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Specification for Di�x Cedar
The anonymization algorithm underlying Aircloak Insights is Di�x. The current version of Di�x is Cedar.
This section describes the operation of Di�x Cedar. It explains how and why Di�x Cedar protects against
known attacks, thus providing strong anonymity.
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• Aggregation function count distinct
• Aggregation function stddev

Overview
Key concepts
Anonymization in Di�x Cedar has two main aspects, SQL constraints and answer perturbation. The
goal is to allow as much SQL as possible, especially commonly used SQL, and to minimize answer perturbation
while maintaining strong anonymity. Strong anonymity is achieved when an attacker’s guess as to the attributes
of individual users either has low confidence with high probability, or high confidence with low probability.

In order to safely allow as much SQL as possible, Di�x Cedar constrains SQL in a fine-grained fashion.
While some entire SQL features are prevented (for instance window functions), more often an SQL feature is
allowed but constrained in terms of what other features it may be used in combination with, how frequently
it may be used, or even what constant values it may be used with.

Perturbation takes the form of suppressing answers and distorting answers. The latter occurs through both
adjusting extreme column values (flattening) and adding noise. Key mechanisms include:

• Answer suppression: Answers that pertain to too few distinct users are suppressed.
• Sticky layered noise: Di�x Cedar adds noise taken from a Gaussian distribution. The noise is sticky

in that identical query conditions generate identical noise. The noise is layered in that each query
condition contributes a separate noise value (which are summed together to produce the final noise
value). There are in fact two types of noise layers, UID-noise and static-noise. Static-noise is sticky in
the sense that the same filter condition, for instance age = 20, will typically generate the same noise
sample. UID-noise is sticky in the sense that the same filter condition combined with the same set of
selected users will typically generate the same noise sample.

• Extreme value flattening: When a few individual users contribute an extreme amount to an answer
(relative to other users), then the values contributed by those users are reduced (or increased if negative)
to be comparable with values contributed by other users.

Di�x Cedar can report how much answer suppression has taken place and how much noise was added to an
answer. Di�x Cedar cannot, however, report how much extreme value flattening has taken place.

Deployment
Di�x Cedar is deployed as a function or device that sits between an analyst (or application) and an un-
anonymized database. In the Aircloak system, this device is referred to as Insights Cloak. In this document,
for readability, we refer to is simply as the cloak.

An SQL interface is exposed to the analyst. The database may be an SQL database, or may be some other
kind of data store. The cloak translates the analyst SQL into the appropriate query language.

+----------+ Query +-------+ SQL
| |<---------| |<----------
| Database | | Cloak | Analyst
| |--------->| |---------->
+----------+ Data +-------+ Answer

(buckets)

If the SQL query requests an aggregate (for instance SELECT age, count(*) FROM table GROUP BY age),
then each row returned in the answer is refered to as a bucket in this document. In this example, each tuple
(age, count) would be a separate bucket.
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Main Pipeline
The cloak operates query-by-query: it accepts SQL queries from the analyst (or application), parses the SQL
and checks to ensure that it is allowed, potentially modifies the analyst SQL to adhere to SQL constraints,
requests the appropriate data from the database (SQL’ in the figure), determines if buckets need to be
suppressed, and adds noise to unsuppressed buckets before returning them to the analyst.

The cloak also maintains some internal state about data in the database. This state, produced by querying
the database, is used to determine when certain constraints may be relaxed. The analysis queries producing
the state are run when the system is initially setup, and are periodically repeated.

Prior to query: - Initialization of internal state (SQL constraints)

At query time: - Handle incoming SQL (SQL constraints) - Generate DB query (Answer perturbation
prep) - Handle DB answer (Answer perturbation)

Database configuration
The database consists of tables. Tables have columns and rows.
Each table must be configured as being personal or non-personal. Personal tables contain user data that
must be anonymized, whereas non-personal tables contain other data. (Note that in the Aircloak Insights
product, the term “datasource” is used to refer generically to di�erent types of databases.)

When queries include one or more personal tables, the cloak must be able to associate every row of data with
one distinct user. This can happen in one of two ways: 1. The personal table is configured with one and only
one user_id column (often referred to as the uid in this document). This uniquely identifies the entity that
must be protected (typically but not necessarily a natural person). 2. The personal table can be linked to a
personal table with a user_id through one or more JOIN operations. The columns that may be used for this
linking, known as key columns, must be explicitly configured.

The cloak allows JOIN (...) ON operations using the configured key or user_id columns only (see Illegal
JOINs).

Initialization of internal state
The cloak establishes cached internal state that it uses to determine which SQL operations are allowed on
which columns. They are:

Shadow table

Holds a list of the X values that occur most frequently in the column (X=200), so long as the value has at
least 10 distinct users. These constants are evaluated as exact (not noisy) counts. (Note it would be slightly
better to use noisy counts here, but this is not an important issue.) Values in this list may be used in negands
(negative AND conditions) and posors (positive OR conditions) without limitations.

This table is refreshed every 30 days.

Isolating column label

The cloak labels columns as isolating if 80% or more of the values in the column are associated with only a
single user.

This table is refreshed every 60 days.

Safe math functions

There are a variety of functions that can throw an error in some databases, for instance divide-by-zero,
numeric overflow, datetime overflow, and taking the square root of a negative number. In such databases, the
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error manifests itself as a error message transmitted to the analyst, which can be exploited by an attacker
(see Error generation attacks).

If the database allows user-defined exception handlers, then these are installed in the database, either by the
cloak when it connects, through configuration of the database prior to cloak connection. If not, then the
cloak modifies SQL to prevent exceptions. In both cases, errors are prevented from being transmitted to the
analyst. See Determine if safe math functions needed.

Per column min and max values

The safe math functions unfortunately slow down query execution. To mitigate this, the cloak conservatively
estimates when a math function might result in an exception, and only executes the safe functions in these
cases.

In order to make this estimate for numeric and date/time/datetime overflow exceptions, the cloak records an
anonymized minimum and maximum value for each numeric and date/time/datetime column. These recorded
values are not the true minimum and maximum values, because an attacker could then detect these values
through a series of queries that detect when a safe function was executed through a timing attack.

With high (but not 100%) probability, the approximated min and max exceed the true min and max. For
numeric columns they are computed as follows:

1. Take the top/bottom 1000 values from a given column (note that a given user can have multiple values)
2. Discard all but the biggest/smallest value for each user out of those
3. Randomly select a cuto� with configured mean (default 20) and stddev (default 5)

• The cuto� won’t be lower than a configured min (default 10)
• The PRNG for the cuto� is seeded with the table and column names and salt, giving the same result

on every run

4. Ignore a number of the top/bottom values from step 2 equal to the selected cuto�
5. Take the top/bottom value after that and find the closest snapped value above/below it (see Snapped

Ranges)
6. Given both a min and max computed this way create an extended bound

• If min is negative while max is positive, multiply both by 10
• If both are positive, multiply max by 10 and divide min by 10
• If both are negative, multiply min by 10 and divide max by 10

7. If there are not enough values to compute either min or max, set the bounds to :unknown and always
use safe math functions

The procedure for date, time, and datetime columns is similar but di�ers in the following two ways: 1. In
step 5, the closest snapped value is computed from ‘1900-01-01’ (rather than zero, as is the case with numeric
columns). 2. In step 6, the max is expanded by adding 50 years (rather than multiplying by 10).

Handle incoming SQL
Supported SQL
The following shows what SQL is supported. Any received SQL that has syntax outside of this specification
is rejected.

SELECT [DISTINCT | ALL]
field_expression [, ...]
FROM from_expression [, ...]
[ WHERE filter_expression [AND ...] ]
[ GROUP BY column_expression | position [, ...] ]
[ HAVING filter_expression [AND ...] ]
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[ ORDER BY column_name | position [ASC | DESC] [NULLS FIRST | LAST] [, ...]
[ LIMIT amount ] [ OFFSET amount ] ]

field_expression :=
* | table_name.* | column_expression [AS alias]

column_expression :=
[table_name.]column_name |
aggregation_function([DISTINCT | ALL] column_name) |
function(column_expression) |
column_expression binary_operator column_expression |
column_expression::data_type |
case_statement

binary_operator :=
+ | - | * | / | ˆ

data_type :=
integer | real | text | boolean | datetime | date | time | interval

case_statement := CASE WHEN filter_expression THEN column_expression [...] [ELSE column_expression] END

from_expression :=
table | join

table :=
table_name [[AS] alias] | (select_expression) [AS] alias

join :=
table CROSS JOIN table |
table { [INNER] | { LEFT | RIGHT } [OUTER] } JOIN table ON filter_expression

aggregation_function :=
COUNT | SUM | AVG | MIN | MAX | STDDEV | VARIANCE | MEDIAN |
COUNT_NOISE | SUM_NOISE | AVG_NOISE | STDDEV_NOISE | VARIANCE_NOISE

filter_expression :=
column_expression equality_operator (value | column_expression) |
column_expression inequality_operator (numerical_value | datetime_value) |
column_expression BETWEEN value AND value |
column_expression IS [NOT] NULL |
column_expression [NOT] IN (constant [, ...]) |
column_expression [NOT] LIKE | ILIKE string_pattern [ESCAPE escape_string] |
column_expression [NOT] boolean_column_expression
column_expression

comparison_operator :=
equality_operator | inequality_operator

equality_operator :=
= | <>

inequality_operator :=
> | >= | < | <=
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Rejecting queries
Even if the SQL satisfies the above syntax, there are a number of specific uses that can be rejected.

Inequalities

While the cloak allows inequality operators (> | >= | < | <=), there are restrictions on how they may be
used. In general, the cloak requires that both sides of an inequality be specified. This is necessary to prevent
di�erence attacks using range creep with averaging.

This document refers to all inequalities that are bounded on both sides as ranges.
In addition to the ranges that can be specified with BETWEEN and inequality operators, some functions
implicitly define a range. For instance, the function hour defines a range of width one hour. The definition of
range in this document includes implicit ranges. These are: hour, minute, second, year, quarter, month,
day, weekday, date_trunc, round, trunc, and bucket.

Inequalities that are not ranges (not bounded on both sides) are possible in the special case of Conditions
with two columns.

Clear conditions (IN, range, negative conditions)

The cloak may require that certain conditions are clear. The primary purpose of clear conditions is so that the
cloak can seed noise layers through SQL inspection rather than by floating the column value. The following
operators must be clear:

• negative conditions (col <> val) including NOT IN and IS NOT NULL.
• IN (col IN (val1, val2)), though note that the column is floated for the purpose of seeding the

static noise layer (not the per-element UID-noise layers).
• range (col BETWEEN val1 and val2), including implicit ranges.
• expressions within aggregation functions (for instance sum(col + 1)).

Negative conditions must be clear because it would not be e�cient to float a value that is being excluded by
the condition.

The column in a range can be floated. However, by generating the seed materials through inspection of the
constants val1 and val2, the intent of the condition is captured, and a given condition will always produce
the same static seed.

The term “clear” implies that it is clear from SQL inspection alone what the semantics of the conditions are,
and therefore how to seed the corresponding noise layers.

Clear conditions also have the e�ect of reducing the attack surface since it gives an attacker fewer mechanisms
to work with. For isolating columns, the cloak forces clear conditions for all operators.

In earlier versions of Di�x, clear conditions were limited to only columns on the left-hand-side: no column
functions were allowed (for instance col = val). This restriction was subsequently relaxed to allow operators
that are on one hand frequently useful to analysts, but on the other hand do not give analysts an adequately
large attack surface (for instance lower(col) = val).

IN and range are limited to only constants on the right-hand-side. Negative conditions may additionally have
columns on the right-hand-side.

The left-hand-side can have either the native column (no transformations), or the native column with a single
instance of the following functions:

For text columns, or columns that have been cast as text: lower, upper, trim, ltrim, btrim, and substring.

For date, datetime, and time columns: hour, minute, second, year, quarter, month, day, weekday, and
dow.
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A column in a clear condition cannot have undergone transformations prior to the condition. For instance, in
the following query, the IN condition must be clear, but since there is a prior transformation (numeric + 1
in the sub-query), the condition is unclear and the query rejected.

SELECT COUNT(*)
FROM (

SELECT numeric + 1 AS number
FROM table) x

WHERE number IN (1, 2, 3)

Too much math

In general In order to prevent SQL backdoor attacks, the cloak limits the complexity of certain math
in queries. We are particulary concerned with discontinuous functions combined with constants because
they can be coerced into acting as discrete logic. However, there are many ways of obtaining discontinuous
functions, for instance string manipulations (for instance left, ltrim) followed by casting to numbers, or
datetime functions (for instance year or hour). In addition, functions can be coerced into constants, as for
instance pow(col1, col2-col2) is 1.

We take a conservative approach and limit the number of expressions containing a restricted function and a
constant, or more than one restricted function to a total of 5.

The restricted functions and operators include +, -, /, *, ˆ, %, abs, ceil, floor, length, round, trunc,
btrim, left, ltrim, right, rtrim, substring, year, quarter, month, day, weekday, hour, minute, second,
and date_trunc.

With isolating columns In order to prevent Linear program reconstruction attacks, the cloak places even
more restrictions on expressions associated with isolating columns. An isolating column is one where 80% or
more of the values in the column are associated with only a single user. These columns would otherwise be
susceptible to linear program reconstruction attacks because they may be used to select groups of individual
users.

The operators IN (with more than one element) and <> are disallowed for isolating columns. This prevents
easily isolating individual users, or controling which individual users comprise an answer.

For the remaining operators, the cloak requires that all conditions that operate on isolating columns to be
clear

String functions

In order to generally reduce the attack surface available with string functions (lower, upper, trim, ltrim,
btrim, and substring), the following limitations apply:

1. Columns which have undergone a string function cannot be combined with other transformations.
2. String functions cannot be applied to columns that have undergone multiple casts.
3. Results of string functions can only be compared with constants or with other columns.

Datetime intervals

The cloak allows date, time, and datetime math using intervals (for instance, datetime_col + interval
�PT1H2M3S�). In order to limit the number of cases that need to be checked for datetime overflow, the
cloak limits overflow math to datetime_col + interval and datetime_col = interval. Math opera-
tions involving multiple intervals (interval + interval) or intervals and constants integer * real are
prohibited.
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LIKE and NOT LIKE

[NOT] [I]LIKE have similar restrictions as string functions. The first two restrictions that apply to String
functions apply to [NOT] [I]LIKE as well (cannot be combined with other transformations, cannot be used
with columns that have mutiple casts).

For isolating columns, the %_ wildcards associated with [NOT] [I]LIKE is limited to using only the % wildcard
(_ is not allowed), and only in the first or last position of the string. For example, col LIKE �%stuff%�
is allowed, but not col LIKE �stu%ff�. Non-isolating columns have no limitation on the [NOT] [I]LIKE
wildcards.

Limitations due to shadow table

To mitigate noise exploitation attacks through cha� conditions, negative conditions and IN right-hand-side
elements are disallowed if the corresponding constant does not appear in the shadow table.

Note that this mechanism does not prevent isolation in all cases. The shadow table is based on the complete
column. Any given query, however, may have conditions that cover only part of the column. A constant may
therefore appear in the shadow table and still not have any matching rows in the context of a given query.
For instance, the condition gender <> �F� may not be cha� in the pro_football_players table, but may
be cha� when combined with tournament = �fifa world cup�. However, executing an e�ective attack by
exploiting this mechanism is essentially not possible (see Shadow table exploitation attack).

Conditions with two columns

The cloak allows conditions with two columns. However, each column may appear only once in the condition.
Conditions with more than two columns are not allowed.

Two-column conditions with inequalities do not require that the condition be a range (have both a lower and
upper boundary). For instance, the condition WHERE col1 < col2 is allowed.

Illegal JOINs

The cloak rejects any queries that has JOIN (...) ON conditions that are not explicitly allowed (see Database
configuration). All JOIN (...) ON conditions must be simple column1 = column2 expressions. This prevents
attacks that would otherwise try to exploit known relationships between columns to generate extra noise
samples.

Modifying queries
Normally queries with SQL that does not conform to the requirements of the cloak are rejected. Cases where
the query is modified rather than rejected are described here.

Snapped Ranges

In order to prevent di�erence attacks using range creep with averaging, all ranges must conform to pre-
designated widths and o�sets.

In the case of numeric data types, the widths must fall within the following infinite sequence of widths: [...,
0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, ...]. The o�set must fall on an even multiple of the width, or an
even multiple plus 1/2 of the width. The following are allowed:

• col BETWEEN 10 and 15: width 5, o�set 10
• col BETWEEN 7.5 and 12.5: width 5, o�set 7.5 (shifted by 2.5)
• col BETWEEN -0.001 and -0.002: width 0.001, o�set -0.002

The following are not allowed: * col BETWEEN 10 and 13: width 3 (disallowed width) * col BETWEEN 8
and 13: width 5, o�set 8 (not multiple of 5 or 2.5)
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In the case of datetime types, the widths must correspond to natural datetime boundaries (year, month,
week, day, hour, minute, second). Within each such boundary, the following additional widths are allowed:

• [1, 2, 5, 10, 20, 50, ...] years
• [1, 2, 6, 12] months
• [1, 2, 5, 10, 20] days
• [1, 2, 6, 12, 24] hours
• [1, 2, 5, 15, 30, 60] minutes
• [1, 2, 5, 15, 30, 60] seconds

In addition, the cloak has a number of current date/time functions, including current_date, current_time,
current_datetime, now and current_timestamp. These can be used in inequalities with columns, for
instance now() < col and now() between col1 and col2. Current date/time functions are snapped by
truncating to the current day (time 00:00:00).

Aggregation functions sum, min, max, count
Di�erent anonymization mechanisms are used for di�erent aggregation functions. In this section, we describe
anonymization for sum(col), count(*), count(col), count(DISTINCT uid), min(col), and max(col). A
key requirement here is to minimize the amount of data that is transferred from the database to the cloak.
The implementation of these functions limits the transfer to one row of data per bucket.

Generate DB query
As a running example for this section, we use the following query submitted by an analyst to the cloak:

SELECT frequency, sum(amount) AS amount_sum
FROM transactions
WHERE abs(acct_district_id) = 1
GROUP BY 1

The query subsequently generated by the cloak for the database is in essence the following (simplified for
readability):

1 SELECT frequency,
2 SUM(amount_sum) AS amount_sum,
3 COUNT(uid) AS count_duid,
4 MIN(uid) AS min_uid,
5 MAX(uid) AS max_uid,
6 COUNT(amount_sum) AS amount_count,
7 MIN(amount_sum) AS amount_min,
8 MAX(amount_sum) AS amount_max,
9 STDDEV(amount_sum) AS amount_stddev,

10 MIN(acct_district_id_min) AS acct_district_id_min,
11 MAX(acct_district_id_max) AS acct_district_id_max,
12 SUM(acct_district_id_cnt) AS acct_district_id_cnt
13 FROM
14 (SELECT uid, frequency, sum(amount) AS amount_sum,
15 MIN(acct_district_id) AS acct_district_id_min,
16 MAX(acct_district_id) AS acct_district_id_max,
17 COUNT(*) AS acct_district_id_cnt
18 FROM transactions
19 WHERE ABS(acct_district_id) = 1
20 GROUP BY uid, frequency) t1
21 GROUP BY frequency
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Gather bucket statistics

In order to compute the noise for aggregate answers and the noisy threshold for suppression, the cloak needs
to have certain statistics about how much users contribute to each aggregate, especially users that contribute
the most. The statistics are:

• avg(contribution)
• min(contribution)
• max(contribution)
• stddev(contribution)

This information is obtained by:

1. Adding the uid column to the selected columns (line 14) and GROUP BY (line 20),
2. Computing the contribution per user (amount_sum in line 14, since the aggregate in this example is

sum(amount),
3. Computing the four statistics (amount_min line 7, amount_max line 8, amount_stddev line 9, and as

part of computing the average, amount_count line 6).

On line 14, sum(amount) would be replaced with count(*), count(amount), or 1 if the analyst aggregate is
count(*), count(amount), and count(DISTINCT uid) respectively.

Gather seed materials

Di�x adds noise samples (layers) per query filter condition. There are two types of noise layers, UID-noise
and static-noise. Static-noise is “sticky” in the sense that the same filter condition, for instance age = 20,
will typically generate the same noise sample. UID-noise is sticky in the sense that the same filter condition
combined with the same set of selected users will typically generate the same noise sample.

The mechanism for generating the same noise sample is to generate the same seed for the PRNG (Pseudo-
Random Number Generator). Each seed is composed of several components which we call the seed materials
(see Determine seeds).

The seed material for both the UID-noise and the static-noise contain the values that are filtered for (in the
case of positive conditions) or filtered against (in the case of negative conditions) by the condition. In some
cases, it is possible to determine that value through inspection of the SQL itself. For instance, the selected
value of age = 20 is 20. In other cases, however, it is not clear from inspection, and so the selected value or
values are requested from the database. We refer to this as “floating” the column.

In our running example, there are two filter conditions. One is in the WHERE clause (ABS(acct_distrit_id)
= 1, line 19), and one is the selected column frequency (line 1). The selected column frequency is a filter
condition because each resulting bucket has only a single frequency value. The cloak does not interpret the
filtered value for the WHERE condition by inspection, but instead floats the column acct_district_id.

The static-noise is seeded by the minimum and maximum column values, and so these must be floated. In the
running example, lines 15 and 16 select the per-UID per-bucket min and max for column acct_district_id,
and lines 10 and 11 select the per-bucket min and max.

The UID-noise is seeded by (among other things): 1. the minimum UID (line 4), 2. the maximum UID (line
5), 3. the distinct number of UIDs (line 3), and 4. the number of rows (lines 12 and 17).

Determine if safe math functions needed

A conservative analysis is run to determine if a given math expression in the query might result in an
exception. Examples would be determining if a column in a divisor could be zero, or determining whether a
pow() function on a column could lead to overflow. The analysis makes the assumption that the column value
from the database does not exceed the approximated min and max (see Per column min and max values).

If a math function might lead to an exception, then the function in the query is replaced with a safe version
(see Safe math functions).
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If the analysis determines that a math function cannot lead to an exception, then the possible values for the
column are bounded in the query so that the min and max assumptions are correct. An example of how this
is done is as follows:

CASE WHEN amount < 0 THEN 0
WHEN amount > 1000000 THEN 1000000
ELSE amount

END

Here the assumed min and max for the amount column are 0 and 1000000. The amount column is replaced
with this CASE statement, ensuring that any value from the amount column does not exceed these bounds.

For simplicity, these substitutions are not shown in the example database query.

Add protection against JOIN timing attack

As described in the JOIN timing attack, an analyst can strongly influence query execution time in the
database by including JOIN expressions that may return an empty table.

To prevent this, the cloak modifies all but the last JOIN expression so that at least one row is always returned.
This is done with a UNION operation:

original_expression UNION inverse_original_expression

The second expression of the UNION returns a single row if and only if the first expression, which is the original
expression, returns no rows. Following is an example:

SELECT uid
FROM accounts
WHERE lastname = �Zamora�

AND birthdate = �1996-11-16�
UNION ALL
SELECT *
FROM (

SELECT uid
FROM accounts
LIMIT 1
OFFSET 0
) t

WHERE NOT EXISTS
(

SELECT uid
FROM accounts
WHERE lastname = �Zamora�

AND birthdate = �1996-11-16�
)

The original JOIN expression is the part above the UNION. It is repeated within the WHERE NOT EXISTS
expression. If the original JOIN expression returns nothing, the the UNION expression returns a single row.

Add protection against divide-by-zero attacks

To defend against Divide by zero attacks, the cloak modifies any expression having a column in the denominator
of a divide operation so that NULL is generated instead of an exception.

This is done using a CASE statement that detects when the denominator is zero (or nearly so), and substitutes
a NULL. For example, in the condition:

WHERE 1/column = 0.1
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the expression 1/column is substituted with:

CASE WHEN column < 1.0e-100 THEN NULL
ELSE 1/column

END

Add protection against square root of negative numbers

To defend against Square root of a negative number attacks, the cloak modifies any expression having a
column in a square root opeation that NULL is generated instead of an exception.

This is done using a CASE statement that detects when the expression in the square root operation is negative,
and substitutes a NULL. For example, in the condition:

WHERE sqrt(column) = constant

the expression column is substituted with:

CASE WHEN column < 0 then NULL
ELSE sqrt(column)

END

Handle DB answer
Noise Layers

A noise layer is an individual Gaussian noise sample. The total noise added to an aggregate value in each
bucket of a query answer is the sum of the individual noise samples. Although noise layers are taken from a
Gaussian distribution, their values are not random. Rather, the PRNG used to generate each noise sample is
seeded in such a way that identical query or answer conditions generate the same noise sample. We refer to
this property as being sticky.

There are two types of noise layers, static and uid. The di�erence between them is based on what is used
to seed each layer. Static noise layers typically (though not always) depend only on the semantics of the
individual SQL query filter condition. In other words, the WHERE condition age = 10 will always produce the
same static noise layer independent of what UIDs comprise the answer. By contract, UID-noise layers always
depend on which UIDs comprise the answer.

Each filter condition has a static noise layer, and most filter conditions additionally have a UID-noise layer.
The following are considered to be filter conditions:

• WHERE clauses
• HAVING clauses in subqueries
• GROUP BY clauses
• All columns in the top-level SELECT clause
• Range WHERE clauses, for instance a pair of a >= x and a < y, is considered one filter instead of two
• Each element of IN (a, b, c) is treated as one distinct filter condition, while the entire expression

taken together is treated as another filter condition

In addition, there is a generic noise layer for queries that otherwise have no noise layer (because no filter
conditions). The query SELECT count(*) FROM table is such a query.

The aggregation function count(col) is given an additional UID-noise layer. The purpose of this noise layer
is to defend against the Di�erence attack with counting NULL.

Ranges, as well as the implicit ranges bucket(), round(), and trunc(), do not have a UID-noise layer, only
a static noise layer. This is to defend against noise exploitation attacks through cha� conditions.

Conditions comparing two columns (col1 <>|<|<=|>|>= col2) have no noise layers. JOIN (...) ON condi-
tions have also no noise layers. In both cases, the conditions are constrained to the point where there are no
known attacks that can e�ectively exploit these conditions.
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The IN operator (with more than one element) has a single static noise layer for the entire expression, and a
UID-noise layer for each element.

Determine seeds

Upon receiving the database answer, for each one-column condition, the cloak knows the following information:

1. column name
2. table name

For each bucket, the cloak additionally knows:

3. min column value
4. max column value
5. min UID
6. max UID
7. count of distinct UIDs
8. count of rows

The min and max column values are obtained either by floating (see Gather seed materials), or by inspection
of the condition itself in the query. The following cases use inspection:

• If col = val, col <> val, or clear_function(col) <> val, then both the min and max are set to
val.

• If col BETWEEN val1 AND val2, then min is set to val1, and max to val2.
• If col IN (val1, ..., valN), then for each of the N per-element UID-noise layers, both min and

max are set to valN. (Note that for the static noise layer, floating is used.)
• If a selected column (SELECT col FROM ...), then min and max are set to the value returned by the

database.
• If an implicit range, then min is set to the left edge of the range, and max is set to the right edge of the

range.
• In case of text datatypes, val is converted to lower case (lower(val)) for the purpose of seeding.

Most noise layers are seeded with at least the following:

• A canonical name of the column in the form {“table”, “column”}
• A secret salt (random value) that is established when the cloak is initialized and not changed afterwards
• The min and max column value

The negative conditions <>, NOT LIKE, and NOT ILIKE add the symbol :<> to the seed material. Note that
NOT IN conditions are converted to their equivalent <> forms.

UID-noise layers additionally have the minimum and maximum UID values in the seed material.

The additional UID-noise layer assigned to count(col) is seeded with the secret salt, the canonical column
name, and the minimum and maximum UID values.

The generic noise layer is seeded with the count(DISTINCT uid) value and the secret salt.

Low count suppression

The cloak obtains the number of distinct UIDs that contribute to each bucket (see Gather seed materials).
Buckets that have too few distinct UIDs are suppressed (not returned to the analyst in the query answer).

A noisy threshold is used to determine if a bucket should be suppressed. The threshold value is determined
by seeding a Gaussian random number with:

• Minimum UID
• Maximum UID
• Number of distinct UIDs
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using the paramters mean = 4 and stddev = 0.5. In the example of section Generate DB query, these three
aggregates are gathered in lines 3-5.

If the number of distinct UIDs is less than the threshold value, then the bucket is suppressed.

Value flattening and noise addition

The cloak perturbs aggregate function values. This section describes how the sum(col), count(*),
count(col), count(DISTINCT uid), min(col), and max(col) aggregates are perturbed.

The magnitude of perturbation is related to how much individual users contribute to the aggregate. The
magnitude depends on two types of users, heavy contributors, and extreme contributors.
Extreme contributors are defined as the 1 or 2 users with the highest contribution. Heavy contributors are
defined as the 3 to 5 users with the next highest contribution.

Conceptually the perturbation should do the following. First, it should modify the contributions of the
extreme contributors so that they are similar to those of the heavy contributors. Second, it should add noise
proportional to the magnitude of the heavy contributions.

For example, suppose a column contains user salary. Suppose that the average salary is 100K, but there are
four or five users with salaries between 450K and 550K, and only one user with a salary higher than 550K.
That user’s salary is 2M. The group of four or five users would be regarded as heavy contributors, and the
user with 2M salary would be regarded as an extreme contributor.

We want to adjust the value of the extreme contribution (2M) so that it is more like those of the heavy
contributors. If the aggregate is sum(), this e�ectively means reducing the reported sum by around 1.5M. We
call this adjustment “flattening”. We want to then add noise proportional to that of the heavy contributors,
for instance proportional to around 500K.

The rational for these perturbations is as follows. Assume that an analyst is able to forumlate two queries,
one whose answer does not include the victim (the left query), and one that may include the victim (the
right query). The analyst wants to compare answers to determine if the victim is present in the right query
or not. If the right answer is greater than the left answer, for instance, the analyst may assume that the
victim is present in the right answer. This is the basic Di�erence attack.

There needs to be enough noise that the analyst’s confidence in a guess as to the presence or absence of the
victim in the right query is low.

Alternatively, we can assume a worst-case where an analyst knows every value in a column except that of a
single user (the victim), and the analyst wants to determine if the victim is included in the database or not.
If a query taking the sum of the column is greater than the sum of all known values, then again the analyst
can assume that the victim is in the database, and again there needs to be enough noise to keep the analyst’s
confidence low.

Since the victim may be a heavy contributor, there needs to be enough noise to obscure the presence or
absence of a heavy contributor. The analyst can, however, in many cases estimate the magnitude of noise that
was added. Indeed, the cloak explicitly reports this to the analyst for the purpose of better understanding
the cloak’s answer. If there is an extreme contributor, then merely the magnitude of noise can reveal with
high confidence the presence or absence of the user.

To prevent this, the cloak flattens the extreme user or users values to hide the extreme user by blending it in
with the heavy users. The noise is then based on the average contributions of the heavy users. Unfortunately,
the cloak cannot report how much flattening took place, since that would defeat the purpose. As a result,
aggregate values can on occasion be very inaccurate, and the analyst needs to be aware of this possibility.

In Di�x Birch, the perturbations for extreme and heavy contributors were done explicitly. That is, the cloak
would explicitly determine the contributions of each user, identify the extreme and heavy contributors, and
compute the flattening and noise accordingly. This process would sometimes incur a heavy performance
penalty, as the database would have to convey per-user information to the cloak.
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To improve performance, Di�x Cedar uses per-bucket rather than per-user information. In most cases, this
substantially reduces the amount of data transferred from the database to the cloak. Unfortunately, this
means that the cloak can no longer explicitly determine the extreme and heavy contributors. Instead, the
cloak uses aggregate statistics about the users in each bucket to estimate the extreme and heavy contributors.

The statistics are these (line numbers taken from example query):

• col_avg: average contribution of all users (line 6 divided by line 3)
• col_std: standard deviation of users’ contributions (line 9)
• col_min: min contribution of all users (line 7)
• col_max: max contribution of all users (line 8)
• col_cnt: the number of distinct UIDs of the data (line 3)

These user statistics are taken for each aggregate function in the query.

For each noise layer, a Gaussian sample is generated with mean=0 and standard deviation sd=1 (as seeded in
Determine seeds). These are summed together to produce the base_noise.

Operation of sum The following algorithm describes the algorithm for computing perturbation for
sum(col), count(*), count(col), and count(DISTINCT uid). The same algorithm works for all four
aggregate functions. count(*) is the sum where each row has value 1. count(col) is the sum where each
non-NULL row has value 1 and NULL rows have value 0. count(DISTINCT uid) is the sum of users where
each user contributes value 1.

The perturbation for sum is:

perturbation_sum = (base_noise * sum_sd) - flatten

where sum_sd is a factor applied to the base_noise and is approximately proportional to the average heavy
contribution, and flatten is the adjustment due to an approximation of the di�erence between the extreme
contributions and the average heavy contribution.

Note that for count(DISTINCT uid), all users contribute exactly the same, so flatten=0, and sum_sd=1.

The sum advertised to the analyst is:

noisy_sum = true_sum + perturbation_sum

where true_sum is the exact (non-noisy) sum from the database (line 2).

If we assume for the moment that all user contributions are positive, then the intuition behind the algorithm
follows from these two observations: 1. The larger the standard deviation (col_std), the larger the average
heavy contribution. 2. The larger the max value relative to the average plus several standard deviations, the
greater the amount of flattening.

This is perhaps explained through several examples. Let’s suppose that these examples are for sum(salary).

First, consider a case where col_min=col_max=col_avg=100K and col_std=0. In this case, all users have
the same salary of 100K, we want a noise factor of sum_sd=100K (equal to the contribution of any user), and
there is no flattening.

Now suppose that col_min=95K, col_avg=100K, col_std=3K, and col_max=10M. The relatively low standard
deviation col_std=3k implies that the majority of salaries are clustered tightly around the average of
col_avg=100K. In contrast to this, however, the maximum salary col_max=10M is far away from this cluster,
suggesting that a great deal of flattening is needed.

Now suppose col_min, col_avg, and col_max stay the same as in the previous example, but col_std=200K.
This implies that the salaries are no longer so tightly clustered around the average, but rather there are some
relatively high salaries that can be regarded as heavy hitters. As the standard deviation increases, all other
things being equal, the noise factor sum_sd would increase, and the amount of flattening would decrease.
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The following algorithm was generated through a process of trial and error, with a goal towards minimizing
perturbation while keeping attacker confidence low.

The algorithm has three constants, set as follows:

• factor=4
• avg_scale=1
• top_scale=0.5

The algorithm operates over positive values, negative values, or a combination. The algorithm actually makes
two computations, one for values above the average, and one for values below the average. sum_sd is the
largest of the two sum_sd values computed above and below. By contrast, flatten is a combination of the
flattening for above and below. (For a distribution with positive values, almost all of the flattening comes
from the computation above. For distributions with both positive and negative values, however, flattening
above and below can in fact cancel each other out!)

Of course, the col_std computed by the cloak is comprised of values both above and below the col_avg. So
we use the col_max and col_min to estimate how much of the col_std comes from above and how much
comes from below, as follows:

std_above = col_std * ((col_max - col_avg)/(col_max - col_min))
std_below = col_std * ((col_avg - col_min)/(col_max - col_min))

Next we try to estimate the rough values for heavy contributors above and below. These are computed using
the estimated standard deviations and factor=4 constant:

heavy_above = col_avg + (factor * std_above)
heavy_below = col_avg - (factor * std_below)

flatten_above = col_max - heavy_above
flatten_below = col_min - heavy_below

Note that either flatten value may be positive or negative.

The final flatten value is then:

flatten = flatten_above + flatten_below

Flattening mimics the e�ect of modifying values in the data. This in turn should impact the computed
average. To reflect this impact, we adjust col_avg as follows:

if (flatten > 0) {
col_avg = col_avg - (flatten / col_cnt)

}

Finally, sum_sd is computed as:

sum_sd = max(
abs(avg_scale * col_avg),
abs(top_scale * heavy_above),
abs(top_scale * heavy_below)

)

Remembering that avg_scale=1 and top_scale=0.5, the above computation was found to reduce overall
noise while keeping attacker confidence low.

Operation of avg The average aggregator is computed as the sum(col)/count(col).

Operation of min and max The aggregators min(col) and max(col) are set to the edge_below and
edge_above values from Operation of Sum, with the exception that min(col) may never be greater than
avg(col), max(col) may never be less than avg(col), and min(col) may never be greater than max(col).
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Reporting suppression

In order to help analysts understand query results, the cloak provides information about suppressed buckets.
Data from suppressed buckets are merged to generate a new bucket, referred to as a star bucket. Star buckets
are subject to the same bucket suppression and noise adding mechanisms as any bucket. In other words, a
star bucket itself may be suppressed. As such, absence of a star bucket does not necessarily imply that no
suppression has taken place.

The following simplistic and idealized example illustrates how suppression is reported. Here count is a count
of distinct UIDs. For simplicity, we assume here that buckets with 4 or fewer distinct UIDs are suppressed.
In reality, this decision is based on a noisy threshold (Low count suppression). This example also assumes
that any given UID appears only once. As a result, the count resulting from merging two buckets is the sum
of the two individual counts.

Suppose that the data transferred from the database to the cloak is as follows:

x y count
a 1 10
a 2 2
a 3 3
b 2 7
b 4 8
b 1 4
b 7 3
b 9 4
b 5 4
c 1 3
d 2 3

Two columns, x and y have been selected.

The suppressed buckets are these:

x y count
a 2 2
a 3 3
b 1 4
b 7 3
b 9 4
b 5 4
c 1 3
d 1 3

Suppression reporting attempts to expose as many column values as possible. It gives priority to reporting
column values from left to right as they appear in the GROUP BY. Assuming that x is to the left of y in the
GROUP BY, the suppressed buckets are merged as follows:

x y count
a * 5
b * 15
c * 3
d * 3
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The x values are preserved, and the y values are replaced with a star (*) symbol. The first two buckets will
be reported to the analyst, but the second two buckets must themselves be suppressed, and so are extracted:

x y count
c * 3
d * 3

These buckets are merged into the following bucket, losing the x column values in the process:

x y count
* * 6

This bucket is not suppressed, and so is reported to the analyst.

The final set of buckets is therefore:

x y count
a 1 10
a * 5
b 2 7
b 4 8
b * 15

* 6

These buckets are reported to the analyst with noisy counts.

Three of the seven ‘y’ values have been suppressed, and two of the four x values. Had the query placed the y
column on the left, then the suppression process would have produced this:

y x count
1 a 10
1 * 7
2 b 7
2 * 5
4 b 8

* 14

Note that somewhat more detail regarding the y column values is revealed.

Although this example used the star symbol for both the text and integer column, in practice it would be
illegal to return a star symbol, which is text, in a numeric or datetime column. In these cases, the cloak
would report a NULL value.

Bucket merging Merged buckets are processed like any other bucket: they are checked for suppression
and aggregate answers are perturbed. As such, the information needed for this processing must be preserved
when buckets are merged (lines 2-9 in the example query).

It is not possible to preserve this information perfectly. Merging is essentially an OR operation, and as such
any users that happen to be in both buckets cannot be accounted for because the cloak does not have per-user
information. Therefore the merge is designed to produce approximate values.
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The information that needs to be generated is: col_sum, count_duid, min_uid, max_uid, col_count,
col_min, col_max, col_stddev. The cloak also records the set of UIDs (uid_set) generated in previous
merges during the processing of an answer. Assuming the merging of two buckets with subscripts 1 and 2,
the values for the merged bucket are computed as follows:

• merged_uid_set = union(uid_set1, uid_set2)
• merged_col_sum = col_sum1 + col_sum2
• merged_col_min = min(col_min1, col_min2)
• merged_col_max = max(col_max1, col_max2)
• If the two uid ranges do not overlap:

– merged_col_count = col_count1 + col_count2
– merged_count_duid = count_duid1 + count_duid2

• If the two uid ranges touch (minimum of one set equals the maximum of the other set):
– merged_col_count = col_count1 + col_count2 - 1
– merged_count_duid = count_duid1 + count_duid2 - 1

• Otherwise, merged count is estimated as the maximum count plus a quarter of the minimum count
(because some collisions could occur):

– merged_col_count = max(col_count1, col_count2) + min(col_count1, col_count2) / 4
– merged_count_duid = max(count_duid1, count_duid2) + min(count_duid1, count_duid2)

/ 4
• merged_avg = merged_col_sum / merged_col_count
• For the standard deviation, we use the formula: sd(v) = sqrt(sum(vˆ2) / count - avg(v)ˆ2) We

first extract the sums of squared values: sum_sqrs1 = (col_stddev1ˆ2 + avg1ˆ2) * col_count1
and sum_sqrs2 = (col_stddev2ˆ2 + avg2ˆ2) * col_count2, we then add them together to
get the merged sum of squared values, resulting in: merged_sd = sqrt(merged_sum_sqrs /
merged_col_count - merged_avgˆ2)

Reporting noise

For each of the aggregation functions count(), sum(), avg(), and stddev(), the cloak provides corresponding
aggr_noise() functions (count_noise() etc.). The ideal here would be to report the exact standard deviation
of the actual noise added by the cloak. Doing so, however, opens the cloak to a Noise signal attack. This is
because the min and max values from the set of aggregated values have a substantial influence on the noise
standard deviation. In the aggregate value itself, this influence is somewhat hidden by the presence of the
other values and by flattening.

To hide the influence in the reported noise, the cloak reports a value close to but di�erent from the true noise
standard deviation. The larger the contribution of the extreme user, the larger the distortion. (Note that in
any event, the larger the contribution of the extreme user, the greater the amount of flattening, and so the
reported noise is not a good representation of the total distortion.)

The section Value flattening and noise addition describes how the standard deviation for noise is computed
from the measured values of col_avg, col_std, col_min, col_max, and col_cnt. When computing a
standard deviation for reporting noise, the following computation is used instead:

1 col_sum = col_avg * ct
2 new_avg = (col_sum - (col_max - col_avg) - (col_min - col_avg)) / ct
3 sum_of_sqr_diff = col_std^2 * (ct - 1)
4 new_sum_of_sqr_diff = sum_of_sqr_diff - (col_max - col_avg)^2 - (col_min - col_avg)^2
5 new_var = new_sum_of_sqr_diff / (ct - 1)
6 new_std = new_var^0.5

The reported noise is then:

reported_noise = max(
(new_avg + (factor * new_std)) * top_scale,
new_avg * avg_scale
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)

Suppress aggregate values

When the number of distinct users is low, the aggregates min(), max(), sum(), avg() and stddev() can
potentially reveal information about the underlying values. In addition, the accuracy can be quite poor. To
mitigate these factors, the cloak reports NULL when the number of distinct users is less than a noisy threshold
with mean 10 and a standard deviation of (0.5 * L), where L is the number of noise layers. Note that the
bucket itself is still reported: only the aggregate value itself is set to NULL.

Aggregation function count distinct
When computing for instance count(column), any non-NULL column value will contribute to the count.
Noise must be added for instance to hide the fact that a single user may be included or excluded.

By contrast, when computing count(DISTINCT column), it is not always necessary to add noise. This is
because including or excluding a single user may not change the count at all. To take a simple example,
suppose that the column is gender with possible values ‘M’ and ‘F’, and that both genders are well-represented
by many users. The answer to count(DISTINCT gender) is 2, and including or excluding any given user
does not change that answer. In cases like this we want to return the exact answer.

Suppose on the other hand the column is purchase_time, that there are many thousands of di�erent purchase
times, and that many of the purchase times are unique to a single user. In this case, the presence or absence
of a single user can easily change the true answer, and so noise is needed to hide such users.

To deal with this, the cloak generates a query that first determines, for each UID, the count of column values
count_distinct_vals_per_uid that are unique to that UID. The cloak then computes the min, max, avg,
and stddev statistics across all count_distinct_vals_per_uid, and uses the same algorithm as with sum()
to compute noise and flattening. If there are zero column values that have a single UID associated with them,
then no noise is added.

The following example shows how this is done.

Suppose the analyst query is:

SELECT column1, COUNT(DISTINCT column2) FROM table GROUP BY 1

The cloak would generate a query similar to the following simplified example:

1 SELECT
2 group_0,
3 MAX(CAST((uid IS NOT NULL) AS integer) * count_distinct) AS cnt_max,
4 MIN(CAST((uid IS NOT NULL) AS integer) * count_distinct) AS cnt_min,
5 AVG(CAST((uid IS NOT NULL) AS integer) * count_distinct) AS cnt_avg,
6 STDDEV(CAST((uid IS NOT NULL) AS integer) * count_distinct) AS cnt_stddev,
7 SUM(count_distinct) AS count_distinct
8 FROM (
9 SELECT

10 uid,
11 group_0,
12 COUNT(target) AS count_distinct
13 FROM (
14 SELECT
15 column1 AS group_0,
16 column2 AS target,
17 CASE WHEN (COUNT(DISTINCT uid) < 2) THEN MIN(uid) ELSE NULL END AS uid
18 FROM table
19 GROUP BY 1, 2

20



20 ) AS distinct_values
21 GROUP BY 1, 2
22 ) AS uid_grouping
23 GROUP BY 1

The inner-most SELECT (lines 14 - 19) does a GROUP BY based on distinct values of the selected columns. In
line 17, the UID of values that have only one user is recorded.

In the next SELECT (lines 9 - 21), at line 12 we count the number of times each UID appears, as well as the
number of times no UID appears (which gives us the number of distinct column values that have more than
one user).

In the outer-most SELECT, the maximum, minimum, average, and stddev statistics for how often each UID is
unique for a column1 value are computed (lines 3-6), along with the number of distinct values (line 7). Noise
and flattening is computed from these statistics as with the algorithm of section Operation of sum.

Low-count suppression is done as with sum() (Low count suppression).

Aggregation function stddev
Currently stddev(col) is computed with per-UID information as done in Di�x Birch. See prior documenta-
tion for more information (https://arxiv.org/pdf/1806.02075.pdf).

Attacks on Di�x Cedar
This section describes a variety of attacks against anonymization mechanisms. Some of the attacks are general
in nature (can be used against multiple mechanisms). Some are specific to Di�x overall, and others specific
to Di�x Cedar. In what follows, the cloak is the device that implements Di�x.

Table Of Contents
• Attack criteria
• Trackers
• Attribute value inspection attacks
• Suppression signal attacks
• Noise signal attacks
• Noise averaging attacks

– Naive averaging
– Di�erent syntax but same semantics, with floating
– Di�erent syntax but same semantics, without floating
– Di�erent syntax and semantics, but same result
– Split averaging attack
– Linear program reconstruction
– JOINs with non-personal tables

• Di�erence attacks
– First derivative di�erence attack
– Di�erence attack with counting NULL
– Noise exploitation attacks

� Through extreme user contribution
� Through cha� conditions

– Range creep with averaging
– Multiple isolating negands
– Shadow table exploitation attack

• SQL backdoor attacks
• Side Channel attacks
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– Error generation attacks
� Divide by zero
� Overflow
� Square root of a negative number

– NULL producing safe function attacks
� IS NOT NULL
� NULL within aggregation

– Timing attacks
� JOIN timing attack

Attack criteria
In the following attacks, our criteria for what determines a successful attack are the same as those used by
the EU Article 29 Data Protection Working Party Opinion 05/2014 on Anonymisation Techniques, namely
singling-out, linkability, and inference. We regard an attack as more e�ective when the attacker is able to
make statements of the following sort with high confidence:

• Singling-out: “There is a single user with the following attributes.”
• Inference: “All rows with attributes A, B, and C also have attribute D”
• Linkability: “The users with these attributes in the table protected by Di�x are also in a table not

protected by Di�x.”

A description of how these criteria are used can be found in the Di�x Birch paper

Trackers
A powerful class of attack, called trackers, was discovered in the late 1970s. This attack targets anonymization
mechanisms where answers to queries that pertain to fewer than K individuals or more than all-but-K
individuals are suppressed, but otherwise exact answers are given.

A tracker attack requires two things: 1. A pseudo-identifier: A column value or set of column values that
uniquely identifies an individual. 2. A tracker: a column value that includes more than K individuals.

A pseudo-identifier can be an expression with multiple terms, like (zip = 12345 AND bday = �1975-03-11�
AND univ = �MIT�). The attacker does not need to know in advance that a given expression is a pseudo-
identifier. This can be validated in the attack.

An example of a tracker would be gender = �M� (because there are more than K males in the dataset). The
victim of the attack doesn’t have to be male. The tracker gender = �F� would work just as well.

In the following example, the pseudo-identifier for the victim is (zip = 12345 AND bday = �1975-03-11�
AND univ = �MIT�) and the tracker is gender = �M�.

First, the attacker verifies that the pseudo-identifier indeed identifies a single individual with four queries.
The first two are used to compute the total number of users in the database (here column uid contains a
distinct value for each individual):

Query 1 : compute N1 as:

SELECT count(DISTINCT uid)
FROM database
WHERE gender = �M�

Query 2 : compute N2 as:

SELECT count(DISTINCT uid)
FROM database
WHERE gender <> �M�
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The number of users N is N = (N1 + N2)
Query 3 : Compute N3 :

SELECT count(DISTINCT uid)
FROM database
WHERE gender = �M� OR

(zip = 12345 AND bday = �1975-03-11� AND univ = �MIT�)

Query 4 : Compute N4 :

SELECT count(DISTINCT uid)
FROM database
WHERE gender <> �M� OR

(zip = 12345 AND bday = �1975-03-11� AND univ = �MIT�)

Both counts N3 and N4 include all users with the pseudo-identifier. N3 also includes all males, and N4
includes everyone else. The sum N3 + N4 therefore counts all users with the pseudo-identifier twice, and
counts everybody else once. As such, if (N3 + N4) - N = 1, then this validates for the attacker that there is
only one user with the pseudo-identifier.

Knowing this, the attacker can learn virtually anything about the victim. For instance, the attacker can learn
the victim’s salary with four queries (here assuming that each user is represented only once in the database):

Query 1 : compute S1 as:

SELECT sum(salary)
FROM database
WHERE gender = �M�

Query 2 : compute S2 as:

SELECT sum(salary)
FROM database
WHERE gender <> �M�

The sum of all salaries S is S = (S1 + S2).
Query 3 : Compute S3 :

SELECT sum(salary)
FROM database
WHERE gender = �M� OR

(zip = 12345 AND bday = �1975-03-11� AND univ = �MIT�)

Query 4 : Compute S4 :

SELECT sum(salary)
FROM database
WHERE gender <> �M� OR

(zip = 12345 AND bday = �1975-03-11� AND univ = �MIT�)

Again, S3 and S4 include the victim, while S3 also includes males, and S4 also includes all other users. The
salary if the victim is counted twice in S3 + S4, and so the victim’s salary is (S3 + S4) - S.

Di�x defends against tracker attacks by disallowing OR and it’s De Morgan equivalent (NOT (A and B) is
the same as NOT A or NOT B). It does allow a limited form of union logic with IN, but this is not enough to
execute a tracker attack.

OR can be emulated with multiple queries and corresponding arithmetic, as in A OR B is equivalent to A + B -
A AND B. This would not work with the cloak both because queries with only the pseudo-identifier would be
suppressed because of a low count, as well as because of the noise.
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Attribute value inspection attacks
Perhaps the most direct attack is to simply list column values. If the analyst can list a column value or set of
column values that apply to a single user, then anonymity according to our goal would be violated.

A simple query for this attack would be:

SELECT ssn
FROM table

or for multiple columns,

SELECT birthdate, zip, gender
FROM table

If the first query listed any social security numbers, then the privacy of the users with those numbers would
be violated. Likewise if the second query listed users with a unique combination of birthdate, zipcode, and
gender, then those users privacy would be violated according to our goal.

This attack is prevented through the use of low-count suppression. Any column values that pertain to too
few distinct users are suppressed by not being output.

Suppression signal attacks
An attacker may be able to learn about individual users from whether a given bucket was suppressed or
not. For instance, if a constant threshold were used for the suppress decision (i.e. suppress when 2 or fewer
distinct users), then if the attacker happened to know that there is either 2 or 3 users with a certain set of
attribute values, then if the bucket is not suppressed then the attacker knows that there must be three users,
and potentially learns something about the third user.

To prevent this, Di�x uses a noisy threshold using sticky layered noise. Because the threshold itself can vary,
in the previous example the attacker would be uncertain as to whether there were 2 or 3 users.

Noise signal attack
Di�x can report the amount of noise added to the aggregates count(), sum(), avg(), and stddev(). This
is reported as the standard deviation of the noise. In Di�x Cedar, the amount of noise is influenced by the
min and max values. If a user has an extreme value (say 2x or 3x greater than the next highest value), then
the presence or absence of that user in a bucket may have a significant e�ect on the amount of noise added.

This opens an attack whereby the attacker can determine which bucket the extreme user is in by noting
which bucket reports the most noise (for instance, using sum_noise()).

For instance, if one user (the victimm) has a salary that far exceeds the second highest salary, then gender
could be learned with the following query:

SELECT gender, sum(salary), sum_noise(salary)
FROM table
GROUP BY 1

Whichever gender bucket reports the highest sum_noise(salary) is the bucket that contains the victim.

To defend against this, the cloak does not precisely report the standard deviation of the noise, but rather an
approximation based on a formulation that eliminates the e�ect of the min and max values.

Noise averaging attacks
Averaging attacks attempt to remove noise through multiple queries that somehow generate di�erent noise
samples (overcome the noise stickiness) and average away the noise.
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Naive averaging

The simplest averaging attack repeats the same query. This doesn’t work because of sticky noise generates
the same noise value.

Di�erent syntax but same semantics, with floating

Di�erent noise samples are generated by queries that execute identical query semantics but with di�erent
syntax in the hope that the cloak does not recognize the same syntax and so produces a di�erent noise sample.

A simple example would be two queries with the following WHERE clauses:

Q1: WHERE age = 10
Q2: WHERE age + 1 = 11

In principle, the cloak could interpret the math and determine that the above two expressions are identical.
This can get extremely di�cult, however, as the math gets more complex. Therefore for any expression that
uses math, the cloak floats the column value by re-writing the SQL so that the column in question (here age)
is brought up to the outer SELECT so that the actual selected values can be examined.

However, other examples exist:

Q1: WHERE left(column,5)
Q2: WHERE substring(column FROM 1 FOR 5)

Not so many di�erent semantically identical conditions can be made with string manipulation as with math
manipulation, but nevertheless the above conditions would be floated to ensure that the seeds are identical.

Di�erent syntax but same semantics, without floating

The cloak doesn’t always float. It does not float col BETWEEN val1 AND val2 for instance. Rather, it
deduces the seed material from SQL inspection. There are cases where same semantic but di�erent syntax
conditions can be generated from non-floated conditions. In a few cases, the cloak does not correctly account
for the di�erent syntax and uses di�erent seeding material.

One such case is BETWEEN versus bucket(). For instance the range 100-200 can be generated with both of
the following queries:

Q1: SELECT bucket(column BY 100) ....
Q2: WHERE column BETWEEN 100 and 200

The cloak, however, does not detect that these semantics are identical and generates di�erent seeds as a result.
Through this trick the analyst can get two noise samples for the layers associated with these conditions, and
therefore reduce the overall noise somewhat.

In many other cases, however, the cloak does seed properly.

Text datatypes for instance are all converted to lower case for the purpose of seeding, so that the lower()
and upper() functions can’t be used to derive additional noise samples.

Di�erent syntax and semantics, but same result

In Di�x Cedar, an analyst can obtain multiple samples for <> text conditions using substring(). For
instance, suppose that a text column contains two values, ‘ABCDE’ and ‘FGHIJ’. Each of the following
conditions would generate a di�erent seed even though the underlying answers are the same:

WHERE substring(col for 1) <> �A�
WHERE substring(col for 2) <> �AB�
WHERE substring(col for 3) <> �ABC�
...

While this is certainly unfortunate, there are no known attacks that can successfully exploit this weakness.
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Split averaging attack

This attack creates pairs of queries where the sum of the queries in each pair have the same underlying
value (i.e. before noise), but where each pair uses semantically di�erent conditions from all other pairs, thus
producing di�erent noise values that can be averaged. This can be done with WHERE clauses of the following
sort:

Pair 1:
Q1: WHERE column = �X�
Q2: WHERE column <> �X�
Pair 2:
Q1: WHERE column = �Y�
Q2: WHERE column <> �Y�

From pair 1, the first query Q1 matches all rows where column = �X�, and Q2 matches all other columns
(not equal to ‘X’). The sum of Q1 and Q1 therefore includes all rows (that match other conditions, not shown
here). The same holds for the two queries from pair 2. However, all of these conditions are semantically
di�erent and so produce di�erent noise samples.

The cloak defends against this through layered noise. Each condition generates its own noise layers, which
are summed together to produce the final noise value. The layers from the above WHERE clauses would indeed
be averaged away, but the noise from other conditions in the queries would not average out. As a simple
example, the following two queries are from one pair where the attacker goal is to learn the exact number of
women:

Query 1:

SELECT count(DISTINCT uid)
FROM table
WHERE age = 20 AND gender = �F�

Query 2:

SELECT count(DISTINCT uid)
FROM table
WHERE age <> 20 AND gender = �F�

While the noise layers for age would indeed average out, the static noise layer for gender = �F� would be
the same across all queries in the attack and would result in a noisy final count.

Linear program reconstruction

In this attack, the analyst generates queries where each query selects a di�erent set of users, but where any
given user is selected by a substantial number of queries. Repeatedly selecting among a pseudo-random subset
of users would have this e�ect. The analyst then generates a set of equations and solves for the presence or
absence of each user in that set of equations.

This attack was successfully run against Di�x Birch using the following WHERE clause:

WHERE floor(5 * pow((client_id * 2),0.5) + 0.5) = floor(5 * pow((client_id * 2), 0.5))

where di�erent constants were used to e�ectly select di�erent users.

The current defense is to force clear conditions (no math) on columns that have a substantial fraction of
user-unique values.

JOINs with non-personal tables

The cloak does not anonymize non-personal tables. Therefore, analysts are allowed to see the complete tables.
The cloak allows JOIN, but with strict limitations. Without these limitations, an analyst could potentially
exploit knowledge of non-personal tables to generate multiple samples and average away noise.
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A typical non-personal table might contain a numeric identifier and a text field. For instance, a product_names
table might have columns product_id and name. This table is non-personal because it contains no user
information. It may be linked to for instance a purchases table with the product_id as key.

Suppose an analyst wished to remove noise associated with the condition age = 20, and there are multiple
non-personal tables of various sorts. The analyst could then build a set of queries with di�erent JOIN
conditions as follows:

JOIN (...) ON users.age = product_names.id - 28788 WHERE product_names.value = �pears�
JOIN (...) ON users.age = error_codes.id - 232 WHERE error_codes.value = �Bad Input�
JOIN (...) ON users.age = cc_types.id + 16 WHERE cc_types.value = �VISA�
etc.

The ID of the non-personal table, after arithmetic, matches the target age (20). Because the table name
is included in the seed material for the condition, each of the noise layers associated with the ON condition
could be averaged away.

The fix is to limit ON conditions to simple col1 = col2 expressions, and limit which columns can be keys
through configuration. With these limitations, any meaningful attack is so unlikely that no noise layers for
ON conditions are necessary.

Di�erence attacks
In di�erence attacks, the attacker creates pairs of queries where the underlying true answers are either
identical or di�er by one user. The attacker then tries to determine which is the case.

A simple example would be the following pair of queries:

Query 1:

SELECT count(*)
FROM table
WHERE salary BETWEEN 100000 AND 110000 AND

dept = �CS� AND
gender = �M�

Query 2:

SELECT count(*)
FROM table
WHERE salary BETWEEN 100000 AND 110000 AND

dept = �CS�

in the case where there is only one woman in the CS department. The victim in this attack is the woman,
who is excluded in the first query and included in the second. The unknown attribute (the thing the attacker
wants to learn) is whether or not the victim’s salary is in the range 100000 to 110000.

The simplest approach for the attacker is to deduce that the victim is in query 2 so long as count(*) is
greater in query 2. Because of the noise, however, such an approach would often produce the wrong deduction.

The greater the di�erence between the two queries, however, the more likely the victim is indeed in that
salary range. When the di�erence is large, the probability that the di�erence is due purely to the Gaussian
distribution of noise is much less than the probability that the di�erence is due to both the noise distribution
and the di�erence in the underlying true answer.

It is relatively rare, however, that the noise value is large enough to give the attacker a high-confidence
deduction (like one in 10000 attacks).

Note that a simpler way to exclude the victim would be to add a negative condition that pertains to only
that victim, for instance:
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SELECT count(*)
FROM table
WHERE salary BETWEEN 100000 AND 110000 AND

ssn <> �539-54-9355�

Note however that isolating negative conditions like this are disallowed when the value is not present in the
shadow table (which is the case for rare values).

First derivative di�erence attack

There is a form of di�erence attack whereby the analyst generates a histogram of bucket pairs under the
condition that the victim is not in the first query of each pair, and is in one and only one bucket of the second
query. An example is the following:

Query 1:

SELECT bucket(salary BY 10000), count(*)
FROM table
WHERE dept = �CS� AND

gender = �M�

Query 2:

SELECT bucket(salary BY 10000), count(*)
FROM table
WHERE dept = �CS�

If the noise layers were only static (based purely on the conditions themselves), then the di�erence in the noise
between each pair of buckets would be the same except for the one containing the victim. This di�erence in
the di�erence would identify the victim’s salary.

The uid-based noise layers, however, add additional noise that is di�erent between every pair of buckets.

Di�erence attack with counting NULL

The e�ect of inserting safe math functions is that column values may be NULL. This gives an attacker the
opportunity to force a single user to have the only NULL value in the column. The attacker can determine if
the NULL value is present by comparing the outputs of count(*) and count(col). The former counts the
NULL rows, the latter does not.

For example, the following di�erence attack can be used to learn the value of the cli_district_id of the
user that has a transaction amount of 24615.

SELECT cli_district_id, count(foo)
FROM (

SELECT uid, cli_district_id, 1/(amount - 24615) AS foo
FROM transactions ) t

GROUP BY 1

SELECT cli_district_id, count(*)
FROM (

SELECT uid, cli_district_id, 1/(amount - 24615) AS foo
FROM transactions ) t

GROUP BY 1

The cloak defends against this by adding an additional UID noise layer for count(col).

Noise exploitation attacks
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Through extreme user contribution The magnitude of the noise must be in some sense proportional
to the amount that the most extreme users contribute to an answer. For instance, suppose that one knows
that roughly the average salary in a database excluding the CEO. By querying for the average salary, the
amount by which it di�ers from the known average reveals the CEO’s salary. The noise needs to be large
enough to mask this salary. This is called proportional noise.

However, with a di�erence attack, the amount of noise itself can reveal the presence or absence of the CEO
in a query. If the CEO has a substantially higher salary than anyone else, and if the query that may include
the CEO has a lot of noise, then one can conclude that the CEO is present in the query.

To prevent this, the cloak removes a small number of the most extreme values in a given query (based on a
noisy threshold), and then bases the amount of noise on the average value of a small group of users with the
next most extreme values (also based on a noisy threshold). This is called flattening.

Through cha� conditions In this di�erence attack, the attacker tries to exploit the uid-based noise
by intentionally adding conditions that have no impact on the true underlying answer, but increase the
cumulative amount of noise. The bucket pair that di�ers the most is most likely the one containing the user.

A simple way to do this would be to add conditions like age <> 1000, age <> 1001 and so on. These are
called cha� conditions. In pairs where the underlying set of users is the same, the uid-based noise values are
the same for each query of the pair. In pairs where the underlying set of users is di�erent, the uid-based
noise value is di�erent.

Alternatively, a range condition such as age BETWEEN 0 and 1000 can also be a cha� condition. Likewise
the implicit ranges round() and trunc() can be cha� conditions. This is because these functions can span
the entire number range of a column with one bucket.

The cha� conditions can either all be added to the same query, or added one at a time to multiple pairs, and
then summing the results across the first queries of each pair and separately the second queries.

The attack using range conditions is prevented by not using uid-based noise layers for range conditions.

The attack using negative conditions is prevented by disallowing negative conditions for rare values (those not
found in the shadow table). Specifically, any value in the shadow table has at least 10 users associated with
it. If such a value is used in a negative condition, then the selected users will cause a di�erence in multiple
bucket pairs, and the attacker cannot be sure which are associated with the victim.

Range creep with averaging

One way to do a di�erence attack is to grow a range (BETWEEN) so that one additional user is included in the
modified range. The noise layers associated with the range defeat a simple version of this attack that uses
two queries. However, if an attacker could incrementally modify a range so that each change does not change
the underlying answer, then the di�erent noise values could be averaged. If the attacker averaged away the
noise in this fashion for both the smaller and larger ranges, then the noise could no longer defend against the
attack.

To defend against this, the cloak forces ranges to fall within preset range o�sets and sizes. This makes it very
unlikely that an attacker could get enough samples both excluding and including the victim.

Multiple isolating negands

If an analyst could make multiple di�erent negative ANDed conditions (negands) isolating the same individual
user, then they could be averaged out in the context of a di�erence attack. For instance, account_number
<> 12345, social_security_number <> 123-45-6789, login_name <> �alex433, email_address <>
�alex433@gmail.com are all values that can isolate a single user. If each were used as the single negand,
then the negands could be averaged away.

This negands are rejected by virtue of not being represented in the shadow table.
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Shadow table exploitation attack

For each column, the shadow table contains the up-to-200 column values assigned to the largest number of
distinct users. Any value must have at least 10 distinct users to be included in the shadow table. Column values
for negands (negative conditions such as age <> 1000) and IN expressions (age NOT IN (1000,1001,1002))
that are not in the shadow table are disallowed.

It is possible, however, for a negand from the shadow table to isolate a single user in a di�erence attack. This
can happen when the other query conditions reduce the number of users su�ciently so that all other users
with the same value are excluded from both queries.

For instance, suppose that around 30 users have a zip code of 12345. The negand zip <> 12345 would then
exclude those users. Suppose in addition that some other attribute value, say profession = �stylist�,
applies to a relatively small fraction of the population, for instance 1 in 500 people, but nevertheless is in the
shadow table. Finally, suppose that the attacker knows that the victim is a stylist and lives in zip code 12345.
Chances are then high that two queries with the following two conditions:

Q1: profession = �stylist�
Q1: profession = �stylist� AND �zip <> 12345�

would di�er by only one user, the victim. This is because it is statistically unlikely that another one of the 15
users in zip 12345 is a stylist.

A first derivative di�erence attack using only the above sets of conditions would fail because of the added
noise. However, if the attacker could come up with 4 or 5 di�erent pairs of conditions that have the above
isolating characteristics, then the noise due to each of the negands could be averaged away.

However, it is quite rare that the necessary criteria exists even once for a given user, and virtually impossible
that the criteria exists 4 or 5 times (and even less likely that the attacker would know the appropriate
information about the victim). Therefore, while theortically possible, this attack is in practice essentially
impossible.

SQL backdoor attacks
A backdoor attack is where the attacker avoids defense mechanisms by encoding conditions indirectly through
math. For instance, the following query:

SELECT count(*)
FROM table
WHERE age = 30 OR age = 40

Can be encoded in the following query without using a WHERE clause:

SELECT count(*), age30or40 FROM (
SELECT uid, (age30 + age40) % 2 as age30or40
FROM (

SELECT uid,
floor((agegreater29 + ageless31) / 2) AS age30,
floor((agegreater39 + ageless41) / 2) AS age40

FROM (
SELECT uid,

ceil((age - 29) / 100) AS agegreater29,
ceil(0 - (age - 31) / 100) AS ageless31,
ceil((age - 39) / 100) AS agegreater39,
ceil(0 - (age - 41) / 100) AS ageless41

FROM table
) x

) y
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) z
GROUP BY age30or40;

To prevent this, the cloak limits the amount of math, particularly non-continuous functions like ceil and
floor, that can appear in a query.

Side Channel attacks
Error generation attacks

Divide by zero Say that the victim’s birthdate is known to be ‘1957-14-12’, and zipcode is 60036. The
following query would trigger a divide-by-zero if the victim has a salary of 100000.

SELECT count(*) FROM
(SELECT uid, z/(6003614.195712-z+d+y+m) FROM

(SELECT uid, zipcode * 100 AS z,
year(bday) / 10000 AS y,
month(bday) / 1000000 AS m,
day(bday) as d

FROM user_info
WHERE salary = 100000

) t1
) t2

Some databases throw an exception when divide-by-zero occurs. In these cases, the exception itself signals
the salary of the victim. This attack is prevented by adding SQL that catches the exception or prevents it
from occuring (depending on the backend database).

Overflow In some database, a numeric overflow throws an exception. This can be exploited, at least in
Postgres, with for instance with the following attack.

SELECT count(*)
FROM accounts
WHERE lastname = �Zamora� AND

birthdate = �1996-11-17� AND
2ˆ(10000.01 * cli_district_id) = 123.12

The third condition in the WHERE clause causes an overflow if it is executed. Assuming that there is only
a single user with the lastname ‘Zamora’, if Zamora does not have the indicated birthdate, then the third
condition won’t be executed and a suppressed output is given. If Zamora does have that birthdate, then the
third condition throws an exception. The exception is transmitted to the analyst as an execution error.

A similar attack against date, time, and datetime column types is also possible.

The cloak defends against this by installing and executing “safe” math routines in the database. The safe
routines capture exceptions and returns NULL rather than throwing an exception. As a result there is no
error signal transmitted to the analyst, and therefore the analyst doesn’t know if an exception took place or
not.

Unfortunately the safe math routines slow down query execution. To minimize this performance hit, the
cloak also makes a conservative estimate as to whether or not a given math expression might result in an
exception. If not, then the safe math routine is not executed.

Square root of a negative number It may be possible to execute an error generating attack by forcing
the square root of a negative number. The cloak defends against this by checking if the operand of the square
root function is negative.
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NULL producing safe function attacks

IS NOT NULL The defense against Error generation attacks is to install or use a safe math routine that
inserts a NULL value rather than throw and exception. This mechanism leads to attacks that exploits the
insertion of a NULL value. ghi

An example of this attack is the following two queries:

SELECT cli_district_id, sum(acct_district_id)
FROM transactions
WHERE 1/(amount - 24615) IS NOT NULL
GROUP BY 1

SELECT cli_district_id, sum(acct_district_id)
FROM transactions
WHERE 1/(amount - 24615.3333) IS NOT NULL
GROUP BY 1

The victim in the attack is a user that has a unique value for the amount column of 24615. No user has an
amount value of 24615.3333. The goal of the attack is to learn the cli_district_id value of the user.

In the first query, the term 1/(amount - 24615) has a divide-by-zero error for the victim, which gets
converted to NULL and is therefore filtered by the WHERE condition. The WHERE clause of the second query
doesn’t filter any rows. At the same time, the noise layers for the two WHERE clauses are with high probability
identical, because the seed would be based on the floated max and min amount, which are likely the same.

The victim’s cli_district_id then is recorded as that where the sums from the first and second queries
di�er.

The defense against this attack is to force IS NOT NULL expressions to be clear.

NULL within aggregation The following query attacks the same victim as the previous example.

SELECT cli_district_id, count(amount), count(1/(amount - 24615))
FROM transactions
GROUP BY 1

The first count() counts all rows (assuming no NULL values in the amount column). Because the victim’s row
has a divide-by-zero which becomes NULL, the second count() counts all rows except that of the victim. There
is no noise layer associated with the expression within the aggregation, and so the victim’s cli_district_id
is simply that where the two counts di�er.

The defense is similar: to force expressions within aggregation functions to be clear.

Timing attacks

JOIN timing attack Because of optimizations in some database implementations, a query such as the
following can be used in a timing attack:

SELECT count(*)
FROM (

SELECT uid
FROM accounts
WHERE lastname = �Zamora� AND birthdate = �1996-11-17� AND

salary = 100000
) t1 JOIN (

SELECT distinct uid
FROM transactions

) t2 on t1.uid = t2.uid
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The optimization here is that, if the left JOIN expression (t1) returns zero rows, then the right JOIN expression
is either not executed or terminated before completion. Otherwise the right JOIN expression is executed to
completion.

If the right JOIN expression takes a long time to compute, as this one does, then the analyst can determine
whether or not the left JOIN expression has zero rows or not.

In the example above, the analyst may have know that there is only one user with name ‘Zamora’ and
birthdate ‘1996-11-17’. If Zamora also has this salary, then the query execution time is shorter. If not, then
the query execution time is longer.
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