩ Cpre(W̃), 𝑄⟩). It further
follows from the monotonicity of the fixed-point that 𝑍 ∗

is the largest set of states s.t. equality
holds in (53). We therefore have to conclude that W̃ ⊆ 𝑍 ∗

. As we have shown thatW ⊆ W̃, the

claim is proved.

B.3 Proof of Thm. 3.1
Theorem (Thm. 3.1 restated for convenience). Let Gℓ = ⟨G, 𝐸ℓ⟩ be a game graph with live

edges and R be a Rabin condition over G with index set 𝑃 = [1;𝑘]. Further, let
𝑍 ∗ B 𝜈𝑌𝑝0

.𝜇𝑋𝑝0
.
⋃

𝑝1∈𝑃 𝜈𝑌𝑝1
.𝜇𝑋𝑝1

.⋃
𝑝2∈𝑃\{𝑝1 } 𝜈𝑌𝑝2

.𝜇𝑋𝑝2
.

...⋃
𝑝𝑘 ∈𝑃\{𝑝1,...,𝑝𝑘−1 } 𝜈𝑌𝑝𝑘 .𝜇𝑋𝑝𝑘 .

[⋃𝑘
𝑗=0

C𝑝 𝑗

]
,

where

C𝑝 𝑗
B

𝑗⋂
𝑖=0

𝑅𝑝𝑖 ∩
[(
𝐺𝑝 𝑗

∩ Cpre(𝑌𝑝 𝑗
)
)
∪

(
Apre(𝑌𝑝 𝑗

, 𝑋𝑝 𝑗
)
)]

,

with 𝑝0 = 0, 𝐺𝑝0
B ∅ and 𝑅𝑝0

B ∅. Then 𝑍 ∗ is equivalent to the winning region W of Player 0 in the
fair adversarial game over Gℓ for the winning condition 𝜑 in (6). Moreover, the fixpoint algorithm runs
in 𝑂 (𝑛𝑘+2𝑘!) symbolic steps, and a memoryless winning strategy for Player 0 can be extracted from it.

This section contains the proof of Thm. 3.1 which is inspired by the proof of Piterman and Pnueli

[2006] for “normal” Rabin games. We first give a construction of a ranking induced by the fixpoint

algorithm in (7) in Sec. B.3.1, and use this ranking to define a memoryless Player 0 strategy. As

part of the soundness proof for Thm. 3.1 in Sec. B.3.2, we then show that this extracted strategy

is indeed a winning strategy of Player 0 in the fair adversarial game over Gℓ
w.r.t. 𝜑 . Further, we

show in Sec. B.3.3 that the fixpoint algorithm in (7) is also complete, that isW ⊆ 𝑍 ∗
. Intuitively,

completeness shows that if 𝑍 ∗
is empty, there indeed exists no live-sufficient winning strategy (with

arbitrary memory) for the given fair adversarial Rabin game. Additional lemmas and proofs can be

found in Appendix B.3.4. The time complexity of the algorithm is proven separately in App. C.

B.3.1 Strategy Extraction. Our strategy extraction is adapted from the ranking in [Piterman and

Pnueli 2006, Sec. 3.1]. Recall, that we consider the set of Rabin pairs R = {⟨𝐺1, 𝑅1⟩, . . . , ⟨𝐺𝑘 , 𝑅𝑘⟩}
with index set 𝑃 = {1, . . . , 𝑘} and the artificial Rabin pair ⟨𝐺0, 𝑅0⟩ s.t.𝐺0 = 𝑅0 = ∅. A permutation of

the index set 𝑃 is an one-to-one and onto function from 𝑃 to 𝑃 ; as usual, we write 𝑝1 . . . 𝑝𝑘 to denote

the permutation mapping 𝑖 to 𝑝𝑖 , for 𝑖 = 1, . . . , 𝑘 . We define Π(𝑃) to be the set of all permutations

over 𝑃 . The configuration domain of the Rabin condition R is defined as

𝐷 (R) :=
{
𝑝0𝑖0𝑝1𝑖1 . . . 𝑝𝑘𝑖𝑘 | 𝑖 𝑗 ∈ [0;𝑛], 𝑝0 = 0, 𝑝1 . . . 𝑝𝑘 ∈ Π(𝑃)

}
∪ {∞} (55)

where 𝑛 < ∞ is a natural number which is larger then the maximal number of iterations needed in

any instance of the fixed point computation in (7) which is known to be finite. If R is clear from

the context, we write 𝐷 instead of 𝐷 (R).

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

41

Intuition: We first explain the intuition behind the chosen ranking. For this we consider the

definition of ranks for states 𝑣 ∈ 𝑍 ∗
in an iterative fashion. First, consider the last iteration over

𝑋𝑝0
converging to the fixed point 𝑍 ∗ = 𝑌 ∗

𝑝0

=
⋃

𝑖0>0
𝑋
𝑖0
𝑝0

where 𝑋 0

𝑝0

:= ∅. By flattening (7) we see

that for all 𝑖0 > 0 we have

𝑋
𝑖0
𝑝0

= Apre(𝑌 ∗
𝑝0

, 𝑋
𝑖0−1

𝑝0

) ∪ A𝑝0𝑖0 (56a)

where A𝑝0𝑖0 collects all remaining terms of the fixpoint algorithm in (7) and will be specified later.

For now, we want to assign a “minimal rank” to all states added to 𝑍 ∗
via the first term in (56a). Let

us assume that the right “minimal rank” for these states is

𝑑 = 𝑝0𝑖0𝑝10 . . . 𝑝𝑘0 with 𝑝1 < 𝑝2 < . . . < 𝑝𝑘 and 𝑖0 > 0.

We assign this rank to 𝑣 iff 𝑣 ∈ Apre(𝑌 ∗
𝑝0

, 𝑋
𝑖0−1

𝑝0

) \ 𝑋 𝑖0−1

𝑝0

, i.e., if 𝑣 is not already added to the fixed

point in a previous iteration. The intuition behind this rank choice is that we want to remember

that we have added 𝑣 to 𝑍 ∗
in the 𝑖0’s computation over 𝑋𝑝0

, which sets the counter for 𝑝0 in 𝑑 to 𝑖0.

We keep all other counters at 0 because there is no actual contribution of terms involving variables

𝑋𝑝𝑖 for 𝑝𝑖 ∈ 𝑃 for the “adding” of 𝑣 .

Now recall that

𝑋
𝑖0
𝑝0

=
⋃
𝑝1∈𝑃

𝑌 ∗
𝑝1

=
⋃
𝑝1∈𝑃

⋃
𝑖1>0

𝑋
𝑖1
𝑝1

.

Further, we know that

Apre(𝑌 ∗
𝑝0

, 𝑋
𝑖0−1

𝑝0

) ⊆ 𝑋
𝑖1
𝑝1

for all 𝑝1 ∈ 𝑃 and 𝑖1 > 0. (56b)

Hence, any state added to the fixed point via 𝑋
𝑖0
𝑝0

(which is not contained in 𝑋
𝑖0−1

𝑝0

) is either added

via Apre(𝑌 ∗
𝑝0

, 𝑋
𝑖0
𝑝0

) or via any other remaining term within 𝑋
𝑖1
𝑝1

for at least one 𝑝1 and 𝑖1 > 0. So let

us explore the ranking in the latter case.

For this, let us proceed by going over all𝑋
𝑖1
𝑝1

in increasing order over 𝑃 , i.e, we start with selecting

𝑝1 = 1. Further, we remember that we compute the next iteration over 𝑋𝑝1
(i.e., 𝑋

𝑖1
𝑝1

given 𝑋
𝑖1−1

𝑝1

) as

part of computing the set 𝑋
𝑖0
𝑝0

. I.e., we remember the computation-prefix 𝛿 = 𝑝0𝑖0 in the computation

of 𝑋
𝑖1
𝑝1

. To make 𝛿 explicit, we denote 𝑋
𝑖1
𝑝1

by 𝑋
𝑖1
𝛿𝑝1

. Now, we again consider the last iteration over

𝑋𝛿𝑝1
converging to the fixed point 𝑌 ∗

𝛿𝑝1

(for the currently considered computation-prefix 𝛿). Then

we have

𝑋
𝑖1
𝛿𝑝1

=Apre(𝑌 ∗
𝑝0

, 𝑋
𝑖0−1

𝑝0

)︸ ︷︷ ︸
=:𝑆𝛿

∪𝑅𝑝1
∩

[(
𝐺𝑝1

∩ Cpre(𝑌 ∗
𝛿𝑝1

)
)
∪ Apre(𝑌 ∗

𝛿𝑝1

, 𝑋
𝑖1−1

𝛿𝑝1

)
]

︸ ︷︷ ︸
=:C𝛿𝑝

1
𝑖
1

∪A𝛿𝑝1𝑖1 .

We now want to assign the “minimal rank” to all states that are added to the fixed point via

C𝛿𝑝1𝑖1 . The immediate choice of this rank is

𝑑 = 𝑝0𝑖0𝑝1𝑖1𝑝20 . . . 𝑝𝑘0 = 𝛿𝑝1𝑖1𝑝20 . . . 𝑝𝑘0 with 𝑝2 < . . . < 𝑝𝑘 and 𝑖0, 𝑖1 > 0. (56c)

(Note that we do not necessarily have 𝑝1 < 𝑝2!)

We only want to assign this rank to states that are actually added to the fixed point via C𝛿𝑝1𝑖1 ,

i.e., do not already have a rank assigned. First, all states 𝑣 ∈ 𝑆𝛿 already have an assigned rank (as

discussed before). Second, for 𝑖1 > 1 all states in C𝛿𝑝1𝑖1−1 have already an assigned rank. But, third,

also all states that have been added by considering a different 𝑋�̃�1
with 𝑝1 ∈ 𝑃 being smaller then

the currently considered 𝑝1 also have an already assigned rank.

Now consider the ranking choices suggested in (56b) and (56c). Then we see that all already

assigned ranks are smaller (in terms of the lexicographic order over 𝐷) than the one in (56c). To

see this, first consider a state 𝑣 ∈ 𝑆𝛿 . Either, 𝑣 ∈ 𝑋
𝑖0−1

𝑝0

in which case its 0’th counter is smaller then

42 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

𝑖0 (i.e., 𝑖0 − 1 < 𝑖0) or 𝑣 has been added via 𝑆𝛿 , in which case the 0’th counter is equivalent but the

first counter is 0 and therefore smaller then 𝑖1 in (56c) (as, 𝑖1 > 0). Now consider a state 𝑣 ∈ 𝑋�̃�1

with 𝑝1 < 𝑝1. In this case we see that 0’th counter is equivalent but the first permutation index is

smaller (as 𝑝1 < 𝑝1).

We can therefore avoid specifying exactly in which set 𝑣 should not be contained to be a newly

added state. We can simply collect all possible rank assignments for every state and then, post-

process this set to select the smallest rank in this set. Let us now generalize this idea to all possible

configuration prefixes.

Proposition B.1. Let 𝛿 = 𝑝0𝑖0 . . . 𝑝 𝑗−1𝑖 𝑗−1 be a configuration prefix, 𝑝 𝑗 ∈ 𝑃 \ {𝑝1, . . . , 𝑝 𝑗−1} the
next permutation index and 𝑖 𝑗 > 0 a counter for 𝑝 𝑗 . Then the flattening of (7) for this configuration
prefix is given by

𝑋
𝑖 𝑗

𝛿𝑝 𝑗
= 𝑆𝛿 ∪ C𝛿𝑝 𝑗 𝑖 𝑗︸ ︷︷ ︸

𝑆𝛿𝑝𝑗 𝑖 𝑗

∪A𝛿𝑝 𝑗 𝑖 𝑗 (57a)

where

𝑄𝑝0 ...𝑝𝑎 :=

𝑎⋂
𝑏=0

𝑅𝑝𝑏 , (57b)

C𝛿𝑝𝑎𝑖𝑎 :=

(
𝑄𝛿𝑝𝑎 ∩𝐺𝑝𝑎 ∩ Cpre(𝑌 ∗

𝛿𝑝𝑎
)
)
∪

(
𝑄𝛿𝑝𝑎 ∩ Apre(𝑌 ∗

𝛿𝑝𝑎
, 𝑋

𝑖𝑎−1

𝛿𝑝𝑎
)
)
, (57c)

𝑆𝑝0𝑖0 ...𝑝𝑎𝑖𝑎 :=

𝑎⋃
𝑏=0

C𝑝0𝑖0 ...𝑝𝑏𝑖𝑏 , (57d)

A𝛿𝑝 𝑗 𝑖 𝑗 :=
⋃

𝑝 𝑗+1∈𝑃\{𝑝1,...,𝑝 𝑗 }

⋃
𝑖 𝑗+1>0

(
𝑋
𝑖 𝑗+1

𝛿𝑝 𝑗 𝑖 𝑗𝑝 𝑗+1

\ 𝑆𝛿𝑝 𝑗 𝑖 𝑗

)
(57e)

As this flattening follows directly from the structure of the fixpoint algorithm in (7) and the

definition of C𝑝 𝑗
in (7b), the proof is omitted.

Using the flattening of (7) in (57) we can define a ranking function induced by (7) as follows.

Definition B.6. Given the premises of Prop. B.1, we define 𝛾 := 𝑝 𝑗+10𝑝 𝑗+20 . . . 𝑝𝑘0 with 𝑝 𝑗+1 <

𝑝 𝑗+2 < . . . < 𝑝𝑘 to be the minimal configuration post-fix. Then we define the rank-set𝑅 : 𝑉 → 2
𝐷
s.t.

(i)∞ ∈ 𝑅(𝑣) for all 𝑣 ∈ 𝑉 , and (ii) 𝛿𝑝 𝑗𝑖 𝑗𝛾 ∈ 𝑅(𝑣) iff 𝑣 ∈ 𝑆𝛿𝑝 𝑗 𝑖 𝑗 . The ranking function rank : 𝑉 → 𝐷

is defined s.t. rank : 𝑣 ↦→ min{𝑅(𝑣)}.
Based on the ranking in Def. B.6 we define a memory-less player 0 strategy 𝜌0, s.t. 𝜌0 (𝑣) forces

progress to a state reachable from 𝑣 which has minimal rank compared to all other successors of 𝑣 .

We prove Thm. B.7 in Sec. B.3.2.

Theorem B.7. Given the premises of Prop. B.1, the memory-less player 0 strategy 𝜌0 : 𝑉 0∩𝑍 ∗ → 𝑉 1

s.t.

𝜌0 (𝑣) := min

(𝑣,𝑤) ∈𝐸
(rank(𝑤)), (58)

is a winning strategy for player 0 in the fair adversarial game over Gℓ w.r.t. 𝜑 .

Example B.8. Consider the Rabin game depicted in Fig. 9 and discussed in App. A. Here, the

strategy construction outlined in Thm. B.7 enforces a transition from 𝑞6 to 𝑞7 and a transition

from 𝑞5 to 𝑞3. This is observed by noting that rank(𝑞2) = 002012 and rank(𝑞7) = 001121 where

rank(𝑞7) < rank(𝑞2). In addition, rank(𝑞1) = 011021 and rank(𝑞3) = 001121, where rank(𝑞3) <

rank(𝑞1).

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

43

B.3.2 Soundness. We now show why the fixpoint algorithm in (7) is sound, i.e., why 𝑍 ∗ ⊆ W in

Thm. 3.1 holds. In addition, we also show that Thm. B.7 holds.

We prove soundness by an induction over the nesting of fixed points in (7) from inside to outside.

In particular, we iteratively consider instances of the flattening in (57), starting with 𝑗 = 𝑘 as the

base case, and doing an induction from “ 𝑗 + 1” to “ 𝑗”. To this end, we consider a local winning

condition which refers to the current configuration-prefix 𝛿 = 𝑝0𝑖0 . . . 𝑝 𝑗−1𝑖 𝑗−1 in (57), namely

𝜓𝛿𝑝 𝑗
:=

©«
𝑄𝛿𝑝 𝑗

U𝑆𝛿
∨ □𝑄𝛿𝑝 𝑗

∧ □^𝐺𝑝 𝑗

∨ □𝑄𝛿𝑝 𝑗
∧

(∨
𝑖∈𝑃\{𝑝0,...,𝑝 𝑗 }

(
^□𝑅𝑖 ∧ □^𝐺𝑖

)) ª®®¬ . (59)

Further, we denote byW𝛿𝑝 𝑗
the set of states for which player 0 wins the fair adversarial game over

Gℓ
w.r.t.𝜓𝛿𝑝 𝑗

in (59).

By recalling that for 𝑝 𝑗 = 𝑝0 = 0 we have 𝑄𝑝0
= 𝑉 , 𝑆𝜀 = ∅ and 𝐺𝑝0

= ∅, we see that for 𝑗 = 0 the

condition in (59) simplifies to

𝜓𝑝0
=

∨
𝑖∈𝑃

(
^□𝑅𝑖 ∧ □^𝐺𝑖

)
.

This implies that 𝜓𝑝0
is equivalent to 𝜑 in (6). Given this observation, the proof of soundness in

Thm. 3.1 proceeds by inductively showing that

𝑋
𝑖 𝑗

𝛿𝑝 𝑗
⊆ W𝛿𝑝 𝑗

(60)

for any configuration prefix 𝛿 , next permutation index 𝑝 𝑗 and counter 𝑖 𝑗 > 0. Thereby, we ultimately

also prove this claim for 𝑝 𝑗 = 𝑝0 = 0 where 𝛿 is the empty string and 𝑌 ∗
𝑝0

=
⋃

𝑖0>0
𝑋
𝑖0
𝑝0

coincides

with 𝑍 ∗
in (7), which proves the statement.

With this insight the proof of Thm. B.7 as well as the soundness part of Thm. 3.1 reduce to the

following proposition.

Proposition B.2. For all 𝑗 ∈ [0, 𝑘], computation-prefixes 𝛿 = 𝑝0𝑖0 . . . 𝑝 𝑗−1𝑖 𝑗−1, next permutation
index 𝑝 𝑗 ∈ 𝑃 \ {𝑝0, . . . , 𝑝 𝑗−1}, counter 𝑖 𝑗 > 0 and state 𝑣 ∈ 𝑋

𝑖 𝑗

𝛿𝑝 𝑗
the strategy 𝜌0 in (58) wins the fair

adversarial game over Gℓ w.r.t.𝜓𝛿𝑝 𝑗
in (59).

To see why Prop. B.2 holds, we consider the computation of 𝑋
𝑖 𝑗+1

𝛿𝑝 𝑗
in (57a) and observe that the

states in 𝑋
𝑖 𝑗+1

𝛿𝑝 𝑗
can be clustered based on their rank induced via Def. B.6 as follows (see Sec. B.3.5

for a full proof).

Proposition B.3. Given the premisses of Prop. B.2, let

𝛾 = 𝑝 𝑗+10𝑝 𝑗+20 . . . 𝑝𝑘0 with 𝑝 𝑗+1 < 𝑝 𝑗+2 < . . . < 𝑝𝑘 , and

𝛾 = 𝑝 𝑗+1𝑛𝑝 𝑗+2𝑛 . . . 𝑝𝑘𝑛 with 𝑝𝑘 < 𝑝𝑘−1 < . . . < 𝑝 𝑗+1

be the minimal and maximal post-fix, respectively. Then, for all 𝑣 ∈ 𝑋 𝑖
𝛿𝑝 𝑗

exactly one of the following
cases holds:
(a) 𝑣 ∈ 𝑆𝛿 and rank(𝑣) ≤ 𝛿𝑝 𝑗0𝛾 ,
(b) 𝑣 ∈ 𝑄𝛿𝑝 𝑗

∩𝐺𝑝 𝑗
∩ Cpre(𝑌 ∗

𝛿𝑝 𝑗
) and rank(𝑣) = 𝛿𝑝 𝑗1𝛾 ,

(c) 𝑣 ∈ 𝑄𝛿𝑝 𝑗
∩ Apre(𝑌 ∗

𝛿𝑝 𝑗
, 𝑋

𝑖 𝑗−1

𝛿𝑝 𝑗
) and rank(𝑣) = 𝛿𝑝 𝑗𝑖 𝑗𝛾 s.t. 𝑖 𝑗 > 1, or

(d) 𝑣 ∈ A𝛿𝑝 𝑗 𝑖 𝑗 and there exists 𝛾 < 𝛾 ′ ≤ 𝛾 s.t. rank(𝑣) = 𝛿𝑝 𝑗𝑖 𝑗𝛾
′.

Using Prop. B.3 we prove Prop. B.2 by an induction over 𝑗 .

44 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

Proof of Prop. B.2. Base case: First, for 𝑗 = 𝑘 the last line of (59) disappears. Then the proof

reduces to Thm. 3.3 and Thm. 3.2 in the following way. First, we fix all fixpoint variables 𝑌 ∗
𝑝0 ...𝑝𝑙

and 𝑋
𝑖𝑙
𝑝0 ...𝑝𝑙

for 𝑙 < 𝑗 as well as 𝑌 ∗
𝛿𝑝 𝑗

. With this, we see that 𝑇 := 𝑆𝛿 ∪ (𝑄𝛿𝑝 𝑗
∩𝐺𝑝 𝑗

∩ Cpre(𝑌 ∗
𝛿𝑝 𝑗

))
becomes a fixed set of states and (57a) reduces to

𝑋
𝑖 𝑗

𝛿𝑝 𝑗
= 𝑇 ∪ (𝑄𝛿𝑝 𝑗

∩ Apre(𝑌 ∗
𝛿𝑝 𝑗

, 𝑋
𝑖 𝑗−1

𝛿𝑝 𝑗
))

where we know that 𝑋
𝑖 𝑗

𝛿𝑝 𝑗
⊆ 𝑌 ∗

𝛿𝑝 𝑗
. Further, it follows form Prop. B.3 that for all 𝑋

𝑖 𝑗

𝛿𝑝 𝑗
the ranking

only differs by the 𝑖 𝑗 count. Hence, we can replace 𝜌0 in (58) by the simpler strategy 𝜌0 in (46) that

only consideres the 𝑖 𝑗 count as the rank of states in 𝑌 ∗
𝛿𝑝 𝑗

=
⋃

𝑖 𝑗>0
𝑋
𝑖 𝑗

𝛿𝑝 𝑗
. With this it follows from

Thm. 3.3 that for any fair adversarial play 𝜋 compliant with 𝜌0 in (58) and starting in 𝑋
𝑖 𝑗

𝛿𝑝 𝑗
for some

𝑖 𝑗 ≥ 0 it holds that 𝑄𝛿𝑝 𝑗
U𝑇 . This implies that whenever such a play 𝜋 eventually reaches a state in

𝑆𝛿 ⊆ 𝑇 the first line of (59) holds.

Now assume that 𝜋 does not reach a state in 𝑆𝛿 ⊆ 𝑇 . Then it reaches a state in 𝑄𝛿𝑝 𝑗
∩ 𝐺𝑝 𝑗

∩
Cpre(𝑌 ∗

𝛿𝑝 𝑗
) and therefore has a successor state 𝑣 ′ ∈ 𝑌 ∗

𝛿𝑝 𝑗
=

⋃
𝑖 𝑗>0

𝑋
𝑖 𝑗

𝛿𝑝 𝑗
. Hence, 𝑣 ′ ∈ 𝑋

𝑖 𝑗

𝛿𝑝 𝑗
for some

𝑖 𝑗 ≥ 0. By repeatedly applying this argument we see that 𝜋 either eventually reaches a state in

𝑆𝛿 ⊆ 𝑇 or it remains infinitely in C𝛿𝑝 𝑗 ·. In the latter case, it follows from Thm. 3.2 that the second

line of (59) holds.

Induction step: For the induction step (from “ 𝑗 + 1” to “ 𝑗”) we first analyze the assumption. I.e.,

we know that for the longer computation prefix 𝛿 ′ = 𝛿𝑝 𝑗𝑖 𝑗 and any next permutation index 𝑝 𝑗+1

we have that 𝑌 ∗
𝛿′𝑝 𝑗+1

⊆ W𝛿′𝑝 𝑗+1
for all 𝑝 𝑗+1 ∈ 𝑃 \ {𝑝1, . . . , 𝑝 𝑗 }. Now recall that (57e) implies

A𝛿𝑝 𝑗 𝑖 𝑗 =
⋃

𝑝 𝑗+1∈𝑃\{𝑝1,...,𝑝 𝑗 } 𝑌
∗
𝛿′𝑝 𝑗+1

\ 𝑆𝛿𝑝 𝑗 𝑖 𝑗

and therefore, we know that for all 𝑣 ∈ A𝛿𝑝 𝑗 𝑖 𝑗 there exists a 𝑝 𝑗+1 s.t. 𝑣 ∈ W𝛿′𝑝 𝑗+1
. That is, any fair

adversarial play starting in 𝑣 that is compliant with 𝜌0 in (58) fulfills (59).

Therefore, whenever a fair adversarial play 𝜋 starting in 𝑋
𝑖 𝑗

𝛿𝑝 𝑗
visits a vertex 𝑣 ∈ A𝛿𝑝 𝑗 𝑖 𝑗 (i.e., case

(d) holds), we know that 𝜋 could possibly come back to a state 𝑣 ∈ 𝑆𝛿′𝑝 𝑗+1
= 𝑆𝛿 ∪ C𝛿𝑝 𝑗 𝑖 𝑗 (via the first

line of𝜓𝛿′𝑝 𝑗+1
).

In this case, Prop. B.3 ensures that the 𝑖 𝑗 count of the rank of states always stays constant while

the play stays in A𝛿𝑝 𝑗 𝑖 𝑗 . Therefore, one can ignore these finite sequences of (d) vertices in 𝜋 while

applying the ranking arguments of Thm. 3.3 and Thm. 3.2. I.e., we can conclude that in this case

either the first or the second line of (59) holds for 𝜋 . It remains to show that 𝜋 fulfills the last line

of (59) if 𝜋 eventually stays within A𝛿𝑝 𝑗 𝑖 𝑗 forever. First, observe that this is only possible if 𝑆𝛿 is

not visited along 𝜋 . Hence, we know that 𝑄𝛿𝑝 𝑗
holds along 𝜋 until A𝛿𝑝 𝑗 𝑖 𝑗 is entered and never left.

Further, as A𝛿𝑝 𝑗 𝑖 𝑗 is assumed to be never left after some time 𝑘 > 0, we know that from that time

onward there exists no 𝑝 𝑗+1 s.t. 𝑆𝛿′𝑝 𝑗+1
is visited again by 𝜋 . This implies that for all vertices 𝜋 (𝑘 ′)

with 𝑘 ′ > 𝑘 the last two lines of𝜓𝛿′𝑝 𝑗+1
(denoted𝜓 ′

𝛿′𝑝 𝑗+1

) must be true for at lease one 𝑝 𝑗+1. Hence,

𝜋 fulfills the property

Ψ𝛿𝑝 𝑗
:=□𝑄𝛿𝑝 𝑗

∧ ^
(∨

𝑝 𝑗+1∈𝑃\{𝑝1,...,𝑝 𝑗 }𝜓
′
𝛿′𝑝 𝑗+1

)
︸ ︷︷ ︸

Ψ′
𝛿𝑝𝑗

(61a)

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

45

With this, it remains to show that Ψ𝛿𝑝 𝑗
implies that the last line of (59) is true for 𝜋 . In particular,

we can show that both statements are equivalent, i.e.,

Ψ𝛿𝑝 𝑗
=□𝑄𝛿𝑝 𝑗

∧
∨

𝑝 𝑗+1∈𝑃\{𝑝1,...,𝑝 𝑗 }

(
^□𝑅𝑝 𝑗+1

∧ □^𝐺𝑝 𝑗+1

)
(61b)

Equation (61) is proved in Sec. B.3.6. This conclues the proof. □

B.3.3 Completeness. We now showwhy the fixpoint algorithm in (7) is complete, i.e., whyW ⊆ 𝑍 ∗

in Thm. 3.1 holds.

We also prove completeness by an induction over the nesting of fixed points in (7) from inside to

outside. In particular, we iteratively consider the fixed points 𝑌 ∗
𝛿𝑝 𝑗

and show that 𝑌 ∗
𝛿𝑝 𝑗

⊆ W𝛿𝑝 𝑗
. As

𝜓𝛿𝑝 𝑗
simplifies to 𝜑 in (6) for 𝑝 𝑗 = 𝑝0 = 0, we ultimately show that W ⊆ 𝑍 ∗

in Thm. 3.1. With this

insight the proof of the completness part of Thm. 3.1 reduces to the following proposition.

Proposition B.4. For all 𝑗 ∈ [0, 𝑘], computation-prefixes 𝛿 = 𝑝0𝑖0 . . . 𝑝 𝑗−1𝑖 𝑗−1 and next permuta-
tion index 𝑝 𝑗 ∈ 𝑃 \ {𝑝0, . . . , 𝑝 𝑗−1} it holds that W𝛿𝑝 𝑗

⊆ 𝑌 ∗
𝛿𝑝 𝑗

.

Proof. The proof proceeds by a nested induction over 𝑗 starting with 𝑗 = 𝑘 .

Base case: Recall that for 𝑗 = 𝑘 the last line of (59) disappears. Hence, for any state 𝑣 ∈ W𝛿𝑝 𝑗

either the first or the second line of (59) holds. Then the proof reduces to Thm. 3.3 and Thm. 3.2 in

the following way.

First, we fix all fixpoint variables 𝑌 ∗
𝑝0 ...𝑝𝑙

and 𝑋
𝑖𝑙
𝑝0 ...𝑝𝑙

for 𝑙 < 𝑗 as well as 𝑌 ∗
𝛿𝑝 𝑗

. With this, we see

that 𝑇 := 𝑆𝛿 ∪ (𝑄𝛿𝑝 𝑗
∩𝐺𝑝 𝑗

∩ Cpre(𝑌 ∗
𝛿𝑝 𝑗

)) becomes a fixed set of states and (57a) reduces to

𝑌 ∗
𝛿𝑝 𝑗

= 𝑍 ∗ (⟨𝑇,𝑄𝛿𝑝 𝑗
⟩)

where 𝑍 ∗ (⟨𝑇,𝑄⟩) is the set of states computed by the fixpoint algorithm in (12).

Then it follows from Thm. 3.3 that any state 𝑣 ∈ 𝑉 for which there exists a fair adversarial play

𝜋 that is winning for the winning condition 𝑄𝛿𝑝 𝑗
U𝑇 is contained in 𝑌 ∗

𝛿𝑝 𝑗
. If, indeed the first line of

(59) holds for 𝜋 , this ensures that the claim holds.

Now assume that 𝑄𝛿𝑝 𝑗
U𝑇 holds for 𝜋 but 𝑆𝛿 is never reached. Hence, 𝑄𝛿𝑝 𝑗

U(𝑄𝛿𝑝 𝑗
∩ 𝐺𝑝 𝑗

∩
Cpre(𝑌 ∗

𝛿𝑝 𝑗
)) holds for 𝜋 . With this, it follows form Thm. 3.2 that any state 𝑣 ∈ 𝑉 for which there

exists a fair adversarial play 𝜋 for which the second line of (59) holds is contained in 𝑌 ∗
𝛿𝑝 𝑗

, proving

the claim in this case.

Induction Step: For the induction from “ 𝑗 + 1” to “ 𝑗” we first analyze the assumption. I.e., we know

that for the longer computation prefix 𝛿 ′ = 𝛿𝑝 𝑗 and any next permutation index 𝑝 𝑗+1 we have that

W𝛿′𝑝 𝑗+1
⊆ 𝑌 ∗

𝛿′𝑝 𝑗+1

. Further, observe that Ψ′
𝛿𝑝 𝑗

⊆ ⋃
𝑝 𝑗+1∈𝑃\{𝑝1,...,𝑝 𝑗 } W𝛿′𝑝 𝑗+1

\ 𝑆𝛿𝑝 𝑗 𝑖 𝑗 by construction.

We therefore have

Ψ′
𝛿𝑝 𝑗

⊆
⋃

𝑝 𝑗+1∈𝑃\{𝑝1,...,𝑝 𝑗 }
𝑌 ∗
𝛿′𝑝 𝑗+1

\ 𝑆𝛿𝑝 𝑗 𝑖 𝑗 = A𝛿𝑝 𝑗 𝑖 𝑗 .

With this observation, we see that any fair adversarial play 𝜋 which fulfills the last line of (59) also

fulfills the weaker condition 𝑄𝛿𝑝 𝑗
UA𝛿𝑝 𝑗 𝑖 𝑗 . Therefore, the claim follows from the same reasoning

as in the base case by re-defining 𝑇 to 𝑇 := 𝑆𝛿 ∪ (𝑄𝛿𝑝 𝑗
∩𝐺𝑝 𝑗

∩ Cpre(𝑌 ∗
𝛿𝑝 𝑗

)) ∪ A𝛿𝑝 𝑗 𝑖 𝑗 . □

B.3.4 Additional Lemmas and Proofs. In this section we provide additional lemmas and proofs to

support the proof of Thm. 3.1 and Thm. B.7.

46 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

B.3.5 Proof of Prop. B.3.

Lemma B.9. Given the premisses of Prop. B.3, it holds for all 𝑣 ∈ 𝑋
𝑖 𝑗

𝛿𝑝 𝑗
that

(i) 𝑣 ∈ 𝑆𝛿 iff rank(𝑣) ≤ 𝛿𝑝 𝑗0𝛾

(ii) 𝑣 ∈ 𝑋
𝑖 𝑗

𝛿𝑝 𝑗
iff rank(𝑣) ≤ 𝛿𝑝 𝑗𝑖 𝑗𝛾

(iii) 𝑣 ∈ 𝑌 ∗
𝛿𝑝 𝑗

iff rank(𝑣) ≤ 𝛿𝑝 𝑗𝑛𝛾

(iv) 𝑣 ∈ A𝛿𝑝 𝑗 𝑖 𝑗 iff there exists 𝛾 < 𝛾 ′ ≤ 𝛾 s.t. rank(𝑣) = 𝛿𝑝 𝑗𝑖 𝑗𝛾
′

Proof of Lem. B.9. We prove all claims separately.

(i) It immediately follows from Def. B.6 (i) that 𝛿𝑝 𝑗0𝛾 ∈ 𝑅(𝑣) iff 𝑣 ∈ 𝑆𝛿 . If it is the minimal element in

𝑅(𝑣) then rank(𝑣) = 𝛿𝑝 𝑗0𝛾 , if not, there exists a smaller element in 𝑅(𝑣), and then rank(𝑣) < 𝛿𝑝 𝑗0𝛾

from the definition of rank.

(ii) First, observe, that for 𝑗 = 𝑘 it follows from (57a) that 𝑋
𝑖𝑘
𝛿𝑝𝑘

= 𝑆𝛿𝑝𝑘𝑖𝑘 and therefore from (i) that

𝑣 ∈ 𝑋
𝑖𝑘
𝛿𝑝𝑘

iff rank(𝑣) ≤ 𝛿𝑝𝑘𝑖𝑘 . Now we do an induction, assuming that for any 𝑝 𝑗+1 ∈ 𝑃 \ {𝑝0, . . . , 𝑝 𝑗 }
and 0 < 𝑖 𝑗+1 ≤ 𝑛 it holds that 𝑣 ∈ 𝑋

𝑖 𝑗+1

𝛿𝑝 𝑗+1

iff rank(𝑣) ≤ 𝛿 ′𝑝 𝑗+1𝑖 𝑗+1𝛾
′
(where 𝛿 ′ goes up to index 𝑗 and

𝛾 ′
starts only at index 𝑗 + 2. Now recall that

𝑋
𝑖 𝑗

𝛿𝑝 𝑗
=

⋃
𝑝 𝑗+1∈𝑃\{𝑝0,...,𝑝 𝑗 }

𝑌 ∗
𝛿𝑝 𝑗+1

=
⋃

𝑝 𝑗+1∈𝑃\{𝑝0,...,𝑝 𝑗 }

⋃
𝑖 𝑗+1>0

𝑋
𝑖 𝑗+1

𝛿𝑝 𝑗 𝑖 𝑗𝑝 𝑗+1

.

Hence, 𝑣 ∈ 𝑋
𝑖 𝑗

𝛿𝑝 𝑗
iff there exists 𝑝 𝑗+1 ∈ 𝑃 \ {𝑝0, . . . , 𝑝 𝑗 } and 0 < 𝑖 𝑗+1 ≤ 𝑛 s.t. 𝑣 ∈ 𝑋

𝑖 𝑗+1

𝛿𝑝 𝑗 𝑖 𝑗𝑝 𝑗+1

. Now we

know that for any choice of 𝑝 𝑗+1 and 𝑖 𝑗+1 we have rank(𝑣) ≤ 𝛿 ′𝑝 𝑗𝑖 𝑗𝑝 𝑗+1𝑖 𝑗+1𝛾
′
. Now the worst case,

in terms of the lexicographic ordering over 𝐷 is that 𝑝 𝑗+1 = max(𝑃 \ {𝑝0, . . . , 𝑝 𝑗 }) and 𝑖 𝑗+1 = 𝑛.

Hence, we know that rank(𝑣) ≤ 𝛿𝑝 𝑗𝑖 𝑗𝛾 .

(iii) As 𝑌 ∗
𝛿𝑝 𝑗

=
⋃

𝑖 𝑗>0
𝑋
𝑖 𝑗

𝛿𝑝 𝑗
it follows that there exists 0 < 𝑖 𝑗 ≤ 𝑛 s.t. 𝑣 ∈ 𝑋

𝑖 𝑗

𝛿𝑝 𝑗
and (from (ii)) therefore

rank(𝑣) ≤ 𝛿𝑝 𝑗𝑖 𝑗𝛾 . Again, the worst case is 𝑖 𝑗 = 𝑛, giving rank(𝑣) ≤ 𝛿𝑝 𝑗𝑛𝛾 .

(iv) It follows from (57a) that 𝑣 ∈ A𝛿𝑝 𝑗 𝑖 𝑗 iff 𝑣 ∈ 𝑋
𝑖 𝑗

𝛿𝑝 𝑗
\ 𝑆𝛿𝑝 𝑗 𝑖 𝑗 . Hence, it follows from (i) and

(ii) that rank(𝑣) > 𝛿𝑝 𝑗0𝛾 and rank(𝑣) ≤ 𝛿𝑝 𝑗𝑖 𝑗𝛾 which is true iff there exists 𝛾 < 𝛾 ′ ≤ 𝛾 s.t.

rank(𝑣) = 𝛿𝑝 𝑗𝑖 𝑗𝛾
′
, which proves the statement. □

Given these properties of the ranking function, we are ready to prove the suggested case split in

Prop. B.3.

Proof of Prop. B.3. We call a vertex 𝑣 ∈ 𝑉 that fulfills cases (𝛼) in either Lem. B.9 or Prop. B.3 an

(𝛼)-vertex. First, observe that cases (i) and (iv) in Lem. B.9 coincide with cases (a) and (d), respectively,

in Prop. B.3. Further, recall that 𝑋 1

𝛿𝑝 𝑗
= ∅. Therefore, 𝑋 1

𝛿𝑝 𝑗
only contains (a)-,(b)- and (d)-vertices,

as Apre(·, ∅) = ∅. Now we know from (ii) that for any 𝑣 ∈ 𝑋 1

𝛿𝑝 𝑗
we have rank(𝑣) ≤ 𝛿𝑝 𝑗1𝛾 .

Now excluding the rankings for (a)- and (d)-vertices we obtain that (b)-vertices must have rank

rank(𝑣) ≤ 𝛿𝑝 𝑗1𝛾 . Similarly, for every 𝑖 𝑗 > 1 we know that 𝑋
𝑖 𝑗

𝛿𝑝 𝑗
contains (a)-, (b)-, (c)- and (d)-

vertices. Now excluding (a)-, (b)- and (d)- vertices yields rank(𝑣) ≤ 𝛿𝑝 𝑗𝑖 𝑗𝛾 for all (c)-vertices. □

B.3.6 Proof of (61). Given the notation in Sec. B.3.2 we prove that the equality in (61) holds.

First recall that

Ψ′
𝛿′𝑝 𝑗+1

:=

(
□𝑄𝛿′𝑝 𝑗+1

∧ □^𝐺𝑝 𝑗+1

∨ □𝑄𝛿′𝑝 𝑗+1
∧

(∨
𝑖∈𝑃\𝑗+1

(
^□𝑅𝑖 ∧ □^𝐺𝑖

)))
, (62)

where 𝑃\𝑗+1 := 𝑃 \ {𝑝1, . . . , 𝑝 𝑗+1}.

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

47

For the insertion of (62) into (61a) we have the following observations. First, observe that

^(𝐵 ∨𝐶) = ^𝐵 ∨ ^𝐶 , i.e., we can distribute the eventuality operator preceding Ψ′
𝛿′𝑝 𝑗+1

over both

lines. Second, we can re-order the preceeding disjunction over 𝑝 𝑗+1 in (61a) and the disjunction

between the two lines of (62). This yields to the following condition

Ψ𝛿𝑝 𝑗
=□𝑄𝛿𝑝 𝑗

∧
(∨

𝑝 𝑗+1∈𝑃\𝑗 (^𝜆1) ∨
∨

𝑝 𝑗+1∈𝑃\𝑗 (^𝜆2)
)

=

(
□𝑄𝛿𝑝 𝑗

∧ ∨
𝑝 𝑗+1∈𝑃\𝑗 (^𝜆1)

)
︸ ︷︷ ︸

=:Ψ1

∨
(
□𝑄𝛿𝑝 𝑗

∧ ∨
𝑝 𝑗+1∈𝑃\𝑗 (^𝜆2)

)
︸ ︷︷ ︸

=:Ψ2

, (63)

where 𝜆𝑖 denotes the 𝑖-th line of the conjunction in (62).

Now let us investigate the terms Ψ1 and Ψ2 in (63) separately. For Ψ1, observe that ^□^𝐴 = □^𝐴

and ^(□𝐴 ∧ □𝐵) = ^□𝐴 ∧ ^□𝐵. Further we have 𝑄𝛿′𝑝 𝑗+1
= 𝑄𝛿𝑝 𝑗

∧ 𝑅 𝑗+1 ⊆ 𝑄𝛿𝑝 𝑗
and hence

Ψ1 =□𝑄𝛿𝑝 𝑗
∧

∨
𝑝 𝑗+1∈𝑃\𝑗

(
^□(𝑄𝛿𝑝 𝑗

∧ 𝑅𝑝 𝑗+1
) ∧ □^𝐺𝑝 𝑗+1

)
By using the equatlity ^□(𝐴 ∧ 𝐵) = ^□𝐴 ∧ ^□𝐵 and the fact that 𝑄𝛿𝑝 𝑗

is independent of the

choice of 𝑝 𝑗+1 we get

Ψ1 =□𝑄𝛿𝑝 𝑗
∧ ^□𝑄𝛿𝑝 𝑗

∧
∨

𝑝 𝑗+1∈𝑃\𝑗

(
^□𝑅𝑝 𝑗+1

∧ □^𝐺𝑝 𝑗+1

)
=□𝑄𝛿𝑝 𝑗

∧
∨

𝑝 𝑗+1∈𝑃\𝑗

(
^□𝑅𝑝 𝑗+1

∧ □^𝐺𝑝 𝑗+1

)
. (64)

To analyze Ψ2 in (63), recall that the eventuality operator ^ distributes over disjunctions. We

can therefore move the inner disjunction over 𝑖 outside and get

Ψ2 =□𝑄𝛿𝑝 𝑗
∧

∨
𝑝 𝑗+1∈𝑃\𝑗

©«
∨

𝑖∈𝑃\𝑗+1

[
^

(
□𝑄𝛿′𝑝 𝑗+1

∧
(
^□𝑅𝑖 ∧ □^𝐺𝑖

))]ª®®¬
Now observe that

(
^□𝑅𝑖 ∧ □^𝐺𝑖

)
= ^

(
□𝑅𝑖 ∧ □^𝐺𝑖

)
and ^(□𝐴∧^𝐵) = ^□𝐴∧^𝐵. Additionally

using 𝑄𝛿′𝑝 𝑗+1
= 𝑄𝛿𝑝 𝑗

∧ 𝑅𝑝 𝑗+1
⊆ 𝑄𝛿𝑝 𝑗

we get

Ψ2 =□𝑄𝛿𝑝 𝑗
∧

∨
𝑝 𝑗+1∈𝑃\𝑗

©«
∨

𝑖∈𝑃\𝑗+1

[
^□(𝑄𝛿𝑝 𝑗

∧ 𝑅𝑝 𝑗+1
) ∧

(
^□𝑅𝑖 ∧ □^𝐺𝑖

)]ª®®¬
Now we can do the same trick as in the simplification of Ψ (see (64)) to remove the 𝑄𝛿𝑝 𝑗

term

inside the disjunction and get

Ψ2 =□𝑄𝛿𝑝 𝑗
∧

∨
𝑝 𝑗+1∈𝑃\𝑗

©«
∨

𝑖∈𝑃\𝑗+1

[
^□𝑅𝑝 𝑗+1

∧
(
^□𝑅𝑖 ∧ □^𝐺𝑖

)]ª®®¬ (65)

48 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

To see how we can simplify (65), let us assume that the set 𝑃\𝑗 contains three elements, e.g.,

{𝑎, 𝑏, 𝑐}. Then we can expand (65) to

^□𝑅𝑎 ∧
(
^□𝑅𝑏 ∧ □^𝐺𝑏

)
∨ ^□𝑅𝑎 ∧

(
^□𝑅𝑐 ∧ □^𝐺𝑐

)
∨ ^□𝑅𝑏 ∧

(
^□𝑅𝑎 ∧ □^𝐺𝑎

)
∨ ^□𝑅𝑏 ∧

(
^□𝑅𝑐 ∧ □^𝐺𝑐

)
∨ ^□𝑅𝑐 ∧

(
^□𝑅𝑏 ∧ □^𝐺𝑏

)
∨ ^□𝑅𝑐 ∧

(
^□𝑅𝑎 ∧ □^𝐺𝑎

)
Now, we can re-order terms and get(

^□𝑅𝑏 ∧ □^𝐺𝑏

)
∧

(
^□𝑅𝑎 ∨ ^□𝑅𝑐

)
∨

(
^□𝑅𝑐 ∧ □^𝐺𝑐

)
∧

(
^□𝑅𝑎 ∨ ^□𝑅𝑏

)
∨

(
^□𝑅𝑎 ∧ □^𝐺𝑎

)
∧

(
^□𝑅𝑏 ∨ ^□𝑅𝑐

)
Generalizing this observation, we get the following formula equivalent to (65)

Ψ2 = □𝑄𝛿𝑝 𝑗
∧

∨
𝑝 𝑗+1∈𝑃\𝑗

©«
(
^□𝑅𝑝 𝑗+1

∧ □^𝐺𝑝 𝑗+1
)
)
∧

∨
𝑗 ∈𝑃\𝑗+1

^□𝑅 𝑗

ª®®¬ (66)

Now recall that 𝐴 ∧ 𝐵 ⇒ 𝐴 for any choice of 𝐴 and 𝐵. With this one can verify that Ψ2 ⇒ Ψ1 as

the term after the disjuction over 𝑝 𝑗+1 in (66) implies the term after the disjuction over 𝑝 𝑗+1 in (64).

Hence, the set of states which fulfill Ψ1 in (64) is always larger then the set of states which fulfill

Ψ2 (66)). As both terms are connected by a conjunction in (63), we can ignore Ψ2 in (63) and obtain

Ψ𝛿𝑝 𝑗
= Ψ1 = □𝑄𝛿𝑝 𝑗

∧
∨

𝑝 𝑗+1∈𝑃\𝑗

(
^□𝑅𝑝 𝑗+1

∧ □^𝐺𝑝 𝑗+1

)
. (67)

This concludes the proof of (61) as (67) coincides with (61b).

B.4 Additional Proofs for Sec. 3.4
B.4.1 Fair Adversarial Rabin Chain Games.

Theorem (Thm. 3.6 restated for convenience). Let Gℓ = ⟨G, 𝐸ℓ⟩ be a game graph with live
edges and R be a Rabin condition over G with 𝑘 pairs for which the chain condition (17) holds. Further,
let

𝑍 ∗ B 𝜈𝑌0. 𝜇𝑋0. 𝜈𝑌𝑘 . 𝜇𝑋𝑘 . 𝜈𝑌𝑘−1. . . . 𝜇𝑋1 .
⋃𝑘

𝑗=0
C̃𝑗 , (68a)

where C̃𝑗 B 𝑅 𝑗 ∩
[(
𝐺 𝑗 ∩ Cpre(𝑌𝑗)

)
∪ Apre(𝑌𝑗 , 𝑋 𝑗)

]
with 𝐺𝑝0

B ∅ and 𝑅𝑝0
B ∅.

Then 𝑍 ∗ is equivalent to the winning regionW of Player 0 in the fair adversarial game over Gℓ for
the winning condition 𝜑 in (6). Moreover, the fixpoint algorithm runs in 𝑂 (𝑛𝑘+2) symbolic steps, and a
memoryless winning strategy for Player 0 can be extracted from it.

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

49

In this section we prove Thm. 3.6. That is, we prove that for Rabin Chain conditions, the fixpoint

computing 𝑍 ∗
in (7) simplifies to the one in (68). This is formalized in the next proposition.

Proposition B.5. Given the premisses of Thm. 3.6 let 𝑍 ∗ be the fixed point computed by (7) and
𝑍 ∗ the fixed point computed by (68). Then 𝑍 ∗ = 𝑍 ∗.

If Prop. B.5 holds, we imediately see that Thm. 3.6 directly follows from Thm. 3.1. It therefore

remains to prove Prop. B.5.

Similar to the soundness and completeness proof for Thm. 3.1 we prove Prop. B.5 by an induction

over the nesting of fixpoints in (7) form inside to outside. Here, however we do not need to

explicitly refer to counters 𝑖 𝑗 as in Prop. 3.6. Hence, we can look at permutation prefixes instead of

configuration prefixes. We have the following proposition.

Proposition B.6. Let 𝑃 be the index set of the Rabin chain condition R in Thm. 3.6. Further, for
any 𝑗 ∈ [0;𝑘] let 𝛿 := 𝑝0𝑝1 . . . 𝑝 𝑗−1 be a permutation prefix, 𝑃\𝛿 := 𝑃 \ {𝑝0, . . . , 𝑝 𝑗−1} the reduced
index set and 𝑞0 := 𝑝 𝑗 ∈ 𝑃\𝛿 the current permutation index. Further, define6

𝑍 ∗
𝛿𝑝 𝑗
B𝜈𝑌𝑞0

. 𝜇𝑋𝑞0
.⋃

𝑞1∈𝑃\𝛿𝑝𝑗
𝜈𝑌𝑞1

. 𝜇𝑋𝑞1
.

... ⋃
𝑞𝑛 ∈𝑃\𝛿𝑝𝑗 \{𝑞1,...,𝑞𝑛−1 } 𝜈𝑌𝑞𝑛 . 𝜇𝑋𝑞𝑛 . 𝑆𝛿 ∪

[⋃𝑛
ℓ=0

C𝛿𝑞ℓ
]

(69a)

where 𝑛 B 𝑘 − 𝑗 ,

C𝛿𝑞 𝑗
B 𝑄𝛿 ∩

ℓ⋂
𝑖=0

𝑅𝑞𝑖 ∩
[(
𝐺𝑞ℓ ∩ Cpre(𝑌𝑞ℓ)

)
∪

(
Apre(𝑌𝑞ℓ , 𝑋𝑞ℓ)

)]
, (69b)

𝑄𝛿 B
⋂𝑗

𝑖=0
𝑅𝑝𝑖 and 𝑆𝑝0 ...𝑝 𝑗−1

B
⋃𝑗−1

𝑏=0
C𝑝0 ...𝑝𝑏 .

Then it holds that

𝑍 ∗
𝛿𝑝 𝑗

=𝜈𝑌𝑟0
. 𝜇𝑋𝑟0

. 𝜈𝑌𝑟1
. 𝜇𝑋𝑟1

. . . . 𝜈𝑌𝑟𝑛 . 𝜇𝑋𝑟𝑛 . 𝑆𝛿 ∪
[⋃𝑛

ℓ=0
C̃𝛿𝑟ℓ

]
, (70a)

where

C̃𝛿𝑟ℓ := 𝑄𝛿𝑝 𝑗
∩ 𝑅𝑟ℓ ∩

[(
𝐺𝑟ℓ ∩ Cpre(𝑌𝑟ℓ)

)
∪

(
Apre(𝑌𝑟ℓ , 𝑋𝑟ℓ)

)]
(70b)

with 𝑟𝑖 ∈ 𝑃\𝛿𝑝 𝑗
for all 𝑖 ∈ [1;𝑛] s.t. 𝑟1 > 𝑟2 > . . . > 𝑟𝑛 and 𝑟0 = 𝑞0 = 𝑝 𝑗 .

It should be noted that Prop. B.6 needs to hold for any choice of 𝑗 and 𝛿 . Further, we have slightly

abused notation by not specifying the values of the fixpoint parameters used within 𝑆𝛿 . This is,

however, not relevant for the proof of Prop. B.6 and we should interpret 𝑆𝛿 as a term computed by

an arbitrary choice of the involved fixpoint parameters.

Now, it should be obvious that for the choice 𝑗 = 0 we get 𝛿 = 𝜀 and 𝑆𝛿 = ∅. Further, we see that
in this case, we have 𝑃\𝛿𝑝0

= 𝑃 which implies that 𝑍 ∗
𝑝0

in (69) coincides with 𝑍 ∗
in (7). Further, as

𝑃\𝛿𝑝0
= 𝑃 we must have 𝑟1 = 𝑘 , 𝑟2 = 𝑘 − 1, . . ., 𝑟𝑘 = 1 and 𝑟0 = 𝑝0 = 0 to fulfill the requirements on

𝑟 . Further𝑄𝑝0
= 𝑅0 = 𝑄 . Therefore 𝑍 ∗

𝑝0

in (70) coincides with 𝑍 ∗
in (68) in this case. Hence, proving

Prop. B.6 for any 𝑗 (including 𝑗 = 0), immediately proves Prop. B.5.

In the remainder of this section we prove Prop. B.6 by an induction over 𝑗 , starting with 𝑗 = 𝑘 as

the base case. Now observe that for 𝑗 = 𝑘 we have 𝑃\𝛿𝑝 𝑗
= ∅ and hence both (69) and (70) reduce to

6
Observe that 𝛿𝑝 𝑗 = 𝑝0 . . . 𝑝 𝑗−1𝑝 𝑗 is itself a permutation prefix.

50 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

a two-nested fixed point over the variables 𝑌𝑞0
, 𝑋𝑞0

and 𝑌𝑟0
, 𝑋𝑟0

, respectively, where 𝑟0 = 𝑞0 = 𝑝𝑘

by definition. Further, we see that C𝛿𝑞0
= C̃𝛿𝑟0

by definition, which immediately proves the claim of

Prop. B.6 for the base case.

In the remainder of this section we prove the induction step from “ 𝑗” to “ 𝑗 − 1” in a series of

definitions and lemmas.

Definition B.10. Let 𝑃 ⊆ N be a set of 𝑛 indices and 𝛽 = 𝑞1 . . . 𝑞𝑛 with 𝑞𝑖 ∈ 𝑃 and 𝑞𝑖 ≠ 𝑞 𝑗

for all 𝑗 ≠ 𝑖 a full permutation sequence of the elements from 𝑃 . For 1 ≤ 𝑗 ≤ 𝑙 ≤ 𝑛 we call

𝛽 𝑗𝑙 = 𝑞 𝑗𝑞 𝑗+1 . . . 𝑞 𝑗 a maximal decreasing sub-sequence of 𝛽 if (i) 𝑞 𝑗 < 𝑞 𝑗+1 < . . . < 𝑞𝑙 , (ii) 𝑞 𝑗−1 > 𝑞 𝑗

or 𝑗 = 1, and (iii) 𝑞𝑙 > 𝑞𝑙+1 or 𝑙 = 𝑛.

We see that, by definition, the first maximally decreasing sub-sequences of a permutation

sequence 𝛽 starts with 𝑞1. Intuitively, decreasing sub-sequences allow to immediately utilize the

properties in (17) to simplify the fixpoint expression.

Lemma B.11. Let 𝛿 , 𝑃\𝛿 and 𝑞0 = 𝑝 𝑗 as in Prop. B.6, 𝛽 = 𝑞1 . . . 𝑞𝑛 a full permutation sequence of
𝑃\𝛿𝑝 𝑗

and 𝛽 𝑗𝑙 = 𝑞 𝑗𝑞 𝑗+1 . . . 𝑞 𝑗 a maximal decreasing sub-sequence of 𝛽 . Then

𝜈𝑌𝑞 𝑗
. 𝜇𝑋𝑞 𝑗

. . . . 𝜈𝑌𝑞𝑙 . 𝜇𝑋𝑞𝑙 .
⋃𝑙

𝑖=𝑗 C𝛿𝑞𝑖 = 𝜈𝑌𝑞 𝑗
. 𝜇𝑋𝑞 𝑗

. C𝛿𝑞 𝑗
(71)

Proof. Let 𝛼 := 𝑞0 . . . 𝑞 𝑗−1 and observe that

C𝛿𝑞 𝑗
= 𝑄𝛿𝛼 ∩

[(
𝑅 𝑗 ∩𝐺𝑞 𝑗

∩ Cpre(𝑌𝑞 𝑗
)
)
∪

(
𝑅 𝑗 ∩ Apre(𝑌𝑞 𝑗

, 𝑋𝑞 𝑗
)
)]

C𝛿𝑞 𝑗+1
= 𝑄𝛿𝛼 ∩

[(
𝑅 𝑗 ∩ 𝑅 𝑗+1 ∩𝐺𝑞 𝑗+1

∩ Cpre(𝑌𝑞 𝑗
)
)
∪

(
𝑅 𝑗 ∩ 𝑅 𝑗+1 ∩ Apre(𝑌𝑞 𝑗

, 𝑋𝑞 𝑗
)
)]

= 𝑄𝛿𝛼 ∩
[(
𝑅 𝑗 ∩𝐺𝑞 𝑗+1

∩ Cpre(𝑌𝑞 𝑗
)
)
∪

(
𝑅 𝑗 ∩ Apre(𝑌𝑞 𝑗

, 𝑋𝑞 𝑗
)
)]

,

where the simplification of C𝛿𝑞 𝑗+1
follows from 𝑅 𝑗 ⊆ 𝑅 𝑗+1 (see (17)). So C𝛿𝑞 𝑗

and C𝛿𝑞 𝑗+1
really only

differ by the 𝐺𝑞 𝑗
(resp. 𝐺𝑞 𝑗+1

) term in the first term of the disjunct. As 𝐺𝑞 𝑗
⊇ 𝐺𝑞 𝑗+1

(see (17)) and all

terms in the first part of the disjunct are intersected, we see that C𝛿𝑞 𝑗
⊇ C𝛿𝑞 𝑗+1

. With this it follows

from case (iii) in Lem. B.4 that

𝜈𝑌𝑞 𝑗
. 𝜇𝑋𝑞 𝑗

.𝜈𝑌𝑞 𝑗+1
. 𝜇𝑋𝑞 𝑗+1

. C𝛿𝑞 𝑗
∪ C𝛿𝑞 𝑗+1

= 𝜈𝑌𝑞 𝑗
. 𝜇𝑋𝑞 𝑗

. C𝛿𝑞 𝑗
.

Applying this argument to all 𝑖 ∈ [𝑗 ; 𝑙] proves the claim. □

Definition B.12. We say that a permutation sequence 𝛽 has chain index 𝑚 if it contains 𝑚

maximal decreasing sub-sequences. For 𝛽 = 𝑞1 . . . 𝑞𝑛 with chain index𝑚 we define its reduction 𝛽↓
as 𝛽↓ := 𝑟1 ...𝑟𝑚 s.t. 𝑟𝑚 = 𝑞 𝑗 if 𝛽 𝑗𝑙 is the𝑚’th maximally decreasing sub-sequence of 𝛽 .

Lemma B.13. Let 𝛿 , 𝑃\𝛿 and 𝑞0 = 𝑝 𝑗 as in Prop. B.6, 𝛽 = 𝑞1 . . . 𝑞𝑛 a full permutation sequence of
𝑃\𝛿𝑝 𝑗

with chain index𝑚 and 𝛽↓ := 𝑟1...𝑟𝑚 . Then

𝜈𝑌𝑞0
. 𝜇𝑋𝑞0

. 𝜈𝑌𝑞1
. 𝜇𝑋𝑞1

. . . . 𝜈𝑌𝑞𝑛 . 𝜇𝑋𝑞𝑛

𝑛⋃
𝑗=0

C𝛿𝑞 𝑗

= 𝜈𝑌𝑟0
. 𝜇𝑋𝑟0

. 𝜈𝑌𝑟1
. 𝜇𝑋𝑟1

. . . . 𝜈𝑌𝑟𝑚 . 𝜇𝑋𝑟𝑚

𝑚⋃
𝑙=0

C𝛿𝑞𝑙 (72)

where 𝑞0 = 𝑟0 = 𝑝 𝑗 .

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

51

Proof. First, observe that by construction we always have 𝑟1 = 𝑞1. Hence, 𝑄𝛿𝛼 in the proof

of Lem. B.11 reduces to 𝑄𝛿𝑞1
in this case. Further, consider 𝑟2 = 𝑞 𝑗 and observe that in this case

𝑄𝛿𝛼 = 𝑄𝛿 ∩
⋂𝑗−1

𝑖=0
𝑅𝑞𝑖 = 𝑄𝛿𝑞0

∩𝑅𝑞1
= 𝑄𝛿𝑝 𝑗

∩𝑅𝑟1
as 𝑞1 . . . 𝑞 𝑗−1 is a maximal decreasing sub-sequence

by construction. Iteratively re-applying this argument along with Lem. B.11 for every 𝑙 ∈ [1,𝑚]
therefore proves the claim. □

Now observe that we can re-apply Lem. B.13 to 𝛽↓ and reduce it even more. That means, 𝛽↓
could now again have maximal decreasing sub-sequences and we therefore can reduce it to (𝛽↓)↓.
This might again be reduceable and so forth. We therefore define the maximal reduced permutation
sequence 𝛽⇓ = (((𝛽↓)↓) . . .)↓ = 𝑟1 . . . 𝑟𝑛 s.t. 𝑟1 > 𝑟2 > . . . 𝑟𝑛 , i.e. the chain index of 𝛽⇓ is equivalent
to its length. With this, we have the following result.

Lemma B.14. Let 𝛿 , 𝑃\𝛿 and 𝑞0 = 𝑝 𝑗 as in Prop. B.6, 𝛽 = 𝑞1 . . . 𝑞𝑛 a full permutation sequence of
𝑃\𝛿𝑝 𝑗

and 𝛽⇓ := 𝑟1...𝑟𝑚 its maximal reduced permutation sequence. Then

𝜈𝑌𝑞0
. 𝜇𝑋𝑞0

. 𝜈𝑌𝑞1
. 𝜇𝑋𝑞1

. . . . 𝜈𝑌𝑞𝑛 . 𝜇𝑋𝑞𝑛

𝑛⋃
𝑗=0

C𝛿𝑞 𝑗

= 𝜈𝑌𝑟0
. 𝜇𝑋𝑟0

. 𝜈𝑌𝑟1
. 𝜇𝑋𝑟1

. . . . 𝜈𝑌𝑟𝑚 . 𝜇𝑋𝑟𝑚

𝑚⋃
𝑙=0

C̃𝛿𝑞𝑙 (73)

Proof. It follows from the definition of 𝛽⇓ and repeatably applying Lem. B.13 that

𝜈𝑌𝑞0
. 𝜇𝑋𝑞0

. 𝜈𝑌𝑞1
. 𝜇𝑋𝑞1

. . . . 𝜈𝑌𝑞𝑛 . 𝜇𝑋𝑞𝑛

𝑛⋃
𝑗=0

C𝛿𝑞 𝑗

= 𝜈𝑌𝑟0
. 𝜇𝑋𝑟0

. 𝜈𝑌𝑟1
. 𝜇𝑋𝑟1

. . . . 𝜈𝑌𝑟𝑚 . 𝜇𝑋𝑟𝑚

𝑚⋃
𝑙=0

C𝛿𝑟𝑙

Now we have by definition that 𝑟0 = 𝑞0 and 𝑟1 = 𝑞1 and therefore C𝛿𝑟0
= C̃𝛿𝑟0

and C𝛿𝑟1
= C̃𝛿𝑟1

by

definition. Now recall that 𝑟1 > 𝑟2, hence 𝑅𝑟1
∩ 𝑅𝑟2

= 𝑅𝑟2
. Iteratively applying this argument gives

C𝛿𝑟𝑙 = C̃𝛿𝑟𝑙 for all 𝑙 ∈ [1, 𝑛], what proves the claim. □

Note that the only full permutation sequence of 𝑃\𝛿𝑝 𝑗
with chain index 𝑛 is the one where

𝑞1 > 𝑞2 > . . . > 𝑞𝑛 , giving 𝛽↓ = 𝛽⇓ = 𝛽 . Hence, the sequence 𝑟1 . . . 𝑟𝑛 used in (70) is actually

the maximal permutation sequence of 𝑃\𝛿𝑝 𝑗
. We see that all other full permutation sequences

𝛾 of 𝑃\𝛿𝑝 𝑗
have chain index 𝑚 s.t. 1 ≤ 𝑚 < 𝑛. As the C̃ terms in (18b) do not depend on the

history of permutation sequences from 𝑃\𝛿𝑝 𝑗
, we see that any term constructed for a non-maximal

permutation sequence is contained in the term constructed for the maximal permutation sequence.

This is formalized in the next lemma.

Lemma B.15. Let 𝛿 , 𝑃\𝛿 and 𝑞0 = 𝑝 𝑗 as in Prop. B.6 and let 𝛽 = 𝑟1...𝑟𝑛 be the maximal permutation
sequence of 𝑃\𝛿𝑝 𝑗

, that its 𝛽 = 𝛽⇓. Further, let 𝛾 ≠ 𝛽 be a full permutation sequence of 𝑃\𝛿𝑝 𝑗
s.t.

𝛾⇓ = 𝑠1 . . . 𝑠𝑚 with𝑚 < 𝑛. Then

𝜈𝑌𝑟1
. 𝜇𝑋𝑟1

. . . . 𝜈𝑌𝑟𝑛 . 𝜇𝑋𝑟𝑛

𝑛⋃
𝑙=1

C̃𝛿𝑟𝑙 (74)

⊆ 𝜈𝑌𝑠1
. 𝜇𝑋𝑠1

. . . . 𝜈𝑌𝑠𝑚 . 𝜇𝑋𝑠𝑚

𝑚⋃
𝑙=1

C̃𝛿𝑠𝑙 (75)

52 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

Proof. As 𝛽 is a full permutation sequence of 𝑃\𝛿𝑝 𝑗
we know that for any 𝑖 ∈ [1;𝑚] there exists

one 𝑗 ∈ [1;𝑛] s.t. 𝑠𝑖 = 𝑟 𝑗 . Further, as C̃ does not depend on the history of the permutation sequence

𝛽 and 𝛾 we see that C̃𝛿𝑠𝑖 = C̃𝛿𝑟 𝑗 in this case. As𝑚 < 𝑛 we see that the first line of (75) contains the

fixpoint variables and C̃ terms of the second line of (75). We can therefore apply Lem. B.4 (i) and

(ii) which immediately proves the claim. □

Using this result, we are finally ready to prove the induction step of Prop. B.6.

Proof of Prop. B.6. Recall that Prop. B.6 trivially holds for 𝑗 = 𝑘 which constitutes the base

case of an induction over 𝑗 . Now let us prove the induction step. Hence, let us assume that Prop. B.6

holds for 𝑗 . Now consider “ 𝑗 − 1”, i.e., consider the permutation prefix 𝛿 ′ = 𝑝0 . . . 𝑝 𝑗−2 and pick any

𝑝 𝑗−1 ∈ 𝑃𝛿′ . By the induction hypothesis, we know that Prop. B.6 holds for 𝛿 = 𝑝0 . . . 𝑝 𝑗−1 and any

choice of 𝑝 𝑗 ∈ 𝑃\𝛿 . That is, 𝑍
∗
𝛿𝑝 𝑗

can be computed using (70). With this, the fixpoint algorithm in

(69) for 𝛿 ′ and 𝑝 𝑗−1 simplifies to

𝑍 ∗
𝛿′𝑝 𝑗−1

= 𝑍 ∗
𝛿
=𝜈𝑌𝑝 𝑗−1

. 𝜇𝑋𝑝 𝑗−1
.
⋃

𝑝 𝑗 ∈𝑃\𝛿 𝑍
∗
𝛿𝑝 𝑗

.

Here, for any choice 𝑝 𝑗 ∈ 𝑃\𝛿 , the term 𝑍 ∗
𝛿𝑝 𝑗

is given by (70) where 𝑟0 = 𝑝 𝑗 and 𝛽𝑝 𝑗
= 𝑟1 . . . 𝑟𝑛 being

the maximal permutation sequence of 𝑃\𝛿𝑝 𝑗
. Now observe that for 𝑗 > 0 and any choice of 𝑝 𝑗 we

see that 𝛾 = 𝑟0 . . . 𝑟𝑛 is actually a permutation sequence of 𝑃\𝛿 , but not necessarily the maximal

one. However, observe that the maximal permutation sequence 𝛽 of 𝑃\𝛿 (that is 𝛽 = 𝛽⇓) is actually

defined by 𝛽 = 𝑝 𝑗𝛽�̃� 𝑗
for 𝑝 𝑗 := max(𝑃\𝛿). With this, we can apply Lem. B.15 to see that 𝑍 ∗

𝛿𝑝 𝑗
⊆ 𝑍 ∗

𝛿�̃� 𝑗

for all 𝑝 𝑗 ∈ 𝑃\𝛿 . With this we obtain

𝑍 ∗
𝛿′𝑝 𝑗−1

= 𝑍 ∗
𝛿
=𝜈𝑌𝑝 𝑗−1

. 𝜇𝑋𝑝 𝑗−1
. 𝑍 ∗

𝛿�̃� 𝑗
.

One can now verify that this allows us to choose 𝑟0 = 𝑝 𝑗−1, 𝑟1 = 𝑝 𝑗 and 𝑟2 . . . 𝑟𝑛+1 = 𝛽�̃� 𝑗
and have

𝑟1 > 𝑟2 > . . . 𝑟𝑛+1. Hence, 𝑍
∗
𝛿′𝑝 𝑗−1

can be written in the form of (70), which proves the statement. □

B.4.2 Fair Adversarial Parity Games. We now consider a Parity winning condition C = {𝐶1,𝐶2, . . .

𝐶2𝑘 } of colors, where each 𝐶𝑖 ⊆ 𝑉 is the set of states of G with color 𝑖 . Further, C partition’s the

state space, i.e.,

⋃
𝑖∈[1,2𝑘] 𝐶𝑖 = 𝑉 and 𝐶𝑖 ∩𝐶 𝑗 = ∅ for all 𝑖, 𝑗 ∈ [0, 2𝑘 − 1] s.t. 𝑖 ≠ 𝑗 .

Theorem (Thm. 3.7 restated for convenience). Let Gℓ = ⟨G, 𝐸ℓ⟩ be a game graph with live
edges and C be a Parity condition over G with 2𝑘 colors. Further, let

𝑍 ∗ B𝜈𝑌2𝑘 . 𝜇𝑋2𝑘−1 . . . 𝜈𝑌2 . 𝜇𝑋1 . (76)

(𝐶1 ∩ Apre(𝑌2, 𝑋1)) ∪ (𝐶2 ∩ Cpre(𝑌2)) ∪ (𝐶3 ∩ Apre(𝑌4, 𝑋3)) . . . ∪ (𝐶2𝑘 ∩ Cpre(𝑌2𝑘)) .
(77)

Then 𝑍 ∗ is equivalent to the winning regionW of Player 0 in the fair adversarial game over Gℓ for
the winning condition 𝜑 in (19). Moreover, the fixpoint algorithm runs in 𝑂 (𝑛𝑘+1) symbolic steps, and
a memoryless winning strategy for Player 0 can be extracted from it.

A Parity winning condition C with 2𝑘 colors corresponds to the Rabin chain winning condition

{⟨𝐹2, 𝐹3⟩, . . . , ⟨𝐹2𝑘 , ∅⟩} s.t. 𝐹𝑖 :=

2𝑘⋃
𝑗=𝑖

𝐶 𝑗 , (78)

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

53

which has 𝑘 pairs. Translating the Rabin Chain condition induced by C in (78) into a Rabin condition

as in Thm. 3.1 we get the tuple R = {⟨𝐺1, 𝑅1⟩, . . . , ⟨𝐺𝑘 , 𝑅𝑘⟩} s.t.

𝑅𝑖 =𝐹2𝑖+1 =
⋃

2𝑘
𝑗=2𝑖+1

𝐶 𝑗 (79a)

𝑅𝑖 =
⋃

2𝑖
𝑗=1

𝐶 𝑗 (79b)

𝐺𝑖 =𝐹2𝑖 =
⋃

2𝑘
𝑗=2𝑖 𝐶 𝑗 (79c)

𝑅𝑖 ∩𝐺𝑖 =𝐶2𝑖 (79d)

Using these properties, the fixpoint algorithm in (68) simplifies further to the fixpoint algorithm

for Parity winning conditions in (76). This is formalized in the following proposition.

Proposition B.7. Let R = {⟨𝐺1, 𝑅1⟩, . . . , ⟨𝐺𝑘 , 𝑅𝑘⟩} be a Rabin chain condition s.t. (79) holds.
Further let 𝑍 ∗ be the fixed point computed by (7) and 𝑍 ∗ the the fixed point computed by (76). Then
𝑍 ∗ = 𝑍 ∗.

Proof. Recall the fixpoint algorithm for Rabin chain games in (68), i.e.,

𝑍 ∗
:= 𝜈𝑌0. 𝜇𝑋0. 𝜈𝑌𝑘 . 𝜇𝑋𝑘 . 𝜈𝑌𝑘−1 𝜈𝑌1. 𝜇𝑋1.

⋃𝑘
𝑗=0

C̃𝑗 ,

First, observe that 𝑅0 = 𝐺0 = ∅ have been artificially introduced, and result in C̃0 = Apre(𝑌0, 𝑋0).
Further, as we have assumed that C is such that

⋃
𝑖∈[1,2𝑘] 𝐶𝑖 = 𝑉 . We can equivalently write

C̃0 =

(
2𝑘⋃
𝑗=1

𝐶 𝑗

)
∪ Apre(𝑌0, 𝑋0) = ((𝐶1 ∪ . . . ∪𝐶2𝑘) ∩ Apre(𝑋0, 𝑌0))

For 𝑗 > 0, by using (79) we observe that the definition of C̃𝑗 in (18b) can be written as

C̃𝑗 =
(
𝐶2𝑗 ∩ Cpre(𝑌𝑗)

)
∪

((⋃
2𝑗

𝑙=1
𝐶𝑙

)
∩ Apre(𝑌𝑗 , 𝑋 𝑗)

)
=

(
𝐶2𝑗 ∩ Cpre(𝑌𝑗)

)
∪

(
𝐶1 ∩ Apre(𝑌𝑗 , 𝑋 𝑗)

)
∪ . . . ∪

(
𝐶2𝑗 ∩ Apre(𝑌𝑗 , 𝑋 𝑗)

)
.

With this, we obtain the following fixpoint equation

𝑍 ∗
:=𝜈𝑌0. 𝜇𝑋0. 𝜈𝑌𝑘 . 𝜇𝑋𝑘 𝜈𝑌1. 𝜇𝑋1. (80)

((𝐶1 ∪ . . . ∪𝐶2𝑘) ∩ Apre(𝑋0, 𝑌0))
∪ (𝐶2𝑘 ∩ Cpre(𝑌𝑘)) ∪ ((𝐶1 ∪ . . . ∪𝐶2𝑘) ∩ Apre(𝑋𝑘 , 𝑌𝑘))
∪ . . .

∪ (𝐶2 ∩ Cpre(𝑌1)) ∪ ((𝐶1 ∪𝐶2) ∩ Apre(𝑋1, 𝑌1))

Now consider Lem. B.3 and let us define

𝑓 (𝑋0, 𝑌0) :=∅
ℎ0 (𝑋0, 𝑌0) :=((𝐶1 ∪ . . . ∪𝐶2𝑘) ∩ Apre(𝑋0, 𝑌0))
𝑔(𝑋𝑘 , 𝑌𝑘) := (𝐶2𝑘 ∩ Cpre(𝑌𝑘))
ℎ1 (𝑋𝑘 , 𝑌𝑘) :=((𝐶1 ∪ . . . ∪𝐶2𝑘) ∩ Apre(𝑋𝑘 , 𝑌𝑘)).

Then the result of the first part of the fixpoint in (80) over 𝑌0, 𝑋0, 𝑌𝑘 , 𝑋𝑘 corresponds to the fixed

point defining 𝑍 in Lem. B.3. It therefore follows from Lem. B.3 (ii) that this computation remains

54 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

unchanged if we remove the fixpoint varibales 𝑋0 and 𝑌0. Now we consider any 𝑗 s.t. 𝑘 ≥ 𝑗 > 1 and

define

𝑓𝑗 (𝑋 𝑗 , 𝑌𝑗) :=
(
𝐶2𝑗 ∩ Cpre(𝑌𝑗)

)
∪ (𝐶2𝑗−1 ∩ Apre(𝑌𝑗 , 𝑋 𝑗)) ∪ (𝐶2𝑗 ∩ Apre(𝑌𝑗 , 𝑋 𝑗))

ℎ 𝑗 (𝑋 𝑗 , 𝑌𝑗) :=(𝐶1 ∩ Apre(𝑌𝑗 , 𝑋 𝑗)) ∪ . . . ∪ (𝐶2𝑗−1 ∩ Apre(𝑌𝑗 , 𝑋 𝑗))
𝑔 𝑗−1 (𝑋 𝑗−1, 𝑌𝑗−1) :=

(
𝐶2(𝑗−1) ∩ Cpre(𝑌𝑗−1)

)
ℎ 𝑗−1 (𝑋 𝑗−1, 𝑌𝑗−1) :=(𝐶1 ∩ Apre(𝑌𝑗−1, 𝑋 𝑗−1)) ∪ . . . ∪ (𝐶2(𝑗−1)−1 ∩ Apre(𝑌𝑗−1, 𝑋 𝑗−1)) .

It is easy to see that indeed ℎ 𝑗 (𝑋,𝑌) = ℎ 𝑗−1 (𝑋,𝑌) for all 𝑋,𝑌 ⊆ 𝑉 . We can therefore start with

𝑗 = 𝑘 and iteratively remove the ℎ 𝑗 terms from the fixpoint equation in (80). This yields

𝑍 ∗
:=𝜈𝑌𝑘 . 𝜇𝑋𝑘 𝜈𝑌1. 𝜇𝑋1. (81)

∪ (𝐶2𝑘 ∩ Cpre(𝑌𝑘)) ∪ (𝐶2𝑘−1 ∩ Apre(𝑌𝑘 , 𝑋𝑘)) ∪ (𝐶2𝑘 ∩ Apre(𝑌𝑘 , 𝑋𝑘))
∪ . . .

∪ (𝐶2 ∩ Cpre(𝑌1)) ∪ (𝐶1 ∩ Apre(𝑌1, 𝑋1)) ∪ (𝐶2 ∩ Apre(𝑌1, 𝑋1))
Now we recall from Lem. B.1 and Lem. B.2 that for all 𝑗 s.t. 𝑘 ≥ 𝑗 ≥ 1 we have

(𝐶2𝑗 ∩ Cpre(𝑌𝑗)) ∪ (𝐶2𝑗 ∩ Apre(𝑌𝑗 , 𝑋 𝑗)) = (𝐶2𝑗 ∩ Cpre(𝑌𝑗)) .
With this, we obtain

𝑍 ∗
:=𝜈𝑌𝑘 . 𝜇𝑋𝑘 𝜈𝑌1. 𝜇𝑋1.

∪ (𝐶2𝑘 ∩ Cpre(𝑌𝑘)) ∪ (𝐶2𝑘−1 ∩ Apre(𝑌𝑘 , 𝑋𝑘))
∪ . . .

∪ (𝐶2 ∩ Cpre(𝑌1)) ∪ (𝐶1 ∩ Apre(𝑌1, 𝑋1)) (82)

With this the claim follows by renaming the fixpoint variables accordingly. □

B.4.3 Fair Adversarial Generalized Co-Büchi Games.

Theorem (Thm. 3.8 restated for convenience). Let Gℓ = ⟨G, 𝐸ℓ⟩ be a game graph with live
edges and A be a generalized Co-Büchi winning condition G with 𝑟 pairs. Further, let

𝑍 ∗ B𝜈𝑌0 . 𝜇𝑋0 .
⋃

𝑎∈[1;𝑟]
𝜈𝑌𝑎 . Apre(𝑌0, 𝑋0) ∪ (𝐴𝑎 ∩ Cpre(𝑌𝑎)) . (83)

Then 𝑍 ∗ is equivalent to the winning regionW of Player 0 in the fair adversarial game over Gℓ for
the winning condition 𝜑 in (23). Moreover, the fixpoint algorithm runs in𝑂 (𝑟𝑛2) symbolic steps, and a
memoryless winning strategy for Player 0 can be extracted from it.

In this section we prove Thm. 3.8. That is, we prove that for generalized Co-Büchi conditions, the

fixpoint computing 𝑍 ∗
in (7) simplifies to the one in (83). This is formalized in the next proposition.

Proposition B.8. Let R = {⟨𝐺1, 𝑅1⟩, . . . , ⟨𝐺𝑘 , 𝑅𝑘⟩} be a Rabin condition s.t. (24) holds. Further let
𝑍 ∗ be the fixed point computed by (7) and 𝑍 ∗ the fixed point computed by (83). Then 𝑍 ∗ = 𝑍 ∗.

Proof. Now consider the flattening of (7) in (57) for R̃. Then we see that for all 𝑗 > 0 we have

C𝛿𝑝 𝑗 𝑖 𝑗 :=

(
𝑄𝛿𝑝 𝑗

∩ Cpre(𝑌 ∗
𝛿𝑝 𝑗

)
)
∪

(
𝑄𝛿𝑝 𝑗

∩ Apre(𝑌 ∗
𝛿𝑝 𝑗

, 𝑋
𝑖 𝑗−1

𝛿𝑝 𝑗
)
)

= 𝑄𝛿𝑝 𝑗
∩

(
Cpre(𝑌 ∗

𝛿𝑝 𝑗
) ∪ Apre(𝑌 ∗

𝛿𝑝 𝑗
, 𝑋

𝑖 𝑗−1

𝛿𝑝 𝑗
)
)

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

55

and we always have 𝑋
𝑖 𝑗−1

𝛿𝑝 𝑗
⊆ 𝑌 ∗

𝛿𝑝 𝑗
. With this, it follows from Lem. B.1 that

C𝛿𝑝 𝑗 𝑖 𝑗 = 𝑄𝛿𝑝 𝑗
∩ Cpre(𝑌 ∗

𝛿𝑝 𝑗
) (84)

for all 𝛿 , 𝑝 𝑗 and 𝑖 𝑗 with 𝑗 > 0.

Now observe that for 𝛿 ′ = 𝛿𝑝 𝑗𝑖 𝑗 and all 𝑝 𝑗+1 ∈ 𝑃 \ {𝑝0, . . . , 𝑝 𝑗 } we have
𝑄𝛿′𝑝 𝑗+1

= 𝑄𝛿𝑝 𝑗
∩ 𝑅𝑝 𝑗+1

⊆ 𝑄𝛿𝑝 𝑗
.

It further follows from the structure of the fixed point in (7) that

𝑌 ∗
𝛿𝑝 𝑗

=
⋃
𝑖 𝑗>0

𝑋
𝑖 𝑗

𝛿𝑝 𝑗
=

⋃
𝑖 𝑗>0

⋃
𝑝 𝑗+1∈𝑃\𝑝0,...,𝑝 𝑗

𝑌 ∗
𝛿′𝑝 𝑗+1

and therefore

𝑌 ∗
𝛿′𝑝 𝑗+1

⊆ 𝑌 ∗
𝛿𝑝 𝑗

.

With this we get

C𝛿′𝑝 𝑗+1𝑖 𝑗+1
⊆ C𝛿𝑝 𝑗 𝑖 𝑗

for all 𝛿 , 𝑝 𝑗 and 𝑖 𝑗 with 𝑗 > 0. Then it follows from Lem. B.4 (iii) that for every permutation sequence

𝛿 = 𝑝0𝑝1 . . . 𝑝𝑘 the union over all C′𝑠 terms simplifies to two terms, one for 𝑗 = 0 and one for 𝑗 = 1.

Using this insight, we see that for the particular Rabin condition R̃ the fixpoint algorithm in (7)

simplifies to

𝜈𝑌0. 𝜇𝑋0.
⋃
𝑝1∈𝑃

𝜈𝑌𝑝1
. 𝜇𝑋𝑝1

. C𝑝0
∪ C𝑝1

. (85)

Now recalling that C𝑝1
simplifies to 𝐴𝑎 ∩ Cpre(𝑌𝑎) for 𝑎 = 𝑝1 (see (84)) if (24) holds, and that

C𝑝0
= Apre(𝑌0, 𝑋0) as 𝑅0 = 𝑄0 = ∅, we see that (85) coincides with (83). □

B.5 Additional Proofs for Sec. 4
B.5.1 Proof of Thm. 4.1.

Theorem (Thm. 4.1 restated for convenience). Let Gℓ = ⟨G, 𝐸ℓ⟩ be a game graph with live
edges and ⟨F , 𝑄⟩ with F = { 1𝐹, . . . , 𝑠𝐹 } a safe generalized Büchi winning condition. Further, let

𝑍 ∗ B𝜈𝑌 .
⋂

𝑏∈[1;𝑠]
𝜇 𝑏𝑋 . 𝑄 ∩

[
(𝑏𝐹 ∩ Cpre(𝑌)) ∪ Apre(𝑌, 𝑏𝑋)

]
. (86)

Then 𝑍 ∗ is equivalent to the winning regionW of Player 0 in the fair adversarial game over Gℓ for
the winning condition 𝜑 in (27). Moreover, the fixpoint algorithm runs in𝑂 (𝑠𝑛2) symbolic steps, and a
finite-memory winning strategy for Player 0 can be extracted from it.

Our goal is to prove Thm. 4.1 by a reduction to Thm. 3.2 and Thm. 3.3. We therefore first show

that a similar construction of an extended fixed point 𝑍 as in (52) within the proof of Thm. 3.2 also

works for the generalized case. This is formalized in the following proposition.

Proposition B.9. Given the premisses of Thm. 4.1, let

𝑍 ∗ B𝜈𝑌 .
⋂

𝑏∈[1;𝑠]
𝜇 𝑏𝑋 . (𝑏𝐹 ∩ Cpre(𝑌)) ∪ Apre(𝑌, 𝑏𝑋) (87a)

and

𝑍 ∗ B𝜈𝑌 .
⋂

𝑏∈[1;𝑠]
𝜈 𝑏𝑌 . 𝜇 𝑏𝑋 . (𝑏𝐹 ∩ Cpre(𝑌)) ∪ Apre(𝑏𝑌, 𝑏𝑋). (87b)

Then 𝑍 ∗ = 𝑍 ∗.

56 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

However, as in (87) a conjunction is used to update 𝑌 , the proof is not as straight forward as for

(52). We therefore separately show for both equations (87a) and (87b) that, upon termination, we

have 𝑌 ∗ = 𝑏𝑋 ∗
for all 𝑏 ∈ [1; 𝑠]. Both claims are formalized in Lem. B.16 and Lem. B.17, respectively.

Lemma B.16. Given the premises of Prop. B.9, let 𝑏𝑋 𝑖 be the set computed in the 𝑖-th iteration over
the fixpoint variable 𝑏𝑋 in (87a) during the last iteration over 𝑌 , i.e., 𝑌 = 𝑍 ∗ already. Further, we
define 𝑏𝑋 0 = ∅ and 𝑏𝑋 ∗

:=
⋃

𝑖>0

𝑏𝑋 𝑖 . Then it holds that 𝑍 ∗ = 𝑏𝑋 ∗ for all 𝑏 ∈ [1; 𝑠].

Proof. We fix 𝑌 = 𝑍 ∗
and 𝑏 ⊆ [1; 𝑠] and observe from (87a) that

𝑏𝑋 0 = (𝑏𝐹 ∩ Cpre(𝑍 ∗))
and therefore

𝑏𝑋 1 = 𝑏𝑋 0 ∪ (𝑏𝐹 ∩ Cpre(𝑍 ∗)) ∪ Apre(𝑍 ∗, 𝑏𝑋 0)
= (𝑏𝐹 ∩ Cpre(𝑍 ∗)) ∪ Apre(𝑍 ∗, 𝑏𝑋 0) ⊇ 𝑏𝑋 0

With this, we have in general that

𝑏𝑋 𝑖+1 = 𝑏𝑋 𝑖 ∪ (𝑏𝐹 ∩ Cpre(𝑍 ∗)) ∪ Apre(𝑍 ∗, 𝑏𝑋 𝑖)
=(𝑏𝐹 ∩ Cpre(𝑍 ∗)) ∪ Apre(𝑍 ∗, 𝑏𝑋 𝑖)

which implies
𝑏𝑋 𝑖+1 ⊇ 𝑏𝑋 𝑖

. Hence,
𝑏𝑋 ∗

:=
⋃

𝑖∈[0,𝑖𝑚𝑎𝑥]
𝑏𝑋 𝑖 = 𝑏𝑋 𝑖𝑚𝑎𝑥

, and therefore, in particular

𝑏𝑋 ∗ = (𝑏𝐹 ∩ Cpre(𝑍 ∗)) ∪ Apre(𝑍 ∗, 𝑏𝑋 ∗). (88)

By recalling that 𝑍 ∗ =
⋂

𝑏
𝑏𝑋 ∗

we see that 𝑍 ∗ ⊆ 𝑏𝑋 ∗
.

For the inverse direction, we use the observation 𝑍 ∗ ⊆ 𝑏𝑋 ∗
together with Lem. B.2 to see that

Apre(𝑍 ∗, 𝑏𝑋 ∗) = Cpre(𝑏𝑋 ∗). With this (𝑏𝐹∩Cpre(𝑍 ∗)) ⊆ Cpre(𝑍 ∗) ⊆ Cpre(𝑏𝑋 ∗) = Apre(𝑍 ∗, 𝑏𝑋 ∗)
and hence (88) reduces to

𝑏𝑋 ∗ = Cpre(𝑏𝑋 ∗) ⊇ Cpre(𝑍 ∗).
As the last equality holds for all 𝑏 ⊆ [1; 𝑠] we see that

𝑍 ∗ =
⋂
𝑏

𝑏𝑋 ∗ =
⋂
𝑏

Cpre(𝑏𝑋 ∗) ⊇ Cpre(𝑍 ∗). (89)

We can now use (89) to proof that 𝑍 ∗ ⊇ 𝑏𝑋 ∗
also holds. To show this, we pick a vertex 𝑣 ∈ 𝑏𝑋 ∗

and prove that 𝑣 ∈ 𝑍 ∗
. To that end, observe that either (i) 𝑣 ∈ (𝑏𝐹 ∩ Cpre(𝑍 ∗)) ⊆ Cpre(𝑍 ∗) ⊆

𝑍 ∗
which immediately proves the statement, or (ii) 𝑣 ∈ Apre(𝑍 ∗, 𝑏𝑋 ∗). If (ii) holds we again

have two cases. Either (a) 𝑣 ∈ Cpre(𝑏𝑋 ∗) which implies that there exists a finite sequence

Cpre(Cpre(. . .Cpre(𝑏𝑋 1) . . .)) where 𝑏𝑋 1 = 𝑏𝐹 ∩ Cpre(𝑍 ∗) ⊆ Cpre(𝑍 ∗) ⊆ 𝑍 ∗
and therefore

𝑣 ∈ Cpre(Cpre(. . .Cpre(𝑍 ∗) . . .)) ⊆ 𝑍 ∗
. Finally we could have (b) that 𝑣 ∈ Pre

∃
𝑙
(𝑏𝑋 ∗) ∩Pre

∀
1
(𝑍 ∗) ⊆

Pre
∀
1
(𝑍 ∗) ⊆ Cpre(𝑍 ∗) ⊆ 𝑍 ∗

, which again proves the statement. □

Lemma B.17. Given the premises of Prop. B.9, let 𝑏𝑌 𝑖 be the set computed in the 𝑖-th iteration over
the fixpoint variable 𝑏𝑌 in (87b) during the last iteration over 𝑌 , i.e., 𝑌 = 𝑍 ∗ already. Further, we
define 𝑏𝑌 0 = 𝑉 and 𝑏𝑌 ∗

:=
⋂

𝑖>0

𝑏𝑌 𝑖 . Then it holds that 𝑍 ∗ = 𝑏𝑌 ∗ for all 𝑏 ∈ [1; 𝑠].

Proof. Recall that 𝑍 ∗ =
⋂

𝑏
𝑏𝑌 ∗

from the structure of the fixpoint algorithm in (87b). To prove

𝑍 ∗ = 𝑏𝑌 ∗
for all 𝑏 ∈ [1; 𝑠] it therefore suffices to show that

𝑏𝑌 ∗ = 𝑏′𝑌 ∗
for any two 𝑏, 𝑏 ′ ∈ [1; 𝑠] s.t.

𝑏 ≠ 𝑏 ′.
Towards this goal, recall from Thm. 3.3 that

𝑏𝑌 ∗
is exactly the set of states from which player 0

can win a fair adversarial reachability game with target
𝑏𝑇 := 𝑏𝐹 ∩Cpre(𝑍 ∗). However, every state

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

57

𝑣 ∈ 𝑏𝑇 allows player 0 to force the game to a state 𝑣 ′ ∈ 𝑍 ∗ =
⋂

𝑏′
𝑏′𝑌 ∗

. Therefore, by definition

player 0 has a strategy to reach a state 𝑣 ′ ∈ 𝑏′𝑌 ∗
from any state 𝑣 ∈ 𝑏𝑌 ∗

for any 𝑏 ′ ∈ [1; 𝑠] s.t. 𝑏 ≠ 𝑏 ′.
As, however

𝑏′𝑌 ∗
is defined as the winning region of player 0 w.r.t. the goal set

𝑏′𝑇 := 𝑏′𝐹∩Cpre(𝑍 ∗),
we know that there actually exists a player 0 strategy to drive the game from any 𝑣 ∈ 𝑏𝑌 ∗

to
𝑏′𝑇 , and

therefore, by definition
𝑏𝑌 ∗ ⊆ 𝑏′𝑌 ∗

. As this inclusion holds mutually for all 𝑏,𝑏 ′ ∈ [1; 𝑠] s.t. 𝑏 ≠ 𝑏 ′

we have that
𝑏𝑌 ∗ = 𝑏′𝑌 ∗

. With this, it immediately follows that 𝑍 ∗ = 𝑏𝑌 ∗
for all 𝑏 ∈ [1; 𝑠]. □

With Lem. B.16 and Lem. B.17 in place, we see that for every update of 𝑌 the structure of the

fixed point over
𝑏𝑌 and

𝑏𝑋 upon termination of
𝑏𝑌 coincides with the one in (52). With this,

Prop. B.9 immediately follows from Lem. B.5.

Using Prop. B.9 we know that (87a) and (87b) compute the same set. Hence, we can use (87b)

instead of (86) to prove Thm. 4.1. This allows us to simply reduce the proof of Thm. 4.1 to Thm. 3.2

and Thm. 3.3 as formalized below.

Proof of Thm. 4.1. Soundness & Completeness: Let us define 𝑍 ∗ (⟨𝑇,𝑄⟩) to be the set of

states computed by the fixpoint algorithm in (12). Then it follows from (87b) that

𝑍 ∗ = 𝜈𝑌 .
⋂

𝑏∈[1;𝑠]
𝑍 ∗ (⟨𝑄 ∩ 𝑏𝐹 ∩ Cpre(𝑌), 𝑄⟩).

In particular, it follows from Lem. B.17 that

𝑍 ∗ = 𝑍 ∗ (⟨𝑄 ∩ 𝑏𝐹 ∩ Cpre(𝑍 ∗), 𝑄⟩) ∀𝑏 ∈ [1; 𝑠] .

Now let us define
𝑏W to be the fair adversarial winning state set for

𝑏𝜓 = □𝑄 ∧ □^ 𝑏𝐹 .

With this, it follows from Thm. 3.2 that 𝑍 ∗ = 𝑏W for all 𝑏 ∈ [1; 𝑠]. Therefore, we obviously have⋂
𝑏∈[1;𝑠]

𝑏W = 𝑍 ∗
. Now letW be the fair adversarial winning set w.r.t.

𝜓 = □𝑄 ∧
∧

𝑏∈[1;𝑠]
□^(𝑏𝐹).

(compare (26)). Then we always have W ⊆ ⋂
𝑏∈[1;𝑠]

𝑏W which immediately implies W ⊆ 𝑍 ∗
.

However, as
𝑎W = 𝑏W for all 𝑎, 𝑏 ∈ [1; 𝑠], we know that𝜓 holds for all 𝑣 ∈ 𝑍 ∗

, hence 𝑍 ∗ ⊆ W.

Strategy construction:We can define a rank function for every 𝑏 as in (46) within the proof of

Thm. 3.3 (see App. B.2.1), i.e.,

𝑏
rank(𝑣) = 𝑖 iff 𝑣 ∈ 𝑏𝑋 𝑖 \ 𝑏𝑋 𝑖−1 . (90)

Then, we have a different strategy,
𝑏𝜌0, which is defined via (46) (see App. B.2.1) using the corre-

sponding
𝑏
rank function. With this, we define a new strategy 𝜌 which circles through all possible

goal sets in a pre-defined order. That is

𝜌0 (𝑣, 𝑏) =
{

𝑏𝜌0 (𝑣) 𝑣 ∉ 𝑏𝐹
𝑏+𝜌0 (𝑣) 𝑣 ∈ 𝑏𝐹

(91)

where 𝑏+ = 𝑏 + 1 if 𝑏 < 𝑠 and 𝑏+ = 1 if 𝑏 = 𝑠 .

The strategy in (91) is obviously winning for 𝜓 in (26) as every
𝑏𝜌0 is a winning strategy for

𝑏𝜓 (from Thm. 3.2) and upon reaching
𝑏𝐹 we know that the respective state 𝑣 is also contained in

Cpre(𝑍 ∗) where 𝑍 ∗ = 𝑏+𝑌 ∗
. Now it follows from the definition of Cpre that Cpre(𝑏+𝑌 ∗) ⊆ 𝑏+𝑌 ∗

,

hence, allowing to apply
𝑏+𝜌0 upon reaching

𝑏𝐹 . □

58 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

B.5.2 Proof for Thm. 4.2.

Theorem (Thm. 4.2 restated for convenience). Let Gℓ = ⟨G, 𝐸ℓ⟩ be a game graph with live
edges and R̃ be a generalized Rabin condition over G with index set 𝑃 = [1;𝑘]. Further, let

𝑍 ∗
:=𝜈𝑌0. 𝜇𝑋0.⋃

𝑝1∈𝑃
𝜈𝑌𝑝1

.
⋂

𝑙1∈[1;𝑚𝑝
1
]
𝜇 𝑙1𝑋𝑝1

. (92a)

. . . ⋃
𝑝𝑘 ∈𝑃\{𝑝1,...,𝑝𝑘−1 }

𝜈𝑌𝑝𝑘 .
⋂

𝑙𝑘 ∈[1;𝑚𝑝𝑘
]
𝜇 𝑙𝑘𝑋𝑝𝑘 .

𝑘⋃
𝑗=0

𝑙 𝑗C𝑝 𝑗
,

where

𝑙 𝑗C𝑝 𝑗
:=

(
𝑗⋂

𝑖=0

𝑅𝑝𝑖

)
∩

[(
𝑙 𝑗𝐺𝑝 𝑗

∩ Cpre(𝑌𝑝 𝑗
)
)
∪ Apre(𝑌𝑝 𝑗

, 𝑙 𝑗𝑋𝑝 𝑗
)
]

with 𝑝0 = 0, 𝐺𝑝0
B {∅} and 𝑅𝑝0

B ∅. Then 𝑍 ∗ is equivalent to the winning regionW of Player 0 in
the fair adversarial game over Gℓ for the winning condition 𝜑 in (26). Moreover, the fixpoint algorithm
runs in 𝑂 (𝑛𝑘+2𝑘!𝑚1 . . .𝑚𝑘) symbolic steps, and a finite-memory winning strategy for Player 0 can be
extracted from it.

We show how the proof of Thm. 3.1 in App. B.3 needs to be adapted in order to prove the

generalized version of Thm. 3.1, namely Thm. 4.2, instead.

Strategy Construction: Similar to the finite-memory strategy constructed for generalized Büchi

games in App. B.5.1, the strategy for generalized Rabin games needs to remember the index of all

the goal sets currently “chaised” for each permutation index up to 𝑝 𝑗 . To formalize this, we define

the set of full goal chain sequences for a given generalized Rabin specification R̃ by

Φ(R̃) := {ℓ0ℓ1 . . . ℓ𝑘 | ℓ0 = 1, ℓ𝑗 ∈ [0;𝑚 𝑗]}. (93)

If R̃ is clear from the context we simply write Φ. Given a goal chain prefix 𝜙 := ℓ0ℓ1 . . . ℓ𝑗−1 we can

now construct a ranking for each such prefix, using the flattening of (92) instead of (7). This yields

the following proposition which follows from Prop. B.1 by simply annotating all terms with the

goal chain prefix 𝜙 .

Proposition B.10. Let 𝛿 = 𝑝0𝑖0 . . . 𝑝 𝑗−1𝑖 𝑗−1 be a configuration prefix, 𝜙 := ℓ0ℓ1 . . . ℓ𝑗−1 a goal

chain prefix, 𝑝 𝑗 ∈ 𝑃 \ {𝑝1, . . . , 𝑝 𝑗−1} the next permutation index, ℓ𝑗 ∈ [1;𝑚𝑝 𝑗
] the next goal set and

𝑖 𝑗 > 0 a counter for 𝑝 𝑗 . Then the flattening of (92) for this configuration and goal prefix is given by

𝜙ℓ𝑗𝑋
𝑖 𝑗

𝛿𝑝 𝑗

= 𝜙𝑆𝛿 ∪ ℓ𝑗C𝛿𝑝 𝑗 𝑖 𝑗︸ ︷︷ ︸
𝜙ℓ𝑗𝑆𝛿𝑝𝑗 𝑖 𝑗

∪ 𝜙ℓ𝑗A𝛿𝑝 𝑗 𝑖 𝑗 (94a)

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

59

where

𝑄𝑝0 ...𝑝𝑎 :=

𝑎⋂
𝑏=0

𝑅𝑝𝑏 , (94b)

ℓ𝑎C𝛿𝑝𝑎𝑖𝑎 :=

(
𝑄𝛿𝑝𝑎 ∩ ℓ𝑎𝐺𝑝𝑎 ∩ Cpre(𝑌 ∗

𝛿𝑝𝑎
)
)
∪

(
𝑄𝛿𝑝𝑎 ∩ Apre(𝑌 ∗

𝛿𝑝𝑎
, ℓ𝑎𝑋

𝑖𝑎−1

𝛿𝑝𝑎
)
)

ℓ0 ...ℓ𝑎𝑆𝑝0𝑖0 ...𝑝𝑎𝑖𝑎 :=

𝑎⋃
𝑏=0

ℓ𝑏C𝑝0𝑖0 ...𝑝𝑏𝑖𝑏 , (94c)

𝜙ℓ𝑖𝐴𝛿𝑝 𝑗 𝑖 𝑗 :=
⋃

𝑝 𝑗+1∈𝑃\{𝑝1,...,𝑝 𝑗 }

(⋂
ℓ𝑗+1∈[1;𝑚𝑝𝑗+1

]

(⋃
𝑖 𝑗+1>0

(
𝜙ℓ𝑗 ℓ𝑗+1𝑋

𝑖 𝑗+1

𝛿𝑝 𝑗 𝑖 𝑗𝑝 𝑗+1

\ 𝜙ℓ𝑖𝑆𝛿𝑝 𝑗 𝑖 𝑗

)))
. (94d)

Again we see that this flattening follows directly from the structure of the fixpoint algorithm

in (92) and the definition of
𝑙 𝑗C𝑝 𝑗

in (29b). Using the flattening of (92) in (94) we can define a

ranking function for each goal chain prefix 𝜙 identical to Def. B.6. That is, given the premises of

Prop. B.10, we define
𝜙ℓ𝑗𝑅 : 𝑉 → 2

𝐷
s.t. (i) ∞ ∈ 𝜙ℓ𝑗𝑅(𝑣) for all 𝑣 ∈ 𝑉 , and (ii) 𝛿𝑝 𝑗𝑖 𝑗𝛾 ∈ 𝜙ℓ𝑗𝑅(𝑣)

iff 𝑣 ∈ 𝜙ℓ𝑗𝑆𝛿𝑝 𝑗 𝑖 𝑗 . The ranking function
𝜙

rank : 𝑉 → 𝐷 is then again defined as in Def. B.6 s.t.

𝜙
rank : 𝑣 ↦→ min{ 𝜙𝑅(𝑣)}. Similarly, we can define a memoryless winning strategy for every fixed

goal sequence 𝜙 as in (58). That is,

𝜙𝜌0 (𝑣) := min

(𝑣,𝑤) ∈𝐸
(𝜙

rank(𝑤)). (95)

Now, similar to the proof of Thm. 4.1 (see Sec. 4.1) we can “stack” these memoryless winning

strategies to define a new strategy with finite memory which circles through all possible goal sets

in a pre-defined order. That is

𝜌0 (𝑣, 𝜙ℓ𝑗) :=

{
𝜙ℓ𝑗𝜌0 (𝑣) 𝑣 ∉ ℓ𝑗𝐹
𝜙ℓ+𝑗𝜌0 (𝑣) 𝑣 ∈ ℓ𝑗𝐹

(96)

where ℓ+𝑗 := ℓ𝑗 + 1 if ℓ𝑗 < 𝑚𝑝 𝑗
and ℓ+𝑗 := 1 if ℓ𝑗 =𝑚𝑝 𝑗

.

Using this goal chain dependent ranking function, the proof of soundness and completeness

of (92) along with the proof that 𝜌0 in (96) is indeed a winning strategy for player 0 in the fair

adversarial generalized Rabin game, follows exactly the same lines as the proof in App. B.3. That

is, we iteratively consider instances of the flattening in (94), starting with 𝑗 = 𝑘 as the base case,

and doing an induction from “ 𝑗 + 1” to “ 𝑗”. To this end, we consider a generalized local winning

condition which refers not only to the current configuration-prefix 𝛿 = 𝑝0𝑖0 . . . 𝑝 𝑗−1𝑖 𝑗−1 but also to

the current goal chain prefix 𝜙 := ℓ0 . . . ℓ𝑗−1. Hence, (59) gets modified to

𝜙𝜓𝛿𝑝 𝑗
:=

©«

𝑄𝛿𝑝 𝑗
U 𝜙𝑆𝛿

∨ □𝑄𝛿𝑝 𝑗
∧ ∧

ℓ𝑗 ∈[1;𝑚𝑝𝑗
] □^

ℓ𝑗𝐺𝑝 𝑗

∨ □𝑄𝛿𝑝 𝑗
∧

©«
∨
𝑖∈𝑃\𝑗

©«^□𝑅𝑖 ∧
∧

𝑏∈[1;𝑚𝑖]
□^ 𝑏𝐺𝑖

ª®¬
ª®®¬

ª®®®®®®¬
(97)

where 𝑃\𝑗 = 𝑃 \ {𝑝0, . . . , 𝑝 𝑗 }. With this, it becomes obvious that the proof of soundness, completness

and the winning strategy for Thm. 4.2 follows exactly the same reasoning as in App. B.3 while

additionally using Thm. 4.1 to reason about the conjunction over goal sets.

The only remaining part to be shown concerns the last line of
𝜙𝜓𝛿𝑝 𝑗

. For this, we recall from

App. B.3.2 that the induction step from “ 𝑗 + 1” to “ 𝑗” relies on the fact that

𝜙ℓ𝑗Ψ𝛿𝑝 𝑗
:=□𝑄𝛿𝑝 𝑗

∧ ^
(∨

𝑝 𝑗+1∈𝑃\{𝑝1,...,𝑝 𝑗 }
𝜙′
𝜓 ′
𝛿′𝑝 𝑗+1

)
(98)

60 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

is indeed equivalent to the last line of
𝜙𝜓𝛿𝑝 𝑗

, where
𝜙′
𝜓 ′
𝛿′𝑝 𝑗+1

denotes the last two lines of
𝜙′
𝜓𝛿′𝑝 𝑗+1

with 𝜙 ′
:= 𝜙ℓ𝑗 and 𝛿

′
:= 𝛿𝑝 𝑗 .

For (non-generalized) Rabin games this equivalence is proved in App. B.3.6. It can be seen by

inspection within this proof, that using a conjunction over goal sets instead of a single goal set

within the second and third line of
𝜙𝜓𝛿𝑝 𝑗

does not change any step in the derivation. Therefore,

the same derivation can be used in the generalized case and is therefore omitted. This concludes

the proof of Thm. 4.2.

B.5.3 Proof of Thm. 4.3.

Theorem (Thm. 4.3 restated for convenience). Let Gℓ = ⟨G, 𝐸ℓ⟩ be a game graph with live
edges and (A, F) a GR(1) winning condition. Further, let

𝑍 ∗ =𝜈𝑌𝑘 .
⋂

𝑏∈[1;𝑠]
𝜇 𝑏𝑋𝑘 .

⋃
𝑎∈[1;𝑟]

𝜈𝑌𝑎 . (𝐹𝑏 ∩ Cpre(𝑌𝑘)) ∪ Apre(𝑌𝑘 , 𝑏𝑋𝑘) ∪ (𝐴𝑎 ∩ Cpre(𝑌𝑎)) .

Then 𝑍 ∗ is equivalent to the winning regionW of Player 0 in the fair adversarial game over Gℓ for
the winning condition 𝜑 in (30). Moreover, the fixpoint algorithm runs in 𝑂 (𝑛2𝑟𝑠) symbolic steps, and
a finite-memory winning strategy for Player 0 can be extracted from it.

Within this section we proof Thm. 4.3. That is, we prove that for GR(1) winning conditions, the

fixpoint computing 𝑍 ∗
in (92) simplifies to the one in (32). This is formalized in the next proposition.

Proposition B.11. Let R̃ be a generalized Rabin condition with 𝑘 pairs s.t. (31) holds for 𝑟 := 𝑘 − 1.
Further let 𝑍 ∗ be the fixed point computed by (92) and 𝑍 ∗ the fixed point computed by (32). Then
𝑍 ∗ = 𝑍 ∗.

If Prop. B.11 holds, we immediately see that Thm. 4.3 directly follows from Thm. 4.2. It therefore

remains to prove that Prop. B.11 holds.

Proof. First, consider an arbitrary permutation sequence 𝛿 = 𝑝0 . . . 𝑝𝑘 . Then we know that there

exists exactly one 𝑗 > 0 s.t. 𝑝 𝑗 = 𝑘 and all other indices come from the set [1; 𝑟]. We can therefore

define 𝛾 ′ = 𝑝1 . . . 𝑝 𝑗+1 and 𝛾
′′ = 𝑝 𝑗+1 . . . 𝑝𝑘 s.t. 𝑝𝑖 ∈ [1; 𝑟] for all 𝑖 ≠ 𝑗 . We note that 𝛾 ′ = 𝜀 if 𝑗 = 1

and 𝛾 ′′ = 𝜀 if 𝑗 = 𝑘 . With this we have 𝛿 = 𝑝0𝛾
′𝑝 𝑗𝛾

′′
.

By inspecting (31) we see that the first 𝑟 pairs of the generalized Rabin condition induced by

the GR(1) specification actually form a Generalized Co-Büchi condition (compare (24) in Sec. 3.4).

Hence, given a permutation sequence 𝛿 = 𝑝0𝛾
′𝑝 𝑗𝛾

′′
we can use the same reasoning as in the proof

of Thm. 3.8 in App. B.4.3 to see that

C𝑝1
⊇ . . . ⊇ C𝑝 𝑗−1

and C𝑝 𝑗+1
⊇ . . . ⊇ C𝑝𝑘 . (99)

Now recall from the proof of Thm. 3.6 in App. B.4.1 that these inclusions allow to recursively

apply Lem. B.4 to delete all C terms which are included in either C𝑝1
or C𝑝 𝑗+1

along with the fixpoint

variables used within these terms (compare Lem. B.11 where now 𝛾 ′
and 𝛾 ′′

are interpreted as

decreasing sub-sequences). Applying these simplifications to (92) (in exactly the same manner as

these simplifications where applied to (7) in the proof of Thm. 3.6) results in a simpler fixpoint

algorithmwhere all permutation sequences have the form 𝛿 = 0𝑞1𝑘𝑞2 with𝑞1 ≠ 𝑞2 and𝑞1, 𝑞2 ∈ [1; 𝑟]
(here 𝑞1 and 𝑞2 correspond to 𝑝1 and 𝑝 𝑗+1 in (99), and 𝑘 corresponds to 𝑝 𝑗).

Now we can inspect (31) again to see that 𝑅𝑖 ⊇ 𝑅𝑘 and 𝐺𝑖 ⊇ 𝑏𝐺𝑝 𝑗
for all 𝑖 ∈ [1; 𝑟] and 𝑏 ∈ [1; 𝑠].

This can be understood as a “generalized Rabin chain condition” (compare (17) in Sec. 3.4). Hence,

we can apply Lem. B.11 one more time, now to the “decreasing sub-sequence” 𝑞1𝑘 within every

permutation sequence. Again, utilizing this argument iteratively in (92) yields a simpler fixpoint

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

61

algorithm which only contains permutation sequences 𝛿 = 0𝑘𝑎 with 𝑎 ∈ [1; 𝑟]. This proves that 𝑍 ∗

is equivalent to the set

𝜈𝑌0. 𝜇𝑋0. 𝜈𝑌𝑘 .
⋂

𝑏∈[1;𝑠]
𝜇 𝑏𝑋0.

⋃
𝑎∈[1;𝑟]

𝜈𝑌𝑎 . 𝜇𝑋𝑎 . C𝑝0
∪ 𝑏C𝑘 ∪ C𝑎 .

Now inserting the simplifications for terms from the generalized Co-Büchi part (see (84) in

App. B.4.3) and using 𝑅0 = 𝐺0 = ∅, we obtain

𝜈𝑌0 . 𝜇𝑋0 . 𝜈𝑌𝑘 .
⋂

𝑏∈[1;𝑠]
𝜇 𝑏𝑋0.

⋃
𝑎∈[1;𝑟]

𝜈𝑌𝑎 .

Apre(𝑌0, 𝑋0) ∪ (𝑏𝐹 ∩ Cpre(𝑌𝑘)) ∪ Apre(𝑌𝑘 , 𝑏𝑋𝑘) ∪ (𝐴𝑎 ∩ Cpre(𝑌𝑎)) .
Now we can apply Lem. B.4 (iii) again to remove the first occurrence of the Apre term to obtain

the same expression as in (32). This concludes the proof. □

B.6 Additional Proofs for Sec. 5

B.6.1 Preliminaries. 1
1/2-player game: A special case of 2

1/2-player game graphs is a Markov
Decision Process (MDP) or 1

1/2-player game, which is obtained by assuming that every Player 0

vertex in 𝑉0 has only one outgoing edge.
7
Analogously to the 2

1/2-player games, for a given 1
1/2-

player game graph G, we use the notation 𝑃
𝜌1

𝑣0
(G |= 𝜑) to denote the probability of occurrence of

the event G |= 𝜑 when the runs initiate at 𝑣0
and when Player 1 uses the strategy 𝜌1.

Role of end components in 1
1/2-player game: Limiting behaviors in a 1

1/2-player game can be

characterized using the structure of the underlying game graph. We summarize one key technical

argument in the following.

Let G = ⟨𝑉 ,𝑉0,𝑉1,𝑉𝑟 , 𝐸⟩ be a 1
1/2-player game graph. A set of vertices 𝑈 ⊆ 𝑉 is called closed if

(1) for every 𝑣 ∈ 𝑈 ∩ 𝑉𝑟 , 𝐸 (𝑣) ⊆ 𝑈 , and (2) for every 𝑣 ∈ 𝑈 ∩ (𝑉0 ∪ 𝑉1), 𝐸 (𝑣) ∩𝑈 ≠ ∅. A closed

set of vertices 𝑈 induces a subgame graph (𝑉 ′,𝑉 ′
0
,𝑉 ′

1
,𝑉 ′

𝑟 , 𝐸
′), denoted by G ↓ 𝑈 , which is itself a

1
1/2-player game graph and is defined as follows:

• 𝑉 ′ = 𝑈 ,

• 𝑉 ′
0
= 𝑈 ∩𝑉0,

• 𝑉 ′
1
= 𝑈 ∩𝑉1,

• 𝑉 ′
𝑟 = 𝑈 ∩𝑉𝑟 , and

• 𝐸 ′ = 𝐸 ∩ (𝑈 ×𝑈).
A set of vertices𝑈 ⊂ 𝑉 of a 1

1/2-player game graph G is an end component if (a)𝑈 is closed, and (b)

the subgame graph G ↓ 𝑈 is strongly connected.

Denote the set of all end components of G by E ⊂ 2
𝑉
. The next lemma states that under every

strategy 𝜌1 (being memoryless or not) of Player 1 in the 1
1/2-player game, the set of states visited

infinitely often along a play is an end component with probability one.

Lemma B.18. [De Alfaro 1997, Thm. 3.2] For every 1
1/2-player game graph, for every vertex 𝑣 ∈ 𝑉 ,

and every Player 1 strategy 𝜌1,

𝑃
𝜌1

𝑣

(
G |=

∨
𝑈 ∈E

(
♢□𝑈 ∧

∧
𝑢∈𝑈
□♢𝑢

))
= 1. (100)

This lemma implies the following corollary, which is motivated by similar claim for Rabin

winning conditions in the literature [Chatterjee et al. 2005].

7
Alternatively, we could also define 1

1/2-player game graphs by restricting the outgoing edges from the Player 1 vertices;

our choice is actually tailored for the content of the rest of the section.

62 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

Corollary 1. For a given 1
1/2-player game, for a given vertex 𝑣 ∈ 𝑉 , and for a given Player 1

strategy 𝜌1, a generalized Rabin condition R̃ = {⟨G1, 𝑅1⟩, . . . , ⟨G𝑘 , 𝑅𝑘⟩} is satisfied almost surely
if and only if for every end component 𝑈 reachable from 𝑣0, there is a 𝑗 ∈ {1, 2, . . . , 𝑘} such that
𝑈 ∩ 𝑅 𝑗 = ∅ and for every 𝑙 ∈ [1;𝑚 𝑗],𝑈 ∩ 𝑙𝐺 𝑗 ≠ ∅.

B.6.2 Proof of Thm. 5.2.

Theorem (Thm. 5.2 restated for convenience). Let G be a 2
1/2-player game graph, R̃ be a

generalized Rabin condition, 𝜑 ⊆ 𝑉𝜔 be the corresponding LTL specification (Eq. (26)) over the set of
vertices𝑉 of G, and Derand (G) be the reduced two-player game graph. LetW ⊆ 𝑉 be the set of all the
vertices from where Player 0 wins the fair adversarial game over Derand (G) for the winning condition
𝜑 , andWa.s. be the almost sure winning set of Player 0 in the game graph G for the specification 𝜑 .
Then,W = Wa.s.. Moreover, a winning strategy in Derand (G) is also a winning strategy in G, and
vice versa.

We define the fairness constraint on the random edges of G as per Eq. (3):

𝜑 ℓ
:= ∧(𝑣,𝑣′) ∈𝐸𝑟□♢𝑣 → □♢(𝑣 ∧ ⃝𝑣 ′) .

We first show that W ⊆ Wa.s.
. Consider an arbitrary initial vertex 𝑣0 ∈ W and an arbitrary

strategy 𝜌1 of Player 1 in G. Let 𝜌∗
0
be a corresponding winning strategy for Player 0 from 𝑣0

for

the fair adversarial game over Derand (G) for the winning condition 𝜑 . By definition, 𝜌∗
0
realizes

the specification 𝜑 , whenever the adversary satisfies the strong fairness condition on the live

edges in Derand (G). On the other hand, the live edges in Derand (G) are exactly the random

edges in G. In other words, we already know that if we apply the same strategy 𝜌∗
0
to G, then

inf𝜌1∈𝑅1
𝑃
𝜌∗

0
,𝜌1

𝑣0
(G |= 𝜑 ℓ → 𝜑) = 1.

We first show that the random edges 𝐸𝑟 also satisfy the strong fairness condition 𝜑
ℓ almost surely;

actually we show that the probability of violation of 𝜑 ℓ
in G is 0. Consider the following:

𝑃
𝜌∗

0
,𝜌1

𝑣0

(
G |= ¬𝜑 ℓ

)
= 𝑃

𝜌∗
0
,𝜌1

𝑣0

©«G |= ¬
∧

(𝑣,𝑣′) ∈𝐸𝑟

□♢𝑣 → □♢(𝑣 ∧ ⃝𝑣 ′)ª®¬
= 𝑃

𝜌∗
0
,𝜌1

𝑣0

©«G |=
∨

(𝑣,𝑣′) ∈𝐸𝑟

□♢𝑣 ∧ ♢□¬(𝑣 ∧ ⃝𝑣 ′)ª®¬
≤

∑
(𝑣,𝑣′) ∈𝐸𝑟

𝑃
𝜌∗

0
,𝜌1

𝑣0
(G |= □♢𝑣 ∧ ♢□¬(𝑣 ∧ ⃝𝑣 ′)) .

We show that the right-hand side of the last inequality equals to 0 by proving that for every

(𝑣, 𝑣 ′) ∈ 𝐸𝑟 ,

𝑃
𝜌∗

0
,𝜌1

𝑣0
(G |= □♢𝑣 ∧ ♢□¬(𝑣 ∧ ⃝𝑣 ′)) = 0.

Consider any arbitrary (𝑣, 𝑣 ′) ∈ 𝐸𝑟 and assume that the probability of taking the edge (𝑣, 𝑣 ′) from 𝑣

is 𝑝1. Let 𝜋 be a play on G and (𝑖0, 𝑖1, 𝑖2, . . .) be the infinite sequence of time indices when the vertex 𝑣

is visited. For every 𝑖𝑘 , the probability of not visiting 𝑣 ′ for the next 𝑙 time steps (𝑖𝑘+1+1, . . . , 𝑖𝑘+𝑙 +1)
is given by (1−𝑝)𝑙 , which converges to 0 as 𝑙 approaches∞. This proves that for every 𝑖𝑘 , eventually

there will be a 𝑣 ′ at (𝑖𝑘 + 1) with probability 1; in other words 𝑣 ′ will be visited infinitely often

with probability 1. Hence, it follows that

∑
(𝑣,𝑣′) ∈𝐸𝑟 𝑃

𝜌∗
0
,𝜌1

𝑣0
(G |= □♢𝑣 ∧ ♢□¬(𝑣 ∧ ⃝𝑣 ′)) = 0, which

in turn establishes that 𝑃
𝜌∗

0
,𝜌1

𝑣0

(
G |= ¬𝜑 ℓ

)
= 0.

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

63

Now consider the following derivation:

𝑃
𝜌∗

0
,𝜌1

𝑣0
(G |= 𝜑 ℓ → 𝜑) = 𝑃

𝜌∗
0
,𝜌1

𝑣0
(G |= ¬𝜑 ℓ ∨ 𝜑) ≤ 𝑃

𝜌∗
0
,𝜌1

𝑣0
(G |= ¬𝜑 ℓ) + 𝑃

𝜌∗
0
,𝜌1

𝑣0
(G |= 𝜑)

= 0 + 𝑃
𝜌∗

0
,𝜌1

𝑣0
(G |= 𝜑) = 𝑃

𝜌∗
0
,𝜌1

𝑣0
(G |= 𝜑).

Since we know that 𝑃
𝜌∗

0
,𝜌1

𝑣0
(G |= 𝜑 ℓ → 𝜑) = 1, hence it follows that 𝑃

𝜌∗
0
,𝜌1

𝑣0
(G |= 𝜑) = 1.

Next, we show that W ⊇ Wa.s.
. Consider an arbitrary initial vertex 𝑣0 ∈ Wa.s.

. Let 𝜌∗
0
be a

corresponding almost sure winning strategy for Player 0 from 𝑣0
in the 2

1/2-player game G with

the specification 𝜑 . We show that Player 0 wins the fair adversarial game over Derand (G) for the
winning condition 𝜑 from vertex 𝑣0

using the strategy 𝜌∗
0
.

Let 𝜌1 ∈ 𝑅1 be any arbitrary Player 1 strategy in the game Derand (G) such that the unique

resultant play 𝜋 = (𝑣0, 𝑣1, . . .) due to 𝜌∗
0
and 𝜌1 satisfies the fairness assumption. We use the notation

Inf (𝜋) to denote the set of infinitely occurring vertices along the play 𝜋 , i.e., Inf (𝜋) B {𝑤 ∈ 𝑉 |
∀𝑚 ∈ N0 . ∃𝑛 > 𝑚 . 𝑣𝑛 = 𝑤}. First we show that (i) the set of vertices Inf (𝜋) forms an end

component in G, and moreover (ii) there exists a Player 1 strategy 𝜌 ′
1
in the game G such that

𝑃
𝜌∗

0
,𝜌′

1

𝑣0
(G |= Inf (𝜋)) > 0. Claim (i) follows by observing the following:

• For all 𝑣 ∈ Inf (𝜋) ∩𝑉𝑟 , 𝑉𝑟 (𝑣) ⊆ Inf (𝜋), as otherwise in Derand (G) there would be a vertex

in 𝐸ℓ (𝑣) and outside Inf (𝜋) which would be visited infinitely many times due to infinitely

many visits to 𝑣 .

• For every 𝑣 ∈ Inf (𝜋) ∩ (𝑉0 ∪ 𝑉1), 𝐸 (𝑣) ≠ ∅, as otherwise in Derand (G) the play 𝜋 would

reach a dead-end.

• The subgame graph G ↓ Inf (𝜋) is strongly connected, as otherwise in Derand (G) there
would be two vertices 𝑢, 𝑣 ∈ Inf (𝜋) so that 𝑣 would not be reachable from 𝑢, contradicting

the assumption that both 𝑢 and 𝑣 are visited infinitely often by 𝜋 .

Claim (ii) follows by defining a strategy 𝜌 ′
1
≡ 𝜌1 on G. Now observe that for every edge (𝑣, 𝑣 ′)

chosen by Player 1 from a vertex 𝑣 ∈ dom(𝐸ℓ) in Derand (G), there exists a corresponding positive

probability edge (𝑣, 𝑣 ′) in G. Since Inf (𝜋) is entered by 𝜋 after finite time steps, hence the Claim (ii)

follows.

Now, from Cor. 1 it follows that there is a 𝑗 ∈ {1, 2, . . . , 𝑘} such that Inf (𝜋) ∩ 𝑅 𝑗 = ∅ and for

every 𝑙 ∈ {1, . . . ,𝑚 𝑗 }, Inf (𝜋) ∩ 𝑙𝐺 𝑗 ≠ ∅. Thus the play 𝜋 satisfies the generalized Rabin condition R̃.

Since this holds for any arbitrary Player 1 strategy, hence W ⊇ Wa.s.
and 𝜌∗ is the corresponding

winning strategy for Player 0.

64 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

C THE ACCELERATED FIXPOINT ALGORITHM
Consider the fixpoint algorithm in (7). In the correctness proof of Thm. 3.1 discussed in App. B.3,

we have been remembering so called configuration prefixes 𝛿 = 𝑝0𝑖0 . . . 𝑝 𝑗−1𝑖 𝑗−1 for some 𝑗 ≤ 𝑘

for every fixed-point variable 𝑋 (see Eq. (55)). We denoted by 𝑋
𝑖 𝑗

𝛿𝑝 𝑗
the set of states computed in

the 𝑖 𝑗 ’th iteration of the fixed-point over 𝑋𝑝 𝑗
after the fixed-point over 𝑌𝑝 𝑗

has already terminated

within the 𝑖 𝑗−1th iteration over 𝑋𝑝 𝑗−1
after the fixed-point over 𝑌𝑝 𝑗−1

has terminated in the 𝑖 𝑗−2th

iteration over 𝑋𝑝 𝑗−2
and so forth.

In order to describe the accelerated implementation of (7), we do not assume that the fixed-points

over 𝑌 -variables have already terminated, but additionally remember their counters𝑚. This leads

to configuration prefixes 𝛿 = 𝑝0𝑚0𝑖0 . . . 𝑝 𝑗−1𝑚 𝑗−1𝑖 𝑗−1 and lets us define that 𝑋
𝑚 𝑗 𝑖 𝑗

𝛿𝑝 𝑗
is the set of

states computed in the 𝑖 𝑗 th iteration of the fixed-point over 𝑋𝑝 𝑗
during the𝑚 𝑗 th iteration over 𝑌𝑝 𝑗

,

computing the set 𝑌
𝑚 𝑗

𝛿𝑝 𝑗
and so forth.

Given two configuration prefixes 𝛿 = 𝑝0𝑚0𝑖0 . . . 𝑝 𝑗−1𝑚 𝑗−1𝑖 𝑗−1 and 𝛿
′ = 𝑝 ′

0
𝑚′

0
𝑖 ′
0
. . . 𝑝 ′

𝑗−1
𝑚′

𝑗−1
𝑖 ′𝑗−1

we

define𝛿 <𝑚 𝛿 ′ if 𝑝0 . . . 𝑝 𝑗−1 = 𝑝 ′
0
. . . 𝑝 ′

𝑗−1
,𝑚0 . . .𝑚 𝑗−1 < 𝑚′

0
. . .𝑚′

𝑗−1
(using the induced lexicographic

order) and 𝑖0 . . . 𝑖 𝑗−1 = 𝑖 ′
0
. . . 𝑖 ′𝑗−1

. We define 𝛿 <𝑖 𝛿
′
similarly.

Now Piterman and Pnueli [2006] showed, based on a result of Long et al. [1994], that for

every configuration prefix 𝛿 = 𝑝0𝑚0𝑖0 . . . 𝑝 𝑗−1𝑚 𝑗−1𝑖 𝑗−1 the computation of 𝑌 0

𝛿𝑝 𝑗
can start from the

minimal set 𝑌𝑚 𝑗

𝛿′𝑝 𝑗
(instead of the entire set of vertices 𝑉) such that 𝛿 ′𝑝 𝑗𝑚 𝑗 <𝑚 𝛿𝑝 𝑗0. Dually, for

every configuration prefix 𝛿 = 𝑝0𝑚0𝑖0 . . . 𝑝 𝑗−1𝑚 𝑗−1𝑖 𝑗−1 the computation of 𝑋
𝑚 𝑗 0

𝛿𝑝 𝑗
can start from the

maximal set 𝑋𝑚 𝑗 𝑖 𝑗

𝛿′𝑝 𝑗
(instead of the empty set) such that 𝛿 ′𝑝 𝑗𝑚 𝑗𝑖 𝑗 <𝑖 𝛿𝑝 𝑗𝑚 𝑗0.

Further, we see that for the innermost fixpoint, i.e. when 𝑗 = 𝑘 , it follows that for every com-

putation prefix 𝛿 , there can be at most 𝑛 iterations over both 𝑌𝑝𝑘 and 𝑋𝑝𝑘 , where 𝑛 is the total

number of vertices. I.e., 𝑛 different sets𝑌
𝑚𝑘

𝛿𝑝𝑘
and𝑋

𝑚𝑘𝑖𝑘
𝛿𝑝𝑘

have to be freshly computed for each 𝛿𝑝𝑘 and

𝛿𝑝𝑘𝑚𝑘 respectively. We see that there are O(𝑛𝑘+1𝑘!) different such permutation sequences. As the

computation of the innermost fixpoint dominates the computation time, it is shown by Long et al.

[1994] that this results in an overall worst-case computation time of O(𝑛 (𝑘+1)+1𝑘!) = O(𝑛𝑘+2𝑘!)
(where 𝑛 is the total number of vertices and 𝑘 is the number of Rabin pairs).

Unfortunately, the memory requirement of this acceleration algorithm is enormous. To see this,

observe that in order to warm-start the computation of 𝑌 0

𝛿𝑝 𝑗
with 𝛿 = 𝑝0𝑚0𝑖0 . . . 𝑝 𝑗−1𝑚 𝑗−1𝑖 𝑗−1 we

need to store the current minimal set w.r.t. the𝑚-prefix for every combination of 𝑝- and 𝑖-prefixes

that can occur in 𝛿 , which are O(𝑛𝑘+1𝑘!) many. Similarly, to warm-start the computation of 𝑋
𝑚 𝑗 𝑖 𝑗

𝛿𝑝 𝑗

we need to store the current minimal set w.r.t. the 𝑖-prefix for every combination of 𝑝- and 𝑚-

prefixes that can occur in 𝛿 . This means that the memory required by the algorithm is O(𝑛𝑘+1𝑘!),
which is prohibitively large for large values of 𝑛 and 𝑘 .

We implemented a space-bounded version of the acceleration algorithm, where for any given

parameter𝑀 (chosen by the user), we stored only up to𝑀 values for each counter. Whenever the

values of all the counters are less than 𝑀 , we use the regular acceleration algorithm as outlined

above. Otherwise, if any of the counters exceeds𝑀 , then we fall back to the regular initialization

procedure of fixpoint algorithms, i.e. depending on whether it is an 𝑌 or an 𝑋 variable, initialize it

with𝑉 or ∅ respectively. As a result, the memory requirement of our accelerated fixpoint algorithm

is given by O(𝑀𝑘+1𝑘!). This space-bounded acceleration algorithm made our implementation much

faster and yet practically feasible, as has been demonstrated in Sec. 6.

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

65

D SUPPLEMENTARY RESULTS FOR THE EXPERIMENTS

0 200 400

0

2,000

4,000

Parallel (s)

N
o
n
-
p
a
r
a
l
l
e
l
(
s
)

0 200 400

0

500

1,000

Accelerated (s)

N
o
n
-
a
c
c
e
l
e
r
a
t
e
d
(
s
)

Fig. 10. Zoomed-in version of Fig. 5. (Left) Comparison between the computation times for the non-parallel
(1 worker thread) and parallel (48 worker threads) version of Fairsyn, with acceleration being enabled in
both cases. (Right) Comparison between the computation times for the non-accelerated and the accelerated
version of Fairsyn, with parallelization being enabled in both cases. (Both) The points on the solid red line
represent the same computation time. The points on the dashed red line represent an order of magnitude
improvement.

0 5 10 15

10
−2

10
0

10
2

𝑀

C
o
m
p
.
t
i
m
e
(
s
)

2 5 10 15

10
−5

10
0

𝑀

I
n
i
t
.
t
i
m
e
(
s
)

Fig. 11. (Left) Effect of variation of the acceleration parameter𝑀 on the total computation time (parallelization
being enabled) for the VLTS benchmark examples with 1 Rabin pair. (Right) Effect of variation of the
acceleration parameter𝑀 on the initialization time for the VLTS benchmark examples with 1 Rabin pair. The
computation time (Y-axis) in both the plots are shown in the logarithmic scale.

66 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

Number of

Vertices

Number of

Transitions

Number of

Live Edges

Number of

BDD

Variables

289 1224 17 9

289 1224 25 9

289 1224 13 9

1952 2387 1 11

1952 2387 5 11

1952 2387 25 11

1183 4464 16 11

1183 4464 49 11

1183 4464 9 11

3995 14,552 39 12

3995 14,552 139 12

3995 14,552 153 12

5121 9392 1 13

5121 9392 54 13

5121 9392 73 13

8879 24,411 473 14

8879 24,411 397 14

7119 38,424 626 14

7119 38,424 835 14

7119 38,424 597 14

10,849 56,156 241 14

10,849 56,156 482 14

18,746 73,043 1585 15

18,746 73,043 1729 15

18,746 73,043 575 15

25,216 25,216 137 15

25,216 25,216 595 15

25,216 25,216 373 15

40,006 60,007 1130 16

40,006 60,007 865 16

52,268 292,823 107 16

52,268 292,823 3254 16

65,537 524,293 13,727 17

65,537 524,293 25,229 17

66,929 569,322 23,290 17

66,929 569,322 13,698 17

69,753 359,575 11,071 17

69,753 359,575 5058 17

83,435 259,488 1682 17

83,435 259,488 2707 17

96,878 282,880 6225 18

96,878 282,880 585 18

Table 3. Details of the fair adversarial Rabin games randomly generated from the VLTS benchmark suite.
Continued to Table 4.

Fast Symbolic Algorithms for Omega-Regular Games
under Strong Transition Fairness

67

Number of

Vertices

Number of

Transitions

Number of

Live Edges

Number of

BDD

Variables

116,456 364,596 8316 17

116,456 364,596 7774 17

142,471 925,429 19,259 18

142,471 925,429 3304 18

164,865 1,619,200 13,407 18

164,865 1,619,200 24,868 18

166,463 518,976 13,633 18

166,463 518,976 4155 18

214,140 683,205 13,588 18

214,140 683,205 12,113 18

371,804 641,565 3413 19

371,804 641,565 12,151 19

386,496 1,171,870 26,247 19

386,496 1,171,870 17,823 19

566,639 3,984,160 7109 20

566,639 3,984,160 42,757 20

Table 4. Continued from Table 3. Details of the fair adversarial Rabin games randomly generated from the
VLTS benchmark suite.

68 Tamajit Banerjee, Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh Soudjani

Broadcast

Queue

Capacity

Output

Queue

Capacity

Number of

Vertices

Number of

Transitions

Number of

Live Edges

Number

of BDD

Variables

Time

(seconds)

1 1 5,307,840 10,135,300 5,124,100 25 7.37

2 1 21,231,400 40,541,200 20,496,400 27 24.90

3 1 21,414,100 42,080,300 21,265,900 27 28.97

1 2 21,340,800 40,879,100 20,834,300 27 38.25

1 3 21,559,400 42,756,100 21,772,800 27 51.55

4 1 84,925,400 162,165,000 81,985,500 29 57.70

5 1 85,295,700 165,243,000 83,524,600 29 65.01

6 1 85,656,300 168,321,000 85,063,700 29 73.19

7 1 86,007,400 171,399,000 86,602,800 29 77.97

1 4 85,363,200 163,516,000 83,337,200 29 92.56

1 5 85,808,000 167,270,000 85,214,200 29 113.18

2 2 85,363,200 163,516,000 83,337,200 29 133.20

1 6 86,237,400 171,024,000 87,091,200 29 135.67

3 2 86,061,400 169,673,000 86,415,400 29 144.27

1 7 86,651,500 174,778,000 88,968,200 29 145.76

8 1 339,702,000 648,659,000 327,942,000 31 149.68

2 3 86,237,400 171,024,000 87,091,200 29 163.62

9 1 340,447,000 654,815,000 331,020,000 31 174.29

10 1 341,183,000 660,972,000 334,098,000 31 197.02

3 3 86,870,100 177,181,000 90,169,300 29 203.15

1 8 341,453,000 654,066,000 333,349,000 31 248.38

1 9 342,350,000 661,574,000 337,103,000 31 283.85

1 10 343,232,000 669,082,000 340,857,000 31 331.78

7 2 345,587,000 691,003,000 351,818,000 31 567.26

4 2 341,453,000 654,066,000 333,349,000 31 710.78

2 4 341,453,000 654,066,000 333,349,000 31 806.74

5 2 342,868,000 666,378,000 339,505,000 31 852.37

6 2 344,246,000 678,691,000 345,661,000 31 936.04

2 5 343,232,000 669,082,000 340,857,000 31 1034.57

4 3 344,950,000 684,098,000 348,365,000 31 1071.52

2 7 346,606,000 699,113,000 355,873,000 31 1111.64

7 3 348,693,000 721,035,000 366,834,000 31 1312.88

2 6 344,950,000 684,098,000 348,365,000 31 1336.35

5 3 346,233,000 696,410,000 354,521,000 31 1351.31

3 4 344,246,000 678,691,000 345,661,000 31 1632.63

6 3 347,480,000 708,723,000 360,677,000 31 1667.54

8 2 1,365,810,000 2,616,260,000 1,333,400,000 33 2478.13

9 2 1,368,660,000 2,640,890,000 1,345,710,000 33 2783.77

Table 5. Experimental evaluation for the code-aware resource management case study (extended table).

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Two-Player Games
	2.2 Fair Adversarial Games
	2.3 Symbolic Computations over Game Graphs

	3 Fair Adversarial Rabin Games
	3.1 The Symbolic Algorithm
	3.2 Proof Outline
	3.3 Complexity
	3.4 Specialized Rabin Games

	4 Generalized Rabin Games
	4.1 Fair Adversarial Generalized Rabin Games
	4.2 Fair Adversarial GR(1) Games

	5 Stochastic Generalized Rabin Games
	5.1 Preliminaries: 212-player games
	5.2 The reduction

	6 Experimental Evaluation
	6.1 Performance Evaluation
	6.2 Practical Benchmarks
	6.2.1 Code-Aware Resource Management
	6.2.2 Controller Synthesis for Stochastically Perturbed Dynamical Systems

	7 Conclusion
	References
	A Example-Computation of the Rabin Fixed-Point
	B Detailed Proofs
	B.1 General Lemmas
	B.2 Additional Proofs for Sec. 3
	B.2.1 Proof of Thm. 3.3
	B.2.2 Proof of Thm. 3.2

	B.3 Proof of Thm. 3.1
	B.3.1 Strategy Extraction
	B.3.2 Soundness
	B.3.3 Completeness
	B.3.4 Additional Lemmas and Proofs
	B.3.5 Proof of Prop. B.3
	B.3.6 Proof of (61)

	B.4 Additional Proofs for Sec. 3.4
	B.4.1 Fair Adversarial Rabin Chain Games
	B.4.2 Fair Adversarial Parity Games
	B.4.3 Fair Adversarial Generalized Co-Büchi Games

	B.5 Additional Proofs for Sec. 4
	B.5.1 Proof of Thm. 4.1
	B.5.2 Proof for Thm. 4.2
	B.5.3 Proof of Thm. 4.3

	B.6 Additional Proofs for Sec. 5
	B.6.1 Preliminaries
	B.6.2 Proof of Thm. 5.2

	C The Accelerated Fixpoint Algorithm
	D Supplementary Results for the Experiments

