A type-theory for higher-order amortized cost analysis

Vineet Rajani Marco Gaboardi Deepak Garg
vrajani@mpi-sws.org gaboardi@bu.edu dg@mpi-sws.org

Jan Hoffmann
jhoffmann@cmu. edu

Technical report MPI-SWS-2020-004

May 2020

Contents
1__Introduction| 3
2_J-amor~] 5
2.1 Syntax and Semantics|o L L oL o 5
2.2 Type system| e e 6
2.3 odel of types| e 7
3 xamples 9
[3.1 Church encoding] 9
3.2 ager functional queue|. L oL 10
3.3 saki’s implicit queue| L. Lo 11
4 _Embedding Univariate RAML)| 12
1.1 _K brief primer on Univariate RAML] o i 12
4.2 Type-directed translation of Univariate RAML into A-amor™—| 13
4.3 Semantic properties of the translation|o oo oo 14
[A-amor full (with sub-exponentials)| 14
[5.T Changes to the type system: syntax and type Tules| v v v v v v v i i 15
b2 Model of types| o 16
6 mbedding 17
6.1 A brief primer on d/PCE| 17
6.2 Type-directed translation of d/PCF into A-amor| L. 18
6.3 Semantic properties of the translation| 0oL 19
[7__Related workl 20
[B_Conclusionl 21
|IA Development for \-amor™ 21
... 21
1A.2 Typesystem| L 22
A3 Semanticsl o v ot 26
BZ Modell . . . oo 27
IA.5 Embedding Univariate RAML{.o 55
A.5.1 Type preservation|o e 58
A52 Uross—language model: RAMLU to Ad-amor| 77
A 5.3 Re-deriving Univariate RAML’S soundness|. o v v v v v v 90

[B Development of A-amor (full)| 96

[B.1 Syntax|. 96
IB.2 Typesystem| e 98
B3 Semanticsl . - - - o o o o 102
BAModell . . . o o oo 103
[B.5 Embedding dIPCEF| e e 134
[B.5.1 Type preservation] 134
[B5.2 Cross-language model: dIPCF to d-amot]. o v v v v v it i 144
[B.5.3 Re-deriving dIPCF’s soundness| 149
[B.5.4 Cross-language model: Krivine to dIPCF| 0o o0 0L 175

177
[CI1 Church numerals e 177
[C.2 Map| e e 188
[C3 Append] 189
C.4 Eager Tunctional queue]. 190
(C5 Okasaki’'s IMPlicib QUEUE|« v v v v e e e e e e e e e 193

Abstract

This paper presents A-amor, a new type-theoretic framework for amortized cost analysis of higher-order
functional programs. A-amor introduces a new modality for representing potentials — costs that have been
accounted for, but not yet incurred, which are central to amortized analysis. Additionally, A-amor relies on
standard type-theoretic concepts like affineness (to prevent duplication of potentials, which could lead to
unsoundness), refinement types (for expressiveness) and an indexed cost monad (for actual costs). Although
A-amor is proved sound using a rather simple logical relation, it is very expressive. In fact, we use it as
a meta-framework to embed other existing type theories for cost analysis, ranging from call-by-value to
call-by-name evaluation, and from effect to co-effect tracking of costs. Using one of our embeddings, we also
show that A-amor is relatively complete for all terminating PCF programs.

Keywords: amortized cost analysis, type theory, relative completeness

1 Introduction

Cost analysis refers to the static verification of an upper bound on the evaluation cost of a programEI measured in
some (application-dependent) abstract unit such as the number of reduction steps, the number of function calls
or the number of case analyses during execution of the program. Typically, cost analysis requires a sound static
or type-theoretic approximation of the worst-case cost. However, in many cases, specifically, for operations on
data structures with internal state, it is more useful to talk of the amortized or average cost of a sequence of n
invocations of an operation, since some invocations may pay a huge cost to change the internal state in a way
that reduces the cost of subsequent invocations [32]. This kind of an average cost analysis is called an amortized
cost analysis. Elementary examples that rely on amortized analysis are a FIFO queue implemented using a pair
of functional (LIFO) lists, Fibonacci heaps and the union-find data structure with path compression.

There are type systems for cost analysis, both amortized [16}, 20} 19} 17, (18, 1T}, [26], 23] and non-amortized [6),
8, [12], Bl 241, @, [10]. Our broad goal in this paper is to develop a type-theoretic framework to unify as many of
these lines as possible. In doing so, we also extend the expressiveness of existing frameworks for amortized cost
analysis. We call our framework A-amor and examine its properties, including its expressiveness, in detail. In
the remainder of this introduction, we give a high-level description of A-amor and its properties, followed by a
comparison to existing work.

Basics of amortized cost analysis. To motivate Ad-amor’s design, we first describe the typical structure of
amortized cost analysis. Suppose we want to prove that the average cost of running an operation on a data
structure is ¢, when the actual cost of the operation depends on the internal state of the data structure. To
do this, we find a function ¢ that maps the state s of the data structure to a non-negative number, called
a potential, and show (using a type theory like A-amor) that an invocation of the operation that changes
the data structure from state s; to s;y1 has a cost upper-bounded by ¢(s;) — ¢(si+1) + ¢. It immediately
follows that a sequence of n operations starting in state so with ¢(sp) = 0 has a total cost upper-bounded by
(p(s0) — d(s1) +¢) + oo + (H(8n—1) — P(sn) + ¢). This is a telescopic series that equals ¢(sg) — d(sn) +n - ¢,
which in turn is upper-bounded by n - ¢ since ¢(sg) = 0 and ¢(s,,) is non-negative. Hence, the average cost of
each operation is no more than ¢, as required. The value ¢(s) is called the potential associated with the state s.
This potential is needed for verification only, i.e., it is ghost state and it does not exist at run time. The type
theory is used to prove only that the cost of an individual operation is upper-bounded by ¢(s;) — @(s;11) + ¢
(the rest is trivial).

Based on this intuition, we describe the requirements for a type theory to support amortized cost analysis,
and how A-amor satisfies these requirements.

1) The type theory must include some construct to associate the ghost potential to the type of a data
structure. To this end, A-amor introduces a new type constructor written [p] 7, which ascribes a value of type
7 with associated potential p. Here, p is a non-negative number.

2) Since the potential p is related to the state s (p equals ¢(s)), the type 7 of the data structure must
reflect its state to sufficient precision, to allow relating p and 7 meaningfully. A\-amor uses standard refinement
types [33] for this. For instance, L™ 7 is the type of lists of length n, and [2n] (L™ 7) is the type of lists of length
n with associated potential 2n. Note how the refinement n relates the an aspect of the state (the length of the
list) to the potential associated with it.

3) The type theory must represent execution costs since we need to establish upper-bounds on them. Costs
can be represented as either an effect (monad) or a coeffect (comonad). Prior literature has considered both
options [11 [16, O 10]. Somewhat arbitrarily, A-amor uses effects: We include an indexed monad Mk T to
represent a computation that has a cost x, which is also a non-negative number. However, we show that
coeffect based cost analysis can be embedded or simulated in A-amor using potentials.

4) The type theory must prevent duplication of any type that has a potential associated with it, else
analysis may not be sound. For example, if a typing derivation duplicates the potential ¢(s;) even once, then

1Cost analysis can also be used to establish lower bounds but, here, as in most prior work, the focus is on upper bounds.

the operation’s real cost may be up to 2 - ¢(s;) — ¢(si+1) + ¢, and the amortized analysis described earlier
breaks completely. Hence, all potential-carrying types must be treated affinely in the type theory. Accordingly,
A-amor is an affine type theory with the usual operators of affine logic like ®, & and &. Duplicable resources
are explicitly represented using the standard exponential |. To improve expressiveness, we allow the exponential
! to be indexed, following the dependent sub-exponential from Bounded Linear Logic [15].

Summary of A-amor and our results. Overall, Ad-amor is a A-calculus equipped with a type system that
has the four features mentioned above — the construct [p] 7 to associate potential to a type, type refinements,
the indexed cost monad M k7, and affineness with an indexed exponential !E| We give A-amor a call-by-name
semantics with eager evaluation for all pairs and sums. Although a call-by-name semantics might seem odd
for cost analysis (since most languages are call-by-value or call-by-need), note that, here, costs are confined
to a monad, so the semantics of pure evaluation are insignificant. We choose call-by-name since it simplifies
our technical development. In fact, we show via an embedding how call-by-value amortized analysis can be
simulated in A-amor.

Despite the large number of features, A-amor is conceptually very simple. We prove it sound using an
elementary logical relation that extends Pym’s semantics of BI [31]. The key novelty in building this relation is
the treatment of potentials, and their interaction with the cost monad (available potential can offset the cost
in the monad).

Finally, we show that two existing, state-of-the-art frameworks for (amortized) cost analysis can be embedded
faithfully in A-amor. Our first embedding is that of a core calculus for Resource-aware ML or RAML [16] [19],
an implemented, widely-used framework for amortized cost analysis of ML programs. RAML is call-by-value,
so this embedding shows how call-by-value (amortized) analysis can be simulated in A-amor. Other effect-
based type systems like the unary fragment of [6] are conceptually simpler than RAML as they do not support
amortized analysis, so embedding them in A\-amor is even easier.

Our second embedding is that of d¢PCF [9], a coeffect based type system for PCF, that is relatively completeﬂ
This embedding is difficult and shows two things: (a) coeffect-based cost analysis can be simulated in an effect-
based system using potentials, and (b) A-amor is also relatively complete for typing PCF in the sense that all
terminating PCF programs can be typed with precise cost in A-amor, establishing that A-amor is extremely
expressive.

Together, these embeddings show that A-amor can represent cost analyses from very different settings ranging
from call-by-value to call-by-name, and effects vs coeffects. In this sense, we may view it as a unifying framework
for (amortized) cost analyses.

Prior work on amortized cost analysis. Besides being a unifying framework for cost analysis as just described,
A-amor also improves the expressiveness of prior work on amortized cost analysis in the call-by-value setting.
The state of the art in this setting is the aforementioned RAML. However, RAML has difficulty dealing with
the interaction between higher-order values and potential because it is not based on an affine calculus. To
understand the issue, consider a Curried function of two arguments, of which the first carries potential that is
used to offset the cost of executing the function. Suppose that this function is applied partially. The resulting
closure must not be duplicable because it captures the potential from the first argument. For this, one needs an
affine type system. Since RAML (and its many extensions) are fundamentally not affine, they cannot handle
this example correctly, and the best that exists so far is to limit potential to the last argument of a Curried
function. In contrast, A-amor, being fundamentally affine, can handle this example trivially.

There is also work on amortized cost analysis of call-by-need (lazy) programs, e.g., by [I1], who formalizes
the seminal thesis of Okasaki on the so-called method of debits [30]. Although we cannot embed this line of work
faithfully in A-amor due to the fundamental difficulty of simulating call-by-need in call-by-name (this difficulty
is not specific to our work), we show how one specific example from Okasaki’s/Danielsson’s work can also be
analyzed in A-amor’s type system. The cost and the potential functions do not change. We are fairly confident
that this “porting” generalizes to most examples of Okasaki.

Finally, there is work on using program logics for amortized cost analysis [4, B, 27]. While we expect program
logics to be very expressive, this line of work does not actually show any embeddings of existing frameworks.
Hence, unlike our work, this line of work does not take concrete steps towards a common framework for
(amortized) cost analysis. Note that, for our purposes, the choice between the use of a type system and
program logic is one of personal taste; we could also have chosen to build A-amor on a program logic instead of
a type system and shown similar embeddings.

Organization. To simplify the presentation, we describe A\-amor in two stages. First, we describe A-amor
without indexing on exponentials (Section . This suffices for most examples (Section [3)) and the embedding
of RAML (Section [4]), but not the embedding of d/PCF. Then, we introduce the indexed exponentials (Sec-
tion [5)) and show how to embed d¢/PCF (Section @, thus establishing relative completeness for PCF programs.
Appendix |Al Appendix [B| and Appendix [C| describe the full technical details of A-amor™, A-amor (full) and

2The name “\-amor” refers to both the calculus and its type system. The intended use can be disambiguated from the context.
3The adjective “relative” means relative to having a refinement domain that is sufficiently expressive.

Types T n= 1|b|m—on|n@n|n&n|nén|lr| [pl7]| McT | L" T
a|Va:Kr|Vi:Sr | Ni:Sr|7I|3i:S7|C=71|Ckt
Expressions e n= wv|x|erer]| {e1,e2) | let{x,y)) =e1ines | fixz.e |
(e,e) | fst(e) | snd(e) | inl(e) | inr(e) | case e, x.e,y.e |
let!z =ejines | e::e| (match e with [nil — ey |h it —e2) | el |
xletz =ejines | cletz =eqin ez

Values v = ()]c|Az.e]| {(vi,v2) | {v,v) | inl(e) | inr(e) | le | nil |
A.e| rete| bindz =eiines | 1" | releasexz = ey in ez | storee
Indices Lk,pn = 4| N|RV|T+T|I—T|Xsi:ST|I1I
Constraints C = I=1|I<I|CAC
Sorts S s= N|R"|S—S
Kinds K n= Type |S—K

Figure 1: A-amor™’s syntax

type-checked encoding of several examples respectively.

Limitations and scope. We focus on the foundations of a unifying type theory for (amortized) cost anal-
ysis. An implementation of this type theory is beyond the scope of this paper. Nonetheless, we expect that
in restricted settings like only polynomial-time analysis, one could use ideas from prior work like RAML to
implement A-amor efficiently. Also, we focus only on additive (non-reusable) costs like time. Cost associated
with reusable resources like heap space, which frameworks like RAML consider, are interesting future work.

2)l-amor”

To simplify the presentation, we first describe A-amor™, a subset of A-amor that only considers the standard
exponential ! from affine logic, without any indexing (that A-amor supports).

2.1 Syntax and Semantics

The syntax of A-amor™ is shown in Fig. |1l We describe the various syntactic categories below.

Indices, sorts, kinds and constraints. A-amor™ is a refinement type system. (Static) indices, & la DML [33],
are used to track information like list lengths, computation costs and potentials. List lengths are represented
using natural numbers (sort N). Potentials and costs are both represented using non-negative real numbers
(sort RT). Besides this, we also have index-level function and their application (required for some examples
like that in Section . A-amor~ also features kinds, denoted by K. Type is the kind of standard affine types
and S — K represents a kind family indexed by the sort S. Finally, constraints (denoted by C) are predicates
(=, <,) over indices.

Types. A-amor™ is an affine type system. The most important type is the modal type [p] 7, which ascribes
values of type T that have potential p associated with them (as a ghost). We have the multiplicative unit type
(denoted 1) and an abstract base type (denoted b) to represent types like integers or booleans. Then, there
are standard affine types — affine function spaces (—o), sums (@), pairs (both the multiplicative ® and the
additive &) and the exponential (1), which ascribes expressions that can be duplicated. We include only one
representative data type — the length-refined list type L"7, where the length n is drawn from the language of
indices (described earlier). Other data types can be added if needed.

A-amor~ also has universal quantification over types and indices denoted by Vo : K.7 and Vi : S.7, respec-
tively, and existential quantification over indices denoted i : S.7. The constraint type C = 7 means that if
constraint C' holds then the underlying term has the type 7. The dual type C&7 means that the constraint
C holds and the type of the underlying term is 7. For instance, the type of non-empty lists can be written as
In. (n > 0)&(L™7). We also have sort-indexed type families, which are type-level functions from sorts to kinds.

Finally, A-amor™ has the monadic type M « 7, which represents computations of cost at most . Technically,
Mk 7 is a graded or indexed monad [14]. A non-zero cost can be incurred only by an expression of the monadic
type. Following standard convention we call such expressions impure, while expressions of all other types are
called pure.

Expressions and values. There are term-level constructors for all types (in the kind Type) except for the
modal type ([p] 7). The inhabitants of type [p] T are exactly those of type 7 since the potential is ghost state
without runtime manifestation.

We describe the expression and value forms for some of the types. The term-level constructors for the
constraint type (C' = 7), type and index-level quantification (Vo : K.7, Vi : S.7) are all denoted A.e. (Note that
indices, types and constraints do not occur in terms.) We also have a fixed point operator (fix) which is used
to encode recursion.

The monadic type M « 7 has several term constructors, including the standard monadic unit (ret ¢) and bind
(bindz = €7 in e3). The construct store e stores potential with a term and is the introduction form of the type

- : "
Forcing reduction, e | v

el v er v v Y1 v ea[vy/z] 4 va vg 2 v))
———— E-return - ! - [1/~]+n ; 2 E-bind ——— E-tick
rete || v bindz = e in ez ™72 v, 470
el u calvr/] Y ve v2 4" v E-release _evv Yo E-store
releasez = ey in e " vy store e l}o v

Figure 2: Selected evaluation rules

Typing judgment: ¥;0; A; ;e T ‘

U:0;A; Q0T Fer: 71 U:0;A; Qs Fex: T

! T-tensorl
U;0; A; QT +Ta k- (er,e2)) : (1 @ 72)

U0, AT Fe: (11 ®72) U0 A; T,z m,y:ma e o7 U:0;A;Q;.Fe: T
— T-tensorE T-Expl
U;0;A; ;T + o - let{(z,y) =eine : 7 U:0;A;Q;. Fle: !t
U:0;A; T Fe: T U:0:A;Qz:mTake 7 U:0; A0 x:71;.Fe: T
— T-ExpE - T-fix
U:0;A; T+ ek letlz=eine : 7 U:0;A;Q;. Ffixze: 7

U:0;A; 0T Fe: 7 U:0;AFT'CT U:0;AFQ CQ U0;AFT <7

/ ! ’ T-weaken
U:0;A;Q0;I"Fe: T

U:0;A; 0 Fe: 7
U:0;A; T Frete: MOT

T-ret

U:0;A; T el : MKr1 711 U:0;A;QT2,z: 71 ex: MkaTe OF Kk :RT OF Kky: RT

: : T-bind
U:0; A;Q;T1 + T2 Fbindz =e1 in ez : M(k1 + k2) 2

OFk:RT . U0; AT Fe: 7 OFp:RY
= T-tick T-store
U, 0; AT 1" Mkl U;0;A; T Fstoree : Mp ([p] 7)

U0, A; 0T ey [pi] U;0;A; T,z : 1 b oex: M(pr + p2) 2 OFp:RY OFpy:RT
U:0;A;Q; 11 + s Freleasex = €1 in ea : M p2 72

T-release

Figure 3: Selected typing rules for A-amor™

[p] 7. Dually, release x = €7 in eq releases potential stored with e; and makes it available to offset the cost of es.
Note that, storee and releasex = e1 in ey are useful only for the type system: they indicate ghost operations,
i.e., where potentials should be stored and released, respectively. Operationally, they are uninteresting: storee
evaluates exactly like ret e, while releasex = e7 in ey evaluates exactly like bindx = e in e5. Finally, we have
a construct for incurring non-zero cost — the “tick” construct denoted 1%. This construct indicates that cost x
is incurred where it is placed. Programmers place the construct at appropriate points in a program to model
costs incurred during execution, as in prior work [I1].

Operational semantics. A-amor~ is a call-by-name calculus with eager evaluationﬂ We use two evaluation
judgments — pure and forcing. The pure evaluation judgment (e |} v) relates a an expression e to the value v it
evaluates to. All monadic expressions are treated as values in the pure evaluation. The rules for pure evaluation
are standard so we defer them to the Appendix[A] The forcing evaluation judgment e |}* v is a relation between
terms of type M k7 and values of type 7. k is the cost incurred in executing (forcing) e. The rules of this
judgment are shown in Fig. [2| E-return states that if e reduces to v in the pure reduction, then rete forces to
v with 0 cost. E-store is exactly like E-return, emphasizing the ghost nature of potential annotations in types.
E-bind is the standard monadic composition of e; with es. The effect (cost) of bind is the sum of the costs of
forcing e; and es. E-release is similar. 1% is the only cost-consuming construct in the language. E-tick says
that 1% forces to () and it incurs cost k.

2.2 Type system

The typing judgment of A-amor™ is written ¥;0;A;Q: " - e : 7. Here, ¥ is a context mapping type-level
variables to their kinds, © is a context mapping index-level variables to their sorts, A is a context of constraints

4Perhaps somewhat surprisingly, even additive (&) pairs are evaluated eagerly. However, since all effects are confined to a
monad, this choice does not matter. ! is lazy as in a standard affine A-calculus.

U:0;AFT <7 V:0:AFp <p . U:0;AFT <7 U:0;AF k<K
— sub-potential sub-monad
Ui0;AF[plT < [p]T

U:0;A+FM~rT <Mk 7

OFp:RY Oryp :RT

b-potA b-potZ
V0, AF [p(1 —om) <: (P]m — [0 +p|m) POV U0, AF T < [0]r PO
U:0,i:S;AFT <7 . OFI:S .
- - - sub-family Abs - — sub-family Appl
U;0; A Ai: Sor <t A\ : SoT U 0; A (M\i:Sor) I <: 1[I/
OFI:S

sub-family App2

U0, A F7[I/i] <: (Mi:ST) 1

Figure 4: Selected subtyping rules

on the index variables, and 2 and I' are the non-affine and affine typing contexts respectively, both mapping
term-level variables to their types. We use the notation I'; + I's to describe the disjoint union of the affine
contexts I'; and I's. Selected typing rules are listed in Fig. [3] and the full set of rules can be found in the
Appendix [A]

Rules for the affine type constructs of A-amor are standard. T-tensorl is the type rule for introducing the
tensor pair ((e1, e2)) —if e; and eq are typed 71 and 75 under affine contexts I'y and I'y, respectively, then (e1, e2))
is typed (71 ® 72) under the context (I'y + I'z). Dually, T-tensorE is the type rule for eliminating the tensor
pair — if expression e has type (71 ® 72) in the context I'; and a continuation €’ is of type 7/ in the context I's
plus both elements of the tensor pair (named 2 and y here), then the expression let{(x,y)) = e in €’ is of type 7’
under the context (I'; +T'5). T-expl ascribes le the type !7 if e can be ascribed the type 7 under an empty affine
context. The subtyping relation (<:) used in the rule T-weaken is described below, but we skip describing the
standard details of the auxiliary relation C, which is described in the Appendix [A] T-expE is the rule for the
elimination form of !7. The important thing here is that the continuation ¢’ has unbounded access to e via the
non-affine variable x.

Rules for monadic types are interesting. T-ret types the return of the monad. In the operational semantics,
ret e takes a well-typed expression and returns it with 0 cost. Hence, its type M 07 also includes 0 cost. T-bind
types the monadic bind, which is basically sequences two computations. The cost in the type of the bind is the
sum of the costs of the two computations, again mirroring the operational semantics. T-tick type checks 1" at
type M k1 — a monad of unit type with cost k.

T-store types the store e construct, which is used to associate potential with an expression. If e has type 7,
the rule gives storee the type M« ([x] 7). The way to read this is that if p units of potential are attached to e,
then the cost of doing so is p units. Finally, T-release is dual to T-store: It uses the potential p; stored with
the first expression e; to reduce the cost of the continuation by the same amount.

Subtyping. Selected subtyping rules are shown in Fig. [4l As mentioned earlier, A-amor~ also has type-level
functions and applications. Accordingly, We have subtyping rules to convert the type-level application form
((Mi = S.1) I) to the substitution form (7[I/i]) and vice versa. Rule sub-potArrow distributes potential on
a function type over the argument and the return value. sub-potZero allows silently casting an expression of
type T to type [0] 7. This reinforces the ghost nature of potential. The subtyping of the modal type [p] 7 is
contra-variant in the potential because it is sound to throw away potential. The subtyping for the monadic type
is covariant in both the type and the cost (because the cost in the monadic type is an upper bound). There are
additional, standard typing rules for sorts and kinds, which we defer to the Appendix [A]

Theorem (1| states the soundness of A-amor~. Intuitively, it says that, if e is a closed term which has a
statically approximated cost of units (as specified in the monadic type M x 7) and forcing it actually consumes
% units of cost, then ' < k. We prove this theorem using a logical relation in Section

Theorem 1 (Soundness). Ve, v, s,k ,7 € Type. Fe:MkrT A el v = K <k

2.3 Model of types

To prove the soundness of A-amor™, we develop a logical-relation model of its types. The model is an extension
of Pym’s semantics of BI [31] with potentials, the cost monad, and type refinements. We also step-index the
model [I] to break a circularity in its definition, arising from impredicative quantification over types, as in the
work of [29]. Because we use step-indices, we also have augmented operational semantics that count the number
of rules (denoted T') used during evaluation. The revised judments are written e |7 v (pure) and e |5 v
(forcing). The expected details are in the Appendix Note that there is no connection between T and k in
the forcing judgment — the former is purely an artifact of our metatheoretic proofs, while the latter is induced
by 1 constructs in the program. Our use of step-indices, also written T, is standard and readers not familiar
with them may simply ignore them. The model (Fig. [5)) is defined using four relations: a value relation, an

[1] £ Al T,0)}
[b] £ {(p,T,v) | vel[b]}
[Lo7] £ AT, ml)}
[L7] & A{(p,T,v = D)[3p1,pe-pr +p2 <p A (pr, T, v) € [7] A (p2, T, 1) € [L7]}
[mer] =2 {»T ((vl,vz») | 3p1,p2.p1 +p2 <p A (p1, T,v1) € [11] A (p2, T, v2) € [2]}
[rn&m] £ {(pT,(v1,02) | (0, T,01) €[] A (p, T, 02) € [12]}
[mer]l £ {(@T,inlw)]| T,v)c[n]}u{lp,T,inr) | (p,T,v) € [r]}
['7] £ {(T,'e) | (0,T,e) € [r]e}
[—n] £ {(pT,Aze) |V, e, T'<T .(p,T',€) € [m]le = (p+p,T ele'/x]) € [r2]e}
[in] 7] 2 {(pTU)|3Pp+n<pA(p7TU)€[[T]]}}
[M & 7] L {(p,T,0) |V W, T'<T v v = I +p <p+rA@,T-T)¢]}
Mar] 2 {(nT.Ae) | Ve, T'<T (p,T",¢) € [rlr follle}
[Vi.7] 2 {(p,T,Ae) | VI,LT'<T .(p, T, ¢) € [7[I/i]]e}
[C= 2 {(nTAe)|.EC = (n,T,e) € [r]e}
[C&r] £ {(T,v)| . ECA(p,T,v) €[]}
Bsr]l £ {(nTo0) | 35, T,0) € [rls' /)
[Aei.7] 2 fwhereVI. f I =[r[1/i]]
11 & I
[r]e 2 {(p,T,e) |VT'<T,velrrv = (p,T —T',v) € [7]}
[Te 2 {(p,T,v) | 3f : Vars — Pots.
(Vz € dom(D). (f(2), T,v(2)) € [I'(@)]e) A (X scaomm [(@) < p)}
[Q]e £ {(0,T,6) | (Vo € dom(Q).(0,T,6(x)) € [7]e)}

Figure 5: Model of Ad-amor™ types

expression relation and substitution relations for the affine and non-affine context. The first two are mutually
recursive on the lexicographic order (step index (T'), type (7), value < expression).

Value relation. The value relation (denoted by [.]) gives an interpretation to A-amor™ types (of kind T'ype)
as sets of triples of the form (p,T,v). Importantly, the potential p is an upper-bound on the ambient potential
required to construct the value v. It must include potential associated with the (types of) subexpressions of v.

We describe interesting cases of this relation. The interpretation for the list type is defined by a further
induction on list size. For a list of size 0 the value relation contains a nil value with any potential (since nil
captures no potential). For a list of size s+ 1, the value relation is defined inductively on s, similar to the tensor
pair, which we describe next. For a tensor (®) pair, both components can be used. Therefore, the potential
required to construct a tensor pair is at least the sum of the potentials needed to construct the two components.
On the other hand, for a with (&) pair, either but not both of the components can be used by the context. So
the potential needed for a & pair should be sufficient for each component separately. The type !7 contains le
when e is in 7. The important aspect here is that the potential associated with e must be 0, otherwise we would
have immediate unsoundness due to replication of potential, as described in Section

Next, we explain the interpretation of the arrow type 71 — 79: Az.e is in this type with potential p if for
any substitution e’ (of type 1) that comes with potential p’, the total potential p + p’ is sufficient for the body
ele’ /] (of type T2).

The step indices T play an important role only in the interpretation of the polymorphic type Va.7. Since the
type-level parameter o may be substituted by any type, potentially one even larger than 7, the relation would
not be well-founded by induction on types alone. Here, we rely on step-indices, noting that substituting o with
a type consumes at least one step in our operational semantics, so the relation for 7 (with the substitution)
needs to be defined only at a smaller step index. This follows prior work [29].

Next, we come to the new, interesting types for potential and the cost monad. The potential type [n]T
contains v with required potential p if p is sufficient to account for n and the potential required for v. (Note
that the same value v is in the interpretation of both 7 and [n]7.) The graded monadic type M 7 contains the
(impure) value v with required potential p if p and & together suffice to cover the cost «’ of actually forcing v
and the potential p’ required for the resulting value, i.e., if p + x > k' + p’. The ambient potential p and the
cost k on the monad appear together in a sum, which explains why the typing rule T-release can offset cost on
the monad using potential.

The interpretation of a type family \;i.7 is a type-level function, as expected. The interpretation of type-
level application is an application of such a function. The remaining cases of the value relation of Fig. [5| should
be self-explanatory.

Ezpression relation. The expression relation, denoted [.]¢, maps a type to a set of triples of the form (p, T, e).
Its definition is fairly simple and standard: we simply check if the value v obtained by pure evaluation of e is
in the value relation of the same type. The potential does not change during pure evaluation, but we need to

adjust the step index correctly.

Substitution relations. Finally, we describe the substitution relations for both the affine context (I') and the
non-affine context (€2). Each relation maps the context to a set of valid substitutions for the context, paired
with a step index and a potential. The two key points about the interpretation of I" are: 1) The substitution ~
should map each variable to a value of the correct type (semantically), and 2) The required potential p for the
context should be more than the sum of the required potentials for the substitutions of each of the variables.
The interpretation of the non-affine context €2 is much simpler. It only demands that the substituted value is
in the interpretation of the correct type with 0 potential.

Soundness. As is standard for logical-relations models, the main meta-theoretic property is the “fundamental
theorem” (Theorem [2). The theorem basically says that if e is well-typed in some contexts at type 7, then
the application of any subtitutions in the semantic interpretation of the contexts map e into the semantic
interpretation of 7. The important, interesting aspect of the theorem in A-amor~ is that the potential needed
for e (after substitution) equals the potential coming from the context, p;. This the crux of the soundness of
(amortized) cost analysis in A-amor ™.

Theorem 2 (Fundamental theorem for A-amor™). VO,Q, T, e, 7,T, p;,7, 9,0, L.
U:0; A0 T Fe:7 A (p, T,7) €T at]e A (0,T,9) € [Qot]e =
(o1, T e vd) € [7 at]e.

Here, ¢, 0, 6 and ~ denote substitutions for the index context ©, the type context ¥, the non-affine context
Q and the affine context I', respectively. This theorem is proved by induction on the given typing judgment
with a subinduction on the step-index for the case of fix. The supplementary material has the entire proof.

Theorem [1] is a direct corollary of this fundamental theorem. We can derive several additional corollaries
about execution cost directly from this fundamental theorem. For instance, for open terms which only partially
use the input potential and save the rest with the result, we can derive Corollary [3] Here, € is a thunk that
expects as input a unit argument, but with some associated potential g. When applied, e returns a computation
(of 0 cost) that forces to a value with a residual potential ¢’. The corollary says that if the context I provides
a potential p;, then forcing e (with the substitution v) incurs a cost J and produces a value v that requires
potential p, such that J < (¢ + p;) — (¢’ + p,). This expression may look complex, but it is simply a difference
of the incoming potentials of e (¢ and p;) and the outgoing potentials of e (¢’ and p,). In Section |4 we show
an interesting use of this corollary for deriving an alternate proof of soundness of univariate RAML via its
embedding in A-amor~.

Corollary 3. VT',e,q,¢', 7, p1,7, J, v¢, v.
gl Fer g1 —=MO([¢]7) A (pr,-7) €[Tle Ae)y doe b v =
o (Pos—v) €[TI AT < (g +mp) = (¢ +po)

3 Examples

Next, we show three nontrivial examples of cost analysis in Ad-amor~. Complete type derivations for the
examples can be found in the supplementary material. That material also has two additional, simple examples
(the standard list map and append functions) that we omit here.

3.1 Church encoding

Our first example types Church numerals and operations on them. Typing these constructions require non-
trivial use of type and index families. The type we give to Church numerals is both general and expressive
enough to encode and give precise cost to operations like addition, multiplication and exponentiation.

For exposition, we first consider the types of Church numerals without any cost. To recap, Church numerals
encode natural numbers as function applications. For example, a Church zero is defined as Af.\x.z (with zero
applications), a Church one as A\f.\z.f = (with one application), a Church two as A\f.Az.f (f z) (with two
applications) and so on. To type a Church numeral, we must specify a type for f. We assume that we have an
N-indexed family of types «, and that f maps « i to « (i + 1) for every i. Then, the nth Church numeral, given
such a function f, maps a 0 to a n.

Next, we consider costs. Just for illustration, we are interested in counting a unit cost for every function
application. We want to encode the precise costs of operations like addition, multiplication and exponentiation
in types. Classically, these operations are defined compositionally. For example, addition of m and n is defined
by applying m to the successor function (for f) and n. This iterates the successor function m times over n. To
type this, the type of f in the Church nats must be general enough. For this, we use a cost family C from N to
R. The cost of applying f depends on the index of the argument (called j, below). Then, given such a f, the
nth Church numeral maps a 0 to a n with cost C 0+ ...+ C (n — 1) + n, where each C' i is the cost of using f

the ith time, and the last n is the cost of the n applications in the definition of the nth Church numeral. Our
type for Church numerals, called Nat below, captures exactly this intuition.

Nat = Min.Va : N — Type.VC : N — RT.
(Vijn-((a0 jin @ [C jn] 1) —o MO (@ (jn +1)))) —o
MO((ca0®[(CO0+...4C (n—1)+n)]1) MO (a n))

Below, we describe a term for the Church one, denoted 1, that has type Nat 1. For notational simplification,
we define e; 1! ea £ (bind — = 1! in ret(e; e3)), which applies e; to es and additionally incurs a cost of 1 unit.

T:Nat1l
T2 AAMN.ret (A\x. let!f, = finlet (y1,y2)) = x in release — = yo in binda = store() in fu, [| 1" {v1,a)

The term 1 takes the input pair z of type @ 0 ® [((C 0) 4+ 1)] 1 and binds its two components to y; and ys.
It then releases the potential ((C 0) + 1) in yo, stores C 0 of the released potential in a, and applies the input
function f,, to {(y1,a)), incurring a cost of 1 unit. This incurred cost models the cost of the application (which
we want to count). It is offset by the remaining 1 potential that was released from ys.

Next, we show the encoding for Church addition. Church addition is defined using a successor function
(succ), which is also defined and type-checked in Ad-amor—, but whose details we elide here. It is just enough to
know that the cost of succ under our cost model is two units.

succ : Vn.[2]1 — MO (Nat[n] — MO Nat[n + 1])

An encoding of Church addition (add) in Ad-amor~ is shown below. The type of add takes the required
potential (which is 4 % nq + 2 here) along with two Church naturals (Nat n; and Nat ng) as arguments and
computes their sum. The potential of (4%n; 4 2) units corresponds to the precise cost of performing the Church
addition under our cost model. The whole type is parameterized on n; and nsy. Ignoring the decorations, add
simply applies N to succ and Nj, as expected.

add : Vni,ne. [(4 *n1 +2)] 1 — MO (Nat n1 — M O(Nat no — MO (Nat (n1 + n2))))
add = A.Ap.ret(AN;.ret(AN2. release — = pin binda = E; in F3))
Er 2N, [| [TN (AMt. let {(y1,92) = tin release — = g2 in

bind by = (bind by = store() in (succ [] b2)) in b1 1 y1)
Fy 2 bindb = store() in a 1 (N, b))

Listing 1: Encoding of the Church addition in A-amor™

We have similarly encoded Church multiplication and exponentiation in A-amor~. We are unaware of such
a general encoding of Church numeral in a pure monadic cost framework without potentials.

3.2 Eager functional queue

Eager functional FIFO queues are often implemented using two LIFO stacks represented as standard functional
lists, say l; and l5. Enqueue is implemented as a push (cons) on /. Dequeue is implemented as a pop (head)
from [y if it is non-empty. However, if [5 is empty, then the contents of [y are transferred, one at a time, to Iy
and the new [is popped. The transfer from I to ls reverses [y, thus changing the stack’s LIFO semantics to a
queue’s FIFO semantics. We describe the analysis of this eager queue in A-amor™ queue. Here, we incur a unit
cost for every list cons operation.

Note that the worst-case cost of dequeue is linear in the size of [;. However, the amortized cost of dequeue
is actually constant. This analysis works by accounting the cost of transferring an element from [y to ls right
when the time is enqueued in [;. This works because an enqueued element can be transferred at most once.
Concretely, the enqueue operation has a cost (it requires a potential) of 3 units, of which 1 is used by the
enqueue operation itself and the remaining 2 are stored with the element in the list /; to be used later in the
dequeue operation if required. This is reflected in the type of enqueue. The term for enqueue is straightforward,
so we skip it here.

eng : Vm,n.[3]1 —o 7 —o L"([2] 7) —o L™7 — MO (L"T1([2] 7) ® L™7)

Observe how each element of the first list /1 in both the input and the output has a potential 2 associated
with it. The dequeue operation (denoted by dq below) is a bit more involved. The constraints in the type of
dequeue reflect a) dequeue can only be performed on a non-empty queue, i.e., if m+n > 0 and b) the sum of the
lengths of the resulting list is only 1 less than the length of the input lists, i.e., 3m/, n/.((m' +n'+1) = (m+n)).
The full type and the term for the dequeue operation are described in Listing [2] Dequeue uses a function mowve,
which moves elements from the first list to the second. We skip the description of move. Type-checked terms
for eng, dg and move are in the the Appendix [C}

10

dg :Ym,n.(m+n>0) = L™([2] 7) — L™t — MO 3@m/,n/.((m' +n’ + 1) = (m + n))&(L™ [2] 7 ® L™ 7))
dq £ AAAN 11 ls. match I3 with
|nil — bind I, = move [][] &1 nil in
match [, with
|nil — fixz.z
[P 2 1 ret A{(nil 1))
|he 15 — ret A{{l1,15))

Listing 2: Dequeue operation for eager functional queue in A-amor™

3.3 Okasaki’s implicit queue

Next we describe an encoding of a lazy data structure, namely, Okasaki’s implicit queue [30]. This is a FIFO
functional queue, which supports log-time random access. Okasaki shows an analysis of this queue for memoizing
(lazy) evaluation using his method of debits. [IT] shows how to formalize this analysis in Agda. Here, we replicate
Danielsson’s analysis in A-amor~. Although the cost bounds we obtain are the same as Danielsson’s, we note
that our bound does not apply to Okasaki’s/Danielsson’s lazy evaluation scheme. Rather, it applies to our
monadic sequential execution, where we specifically encode operations to incur a unit cost at every case analysis
on a queue. It turns out that Okasaki’s potential invariants work as-is for this cost model as well.

An implicit queue is either a shallow (trivial) queue of zero or one elements, or a deep (nontrivial) queue
consisting of three parts called front, middle and rear. The front has one or two elements, the middle is a
recursive, suspended implicit queue of pairs of elements, and the rear has zero or one elements. Because the
recursive structure (the middle) is a queue of pairs, random lookup on the whole queue is logarithmic in time.

Overall, the queue can be described as a datatype of 6 constructors, corresponding to the two shallow cases
and the four deep cases. Hereon, we assume a polymorphic queue type Queue(r) with these 6 constructors,
called C0-C5 has been added as a primitive to the language. The types of these constructors are shown below.
Note that each type encodes the potential needed to apply the constructor (e.g., a potential of 2 units is needed
to apply C4). These potentials match those of Okasaki.

C0 : Queue T C1: 71— Queue T

C2:[1]1 - MO (7 ® Queue(r ® 7)) — Queue T C3:0]1 = MO (7T ® Queue(r ® 7) ® T) — Queue T

C4:2]1 = MO((T®7) ® Queue(Tt @ 7)) — Queue 7 | C5:[1]1 MO (7 ® 7) ® Queue(T ® T) @ T) — Queue T
Figure 6: Constructors of Okasaki’s implicit queue

We have implemented and analyzed the expected snoc, head and tail functions for this queue in A-amor™.
While we defer the details of these functions to the supplementary material, in Listing [3| we show the helper
function headT ail, which extracts both the head and the tail of a queue and is the crux of our implementationﬂ
This function has an amortized cost of 3 units as indicated by its type. At the top-level, the function releases
the 3 units of potential and immediately uses 1 unit to case analyze the form of the queue. The remaining 2
units are used — partially or fully — in the various cases. For example, when the input queue is C1 z, we return
a pair of x and the empty queue (C0). The 2 units of potential are simply discarded in this case.

The cases C2-C5 are interesting. We describe here only the case C3. From Fig. [f] we know that the
suspension in C3 needs 0 units of potential to be forced. So we store 0 units of potential in p’ and the remaining
2 units of potential in p,, which is used later. We then force the suspension (named x) to obtain the front
(f), middle (m) and rear (r). The front f is just returned as the head while the tail is constructed using the
constructor C5. Inside the suspension of C5 we have 1 unit of additional potential available to us via p”. We
use this 1 unit of potential from p” along with the 2 units of potential from p,, which we constructed earlier, to
obtain a total of 3 units of potential, which allows us to make a recursive call to headT ail on the middle. This
gives us the head and tail of the middle. The rest of this case is straightforward.

Case (2 is similar, while cases C4 and C5 do not involve recursive calls.

headTail : [3]1 —o Va. Queue o — MO (o ® Queue «)
headTail £ fix HT.Ap.AX q.

— =releasepin —=1"in ret
case q of
|CO — fixz.x
|C1 x> ret{{x, COY)
|C2 = —

bindp’ = store() in bind p, = store() in
bindz’ =z p’inlet{(f,m)) = 2’ in
ret{(f, (C4 (A\p”.— = releasep, in — = release p” in bind p, = store() in HT p, [| m)))
|C3 z—

5Qkasaki does not need a corresponding function since he works in a non-affine setting. In some of his implementation he uses
the same queue twice, once to extract its head and once to extract its tail. In our setting, a queue is affine so it cannot be used
twice. Hence, we define this combined function.

11

bind p’ = store() in bind p, = store() in
bindz' =z p’in let{(fm,r) = ' in let{(f,m)) = fm in
ret{(f,(C5 (\p".— = releasep, in — = releasep” in
bindp”’ = store() in bindht = HT p"" [| min ret{(ht,r))))
|C4 = —
bindp’ = store() in bindx’ =z p inlet{f,m)) = 2’ in let{(f1, f2)) = f in
ret(fr, C2 (" ret((fo, m)))
|C5 x—
bindp’ = store() in bindx’ =z p inlet{fm,r) = 2" in let({(f,m) = fmin let{f1, f2)) = f in
ret(fr, (C3 (Ap" ret({Lfa, m), P

Listing 3: Function to obtain head and tail

The Appendix [C| contains full typing derivations for the headTail, head, tail and snoc operations.

4 Embedding Univariate RAML

In this section we describe an embedding of Resource Aware ML (RAML) [19, [16] into A-amor~. RAML is an
effect-based type system for amortized analysis of OCaml programs using the method of potentials [32] [7]. The
main motivation for this embedding is to show that: 1) A-amor~ can also perform effect-based cost analysis like
RAML and thus can be used to analyze all examples that have been tried on RAML and 2) A-amor™, despite
being a call-by-name framework, can embed RAML which is a call-by-value framework.

We describe an embedding of Univariate RAML [19] [16] (which subsumes Linear RAML [20]) into A-amor ™.
We leave embedding multivariate RAML [I7] to future work but anticipate no fundamental difficulties in doing
SO.

4.1 A brief primer on Univariate RAML

We give a brief primer of Univariate RAML [19] 6] here. The key feature of Univariate RAML is an ability to
encode univariate polynomials in the size of the input data as potential functions. Such functions are expressed
as non-negative linear combinations of binomial coefficients (Z), where n is the size of the input data structure
and k is some natural number. Vector annotations on the list type L7, for instance, are used as a representation
of such univariate polynomials. The underlying potential on a list of size n and type LiT can then be described
as ¢(q,n) £ > 1 ,<, (1)@ where ¢={q:...q:}. The authors of RAML show using the properties of binomial
coefficients, that such a representation is amenable to an inductive characterization of polynomials which plays
a crucial role in setting up the typing rules of their system. If §= {q1 ...qr} is the potential vector associated
with a list then <(q) = {q1 + ¢2,92 + g3, - - - qk—1 + Gx, g } is the potential vector associated with the tail of that
list. Trees follow a treatment similar to lists. Base types (unit, bools, ints) have zero potential and the potential
of a pair is just the sum of the potentials of the components. A snippet of the definition of the potential function
®(a: A) (from [16]) is described below.

®(a:A) = 0 where A= {unit,int,bool} ®(]: L7A) = 0

®((a1,az2) : (A1,42)) = ®(ar: A1)+ Plas : As) O((a::0): LIA) = q+P(a: A)+O: LYA)

where §={q1...q:}

A type system is built around this basic idea with a typing judgment of the form 3;T' Fg, er: T where I''is a
typing context mapping free variables to their types, X is a context for function signatures mapping a function
name to a type (this is separate from the typing context because RAML only has first-order functions that are
declared at the top-level), ¢ and ¢’ denote the statically approximated available and remaining potential before
and after the execution of e,, respectively, and 7 is the zero-order type of e,.. Vector annotations are specified on
list and tree types (as mentioned above). Types of first-order functions follow an intuition similar to the typing

judgment above. qug 79 denotes the type of a first-order RAML function which takes an argument of type 71
and returns a value of type 75. ¢ units of potential are needed before this function can be applied and ¢’ units
of potential are left after this function has been applied. Intuitively, the cost of the function is upper-bounded
by (¢+potential of the input) - (¢’+potential of the result). Fig.[7|describe typing rules for function application
and list cons. The app rule type-checks the function application with an input and remaining potential of
(¢+ K{*P) and (¢’ — Kgpp)ﬂ units, respectively. RAML divides the cost of application between K7*¥ and K5*”
units. Of the available ¢ + K{"” units, ¢ units are required by the function itself and K{** units are consumed
before the application is performed. Likewise, of the remaining ¢’ — K57 units, ¢’ units are made available from
the function and K45"” units are consumed after the application is performed. The cons rule requires an input
potential of ¢ + p; + K™ units of which p; units are added to the potential of the resulting list and K°°™*
units are consumed as the cost of performing this operation.

SEvery time a subtraction like (I — J) appears, RAML implicitly assumes that there is a side condition (I — J) > 0.

12

n Y e s(p) F=(p1,...,p)

app 4 cons
q+K;PP e .7 (@D patpitK
ixom Fq,_léappfx:‘rz Yiwp Tt L il

2

Figure 7: Selected type rules of Univariate RAML from [16]
Soundness of the type system is defined by Theorem [d] Soundness is defined for top-level RAML programs
(formalized later in Definition [6]), which basically consist of first-order function definitions (denoted by F) and

the "main” expression e, which uses those functions. Stack (denoted by V') and heap (denoted by H) are used
to provide bindings for free variables and locations in e.

— cons
cons(xp,xe) : LP1

Theorem 4 (Univariate RAML’s soundness). VH, H' | V,T', ¥, e, 7,%v,p,p’,q, ¢, t.
P =F,eis a RAML top-level program and
HEV:TASTE e:T AV.HE ey "v,H = p—p' < (Ppv(T)+q) — (¢ +2u(*v:7))

4.2 Type-directed translation of Univariate RAML into \-amor™

As mentioned above, types in Univariate RAML include types for unit, booleans, integers, lists, trees, pairs and
first-order functions. Without loss of generality we introduce two simplifications: a) we abstract RAML’s bool
and int types into an arbitrary base type denoted by b and b) we just choose to work with the list type only
ignoring trees. These simplifications only make the development more concise as we do not have to deal with
the redundancy of treating similar types again and again.

The translation from Univariate RAML to A-amor~ is type-directed. We describe the type translation
function (denoted by (.)) from RAML types to A-amor~ types in Fig.

(unit) =1 () = ((n)® (r)
(b) = 1b a/q’ /
(L7 7) = 3s.([6(7,5)]1 ® L(r)) (m=m) = [d1—(n)—~MO0(q] ()

Figure 8: Type translation of Univariate RAML

Since RAML allows for full replication of unit and base types, we translate RAML’s base type, b, into !b of
A-amor~. But translation of the unit type does not need a !, as 1 and !1 are isomorphic in A-amor~. Unlike
the unit and base type of RAML, the list type does have some potential associated with it, indicated by ¢.
Therefore, we translate RAML’s list type into a pair type composed of a modal unit type carrying the required
potential and a A-amor™ list type. Since the list type in A-amor™ is refined with size, we add an existential
on the pair to quantify the size of the list. The potential captured by the unit type must equal the potential
associated with the RAML list (this is indicated by the function ¢(q,s)). The function ¢(g,s) corresponds to
the one that RAML uses to compute the total potential associated with a list of s elements, which we described
above. Note the difference in how potentials are managed in RAML vs how they are managed in the translation.
In RAML, the potential for an element gets added to the potential of the tail with every cons operation and,
dually only the, potential of the head element is consumed in the match operation. The translation, however,
does not assign potential on a per-element basis, instead the aggregate potential is captured using the ¢ function
and the translations of the cons and the match expressions work by adding or removing potential from this
aggregate. We believe a translation which works with per element potential is also feasible but we would need
an additional index to identify the elements of the list in the list data type.

We translate a RAML pair type into a tensor (®) pair. This is in line with how pairs are treated in RAML

(both elements of the pair are available on elimination). Finally, a function type 7 q/g 79 in RAML is translated
into the function type [¢] 1 —o (1) — MO ([¢'] (72)). As in RAML, the translated function type also requires a
potential of ¢ units for application and a potential of ¢’ units remains after the application. The monadic type
is required because we cannot release/store potential without going into the monad. The translation of typing
contexts is defined pointwise using the type translation function.

We use this type translation function to produce a translation for Univariate RAML expressions by induction
on RAML’s typing judgment. The translation judgment is ;T Fg, er: T ~> e4. It basically means that
a well-typed RAML expression e, is translated into a A-amor~ expression e,. The translated expression is of
the type [g] 1 — MO ([¢'](7)). We only describe the app rule here (Fig. [9). Since we know that the desired
term must have the type [¢ + K1""]1 — MO ([¢' — K5""](7)), the translated term is a function which takes an
argument, u, of the desired modal type and releases the potential to make it available for consumption. The
continuation then consumes K;*¥ potential that leaves ¢ — K{*? potential remaining for bind P = store() in Ej.
We then store ¢ units of potential with the unit and use it to perform a function application. We get a result of
type MO ([¢'] (m2)). We release these ¢’ units of potential and consume K5*” units from it. This leaves us with
a remaining potential of ¢’ — K5 units. We store this remaining potential with f, and box it up in a monad
to get the desired type. Translations of other RAML terms (which we do not describe here) follow a similar
approach. The entire translation is intuitive and relies extensively on the ghost operations store and release at
appropriate places.

13

T1 qﬁ;/ T2 € E(f)

KPP app

. . app . . .
Six:m FZ,+ wavp | T 172~ Au.release — = u in bind — = 557 in bind P = store() in Ey
]

E, =bind fi = (f P z) in release fo = f1 in bind — = 12" in bind f3 = store f2 in ret fs
Figure 9: Expression translation for the app case: Univariate RAML to A-amor™

We show that the translation is type-preserving by proving that the obtained A-amor™ terms are well-typed
(Theorem . The proof of this theorem works by induction on RAML’s type derivation.

Theorem 5 (Type preservation: Univariate RAML to A-amor™). If ;T I—Z, e : 7 in Univariate RAML then
there exists €' such that ¥;T 1], e : 7~ €' and there is a derivation of .;.;.; (%), (T) e’ : [g] 1 — MO ([¢'](7))
in A-amor~ .

As mentioned earlier, RAML only has first-order functions which are defined at the top-level. So, we need to
lift this translation to the top-level. Definition [6]defines the top-level RAML program along with the translation.

Definition 6 (Top level RAML program translation). Given a top-level RAML program
P2 F, epnain where F 2 fl(z) = ef1,..., fn(z) =ep s.t.

X, x:TH l—g} ef1: 7‘}1 ces BT Ty }—37 €fn : T}n and X,T }—g, €main : T
1 n v
where ¥ = f1: 7141 /i Thiseros N T an/gn Tin

The translation of P, denoted by P, is defined as (F,e;) where
F = fixfi. \u z.epq, ..., fixf. uAx.ep, s.t.
Y,z Th I—Zi et T]/cl ey ... BT Ty }—gz efn : Tj’cn ~ e, and

N, T L emain : T~ e

4.3 Semantic properties of the translation

Besides type-preservation, we additionally : 1) prove that our translation preserves semantics and cost of the
source RAML term and 2) re-derive RAML’s soundness result using A-amor~’s fundamental theorem (Theo-
rem [2)) and properties of the translation. This is a sanity check to ensure that our type translation preserves
cost meaningfully (otherwise, we would not be able to recover RAML’s soundness theorem in this way).

Semantics and cost preservation is formally stated in Theorem [7] which can be read as follows: if ey is
a closed source (RAML) term which translates to a target (A-amor™) term e; and if the source expression
evaluates to a value (and a heap H, because RAML uses imperative boxed data structures) then the target
term after applying to a unit (because the translation is always a function) can be evaluated to a value ‘vy via
pure ({}) and forcing ({}7) relations s.t. the source and the target values are the same and the cost of evaluation
in the target is at least as much as the cost of evaluation in the source.

Theorem 7 (Semantics and cost preservation). VH, e, %v,p,p’,q, ¢ .
geFhesibwer Ay el tu, H =
Frop, Jee() I -7 top Ao =top Ap—p' < J

The proof of Theorem [7]is via a cross-language relation between RAML and A-amor™ terms. The relation
(described in the Appendix is complex because it has to relate RAML’s imperative data structures (like
list which is represented as a chain of pointers in the heap) with A-amor™—’s purely functional datastructures.
The fundamental theorem of this relation basically allows us to establish that the source expression and its
translation are related, which basically internalizes semantics and cost preservation as required by Theorem [7}

Finally, we re-derive RAML’s soundness (Theorem []) in A\-amor™ using A-amor~’s fundamental theorem
and the properties of the translation. To prove this theorem, we obtain a translated term corresponding to the
term e (of Theorem [f) via our translation. Then, using Theorem |z|, we show that the cost of forcing the unit
application of the target is lower-bounded by p — p’. After that, we use Corollary [3| to obtain the upper-bound
on p — p’ as required in the statement of Theorem

5 A-amor full (with sub-exponentials)

Recall the Church encoding from Section A Church numeral always applies the function argument a finite
number of times. However, the type that we assigned to Church numeral specified an unbounded number of
copies for the function argument. Similarly, the index j, can only take n unique values in the range 0 to n — 1,
but it was left unrestricted in the type that we saw earlier. Both these limitations are due to A-amor~’s lack of
ability to specify these constraints at the level of types. These limitations, however, can be avoided by refining
the exponential type (I7). In particular, we show that by using the dependent sub-exponential (!;<,,7) from

14

Bounded Linear Logic [15] we can not only specify a bound on the number of copies of the underlying term,
but can also specify the constraints on the index-level substitutions that are needed in the Church encoding.
Morally, !;<, T represent n copies of 7 in which ¢ is uniquely substituted with all values from 0 to n — 1.

Such an indexed sub-exponential has been used in the prior work. d¢PCF [J], for instance, uses it to obtain
relative completeness of typing for PCF programs, which means every PCF program can be type checked in
dfPCF, where the cost of the PCF program gets internalized in d/PCF’s typing derivation. This is a very
powerful result. However, cost analysis in d/PCF works only for whole programs. This is because d/PCF does
not internalize cost into the types but rather tracks it only on the typing judgment. As a result, in order to
verify the cost of es in the let expression, say let x = e; in es, we would need the whole typing derivation of e;
as cost is encoded on the judgment in d¢/PCF.

Contrast this with A-amor where cost requirements are described in the types (M k7 for instance). In this
case, the cost of es can be verified just by knowing the type of e; (the whole typing derivation of e; is not
required to type check e;. Therefore e; can be verified separately).

We show that by adding such an indexed sub-exponential to A-amor™, we can not only obtain the same
relative completenesrﬂ result that d¢PCF obtains, but also provide a compositional alternative to the d¢/PCF
style of cost analysis. We describe the addition of !;.,,7 to A-amor™ in this section. We call the resulting system
A-amor.

5.1 Changes to the type system: syntax and type rules

We take the same language as described earlier in Section [2] but replace the exponential type with an indexed
sub-exponential type. There are no changes to the term syntax or semantics of the language. We just extend
the index language with two specific counting functions described below.

Index LJK == ... | Y, 1|01 ...
Types T = - ‘ !a<]7— |
Non-affine context €2 n= | Qxiacr T
for term variables
Qs O =.
Ql+92é (Q/I+QQ/$),QJZC<[+JT leﬂll,l‘:a<[T[a/c]/\(a: b<J T[I-l—b/C])GQQ
(N +Q2), T < T Q1 =0, Tt TA (T2 =) € Qo
Sael , o
(Za<] Q),x e<YacrJ T Q=0 < J[(Zd<a J[d/a] + b)/c]

a<lI
Figure 10: Changes to the type system syntax

We describe the changes introduced to the type and index language in Fig. [I0] Since the sub-exponential
type helps in specifying the number of copies of a term, we find inclusion of two specific counting functions to
the index language very useful, both of which have been inspired from prior work [9]. The first one is a function
for computing a bounded sum over indices, denoted by > ,_,I. It basically describes summation of I with
a ranging from 0 to J — 1 inclusive, i.e., I[0/a] + ...+ I[J — 1/a]. The other function is used for computing
the number of nodes in a graph structure like a forest of recursion trees. This is called the forest cardinality
and denoted Q% I. The forest cardinality @I counts the number of nodes in the forest (described by I)
consisting of K trees starting from the Jth node. Nodes are assumed to be numbered in a pre-order fashion.
It can be formally defined as in Fig. [11] and is used to count and identify children in the recursion tree of a fix
construct.

OL'K = 0
YK = LK +(£+1+@£’w‘]K,K[I+@£’JK/a]K)

Figure 11: Formal definition of forest cardinality from [9]

The typing judgment is still the same: ¥;0;A;Q; ' - e : 7. However, the definition of € is now different.
The non-affine context 2 now carries the constraint on the index variable described on the “” asin x gy T
(Fig. . It specifies that there are I copies of x with type 7 in which the free a is substituted with unique
values in the range from 0 to I — 1. The non-affine context also differs in the definition of splitting. The
definition of 4 (splitting, also referred to as the binary sum) for 2 allows for the same variable to be present in
the two contexts but by allowing splitting over the index ranges. Binary sum of £2; and €5 in A-amor~ was just
a disjoint union of the two contexts. However, here in A-amor, it permits €; and €5 to have common variables
but their multiplicities should add up. We also introduce a notion of bounded sum for the non-affine context
denoted by >, _; Q. Both binary and bounded sum over non-affine contexts are described in Fig.

We only describe the type rules for the sub-exponential and the fixpoint in Fig. as these are the only
rules that change. T-subExpl is the rule for the introduction form of the sub-exponential. It says that if an

7Use of indexed sub-exponential is just one way of obtaining relative completeness. There could be other approaches, which we
do not get into here.

15

expression e has type 7 under a non-affine context 2 and a < I s.t. e does not use any affine resources (indicated
by an empty I') then le has type !4<;7 under context) _; €. As before, we can always use the weakening
rule to add affine resources to the conclusion. T-subExpE is similar to T-expE defined earlier but additionally
it also carries the index constraint coming from the type of e; in the context for es.

The fixpoint expression (fixz.e) encodes recursion by allowing e to refer to fixz.e via x. T-fix defines the
typing for such a fixpoint construct. It is a refinement of the corresponding rule in Fig.[3] The refinements serve
two purposes: 1) they make the total number of recursive calls explicit (this is represented by L) and 2) they
identify each instance of the recursive call in a pre-order traversal of the recursion tree. This is represented by
the index (b+ 1+ @Z“"U) (representing the ath child of the bth node in the pre-order traversal). Using these
two refinements, the T-fix rule in Fig. [I2) can be read as follows: if for all I copies of z in the context we can
type check e with 7, then we can also type check the top-most instance of fix z.e with type 7[0/b] (0 denotes
the starting node in the pre-order traversal of the entire recursion tree). Contrast the rules described in Fig.
with the corresponding rules for A-amor~ described earlier in Fig.

U:0,a;Aa< ;. Fe: T
W;@;A;ZQ;. Hleloerr

a<I

T-subExpl

U;0; ;01T Fe: (la<T) U:0:A; Qo iqcr ;T2 e i 7
U:0:A; Q) + QT+ Dok letle=eine : 7

T-subExpE

U:0,b; A< L;Q, 2 iqcr T[(b+1+@’;+l’a1)/b];. Fe:r L> @2,11

0;4;) 0.k fixae: 7[0/b]
b<L

T-fix

Figure 12: Changes to the type rules

We also introduce a new subtyping rule, sub-bSum. sub-bSum helps move the potential from the outside to
the inside of a sub-exponential. This is sound because 1) potentials are really ghosts at the term level. Therefore
terms of type [y, ; K]!a<r7 and o<y [K] 7 are both just exponentials and 2) there is only a change in the
position but no change of potential in going from [}, _; K]!a<r7 to la<s [K] 7. We have proved that this new
subtyping rule is sound wrt the model of Ad-amor types by proving that if 7 is a subtype of 7/ according to the
syntactic subtyping rules then the interpretation of 7 is a subset of the interpretation of 7/. This is formalized
in Lemma (8] ¢ and ¢ represent the substitutions for the type and index variables respectively.

sub-bSum

U0, A DK lacim <:lacs [K] T

a<I

It is noteworthy that sub-bSum is the only rule in A-amor which specifies how the two modalities, namely,
the sub-exponential (!,<;7) and the modal type ([p] 7) interact with each other. People familiar with monads
and comonads might wonder, why such an interaction between the sub-exponential and the monad is not
required? We believe this is because we can always internalize the cost on the type using the store construct,
so just relating exponential and potential modal type suffices. However, studying such interactions could be an
interesting direction for future work.

Lemma 8 (Value subtyping lemma). V¥, 0, A, 7 € Type, 7/, 0,¢.
U0 AT <7 AN EAL = [t o] C[r o

5.2 Model of types

We only describe the value relation for the sub-exponential here as the remaining cases of the value relation
are exactly the same as before. (p,T,!e) is in the value interpretation at type !,<;7 iff the potential p suffices
for all I copies of e at the instantiated types 7[i/a] for 0 < i < I. The other change to the model is in the
interpretation of . This time we have (p, d) instead of (0,4) in the interpretation of Q s.t. p is sufficient for all
copies of all variables in the context. The changes to the model are described in Fig.
Da<zt] 2 {(p,'e) | 3po,---,Pr—1-Po 4 .. +pi—1 <pAV0 < i< I(pi,e) € [r[i/a]]e}
[Q]e = {(p,9) | 3f : Vars — Indices — Pots.
V(@ tacr 7) € QY0 < i< I.(f xi,6(x)) € [r]i/a]]e) A
(Zw:adren >o<icr [@ 1) <p}

Figure 13: Changes to the model

We prove the soundness of the model by proving a slightly different fundamental theorem (Theorem E[)
There is an additional potential (p,,) coming from the interpretation of € (which was 0 earlier).

16

Theorem 9 (Fundamental theorem). V¥, 0, A QT e, 7 € Type, pi, Pm, Y, 0, 0, L.
U:0; AT Fe:7 A (pr,y) €T ot]le A (pm,0) €[Qot]e N . EFAL =
(o1 + pm,e ¥6) € [T oufe

The proof of the theorem proceeds in a manner similar to that of Theorem[2] i.e., by induction on the typing
derivation. Now, in the fix case, we additionally induct on the recursion tree (this also involves generalizing
the induction hypothesis to account for the potential of the children of a node in the recursion tree). The
Appendix [Bl has the entire proof.

6 Embedding d/PCF

In this section we describe an embedding of d¢/PCF [9] into Ad-amor. d¢PCF is a coeffect-based type system
(contrast this with RAML which is an effect-based type system) which has been shown to be relatively complete
for cost analysis of PCF programs. The objective of this embedding is to show that A-amor perform coeffect-
based cost analysis like d/PCF and hence is relatively complete for PCF too. Additionally, A-amor (due to its
ability to internalize cost in types) can be seen as a compositional extension of d/PCF (which can analyze whole
programs only), as pointed out earlier.

6.1 A brief primer on d/PCF

d¢PCF [9] is a call-by-name calculus with an affine type system for doing cost analysis of PCF programs. Terms
and types of d/PCF are described in Fig. d/PCF works with the standard PCF terms but refines the
standard types of PCF a bit to perform cost analysis. The type of natural numbers is refined with two indices
Nat[1, J] to capture types for natural numbers in the range [I, J] specified by the indices. Function types are
refined with index constraints in the negative position. For instance, [a < I]13—oTs is the type of a function
which when given I copies of an expression (since d¢PCF is call-by-name) of type 71 will produce a value of
type 72. The [a < I] acts both as a constraint on what values a can take and also as a binder for free occurrence
of a in 7y (but not in 7). [a < I]Ti—oT2 is morally equivalent to (11[0/a] ® ... ® 71 [I — 1/a])—oTs.

dfPCF terms t == n|s(t) | p(t)|ifztthen uelsev | Ax.t | tu | fix z.t
dlPCF types o == Nat[l,J]|A—0c
A = Ja<lI]o

Figure 14: d¢PCF’s syntax of terms and types from [9]

The typing judgment of d/PCF is given by ©;A;T FEC eq : 7. © denotes a context of index variables,
A denotes a context for index constraints, I' denotes a context of term variables and C denotes the cost of
evaluation of eg. This cost C is the number of variable lookups in a full execution of e4. & on the turnstile
denotes an equational program used for interpreting the function symbols of the index language. Like in the
negative position of the function type, multiplicities also show up with the types of the variables in the typing
context. The typing rules are designed to track these multiplicities (which is a coeffect in the system). For
illustration, we only show the typing rule for function application in Fig. Notice how the cost in the
conclusion is lower bounded by the sum of: a) the number of times the argument of e; can be used by the body,
i.e., I, b) the cost of e, i.e., J and c) the cost of I copies of e, i.e., >, _; K. The authors of [9] show that this
kind of coeffect tracking in the type system actually suffices to give an upper-bound on the cost of execution
on a Kpecp machine, a Krivine-style machine [25] for PCF.

;AT e :([a<I]m) —oT2 O,a;Aa<I;Abkes:m F'QF@ZA H21+J+ZK
a<lI a<lI

a
@;A;F,'—H6162:TQ PP

Figure 15: Typing rule for function application from [9]

States of the K por machine consist of triples of the form (¢, p, §) where ¢ is a d/PCF term, p is an environment
for variable binding and 6 is stack of closures. A closure (denoted by C) is simply a pair consisting of a term
and an environment. The left side of Fig. describes some evaluation rules of the Kpcp machine from [9].
For instance, the application triple (ejes, p,#) reduces in one step to ej, and ey along with the current closure
is pushed on top of the stack for later evaluation. This is how one would expect an evaluation to happen in a
call-by-name scheme. One final ingredient that we need to describe for the soundness of d¢/PCF is a notion of
the size of a term, denoted by |t|. The size of a d¢PCF term is defined in [9] (we describe some of the clauses
on the right side of Fig. .

Finally d¢PCF soundness (Theorem states that the execution cost (denoted by n) is upper-bounded by
the product of the size of the initial term, ¢ and (I + 1). d¢/PCF states the soundness result for base (bounded
naturals) types only and soundness for functions is derived as a corollary. |}™ is a shorthand for Y (n-step
closure under the Kpcp reduction relation).

17

@ = 1

(61 €2, p,) - (617p7 (627p)'0) ‘C| - 1
()\ZL‘@ p,CG) - (617C'p7 9) _
(2. (10:0) - (1 pu).0) = (12 pr0) AT T
(fixz.e, p, 0) = (e, (z, (fixxz.e,C).p,0)
fixx.e] = le|+1

Figure 16: Kpcr reduction rules (left) and size function (right) from [9]

Theorem 10 (d¢/PCF’s soundness from [9]). V¢,1,J, K.
Fri:Nat[L,KIAty"m = n<|t|*x(I+1)

6.2 Type-directed translation of d/PCF into \-amor

Without loss of generality, as in RAML’s embedding, we abstract the type of naturals and treat them as a
general abstract base type b. Like RAML, d/PCF’s embedding is also type directed. The type translation
function is described in Fig. d/PCF’s base type is translated into the base type of A-amor. The function
type ([a < I]Ti—o7s) translates to a function which takes I copies of the monadic translation of 7 (following
Moggi [28]) and I units of potential (to account for I substitutions during application) as a modal unit type,
and returns a monadic type of translation of 7. The monad on the return type is essential as a function cannot
consume (I units of) potential and still return a pure value. The translation of the typing context is defined
pointwise for every variable in the context. Since all variables in the d/PCF’s typing context have comonadic
types (carrying multiplicities), d(PCF’s typing context is translated into the non-affine typing context of A-amor.

(o) = b (-) = .
([a < Ifmi—om2) = laciMO(7m1) —o [I]1 — MO (72) C,z:la<Ilt) = (), :acr MO(7)
Figure 17: Type and context translation for d¢/PCF

The translation judgment is of the form ©;A;T' Fyeq: 7 ~ e, where e, denotes the translated A-amor
term. £ never changes in any of d/PCF’s typing rules, so for simplification we assume it to be present globally
and thus we omit it from the translation judgment. The expression translation of d¢PCF terms is defined
by induction on typing judgments (Fig. . Notice that in the variable rule (var) we place a deliberate tick
construct which consumes one unit of potential. This is done to match the cost model of d/PCF. Without this
accounting our semantics and cost preservation theorem would not hold. The translation of function application
and the fixpoint construct make use of a coercion function (coerce, which is written in Ad-amor itself). It helps
convert an application of exponentials into an exponential of application. The coercion function is described in
the box along with the expression translation rules in Fig.

;AEJT>0 OGAET>1 O;AFol0/a] <: T O AE[a<Io| O;AET|

O;A;T,z:[a< Ty x:7[0/a] ~ Ap.release — = pin bind— =1"inz v
;AT z:[a<Ilmbre:Ta~ e
lam
;A Ty Axe: ([a < I|m) —o T2~
Ap1.ret Ay.Apz2.let! x = y in release — = p1 in release — = po in binda = store() ine; a
;AT Frer: ([a<I]m) —o T2~ en
©,4;0,a<;Abges:m~en I'ITOY A H>J+I1+» K
a<l a<l
QAT Frerer: o~ app
Ap.release — = p in bind a = store() in bind b = e¢1 a in bind ¢ = store!() in bind d = store() in b (coerce lesz ¢) d

O,;Ab< LiTz:[a<Ilobkx e: T~ e 7[0/a] <: p
©,a,b;80,a <Lb< LT Hr[b+ 1+ O,)b <co0 T'CY T LM=Qp' I N>2M-1+)» K
b<L b<L

7 - T-fix
O; A; T Fy fixx.e : p~ Ep

Ey = fixY.\p.release — = pin E1, E1 = release — =pin Es
E> =bind A = store() inlet!z = (E2A1 E2A2) in bindC = store() ine, C
Es1 =coerce 'Y, Eao = (Aul()) A

coerce : loci(T1 —0 T2) —olacrTi —0laciT2
coerce F X £ let! f = Finlet!z = X in!(f z)

Figure 18: Expression translation: d/PCF to A-amor
We want to highlight another point about this translation. This is the second instance (the first one was
embedding of Church numerals, Section|3.1)) where embedding using just a cost monad (without potentials) does
not seem to work. To understand this, let us try to translate d/PCF’s function type ([a < I]71—o72) using only
the cost monad and without the potentials. One possible translation of [a < I]my—o7g is (la<s(71))— M I (72).

18

The I in the monadic type is used to account for the cost of substitution of the I copies of the argument
in d/PCF. Now, in the rule for function abstraction we have to generate a translated term of the type
M(J + count(T)) (lacr(m1)— M (72)). From the induction hypothesis, we have a term of type M(I + J + count(T"))
(m2). A possible term translation can be ret \y.let!z = y in e;. This would require us to type e; with M I (r2)
under the given context with a free x. However e; can only be typed with M(I + J + count(T")) (r=2) (which
cannot be coerced to the desired type). Hence, the translation with just cost monads does not work. We believe
that such a translation can be made to work by adding appropriate coercion axioms for the cost monads.

However, there is an alternate way to make this translation work, using the modal type and that is what we
use. The idea is to capture the I units as a potential using the modal type of A-amor (in the negative position)
instead of capturing it (in the positive position) as a cost on the monad. Concretely, this means that, instead
of translating [a < I]mi—o72 to (la<r(m1))— M I (72), we translate it to (lq«y MO (71))—0 [I]1— MO (72) (as de-
scribed in Fig. earlier). Likewise, the typing judgment is also translated using the same potential approach (as
described in Theorem [11]). Following this approach, we obtain a term of type [(J 4+ I 4 count(I'))] 1 — M0 (72)
from the induction hypothesis and we are required to produce a term of type [J 4+ count(I')]1 —o
MO((laxs MO (71)) — [I]1 — MO (72))) in the conclusion. By using the ghost constructs (namely store and
release) to rearrange the given potential of J 4 count(I") and I units into a potential of (J + I + count(I"))
units, it is clear that we can obtain a term of the desired type from the induction hypothesis. The exact term
is described in the lam rule of Fig.

We prove that this translation is type preserving (Theorem . In particular, we show that the translated
term can be typed at the function type [I 4+ count(I")] 1 — MO (7)), where count is defined as count(T',z : [a <
Il7) = count(T') + I (with count(.) = 0 as the base case). Since d¢PCF counts cost for each variable lookup in
a terminating K pcp reduction, the translated term must have enough potential to make sure that all copies of
free variables in the context can be used. This is ensured by having (I + count(I')) potential as input (in the
argument position of the translated type): I accounts for the substitutions coming from function applications in
the d/PCF expression and count(I") accounts for the total number of possible substitutions of context variables.
All translated expressions release the input potential coming from the argument. This is later consumed using
a tick as in the variable rule or stored with a unit value to be used up by the induction hypothesis.

Theorem 11 (Type preservation: d/PCF to A-amor). If ©;A;T by e : 7 in dCPCF then there exists €' such
that ©; AT by e 7 ~ € such that there is a derivation of ;0;A;();. F € : [I + count(I')]1 — MO (7) in
A-amor.

6.3 Semantic properties of the translation

Besides type preservation we also prove semantics and cost preservation for the translation. To achieve that,
we define a cross-language relation between d¢/PCF and A-amor terms by induction on the d/PCF types. We
show that a source (d¢(PCF) term and a unit application of its translation (because translated terms are always
function abstractions, as described above) are in the cross-language relation at the type of the source. We
defer the details of the cross-language relation to the Appendix [Bl Finally, to show that the meaning of cost
annotations in the source (d¢/PCF) is not lost during this translation, we want to re-derive d/PCF’s soundness
in A-amor using the properties of the translation only. But d/PCF’s soundness is defined wrt reduction on a
Kpcr machine [25], as described earlier. So, we would like to re-derive a proof of Theorem

Theorem 12 (Generalized d/PCF’s soundness). Vt, I, T, p.
Fr(tee):T A (tee) S (v,pe) = n<|t|*(T+1)

To prove Theorem we need a way of relating Kpcp triples to A-amor terms. So, we come up with an
approach for decompiling K pcor triples into d¢PCF terms (which we can then transitively relate to A-amor terms
via our translation). The decompilation is defined as a function (denoted by (.)) from Krivine triples to d¢(PCF
terms. We first define decompilation for closures ((.) is overloaded), by induction on the environment. For an
empty environment the decompilation is simply an identity on the given term. And for an environment of the
form Cq,...,C,, the decompilation is given by closing off the open parts of the given term. Direct substitution
of closures in e won’t work, as this will take away all the free variables in e. As a result, the decompiled term
would not have any cost due to variable lookups, something which d¢/PCF’s type system explicitly tracks. And
the decompilation won’t remain cost-preserving. So instead, we decompile it using lambda abstraction and
application as described on the left side of Fig. Using this closure decompilation, we define decompilation
for the full Krivine triples. When stack is empty, it is just the decompilation of the underlying closure. And
when stack is non-empty, the closures on the stack are applied one after the other on the closed term obtained
via the translation of the closure. This is described on the right side of Fig. We prove that the decompilation
preserves type, cost and semantics of the Krivine triple.

8This is a generalized version of d/PCF’s soundness (Theorem , where we prove the cost bound for terms of arbitrary types.

19

A
A
=
=
1> 11>

e (en) 2 ((ep))
(Az1...zp.e) (C1) ... (Cn) ((e;p.c.0) = (lle, p)) (CD.[1,6)
Figure 19: Decompilation of closure (left) and Krivine triple (right)

Finally, we compose the decompilation of Krivine triples to d/PCF terms with the translation of d¢/PCF
to A-amor terms to obtain a composite translation from Krivine triples to A-amor. We then prove that this
composite translation preserves the meaning of cost annotations wrt to the intentional soundness criteria stated
in Theorem The proof is quite involved, but due to lack of space we cannot get into the technicalities of
that proof.

7 Related work

Literature on cost analysis is very vast; we summarize and compare to only a representative fraction, covering
several prominent styles of cost analysis.

Type and effect systems. Several type and effect system have been proposed for amortized analysis using
the method of potentials. Early approaches [20, 22] allow the potential associated with a value to only be a
linear function of the value’s size. Univariate RAML [19] generalizes this to polynomial potentials. Multivariate
RAML [I7] is a substantial generalization where a single potential, that is a polynomial of the sizes of multiple
input variables, can be associated to all of them together. These approaches are inherently first-order in their
treatment of potentials — closures that capture potentials are disallowed by the type systems. We already showed
how to embed Univariate RAML in A-amor in Section [4] and we believe that the embedding can be extended
to Multivariate RAML.

AARA [21], 18] extends RAML with limited support for closures and higher-order functions. [I8] cannot
handle Curry-style functions at all, while [2I] can handle Curried functions only when the potential is associated
with the last argument. As explained in Section[I] these limitations arise from incomplete support for affineness.
In contrast, A-amor, being affine, does not have such limitations.

Some prior work such as the unary fragment of [6] uses effect-based type systems for non-amortized cost
analysis. A significant line of work tracing lineage back to at least [8] uses sized types and cost represented
in a writer monad for cost analysis. More recently, [12} Bl [24], show how to extend this idea to extract sound
recurrences from programs. These recurrences can be solved to establish cost bounds. However, this line of
work does not support potentials or amortized analysis. Conceptually, it is simpler than the above-mentioned
work on amortized cost analysis (it corresponds to RAML functions where the input and output potentials are
both 0) and, hence, can be easily simulated in A-amor.

Cost analysis using program logics. As an alternative to type systems, a growing line of work uses variants
of Hoare logic for amortized cost analysis [4, Bl 27]. The common idea is to represent the potential before and
after the execution of a code segment as ghost state in the pre- and post-condition of the segment, respectively.
Conceptually, this idea is not very different from how we encode potentials using our [p] 7 construct in the inputs
and outputs of functions (e.g., in embedding RAML in Section . However, unlike A-amor, prior work shows
neither embeddings of existing frameworks, nor any (relative) completeness result. [27] introduce a new concept
called time receipts, which can be used for lower-bound analysis, something that A-amor does not support yet.

We note that we could have developed A\-amor and showed our embeddings and the relative completeness
result using a program logic in place of a type theory. For our purposes, the difference between the two is only
a matter of personal preference.

Cost analysis of lazy programs. Some prior work [I1l 26, 23] develops methods for cost analysis of lazy
programs. While the semantics of laziness, as in call-by-need, cannot be directly embedded in A-amor, we can
replicate the analysis of some lazy programs, with nearly identical potentials, in the call-by-name setting of
A-amor. We already showed an example of this by verifying Okasaki’s implicit queue in Section [3.3] replicating
an analysis by [I1]. We believe that other examples of Okasaki [30] can be replicated in A-amor (in a call-by-name
setting).

An interesting aspect is that amortized analysis of lazy programs does not necessarily require affineness.
[11] circumvents the issue related to duplication of potentials by representing potential using the same indexed
monad that represents cost. To represent offsetting of cost by potential, he introduces a primitive coercion
“pay” of type M(k1 + k2) T — M k1 (M k2 7), which, in a way, encodes paying x; part of the cost k1 + k2 using
potential from outside. An interesting question is whether we could use the same idea and do away with our
construct for potentials. It turns out that our construct for potentials satisfies additional properties that are
needed for embedding d¢/PCF. In particular, making d/PCF’s embedding work in Danielsson’s style requires a
different coercion of type (77 — M(k1 + k2) 7) — M K1 (77 — M k2 7).

Coeffect-based cost analysis. d/PCF [9] and d¢PCFy [I0] are coeffect-based type systems for non-amortized
cost analysis of PCF programs in the call-by-name and call-by-value settings, respectively. Both systems count
the number of variable lookups during execution on an abstract machine (the Krivine machine for call-by-name
and the CEK machine for call-by-value [25] [T3]). This is easily done by tracking (as a coeffect) the number of

20

uses of each variable in an affine type system with dependent exponentials (Ad-amor borrows this exponentials,
but does not use coeffects for tracking cost). A common limitation is that these type systems cannot internalize
the cost of a program into its type; instead the cost is a function of the typing derivation. We showed in
Section [6] that A\-amor can embed d¢/PCF and internalize its costs into types. Hence, A\-amor advances beyond
dfPCF. We expect that A-amor can also embed d¢/PCF'y, but have not tried this embedding yet.

[2] presents Quantitative Type Theory (QTT), which is a dependent type theory with coeffects. QTT and
A-amor are very different in their goals. QTT is focused on studying the interaction between dependent types
and coeffects, on the other hand, Ad-amor studies coeffects from the perspective of cost analysis. Technically,
QTT only considers non-dependent coeffects, as in z :, 7. In contrast, A-amor studies coeffects with uniform
linear dependencies coming from the dependent sub-exponential of Bounded Linear Logic [15], as in @ :q<y 7.

8 Conclusion

We have presented A-amor, a type-theory for (amortized) cost analysis. A-amor introduces a new modal type
constructor to represent potential at the level of types and uses affine typing. We view A-amor as a unifying
framework for representing cost analyses, as witnessed by faithful embeddings of Univariate RAML and d¢PCF.
These encompass a variety of settings, ranging from call-by-value to call-by-name and effect-based to coeffect-
based.

A Development for A\-amor™

A.1 Syntax

Expressions e u= vl|eper]| {er,ea)) | let{x,y) =e1ines |
(e,e) | fst(e) | snd(e) | inl(e) | inr(e) | case e, x.e,y.e |
let!lx =ejinex |eelel]]|exe
Values v ou= x| ()|c| e {v1,v2) | (v,v) | inl(e) | inr(e) | le | nil |
Ae| rete | bindz =ejiney | 1! | releasex = e; in ey | storee
(No value forms for [I])

Index I uw= ¢|N|R|I+IT|I—-T|Xi:ST|ITI

Sort S == N|Rt|S—=S

Kind K == Type|S—K

Types 7 o= 1|lb|m—on|n®n|n&n|nen|!r| 7| MIT| LT
a|Va:Kr|Vi:Sr | Mi:Sr |71 |3i:S7|ec=>71|cker

Constraints ¢c u= I=I|I<I|cAhc

Lin. context r .= .|Te:r

for term variables

Unres. context Q o= | Quz:T

for term variables

Unres. context © == .|06,i:S

for index variables

Unres. context T = .| T,a:K

for type variables

Definition 13 (Binary sum of multiplicity context).

0y 0 =.
QLeW2l (Ao),r:7 =0 z:7A(x:=)€Q
undefined =0z 7A(x:7) €N

Definition 14 (Binary sum of affine context).

Fz 1_\1:~
Fl@rgé (1—‘/1@].—‘2),‘%17'].—‘1:].—‘/1,%27'/\(%2—)%112
undefined I =Tj,z:7A(z:—) €Ty

21

A.2 Typesystem

Typing V;0; A; ;T Fe: 7T

T-varl T-var2 T-unit
L ZECTUANE 078 R ol ol v U0, A0z Pa: 7 v U0, AT H():1 o

T-base - 5— T-nil
U 0;A; QT Fe:b U0, AT Fnil: LY 1

U:0;A; QT Fey:r U 0;A; Q0T Feq: L1 O;AFn:N
U:0;A; QT @& Feg ey : L7

T-cons

\I/;@;A;Q;l—‘ll—e:L"T‘ U:0:;An=0;0TFe : 7
;0,5 An=i+1; Qo h:7,t: L'they: 7 O;AFn:N U:0;AFT
U;0;A;0;T1 & Ty - match e with |nil — ey [ht—ex: 7

T-match

U:0;A; T Fe:7n/s) O;AFn:S
U:0;A;QT'Fe:3ds:S.1

T-existl

U, 0;A; Q0T Fe:ds.r V0,509, z:7kHe 7 U 0;A T
U:0;A; 0T el Feixe i 7

T-existE

U000 e U;0;A; ;T ey i (11— 1) U;0;A; 0 TgFes iy
T-lam T-app

U:0; A; T F Axe : (17 —o 72) U:0;A; QT @l ke es:m

U:0:;A; QT Fe: T U O;AFT < 7T
U0 A QT Fe: 7

T-sub

U, 0;A; Q0T Fe: 7 U:0;AET'CT U:0;AEQ CQ
U:0: A0 T Fe: 7T

T-weaken

U, 0;A; 0T Fey g U:0;A; QT Fex:my
U;0; AT @ F (e1,e2) 1 (11 @ T2)

T-tensorl

U, 0; AT Fe: (1 @ 72) U:0;A; D,z m,y:me ke T

T-t E
U 0; A; Ty @ Do b let{(z,y) =eine i 7 enser

U:0;A; T Fey:my U:0;A; T Fey:my
U:0; A T F (eq, ea) : (11 & 2)

T-withl

22

U:0;A; QT He: (1 &72) U;0;A; 0T He: (11 &) U:0;A; 0T Fe:ny

-fst T-snd T-inl

U 0; A ;T Ffst(e) : 1y ° U;0; A; ;T Fsnd(e) : 2 o U;0; AT Finl(e) : 11 @ 7o -
U, 0;A; 0T He: 7y

U:0; A; 0T Finr(e) : 11 @ 7o

T-inr

U:0; A 0T Fe: (g @ 72) U:0;A; g,z Fey: T U:0;A; Qo y:mmbex: T

T-
U:0;A; Ty ®g b case e, z.eq,y.ea: T case
U, 0;A;Q;.Fe: T U:0;A; QT Fe:lr U:0;A; QT ke 7
T-Expl — T-ExpE
U:0;A;Q;. Fle:Ir U, 0;A; QT @l Hlet!le=ceine : 7
U a:K;A; T Fe: T U:0;A; ;T Fe: (Va: Kr) U:0;AFT K
T-tabs 7 T-tapp
U0, AT HAe: (Va: Kr) U;0;A; 0T Fell: (7t /a])
U:0,i:S;A:;QT'Fe: 7 U:0;A; QT Fe: (Vi:Sor) O;AFI:S
- T-iabs - T-iapp
U;0;A; 0T FAe: (Vi:S7) U:0; AT el : (7[1/1])
U0, A0z 7. Fe:T U:0;A; QT Fe: T
- T-fix T-ret
U:0;A;Q; . Ffixze: T U, 0;A; QT Frete: MOT

U:0;A; QT ey :Mnimy U:0;A; Qs x: 1 Feg:MnoTo ;AT :RT @;AFIQ:RJFTb.d
-bin

U:0;A; ;T @Te Fbinde =ey ines : M(I1 + Iz) 7

O;AFI:RT

T-tick
0 AT - MI1

U:0;A; QT Fey: [L]m U:0;A; Q0 To, i1 Feg: M(I + 1) O:AFI :RT O;:AFI,:R*

T-release

U:0;A; 0T o b releasex = €1 in es : Mo 1o

U, 0; AT Fe: 7 O;AFT:R* U:0:A ;T e T
T-store T-CI
U:0;A;0; T storee : M T ([] 1) U:0; AT HA e: (e=7)
U;0;A; QT Fe: (e=7) 0;A E=c U, 0;A; 0T Fe: 7 0;A Ec¢
T-CE T-CAndI
U:0;A; T kel : 7 U:0; A; T F e (c&r)

U:0;A; QT e (c&er) U:0;A, ;0 x:rhe i 7

T-CAndE
U:0;A; QT Fcletz=eine : 7/ "

Figure 20: Typing rules for A-amor

23

U: O;

AT <im U:0;A 1 <7y

sub-arrow

———— sub-refl
UV:0,AFT<:T
U:0; AR <7y U:0;A 1 <7

sub-tensor
UV,0;AFT @7 <7 @ T4

U:0:; A1 <7y U:0; A1 <:7g
U,0;A LT @1 <7 BT

sub-sum

U 0;AFT <7 O;AEI<T
VO AFMIT<-MI'7

UO;AFT < 7
U0 AFL" T <: L™ 7

sub-list

U, ;0 A F 7 <:7y

b-typePol
U:0; A F Vo <:Va.m SHDTPETOLY

U:0;AF 1 <7y O;

sub-monad

U;0;A b1 —oTg <7 —0Th

U:0:; A1 <7y U:0; A1 <:7g

sub-with
U, 0;AF7m &mo <7y &) o

U0 ART <7 GAET<I
U,0;A R [I)7 < [I']7

sub-potential

U O:AFT <7

U:0; A Flr <7’ sub-Fxp

U0 A sk <7
U:0;AF Js.r <: Is.7

sub-exist

U:0,i; A F 1 <7

b-indexPol,
U:0; A F Vi <: Vi SHbrnaetoly

A ': Cy — C1 .
sub-constraint

U:0;AbFcp =7 <ico=T

U AFT <:To OAEq = o
U:0;AF c1&m <: &

sub-CA

O;AFTI:S
VECHANCD WERK 3 IRSE A 1)

sub-family Appl

U:0,i:S;AFT <7

b-family Ab
U0 A F M\i i ST <: M 0 ST’ STy ADS

nd

O;AFT:S

b-family App2
U:O;AFTI/i] <t Ai:ST 1 N

Figure 21: Subtyping

z:7 €y U:0;AFT <7 U:0;AFQ/z EQ
—————— sub-mBase sub-mInd
U:0;AFQLC. U0, AFQ C Q7
Figure 22:) Subtyping
z:7 el U:0;AFT <7 U;0; AR/ C Ty
——— sub-1Base sub-1Base
U.0;AFTC. U0 AFT CET,x: 7
Figure 23: " Subtyping
S S-nat S-real OAFGN o
0,i:SAFi:s " O:AFN:N O:AFR:RY Y O:AFi:RY
O;AFI;:N O;AFI;:N O:AFI :RT O;:AFI,:RT
S-add-Nat S-add-Real
O;A+I; +1,:N @;Al‘[l—‘rIgZR_‘—
O;AFI :RT O;AF I :RT OAEL>D 0,i:S;AFI:S

S-minus-Real S-family

@;AF117]22R+

O;AF N d:S—=S

Figure 24: Typing rules for sorts

24

U:0;AF7:K O;AFI:S

K-unit K-base 7 K-List
U:0;AF1:Type U:0; Ak b: Type U:0;AFL'7:K
U:0;AF 7K U:0;A 1K U:0;A k71K U:0;AFm:K
K-arrow K-tensor
U;0;AFT1 —o 7K U, 0;AFT @1 K
U:0;AkF 71K U:0;AF7m: K U:0;AF 71K U:0;AF 7K
K-with K-or
U:0;AF7 &K U:0;AFT &1 K
U:0;AFT:K U:0;AFT:K O;AFI:R*
= ' K-Exp K-lab
U;0;AFI7:K U:0;AF[I]7:K
U:0;AF7:K O;AFI:RT U a:K;0;AFT:K U:0,i:S;AF7:K
K-monad K-tabs - K-iabs
U0, AFMIT:K U:0;AFVar:K U, 0;AFVir: K
U:0;A, ck71:K U;0;AF71:K ;A Ec
K-constraint K-consAnd
U:0;AFc=71:K U:0;AFc&r K
U:0,i:S;AF7:K Kefamil U:0;AFT7:S—K @;A}—I:SK.
U,0;AF MNiT:S—K Ty U,0;AFTI:K Tapp

Figure 25: Kind rules for types

25

A.3 Semantics

Pure reduction, e {; v ‘ ’ Forcing reduction, e |{ v ‘

e v e l e nil e v
1 2 bia E-cons - ! lltl 2 bia E-matchNil
er i eg Yty tepr1 vl match ey with |nil — es |h it — e3 Y441 ¥
e vp, o 1 eslvy, /h|[1/t v e v eslv/z v
! btl h - 3[h/ H /] by E-matchCons L 2[/] ll? E-exist
match ey with |nil — ea |h it — e3 iy tt,401 v er;x.eg e, 11y41 v
e Ax.e e'les/x v e v e v
1 ‘U’tl [2/ ,] ‘U’tg E-app 1 ‘U’tl 1 2 ‘U’tz 2 E-TI
er eg bty 411 v ((e1,e2)) Yty tto+1 (v1,02)
e V1,0 e'lvy /z][v v e v e v e V1,0
e, (v1,v2) . [/1/ Jfva/y] Ue, ETE 1o 1 2 e, v2 EWI e (v1,v2) et
let{(z,y) =eine Vi, 11,410 (e1,€2) Uty 11,41 (v1,02) fst(e) Uis1 v1
e V1,V elsv el v
7% < L 2> E-snd _ b - E-inl - Ve - E-inr
fst(e) Jet1 v2 inl(e) Y41 inl(v) inr(e) J¢41 inr(v)
e ¢, inl(v) ev/z] I, v/ e s, inr(v) e"[v/y] s, v
7 7 - ~ E-casel 7 7 - -~ E-case2 — E-expl
case e, x.€,y.e” Ut 14,41 inl(v) case e, x.e’,y.€” |t 41,41 inl(v") le Jole
e s le” e'le’ Jx v elfixz.e/x] Ut v
‘U’tl : /[/] lltz E—expE [/ } ut E-fix
let!lz =ceine Y4 4t,41 v fixz.e {typ1 v

v € {(), z, nil, \y.e, A.e,rete,bindz = ey in ez, 1", releasex = ey in eq, storee}

E-val
viowv
ely, Ne/ € Uy, v ely, N/ € U, v ely, Ne/ € Uy v
E-tapp E-iapp E-CE
e[l btitta41 v el titta41 v el btitta41 v
/
er 4, v e2(v/x| 4, U el v
Yoy - /z] b, ; E-CandE — 5 E-return
cletx =ejineg Ity 41,41 ¥ rete ;. v
erdy v o dgvl efvi/a] v v By .
- - 1t ca 7 E-bind TN E-tick
bindx = ey inex |y 20 1,11 Vo U7 0
e, vi esfvr/ax] Yy, va w2 Y, vp elsv
- - 7 E-release — E-store
releaser = ey in ex Iy, 14, 14511 Vo storee ;. v

Figure 26: Evaluation rules: pure and forcing

26

A.4 Model

Definition 15 (Value and expression relation).

[1] £ {T,0)}

[b] £ {(p,T,v) | velb]}

[L°7] £ {7, ml)}

L] 2 A T,v::1)|3p1,p2.p1 +p2 < p A (p1,T,v) € [7] A (p2, T,1) € [L*7]}
[norn] £ {@T <<Ulav2>>) | 3p1,p2.p1 +p2 <p A (p1,T,v1) € [11] A (p2, T, v2) € [72]}
[n&m] £ {(@T (v1,v2) | (p,T,v1) € [11] A (p,T,v2) € [2]}

[mner] £ {@T ()| (P»T v) € [} U{(p, T,inr(v)) | (p,T,v) € [2]}

[rn— 7] £ {(T Ize) |V, e, T'<T .(p),T'€) €[n]e = (p+p,T ele/z]) € [n]e}
I'r1 £ {(pT,'e) | (0,T,e) € [r]e}

[[n] 7] £ {(pTv)Iﬂp’p’+n<pA(p T,v) € [71}}

[MnT] L {(p,T,v) | Y/ 0/, T'<T w i v/ = I/’ +p <p+nn@p,T-Tv
[Vo.7] £ {(p,T,Ae) | V7, T<T . (p,T",e) € [r["/a]]e}

[Vi.7] £ {(p,T,A.e) | VI, T'<T .(p, T',e) € [T[I/i]]e}

[e=7] £ {(T,Ae)|.Fc = (p,T,e)€[r]e}

[e&er] £ {(,T,v)|.Eecn(p,T,v) €[]}

[3s.7] £ {(va v) | 3s'.(p, T, v) € [r[s'/s]]}

[Aei.7] L fwhereVI.fI= [7[1/i]

[1] £ 11

[7]e £ {(p,T,e) |VT'<T,v.elr v = (p,T —T',v) € [7]}

Definition 16 (Interpretation of typing contexts).

[Tl = {(,T,7) | 3f: Vars — Pots.
(Vo € dom(T). (f(z),T,7(x)) € [L(@)]e) N (Xsedomr) (&) < p)}
{(0,7,6) | (Vz € dom(Q).(0,T,0(z)) € [7]e)}

[1e
Definition 17 (Type and index substitutions). o : TypeVar — Type, ¢ : IndexVar — Index

Lemma 18 (Value monotonicity lemma). Vp,p’, v, T.
. T,v) €[t Ap<p' NT'<ST = (¢, T",v) € [7]

Proof. Proof by induction on 7

Lemma 19 (Expression monotonicity lemma). Vp,p',v, .
(p.T,e) €lrle Np<p' NT'ST = (p,T",¢e) € [7]e

Proof. From Definition [15| and Lemma

Theorem 20 (Fundamental theorem). VO,Q, T e, 7,T, p;, 7,9, 0, L.
U0, AT Fe:7 A (pr, T,7) € [T ot]e A (0,T,9) € [Qot]lse = (pi,T,e) € [7 ot]s.

Proof. Proof by induction on the typing judgment
1. T-varl:

T-varl

U0, A7z T

Given: (p;,T,v) € [T 2 : 7 ot]e and (0,T,6) € [Q ot]e
To prove: (p;, T,z 6v) € [ot]e

Since we are given that (p;,T,7) € [I',x : 7 ot]¢ therefore from Definition [16| we know that
3f.(f(2), T,~(x)) € [ot]e where f(z) <pi

Therefore from Lemma [62| we get (p;, T,z dv) € [ot]s
2. T-var2:

T-var2

U:0;A;Q .7 PHx: T

Given: (p;,T,v) € [I',0t]e and (0,T,6) € [(,z: 7) ot]e
To prove: (p;, T,z §v) € [T ot]¢

27

Since we are given that (0,7,9) € [(, 2 : 7) o¢]¢ therefore from Definition |16| we know that
(0,7,6(x)) € [ot]e

Therefore from Lemma [62| we get (p;, T,z §v) € [ot]s
. T-unit:

T-unit

U;0;A;0TH():1
Given: (p;,T,v) € [T'oi]e, (0,T,8) € [Q o]
To prove: (p;, T, () 6v) € [1 o]
From Definition [L5| it suffices to prove that
VI'<TW.() I v = (p, T —T",v") € [1]
This means given some T'<T, v s.t () {7 v’ it suffices to prove that
(pi, T —T',v") € [1]

From (E-val) we know that 7/= 0 and v' = (), therefore it suffices to prove that

(p,T,()) € [1]
We get this directly from Definition
. T-base:

T-base

U:0:A; 0T kHe:b

Given: (p;,T,v) € [Toi]e, (0,T,6) € [Q ot]e
To prove: (p;,T,c) € [b]e

From Definition [I5] it suffices to prove that
VIT'<TW.cldp v = (p, T —T',v')e[1]

This means given some T'<T, v’ s.t ¢ {7 v’ it suffices to prove that
(plaT - Tlvvl) € Hlﬂ

From (E-val) we know that 7= 0 and v’ = ¢, therefore it suffices to prove that

(pla Tv C) € [[bﬂ
We get this directly from Definition
. T-nil:

- 5— T-nil
U 0; ;0T il - L° 7

Given: (p;,T,v) € [T',0t]e, (0,T,0) € [Q ot]e

To prove: (p;, T, nil §v) € [L° 7 oi]¢

From Definition [15|it suffices to prove that

VT'<T,W' il v = (p, T —T',v") € [L° 7 o4

This means given some T'<T, v’ s.t nil {7+ v’ it suffices to prove that

(p1, T —T',v") € [L° 7 01]

From (E-val) we know that 7"= 0 and v’ = nil, therefore it suffices to prove that

(p1, T, mil) € [L° 7 o1]

We get this directly from Definition

. T-cons:

U:0;A; 0T eyt T U:0;A; Qs ey : L1 OFn:N
U, 0:A; QT @l bey eg: LT

Given: (p;,T,v) € [T1 @T2)oi]e, (0,T,6) € [() ot]s
To prove: (pi,T, (e :: €2) 07) € [L"T 7 oi]e

T-cons

From Definition [15|it suffices to prove that
Vt <T,v'.(e1 :: e2) 67 Y v = (p1, T —t,0') € [L*! 7 04]

This means given some t <T',v’ s.t (eq :: e2) dv {4 v/, it suffices to prove that
(p1, T —t,v") € [L" 7 0]

From (E-cons) we know that Jvy,l.v" = vy 1 1

28

Therefore from Definition [15|it suffices to prove that
Ip1,pap1 +p2 <o A (p1, T —t,vg) € [T o] A (p2, T —t,1) € [L"T o (F-C0)

From Definition [I6] and Definition [T4] we know that 3p;1, pi2.pin + pi2 = pi st
(p11,7) € [(T1)ot]e and (pi2,) € [(T'2)oe]e

TH1:
(pi1,T,e1 67) € [ot]e
Therefore from Definition [[3] we have

Vtl < T.ey 6y b vy = (pun, T —tl,vy5) € [7]

Since we are given that (e; :: ea) 0y |4 vy :: [therefore fom E-cons we also know that Jt1 < t. e; dvy {41 vy
Since t1 < t <T, therefore we have (p;1,T —t1,vf) € [T 01] (F-C1)

TH?2:

(pl27Ta €2 67) € [[LnT U[/]]S

Therefore from Definition [I5] we have

V2 <T .eq 0y ol = (pi2, T —t2,1 € [L™7 o1]

Since we are given that (e; :: e2) v J¢ vy :: I therefore fom E-cons we also know that 32 < ¢ — ¢1.
() (5’)/ U’tQ l

Since t2 < t — t1 < t <T', therefore we have

(pi2, T —t2,1) € [L"7 0/] (F-C2)

In order to prove (F-C0) we choose p; as p;1 and ps as pj2 and it suffices to prove that
(pin, T —t,v) € [T o] A (pi2, T —t,1) € [L"T o1]
Since t = t1 + t2 + 1 therefore from (F-C1) and Lemma [61| we get (pi1, T —t,v) € [1 o(]

Similarly from (F-C2) and Lemma [61] we also get (pj2, T —t,1) € [L"T o]
. T-match:

U0, AT Fe: L T
U0 A; Qo ke 7 \I/;@;A;Q;Fg,hiT7tZLiT|_€2ZT/ ©OFn:N U:0;AFT K

T-match
U:0;A; O T1 @ Ty - match e with [nil s ey |l s eg 7/ e

Given: (p;,T,v) € [T1 @ T2) oife, (0,T,6) € [ot]e
To prove: (p;, T, (match e with |nil — ey |h :t— e3) §v) € [T/ oi]e

From Definition [T5] it suffices to prove that
Vt <T,vys.(match e with [nil — ey |h it e) 6y b vy = (p1, T —t,vy) € [T/ 0]

This means given some ¢ <T,v; s.t (match e with |nil — e |h :: t +— e2) 07 {4 vy it suffices to prove that
(p1, T —t,v5) € [T ot (F-MO)

From Definition and Definition we know that Ip;1, pio.pin + pi2 = pi s.t
(pi1,7) € [(T1)ot]e and (pi2,7) € [(T'2)ot]e

1H1

(pi1, T,e 6v) € [L"1 ot]e

This means from Definition [[5]l we have
V' <T .e 6y v v1 = (pi1, T —t',v1) € [L™T 0]

Since we know that (match e with |nil — ey |h ::t — e3) 6 | vy therefore from E-match we know that
3t < t,vi.e 6y Yy v1.
Since t' < t <T, therefore we have (p;1,T —t',v1) € [L"T 0]
2 cases arise:
(a) v = nal:
In this case we know that n = 0 therefore
1H2
(P12, T, e1 0y) € [T ot
This means from Definition [[5] we have
Vit <T .eq 6y Iy, vy = (pi2, T —t1,vy) € [T/ 0]

Since we know that (match e with |nil — eq |h 2 t — ea) 07y 4 vy therefore from E-match we know
that 3t < t. ex 0y iy vy

29

Since t1 < t <T therefore we have
(P12, T —t1,vy) € [01]

And from Lemma [61] we get
(p2 +pu, T —t,vp) € [T o]e

And finally since p; = p;1 + pi2 therefore we get
(p1, T —t,vr) € [T ot]e
And we are done
(b) v =v L

In this case we know that n > 0
IH2
(P2 +pun, Tyez 07') € [t ol]e
where
v =yU{h—=ov}U{t—1}
=1U{i—n-1}
This means from Definition [[5] we have
Vio <T .ex ' i, vy = (pi2 +pi1, T —to,vy) € [7' 0]
Since we know that (match e with |nil — ey |h :: t — e2) 07 ¢ vy therefore from E-match we know
that Jts < t. eo 5’)// “tg vf.
Since ty < t <T therefore we have
(P12 +pi1, T —ta,v5) € [T 0]
From Lemma [61] we get
(P2 +pun, T —t,vp) € [o]
And finally since p; = p;1 + pi2 therefore we get
(pl,T —t7vf) S [[T/ O’L/]]g
And finally since we have ¥; ©; A F 7/ : K therefore we also have
(o1, T —t,vy) € [T ot]e
And we are done

8. T-existl:

U:0;A; 0T Fe:7[n/s OFn:S
U:0;A;QT'Fe:ds: St

Given: (p;,T,v) € [I" at]e, (0,T,0) € [ot]e
To prove: (p;,T,e 6v) € [Ts.T ot]¢

T-existl

From Definition [L5] it suffices to prove that
Vit <T,vp.e oy $y vy = (p1, T —t,vy 67) € [Fs.7 ol

This means given some t <T',vy s.t e 0y |}, vy it suffices to prove that
(o, T —t,vf) € [3s.7 0]

From Definition [I5] it suffices to prove that
3s'.(p1, T —t,vy) € [7[s'/s] o] (F-E0)

IH: (pi,T,e 07) € [r[n/s] oi]e
This means from Definition [[5 we have
Vt' <T .e oy Iy vy = (pi, T —t',v5) € [7[n/s] ot]
Since we are given that e §y |J; vy therefore we get
(o1, T —t,v5) € [T[n/s] ot] (F-E1)
To prove (F-E0) we choose s’ as n and we get the desired from (F-E1)
9. T-existsE:
U, 0;A; Q0T Fe:ds.r U:0,5: A0 Tg,z:7Fe 7 OFr7
U0, AT @l Feixe i 7
Given: (p;,T,v) € [(I'1 ®T2) oi]e, (0,7,6) € [(2) ot]e
To prove: (p;, T, (e;x.€')) € [t/ oi]e

T-existE

From Definition [15]it suffices to prove that
Vt <T,vs.(e;x.€) 0y vy = (01, T —t,vy) € [04]

30

10.

This means given soem t <T', vy s.t (e;z.€’) 07 ¢ vy it suffices to prove that
(o, T —t,vy) € [7" ot (F-EEO0)

From Definition [16| and Definition [14| we know that Ip;1, pi2.pi1 + pi2 = p1 8.t
(pi1,7) € [(T1)ot]e and (pi2,v) € [(T2)ot]e

IH1
(pi1, T,e o) € [Fs.7 ot]e

This means from Definition [[5] we have
Vit <T .e 0y by, i = (pi1, T —t1,v1) € [Fs.7 oife

Since we know that (e;x.e’) 0y |; vy therefore from E-existE we know that 3t; < t,vi.e 0y J¢, v1.
Therefore we have
(plhT —t1,U1) S [[38.7’ O'LH

Therefore from Definition [[5] we have
3" (pi1, T —t1,v1) € [r[s'/s] oi] (F-EE1)

1H2

(pir +pi2, Ty e’ 0'y) € [7" a']e

where

V=0U{z—e}and/ =1U{s— s}

This means from Definition [[5] we have

Vo <T' €' 0'y Js, vy = (pi1 + 12, T —ta,v5) € [7" 0]
Since we know that (e;x.¢’) dv J; vy therefore from E-existE we know that Jte < t. € &'y {4, vy.
Since ty < t <T therefore we have

(pi1 +pi2, T —ta,v5) € [T 0]

Since p; = p;1 + pi2 therefore we get

(o1, T —ta,vy) € [0]

From Lemma [61] we get

(p1, T —t,v5) € [T 0]

And finally since we have ¥; O F 7/ therefore we also have
(o, T —t,v5) € [T ot

And we are done

T-lam:

U0, AT a1 bFe:m
U:0; A; QT F dxe : (17 —o 72)

Given: (p;,T,v) € [T',0t]e, (0,T,0) € [oi]e
To prove: (p;, T, (Ax.e) 6v) € [(11 — T2) ot]e

T-lam

From Definition [I5] it suffices to prove that
Vit <T,vp.(Az.e) 0y e vy = (01, T —t,v5) € [(T1 — T2) 0]

This means given some ¢t <T',vs s.t (Az.e) dy | vy. From E-val we know that ¢t =0 and vy = (Az.e) oy
Therefore it suffices to prove that

(o1, T, (A\x.e) o) € [(11 — 72) ot

From Definition [T5] it suffices to prove that

V' e, T'<T (p', T ¢) € [11 ot]le = (o +D, T ele’/z]) € [m2 ot]e

This means given some p’,e’, T'<T s.t (p',T",€') € [11 ot]¢ it suffices to prove that
(i +p', T ele /z]) € [z ot]¢ (F-L1)

From IH we know that

(o +9,T,edv') € [ot
where

vV =qU{z e}

Therefore from Lemma [62] we get the desired

31

11. T-app:
U:0; ;01T Fep: (1 — 1) U:0;A; 00 TobFey:my
U:0;A; 0 Qo1 @TsFepes:m

Given: (pi,T,7) € [(T1 @ T2)aie, (0,T,6) € [(?) oi]e
To prove: (p;, T, ey ez 67) € [12 ot]e

T-app

From Definition [L5] it suffices to prove that
Vt <T,vy¢.(e1 €2) 0y b vy = (o, T —t,v5) € [12 01

This means given some t <T',vs s.t (e1 e2) 07 |+ vy it suffices to prove that
(pla T —t, vf) € [[TQ UL]] (F_AO)

From Definition [T6] and Definition [T4 we know that Ip;1, pi2.pi1 + pi2 = pr s.t
(p11,7) € [(T1)ot]e and (pi2,) € [(T2)oe]e

1H1

(pi, Tye1 6v) € [(11 — m2) ot]e

This means from Definition [[5] we have

Vi, <T .e1 Iy Az.e = (pn, T —t1, \x.e) € [(11 — 72) oi]

Since we know that (e1 ez) 6y |, vy therefore from E-app we know that 3t; < t.eq 4, Az.e, therefore we
have

(plhT —t1,>\l‘.€) S [[(7'1 —o TQ) O’L]]

Therefore from Definition [I5] we have
vp' e, Th<T —t1.(p', Th,€}) € [11 ol]le = (pnn +p',T1,¢elel/x]) € [z ot]e (F-A1)

IH2
(pi2, T —t1 — 1,e2 67) € [11 otfe (F-A2)

Instantiating (F-Al) with po, ea 0y and T —t; — 1 we get

(pi1 + pi2, T —t1 — 1,efeq 6v/x]) € [12 ot]¢

This means from Definition [[5] we have

Vg <T —t1 — l.efeg 0v/x] Yuy, vf = (pi1 +pi2, T —t1 — 1 —ta,v5) € [12 01]

Since we know that (e; es) 6 {4 vy therefore from E-app we know that Jts.eles 6v/x] 4, vy where
to =t —t1 — 1, therefore we have

(pi1 +pi2, T —t1 —ta — L,v5) € [12 01 where pjy +pi2 = m

Since from E-app we know that ¢ = ¢; 4t + 1, therefore we have proved (F-A0)
12. T-sub:

U:0;A:; QT Fe: T OFrT <1
U0 A QT Fe: 7
Given: (p;,T,v) € [(T') oi]e, (0,T,98) € [Q oi]e

To prove: (p;,T,e §v) € [7' ol]e
IH (pi, Tye 6v) € [1 o]

We get the desired directly from IH and Lemma
13. T-weaken:

T-sub

U, 0;A; 0T Fe: 7 U, 0;A =T <:T U,0;AEQ < Q
U0 ATV Fe:T
Given: (1, T,7) € [(Motle, (0,T,6) € [() oule
To prove: (p;,T,e év) € [r ot]e

T-weaken

Since we are given that (p;, T,v) € [(I")ot]e therefore from Lemma [23| we also have (p;, T,v) € [(T')ot]s
Similarly since we are given that (0,7,9) € [(©)ot]s therefore from Lemma 25| we also have (0,7',6) €
[(2)ole

IH:

(p1, T, e 0v) € [r ot]e
We get the desired directly from IH

32

14. T-tensorl:
U:0;A; Q0T Fey:my U:0;A; Qo ey:m
U;0; A T @ F (e, e2) 1 (11 @ T2)
Given: (pi,T,v) € [(I'1 & '2)oi]e, (0,T,6) € [(R2) otfe
To prove: (p;, T, {e1,e2)) 07) € [(11 ® 12) ot]e

From Definition [L5| it suffices to prove that

vt <T ((e1, e2)) 6y bt (vpr,vp2) = (o, T —t, (vg1,052)) € [(11 ® 72) 0]

This means given some t <T s.t {(e1, e2) oy U (vr1,vr2)) it suffices to prove that
(o, T —t, {vs1,v52)) € (1 ® 72) 0] (F-T10)

From Definition [16] and Definition [14] we know that Jp;1, pio.pi1 + pi2 = pi s.t
(p11,7) € [(T1)ot]e and (pi2,) € [(T2)oi]e

T-tensorl

IHI:

(P11, Tyex 67) € [ot]e
Therefore from Definition [[5] we have
th <T .e1 5’)/ U’h Vf1 =54 (pllaT —tl,’l)fl) S [[’7'1 JLH

Since we are given that (e1,e2)) 0y |+ (vf1,vy2)) therefore fom E-TT we know that 3t < t.e; 0y ¢, vf1
Hence we have (pj1,T —t1,v51) € [11 0¢] (F-TT1)

TH2:

(P12, T, ez 67) € [12 ot]e
Therefore from Definition [I5 we have
Vg <T .eq 6y i, vr2 = (pi2, T —to,v52 € [12 01]

Since we are given that ((eq,ez)) 0 It (vyr1,vy2)) therefore fom E-TI we also know that Jte < t.eq § 4,
Vy2 8.t

Since ty < t <T therefore we have

(p127T —t27’l)f2) S [[7-2 O'L]] (F—TIQ)

Applying Lemma [61] on (F-TI1) and (F-TI2) and by using Definition [I5] we get the desired.
15. T-tensorE:
U;0;A; 0T Fe: (11 ® 7o) U0 AT,z :m,y:m ke T
U:0;A; QT Ty k- let{{x,y)) =eine : 7

Given: (p;,T,v) € [(T1 ®T2) ot]e, (0,T,0) € [Q ot]e
To prove: (p;, T, (let{z,y) =eine’) év) € [r oi]e

T-tensorE

From Definition [I5] it suffices to prove that
Vt <T,v¢.(let(z,y) =eine) oy vy = (0, T —t,vyf) € [7 0/]

This means given some t <T,vs s.t (let{(x,y) = eine’) v | vy it suffices to prove that
(p1, T —t,v5) € [T ol (F-TE0)

From Definition [I16] and Definition [14] we know that Ip;1, pro.pin + pi2 = pi s.t

(pi1,7) € [(T1)ot]e and (pi2,) € [(T2)oe]e

1H1
(pi1, Tye o) € [(11 @ 12) ot

This means from Definition [[5] we have
Vi, <T .e 0 Ui, {v1,v2)) 6y = (pnn, T —t1, {v1,v2)) € [(11 ® T2) (]

Since we know that (let{(z,y)) = e in €’) év |+ v therefore from E-TE we know that 3t; < t,v1,v2.€ 6y ¢,
{(v1,v2). Therefore we have

(pir, T —t1, (v1,v2)) € [(T1 @ T2) 0t]e
From Definition [[5] we know that

Ip1,p2-p1 +p2 <pu A (p1, T 1) € [11 o] A (p2, T, v2) € [12 0t (F-TE1)

IH2
(P12 +p1+p2,T,€¢ 69) € [T o]

33

16.

17.

where

¥ =yU{z—=v}U{y— v}

This means from Definition [[5] we have

Ve <T .€’ 04" s, vy = (P12 +p1 +p2, T —ta,v5) € [1 01]

Since we know that (let((z,y)) = e in€’) 0y |, vy therefore from E-TE we know that 3ty < t.e’ 7' |4, vy.
Therefore we have

(P2 +p1 +p2, T —ta,v5) € [1 04]

From Lemma [61] we get

(p1, T —t,v5) € [T ot]e
And we are done
T-withl:

U:0;A; T kFeyp:my U:0;A; QT Fey:my
U 0; As T (ex, e2) 1 (11 & 72)

Given: (p;,T,v) € [Toi]e, (0,T,6) € [Q ot]e
To prove: (p;, T, (e1,e2) 0) € [(1 & 12) oi]e

T-withl

From Definition [T5] it suffices to prove that
Vit <T' (e1,e2) 67 b (vp1,vp2) = (o1, T —t, (vg1,v52) € [(11 & 72) 01]

This means given (e1,e2) 6 |+ (vf1,vy2) it suffices to prove that
(p1, T —t,(vs1,v52)) € [(T1 & T2) 0!] (F-WI0)

IHI:
(pi,T,e1 67) € [ot]e
Therefore from Definition [I5] we have

Vi, <T .eq 6y I, vi1 = (01, T —t1,vp1) € [11 0t

Since we are given that (e1,e2) dv s (vy1,v52) therefore fom E-WI we know that 3t1 < t.e; 6 4, vp1
Since t; < t <T', therefore we have
(o1, T —t1,v51) € [11 01] (F-WI1)

1H2:

(01, T, ez 07) € [r2 ot]e
Therefore from Definition [I5] we have
th <T .69 5’}/ U’tz Vfo E=4 (plvT —tQ,UfQ S HTQ O'L]]

Since we are given that (eq,ea2) 0y It (vf1,vy2) therefore fom E-WI we also know that Jto < t.es 67 |4, vs2
Since ty < t <T', therefore we have
(p1, T —t2,v52) € [12 01] (F-W12)

Applying Lemma on (F-W1) and (F-W2) we get the desired.
T-fst:
U 0;A; 0T e (1 &)
U:0; A QT - fst(e) : 7y

Given: (p;,T,v) € [(T') oi]e, (0,T,98) € [Q ot]e
To prove: (p;, T, (fst(e)) o) € [r1 ot]s

T-fst

From Definition [15]it suffices to prove that

Vt <T,vy.(fst(e)) 0y e vy = (01, T —t,vy) € [11 0]

This means given some ¢t <T',vs s.t (fst(e)) 6 |+ vy it suffices to prove that
(p1, T —t,v5) € [11 0!] (F-FO0)

IH

(pi, Tye o) € [(11 & 1) ot]e

This means from Definition [[5] we have
Yty <T .e 6y 4, (v1,v2) 6y = (01, T —t1,{(v1,v2)) € [(11 & 72) 01]

Since we know that (fst(e)) dv {; vy therefore from E-fst we know that 3t; < t.v1,ve.e 6 Yy, (v1,02).
Since t; < t <T, therefore we have

34

18.

19.

20.

21.

(pl,T —11, <’Ul,’l)2>) c [[(’7'1 & ’7'2) O'L]]

From Definition [[5] we know that

(pi, T —t1,v1) € [11 0]

Finally using Lemma [61] we also have

(pi, T —t,v1) € [11 ot

Since from E-fst we know that vy = v, therefore we are done.
T-snd:

Similar reasoning as in T-fst case above.
T-inl:

U 0;A; 0T e
U:0; A; ;T Hinl(e) : 1 @ 1
Given: (p;,T,7) € [Tot]e, (0,T,9) € [Q ot]s
To prove: (p;, T,inl(e) §v) € [(T1 @ 72) ot]e
From Definition [L5| it suffices to prove that
vVt <T .inl(e) 6y It inl(v) = (p1, T —t,inl(v) € [(11 & 72) ot

T-inl

This means given some ¢t <T s.t inl(e) 0 {; inl(v) it suffices to prove that
(p1, T —t,inl(v)) € [(T1 ® T2) 01] (F-TLO)

IH:

(01, T,e1 0v) € [y ot]e
Therefore from Definition [[5] we have
Vi, <T .eq 5’}/ U’h vfr = (pl7T —tl,Ufl) € HTl O'L]]

Since we are given that inl(e) 6y ¢ inl(v) therefore fom E-inl we know that 3t; < t.e v |y v
Hence we have (p;, T —t1,v) € [11 o]

From Lemma [61| we get (p;, T —t,v) € [11 ot

And finally from Definition [15| we get (F-ILO)

T-inr:

Similar reasoning as in T-inr case above.

T-case:

U:0; AT e (11 @) U:0;A; g,z ey 7 U:0;A; Qo y:mmbex: T
U:0;A; 0T @s Fcase e, z.eq,y.e0: T

T-case

Given: (p;,T,v) € [(T1 ®T2) oi]e, (0,T,0) € [Q ot]e
To prove: (p;, T, (case e, z.e1,y.e2) 0y) € [T ot]e

From Definition [T5] it suffices to prove that
Vit <T',vy.(case e,x.e1,y.e2) 0yt vy = (o1, T —t,v5) € [T 0(]

This means given some t <T,vs s.t (case e, x.e1,y.e2) 6y |}, vy it suffices to prove that
(o1, T —t,v5) € [T ol (F-C0)

From Definition [I6] and Definition [I4] we know that 3p;1, pi2-pi1 + piz = pi st
(pi1,7) € [(T1)oi]e and (pi2,7v) € [(T2)ot]e

IH1
(pllvT7e 67) € [[(Tl D 7—2) JI’HS

This means from Definition [[5] we have
V' <T .e 6y by v1 oy = (pn1, T —t',v1) € [(11 & 72) 0!

Since we know that (case e, z.eq,y.e2) §y I vy therefore from E-case we know that 3¢’ < ¢, v1.e 6y |4 v1.
Since t' < t <T, therefore we have
(P, T —t',v1) € [(1 @ 72) 01]
2 cases arise:
(a) vy =inl(v):
IH2
(P2 +pi1, T —t',e1 07') € [T ot
where

35

v =yU{x— v}

This means from Definition [[5] we have
Vir <T —t'.e1 &' Vb, vy = (pi2, T —t' —t1,vy) € [7 0]

Since we know that (case e, z.e1,y.e2) 07 | vy therefore from E-case we know that 3t1.e1 09" | vy
where t; =t —t' — 1.

Since t; =t —t' — 1 <T —t' therefore we have

(pi2, T —t' —t1,0¢) € [0!]

From Lemma [61] we get
(P2 +pun, T —t,v5) € [T ot

And finally since p; = p;1 + pi2 therefore we get
(o1, T —t,vg) € [T ot]e
And we are done
(b) vy =inr(v):
Similar reasoning as in the inl case above.
22. T-Expl:

T-Expl
U:0;A;Q;. He:lr P

Given: (p;,T,v) € [T at]e, (0,T,0) € [Q ot]e
To prove: (p;, T,le 6v) € ['T ot]e

From Definition [I5] it suffices to prove that
Vit <T .(le) o Ut (le) oy = (o, T —t,(le) dv) € [I7 oi]

This means given some ¢ <T s.t (le) oy {; (le) o it suffices to prove that
(pl7T —t, ('6) 67) € [['T UL]]

From Definition [T5] it suffices to prove that
(0, T —t,e) € [t ot]¢

IH: (0,7 —t,e 6v) € [ot]e
We get the desired directly from IH
23. T-ExpE:
U, 0;A; Q0T Fe:lr U:0;A; Q7T ke 7
U0 A QT @y Fletlz=eine : 7/

Given: (p;, T,7v) € [(T1 ®T2) ai]e, (0,7,6) € [() oi]s
To prove: (p;, T, (let!x =eineé’) &v) € [T/ oi]e

T-ExpE

From Definition [L5| it suffices to prove that

Vt <T,vy.(letlz =eine) oy vy = (i, T —t,vy) € [T 01

This means given some t <T,v; s.t (let!x =eine€’) év |, vy it suffices to prove that
(p1, T —t,v5) € [T 0t (F-E0)

From Definition [16] and Definition [I4] we know that Jp;1, pra.pi1 + pi2 = pr s.t
(pi1,7) € [(T1)oe]e and (pi2,7) € [(T2)ot]e

I1H1

(i1, T,e 6v) € [o]

This means from Definition [[5] we have

Vi, <T .e 07 Ui, ler 0y = (pn, T —t1,le1 67) € ['7 o]

Since we know that (let!z =eine’) év | vy therefore from (E-ExpE) we know that 3t < ¢,eq.e oy 4y
ley 7.

Since t1 < t <T, therefore we have

(pi1, T —ty,ler 67) € [I7 ot]e

This means from Definition [[5] we have
(0, T —ty,e1 67) € [7]e (F-E1)

IH2

36

24.

25.

(pi2, T —t1,€ 8'v) € [7 ol]e

where

§=6U{z— e}

This means from Definition [[5] we have

Vo <T —t1.€ 6"y i, vy = (pi2, T —t1 —ta2,vy) € [T 0/]
Since we know that (let!z = e in €’) 67 |4 vy therefore from (E-ExpE) we know that 3to.e’ ¢’y |} vy where
ty=1—1; — 1.

Since to =t —t; — 1 <T —tq, therefore we have

(pi2, T —t1 — ta,vy) € [01]

From Lemma [62] we get

(pi2 +puin, T —t,vp) € [7" 0d]

And finally since p; = p;1 + pi2 therefore we get
(p1, T —t,v5) € [T 0l

And we are done

T-tabs:

U a:K;A%TFe: T
U;0;A; QT HAe: (Va: K

Given: (p;,T,v) € [I',ot]e, (0,T,0) € [Q ot]e
To prove: (pi, T, (A.e) 67) € [(Va.7) oi]s

From Definition [L5| it suffices to prove that
Vt <T,vp.(Ae) 0y by vy = (o, T —t,v5) € [(Va.T) 0t

T-tabs

This means given some t <T,vs s.t (A.e) 0y {4 vy. From E-val we know that ¢ = 0 and vy = (A.e) oy
Therefore it suffices to prove that
(o1, T, (A-e) 6v) € [(Va.T) o1

From Definition [L5| it suffices to prove that

V7!, T'<T (p;, T e) € [r[7"/a] ot]e

This means given some 7/, 7'<T it suffices to prove that
(0, T',€) € [r[r'Ja] e (F-TABO)

From IH we know that
(p1,T,e 6v) € [T o't]e
where

o =yU{a— 1}

Therefore from Lemma [62| we get the desired
T-tapp:
U:0; A; T e (Vaur) U 0A 7
U0; AT Ee [] 2 ([/al)

Given: (p;,T,7) € [Toi]e, (0,T,6) € [Q oi]e
To prove: (p;,T,e [] 6v) € 7|7 /a] ot]e

T-tapp

From Definition [L5| it suffices to prove that
Vt <T,vs.(e[]) 0y de vy = (01, T —t,vy) € [7[7"/a] o]

This means given some t <T, vy s.t (e []) 67 ¢ vy it suffices to prove that
(p1, T —t,v5) € [7[7'/a] ol (F-A0)

IH

(p, T, e 6v) € [(Va.7) oi]e

This means from Definition [[5 we have

Viy <T .e by, Ae = (p1, T —t1,A.e) € [(Va.T) 01

Since we know that (e []) 6 |+ vy therefore from E-tapp we know that Jt; < t.e {4, A.e, therefore we

have
(o1, T —t1,Ace) € [(Va.T) o1]

Therefore from Definition [I5] we have

37

V7' Ty <T —t1.(p1, T, e) € [7[7"/a] ot]e (F-A1)
Instantiating (F-A1) with the given 7" and T' —t; — 1 we get

(01, T —t1 —1,e) € [r[r'/a] ot]e

From Definition [[5] we have

Vit <T —t1 — l.e Yy, vy = (p1, T —t1 —t2 — L,vy) € [7[7" /] 04]

Since we know that (e []) 07 {+ vy therefore from E-tapp we know that 3ts.e |4, vy where to =t —t; — 1
Since to =t —t; — 1 <T —t; — 1, therefore we have

(p1, T —t1 —ta — 1,v5) € [7[7'/c] ot]] and we are done.

. T-iabs:

U:0,i:S5;A;, %0 kFe: T
U:0;A; T HAe: (Vi:S.7)

Given: (p;,T,v) € [T',0t]e, (0,T,0) € [Q ot]e
To prove: (p,T,(A.e) 6v) € [(Vi.T) ot]e

From Definition [T5] it suffices to prove that
Vit <T,vg.(Ae) 6y vy = (p1, T —t,vy) € [(Vi.T) ot

T-iabs

This means given some t <T',vs s.t (A.e) 6 |}¢ vs. From E-val we know that ¢t = 0 and vy = (A.e) 0y
Therefore it suffices to prove that

(0, T, (Ae) v) € [(Vi.T) o]

From Definition [I5] it suffices to prove that

VI, T'<T .(pi,T",e) € [7[1/i] ot]e

This means given some I, T'<T it suffices to prove that

(pi, T',e) € [T]1/i] ot]e (F-IABO)

From IH we know that

(pi, Tye o) € [T ol]e
where
V=~rU{i— T}

Therefore from Lemma [62] we get the desired
. T-iapp:
U:0; AT Fe: (Vi:ST) U:0;AFI:S
U 0; AT e [) 2 (7[1/i])
Given: (p;,T,v) € [Toi]e, (0,T,98) € [ot]e
To prove: (p;, T,e [| o) € [T][1/i] ot]e

From Definition [I5] it suffices to prove that
Vt <T,vg.(e[]) 0y e vy = (01, T —t,vy) € [7[I/i] ot

T-iapp

This means given some ¢ <T, vy s.t (e []) 0y |, vy it suffices to prove that
(p1, T —t,v5) € [T[L/1] ot (F-A0)

IH

(p1; T, e 0v) € [(ViT) ot]e

This means from Definition [[5 we have

Vi, <T .e s, Ae = (p1, T —t1,A.e) € [(Vi.T) ol

Since we know that (e []) dv {; vy therefore from E-tapp we know that 3¢; < t.e |, A.e, therefore we

have
(p1, T —t1,A.e) € [(Vi.T) ot

Therefore from Definition [[5] we have
VI, To<T —t1.(m, Th,e) € [rlI/i] ofe (F-IAP1)

Instantiating (F-IAP1) with the given I and T' —t; — 1 we get
(pi, T —t1 — 1,e) € [7[1/i] oi]e

From Definition [[5] we have
Vitg <T —t1 — ledy, vp = (o1, T —t1 —ta — 1,v5) € [7[L/i] 0!]

38

28.

29.

30.

Since we know that (e []) 6 {+ vy therefore from E-iapp we know that 3to.e {4, vy where to =t —t; — 1
Since to =t —t; — 1 <T —t; — 1, therefore we have

(o1, T —t1 —ta — 1,vy) € [7[I/i] o] and we are done.

T-CI:

U:0:A ;T e T
U:0; A; QT Ae: (e=7)

Given: (p,T,7) € [Tot]e, (0,T,6) € [Q ot]c and E A ¢
To prove: (p;, T, A.e 6v) € [(c=7) ot]e

T-CI

From Definition [I5] it suffices to prove that
Yo, t <T Aedy v = (p, T —t,v) € [(c=7) oi]

This means given some v,t <T' s.t A.e 6y {; v and from (E-val) we know that v = A.e §y and t = 0
therefore it suffices to prove that
(pi, T, Ae 07) € [(e=7) ot

From Definition [T5] it suffices to prove that
Eclt = (,T,e dv) € [roi]e

This means given that . = ¢ ¢ it suffices to prove that
(pi,T,e 6v) € [T oi]e

IH (pi, T,e o) € [T ot]e

We get the desired directly from IH
T-CE:

U:0;A; ;T e (e=1) @;A):cT
U0, AT el : 7
Given: (p;,T,7) € [Toi]e, (0,T,6) € [Q ot]e and E A ¢
To prove: (p;,T,e([] v) € [(T) ot]e

-CE

From Definition [L5] it suffices to prove that
Vup,t <T'.(e]) 0y bt vy = (o1, T —t,v¢) € [(7) ot]

This means given some vy, t <T s.t (e []) oy J: vy it suffices to prove that
(o0, T —t,vp) €[(7) o] (F-Tap0)

1H

(p1; Ty e 07) € [(e = 7) oe]e

This means from Definition [[5] we have

Yo' ' <T e 0y v/ = (pi+ pm, V') € [(c=T) 0]

Since we know that (e [|) dy |+ vy therefore from E-CE we know that 3t' < t.edy Jp A.e/, an since
t' <t <T therefore we have

(pi, T —t',Ae’) € [(c=T) 0/

Therefore from Definition [[5] we have

Ecet = (p, T —t',e 6y) €[ot]e

Since we are given ©; A = ¢ and . = A ¢ therefore we know that . = ¢ . Hence we get
(p1, T —t', ¢ §v) € [T ot]s

This means from Definition [I5 we have

Vo, 8" <T —t'.(e') 6y b vy = (p, T —t' —t",0}) € [(7) o1] (F-CE1)

Since from E-CE we know that /0y |; vy therefore we know that 3t”.e’ 0y {4 vy st t =t +¢" +1
Therefore instantiating (F-CE1) with the given vy and t” we get

(p1, T —t' —t",vy) € [(1) 0]

Since t = t' 4+t + 1 therefore from Lemma [61| we get the desired.

T-CAndI:

U:0;A; QT Fe: T 0;A ¢
U:0;A; QT Fe: (c&kr)
Given: (p;, T v) € [T ot]e, (0,T 6) € [o]

T-CAndl

39

To prove: (p;, e 07) € [c&T ot]e

From Definition [L5| it suffices to prove that
Vop, t <T .e oy b vy = (o, T —t,v5 67) € [c&T 04]

This means given some v¢,t <7 s.t e dy |, vy it suffices to prove that
(p1, T —t,v5) € [c&T 0l]

From Definition [15]it suffices to prove that
Ea N (p, T —t,vp) € [ol

Since we are given that . = A and ©; A |= ¢ therefore it suffices to prove that
(p1, T —t,vy) € [T 0l (F-CAI0)

IH: (pi,Te 67) € [1 ot]e

This means from Definition [[5] we have

Vt' <T .e 6y Yy vy = (o1, T —t',v5) € [7 01]

Since we are given that e dy |J; vy therefore we get

(o, T —t,v5) € [T 0/] (F-CAIl)

We get the desired from (F-CAIl)

. T-CAndE:

U:0;A; 0T Fe: (c&er) U:0: A, c; T,z :7hHe i 7
U:0;A; QT ®Tsbcletx=eine : 7’

Given: (p;, T,7v) € [(T1 ®T2) ai]e, (0,T7,6) € [() oi]s
To prove: (p;, T, (cletx =eine’) &v) € [/ ot]e

T-CAndE

From Definition [I5] it suffices to prove that
Vog, t <T .(cletz =eine’) oy vy = (0, T —t,vy) € [T 0/]

This means given soem vy, t <T' s.t (cletz = e in€’) 07 |} vy it suffices to prove that
(p1, T —t,v5) € [T 0t (F-CAED)

From Definition [T6] and Definition [T4] we know that 3p;1, pi2.pi1 + piz = i st
(pllaTa 7) € H(FI)O—L]]Z:: and (pl27Ta 7) € [[(FQ)UL]]S

1H1

(pl17T7€ 6’}/) S [[C&T O'LHg

This means from Definition [[5l we have
Vi, <T .e 0 Ui, v1 = (pi1, T —tyv1) € [e&et ot]e

Since we know that (cletz = e in e’) 6 |4 vy therefore from E-CAndE we know that Jvq,t1 < t.e 0y {4, v1.
Therefore we have
(pi1, T —t1,v1) € [e&eT oi]

Therefore from Definition [[5] we have
Eea A (pn, T —t1,v1) € [T ol (F-CAE1)

IH2

(pi2 +pi, Tye 07') € [ot]e

where

v =yU{z o}

This means from Definition [[5]l we have

Vo <T .’ 0y I, vy = (pi2 +pi1, T —ta,vy) € [7' 01

Since we know that (cletz = e in €’) §v {; vy therefore from E-CAndE we know that 3t < t.e’ &'y {4, vy.
Therefore we have

(pi2 +pi1, T —ta,v5) € [04

Since p; = p;1 + pi2 therefore we get
(o1, T —ta,v5) € [0/]

And finally from From Lemma [61] we get
(p1, T —t,v5) € [T 0l
And we are done.

40

32. T-fix:
U:0;A:Qx:7;.Fe: T
U:0;A;Q; . Ffixze: 7

,0) € [o]
€[role (F-FXO0)

T-fix

Given: (0,7,7) € [.]e, (0,T
To prove: (0,7, (fixz.e) Jv)

We induct on T'

Base case, T= 1:

It suffices to prove that (0,1, (fixz.e) §v) € [7 ot
This means from Definition [15] it suffices to prove
Vi < 1.(fixz.e) vy Jr v = (0,1 —t,v) € [7]

This further means that given t < 1 s.t (fixx.e) 0 |+ v it suffices to prove that
(0,1 —1t,v) € [7]

Since from E-fix we know that minimum value of ¢ can be 1 therefore ¢ < 1 is not possible and the goal
holds vacuously.

Inductive case:

IH: (0,T -1, (fixz.e) §v) € [T ot]e

Therefore from Definition [I6] we have

(0, T —1,0") € [, 2 : T ot]¢ where 0’ = U {z — fixz.e 6}

Applying Definition [15| on (F-FXO0) it suffices to prove that
Vi <T .(fixz.e) 6y b vy = (0,T —t,vy) € [T 0]

This means given some t <T' s.t fixz.e 6 {}; vy it suffices to prove that
(0,T —t,vy) € [T ot] (F-FXO0.0)

Now from IH of outer induction we have

(0, T —1,e §'y) € [1 ot]¢

This means from Definition [[5] we have

Vt' <T —l.e 'y §p vy = (0,T =1 —1t',vy) € [1 0t

Since we know that fixz.e 6 ||; v; therefore from E-fix we know that 3t' =t — 1 s.t e &'y Jp vy

Since t < T therefore t' =t —1 < T — 1 hence we have
(0,T —t,vy) € [T o/]
Therefore we are done

33. T-ret:

U:0;A; QT Fe: T
U:0;A; Q' Frete: MOT

Given: (p;,T,v) € [Toi]e, (0,T,6) € [Q ot]e
To prove: (p;, T, rete §v) € [MOT ot]¢

T-ret

From Definition [15]it suffices to prove that
Vt <T,vy.(rete) oy s vy = (o1, T —t,vy5) € [MOT 01

It means we are given some t <T', vy s.t (rete) 6y |, vy. From E-val we know that ¢ = 0 and vy = (rete) 6.
Therefore it suffices to prove that
(p1, T, (rete) 6y) € [MOT oi]

From Definition [L5]it further suffices to prove that
V' <T (rete) oy I} vy = '’ +p <p A QT —t',vs) €[0/

This means given some ¢’ <T s.t (rete) &y |} vy it suffices to prove that
I’ +p <p AT —t'vf) € [7 ol

From (E-ret) we know that n’ = 0 therefore we choose p’ as p; and it suffices to prove that
(o, T —t',vy) € [1 ot (F-RO)

1H

(pi, T,e o) € [T ol]e

41

34.

This means from Definition [[5] we have
Vi, <T .(e) oy b vy = (p1, T —t1,v5) € [T 01]

Since we know that (rete) dv |}% v; therefore from (E-ret) we know that Jti.e 6y 4, vy
Since t1 < t <T therefore we have
(p1, T —t1,vy) € [T o1

And finally from Lemma [61] we get
(p1, T —t,vy) € [T 0l
and we are done.

T-bind:

U:0;A; QT Fey :Mny 71 U:0;A;QTs,x:mFex:Mnom OF ng: Rt OF ny: RT

- - T-bind
U;0;A; ;T @y - bindz = e ineg : M(ng + ng) 7o

Given: (plvT7 ’Y) € [[(Fl S3) FQ)ULHS7 (OaTv 6) € [[(Q) ULHS
To prove: (p;,T,bindx = ey in ez §v) € [M(n1 + n2) T2 ot]e

From Definition [I5] it suffices to prove that
Vi <T,v.(bindz =e;j ineg) 0y v = (pi, T —t,v) € [M(n1 + n2) 2 ot

This means given some t <T,v s.t (bindz =€ ine3) 0y 4+ v. From E-val we know that ¢t = 0 and
v = (bindz = €7 in ez §7)

Therefore it suffices to prove that

(pi, T, (bindz = ey in eg 7)) € [M(n1 + n2) 72 0l

This means from Definition [L5] it suffices to prove that
Vt' <T,vg.(bindz =eyiney 0y) I vy = Ip'.s"+p <pr+n A @, T —t',v) € [12 0t

This means given some ¢’ <T, vy s.t (bindz = e; in ey §v) Il v and we need to prove that
W+ <pr+nA@,T -t vy) € [re ol (F-B0)

From Definition and Definition we know that Jp;1, pi2-pi1 + pi2 = p1 s.t

(pi1,7) € [(T1)ot]e and (pi2,7) € [(T2)oe]e

IH1
(pi1, T,eq 67) € [M(n1) 71 ot]e

From Definition [[3] it means we have
Yty <T .(e1) v Ity vm1 = (i1, T —t1,0m1) € [M(n1) 71 ot

Since we know that (bindxz = e; in e3) d i}‘;’ vy therefore from E-bind we know that 3t < t',vm1.(€1) 67 4y

Um1-
Since t; < t’ <T, therefore we have

(pi1, T —t1,vm1) € [M(n1) 11 0] (F-B1)

This means from Definition [I5] we are given that
Vt) <T —t1.0m1 I v1 = Fpisy +p) <pu +n1 A (P, T —ty —t],v1) € [11 01]

Since we know that (bindz = e; in e2) 67 {4 vy therefore from E-bind we know that 3] < t—t1.(e1) oy l}f,ll
V1.

Since t] <t —t; <T —t; therefore means we have

s+ 0 <pn+n AQPLT -t —t),v1) € [n ol (F-B1)

1H2
(D2 + 9, T —t1 —t),ea oyU{xz = v1}) € [M(n2) 72 ot]e

From Definition [[7] it means we have
Yty <T —t1 — tll.(eg) 6’7 U {{,E — ’Ul} ‘U’tz Um2 —> (plg +p/17T -t — tll — tg,’l}mg) S [[M(TLQ)TQ G'LH

Since we know that (bindx = e in e2) dv l}f,/ vy therefore from E-bind we know that 3ty < t/ — ¢ —
t).(e2) oy U{z — v1} i, Uma-

Since to < t' —t1 — t] <T —t; — t} therefore we have

(P2 + P, T —t1 — 1) — ta,vm2) € [M(n2) 72 01]

This means from Definition [15| we are given that

42

35.

36.

Vi, <T —t; — t) — to.Uma i};,; ve = Iph.so+ph <pro+p)+na A (ph, T —t1 —t) —th,v3) € [12 0(]

Since we know that (bindz = e; in e2) dv ||, vy therefore from E-bind we know that 3ty < ' —t, —t} —
t2, $2,V2.Um2 Uzlj va.

This means we have

Aph.s2 + ph < pia + pi +na A (P, T —t1 —t) —ta — th,ve) € [12 0t (F-B2)

In order to prove (F-B0) we choose p’ as pj and it suffices to prove
(a) s"+py <pr+n:
Since from (F-B2) we know that
s2+ph < pi2 +pi+n2

Adding s; on both sides we get
s1+ 82+ phy < pi2 + 51+ Pl + o

Since from (F-B1) we know that
s1+pr <pun+m

therefore we also have
s1+ 82+ py < pi2 +pi + 11+ ne

And finally since we know that n = ny + ng, s’ = s; + so and p; = p;1 + pio therefore we get the
desired

(b) (P4, T —t1 —t) —ta —th,vy) € [12 ou]:
From E-bind we know that vy = vy therefore we get the desired from (F-B2)

T-tick:

OFn:RT
U, 0; AT " :Mnl

Given: (p;,T,7) € [Tot]e, (0,T,9) € [Q ot]s
To prove: (p;, T,1" §v) € [Mn1 ot]e

T-tick

From Definition [I5] it suffices to prove that
Vi <T,v.(1") 0y bt v = (1, T —t,v) € [Mn1 o]

This means we are given some t <T,v s.t (1™) d7 {+ v. From E-val we know that t = 0 and v = (1) v
Therefore it suffices to prove that
(e, T,(1") 67) € [Mn1 o/

From Definition [I5] it suffices to prove that
Vi <T.(1") oy () = '+ <pr+nA@,T-t,()e[1]
This means given some ¢’ <T s.t (1") & %% () it suffices to prove that
' +p <p+nn@,T-t,()e1]
From (E-tick) we know that n’ = n therefore we choose p’ as p; and it suffices to prove that
(o, T =t',()) € [1]
We get this directly from Definition
T-release:
U0, A; Ty ey [na]m
U 0; A Tg, 71 Feo: M(ng 4 ng) 72 OFng:RT OF nyg: RT
U:0;A; QT @5 - releasex = e1 in eg : Mng T

Given: (p;,T,v) € [(T1 ®T2)oi]e, (0,T,98) € [(R) ot]e
To prove: (p;,T,releasex = ey in e §7) € [M(n2) 2 ot]e

T-release

From Definition [T5] it suffices to prove that
Vi <T,v.(releasex = ey in e3) dy bt v = (p1, T —t,v) € [M(n2) 12 o]

This means given some ¢t <T',v s.t (releasex = e in e3) dv || (releasex = e; in e3) dy. From E-val we
know that ¢ = 0 and v = (releasex = e; in e 07)

Therefore it suffices to prove that

(pi, T, (releasex = ey in e3) §7) € [M(n2) 72 o/

This means from Definition [15] it suffices to prove that

43

37.

Vt' <T,vy.(releasex = ey in ey 67) Iy vp = S+ <pi+na AP, T —t',vyf) € [12 04]

This means given some t' <T',vs s.t (releasex = ey in ey §7) llf,/ vy and we need to prove that
s+ <pi+ne AP, T —t',vf) € [12 1] (F-RO)

From Definition [16] and Definition [14] we know that Ip;1, pi2.pi1 + pi2 = pi s.t

(pi1,7) € [(T1)ot]e and (pi2,v) € [(T2)ot]e

1H1

(P11, T e1 07) € [[m] 71 o]
From Definition [[3] it means we have
vty <T .(e1) 0y e, vi = (pun, T —t1,v1) € [[na] 11 0t]

Since we know that (releasex = e; in e3) 0 i}f,/ vy therefore from E-rel we know that 3t; < t'.(e1) 7y ¢,
V1.

Since t; < t' <T, therefore we have

(P, T —t1,v1) € [[n1] 71 ot

This means from Definition [[5l we have

Ipypy + 1 <pn AL, T —t,v1) € [11] (F-R1)

1H2
(pi2 +p), T —t1,e0 0y U{z = v1}) € [M(n1 + n2) 72 otfs

From Definition [[3] it means we have
Vto <T —ti.(e2) dyU{z — v1} diy vme U{z = v1} = (pi2 + 01, T —t1 — t2,0m2) € [M(n1 + n2) 72 ot

Since we know that (releasez = e; in es) o7y lLf,/ vy therefore from E-rel we know that 3ty < t—t1.(e2) éyU
{z = v1} Jt, Uma2. This means we have

(pl2 +p’1,T —t1 — o, Umg) € [[M(’I’Ll + ng) To O’L]]

This means from Definition [I5] we are given that

Vté <T —t1 — to.vmo U«flz Vg — E'p/Q.SQ +pl2 < pi2 +p/1 +ny+n9 A (p/Q,T —t1 —to — té,vg) € HTQ O'L]]

Since we know that (releasex = e; in eq) oy llf,/ vy therefore from E-rel we know that 3th.vm,2 |;7 v s.t.
2

th=t —t, —ty— 1

Since th, = t' — t1 — to <T —t1 — tq, therefore we have

Aph.so + phy < pio + Py + 01 +no A (Phy, T —t1 —tg — th,v2) € [12 o1] (F-R2)

In order to prove (F-R0) we choose p’ as p}, and it suffices to prove
(a) 8" +py <pi+na:
Since from (F-R2) we know that
s+ 1y < pi2 + P+ 11+ ng
Since from (F-R1) we know that
Py +n1 < pn
therefore we also have
so+p5 < pi2 + pii + Pma + 12

And finally since we know that s’ = s, p; = pi1 + pi2 and 0 = pp,1 therefore we get the desired
(b) (ph, T —t1 —ta —th,vy) € [12 ot]:
From E-rel we know that vy = vy therefore we get the desired from (F-R2)
T-store:

U, 0;A; 0T Fe: 7 OFn:RT
U:0;A; 0T storee : Mn ([n] 7)

Given: (p;,T,v) € [T'oi]e, (0,T,98) € [ot]e
To prove: (p;, T,storee 67) € [Mn ([n]7) ot]s

T-store

From Definition [L5| it suffices to prove that
Vt <T,v.(storee) dy bt v = (p1, T —t,v) € [Mn ([n]7T) o/]

This means we are given some t <T,v s.t (storee) oy {; v. From E-val we know that ¢ = 0 and
v = (storee) 07y
Therefore it suffices to prove that

44

(pi, T, (storee) 6v) € [Mn ([n]T) ot]

From Definition [L5] it suffices to prove that

V' <T,vp,n(storee) Sy I} vy = Ip'.n' +p <p AP, T —t',vs) € [[n] 7T ot
This means given some ¢’ <T',vs s.t (storee) dy |} vy it suffices to prove that
I +p <p AT =t vp) € [[n] 7 0]

From (E-store) we know that n’ = 0 therefore we choose p’ as p; + n and it suffices to prove that
(o +n,T —t' vg) € [[n] T ot

This further means that from Definition [I5] we have

W' Fn<p+nA@,T -t v €[r ol

We choose p” as p; and it suffices to prove that
(o, T —t',vy) € [0t (F-S0)

IH

(pi, T,e o) € [ole

This means from Definition [[5] we have

Vi, <T .(e) 0y Ui, vy = (p1, T —t1,vy) € [T 04]

Since we know that (storee) §v |, v therefore from (E-store) we know that 3t; < t'.e 6y |+, vs
Since t; < t' <T therefore we have

(p1, T —t1,vy) € [T 01

and finally from Lemma [61| we have
(o, T —t',vy) € [1 0t

Lemma 21 (Value subtyping lemma). VU, 0,7 € Type, 7.
U0, AT <7 AEAL = [t o C[r ol

Proof. Proof by induction on the ¥;0; A - 7 <: 7/ relation
1. sub-refl:

——— sub-refl

U:0;AFT<:7T subre
To prove: ¥(p.T,0) € [r o] = (¢.T,0) € [o1]
Trivial

2. sub-arrow:
U;0;A k1 <imy U, 0;AF 1 <7

7 7 sub-arrow
U;0;AFT —oT <iT] — T,

To prove: ¥(p, T, Ax.e) € [(11 — 72) o] = (p, T, Az.e) € [(11 — 73) ot

This means given some (p, T, A\x.e) € [(T1 — T2) ot] we need to prove
(P, T, Av.e) € [({ — 73) o]

From Definition [I5] we are given that

VIT'<T,p,e.(p),T'¢) e [n o]e = p+p,T ele/z]) € [r2 ot (F-SL0)
Also from Definition [15] it suffices to prove that

VT"<T,p" e .(p",T",e") €[] olle = (p+p",T" ele"/z]) € [ot]e

This means given some T"<T,p" e" st (p”,T",e") € [7] ot] we need to prove
(p+p,T" ele" [z]) € [15 ot]e (F-SL1)

IH1: [7] ot C [ot

Since we have (p”,T",¢") € [1{ o¢] therefore from IH1 we also have (p”,T",¢") € [11 o]
Therefore instantiating (F-SLO) with p/, T", " we get

(p+p",T" ele"/z]) € [r2 o1]e

And finally from Lemma [22| we get the desired

45

3. sub-tensor:

U, 0;AFm <7 U, 0;AF 1 <7

7 7 sub-tensor
VO, AFT @ <:T] ® T

To prove: Y(p, T, (vi,v2))) € [(1 ® 72) 01] = (p, T, (v1,v2))) € [(11 ® 73) 0]

This means given (p, T, (v1,v2)) € [(T11 ® T2) o(]

It suffices prove that

(0, T, (v1,02)) € [(1{ ® 73) 01]

This means from Definition [I5] we are given that

Ip1,p2p1 +p2 <p A (p1,T,v1) € [T o] A (p2, T, v2) € [r2 01

Also from Definition [15] it suffices to prove that
I ph-py +p5 Sp A (1T v) € [ot A (py, T, v2) € [15 0]

Choosing p; for pj and ps for p, we get the desired from IH1 and TH2
4. sub-with:

U,0;AFm <7 U, 0;AF 1 <:7)
U, 0;A 7 & <im &5
To prove: Y(p, T, (v1,v2)) € [(1 & 72) 0t] = (p, T, (v1,v2)) € [({ & 73) 01]

sub-with

This means given (p, T, (v1,v2)) € [(11 & T2) o1
It suffices prove that
(p7 T’ <U17 U2>) € [[(T{ & Té) O-L]]

This means from Definition [I5] we are given that
(p,Tyv1) € 11 o] A (p,T,v2) € [12 0t (F-SWO0)

Also from Definition [15] it suffices to prove that
(0, T,v1) € [r{ o] A (p, T, v2) € [13 01]

(11) 1]

C [(r1
C [(r2) o4l

IH1 [(r1) ot]
IH2 [(72) ot]
We get the desired from (F-SWO0), TH1 and TH2
5. sub-sum:
U:0; A1 <7y U:0; A1 <7
U,0;AFT @1 <7 B 7Y

sub-sum

To prove: Y(p, T, (v1,v2)) € [(1 ® 72) 0t] = (p, T, (v1,v2)) € [(1{ ® 73) 01]

This means given (p,T,v) € [(T1 & T2) oi]

It suffices prove that

(0. T,v) € [(r] ® 73) 01]

This means from Definition [I5] two cases arise

(a) v =inl(v'):

This means from Definition [15| we have (p,T,v) € [11 ot (F-SS0)
Also from Definition [15] it suffices to prove that
(p,T,v') € [o]

IH [(r1) ou] € [(71) 0]
We get the desired from (F-SS0), TH
(b) v=inr(v):

Symmetric reasoning as in the inl case

46

6. sub-list:
UV:0;AFT <7
UVO;AFLY < L™ 7
To prove: ¥(p,T,u) € [L" 7 o1].(0.T,v) € [L" 7 o1]

sub-list

This means given (p,T,v) € [L™ 7 o] and we need to prove
(p,T,v) € [L™ 7' o1]

We induct on (p,T,v) € [L™ 7 0(]
(a) (p,T,nil) € [L° T ou]:
We need to prove (p, T, nil) € [L° 7' o.]
We get this directly from Definition [I5]
(b) (p,T,v" =:U") € [L™T! 7 ad]:
In this case we are given (p,T,v’ : ') € [L™H 7 0.]
and we need to prove (p,T,v" :: ') € [L™T! 7/ 5]

This means from Definition [15] are given

Ip1,pep1 + 02 <p A (p1,T,0) €1 o] A(p2, T,U') € [L™T o1] (Sub-List0)
Similarly from Definition [L5| we need to prove that

Aph, Py + 05 <p A (P, T,v") € 7' o] A (p2, T,1') € [L™7 o1

We choose p} as p; and p} as ps and we get the desired from (Sub-List0) IH of outer induction and
IH of innner induction
7. sub-exist:

U:0,s;AFT <7
U:0; A Js.r <: s’

sub-exist

To prove: Y(p,T,v) € [3s.7 oi].(p, T,v) € [Fs.7’" o1]

This means given some (p,T,v) € [3s.7 ot] we need to prove
(p, T,v) € [3s.7" o]

From Definition [L5| we are given that
3s'.(p, T, v) € [roi]s'/s]] (F-exist0)

IH: [(7) oeU{s— s} C[(7") oeU{s— s'}]
Also from Definition [15] it suffices to prove that
3s".(p, T,v) € [’ o]s"/4]]

We choose s” as s’ and we get the desired from TH
8. sub-potential:

U:0: AT <7 U:0:An' <n
U;0;AF [n]r <: [n]7

sub-potential

To prove: V(p,T,v) € [[n] T ot].(p,T,v) € [[n'] 7 o/]

This means given (p,T,v) € [[n] T ot] and we need to prove
(p,T,v) € [[n']7" o1]

This means from Definition [L5| we are given
WP +n<pA@,T,v)€r ol (F-SPO)

And we need to prove
W' p"+n <pA@'T,v) €[o (F-SP1)

In order to prove (F-SP1) we choose p” as p’

Since from (F-SP0) we know that p’+n < p and we are given that n’ < n therefore we also have p'+n’ <p

IH [r o] C [7' oi]
We get the desired directly from IH

47

9.

10.

11.

sub-monad:
U0 AT <7 U:0;AFn<n
U 0;AFMnT <:Mn' 7
To prove: ¥(p,T,v) € [Mn7 oi].(p,T,v) € [Mn'7" 0]

sub-monad

This means given (p,T,v) € [Mn7 ot] and we need to prove

(p,T,v) € [Mn' 7" /]

This means from Definition [15| we are given

V' <T,ng, v’ o |5t v = I+ <p+n A @, T —t' W) erol] (F-SMO0)
Again from Definition [15] we need to prove that

Vt" <T,ng,v" v 7 0" = Fp "o +p" <p+n' A", T —t" V") e[ol

This means given some t” <T',v"”,ngy s.t v {}/7 v’ it suffices to prove that
I e+ <p+n' AQT —t"0")er o (F-SM1)

Instantiating (F-SMO0) with ¢, ns,v” Since v {})? v therefore from (F-SMO0) we know that
W na+p <p+nA@,T-t"v")e][r ol (F-SM2)
IH [7 o] C [o]
In order to prove (F-SM1) we choose p” as p’ and we need to prove
(a) no+p" <p+n"
Since we are given that n < n' therefore we get the desired from (F-SM2)
(b) @',v) € [7" o]
We get this directly from ITH and (F-SM2)
sub-Exp:

U:0; AT <7
U 0; A FHlr <17’
To prove: Y(p,T,v) € [\ ou].(p, T,v) € [!'7’ o/]

sub-Exp

This means given (p, T, le) € [I7 o¢] and we need to prove
(p,T,'e) € [!'7" 0/]

This means from Definition [I5] we are given
(0,T,e) € [T ot]e (F-SE0)

Again from Definition [T5] we need to prove that
(0,T,e) €7 ot]e (F-SE1)

IH [r o] C [7 o]
Therefore from (F-SE0) and IH we get (0,7, ¢e) € [’ ot] and we are done.
sub-typePoly:
U, o;0;AF T <7y

U:0; A F Vo <: Vi
To prove: ¥(p, T, A.e) € [(Vi.11) oi].(p, T, A.e) € [(Vi.T2) o]
This means given some (p, T, A.e) € [(Va.71) ot] we need to prove
(p,T,Ae) € [(Va.12) ot

From Definition [L5| we are given that
V7, T'<T (p,T',e) € [r1[T/c]]e (F-STPO)

sub-typePoly

Also from Definition [15] it suffices to prove that
V7', T"<T .(p, T" e) € [r|r'/a]]e

This means given some 7/, 7" <T and we need to prove
(p, T",e) € [T /a]]e (F-STP1)

IH: [(11) ocU{a— 7'} C [(12) oeU{a — 7'}]

Instantiating (F-STPO) with 7/, 7" we get
(P, T",¢) € [n[r'/al]e

and finally from IH we get the desired.

48

12. sub-indexPoly:
U:0,iAFm <1
U:0; A FVim <: Vi
To prove: ¥(p, T, Ai.e) € [(Vi.1) ou].(p, T, Ai.e) € [(Vi.T2) o1

sub-indexPoly

This means given some (p, T, Ai.e) € [(Vi.11) o] we need to prove
(p, T, Ai.e) € [(Vi.ma) 0i]

From Definition [L5| we are given that

VI,T'<T .(p,T",e) € [1[I/i]]e (F-SIPO)

Also from Definition [15] it suffices to prove that

VI, T"<T .(p, T e) € [=[I'/i]]e

This means given some I’, 7" <T and we need to prove
(p, T",e) € [r=[I'/i]]s (F-SIP1)

IH: [(11) o U{i—=I"}] C[(2) oeU{i—T'}]
Instantiating (F-SIP0) with I', 7" we get

(p,T",e) € [m[I'/i]]e

and finally from IH we get the desired
13. sub-constraint:

U:0;AF 71 <7 O;AEFE = ¢

sub-constraint
U:0;AbFci =7 <ico=T

To prove: ¥(p,T,A.e) € [(c1 = 1) ot].(p, T, A.e) € [(ca = 72) ot

This means given some (p, T, A.e) € [(¢c1 = 71) o] we need to prove
(pa TvA'e) € [[(62 = T2) UL]]

From Definition [15| we are given that

Eat = (p,T,e) € [roi]e (F-SCo)
Also from Definition [15] it suffices to prove that
Ec = (p,T,e) € [r20t]e

This means given some . |= cot and we need to prove
(p,T,e) € [re0t]e (F-SC1)

Since we are given that ©; A = ca = ¢ therefore we know that . = ¢yt
Hence from (F-SC0) we have

(p,T,e) € [riot]e (F-SC2)

H: [(r1) o] € [(72) o¢]

Therefore we ge the desired from ITH and (F-SC2)
14. sub-CAnd:

U:0;AF T <:7y O;AEFEc =

sub-CAnd
U:0;AF & < ea&ers

To prove: V(p,v) € [(c1&m1) oi].(p,v) € [(c2&e2) 01]

This means given some (p,v) € [(c1&71) o] we need to prove

(p,v) € [(c2&em2) oi]

From Definition [T5] we are given that
Ecain(pe) € notle (F-SCA0)

Also from Definition [15] it suffices to prove that
2t A(p,e) € [r20i]e

Since we are given that ©; A |=co = ¢; and . |= ¢q¢ therefore we also know that . = cot

49

Also from (F-SCAQ) we have (p,e) € [miot]e (F-SCA1)
H: [(n) ou] € [(72) 0¢]

Therefore we ge the desired from IH and (F-SCA1)
15. sub-familyAbs:

U:0,i:SFr<: 7
;0 F M\i:Sor <t Mi: S/

sub-family Abs

To prove:
Ve [\i:STol.fe[\i:ST ol

This means given f € [\ : S.7 ot] and we need to prove
fefri:S.1 ol

This means from Definition [L5| we are given
VI.f I€](r[l/i] o] (F-SFADbs0)

This means from Definition [I5] we need to prove

vI'.f I' € [7'[I'/i] o!]

This further means that given some I’ we need to prove
frelrl'/i ol (F-SFADsl)

Instantiating (F-SFAbs0) with I’ we get

fIelr[l'/i ol

From TH we know that [7r ot U{i— I' 1}] C[7/ o U{i — I' 1}]
And this completes the proof.
16. Sub-tfamilyAppl:

b-family Appl
U:0; A Mi: St I <:7[1/] A

To prove:
Y(p,T,v) € [Mi:S.71I ol].(p,T,v) € [r[I/i] ot]

This means given (p,T,v) € [A¢i : S.7 I o1] and we need to prove
(p,T,v) € [7[1/i) o1]

This means from Definition [I5] we are given

(p,T,v) € [A\i:ST] I o0

This further means that we have

(p,T,v) € f Iovwhere fIoL=1]r[I/i] o]

This means we have (p, T, v) € [7[I/i] o]

And this completes the proof.
17. Sub-tfamily App2:

b-family App2
U:O0;AFT[I/i] <t Ai:ST 1 SHbTAmIY PP

To prove: Y(p,T,v) € [7[1/i] oi].(p, T,v) € [Ati : S.7 I 0]
This means given (p, T,v) € [7[I/i] o] (Sub-tF0)
And we need to prove

(p,T,v) € [A\i:S.71 0l

This means from Definition [L5|it suffices to prove that
(p,T,v) € [Ai:S.7] I ot

It further suffices to prove that

(p,T,v) € f Iovwhere fIoL=1]r[l/i] o]

which means we need to show that
(p,T,v) € [r[I/i] o]
We get this directly from (Sub-tF0)

Lemma 22 (Expression subtyping lemma). V¥, 0,7, 7.
U:0F7<:7 = [roie C[r ole

50

Proof. To prove: Y(p,T,e) € [ot]e = (p,T,e) € [T oi]e
This means given some (p, T, e) € [7 ot]¢ it suffices to prove that
(p,T,e) €7 oi]e

This means from Definition [15| we are given

Vit <T,veliv = (p,T —t,v) € [o] (S-E0)

Similarly from Definition [L5]it suffices to prove that

V' <T,v'.e lpy v = (p,T —t,v') € [7 0/]

This means given some ¢’ <T',v’ s.t e i v’ it suffices to prove that
(p, T —t',0v") € [r' o]

Instantiating (S-E0) with ¢/, v" we get (p, T —t',v') € [1 0(]

And finally from Lemma 21| we get the desired.

Lemma 23 (T subtyping lemma). V¥, 0,T',Ts,0,¢.
U:0FT <: Ty = [[o!] C [Faeoi]

Proof. Proof by induction on ¥;0 - I'; <: 'y
1. sub-1Base:

——— sub-IBase
oI <.
To prove: V(p,T,v) € [T1ot]e.(p, T,7) € []¢

This means given some (p,T,v) € [I'10t]¢ it suffices to prove that (p,T,7) € [.]¢
From Definition [L6] it suffices to prove that
3f +Vars — Pots. (Va € dom(.). (f(z),T,7v(z)) € [L'()]e) A (XCreaom() f(@) <p)
We choose f as a constant function f/’— = 0 and we get the desired

2. sub-lInd:

x:7 el U0k <7 U;0FTI/x<:Ty
U:0F; <:T9,z:7

sub-1Base

To prove: V(p,T,7) € [T1ot]e.(p,T,7) € [T2,z: 7T]s
This means given some (p,T,7) € [['10t]¢ it suffices to prove that (p,T,7v) € [T,z : 7]¢

This means from Definition [I6] we are given that

3f : Vars — Pots.

(Vo € dom(T). (f(x),T,~(x)) € [['(z)]e) (L0)

(Zdeom(Fl) f(z) <p) (L1)

Similarly from Definition [T6] it suffices to prove that

3f" :Vars — Pots. (Vy € dom(Ta, 2z : 7). (f'(v), T,v(y)) € [(T2,z: 7)(y)]e) A
(Zyedom(r‘27gj;7—) f'(y) <p)

We choose [’ as f and it suffices to prove that

(a) Vy € dom(T'y, 2 : 7). (f(y), T,7(y)) € [(T2, 2 : 7)(y)]e:
This means given some y € dom(I'y, x : 7) it suffices to prove that

(f(¥),T,7(y)) € [r2]e where say (I's,z : 7)(y) = 72
From Lemma [24] we know that

y:mm EMAY,OFT <7y

By instantiating (L0) with the given y
(fW),T,v(y)) € [n]e

Finally from Lemma 22 we also get (f(y),T,7(y)) € [r2]e
And we are done

(b) (Zyedom(Fg,:v:T) f(y) < p)
From (L1) we know that (3_, c j,m(r,) f(2) < p) and since from Lemmawe know that dom(T's,x :
7) C dom(I'1) therefore we also have

(Zyedom(FQ,x:T) f(y) < p)
O

51

Lemma 24 (I" Subtyping: domain containment). Vp,~,I'1,T's.
U:OFTD <y = Voz:7e€lg.z: 7 el A0 <7

Proof. Proof by induction on ¥;0 FI'; <: 'y

1. sub-1Base:
—— sub-IBase
reokF-I <.
To prove: Ve : 7/ € (o7 €T1 AV;0F T <7
Trivial
2. sub-lInd:

z:7 el ek < T U0k /x <: Ty
U:0F <:Tg,z: 7,

sub-1Base

To prove: Yy : 711 € (Tg,x : 7). y: 7€ ANV, <7
This means given some y : 7 € (I'g, z : 7,) it suffices to prove that
y:7relT A0 <7
The follwing cases arise:
o y=u:
In this case we are given that z: 7/ e Ty AU;0 -7/ <: 7
Therefore we are done

oy £
Since we are given that ¥; 0 F I'y /o <: 'y therefore we get the desired from IH

Lemma 25 (Q subtyping lemma). V¥, 0,0Q,Qs,0,¢.
U:0FQ; <:Qy = [od] C[Q20]

Proof. Proof by induction on ¥; 0 F Q; <: Q9
1. sub-1Base:

sub-mBase

U:0FQ<.
To prove: V(0,T,9) € [Q10t]£.(0,T,0) € []e

This means given some (0,7,6) € [Q10¢]¢ it suffices to prove that (0,7,9) € [.]e
We get the desired directly from Definition
2. sub-lInd:

x:7 e ek <1 ;0RO /<y
U,0F 0 <t Qo,x:7
To prove: Y(0,T,9) € [Q10t]c.(0,T,0) € [Qz,2 : T]e
This means given some (0,7, 9) € [10t]¢ it suffices to prove that (0,7',0) € [Q2,2 : T]e

sub-mInd

This means from Definition [T6] we are given that
(Va: 7€ Q1.(0,T,0(x)) € [r]e) (LO)

Similarly from Definition [16] it suffices to prove that

(Vy: 1y € (Q2,2:7).(0,T,0(y)) € [ryle)

This means given some y : 7, € (Qg,z : 7) it suffices to prove that

(Ov T, J(y)) € [[TyHE

From Lemma [26] we know that 3r'.y : 7/ € dom(Q1) A U;0 7/ <: 7
Instantiating (LO) with y : 7/ we get (0,T,d(y)) € [7']¢

And finally from Lemma 22 we get the desired

Lemma 26 (2 Subtyping: domain containment). V¥, ©,Qq,Qs.
U:0FMN <:Qy = Vo:TeW.2: 7 e AT;0FT <i 7

Proof. Proof by induction on ¥;0 F Q; <: Qy

52

1. sub-1Base:

W sub—mBase
To prove: Vo : 7€ (Jax: 7T € QAV;0 7 <: 7
Trivial
2. sub-lInd:

x:7 e v:ekF7r <1 U0 RO/ <:Qy
U:0FQ <:Qo,z:7

To prove: Yy : 7 € (Qo,z:75)y: 7 € Q AT;0 T <7

sub-mInd

This means given some y : 7 € (Qq, z : 7) it suffices to prove that
y:7T e AT;OFT <7
The following cases arise:
o y=uo:
In this case we are given that
x:T e ANVOFT <7
Therefore we are done
oyt
Since we are given that U;0 - Q /z <: Qs therefore we get the desired from ITH

Theorem 27 (Soundness 1). Ve,n,n',7 € Type,t.
Fe:MntAely) v = n'<n

Proof. From Theorem [20| we know that (0,¢+ 1,e) € [Mn7]e

From Definition [[5] this means we have
V' <t+lelp v = (0,t+1—t'v) e [Mn7]

From the evaluation relation we know that e |}y e therefore we have
(0,t+1e) € [Mn7]

Again from Definition [15]it means we have
V' <t+1lely v = ' +p <0+nA @, t+1-t"v)e][r]

Since we are given that e |} v therefore we have
'’ +p <A1 v) € 7]

Since p’ > 0 therefore we get n’ < n

Theorem 28 (Soundness 2). Ve,n,n’, 7 € Type.
Fe:[n]1 =MOT Ae() sy — U}, v = n'<n

Proof. From Theorem [20| we know that (0,¢; +t2 +2,€) € [[n]1 — MO07]¢

Therefore from Definition [[5] we know that
Vi <t +to+2vellpv = (0,t1+ta+2—1t,v) €[[n]1 —-MOT] (S0)

Since we know that e () |}, — therefore from E-app we know that Je’.e {};, Az.€e/
Instantiating (S0) with 1, Az.e’ we get (0,t2 + 2, Az.¢’) € [[n]1 — MO 7]

This means from Definition [I5] we have

Vp' et <to 4+ 2.(p/ 1", €") € [[n]1]e = (0+p',t",e'[e"/z]) € [MOT]e (S1)
Claim: V¢.(I,¢, () € [[I]1]¢

Proof:

From Definition [15]it suffices to prove that

O bov = (L,t,v) €[1]1]

Since we know that v = () therefore it suffices to prove that
(I,t,v) € [U]1]

From Definition [15]it suffices to prove that
WP +I<IAP,)€ [1]}

53

We choose p’ as 0 and we get the desired

Instantiating (S1) with n, (),t2 + 1 we get (n,t2 + 1,€'[()/z]) € [MO0T]¢e

This means again from Definition [15| we have
V' <to+ 1.e[()/x] b vV = (n,ta+1—1,v") € [MOT]

From E-val we know that v' = ¢’[()/z] and ¢’ = 0 therefore we have

(n.t2 +1,¢/[()/2]) € [M07]

Again from Definition [15| we have

V' <to+1.e[()/x] I v = /0 +p <n+0A @, ta+1—-t,0") €[1]

Since we are given that e §;, — M;, v therefore we get
' +p <nA@,L0")e|r]

Since p’ > 0 therefore we have n’ < n

Corollary 29 (Soundness). VI',e,q,¢', 7, T, p;.
saslFe:[g1 —-MO[¢]T A
(o1, T,) € [T]e A
e()’y‘uh ’UtUZIQ’U/\
t1 +to <T
=
Ipu-(po, T —t1 —ta,v) € [r] A T < (¢+p1) — (¢ + po)
Proof. From Theorem [20| we know that (p;, T, e) € [[¢]1 — MO [¢'] 7]
Therefore from Definition [I5] we know that
VT'<T,veylr v = (p,T —T',v) €[[qg]1 —MO[¢] 7] (S0)
Since we know that e () {}¢, v; therefore from E-app we know that
Je’.e ly Av.e’ and €'[()/x] by ve st) +1] +1 =1
Instantiating (S0) with ¢}, Az.e’ we get (p;, T —t}, Az.€’) € [[¢]1 — MO [¢] 7]
This means from Definition [[5] we have
vp', T'< (T —t1),e.(p, T",€¢") € [lg)1]le = (p+p",T",€'[e"/z]) € [MO[q] 7]e (S1)

Claim: VT .(I,T,()) € [[I]1]¢

Proof:

From Definition [15]it suffices to prove that

VT'"<T,v.() drrv = (I, T —T",v) € [[I]1]

From (E-val) we know that 7= 0 and v = () therefore it suffices to prove that
(I,7,0) € [[1]1]

From Definition [15]it further suffices to prove that

'+ I<IA®@P.T,() €]}

We choose p’ as 0 and we get the desired

Using the claim we know that we have (¢, T —t; — 1,()) € [[q] 1] ¢
Instantiating (S1) with ¢, 7 —t} — 1, () and using the claim proved above we get
(e +¢,T =ty = 1,€'[()/2]) € [MO[¢] T]e

This means again from Definition [L5| we have
VT <T —t) —1.e'[()/z] 4 v = (o4 ¢, T —t) — 1= T1,v') € [MO[¢] 7]

Instantiating with ¢/, v; and since t; < T, therefore we also have t{ < T — /.
Also since we are given that e()y {¢, v¢, therefore we know that v’ = v;. Thus, we have
(pr+4q, T —t) —1—t],v;) € [MO[¢'] 7]

Again from Definition [I5] we have
Vot <T =t —t] = Log b v" = ' T+p <pr+a AT —t) =t —1—t5,0") € [[¢'] 7]

Instantiating with v, ty and since to <T —] —t/ — 1 and e {4, v¢ U;’Q v therefore we get
W J+p <pr+aghp,T—t) —t] —1—1t2,v) € [[¢'] 7] (S2)

54

Since we have (p/,T —t} —t/ — 1 —t2,v) € [[¢'] 7] therefore from Definition [15| we have
P +q <P APLT -t -t —1—tv) €[]} (S3)

In order to prove 3p,.(py, T —t1 —ta,v) € [T] A J < (¢+ pi) — (¢’ + py) We choose p, as pj and we need to
prove
1. (pll,T 7t1 — tQ,'U) c HTHZ
Since from (S3) we have (p},T —t} —t] — 1 —t3,v) € [7] and since ¢} + ¢t/ + 1 = t; therefore also have
(py, T —t1 — t2,v) € [7]
2. J<(qg+p)— (¢ +po):
From (S2) and (S3) we get
J<(p+aq)— (¢ +p))

O
A.5 Embedding Univariate RAML
Univariate RAML’s type syntax
Types 7 == b| LIt | (r,7)
A = 7 q/J T
Type translation
(unit) =1
(b) = lb
(L7r) = Fs.([o(g,)] 1@ L))
((ri, 2)) = ((ra) @ (7))
mBr) = (g1~ (n) —MO[g] (r=))
Type context translation
(-) = .
Cz:7) = (0),2:(7)
Function context translation T
z:r) = (E)z: ()
Judgment translation
ST et o~ 5 (E); (0D Feq: [q] 1 — MO([g'](7))
Definition 30. ¢(g,n) £ di<i<h (Ma; as defined in [16, [19]
Expression translation
unit unit unit
DI l—g*K () : unit ~» \u.release — = u in bind — = 5" in bind a = store() in ret(a)
base base ba,Se
S5 FIPET ¢ b s Aurelease — = win bind — = 1" in bind a = store(lc) in ret(a)
Kver . . KUar . N . var
Sz HIT x: T ~ Au.release — = w in bind — =1 in bind @ = store x in ret(a)
T A T € X(f)
app app
Yix:m l—q,tli{lapp f a7~ Au.Ey
q 2
where
Ejy = release — = w in bind — = 151" in bind P = store() in E;
E;, =bind fi = (f P z) in release fo = f1 in bind — = 152" in bind f5 = store f5 in ret f3
il = il nil
;0 Fg*K nil : LP1 ~ \u.release — = u in bind — = 1" in bind a = store() in bind b = store((a, nil)) in ret(b)

55

ﬁ: (plw"apk:)

cons R R cons cons

Siap i T,ae: LOPr Fg+p1+K cons(xp,xy) : LPT ~> Au.release — = w in bind — = % in By
where

Ey = ap;x.let{(x1,x2) =z in By

E; = release — = z7 in bind a = store() in bind b = store{(a, x, :: x2)) in ret(d)

K'mafN N + Km{lfc
ST h ey €0t v ear F=(propr) ST bt LOPT RIS G et v ean
match

SiTix: LPT l—g, match = with |nil = ey |h it eg: 7'~ M. Ey

where

FEo =release — =wuin Eyq

Ep1 = z;a.let{zy,22)) = ain Ey

E; = match x5 with |nil — Fs |h : l; — Ej3
Ey = bind — = 157" in Fy 4

E5.1 = bind b = store() in E}

El =bindc = (eq1 b) in 4

El | =released = cin Ef,
K?natN .

E}, = bind — =152 in B 4
El, ; = release — = 1 in stored
Es = bind — = 1+ in B3,
FE31 =release — = 1 in F35

E55 = bindb = store() in E3 3
Es3 = bindt =ret{(b,l;)) in E34
FEs34 = bindd = store() in B35
E3.5 = bind f = €42 din E3.6
FEs6 =releaseg = fin E3 7

E37 = bind — = 155" in storeg
E;I’,x:ﬁ,y:Tgi—g,e:T/wea T=7Y T2 T=T1 =T =1
7 7 Share-unit
DI DR elz/x,z/y] : 7"~ Ey
E() =)\uEl
E, =binda = coerce1 11 z inlet{{z,y)) =aine, u
coercer 11 : (1) — MO ((1) ® (1))
coercey 1.1 = Au.ret({!(),!())
Sih,x:m,y:nrLe: v ~e, T=m Y T2 T=T1=To=Db
! Share-base

ST z:7HL elz/x,2/y] s 7'~ By
Eo =)\U.E1

E, = binda = coerceppp z inlet{{z,y)) = ain e, u

coercer 1,1 : (b) — MO ((b) ® (b))
coercep pp = Au.let!u/ = u in ret((u/, ')

ZFx T, Y - 72}—,6 7! wea
= LPr" m = LPi7) = [P, ” =Y 1} D= pi+p2)
Share-list
E;I‘,z i I—Z, e[z/x,z/y] : 7'~ By

EO =)\U.El
E, = binda = coercer r, -, zinlet{(z,y) = aine, u

CoerceLﬁT7Lp-1’Tl7Lp—2T2 '(OTD —o MO GTID 29 (]TQD) —° (]LﬁTD —o MO (]Lp_iTll) ® (]Lp_éTQD
COETCer s, [vir, Lrsr, = fixfAg.Ae.letl g’ = gin e;z. let(p, 1)) = x in Ey

where

56

FEy = release— =pin E;

E; £ match [with |nil — FEsq |h:t— Ej
FEy.1 = bind z; = store() in Bz

Es.5 = bind 25 = store() in Ea 3

Eos 2 ret({(z1, nil), (2, nal))

Es 2 bindH =¢ hin Es;

Es1 2 bindo; = () in B3

Bz £bindT = f g (o4,t)) in Ey

E4 |et<<H1, H2>> =Hin E5

E5 |et<<T1, T2>> =T in E6

Ee = Tistpy.let((py, 11)) = tp1 in Bra

(1> 11>

1> 1>

Eq.1 £ To;tps. let((ph, 1)) = tpz in By
Er = release — = py in Er 3

Er7.3 = release — = ply in Fr 4

E7.4 = bindo; = store() in By 5

E7.5 2 bind 0y = store() in Fg
Eg £ ret((({o1, Hy :: T1)), (02, Ha = To)))

Sihr:m,y:ntle: v ~e, T=11Y T T = (Ta,Tp)

q

!
Ty

=(rem) 7m=(1.7)

1
Share-pair

ST z:7mHL elz/x,z/y] : 7'~ Eqy

EO =)\U.El

Ey = binda = coerce(r,), (v) (vt 7y % inlet(z,y)) = aine,
7o) —o!((m) — M

) £ A_g1.-A-g2.Ap. let{{p1, p2)) = pin Ey

Coerce(r, o) (1.7, (v) H(7a) — MO (75) ® (
coercer,
where
Ey £ Iet!gﬂ =g in E;

)5 (7857) (TE

u

0 () @ (') —o ((7a; 7)) — MO (75, 7)) @ ((

)

El é Iet'gé = g2 in E2
Ey 2 bind P] = ¢/p; in E3
E5 f bind P = ghps in E,
Ey = let!(phy, p1) = Prin Es
Es = let!{(py), pp)) = Py in Eg
E6 = ret«p/ll?pél»a <<p/127p/22>>
E;FFZ,B:Twea r< T
7 7 Sub
E;Fl—q,e:T ~ €q
Z;F,wzﬁl—g,e:Twea T{<:7'1
g Super
Uloimbye:T~eq
ST e:T e, q=p g-p=>q —p
Relax
T I—Z, e: T ~ No.Ey
where
Ey =release — = oin Ey
E; = binda = store() in Es
E2 = bindb:ea ain E3
FE3 = releasec = b in storec
ST |_Q*Kia . ST . |_1’* éd .
L1 Fp €1 : 71~ €a1 2T e €251 €a2

Let

NiTy, Tl letz =€ iney: 7~ Ey

where
Et =)\UEO
Ey =release — = u in F;

let

E; = bind — =151 in B,
E5 = binda = store() in Ej
E3 = bindb = €q1 A in E4

57

E4 =releasex =bin Ej

E5 = bind — = 152" in B
Es = bind ¢ = store() in E7
E7 = bindd = €q2 C in Eg

FEg =release f = d in Ey

Eo = bind — = 155" in By
FE19 = bind g = store f inretg

- pair
cpair
w1 T, 20 1 T I—g"‘ (z1,22) : (T1,72) ~ Ey
where
Et =)\qu
Ey =release — = uin £
. pair
E, = bind— =1¥ in By
E5 = bind a = store(z1,z2) in reta
)) g—KmatP .
T =(71,72) D3N B R P) Fq,+K1£n,atp6~T ~ e
matP
. !
50w o7] match x with (z1,22) = e: 7' ~ Ey
where
E; = \u.Ey
Ey =release — =wu in F;
. matP
E1 = bind — = TKl n EQ

E2 = |et<<l'1,l‘2>> =xin E3
E5 = binda = store() in E4
E4s=bindb=-¢;ain E5

Es5 =releasec =bin Eg

Eg = bind — = 52" in B,
FE7; = bindd = storec in retd

E;FFZ,@:TWBG

: L.
Ulao:m b, e:m~weq

Augment

A.5.1 Type preservation

Theorem 31 (Type preservation: Univariate RAML to A-amor). If ;T I—Z, e : 7 in Univariate RAML
then there exists € such that 3;T l—g, e : T ~ € such that there is a deriwation of .;.;.;(X),([T) F € :
[q)1 — MO ([¢'](7)) in A-amor.

Proof. By induction on ¥;T° Fg, e:T

1. unit:
K unit -) P - unit
3. HIt () : unit ~ Au.release — = v in bind— =7 in bind a = store() in ret(a)
Ey = \u.release — = w in bind — = TKUM in bind a = store() in ret(a)
By = release — = w in bind — = 15£"""" in bind a = store() in ret(a)

To = [q + K] 1 — MO ([g](unit))
Tl — [q + Kunzt];l_

T> = M(q + K*"") ([q] 1)

To1 =Ml(g) ([q] 1)

T3 — MKunzt 1
Ty =MO([g]1)
T5 =Mq([q] 1)
D1:
55 (X); . b ostore() : T s (X);a g1 ret(a) : Ty
55 (%); . F binda = store() in ret(a) : T
Do:

g (X); - F TKWM :Ts

58

DO0.0:

Do D1
— T-bind
AR . ind — = In binda = store() Inret(a) : 1o
Y)); . F bind A5 in bind i T
Main derivation:
T-var DO0.0
sasEhuTiFu:Th
T-release
g Xu Ty EE Ty
T-lam
a5 (2); . F Eo: To
. base:
ame ame base
;. FOFE ¢ b v Auerelease — = win bind — = 5" in bind a = store(lc) in ret(a)
Eo = \u.release — = win bind — = 15" in binda = store(lc) in ret(a)
Ey = release — = win bind — = 15" in bind a = store(lc) in ret(a)
Ty = [q+ K" 1 — MO ([g](b))
T1 — [q_|_ Kbase} 1
Ty = M(q + K***°) (q] Ib)
121 =Ml(q) ([g] 'b)
T3 — MKbase qll)
Ty =MO([q] 'b)
T5 =Mq ([g]!b)
D1:
554 (2); . Fstore(le) : Ts g (E);ac[q] b ret(a) : Ty
5 (X); . F binda = store(lc) in ret(a) : To
Do:
saa(X); - F TKb(m T3

DO0.0:

Do D1

T-bind

5.3 (2);. - bind — = 15" in bind @ = store(lc) in ret(a) : Ty

Main derivation:

T-var D0.0
gy Fu:Th
T-release
sas(Ehu Tk By Ty
T-lam
gaa(X);-FEy Ty
. var:
var var ar
SixeT l—g'”{ x 27 ~ Au.bind — = 157 in ret(x))

Ey = \u.release — = w in bind — = TKWT in bind a = store x in ret(a)

E) = release — = w in bind — = 15" in bind a = store z in ret(a)

Ty = [q¢ + K"*"]1 — MO ([g](7))

T1 — [q—FKUGT} 1

Ty =MO([g + K**7](7))

Ty = M Kve" qll)

Ty = MO ([g)(7))

T5 = Mq ([g]())

D1:

(XD (7) b ostorex : T 5 (E);ac [q] (1) Foret(a) : Ty
5 (X); 2 () F binda = storex in ret(a) : T
DO:
g ()i (o) F AR Ty
DO0.0:

DO D1

a T-bind
g (2D : () F bind — =157 in bind a = storez in ret(a) : Ty

59

Main derivation:
T-var DO0.0

gaa@huTiFu:Th
gas Bz (r)u:ThEEy Ty

T-release

T-1
gaa(X);a s (T)F B T am
. app:
sl q/g 7'2 e X(f)
K app
Yix:m F Kapp fx:m~ Au.Ey
where ’
Ey = release — = w in bind — = 151" in bind P = store() in E;
Ey =bind fi = (f P) in release fo = f1 in bind — = 152"" in bind f5 = store f in ret f3
E11 = release f = f1 in bind — = 152" in bind f3 = store f» in ret f3
E1 .5 = bind — = 152"" in bind f5 = store f5 in ret f3
FE4 3 = bind f3 = store f5 in ret f3
Fy 4 = store fo
Ei5=retf3
Ey1 =bind— =151 inbind F = f in E;
To = [¢ + K7""]1 — MO ([¢" — K3™]())
Toa = ¢+ Ki"P]1
To2 = MO ([¢' — K3"")(m2))
Ty =M(q + Ki") 1
Tio =MO[q — K3 (m2)
T> = M(K{™)1
T3 = M(q) (72)
Ty =Mq ((r1) — MO[q'] (72))
Tya = ((r1) — MO[¢] (=)
Ty2 =MO[q] ()
Tys =lq'] (]T2D
Tys = M(q — K2P)[g' — K2P) (r2)
Tyar = M(d)qd — K3 (ma)
Tys = [q — K3 (m2)
Tye =MO[g" — K3""] ()
D2.3:
s () foi (re) F Era: Taa s (X)ifs i Tus - Ers:Tae
oy ey ey (IED, f2 . (]Tg[),fg . T4.5 " E143 . T4.4
D2.2:
D2.3
g (X); - G M K3*P 1
saa X fei () F Erg: Tyus
D2.1:
D2.2
ey ey es (]ZD7,f1 . T4_3 }_ f1 N T4_3
s (X)ifriTus - Erg i Tho
D2:
D2.1
sz (), P:[gltf Pa:Tys
g @z (n),PilgllE Ey:Tho
D1:
D2
5o (2); . - store() : Mglg] 1
()2 (7)) F bind P = store() in By : 11 5
DO:

D1

saa(S)ia s (r) F AT Ty
sas(Ehz i (n)F Eoq:Tha

60

Main derivation:
T-var D0

gaa(XE)u:Tor b u:Toa
.;.;.;QZD;Z‘ZQ DU'T()l}—E()'TOQ
S (B (n) F AuEy < Ty

. nil:
nil = il nil
S50 FEET nil : LPT ~» Mu.release — = w in bind — = 15" in bind a = store() in bind b = store((a, nil)) in ret(b)
Ey = \u.release — = w in bind — = TKW in bind a = store() in bind b = store((a, nil)) in ret(b)
E1 release — = u |n bind — = 15" in bind a = store() in bind b = store({a, nil)) in ret(b)

= bind— = """ in binda = store() in bind b = store({a, nil)) in ret(b)
E3 = bind a = store() in bind b = store({(a, nil)) in ret(b)
E, = bind b = store((a, nil)) in ret(b)
E5 ret(b)

Ty = [q+ K™ 1 — MO0 ([q] 3n.¢(p, n) @ list[n](r))
T =[(g+ K"™)]1

= MO ([g] 3n. [¢(p,n)] 1 © list[n](r))
T3 = M(q+ K") (lg] 3n. [¢(p.n)] 1 @ list[n](r))
T4 — MKml 1
T = M(q) ([g] Fn- [¢(P, n)] 1 @ list[n] (7))
Ts.1 = ([q] 3n.- [p(p,n)] 1 ® list[n](7))
Ts = M(0) (lg] 3n. [¢(P, n)] 1 @ list[n] (7))
D4:
¢(p,0) =0
5a5(2)a:[0]1Fa:[0]1 555 (E);a:[0] 1 F ndl : list[0](7)
B (]ZD,a :[0]1 F (a, nil)) : Tg[0/n)
5 (E);a[0]1F (a,nid) : Tg
D3:
G (Z);0:Tsa - Es : T
D2:
D4 D3
555 (X);a:[0]1 F store((a, nil)) : T;
s (E)a:[0]1F By T
D1:
554 (2); . F store() : MO[0] 1 bz
gaa(X); - F By T
DO:
nil Dl
g () FAET Ty
gaa(X); F Ee: T
Main derivation:
DO
sasEhuTiFu:Th
gaaEhuTiEEy T
gaa(X); - Ey Ty
ﬁ: (plv"'7pk) cons
Yixp T, Ty L@, I—Z+p1+Kwns cons(xp,xy) : LPT ~> Au.release — = w in bind — = TKCOHS in Eo
where

61

Ey = zy;z. let{(zq, z2)) =z in By
E, = release — = x in bind a = store() in store((a, zp, :: z2))

To = [q+p1 + K1 — MO ([q] 3n'. [p(5,n)] 1 @ L™ (7))
T1 — [q+p1 + Kcons] /

T, =MO([g] 3. [o(p,n)] 1 & L" (7))

Ty =Ml(q + p1) (lg] 3. [o(P,)]1®§"GD)

MI(
Tho =M (q+p1+¢(<1P7))(H @ n")] 1@ L™ (7))
ngf ()(H " o(p, ')}1®L”(ITD)
Tz.s—[(/)]1®L”(ITD
Ts = [(p1+ o(<p,5))] 1
T; = 3s.([p(<p, 5)] 1 @ L*(7))
Tin = ([p(ap,)| 1 @ L*(7))
Ti2 = [p(<p) 8)] 1
TZB—LS(ID
D1.4:

38 Ny (B)szn : (7), e i Tisya: Ts F (a, oy = ma) : Tos[(s+ 1) /0] s:NFs+1:N

38 Ny () zn (7)), 22 Tigya: Ts b (a,xp i xa)) : Toy

58 Ny (XD c (1), 22 2 Tig,a: Ts b store{(a, zp, 2 22)) : Tos

D1.3:
= — D14
58 Ny (E); . store() : Mi(p1 + ¢(<p, 5)) [p1 + ¢(<p,)] 1
58N (2); 2 0 (7)), 22 2 Tis F bind a = store() in store((a, xp, = 22)) : Tao
D1.2:
D1.3
s Ny (B)sa c Tie b2 Tie
58 Ny (2D an (1), 21 Tioyxe : Tis b Eq 2 Toq
D1.1:
D1.2
5Ny (X Th ko Ty
38 No G (2);2n : (), : Ty B let{(zy, o) = xin By : Ty
D1:
D1.1
g (X)e Tk T
gaaa(E)an (), ze: Ti b Eg : Tog
DO:

D1

SEERL
s (X);en (7)), 2 s Ty B bind — = M 0 By« Toq

Main derivation:

DO

ST Fu:Ty
g (S)izn : (7)), 2 : Ty, w: Ty - release — = win bind — = 15" in By : T
s (X);zn (7)), e s T B Au.release — = win bind — = A i By 1 Ty

. match:
T I—Z fjg::jvw e1: 7 ~ eq
F=(p1-op) ST hirt: LEPr Mg;mfjf’;“c ey 7~ ey
;T2 LPr], match @ with [nil = ey [hit = e 17/~ N Eq match
where
Eg =release— =uin Ey1

Eo1 = z;a.let{(z,22) = ain By
E; = match x5 with |nil — Es |h 1y — Ej

matN

E5 = bind — = %1 in By 1

62

E5.1 = bindb = store() in E}
El =bindc = (eq1 b) in
E}, =released =cin Ej,

matN

— 4K H /
El 5 = bind — = 12 in B 5
El 5 = release — = x7 in stored
matC
Es3 = bind — = %1 in E31
E3.1 = release — = I in E3,2

Es5.2 = bindb = store() in E3.3
FEs3 =bindt = ret((b, lt>> in F3 4
E5.4 = bindd = store() in E3 5
E3.5 = bind f = €42 din E3.6
Esg=releaseg = fin E37

Es.7 = bind — = 152" in store g

To = [g]1 — MO([¢"] (7))

Ty =[q]1

T =MO([g'] (7))

Too =Mq ([¢'] (7))

To1 =Mq([¢'] (7))

To10 = M(q — K1) ([¢'] (7))

Ty11 = M(q — K1) ([¢'] (')

Ty12 = M(q — K{**N) ([(¢ — K™*N)] 1)
Toas = ([(g — K™N)]1)

T3 = M(q — K" +p
T30 =Ml(q — Kmatc +
T3.=MOg'] ()

T35 = M(q + K5) [¢'] (')
Tyo=Ml(p(ap,i)) 1

%H

Ty10=MO0Ty 1

Tya =35 .([($(<p,)] 1 @ L (7))
Tya1 = ([(¢(<ap,)] 1 @ L(r))
Ty12 = ([(¢(<p,))]1

Ty13 = L*(7))

Tyo = Ml(q — k¢ + p1) [(q — k¢ + p1)] 1
Ty3 =MO|[(¢ + K5"*)] (7)

Tya = [(¢ + K3)] (7)

T, = [plap,)] 1 |

T. = 3s'.([¢(<p, s")] 1 @ L* (7))

Ty =lg— K¢ +pi]1

Ty =Tyq

Ty = (7)

Tz = 3s.([¢(p, 8)] 1 ® L*(r))

1) = ([¢(p,s)] 1 @ L*(r))
Tll = [(E]ﬁl) s)|1

Tls 3y ([¢(<p, s)] 1 @ L¥ (7))
Tiy = L'(7)

Tzhl [KmatN] 1 — MO ([q/ + KénatN] (]T/D)
Tinia = MO ([¢" + K5V (7))

Tin12 = ([¢' + K5V (7))

Tinz = lg+p1 — K€ 1 — MO ([¢' + K5 (7))
Tin21 = MO ([¢ + K5 (')

D3.8:

58,458 =i+ 1;(Z);9: T, - storeg : M [¢] (7)

D3.7:
Es5

ssyiss =i+ 1 (S);. FHEETT MKpeCl

38,5 s=1+1(X);9: Ty Es7:Ts3

63

D3.6:

D3.5:

D3.4:

D3.31:

D3.3:

D3.2:

D3.1:

D3:

D2.32:

D2.31:

D2.3:

D2.22:

D2.21:

D2.2:

D2.20:

D2.1:

Es7

s, s=1+1L(X); f Ty f: Ty
58,0 s =1+ 1(X); f: Ty b Ese: T30

E-
a8, s =14+ L, (2); (O),h: (7),t: Teyd : Ty eqad:Tys 36
3848 =14+ 1 (2); (O),h: (7),t:Te,d: Tab Esz5: T34
E
ssyips =i+ 1;(5);. - store() : Ty 55
73711 s=1+ 11 (]El)a OFDah : GTDat : Tc F E3.4 : T3.1
S5y s =i+ 1 ()il Ty b Ty - (0 1) Tans
g8t s =a4 1 (2);le : Tia, b Tp - (b, 1) : Tua
D3.31
D34

38058 =14 1;(X);le : Tha,b: Tp Fret(b,1:)) : Ta10
g8 =14+ L (X); (T),h: (7), 1 : Tia,b: Ty - Esg: T51

D3.3

58,08 =14 1;(X);. - store() : Tyo
38,08 =04+ 1 (X); (O);h: (7)1 : Tia b Eso: T3

D3.2

58,48 =1+ 1 (E)sar T b2y 0 Ty
58,038 = 04 1 (5); (O), 21« Toas hos (7,0 - Toa = Bz Taao

D3.1

.;S,Z.;S:’L'-I—]_;(]ED;,I—TKI”MC :MK{natC]_
gsiys =4+ 1L (2); (0D, 21 : Ty, b (7)), b s Tia - Bzt Toy

388=0;(X);x1: TnbFay:Th 5838 =0;(X);d : (') +- stored :

388 =0;(X);21: Ty d: (T') F By 5 Too

D2.32

matN
K2

588 =0;(2);. F 1 M KN 1
388 =0;(X);z1: T, d: (7)) F Byt Tz

D2.31

5838 =0;(E);c: Tinia b c: Tinta
5838 =0;(8);21 : Tnye: Typo b By o T

588 =0;(2);b: To13Fb:To13

5858 =0;(X); (C) F ear : Tina

D2.21 D2.22
3838 =05 (2); (T),b: To3 Feq1 b: Tipia

D2.2 D2.3
5838 =0;(2); (O), 21 : Tya,b: Toas - ES : Th

D2.20
5838 =0;(X);. F store() : To.12

585 =0;(X); (D), 21 : Tin - Eaq : Ton

64

D2:

matN D2‘1
sss = 0;(X);. F 5T ‘M KeN 1
5858 =0;(2); ()21 : Tin b Ey: Tog
D1.1:
D2 D3
5855 (B Tio g« T
585 () (O), 2y« Tyy, o : Tio = By Tog
D1:
D1.1
38 (E)a: T/ Fa:T)
385 (2); (1), a: T F let{(xq,2)) = ain By : To
DO:

D1

sas(Ehe T Fa:T
g (X)), T - Eoq:Ton

Main derivation:
DO

g (X)), Tyu:-ThFu: Ty
s (Z)),z Tyu: Ty F Ey: Ts
s (XD (D)2 T - AuEy - Ty

. Share:

E;l—‘,x:Thy:Tg}—g,e:T/wea T=7Y T2 T=T1=To=1
ST,z 1Ry elz/,2/y] - 7'~ Eo

Share-unit

Eo = \u.E;
Ey = binda = coercey 1,1 z inlet{{z, y)) = ain e, u

To =[] 1 — MO ([¢'] (D)
D1:

S (2 (Msw (@ 1,2 (m),y: (=) Feq: To g (E)u:fglblu:gl
(2D (@), (gl 1,z : (T1),y: () Feq uw:MO[g]1

DO:

e (e) Fa () o ()

555 (B0 (0w gl La: () @ (7)) Flet{(z, y) = ain eq u: [q] — MO[q] (')

Main derivation:
Dcl

gz ()2 (1)
G (B)sz s () Foeoercernq z: MO (1) @ (72))
554 (2 (0D, 2 < (), w: [q] 1+ Eo : MO [¢'] (')
S (2D (0D, 2 (1) F AuwEy 2 Ty

DO

coercey1a : (1) — MO ((1) ® (1))
coercey 1.1 = Au.ret((!(),!())

Teo = (1) — MO ((1) ® (1))
Ty =MO((1) (1))

Dcl:

5555 E L0100 Te
geagsus (1) (0100 Teo
gagaus (1) Fret0,10) : Ta
g B Auret{(10,10) : Teo

65

E;F,;L‘:Tl,y:Tg}—g/e:T/wea T=mY T2 T=T1=T2=Db
ST z:7HL elz/x,2/y] : 7'~ Eo

Share-base

EO = /\uE1
Ey = binda = coerceppp 2z inlet{(z,y)) = aine, u

To =[] 1 — MO[q'] (')
D1:

S (2 (Msw (@) 1,2 (m),y: (m2) Feq: To g (E)u:fglbu:gl
(2D (@) (gl 1,z s (T1), v () Feq uw:MO[g]1

DO:

e () e) Fa () o)

(2D (@), (g, a: (1) @ (m2) Flet{(z, y) =aineq u:[g] — MO[q] (')

Main derivation:

Dcl
¢ g @)z ()2 (1) Do
5 (X2 (7)) Focoercen pp 2t MO ((11) @ (72))
353 (505 (T, 2 2 (), w: [q] 1+ Eo : MO [q'] (')
S (2D (0D, 2 (7)) F A By Ty
coercep b : (b) —o MO ((b) ® (b))
coerceppp = Au.let!u’ = win ret({(lu/, u'))
Teo = (b) — MO ((b) © (b))
Te1 =MO((b) @ (b))
Tez = (b) © (b))
Dc2:
gaau tbr (WY s Tes
gaau by Eret((l Y) T
Dcl:
Dc2
gagauclbEwu:lb
gggaus (b) Flet!u =win ret{(lu/, ') - Ty
g F ety = win ret((M/)) - T
SiTw:im,y:mbl et we,
T=LPr" o =LP7) m=LP =17 F=pi+ 0 _
7 S Share-list

ST zirhg elz/z,2/yl i 70~ By
EO =)\uEl
E, = binda = coercer r, , z inlet{(z,y) =aine, u
To = [q]1 — MO([¢'] ("))
D1:

s (Z) (), w (@) Lx: (1), (m2) Foea s To saa(X)u:fgllu:[gl
(2D @)y u: (gl 1,z e (T1),y: () Fequ:MO[g]1

DO:

i (e e (e @)

55 (505 (0D, w s [g) La: () @ (72)) Flet{(z, y)) = ain eq w: [g] — MO[q] (')

Main derivation:

DO

g (X);z 0 () Focoercer ry 2 MO ((T1) @ (72))
5 (D (0D, 2 2 (),] 1 Eo : MO[g] (7
5 (2D (0D, 2 (7)) F By Ty

)

66

COCTCe L3y 17 7y 175y (7) — MO (1) @ () —o (LP7) — MO (LFimy) @
fi

COETCe s, [wiy, [rsgy, = fiXf.AgAe. let! g’ = gin e;z. let((p, 1)) = x in Ey

where
A .
Ey = release— =pin E;

Ey £ match [with |nil — Eyq |h it E3
FE5.1 = bind z; = store() in Eq»

FEs.5 2 bind 2, = store() in Eo3

Eag 2 ret{(((z1, nil), (22, nil))
Es2bindH =¢' hin F3

FEs31 2 bindo; = () in Ez

Ezo 2 bindT = f g (o, t) in E,

E4 £ let{(Hy, H2)) = H in Es

Es 2 let(Ty,Ty) = T in Eg

E¢ = Ty;tpy. let(p), 1)) = tpy in Ery
Er7q 2 Toitpo. let((ph, 15) = tpy in Ero
Er. = release — = p) in E73

Er.3 = release — = p) in E74

E7.4 2 bindo; = store() in Er 5

FE7.5 = bind 0y = store() in Eg

Eg = ret{({o1, Hy :: Tv)), ({02, Ho == To)

—o (LP7) — MO ((LPi71) @ (LP273))

T3.11 = M(o(<p,s — 1)) ([(¢(<p, s —1))] 1)
T3.12 = [(¢(<p,s — 1))]1

Ty = MO ((r1) ® (r2))

Ty = ((m) @ (7)))

7, = MO (L% 7} © (L751s)

Tsa = (L1 @ (L272)) ,

Tsp = (L1 = 38/1([¢(<}p_i» s 1 @ Lo (m))
Ts5.21 = ([¢(<pi,s1)] 1 @ L1 (m1))

T5.00 = [¢§<1p_i7 s1)]1

Ts.23 = L1 (m1))

Ts.3 = (L727)) = 3s5.([p(<p2, 55)] 1 @ L= (72))
Ts5.31 = ([¢(<p2,55)]1 ® L L (m2))

67

quE TZD

T5.32 = [ﬁb@}?_éasé)] 1

T5.33 = L2 (12)

Py =p1 L1 +o(<pi, 1)
(

Te =MDP ([A]1)

Ts1 = [P1]1
Tr =M P ([P»]1)
T7,1 = [P2]1

Ts.o = M(F h1) (L7 1) © (LP273)
Tg1=M(p 1 +P1) ((LP11) ® (LP>72))

Ty2 = M(P b1 +P1 + P2) ((LPim) © (LP21o))
Ts3 = M(p2 41 +P2) (L7 7)) ® (LP273))
Tsa = MO ((LP'71) ® (LP272))

Tg.ar = (L) @ (LP27o)

T35 = (LP'7)

Ts.51 = 3s1.([¢(pi, 51)] 1 @ Lls1](m1))

Ts52 = ([0(pi, $1)]1 @ L1 (7))

Ts.6 = (LP?1)

Ts.1 = Fs2.([¢(p2, 52)] 1 @ L[s](72))

Ts.62 = ([0(p3, 55)] 1 ® L*2(r2))

D1.82:
85, 81,859 T, f : To; Ha : (m2),15 : Ts.33,02 : Trq = (02, Ha :: 1) : Ts 62
85,81, 859 T, f : To; Ha : (m2),15 : Ts.33,02 : Trq & (02, Ha :: 1)) : Ty61
D1.81:
85,81, 8 9 Ty, f : Tos Hy : (1), 15 : Ts.03,01 : Toq = (o1, Hy 2 11)) = Tes2
85, 81,8559 T, f Tos Hy : (m1), 15 : Ts23,01 : Te.r F (01, Hy = 13) : Teos1
D1.8:
D1.81 D1.182
85, 81,8559 T, f : To; Hy : (m1), Ha : (72,1 : Ts.03,l5 : Ts.33,01 : Te.1,02 : Trq b
({01, Hy = 11), (02, Ha 22 13)))) : Ts.n
85, 81,8559 T, f : Tos Hy : (m1), Ha : (72,1 : Ts.03,15 : Ts.33,01 : Te.1,02 : Trq b
ret(({(o1, Hy 2 11)), (02, Ha :: 15)) : Ts 4
i 8h, 81,859 T, f : Tos Hy : (1), Ha : (7)), 1y : Ts.03,15 : Ts.33,01 : Te.1,00 : Tra - Eg : Ty y
D1.75:

D1.8

585,81, 85.59 11, f: To; . + store() : T

.;8/2,81178; .;g/ : T1/7f : To;Hl . (]Tll),HQ : (]TQD,I/l : T5,237l12 : T5,33,01 : Tg_l F bind 09 = store() in Eg : Tg_g

s 8hys1ys g Y, f i Tos Hy : (1), Ha = (m2), 05 : T3,y : Ts.33,01 : Toa b Ers : T s
D1.74:
D1.75

85,81, 859 T, f: To; . b store() : T
5 85,81,8 9 Ty, f :Toy Hy : (1), Ha = (72),15 : Ts.23,15 : Ts.33 - bind o; = store() in E75: Tg.o
3 8y,81,8.59 T, f 2 Tos Hy (1), Hy < (72, 1] Ts2s, 15 : Trss = Ery : Tso

D1.73:
D1.74
85,81, 8559 T1, f < Tosphy - Tssa - ph : T
585,80,8 59 T, f: Toy Hy 2 (1)), Ha < (), 1]« Ts.23, 05 Ts.32,15 : Ts.33 F
release — = py in Er4: T3
89,80, 8559 T f c Tos Hy < (1), Ha < (m2), 11 < Thoo3, 05 : Ts.32,05 : Ts.33 F B Ty
D1.72:

D1.73

-551275/1,35 a9 Tllaf : To;Pll 1 T5.20 }‘P/1 1 T5.22
589,81, 859 T, f < Tos Hy = (1), Hy < (m2), p 05 5 ph : Thsa,ly : Thas -
release — = p) in Fr3:Tg
85, 81,8 59 Ty, f 2 Toy Hy < (m), Ho < (m2), p) 5,05 505 : Trso, 0y : Trss b Era: Tao

68

D1.711:
D1.72

89,81, 859 1, f : Toitpe : T F tpa : Th 31
89,81, 8559 Ty, f + Tos Hy < (1), Ha = (m2),) : T2, 15 : Th03,tp2 : Ts31 b+
|et<<p’2, l/2>> = tpg in E742 : Tg.o

D1.71:
i — D1.711
581,859 T, f i To;Te : Ts3 T 1 Ts3
syysi g Ty f Tos Hy 2 (1), Ha : (m2), To : Ts.3, 0 : Ts.00,05 : Ts.03
To; tpo. let{(ph, 15) = tpyin E75: Tg o
a8, 8559 T f 2 Tos Hy (1), H < (m2), To : T3, pY < T2, 15 : Ts.03 = E7 : Ty
D1.61:
: — D171
5818509 Y, f i Tostpr : Tso1 Etpr i T
s8hysiag Ty f Ty Hy 2 (), Ha 2 (), T : Ts.3,tp1 = Ts.01 b let({(py,11) = tp1 in E7 : Ty
D1.6:
38iag T f i To;Th i TsobTh: Tso DLé6L
s8359 T f Tosp: Tho, Hy o (i), Ho 2 (7o), Ty : T2, Th : T3+ '
Ty;tpy. let((p),11) = tp1 in E7 : Ty o
gsiag T f i Toy Hy : (1)), He 2 (m2), Ty : Ts2, Ty : T3 F Eg : Teo
D1.5:
38iag T f i To;T :Tsa HT:Tsq D16
gsiag T f i Toyp:Tho, Hy : (1), Ho : (o), T : Ts.1 b let{(Th, To)) = T in Eg : Tgg
589 T f i Tosp:Thoy Hy o (i), Hy : (2), T : Ts1 = Es5 : Tso
D1.4:
o D1.5
as;ag Iy f T H Ty b H:Tyq
58iag T f i Tosp:Tioy H :Tyq, T :Tsq b let{(Hy, Ha)) = Hin Es : Ty o
5859 T{»f Tosp:The, H :Tya, T:Ts1F Ey:Tgo
D1.3:
T 1 D14
g8 g T f Tt LP7 (1), 00 : Ts12 F f {0,) : T5
8509 T f Tosp: Thoy H: Tyq,t: L7 (1), 00 : T340 F bind T = f {{0s,1) in By : Ty
D1.21:
a8 g Ty f - To;p:Too h: (7).t : L8 1(r) F store() : Ts.11 Db13
asiag Ty f i Toip:Tio b (7),t: L5 (1) - bind o, = store() in Ez : T34
a8 g Ty f i Tosp:Too h: (r),t: L) F Esq : Ty g
D1.2:
gsiag T fiTosh: () FEg h:Ty D13
a8 T f i Tosp:Toioyh: (r),t: L Y(r) Fbind H =g hin E3 : Ts4
a8 g T f :Tosp:Too h: (r),t: L Yr) F Es: T,
D1.14:
gsiag T, f:Toy 22 [0]1F 22 : [0]1 asiag T f Tos 20 1 [011 F nal : LO(m)
8559 Ty, Tos 20 : [0] 1 F (29, nil)) : ([0]1 @ LY(7a))
g8 T f i Tos 22 : [0] 1 F (22, nal)) : 3s'.([s'] 1 ® LSI(]TQD)
D1.13:

38ag T f i To;21 1 [0]1F 2 :[0]1 a8 09 Y, f:Tos 21 : [011 F nal : LO(m)
8359 T f 1 Tos2n 2 [0]1F (21, mal)) : ([0]1 ® LO(n))
ssiag T f i Toyz : [0]1F (21, nil)) : 35 .([s') 1 @ L (1))

69

D1.12:
D1.13 D1.14

389 T f :Tos21 0] 1,20 : [0) 1+ ({21, nal)), (22, nil))) : Ts.0
g8iag T f i Toy 21 0 (0] 1, 22 1 [0] 1+ ret(((21, nal)), (22, nal))) : T
g8 g T, f:To; 21 :[0]1, 20 : [0] 1+ Eg3:Ts

D1.11:

3859 1Y, f : To;. b store() : MO[0] 1 D112

5839 T, f: To;21 : [0] 1+ bind 2o = store() in Eq3: Ts1
35839 Ty, f:To;21 1 [0)1F Eag: T3

D1.10:

589 Ty, f + To;. b store() : MO[0] 1 DL

58359 T4, f: To;. F bind z; = store() in B0 : T3

gsiag T f i To; b Eaq:Tsq
Py — D110 D1.2
g8y Ay, f i Tosl:TisH1:Ths
589 T, f : Tosp:Tha,l: Ty g = match [with |nil — FEy |h it E3: T3,
DO0.3:
5850 T f i Tosp: Tia b piThs 1
589 T f i Tosp:Thol:Tigtrelease— =pin By : T
58559 T, fTosp:Tia,l: Tt Eo: Ty
DO0.2: _ D03
as;ag I f T e Ty o T

gsiag T f i Tose Tog Flet{{p, 1) =z in Eg : T3

DO.1:
g Ty f i To e (LPT) Fe: (LPT) Do.2
guag T f i Tose: (LPT) Fe;a.let(p, 1)) =z in By : T3

DO:

D11

el iTog:Tikg:Th
gaafiToig:Ti,e: (LPT) Flet!g = gine;x.let{p,l)) =z in Ey: T3
gaafiToig:TiE delet!g' =ginex let(p,l) =xin Ey: T
gaafiTo . FAgheletly =ginez.let{p,l) =z in Ey: Ty
g Efixf g e let! g’ = gin ez letp,1) = x in Eg : Ty

q,e:r’wea T=7Y T2 T=(Ta,Tb) 71:(7',;,7'(;) 7'2:(712/’7';/)

il :m,y:m l—q
ST z:7mHL elz/z,2/y] s 7'~ By

Share-pair

EO =)\UEl
Ey = binda = coerce(r, 7,) (v). (2 71y Z 1N let{(z,y) =aine, u

To = [q] 1 — MO ([¢'] (7))
D1:

S (2w (@) 1,2 (m),y: (2D Feq: To g (E)u:fglbu:gl
(2D (@) (gl 1,z : (T1), v () Feq uw:MO[g]1

DO:
D1

g5 (E)sa s ((m) @ () Fa: (1) @ (7))
55 (D (0D, w s [g] L a s () @ () F let{(w, y) = aineq u: [q] — MO [q] ()

70

Main derivation:

DO

S (]ED, A (]TD [COETCE(1, 7y, (72, L), (T2) 2 ° MO ((]7'1[) ® (]TQD)
G (20 (@), 2 s (7D, us [g)1 - Eo : MO[q'] ()
g (2D (0D, 2 2 (7D F Auw.Ey : Tp

COET’CG(TG7.,.b))(.,.é77.b)7(7.:77.//) :

1((ra) — MO (1) @ {r)) —o!((76) — MO () ® (7)) —o ((7as 7)) —> MO (72, 7)) © (72, 7¢"))
COCTCE (7, my) (v 70) (720 1) 2 X_g1-A_g2. \p. let !{(p1, p2) = pin Ey

where

E() & |et'g’1 = a1 in El

E1 £ Iet'gé = g2 in E2

Ey 2 bind P| = ¢\p; in Es3

E3 £ bind Py = ghps in B,

By 2 let!(p), pl) = P in B
Es £ let{(phy. phy)) = P} in Eg
Eo 2 ret((ply, Py) (Phas Pho)

To =!({ra) — MO ((74) © (75))
((7a; 7)) —o MO (((74, 7)) @ ((

To.32 = ((Ta) — MO ((7) ® (7,
To.a =!((7e) — MO ((75) ® (7)) — ((7a, 76)) — MO (((75, 7)) ® (75, 7))
To.41 ='((75) — MO ((m) ® (1))
To.42 = ((75) — MO ((m) ® (7))
To.s = ((7a, 7)) —o MO (((75, 7)) @ (73, 7))
Tos1 = (](Ta,Tb)
To.e = MO (((7e, 7)) @ ((7a, 7))
To.er = (((72, 7)) @ ((73, 7)D)
Ty =MO () ® (7))
Tia = ((ra) ® (7))
Tia1 = (m)
Tia2 = (7))
Tr = MO ((m) ® (7))
Toa = ((7) @ (7))
To11 = (1)
Tr.12 = (77)
D6:
g f i To391 2 Tos2, 95« To.az;Phq : Tiat, ot Thaz, Doyt Toa1,Dho : Tona b
<<P/11aP/21>>a <<p/12,p/22>> : To.61
g Tos 91 Tos2, g5 To.azs Py - Tian, Plo : Thaz, Pay : Toat, Pho : Toaa
ret((p1, po1), (Phas P2o)) : To.e
g f i Tos 91 Tose, g5 Toazs Py : Tian, Plo : Thas Phy : Toa1, Pho : Toaa b Ee : Tog
D5:

D6

g S Toig1: Tose, 95 : Toazs Py Toa b Py i Thy

g S Toig1 Tosa 9o« Touazs s Py s Ton, phy Than, Plo - Trag b let {(phy, phe)) = Py in Es = Toe

gaaf i To3 91 Tosa, g5 Toazs, Py Toa,piy : Tha1,Pia : Thiaze b Es : Tog

D4:
/ ! / / D5
saaf To;91 : Toz2,95 : Toaz;, P T B Py T
gaafiTorg1 : Tosa, g i Toaz; Pl i Tia, Py Toq Flet (01, p1o) = Pl in Es : Tye
gl Tos91 : Tose, gt Toao; Py i Thva, Py i Ton b By : Tog
D3:

D4

g S Toig1 : Toses 9« To.azs 2« (m2) b gapa : To
gsuafiTorg1 Tosa, g i Toaz;pa i (), Pl : Th1 - bind Py = ghps in By : Tyg
g i To391 2 Tos2, 95 : Toaz;pe : (), Pl : Tha b Es: Tog

71

10.

11.

D2:
D3

g f i Toigr : Tose, g Toaspr: (i) F gy = Th
g i To391 : Tos2, 95« To.az;p1: (T1),p2 : (=) F bind P{ = ¢ip1in B3 : Ty
a1 To391 : Tos2, g5« Toazsp1 : (1), p2 : () F Ea : Toe

D1:
: D2
saaf To;91 : To.32;592 : To.a1 - g2 : To.an
a1 To391 : Tos2; 92« To.ar,p1: (1), p2: (m2) Flet!gh =goin By : T g

g Tos91 : Tose; g2 : Toar,pr: (1), p2 : (r2) b B Tos

DO0.1:
D1
saafiTosg1 :Tosi g1 Tost
saafTo391 : To31,92 : To.ar, p1 e (]Tl[)ap2 : QT2D = |et!gl1 =g1inE;:Tye

saafiToig1 1 Tost, 92 Toar,pr: (1), p2 i () F Eo: Tos

DO:
DO0.1
sasfiTep:Tos Fp:Tos:
s Tosg1 0 To.31,92 : To.ar,p : Tos1 Flet!(p1,p2) = pin By : Toe
saafiTo91 1 Tost, g2 To.ar B Ap.let!{(p1,p2) =pin Ey : Ty 5
gaafiToig1 : Tosi b AgaAp.letl{(p1,pe) =pin Eg:Toy
gaaf i Tos o F AgrAga A let!{(p1,p2)) = pin Ey : Tp
g EAixf g1 A_ge Ap. let1{(p1,p2)) = pin Ey : Tp
Sub:
E;Fl—g,e:Twea <7
Sub

Z;FFZ, e:7 e,
Main derivation:

<7
555 (B @) Fea: (g1 —MO(EI)) 5. F (7)< (7)

Lemma [32]

T-sub
55 (2D () Feq : [1 —MO([¢'](7))
Super:
E;F,:E:leg,e:Twea T{<:'rl
g Super
UiThw:mby e e
Main derivation:
T <7
(0 T s () F ea - [g) 1 — MO([)()) L= Lemma B3
g B () < ()
T-weaken

553 (25 (0D, 2 < (i) F et [q] 1 — MO ([¢'](7D)

Relax:
ST e:T e, qg>p a—p>q—p
Relax
YT HL e 7~ No.Ey
where
Ey =release— = oin Ey

E, = bind a = store() in Es
E2 = bindb:ea ain Eg
FE3 = releasec = b in storec

D2:

555 (E)0:) b) s (B () Fstoree: Mg — p +) (lg — p + 21(7))

)
g (20 [Pr) F Es Mg —p) ([g — p+2](7)

72

12.

D1.2:

g5 (XE)a:[pllka:[pll

D1.1:
T D ea s P11 — MO (P10
D1:
D1.1 D1.2 D2
525 (0D, @ [p] 1 eq a:MO([p'](r))
5 ,(]ED,QFI),G [P 1F Ey:M(q —p) ([— p+ 2](7))
DO: D1
5 (X); . Fstore() : Mp ([p] 1)
554 (2); (@) F By M) ([g — p + p'1(7))
DO0.0:
——— Given
¢ <qg—p+p

F(lg —p+p'1(r)) <: ([¢'1(7))
MO ([g —p+p'](7)) <: MO ([¢'](7))

Main derivation:

DO
5505 (B)so: gl 1o (g1
DO0.0
554 (2D (), 0: (gl 1 Eo : MO([g —p+ p'](7))
T-sub
BT ED,QFD [}]-FEO ([](]TD)
555 (205 (T) = Ao Eo = [q] 1 — MO ([¢'](7)
Let:
XTI "g_Kiet €1: 71~ €q1 T, :m |_p/_Ké;ett €2 1 TL v €42
9+ Ky Let
D N Fg, letz =e1 iney: 7~ E;
where
E, = \u.Ey
Ey =release— =uin E;

E; = bind — = 151" in E,
E5 = bind a = store() in Es
E3 =bindb=-¢e, ain By
FE4 =releasex = bin Ej5

E5 = bind — = 152" in B
Eg = bind ¢ = store() in Ey
E7 = bindd = €q2 C in ES

FEg =release f = d in FEy

Ey = bind — = 155" in By
F19 = bindg = store f inretg

To = [g) 1 — MO ([¢'](r))

To1=[q]1
To.2= 0([¢'](7))
To.s =Mq([¢'](r e[))

Tos = wilq — K1) (1))
Tos =M (q—Klet)([- K{*]1)
TO 51 = [q—Klet} 1
To.e = MO[p] (1)

Toe1 = [p] (]7'1D

To.7 = Mp ([¢'](r))

To.s = M(p — K¥*) ([¢'](7))

To.o = M(p — K5) ([(p — K§")] 1)
To.o1 = [(p Klet)] 1

Ty =MO[(¢ + K5"")] (7)

73

Tya=[(¢ + K5')] r)

Ti2 =M(q' + K5'") ([¢1(7))

T3 =Mq ([¢'](7))
D10:

D9:

D8:

D7:

D6:

D5:

D4:

D3:

D2:

D1:

DO:

55 (2090 @] (7) Fretg - MO [g'] (7]

D10

g (XD f: (7)) b ostore f i Ty 5
502D f:(7) F bindg =store finretg : Th 3
G (@) f () F B Tus

D9

let

EUTTEI S A I MKéetl
55 (2D f o (r) F bind— = TKéet in B9 : Ty
g filr)E By Tho

D8

sas(E)d:Tiabd: Ty
g (X);d:Tia Frelease f =din Eg : Tpo
g (E);d:Tia bk Es: Tho

D7

555 ()5 (T, c: Toor - eaz e Ty
ey ey (IZD, (]F2D’ C: T(),gl F bindd = €q2 C in Eg : TO,2
555 (2D5 (P, e : To.o1 F By To o

D6

55 (2); . Fstore() : Too
5 (X); (T2) F bind ¢ = store() in Er : Ty s
55 (2D (Te) F Es : Tos

D5

saa (X F TKéat : MK%“ 1
5 (2): (T2) - bind — = 152" in Bg : Ty.n
5 (Z)(Te) B Es : Tor

D4

55 (2)ib: Toer Fb: Toer
ey ey (]ED, QP2D7 : T0‘61 F releasex = b in E5 : To,g
G () (), b Toer F Ey - Too

D3

555 (B)s (C1)ya: Tosr - eq a:Tos

oy ey e (]ED7 (]Fll), (]FQD,CL : T0_51 F bindb = €q1 A in E4 : T0_2

555(2); (Ta), T2),a: Tos1 - Es : Too

D2

435 (E); (L), (T2) F store() = Ty 5
5 (2); (T1), (T2) F bind a = store() in Es : Tp.4
TR (]ZD, GF1D7 (]FQD l_ E2 : T0.4

D1

R TKiet : MKiet 1
31085 (L1, (T2 - bind — = 159" in By : Ty
555 (2D (Ta), (Co) = By 2 Tos

74

13.

14.

Main derivation:
DO

777(] DaqF1D7q DU'T01}_’UJ'T01
55 (2)5 (1), (Co),w : Toq - release — = win By : Tpo

b

1”(]ZD3(]F1D(] DU.T01FEO'TO.2
.,.,.,(]ZD,(] D (]FQD l—)\u EO T()
Pair:
Kpair pair
Simy Ty, T BT (z1,22) 1 (11, 72) ~ By

where

Et =)\UEO

Ey =release — = uin E;

E; = bind — = 15" in B,
E5 = bind a = store(z1, z2) in reta

To = [(¢ + KP*")]1 — MO ([q] (1) ® (m2))
Toa1 = [(g+ KP*")|1

To.2 =MO([g] (1) ® (72))

Toz =M (g + KP"7) ([q] (1) ® (72))

To.a = Mq ([q] (1) @ (72))

D2:
g5 (E)sa g (ri) ® (r2) Freta: MOg] (m1) @ (72)
D1:
D2
g (XD : (1), e (7)) Fostore(zy, 22) : To.a
g (E); 21 s (), @2 ¢ (m2) F binda = store(x1, x2) inreta : T4

e ey e QZD,Sﬂl . (]7'1[)71'2 (]TQD F E2 To4

DO:

D1

g (X);-F TKWW s M KPYT 1
555 ()i zn s (m),wo ¢ (o) F bind — = 157" in By : Ty 5
G (XD s (m), w2 () B By Tos

Main derivation:

DO

g (Z) e (m), @2 s (re),u: Toa Fu:To
(XD (m), ze (2, u: Toa b release — = win By : oo

2
g @)z s (), ze s (re),u:Toa B Eo: Too
s (XD (m), @2 s () B AuEy : Ty

MatP:
q— K'matP
7= (71,72) DN I IR S PR 7’2F Kmame T~ ey
- matP
T2 0 7= match x with (xl,xz) —e:7 ~ B

where

E; = \u.Ey

Ey =release— =uin E;

E; = bind — = tE7""" in E,
Ey = let{(x1,22)) =z in E3
E5 = bind a = store() in Ey4
E4s=bindb=¢; ain Ej

Es =releasec = b in Eg

Eg = bind — = 152" in B,
E; = bindd = storec in retd

To = [q]1 — MO([¢'"] (7))
Toa =[q]1

(0]

To2 = MO ([¢'] ()
T0.3=MQ([()

To.a = M(q — K7*P) ([¢'] (7))
TO.5 — M(q _ KmatP)} ([(q KmatP)] 1)

TO 51 = [(KmatP)

To.s = MO ([¢" + k3] (7))
To.e1 = [(¢' + k5**P)] (')
Tor = M(q' + K5 [¢'] (')

To.rn = [¢'] (7')

Tos =M ([¢']('))

Dr:

D6:

D5:

D4:

Da3:

D2:

D1:

DO:

Main derivation:

15. Augment:

g (2)sd s [¢] () Fretd - MO [¢] ()

D7

g3 (E)se: (7)) Fostorec: M4 [¢] ()
:(X);c: (') - bindd = storecin retd : Ty.g
g (E)e: (]7"[) FE;:Tos

ey ey e

D6

KnLu,tP

T/D . MKmatP 1
matP

= (
g QZ[),C (') bind — = 152 in B : Ty.7
g (E)e: (7 F B Tor

D5

3 7@ Db TOGll_b TOGl
g (X);0:Toer Freleasec =bin Eg: Tpo
555 (X)ib: Toer F Es : Too

D4

S (B)s (@), 21 2 (), 22 s (), a: Tosi Fepa:Tos

ey ey e (IED, (]FD,LI’,‘l : (]Tll),.’lfg : QTQI),a : T0,51 F bindb = €t a in E5 : T0,2

G (2D (T), 21 2 (7)), 22t (r2)ya: Tos1 F Ea: Too

D3

5 (X); . Fstore() : Tos
g (2D (0D, 2 2 (7)), 2 ¢ () F binda = store() in Ey : To 4
s (B); (0D, 21 : (m),z2: (o) B Es : To.a

D2

s Xz () (7)
g (2D (0D, 2 () F let{(z, z2)) = xin E5 : Tp.4
55 (B)s (O), @ (T) - By : Tog

D1

saa(X); . F TKIM”P :MK"“”’P 1
s (2D (@), 2 : () - bind — = 5T in By To s

s (X)), 2 () F By Tos

DO

S () @)z () u: Toa b w:Toq
s (2D (0D, 2 (), w: Toq b release — = win Ey : Ty
s (2D (@), s (), w: Toa - Eo = Tooz
s (D) (@), (1) F AuEy : T

. q .
Z,Fl—q,e.rwea

/
STa:m' L eimwe,

Augment

76

Main derivation:
555 (2); () Feq 2 [g] 1 — MO ([¢']())

535 (XD @), : () - eq ¢ [q] 1 — MO ([g'](7D)

T-weaken

Lemma 32 (Subtyping preservation). V7,7’
<7 = (1) < ()

Proof. Proof by induction on the 7 <: 7/ relation

1. Base:
b<:b
Main derivation:
;. Fb <:!b
2. Pair:
T <!Ty Ty <! Ty
! !

Main derivation:

3. List:

Main derivation:

IH

6(q,5) < 35, s) 58 F () < (72
1< @@ s)]1 sk LP(m) <2 L°(m)

: (p,5)]1 ® L*(m)) <: ([¢(q,5)]1 @ L*(r2))
5. F3s.([o@,s)] 1 @ L)) <: 3s.([¢(q, 5)] 1 ® L*(72))

A.5.2 Cross-language model: RAMLU to A-amor
Definition 33 (Logical relation for RAMLU to A-amor).

|unit |4 £ {(T,%v,tv) | *v € [unit] Atv € [I] ASv =tv}
[b]3} 2 {(T,°v,!") [*ve [b] Afve [b] Adv ="v}
Lrm))y = {06 (ot) | H(O) = (Por,%2) A (T, Pu,for) € [y A (T, Pu, fog) € [2]v}
Lther £ {6 0. 1)) | (T4, 1) € (L7}
L]¥ £ ((T,NULL,nil)}}U
, T, 0 0 = 1y) | H) = (Pv,€s) A (T, %v,%) € |7]y A (T, 4s,1y) € |[L 7]y}
(71 /4)" & (T, f(z) = e, fixfAudz.ep) | Vo', 1o’ T'<T .
(T, 50", 0) € T |y = (T, es, e () /u] [P0’ /2] [fixf A udx e,/ f]) € | T J{EH v} H}

(1>

lrJe " (T es,e0) | VH So,p,p/ t <T . V,HFY e, Uy 0, H =

oy, top, Jeg b tog U7 Loy A (T —t, %0, top) € LTH;I/ Ap—p < J}
Definition 34 (Interpretation of typing context).

;L = {(T,V,8) | Vo : 7€ dom(T).(T,V(z),6(x)) € | 7]}

7

Definition 35 (Interpretation of function context).

’

S = {(T,805,00) | (9 (0 L 70) € dom(S).(T, 855(F) Sug, 0us (f) b5) € L "8 72) 7))}

Lemma 36 (Monotonicity for values). Vv, %0, T, 7, H.
(T,%v,'v) € |78} = VT'<T (T',%v,'v) € ||

Proof. Given: (T,%v,*v) € |7]#
To prove: VT'<T .(T',%v,'v) € |7]H

This means given some T'<T it suffices to prove that
(T',5v,'v) € |7]H
By induction on 7

1.

T = unit:

In this case we are given that (T, %v,*v) € |unit]{
and we need to prove (17, %v,'v) € |unit |

We get the desired trivially from Definition [33]

. 7T=b:

In this case we are given that (T, %v,!"v’) € |b]¥
and we need to prove (17, %v,1"v’) € |b]{f

We get the desired trivially from Definition
T=LPr"

In this case we are given that (T, %v,'v) € [LﬁT’jg

Here let v = £, and v = {(), tvp 2 1g)
and we have (T, 4y, v, :: ;) € |[L7'|# (MV-L1)

And we need to prove (1", (s, tvy, = ;) € | LP7' |
Therefore it suffices to prove that (17,4, vy, 2 I;) € L7/ |1

We induct on (T, s, vy, 2 1y) € | L7/ |

e (I',NULL,nil) € | LPr'|H:
In this case we need to prove that (1", NULL, nil) € | L7’ |8
We get this directly from Definition

o (T 05, vy 1y) € | LT
Since from (MV-L1) we are given that (T, (s, vy, 2 I;) € [L7' |8
therefore from Definition [33] we have
H(ls) = Con, lst) A (T, 5o, top) € |7/)y A (T lst, 1) € | L 7'y (MV-L2)

In this case we need to prove that (17, (s, vy, 2 I;) € | L7/ |
From Definition [33|it further it suffices to prove that
— H(ls) = (Pup, lst):
Directly from (MV-L2)
— (T, %vp, top) € |7/]v:
From (MV-L2) and outer induction
- (T/a‘gst;lt) S LL T/JVZ
From (MV-L2) and inner induction
7= (11,72):
In this case we are given that (T, ¢, (*vi,'w)) € [(11,72) |

This means from Definition B3] we have
H(6) = (Pvi,*w) A (T, %v1,"v1) € [11]y A (T, %, ') € |72y (MV-P0)

and we need to prove (17,4, (‘v1,'v2)) € [(11,72) |

Similarly from Definition [33]it suffices to prove that

H(é) = (s’l)l,s’llg) A (T’,svl,tvl) € |_T1Jv A (T’fvg,tvg) € |_T2JV
We get this directly from (MV-P0), TH1 and TH2

Lemma 37 (Monotonicity for functions). V¥v,%v, T, 7, H.

(T, f(@) = easfixfAudzer) € | U mlH — VST (T, f(@) = ea,fixfAudzer) € [L 7]

/

Proof. We need to prove that (T7, f(z) = ey, fixf. A u.Az.e;) € |71 e/ o |7

This means from Definition [33]it suffices to prove that

78

Vel b T <T (T, 50, W'Y € [y = (T, eq, e0[()/ul[0! J2][fixf du e/ f]) € |ra) £ 0 H

This means given some *v’, %0’ T"<T" s.t (T”,%v','v’) € |11y it suffices to prove that
(T, es, er[()/u] [t Jx][fix f A u Dz,) f]) € LTQJ};zHS,U A (MFO)

Since we are given that (T, f(x) = es, fixf.Au.Az.e) € [T e/ 72 |# therefore from Deﬁnitionwe have
Voup, o), TY<T (T4, v, ') € |11 |y = (TY, s, e:[() /][t vy /] [fix f Au Az .e:] f]) € LTQJ;E'I'—). uhA

Instantiating with the given *v’,%v’, T" we get the desired

Lemma 38 (Monotonicity for expressions). Ves, e, T, 7, H.
(T,es,e1) € | 7] = VT'<T (T',e5,¢;) € |77

Proof. To prove: (T",es,¢;) € |72

This means from Definition [33] it suffices to prove that

VH' Sv,p,p',t <T".V,H Ff;, es bt v, H = Ftu,tvp, Jep §- Ty 7 Lop A (T" —t,5v, vp) € LTH;I/ A
p—p <J

This means given some H',%v,p,p’,t <T' st V,H }—g, es ¢ Sv, H' it suffices to prove that

oy, top, Joeg b o B top AT —t, 50, vp) € 7] Ap—p' < J (MEO)

Since we are given that (T, es,e;) € |7|H therefore again from Definition |33 we know that
VH'*v,p,p/,t <T . V,H), es Iy So, H = F'u,top, e b fop U2 Pop A (T —t,%0,%05) € |75 A
/
p—p<J

Instantiating with the given H',%v, p,p’,t and using Lemma [36| we get the desired

[

Lemma 39 (Monotonicity for T'). Vév,%v, T, 7, H.

(T,V,&) € [T = vVT'<T (T',V,§) € |T'|¥
Proof. To prove: (T,V,6&;) € |T'|#

From Definition [34] it suffices to prove that

Vo : 7€ dom(D).(T",V(z),6:(z)) € | 7]

This means given some z : 7 € dom(T") it suffices to prove that

(T",V(x),6e(2)) € |7}

Since we are given that (T,V,6&;) € [

therefore from Definition [34] we have

Vz: 7 € dom(D).(T,V(z),0:(z)) € |7]H

Instantiating it with the given x and using Lemma [36| we get the desired O
Lemma 40 (Monotonicity for X). Vév, %0, T, 7, H.

(T, 051, 01¢) € |E])] = VT'ST (T",857,0e5) € [Z]3]
Proof. To prove: (T, 055,0:¢) € |S|#

From Definition [35|it suffices to prove that

(VF (11 8 1) € dom(D).(T', 35 (F) bug b5 () Gu) € L " 7)))

This means given some f : (71 /g T2) € dom(X) it suffices to prove that

/ ’

(T", 65 (f) bag 0 (f) Sip) € (11 ™ 7)1

Since we are given that (T, d5¢,0:f) € |X] ¥

therefore from Definition 34 we have)

(VF (11 8 1) € dom(2).(T, 8,4(f) 8oz, 004 (F) be5) € (1 4) J1)

Instantiating it with the given f and using Lemma [37] we get the desired O

Theorem 41 (Fundamental theorem). VX, T, q,¢, 7, es, e, I,V, H, 84,055,014, T.
E;F}—g, €s:T ~>er A
(T,V,80) € [TJ5] A (T, 657, 005) € [Z]3]
—
(T, esdsp €0 () 6:01p) € 7)1

Proof. Proof by induction on X; T’ l—g, €5 1T ~> €

79

1. unit:

unit

3. |—3+Kw“ () : unit ~ Ey

where

unit
Ey = Au.release — = w in bind — = 15" in bind a = store() in ret(a)
E} = release — = u in bind — = 1X"""" in bind a = store() in ret(a)

To prove: (T',zdss, By () 010:5) € LTJ?H

This means from Definition [33] we are given some
so, H' fv, vy’ t st V,HEL () Je (), H. From (E:Unit) we know that ¢t =1
Therefore it suffices to prove that
(a) Ftvg, top, JE () b= tvp 47 top AT —1,(),'vy) € Lunit]y:
We choose v, tvg, J as Ef, (), K“"" respectively
Since from E-app we know that E;, |} EJ, also since E| X" () (from BE-release, E-bind, E-store,
E-return)
Therefore we get the desired from Definition
(b) r—1r' < J:
From (E:Unit) we know that Ip.r = p+ K“" ¢’ = p and since we know that J = K*"_ therefore
we are done

2. base:
T unit
S HIPET b By
where .
E; = Mu.release — = w in bind — = 15" in bind a = store(lc) in ret(a)
Ej = release — = w in bind — = K" in binda = store(lc) in ret(a)

To prove: (T, z05, Ey () 0:0¢7) € Lbj}g/’H

This means from Definition [33| we are given some
so,H' *v,r,r' t st V,HF!, ¢y ¢, H. From (E:base) we know that ¢t =1
Therefore it suffices to prove that
(a) Ftop,tvp, JE () Vo to 42 oy A (T =1,(),tvp) € |b]y:
We choose tu;, tvy, J as Ej}, e, K@% respectively
Since from E-app we know that E; | EJ, also since B} 5" 1c (
E-return)
Therefore we get the desired from Definition
(b) r—r" < J:
From (E:base) we know that Ip.r = p + KPbese ¢ = 5 and since we know that J = K¢ therefore
we are done

from E-release, E-bind, E-store,

3. var:
var var
E;x:TFngK x: T~ By
where
E; = \u.release — = w in bind — = 15" in bind a = store x in ret(a)
E} = release — = () in bind — = 1" in bind a = store x in ret(a)

To prove: (T, x0sf, Ey () 0:6:¢) € LTJ‘S/’H

This means from Definition [33] we are given some
So,H' *v,r,r' t st V,HFL, x|, V(z),H. From (E:Var) we know that t =1
Therefore it suffices to prove that
(a) Ftop,tvp, JE () Vo top 7 top AT =1,V (2),0f) € [T]1:
We choose ‘v, vy, J as E}, §;(x) respectively
Since from E-app we know that E; || E}, also since E; """ §;(x) (from E-release, E-bind, E-store,
E-return)
Therefore we get the desired from Definition [34] and Lemma [40]
(b) r—1r' < J:
From (E:VAR) we know that Ip.r = p+ K", ' =p and J = KV", so we are done
4. app:

80

T qﬁg/ Ty € Z(f)

FKIPP app

Xhxm I—Z,_Kgm, fax:im~ E
where
Et = AUEO]
Ey = release — = w in bind — = 151" in bind P = store() in E;

E; =bind f; = (f P x) inrelease fo = f1 in bind — = K2 in bind f5 = store f5 in ret f3
To prove: (T, f x, E; () 0:0¢f) € LTQJX’H

This means from Definition [33] we are given some

Sv,H' v, r,r' t <T st V,HFL, f xdsp e S0, H'

and it suffices to prove that

oy, top, JE () U toy U7 top AT —t, 50, 'p) € [Ar—1" < J (F-A0)

Since we are given that (T',0.7,0:7) € |)4 therefore from Definition [35{ we know that
/ ’
(T,055(f) Bap, 015 (f) Sp) € (1 ™5 72) 7
From Definition [33| we know that ds7(f) = (f(x) = es) and &;¢(f) = fixf.Au.Az.e, and we have

Vel B T <T (T, 50", 0) € || = (T, es,e]()/u] [P0 /2][fixfAu Az e,/ f]) € LszgmHS”/}’H
(F-A1)

Since we are given that (T, V,6;) € |I'|# therefore we have
(T, V(z),0¢(x)) € [1]5}

This means from Lemma [36{ we also have (T —1,V (z),d:(x)) € |11 |8
Instantiating (F-A1) with T =1,V (z), §:(z) we get
(T 1, e, e0]() /ul[6e(2) /2] fixfAuz.eo/ f]) € [r2) &7V IHH

This means from Definition B3] we have

VH;, Svy, 7,7y, <T 1. V,H I—:i es v Su, HY = Flu, oy, Jie()/u) [0 () /] [fix f u e/ f] |

bog Y71 o AT =1 — /%0y, top) € Lnggi Ary—1r < Ji (F-A2)

Since we know that V, H 7, f xds; {: *v, H where t <T therefore from (E:FunApp) we know that

V.H }—:;I;l;pp es di—1 Sv, H' therefore instantiating (F-A2) with H', Sv,r — K{",r" + K3 |t — 1 we get
2

g, tog, Jr.ed () /ul[6: () /2] [fix f u e/ £ I Loy U7 Loy A (T —t,%0,top) € I_TQJ‘I;I/ A (r— KPP — (r' +

K<y (F-A3)

From E-release, E-bind, E-store we know that J = J; + K{"* + K3"” therefore we get the desired from
(F-A3)

. nil:

nil

S0 FE il L s B

where :
E; = Mu.release — = u in bind — = 15" in bind a = store() in bind b = store({a, nil)) in ret(b)
To prove: (T, nil, Ey () 0:0:f) € LLﬁTJ‘g/’H

This means from Definition [33] we are given some
Sy, H') Sv,t <T s.t 0,0 Fg, nil 4 v, H'
From (E:NIL) we know that v = NULL, H' = H and t = 1 and it suffices to prove that
(a) 3t top, Jeg 4 tog U7 o A(T =1, mil, tvp) € [LPT]
From E-bind, E-release, E-return we know that ‘v = {((), nil)) therefore from Definition [33| we get
the desired
() p—p < J:
Here p=q+ K™ p/ = qand J = K™, so we are done

. cons:

—

p= (pla"'7pk)
Siap 7y L9 P Fg+p1+Kmns cons(xp,xy) : LPT ~~ By

cons

where

81

E, = \u.release — = w in bind— = 15" in E,

Eo = ay;x.let{(xy,x0)) = 2 in By

E; = release — = x1 in bind a = store() in store((a, xp, :: z2))

E! = release — = () in bind — = 15" in B,

To prove: (T,cons(xn,t), By () 6:8:5) € | L7 |0

This means from Definition [33] we are given some

So, H',*v,p,p',t <T 5.t 0,07, cons(xp, x)dsp Ut *v, H'

and it suffices to prove that

(a) tv, top, JE () I tv 47 top A(T —t, H'(0),tvy) € | LPT)H:

From (E-app) of A-amor we know that F; () |} F;
Also from E-release, E-bind, E-store we know that ‘v; = {((), 6:(xn) :: 0¢(we) 2)

Therefore it suffices to prove that (T —t, 4, ((),8;(zs) == 6c(xs) 12) € [LP7] 8’

From Definition [33|it further suffices to prove that
(T —t,E,(St(xh) b (St(l‘t) \1,2) S |_L TJ{;I

Since from (E:CONS) rule of univariate RAML we know that H' = H[{ — v] where v = (V (1), V(2+))

Therefore it further suffices to prove that
(T =4,V (wn), de(an)) € 78 and (T =,V (22), 6y(e) 42) € |L)4

Since we are given that (T, V, &) € | S|V therefore from Definition [34] and Lemma it means we

have

(T =t,V(wn), 8u(zn)) € 7 (F-C1)

and

(T —t,V(z¢),0¢(21)) € |[LP7|H

This means we also have (T —t,V (z), 0:(x¢) 12) € | L 7]& (F-C2)
Since H' = H[{ — v] where v = (V (), V(x¢)) therefore we also have

We get the desired from (F-C1), (F-C2) and Definition
(b) p—p < J:

From (E:CONS) we know that p = ¢’ + K™ and p’ = ¢’ for some ¢’. Also we know that J = K°°"*.

Therefore we are done.

7. match:
T I—Z:ﬁj;::v e1: 7 ~ eq
F= (o) SThimt: LD R T o r g
SiTiz : LP7 FY, match @ with [nil s 1 [hetrs ez:7 ~ AuBo maich
where
Ey =release — = uin Ey 1

Ep1 =z;a. let{{xy,x2) = ain Eq

E; = match x5 with |nil — Es |h 1y — Ej
Ey = bind — = 157" in By |

E>1 = bindb = store() in E},

El =bindc = (eq1 b) in E 4

El | =released =cin Ef,

/ _ . _ KmatN . /
E5 5 =bind — = 172 in E5 4
El, 5 = release — = 1 in stored

. matC
E5 = bind — = 151 in B34
Es1 =release — =z in E34

Es5.5 = bindb = store() in E3.3
E53 =bindt = ret((b,l;)) in E34
Es.4 = bindd = store() in B35
E3‘5 = bind f = €42 din E3_6
E36 =releaseg = fin E37
Es7 = bind— = 155" in store g

To prove: (T, match & with |[nil — ey |h 2 t — e, Au.Eg () 8:8:5) € |7/]9

This means from Definition [33] we are given some
So, H Sv,p,p',t <T st V,H Fz, (match z with |nil — ey |h it — e2)dss Iy v, H'
2 cases arise:

82

(a) V() = NULL:
Since (T,V,d;) € |T'|]‘;’H therefore from Definition [34] and Definition |33| we have
d¢(x) = ((), nal))
IH: (T —1,e1057,€a1 () 0:015) € [7] &7

This means from Definition [33] we have
VH{, *vi,p1,py. 01 V. H }‘Zi er Ui Svi, H = Foa,tvpr, Jiear b fog 370 top A (T -1 —

tl,svl,t’l)fl) S I_T/J\I;I1 NP1 —pll <.Ji (F—RUA—MO)
Since we are given that V, H l—g, (match = with |nil — ey |h it — e2)dsy ¢ *v, H' therefore from

matN

(E:MatvhN) we know that V, H I—g;ﬁ;mw e1 J+—1 *v, H' therefore instantiating (F-RUA-MO0) with
2

H/, sv’p o KinatN7p/ + KgnatN we get
Fvp1, oy, Jiear b o U7 topr A (T =8, %0, ') € |78 A p— KotV — pf — KotV <y
(F-RUA-M1)
It suffices to prove that
T, top, JAuEg () 4 fog U7 o A (T —t, 50, tvp) € |7/ | Ap—p/ < J

We choose tv; as tvy1, fvp as topy and J as Jp + K'Y 4+ K5'9t™N and we get the desired from E-bind,
E-release, E-store and (F-RUA-M1)
(b) V(z) =Ls:
Since (T,V,0,) € [T'] E’H therefore from Definition (34| and Definition [33| we have
Se(x) = (), top = ly)) st
H(ls) = (Svp, bes), (Pv,tv) € 7]y and (Us,1;) € |L 7'y and
Let V! =V U{h— S} U{t = b} and 6; = §; U {h — ‘o U {t — s}
From Definition [34] and Lemma@ we have (T —1,V’,68;) € |[[,h: 7,t: LT| gI’H
Therefore from IH we have)
(T =1, €205, a2 () G14g) € L] "

This means from Definition B3] we have

VHY, %vg, pa, ph,t1. V, H Fg,i ez Uiy Svo, HY = Flup,tvpa, Jaeaz I topp 472 topa A (T —1 —
t1,%v2, tupe) € LT’J{# A po—ph < Jo (F-RUA-MO0.0)

Since we are given that V, H I, (match = with |nil = ey |h it e2)dsp §4 “v, H' therefore from
(E:MatvhC) we know that V, H I—g,;];lz:;cc ea J+—1 v, H' therefore instantiating (F-RUA-M0.0) with
H' 5v,p— K" p/ + K5t — 1 we get

Ftvie, tvpa, Joean I tge 172 tupa A (T —t,%va,tvpa) € I_T/Jgé A po—ph < Jo (F-RUA-M2)

It suffices to prove that

g, top, JAuEog () U toe 47 top A (T —t,%0,t0y) € LT/H;I/ Ap—p <J

We choose ‘v, as tua, tvg as tvps and J as Jo + K¢ + K591 and we get the desired from E-bind,
E-release, E-store and (F-RUA-M2)
8. Share:

SiToim,y:mbl e we, T=1Y T2 T=T1=T2=1
ST z:7mHL elz/x,2/y] s 7'~ By

Share-unit

EO = /\uE1
Ey =binda = coerce1 11 z inlet{{z,y)) = aine, u

coercey 11 = Au.ret((!(),!())
To prove: (T,elz/x,2/y, Eo () 8:0i5) € |7/] o7

This means from Definition [33] we are given some

So, H',*v,p,p',t st V,H B2, elz/x, 2/ylosp b *v, H'

And we need to prove

Ftog, top, JEo () I top U7 top AT —t,%0,bop) € 7] Ap—p' < J

Let
Vi=vVU{e—=V(E)}U{y—V(z)}
g =0t U{x— 0:(2)} U{y — d(2)}

83

Since we are given that (T,V,d;) € [I',z : 1]]‘;’H therefore from Definition 34 we also have
(T,V',6;) e [T,z :1,y: 1J¥ H

IH

(T.e.ea () G00p) € L7')5 "

This means from Definition B3] we have

VHLSUhpl?p/latl' VlvH Fz/i e‘U’h S’UlvH{ e E't’l)t7t1)f,J.€a() ‘U’ tvt ‘U’J tvf A (T —tl’S’Uht’Uf) € LT,J\I;I/

/
p1—p1 <J
Instantiating it with the given H',%v,p,p’,t we get the desired

E;l—‘,x:Thy:Tg}—g,e:T/wea T=7Y T2 T=T1=To=Db
7 5 Share-base
D27k elz/z, 2/yl 7~ Ey
Ey = \u.Eq
Ey = binda = coerceppp z inlet{(z,y)) = aine, u
coerceppp = Au.let!u’ = win ret{(u’, u’))
Similar reasonign as in the unit case above
SiTiw:im,y:mbl e we,
T=T71Y To T=LPT" =L Ty = L7l ™ =1®ry D= D1 ® ps

2 Share-list

ST z:7HL elz/x,z/y] s 7'~ Ey

EO =)\UEl

Ey = binda = coercer , -, zinlet{(z,y) =aine, u
COETCe s, [wiy, [rsg, = fiXfAgAe let!g’ = gine;z. let((p, 1)) = x in Ey
where

Ey 2 release — = pin E,

E1 £ match [with |TL’LZ — Eg.l |h, ot E3

Fy.1 2 bind z; = store() in Eo.»

FEs o bind z9 = store() in BEs 3

B3 = ret((((z1, nil)), (22, mal))))

E3 £ bind H = g/ hin E3.1

E341 £ bind [() in E342

Ez5 2 bindT = f g ((04,1)) in By

E4 £ Iet<<H1,H2>> =Hin E5

E;y |et<<T1,T2>> =T in Eg

Eg = Th;tpy. Iet((pfl,l’l» =tip1in E74

> > |

> >

Er1 = Ty tpo.let((ph, ly) = tps in Bry
FEr. 2 release — = p/ in E73
Eq3 = release — = ph in Er4
FEr7 4 £ bindo; = store() in Br 5
A

E;.5 = bind o = store() in Eg
Eg = ret(({{o1, Hy = T1)), ({02, Hy :: To)))

To prove: (T, elz/x, z/yl, Eo () 6:0:5) € LT/JX’H

This means from Definition [33] we are given some

SU7 H/7 Svap7pl7t <T'st ‘/3 H '72/ 6[2’/1’, Z/y}(st ‘Ut SU? H'

And we need to prove

Ftup, top, JEy () 4 toe U7 g A(T —t, %0, %0p) € |7 Ap—p/ < J

Let

Vi=vVUu{z—V()}U{y—V(z)}

=0 U{x— 0(2)} U{y — d(2)}

Since we are given that (T, V,¢;) € [T,z : 7| l‘j’H therefore from Definition [34| we also have
(T,V',6;) € [T,x: 11,y : ngg H

IH

84

A

10.

V' H
(T,e,eq () 6;0ef) € [7']
This means from Definition B3] we have
VHivsvhpl,p/latl' VlaH ng € ‘U’tl 8’017H1 - Eltvtatvf7<]'ea() ‘U’ tvt ‘UJ tvf A (T 7t178’01’t1)f) € LT,JV A
p1—py <J
Instantiating it with the given H',%v,p,p’,t we get the desired

STa:im,y:mbl et we,
T=11Y T 7= (TayTp) n=(,n) 7n=0.17) T=T&n

ST z:7mHL elz/z,2/yl s 7'~ By

Share-pair

EQ = A’U,El
Ey = binda = coerce(r, z,),(r.7)).(ry 7y 7 10 let{(z, y)) = aiin eq u

Coerce(Taﬂ'b),(T(/I,T{)),(T(ll/,‘f'{)/) £)‘791')‘792'>\p' let '<<p17p2>> =D in Eg
where

Ey & Iet'g’l =g in Eq

E1 = Iet'gé = g2 in E2

E> 2 bind P| = ¢\p; in Fs3

E3 2 bind Py = ghpo in B4

By = let!(py,pho) = Pj in Es

Es 2 let (phy pho) — P} in P
A

Eg = ret((p1,p51)), (P12, Pha)
Same reasoning as in the list subcase above

. Sub:

Z;Fl—g,e:Twea T< 7

TEd .
XFFq,e.T ~eq

To prove: (T, e,eq () 8:0e5) € [7/] &7
IH: (T,e,eq () 8ids) € 7]

We get the desired from IH and Lemma

Relax:
STH e:T~es q>2p q-p>q—p
E;l—‘}—g,e:TWEt
where
Et ZAO.EO
Ey =release — = oin E;

E; = bind a = store() in Es

FEs =bindb=¢, ain E3

E3 = releasec = b in storec

To prove: (T, e, Ey () §:0:7) € LTJ}S/H

This means from Definition 33| we are given some

So, H' Sv,r,r 6 <T st 0,07, ey Sv, H'

And it suffices to prove that

Ftvg, top, JE () Ut 37 top AT —t, 50, top) € [Ty Ar—1' < J (F-RO)
IH: (T,e,eq () 6:81f) € 7]

This means from Definition 33] we have

Vv, Hi,ry,r,ty <T V,H B ey, Sv, H = Fho,top, Jeq () I Ty U top A (T —t1,%0,%0y) €
|_TJV Ar—1' <J

Instantiating it with the given *v, H',r,7’,t we get

ol top, I ea () 4 ol 37 Pop AT —t, %0, b0f) € [Ty Ar =1 < T (F-R1)

In order to prove (F-R0) we choose ‘v, tvy, J as v/, tv]’c, J’ and we get the desired from E-app, E-release,
E-bind, E-store and (F-R1)

85

11. Super:

/
Z;F7{EZT1|_Z,€ZT~—>€,1 T <iTy

ST 2. 717 . Super
Lxombypemweq

Given: (T,V,0;) € |,z : T{H/{
To prove: (T e,eq () 0:8i5) € |70

This means from Definition [33] it suffices to prove that

VH' v,p,p/,t <T . V,H b e Uy S0, H = o, bop, Jeea () 4 Poe 47 Pop A (T —t,%0, vp) € [T A
p—p' <J

This means given some H',%v,p,p’,t <T s.t V,H l—g, es I+ Sv, H' it suffices to prove that

g, top, Jeea () I P U7 top A (T —t, 50, 'vp) € 7] Ap—p' < J (F-Su0)

Since we are given that (T, V,8;) € I,z : 7{ |# therefore from Deﬁnitionwe know that (T, V(z), d:(z)) €
kgl

Therefore from Lemma [42| we know that (T, V (z),d:(z)) € |71 |8

IH: (T,e,eq () 6:0¢f) € (7]

This means from Definition B3] we have

VH], v, pi,pit1. V. H l—zi e, v, H = Flu,tvp,Jeeq () U Loy 47 top A(T —t1, %0, 00p) € [7]H A
pi—p; <J

Instantiating it with the given H',*v,p,p’,t we get the desired

12. Let:
let let
. 9—K : .) p—K .
LIk 7 erimivea Eilpimb Ao et T ea
- Let
p N Fg, letz =€ iney: 7~ E

where
E, = \u.Ey
FEoy =release — =u in E;

E, = bind — = 151" in B,

E5 = bind a = store() in E3

E3 = bindb = €q1 A in E4

E4y =releasex =bin Ej

E5 = bind — = 152" in B

Es = bind ¢ = store() in E

E7 = bindd = €q2 C in ES

Egs =release f = din Ey

Eo = bind — = 155" in Fy

FE1y = bindg = store f inretg

To prove: (T,let x = ey in eq, By () §:0:7) € | 7] (‘g/’H

This means from Definition [33] we are given some

So,H fv,rr' t <T st V,H L, (let x = ey in ez)dsy Iy “v, H'
it suffices to prove that

Ftug, tog, Jeeg U v 47 top A (T —t, %0, top) € LTH;II Ar—r <J (F-L0)

Since we are given that (T, V,8;) in|T'y,T2]¥ therefore we know that
IV, Vo, 61,62 st V =V4, Va, 8, = 4}, 67 and
(T, Vl, (Stl) S LFng and (T, V27 (5252) S LFQJ\I}I

IH1
(T, e1,eq1 () 5t045) € 1] 1

This means from Definition B3] we have

VH{, *v1,pr,pyte VLH B ey Uy S, H = o, fopss Jiear () 4 foe U7 Popn A (T —t1, %01, Topn) €
H/

Llevl N P1 7p/1 S Jl (F—Ll)

Since we know that V. H +], (let x =e; in e2)dsy |t *v,H' therefore from (E:Let) we know that

__prlet
AH,, Svy,re,t st Vo H b 0 eq6ap e, Son, H,

86

13.

14.

Instantiating (F-L1) with H{,%vy,r — K¢t ry,t; we get

T, topr, Jreqr () 4 fon I Lopy A (T —t1, v, topr) € Llegi Ar—Klt—r <y (F-L1.1)
IH2

(T —t1, €3, €0 () 62U {x > tog1 }og) € |7 20 lo mb i

This means from Definition B3] we have

VHYL, Svy, po,phyte <T —t1. V. H I—ZZ es Ui, v, H = Ftuga,tvpe, Jaeaa () I toe 172 tope A (T
—t1 — ta,va, vpa) € LTJ{,Ié Ape—ph < Jo (F-L2)

Since we know that V,H FI, (let x =e; in e2)dss |4+ *v,H' therefore from (E:Let) we know that

_ pelet
3H,, Svg,ty <t —ty st V, H k:;ggﬁt e26sf Ity “v, H}

Instantiating (F-L2) with Hj,%v, 7 — K¢t v + Kl¢t t5 we get

v, Toga, Jo.€q () I Torg 72 Tupas A (T —ty — to,%v, vp2) € LTJiIi‘ Ay — K5 — (' + K5 < Jy
(F-L2.1)

In order to prove (F-L0) we choose tv; as tva, vy as tope, J as Ji +Jo+ Kl + KI+ K tast; +ta+1
and we get the desired from (F-L1.1) and (F-L2.1) and Lemma
Pair:

q+Kpa1i7‘ pa‘lr

. (w1, 22) : (T1,72) ~ Ej

Yixy T, T2 To

where

E, = \u.Ey

Ey =release— =uin E;

E; =bind— = 15" in E,

E5 = bind a = store(z1, z2) in reta

Given: (T,V,0;) € |x1: 71,22 : 7’2”}’
To prove: (T, (x1,%2), E: () 6:01f) € L(7'177'2)J£V7H

This means from Definition [33] it suffices to prove that
VH' *v,rr' t <T . V,H F) (21,22) b o, H = Fto,top, JE () 4 toy 47 oy A (T —t,%0,%05) €
L(Tl,TQ)J{;II Ar—r' < J

This means given some H',%v,r, 7', t <T s.t V,H V7, (x1,22) J+ *v, H' it suffices to prove that
g, top, JE; () U toe U7 Pop A (T —t,50, %) € [(m1,) |H Ar =1/ < J (F-PO)

This means we need to prove that v, *vy, J
o By () U tu 47 toy:
From E-app, E-release,E-bind,E-tick, E-store and E-return we know that ‘v, = Ey, *vy = (8;(21), d¢(22))
and J = KPair
o (T —t,%v,vy5) € | (1, 7) | T
Since we are given that V,H VI, (z1,x2) {+ *v, H', therefore from (E:Pair) we know that *v = ¢
where ¢ & dom(H) and H' = H[l — (V(x1),V(x2))]

Since we are given that (T,V,d;) € |z1 : 11,22 : TQH,{ therefore from Definition Deﬁnition and
Lemma [36] we get the desired.

o r—7r' < J:
From (E:Pair) we know that Jp.r = p + KP*" and ' = p. Since we know that J = KP%" therefore
we are done.

MatP:
q—KmetP ,
T=(m,7) Bl rimaimb e e T e
- matP
50w o7] match x with (z1,22) — e 7~ By

where

E, = \u.E,

FEoy =release — =uin E;

E; = bind — = 17" in By
Ey = |et<<a:1,x2>> =zin E3
E5 = binda = store() in Ey4

87

15.

Ey =bindb=¢; ain Ej

FEs = releasec = b’in“@;

Eg = bind — = 152" in E;

E; = bindd = storec in retd

Given: (T,V,6;) € [T, 2 : 7|8

To prove: (T, (match = with (z1,xs) — €), By () 6:0:5) € | 7]

This means from Definition [33|it suffices to prove that

VH',*v,p,p',t <T . V,H =, (match x with (v1,22) =) ¢ *v, H' = o, vp, JE; () I Py 37 top A
(T —t,%v, vf) € LT'H}{/ Ap—p < J

This means given some H',*v,p,p',t <T s.t V,H I—g, (match x with (x1,22) — e) {; v, H' it suffices to
prove that

T, top, JE, () U o 47 Loy AT —t, 50, top) € |7/ | Ap—p' < J (F-MPO)

Since we are given that (T, V, ;) € |,z : 7]& therefore from Deﬁnition and since 7 = (71, 72) therefore
we know that (T, V (z),0:(z)) € [(11,72) |8

This means from Definition [33] that 3¢ s.t H(£) = (*vi,5w) A (T, *vi, 1) € [m1]v A (T, 5w, tw) € |72y

TH: (T,e,e () 6,0 {1 ot} U i o> Pan}lyg) € [/ 01 ool toad 2

This means from Definition B3] we have
VH{,svi,pi,pg,tl <T —1. V,H ng e l}tl SU,H{ — Htvtl,tvfl,Jl.e () ll t’l)tl U,J tvfl A (T —tl,sUi,thl) S

H'
L7yt Api —p; <N

Since we are given that V, H 2, (match x with (x1,2) — €) | v, H' therefore from (E:MatP) we know
that

VUu{er = v U{ae— *w}, H Fp,+1;£natp e i1 v, H'

Instantiating it with the given H' Sv,p — Ko p/ + Ki"otP '+ — 1 we get

o, topr, Jie () U tog B tupr A (T =t %0, top) € I_TIJ{;{/ Ap— KpatP — (pf 4 KpatPy <)
(F-MP1)

In order to prove (F-MP0) we choose ‘v, as tvi1, tvy as tvpy, J as Jy + K9P + KotP and ¢ as t — 1
and it suffices to prove that
o B ()| tu |/ fup:
We get the desired from E-app, E-bind, E-release, E-store, E-tick, E-return and (F-MP1)
o (T —t,%v,'vy) € |7/|H"
From (F-MP1)
e p—p < J:
We get this directly from (F-MP1)
Augment:

p—KmatP

P .
E,Fl—q,e.Twea

: CTa .
Do Fq/e.Twea

Augment

Given: (T,V U{z — *v,},6; U{x — tu}) € [T,z 7|4
To prove: (T, e,eq () 0: U{x — ‘v, }dp) € 7] gU{IH' v } H

This means from Definition [33|it suffices to prove that
VH' *v,p,p'st <T . VU{z = v}, HID es Uy Sv, H = o, op, Jeea ()0 U{z = Lo}y 4 Pup 7

bop AT —t, %0, bog) € 7] Ap—p' < T

This means given some H' *v,p,p’,t <T st VU{x > Suv, }, H l—g, es I+ Sv, H' it suffices to prove that
vy, top, Jeeq 00 U {z— to Yoy U toe 47 tup A (T —t, %0, tvy) € LTH,{/ Ap—p <J (F-Ag0)
Since we are given that (T,V U {z — *v,},6; U {z — 'v,}) € [,z : 7|8

therefore from Definition [34] we know that

(T,V, 5t) € LPH;I

IH: (T, e e, () 8idis) € 7] 5"

This means from Definition B3] we have
VH!, Sv;,pi,phth <T . V,H '_ZZ e, So, H = o, tvp, Jeq)6:0ir U top U7 top A (T —t1, %0, tvp) €

|_7'ng Api—pi<J (F-Agl)

88

Since we are given V U {z — v, }, H I—g, es It v, H and since z € free(e) therefore we also have
‘/:H }_g/ €s ‘Ut SvyH/

Instantiating (F-Agl) with the given H' v, p,p’, t we get

Ftup, tog, Jeeq ()8:0ep I top U7 top A (T —t,5v;,tog) € LTJ{}T/ Ap; —pi < J

Also since x & free(e) therefore we get
o, top, Jeeq ()0 U {x = to }oep U tog 37 top A (T —t, %0, tvp) € |78 Api —pl < J

Lemma 42 (Value subtyping lemma). V7, 7/, H,%v,tv, T.
<7 AT, %v,) € 7|8 = (T,%v,'v) € LT’J‘I;I

Proof. Proof by induction on the subtyping relation of Univariate RAML
1. Unit:

unit <: unit

Given: (T,°v,%) € |unit|H
To prove: (T, %v,'v) € |unit|{
Trivial

2. Base:

b<:b

Given: (T,%v,'v) € |b]H
To prove: (T,%v,'v) € |b]#
Trivial

3. Pair:

T <7 Ty <iTh

(7_17 7—2) < (7—{7 Té)

Given: (T,%v,%) € | (11, m2) ¥

To prove: (T,%v,'v) € |(], 7))

From Definition B3] we know that v = £ s.t

H(é) = (S’Ul,S’U2) A\ (T,S’Ul,tvl) S Llev A (T,SUQ,tUQ) S LTQJV (S—PO)

@ (Tasvlatvl) € LT{JIV{
IH2 (T, *vy, vp) € |73}
Again from Definition [33] it suffices to prove that
H() = (Pv, %) A (T, 5w, o) € |71y A (T, 5w,) € |75y
We get this directly from (S-P0), IH1 and ITH2
4. List:
T <:To p>q
LﬁTl <: LiTQ

Given: (T,%v,'v) € |LPr |#
To prove: (T,%v,'v) € |Liry|H

From Definition [33] we know that *v = I, and tv = ((), 1)) s.t (T, 1, 1) € |L 71]v
Similarly from Definition [33]it suffices to show that
(T,1s,1) € |[L 2]y

We induct on (T,1s,1;) € |L 71|y

e Base case:
In this case [= NULL and [, = nil:
It suffices to prove that (T, NULL, nil) € |L 12]y
This holds trivially from Definition [33]

e Inductive case
In this case we have I = ¢ and [, = twp, =2 Ly
It suffices to prove that (T, ¢, vy, :: ly) € | L 2]y
Again from Definition [33]it suffices to show that

89

Fop1, ls1. H(C) = (Pop1, lo1) A (T, 5vp1, top) € |12y A (T, b1, b)) € | L 2]y

Since we are given that (T, ¢, %vy, :: ly) € |L 71|y therefore from Definition [33| we have
Fop, s H() = (Svp, Ls) A (T, 5vp, top) € |11y A (T s, 1) € | L 71y (S-L1)

We choose ®vp1 as “vp, and £ as £
— H() = (Sup, Ls):
Directly from (S-L1)
- (Tasvhatvh) € _TIJV:
From IH of outer induction
— (T,és,ltt) S LL Tngi
From IH of inner induction

Lemma 43 (Expression subtyping lemma). V7,7,V H, eg, e;.

T A (T, 6376t) S LTJ;,'/?H = (Ta esret) € LT/J;'/’H

Proof. From Definition [33] we are given that

VH' , Sv,p,p',t <T . V,H F]’;, es bt v, H' = o, tvp, Jeg U toy U7 top A (T —t,50,t0y) € LTJIV{ A
p—p <J (SE0)

Also from Definition [33]it suffices to prove that

VH' *v,p,p/sts <T . V,H FDes Uy S0, H = F'o,top, Jeeg I fog U7 Pop A (T =1, %0, vp) € [7/]5 A
p—p <J

This means given some H',5v,p,p’,t1 <T s.t V, H }—g, es Ui, Sv, H' it suffices to prove that

g, tog, Jeg b Pog U7 top A (T —ty, 50, bop) € |7 H Ap—p/ < J

We instantiate (SE0) with H',*v,p,p’,t; and we get

oy, tup, Jeeg U toy U7 top A(T —ta, %0, top) € |7 Ap—p/ < J (SE1)

We get the desired from (SE1) and Lemma [42]

A.5.3 Re-deriving Univariate RAML’s soundness

Definition 44 (Translation of Univariate RAML stack). (V : T')g £ Vz € dom(T).(V () i,ra)

Definition 45 (Translation of Univariate RAML values).

v T = unit

159 - F—b

(9) Y <<()7 (SU)H,L 7">> T = L—T/
vIHT nil r=L7 NSy=NULL
(H() 1) 2 (HE) d2)m,Le r=L7 ANsv="{

<<(H(€) lfl)H,Tl? (H(g) \1/2)H,7'2>> T = (7-1’7-2) ASy=1/

Lemma 46 (Irrelevance of T for translated value). Vv, 7, H.
HE*®ve|r]in RAML = VYT (Pg(v:7),T,(5v)ur) € [(7)] in A-amor

Proof. By induction on 7
1. 7 = unit:
To prove: VT .(Py(®v:7),T,(*v)n,-) € [(unit)]

This means given some 7 it suffices to prove that
(g (v :unit), T, (50) g unit) € [1]

We know that ®z (v : unit) = 0 therefore it suffices to prove that
(0,7,%v) € [1]

Since we know that *v € [unit] therefore we know that v = ()
Therefore we get the desired directly from Definition [T5]

2. 7=h
To prove: VI (Py(®v:7),T,(5v)m-) € [(b)]

This means given some T it suffices to prove that
(P (Pv:b),T,(5v)mr) € ['b]

90

We know that ®z (v : b) = 0 therefore it suffices to prove that
(0,7,!%v) € ['b]

From Definition [L5] it suffices to prove that

(0,T,%v) € [b]

Since we know that *v € [b]

Therefore we get the desired directly from Definition
.7 =L7

By induction on *v

sv = NULL = []: -
To prove: ¥ T (®41(*0 : 7). T, (0] o) € [(L77)]

This means given some T it suffices to prove that
(@u([]: L97), T, (0, nil)) € [Bs.([0(7,)] 1 @ L7 (7))]
We know that ®([] : LI7’) = 0 therefore it suffices to prove that

(0,7, ((), nil))) € [Bs-([6(q, s)] 1 @ L*(7))]

From Definition [15]it suffices to prove that
3s.(0, T, ((), nil))) € [([$(Z. s)] 1 @ L*(7))[s'/]]
We choose s’ as 0 and it suffices to prove that
(0,7, (0, nil)) € [([¢(7,0)] 1 @ L[0]())]

From Definition [I5]it further suffices to prove that

Ip1,p2-pr +p2 <O A (p1, () € [([¢(7,0)] 1] A (p1, T, mil) € [L[0](7))]

We choose p; and ps as 0 and we get the desired directly from Definition
fo=L="["v,...,%0):

To prove: VT .(®g([*vr...%v,] : LIT), T, (5v)) € [3s.([0(F, 8)] 1 @ LE(T))]
This means given some T it suffices to prove that

(@u(PPvr...*va] : LIT'), T, (*v),r) € [Fs.([6(,9)] 1 ® L*(r'))]

We know that @ ([Fvi ... %v,) : LIT') = (®(n, @) + >, <sc,, Pr(Pv; : 7)) therefore it suffices to prove
that o

(@0, @) + > 1<icn @uCoi s 7)), T, (P0)u.) € [Fs.([¢(7,5)] 1 © L*(7'))]

From Definition [15]it suffices to prove that
35".((2(n, @) + X1 <icn (P02 7)), T, (*v).r) € [([9(F, 9)] 1 @ L (7)) [s"/5]]

We choose s’ as n and it suffices to prove that

(@(n, @) + X1<icn @i : 7)), T, (Pv)m,r) € [([9(7,)] 1 @ L™(7'))]

From Definition [45| we know that (*v)m,» = (), (H(¢) d1)m.+ == (H{) l2)m L)

From Definition [15|it further suffices to prove that

Fp1,p2p1+p2 < (P(1,Q) + 301 <i<, P (P02 7)) A (p1,T,()) € [[(T)] 1] A (p2, T, (H(£) d1) a7
(H(0) d2)m,L7) € [L"(7'))] (L0)

IH _
(@a (v *va] : L7'), T, (H(€) b2) gy, poarr) € [Fs.([6(<d, 5)] 1 @ Lo ()]
We know that @z ([*va...%v,] : LY7') = (®(n — 1,<q) + > o<icn @u(®v; 1 7')) this means we have

(2(n —1,499) + X ocicn @u(Cvi 2 7)), T, (H(L) J2) pr,pea,) € [3s.([¢(<)] 1® L ()]
From Definition [[5] this means we have

3. ((®(n = 1,99) + Xocicn Pu (i : 7)), T, (H () L2) prpenrr) € [([¢(<q, 5)] 1 @ L (r'))[s/s]]

We know that s’ as n — 1 and we have
(P(n —1,499) + Ygcicn, Pu (v : 7)), T, (H(0) J2) g, pear) € [([6(<q,n — 1)]1 @ L1 (r'))]

From Definition 45 we know that (H () l2) g, ez = ((),1e)

This means from Definition [I5] we have
Ip1.papr + 05 < (P(n—1,99) + D ocic,, Pu(Cvi : 7)) A (01, T, () € [[o(<q,n)] 1] A (95, T, 1) €
[L"=))] (L1)

Inorder to prove (LO) we choose p; as p} + ¢1 and py as py + Py (Sv; : 77)

= P14 p2 S (21, Q) + 21 i<, (P s 7))
It suffices to prove that

91

Pitau+po+@u(Por i 7) < (B0, Q) + 31 iy Pu(Pvi: 7))

Since from (L1) we know that p} < ®(n — 1,<q) therefore we also know that
Pita<®mnqg (L2

Similarly since from (L1) we know that ph < > o ., ®u(®v; : 7')
Therefore we also have o
Py + (P 7)) <30, @ (o) (13)

Combining (L2) and (L3) we get the desired
= (p0, T, () € [[6(7)] 1]:

It suffices to prove that (pj +q1,T,()) € [[¢(g,n)] 1]

Since from (L1) we are given that
(1, T, () € [[¢(ag, n)] 1]
Therefore we also have
(M +a.T.0) € [[o(d,n)]1]
= (P2, T, (H(O) d1) e 2 (H(0) d2) 1) € [L™(7)]:
It suffices to prove that
0y + @ 1), T, (H() 1) o (H(C) d2)m,0.) € [L"(7')]

From Definition [[3] it suffices to show that

le,p’g’ DU APy < Pu(Cu 7)) +p5 AT (HW) L)) € [T A 05, T, (H(E) 2)n.+) €
[Zm=t']

We choose p as @y (°vy : 7') and p4 as ph and it suffices to prove that
* (p/1/7 T7 (H(g) \lfl)H,‘r’) S [[T/]]
This means we need to prove that
(@ v 1), T, (H() b)) €[]
We get this from IH of outer induction
* (p/2/7 Tv (H(E) \LQ)H,LT/) € [[Ln_lT/]]:
This means we need to prove that
(Pa, T, (H(€) d2)m,nr) € [L"17]

Since we know that (H(¢) l2) - = I therefore we get the desired from (L1)
4. 7 = (11, 72):

To prove: vT .(@H((Svl,svg) : (Tl,Tg)),T, (31)1,31)2);[,(7—1’72)) S [[(](T1,T2)Dﬂ

This means given some 7' it suffices to prove that
(@r (o1, %v2) : (11, 72)), T, (01,5 02) H (71,m)) € [(T1) @ (72)]

We know that @ ((v1,%v2) : (11,72)) = Py (fvy : 71) + Py (Pvg :) therefore it suffices to prove that
(@u(Cor:m)+ @ 72), T, ((H(E) 41)b,m . (HE) d2)1,m)) € [(11) ® (m2)]

From Definition [I5] it suffices to prove that

Ip1,p2.p1 +p2 < (PP i) + Pu(Pve i) A (p1, T, (H(C) 11)m,7) € [(m)] A (p2, T, (H(£) 12)m.7,) €
[(m2)]

Choosing p; as @y (%vy : 71) and py as Py (Sve : 72) and it suffices to prove that

(@aCv:m), T, (H() 1) ar) € (D] A (@a(Pv2 2 72), T, (H(£) d2)1,7,) € [(72)]
We get this directly from IH1 and TH2

Lemma 47 (Irrelevance of T for translated I'). Vv, 7, H.
HEV:Tin RAML = VT .(®y (), T,(V:T)g) € [(T)] in A-amor

Proof. To prove: YT .(®y u(T),T,(V:T)g) € [(T)]

This means given soem 7' it suffices to prove that

(@v,u (L), T, (V:T)m) € [(T)]

From Definition [16| it suffices to prove that
3f « Vars — Pots. (Vo € dom((I). (f(2), T, (V : T)u(z)) € (LN (2)]e) A (X sciom(qry) [(@) < Pvu (D))

We choose f(z) as @y (V(z) : T'(z)) for every x € dom(T') and it suffices to prove that

o (Vo€ dom(()). (u(V(z): T'(z)() (Vi D) () € [(T)(2)]e):

This means given some = € dom((T)) it sufﬁces to prove that

)
(@ (V(z) : (), T, (V : T)(x)) € [(T(2)]e

92

From Definition [44] it suffices to prove that
(@ (V(z) : T'(2)), T, (V(2))m,r@) € [(T(@))]e
From Lemma 46 we know that
(@ (V(z) : T'(2)), T, (V(2))m,r@) € [(T())]
And finally from Definition [15| we have
(@n(V(x) : T(2)), T, (V(2))m,r@) € [(T(@)]e
* XCrcdomqry f(@) < Qva()):
Since we know that @v, i (I') = 3_, ¢ 4oy ®u(V(2) : T'(z)) therefore we are done

Lemma 48 (RAML’s stack and its translation are in the cross-lang relation). VH,V,T.

HEV:T = YT .(T,V,(V:D)g) € [
Proof. Given some T, it suffices to prove that (T, V,(V : T)y) € [T]#
From Definition [34] it suffices to prove that

Vo : 7 € dom(D).(T,V(x),(V : D) () € |7)

This means given some z : 7 € dom(I") and we need to prove that

(T, V (), (V:T)u(x)) € 7]
Since we are given that H =V : T, it means we have Yz € dom(T").H =V (z) € [['(x)]
Therefore we get the desired from Lemma [49]

Lemma 49 (RAML’s value and its translation are in the cross-lang relation). VH, v, 7.
HESve[r] = VT .(T,%v,(5v)u,.) € |7)H

Proof. By induction on 7

1. 7 = unit:
To prove: VT .(T,°v, (*v) g) € |unit]¥
This means given some 7', from Definition 45| it suffices to prove that
(T,%v,%v) € |unit]
We get this directly from Definition

2. T=h:
To prove: VT .(T,%v, (*v)u ;) € |b|#
This means given some 7', from Definition [45| it suffices to prove that
(T,%v,!%v) € |b|H

We get this directly from Definition

3. 7= Lir"
By induction on *v
e y=NULL:

To prove: VT .(T, NULL, (*v)) € |b|
Given some 7', from Definition 45| it suffices to prove that
(T,NULL,{(), nil))) € | L97" |
We get this directly from Definition
e Sy =0="[v.. 5%
To prove: VT .(T, ¢, (5v)u,-) € [b]H
Given some T, from Definition [45]it suffices to prove that
(T, ¢, (0), (H() L) mr = (HE) L2)m,oe)) € [LIT']S
From Definition [33]it further suffices to prove that
(T, H () b1, (H() I1)mq) € |7 v AT, H(C) L2, (H(0) L2)m,1) € [L T']v
We get (T, H(¢) 41, (H(?) }1)) € |7']y from IH of outer induction
and (T,H(¢) o, (H(¢) {2)m, L) € | L 7’|y from IH of inner induction
4. 7 = (11, 72):
To prove: VT .(T,€,(£) i, (r,,m)) € L(T1,T2)J1I;1
Given some T, from Definition [47] it suffices to prove that
(T, 6, {(H(0) L) mr, (H(O) L2) 15)) € L1, 72) [
From Definition [33]it suffices to prove that
(T, H(0) L, (H(0) L) 7)) € L)y A (T HG) L2, (H(0) d2)H,7,) € [T2]v
We get this directly from IH

93

Lemma 50. Vév,tv,7,H,T.
(T,%v,'v) € 7] = 'v=_v)p,

Proof. Proof by induction on the |.],, relation
1. |unit|H:
Given: (T,%v,*v) € |unit|H
To prove: *v = () g unit
Directly from Definition
2. |bJ#:
Given: (T,%v,!%v) € |b]i
To prove: v = (Sv)p -
Directly from Definition
3. L(Tl,TQ)H;I:
Given: (T, ¢, (*un, 1)) € [(71, m2) |
This means from Definition B3] we have
H(Z) = (51}175’112) A (T7S’U17t’l}1) S |_T1JV AN (T,Svg,t’l)g) S _TQJV (RO)

To prove: (("vi,*v2)) = (€) i, (7,,75)
From Definition 5] we know that

(O #,(r1,r0) = (HEO) L) 705 (HE) L2) b))
From (RO) we know that H(¢) |1= *v; and H({) J2= *vy therefore we have

(O a,(r1.m) = (HEO) W) iy (HEO L2) i) = (o, 502) - (R1)

Since from (R0) we know that (7', %v,%v;) € |71 |y therefore we have
toy =50; (IH1)

Similarly we also have
tyy = Suy (TH2)

We get the desired from IH1, TH2 and (R1)

4. LL‘TT’J{}I:
Given: (T,4,,{((),1:))) € | LI |H where (T, ¢5,1;) € |L7' |2
To prove: {(),1)) = (bs)u,r

From Definition 5] we know that

(ls)a,L-r = (0, (ls) r,7)

Therefore it suffices to prove that Iy = ({5) 1
We induct on (T, 4s,1;) € | L7/ |
(a) {s=NULL:
In this case we know that [, = nil
From Definition 5] we get the desired
(b) s =€+ NULL:
In this case we know that Iy = fup, 2 I} s.t
H(f) = (*v', £,) A (Tasv/atvh) ey AT L) e [L]y
We get the desired from Definition IH of outer induction and IH of inner induction

Definition 51 (Top level RAML program translation). Given a top-level RAML program
P2 F, epain where F = f1(z) = eft, ..., fn(z) =epm s.t
Y,x:T I—gi €f1 1 Th

x0T Fg: €fn T]’cn
YT FL emain : T
where ¥ = f1: 74 a/i Thiseoos [N T =" Thy
Translation of P denoted by P is defined as F, e, where
F =fixfi. \u. x.esq, ..., fixfp A Au.Ar.ep, s.t

ST by ep i h v en

2,x: Tep l—g: €fn : T]/’n ~5 etn

and

N, T Y emain 0 T~ e

94

Theorem 52 (RAML univariate soundness). VH, H VT, ¥ e, 7,%v,p,p’, q, ¢, t.
P =F,e and P be a RAML top-level program and its translation respectively (as defined in Deﬁm’tion
H):V:F/\Z,Fl—g,e:T/\V,HI—Z,eUtSU,H’
_—
p—p < (euv(l)+q)— (¢ +Pu(°v:7))

Proof. From Definition [51| we are given that

F2fi(z)=ep,..., folz) =¢p, st

. q1 -
X, xTe }—qi €fy 1 Th ~ €ty

YowiTy, ROt e, 1 Th e,
Let Vi € [1...n].05¢(fi) = (filz) =ey,) and Vi € [1...n].0¢(fi) = (fixfi. du. Az ey,)

Claim: VT .(T,dss,0:¢) € |Z]H

Proof.

This means given some T, it suffices to prove that
(T, 055, 01r) € [2]7

We induct on T'

Base case: Trivial

Inductive case:

IH: V T"<T (T",8,5,8e) € |5) 7

From Definition [35] it suffices to prove that

Vfi € dom(S).(T, fi(w) = e5, 8o, fixfi udz.e,, di5) € 7y, "Bt |
Given some f; € dom(X) it suffices to prove that

9 /4;

(T, fi(x) = ey, Oy, fixfidudz.ey, 01f) € |75, — T}JH

From Definition [33| it suffices to prove that

VR TIT (T, 50 1) € g [= (T, e, 8ogy en, S 1() Jul[to! [l [fixfi-duAaeey, 8ip/ fi]) € |, |50 M
This means given some *v’, 0/, T'<T s.t (T",%v',%v’) € |74,]# it suffices to prove that

(T',e5, boges, SoglQ/ull'e’ fallfixfidude.en b/ fi]) € |7y,

Since 05 = ¢y U {fi > fixfi.Au. Az ey, §;r}, therefore it suffices to prove that

(T' 5, ogser, SuglO/ull'v'/a]) € |7 |~ (co)
Also since are given (17, %v',%0") € |74,]# therefore we have
(T {z— o'} {z = '}) € |l 7p, [
Also from TH we have (T, 6857,8:5) € | 2]V H
We can apply Theorem 1] to get

{z—°v"}H

(T/76f7158f76ti () {SC — tvl}étf) € LT}I &
And this prove (C0)

From Theorem [31]| we know that Je; s.t
N, T e:r~ e and 55 (2); (T) et [g] 1 — MO[g'] (7)
From Lemma 48| we know that VT .(T,V,(V : T)y) € ||

Also from the Claim proved above we know that ¥V T .(T,ds¢,0:) € | S]H
Therefore from Theorem 41 we know that VT .(T,edss,e; () (V : T)udss) € | 7] g’H

This means from Definition B3] we have
VT VH], %w,p1,py,t' <T .V,H }—gi edsf i v, HY = Flo,top, ey () (Vi D)pdep U top 47 oy A (T

—t sutug) € 7] Ap —py < (RD-0.0)

We are given that V, H -2, e {; v, H'
Therefore instantiating (RD-0.0) with ¢ + 1, H',%v,p,p’, t we get
Fhoy, top, Jeer () (Vi D) gdep b Pog U7 top A (1,50, 0p) € (7] Ap—p' < J (RD-0)

From reduction rules we know that 3t1, ¢ s.t e; () (V : T) ey dbey P 47, oy

95

Since from Lemma 47| we know that VT .(®y. gz (T'), T, (V : T)g) € [(T)]

Therefore we also have (®y, g (T),t1 +t2+1,(V : T)g) € [(T)]

Therefore from Theorem [29) we get
po-(po, 1, vp) € [(TD] A T < (g + Py, (T)) — (¢ +po) (RD-1)

Since we have (1,°v,%vs) € |7/ therefore from Lemma we know that ‘vy = (5v) g,
From Lemmawe know that VT .(®g(*v : 7), T, (*v) g) € [(7)]

Therefore we have (®g(*v: 7),1,(5v) g +) € [(7)] (RD-2)

From (RD-1), (RD-2) and Lemma [61] we know that p, > ®x(*v : 7)

Since from (RD-1) we know that J < (¢ + ®y,x(T")) — (¢’ + py) therefore we also have
J<(g+Pyul)— (¢ +Pu(Cv:T1)) (RD-3)

Finally from (RD-0) and (RD-3) we get the desired.

B Development of A-amor (full)

B.1 Syntax

Expressions e == wvleer]| (er,e)) | let{x,y) =e1ines |
(e,e) | fst(e) | snd(e) | inl(e) | inr(e) | case e, x.e,y.e |
let!lx =ejinex | e |ee]|emxe
Values v = x|c|Are| {vi,v2) | {(v,v) |inl(e) | inr(e) | nil |
le | Ae | rete | bindz =ejiney | 1 | releasex = ey in ey | storee
(No value forms for [I]7)

Index I == N|HI+I|I—I|ZG<II|@£’II\)\SZ'.I|II

Sort S u= N|R"|S—S

Kind K o= Type|S—K

Types 7 = 1|lb|m—on|ne®n|n&kn|n®n|laxr| I]7| MIT|

a|Va:Kr |Vi:Sr | Mir |71 | LT | 3i:S7|c=71|ckr

Constraints ¢c u= I=I|I<I]|cAc
Lin. context r == .|Te:7

for term variables

Bounded Lin. context Q == .| Q201 T

for term variables

Unres. context © == .|6,i:S

for sort variables

Unres. context U = .| ¥,a:K

for type variables

Definition 53 (Bounded sum of context for dIPCF). >~ _,.=.

Yoacr D b<Jr =00 D)wife<) .]o
where

7= 0[(Xa<a J1d/a] +1)/d]
Definition 54 (Bounded sum of multiplicity context). Y

Ea<[Q,.’l? < T = (Za<[Q)’ x :C<Za,<1 Jo
where

7 =0[(Xa<a J[d/a] + b) /]
Definition 55 (Binary sum of context for dIPCF).

a<I* — -

Iy Iy =.
Mol 2 Ty@le/z),z:c<I+JT =T,z [a<I|tla/d] A (z:[b< JT[I+b/c]) €Ty
(F3®F2)7$:a<17— FIZPIhx:[a<ﬂ7/\(x:[_]_)¢]-—‘2

96

Definition 56 (Binary sum of multiplicity context).

Qs QO =.
QoD ES (VN DN/2),@ccrps T Q1 =, 2 acr Tla/e] A (T <y T+ b/c]) € Qo
(N ©N), 2z acr T M=,z TN (2 =) €D

Definition 57 (Binary sum of affine context).

F1@F2é{r2 f

Ty ely),x: T I =T,z:7A(x:—

97

B.2 Typesystem

Typing V;0; A; ;T Fe: 7T

O,AEIT>1
T-varl T-var2 T-unit
LN CTUAN 078 N PR ol o e U:0; 00,2 (g ;T F 21 7[0/4] U0, AT ()01

T-b T-nil
U:0;A; QT Fe:b ase U, 0: AT Fnil: L0 7 o

U:0;A; QT Fey o r U:0;A;0; 9 ey : L7 ©;AFn:N
U, 0:A; 0 QT @ keg ey : L7

T-cons

U0 A QI Fe: L™ T U:0;An=0;Q;TsFe; : 7
U0, LAn=I+1;Q:Ts.h:7t:Littey: 7 O;AFn:N U:0;AFT K

- - 7 T-match
U;0;A; 01 @ Qo; T Ty - match e with [nil —eq |ht—eg: T
U:0;A; QT Fe:t[n/s O;AFn:S
T-existl
U, 0;A; Q0T Fe:3s: St
U:0;A; Q0T Fe:ds:S.1 U:0,s:S; A0, x:7Fe 7)
— T-existE
U, 0; A QT @l beyae o7
U:0:;A; QT x:mFe:m U:0;A; Q3T Fep: (1 —) U:0;A; 05T Fes g
T-lam T-app
U:0;A; QT F Azee : (11 — 72) U:0;A;0 Qo1 BTl Feper:m
U, 0;A; QT Fe: T U0 AFT <7
7 T-sub
U, 0;A; QT kFe: T
U:0;A; Q0 Fep iy U:0;A; Q0T Fey: g
T-tensorl
U;0; 0,0 & Qo T1 @2 F (e1,e2) : (11 @ T2)
U:0;A; QT Fe: (1 ® 1) U0 A QT z:m,y:ma ke o7
— T-tensorE
U:0; ;0 @ Qo Ty dTo Flet{(x,y) =eine : 7
U:0;A; T Fey iy U:0;A; 0T Fey:m U:0; AT Fe: (11 & 12)
T-withl T-fst
U 0; A; QT F (e1,e2) : (11 & T2) U:0; A; QT - fst(e) : 7y

U:0; AT Fe: (11 & 12)
U;0; A; ;T Fsnd(e) : 1o

T-snd

98

U:0;A:QT'Fe:my
- T-inl
U;0;A; ;T Hinl(e) : 11 @ 1o

U:0;A; QT Fe:my
- T-inr
TU;0;A; QT Finr(e) : 11 © 72

U 0;A; QT Fe: (1 @ m) U:0;A; Qs g,z bFep: 7 U;0;A; 00,y beg: T

U:0;A;0 Qo ®Tg - case e, x.eq,y.ea: 7

U:0,a;A,a< ;. Fe:T
\IJ;@;A;ZQ;. He:lgerr

a<lI

U:0;A; QT Fe: (lgerm) U:0;A; 0,2 gy ;o e o 7
— 7 T-subExpE
V0,00 QN @laFletlz=eine : 7

T-subExpl

U,a:Ki0;A;QTkFe: 7 Totab
U:0; AT HAe: (Va: Kor) s

U:0;A; 0T Fe: (Va: Kr) U:0;AFT K
7 T-tapp
U0; AT E el : (r[7'/a])

U:0,i:S; AT Fe: 1

Toialy U0, A 0T Fe: (Vi:ST) O;AFI:S
U;0;A; T HAe: (Vi:S.71) Tans

U0, 00T Fell: (7[I /i]) trepp

U;0,b; A0 < L; Qx iqer T[(D+ 14 @z+1’a1)/b];. Fe:T
U; 0; A; Z Q; . F fixz.e : 7[0/b]

b<L

0,1
L2061 T-fix

U, 0;A; QT Fe: T U:0;AET'CT U:0;AEQ CQ
Y T-weaken
U:0;A: Q0 T"ke: T

U, 0;A; 0T Fe: 7
T-ret
U:0;A; Q' Frete: MOT

U:0;A: Q0 Feg MLy U:0;A; Qoo x:m ey MIsTo O:AFI :RT

@;A"IQZR

T-case

+

U:0;A;0) ®Qy; Ty @k binde =eq iney: M(I1 + I2) 72

O;AFT:R"
U0 AT MI1

T-tick

U:0;A; QT Fey: [L]7
U:0;A; Q0T x:m Fex: M1 + I2) T2 O:;AF I :RT @;AI_IQ:R+T .
U0 A;01 @ Qo; Ty @ o Freleasex = ey in e2 : M > T2 Trelease

U:0;A:;QT'kFe: T O:AFIT:RT
T-store
U 0; A; QT = storee : M T ([] 1)

U:0;A, ;T Fe: T T.C1
U:0; AT HA e: (e=7))

U;0;A; QT Fe: (e=7) @;AI:CTC
U:0; AT el o7)

U 0:;A; QT kFe: T @;A':cTCA a
TU;0; A; 0T Fe: (c&r) e

U:0; AT Fe: (c&kr) U0 A, ;T x:7ke i 7 T-CAndE
U:0;A; QT Fcletz=eine : 7/ e

Figure 27: Typing rules for A-amor

99

T-bind

U;0;A k7 <7 U;0;AF 1 <7

———— sub-refl b-
\Il;@;AI—T<:Tsu e U;0;A b1 —o 7y < 7] — T4 SubTarow
U, 0;AFm <7 U, 0;AF 1 <:7) U,0;AFm <7 U, 0;AF 1 <:7) _
— — 5 sub-tensor — — S sub-with
U0 AFT @ T <:T) ® Ty U0 AFm &n<in &y
U,0;AFT <7 U,0;AF 1 <:7h UO;AFT <7 O;AER <n _
— — 7 sub-sum — —— sub-potential
V,0;AFT @ <iT BTy U:0;AF [n]r < [n]T
UV:0;AFT < 7T O;AERn<n U:0,0Aa<JbT <7 O,;AEJ<I
— - — sub-monad — ' J 7 sub-subExp
U, 0;AFMnT <:Mn'T U0, Al e <oyt
UO;AFT <7 U:0,s:AF1<:7
— — sub-list 5 sub-exist
VO, AFLY T <: L™ T U 0; A Js.r < ds.T
U a:KiU;0;AF7m <:mo botvnePol U:0,i:S;AFT <imo boindexPol
U;0;AFVa: K <:Va.r SHyPero U:0;AFVi:Sm < Vi SHbrnaertoly
U 0;AF T <:To O AE = ¢ U 0;AF T <:To 0;AECc =
sub-constraint sub-CAnd
U:0;AFc =71 <:ca=>T U:0;AF ci&m <:co&m
O:AFk:RT O:AFK :RT bbotA N
U;0; A F [k](m1 —o 1) <: (K] 71— [k + k] 72) SHDTPORLATIOW U;0;AFT<:[0]7 SHDTPOLAEo
U:0,i:S;AFT <7 bofamilvAb OrI:S bofammilv Aol
U;0; A Agi: So7 <: \i : ST’ SHbTAmIyADs U:0;AF (Aei:Sor) I < 7[1/1] SUbTATEy PP
Orl:s b-family App2 b-bS
- - sub-family App sub-bSum
U 0;AF [l /i) <: (M\i:S.m) I U:0; Ak [Z K)lgerm <locr [K]T
a<l
Figure 28: Subtyping
dlpcf-subBase

U:0;AFTC.

z:la< Jr' el U:0,a;A,a<IF7TCrT VO, AFTI<J U;0;AFT/z ETy

dlpcf-sublnd
O;AFT, Clya:a<I]r peisubm

Figure 29: T" Subtyping for dIPCF

sub-mBase

U0, AFQLC.

Ty €M U0, Aa<Ib7r <7 O;ARI<JT UOAFQ/zCEQ
V0 AFQ CE Qo iqer T

sub-mInd

Figure 30: © Subtyping

z:7 el U:0;AFT <7 U:0;AFT/z C Ty
sub-1Base sub-1Base

U:0;AFTC. U:0;,AFTCIy,z: 7

Figure 31: I" Subtyping

100

0;AFi:N

—_— S- —— S-nat —————— S-real ——— S-reall
0,i:SAFi:Ss O, AFN:N O AFR:RT OFi:RY
O;AFI;:N O;AFI;:N O;AFI :RT O:AFI,:RT
S-add-Nat S-add-Real
@;AFIl+IQ:N @,A"11+IQR+
O:AFI:RT O:AF1I,:RT OAEL>D) O;A+I;:N 0;AF1Iy:N
- S-minus-Real S-bSum
O;AFL —Ip:R @;A}—ZIQ:N
a<ly
O;AFI;:N O;AFI;:N O;AFI3:N 0,i:S;AFT:S]
11,1 S-forest - 7 S-family
OFO"?I3:N O;AF N3 I:S—S

Figure 32: Typing rules for sorts

U:0;A k71K U:0;AF 71K

K-unit K-base K-arrow
U:0;AF1:Type U:0; Ak b:Type U:0;AF 71 —o7m: K
U:0;AF7m K U:0;AF 7K U:0;AF 71K U:0;AF 7K
K-tensor K-with
U:0; AT @71 K U:0;AFT1 &1 K
U:0;AFT1:K U:0;AF 1K U:0,a:5;Aa<IkF71:K OF:N
K-or K-subExp
U:0;AFm dm:K U:0;AF 7K
U:0;AkF71:K O:AFI:R* U:0;AkFT:K O;AFI:R"
K-lab K-monad
U;0;AF[I]7:K V0, AFMIT:K
U,a:K:0;AFT:K U:0,i:S;AFT:K U:0;Ack7:K
K-tabs - K-iabs K-constraint
U:0;AFVar: K U:0;AFVir: K U:0;Ac=7:K
U:0;AFT:K @;A)ZCK And U:0,i:S;AFT:K Kefamil
U;0;AF cker : K Teomsan VO A Nir:S—oK o

U:0;AF7:S—>K O;AFI:S
U0;AFT I:K

K-iapp

Figure 33: Kind rules for types

101

B.3 Semantics

Pure reduction, e {; v ‘ ’ Forcing reduction, e |{ v ‘

e v e l e nil e v
1 2 bia E-cons - ! lltl 2 bia E-matchNil
er i eg Yty tepr1 vl match ey with |nil — es |h it — e3 Y441 ¥
e vp, o 1 eslvy, /h|[1/t v e v eslv/z v
! btl h - 3[h/ H /] by E-matchCons L 2[/] ll? E-exist
match ey with |nil — ea |h it — e3 iy tt,401 v er;x.eg e, 11y41 v
e Ax.e e'les/x v e v e v
1 ‘U’tl [2/ ,] ‘U’tg E-app 1 ‘U’tl 1 2 ‘U’tz 2 E-TI
er eg bty 411 v ((e1,e2)) Yty tto+1 (v1,02)
e V1,0 e'lvy /z][v v e v e v e V1,0
e, (v1,v2) . [/1/ Jfva/y] Ue, ETE 1o 1 2 e, v2 EWI e (v1,v2) et
let{(z,y) =eine Vi, 11,410 (e1,€2) Uty 11,41 (v1,02) fst(e) Uis1 v1
e V1,V elsv el v
7% < L 2> E-snd _ b - E-inl - Ve - E-inr
fst(e) Jet1 v2 inl(e) Y41 inl(v) inr(e) J¢41 inr(v)
e ¢, inl(v) ev/z] I, v/ e s, inr(v) e"[v/y] s, v
7 7 - ~ E-casel 7 7 - -~ E-case2 — E-expl
case e, x.€,y.e” Ut 14,41 inl(v) case e, x.e’,y.€” |t 41,41 inl(v") le Jole
e s le” e'le’ Jx v elfixz.e/x] Ut v
‘U’tl : /[/] lltz E—expE [/ } ut E-fix
let!lz =ceine Y4 4t,41 v fixz.e {typ1 v

v € {(), z, nil, \y.e, A.e,rete,bindz = ey in ez, 1", releasex = ey in eq, storee}

E-val
viowv
elly, Ae’ € Iy, v E-tapp ely, Ne/ € U, v Etapp ely, Ne/ € Uy v BCE

e[l bti4ta41 v el btitta11 v e[l bti4ta41 v

e1 iy v eav/z] i, v/ E-CandE ey Fereturn

cletx = eq in ey Ut1+t2+1 v rete U?_,_l v

erdy v vidgvr ei/al by va v U vy E-bind Fetick
bindz = e; in ey Ufllif22+t3+t4+1 vh U7 0
e1 4y, 11 ealvr/x] e, vo va 1§, v5 E-release e v E-store
releasex = ey in ez U5 4 4yuq1 V5 storee g1 v

Figure 34: Evaluation rules: pure and forcing

102

B.4 Model

Definition 58 (Value and expression relation).

[1] = {(T,0)}

[b] 2 {(p,T,v) | velb]}

[LO7] = {(p T ml)}

[LsHr] & {(p,T.v = 0)[Fp1,pa-pr +p2 <p A (p1,T.v) € [7] A (p2, T, 1) € [Lo7]}

[men] = {@T <<U1,112>>) | Ip1,p2p1 +p2 <P A (p1,T,01) €[] A (p2, T, v2) € [12]}
[n&mn] = {7, (v1,0)) | (p,T,0) € [n] A (p,T,v2) € [12]}

[nen] = {(pT,inl(v) | (p,T v) € [} U{(p. Tinr(v)) | (p,T,v) € [r2]}

[ri—m] = {(pT,\v.e) |V, e, T'<T .(p),T",¢) € [n]e = (p+p,T ele/x]) € [r]e}
lacrt] 2 {(T,l) | 3p07~-.7p1 1p0+ -+ pro1 SpAV0 <i < I(pi,T,e) € [r[i/a]]e}
[[n] 7] = A T0) [WP +n<pA @, T,v) € [7]}

[MnT] 2 {(p,T,v) | ¥n',T'<T,v vl}T,v = ' +p <p+nA@,T-Tv

[Va.7] 2 {(p, T JAe) | VT, T'<T (p, T e) € [r|7'/a]]e}

[Vi.7] 2 {(p,T,A.e)| VI T’<T (p,T",¢e) € [r[I/i]]c}

[e = 7] 2 {(p,T,Ae) | VT'<T .):c:> (p,T',e) € [r]e}

[e&e] 2 {(p) | Een(pT,v) €[]}

[Fs.7] = {(p,T,v) | 35.(p,T,v) € [7[s'/s]]}

[Mei.7] £ f where VI.f I =1]r[I/i]

[1] 2 [r]1

[7]e £ {(p,T,e) | YV, T'<T e v = (p,T —T',v) € [7]}

Definition 59 (Interpretation of typing contexts).

[Tle = {T,v)|3f: Vars — Pots.

(Vz € dom(T). (£(2), T,7(x)) € ['(@)]e) A (Speaomaey F(@) < 1)}
{(p,T,9) | 3f : Vars — Indices — Pots.

V(@ iqer 7) €QNVO<i < I.(f z4,T,0(x)) € [r[i/a]]e) A
(Zz:a<17’€§l Zo§¢<1 fx Z) < p}

Definition 60 (Type and index substitutions). o : TypeVar — Type, ¢ : IndexVar — Index

[

Lemma 61 (Value monotonicity lemma). Vp,p',v,7,7',T.
(p,T,v) € [r] Ap <P NT'<ST = (p/,T',v) € [7]

Proof. Proof by induction on 7

Lemma 62 (Expression monotonicity lemma). Vp,p' v, 7,7',T.
(0. Tye) €lrle Np<p' NT'ST = (p,T",¢) € [7]e

Proof. From Definition [58 and Lemma

Lemma 63 (Lemma for substitution). Vp,d, I, €.

(p’(s) € [[Za<IQ]] g 3p07'-'7p171'
po+...+pro1 <p AV0<i<I(p;,0) € [Qi/a]

Proof. Given: (p,0) € [>-,.; 9]
When O =.

The proof is trivial simply choose p; as 0 and we are done

When Q(a) = 20 ‘b<Jy(a) To(a)z <o T th< T, (a) Tn(a)

Therefore from Definition [54] and Definition 59 we have

3f Vars — Indices — Pots.
(V@5 e,y 0, 0) € (D V0 <i < Xury Iy (f @ 3,8(25)) € [ofi/e]) A
ey 1 0,0 (Taey @) 2o0i<y, ., 0§ T) Sp o (SMO)

To prove the desired, for each i € [0, — 1] we choose
Pi 38 Dy m (et 2oska; i) 25 (K +Dag; Jjld/d)
and we need to prove

103

1. po+...+pr—1 <p:
It suffices to prove that

Do<i<l Daay: the.s; (1973 () Edom (92(3) o<k, iy f T (B+ 240, J5(@)[d/i]) <

We know that dom(zad Q) = dom(Q2) and from (SMO0) we get the desured
2. V0 < i< I.(p;,0) € [Qi/a]:

This means given some 0 < ¢ < I , from Definition [59] it suffices to prove that

3f" : Vars — Indices — Pots.

(V(j by) 75() € Qli/a). VO < k < J;(0). (f x5 k,6(x5)) € [m5(i)[k/b]]) A
m]-b<Jj(i)€Q[’L/a] 0<k<J;(1) f x k) < pi

We choose [’ s.t

Vo e,y Ti(0) € (Qi/a]). VO < k < J;(0).f" x5 k= f oy (k+ X4, J5ld/i]),

And we need to prove:

(&) Y(2j pey;) () € Qli/a]. V0 < k < J;(0). (f" x; k,6(z;)) € [7;()[k/0]]:
This means given some (7; :p<,5) 7j(i)) € Q[i/a] and some 0 < k < J;(i) and it suffices to prove
that

(f" @j K, 6(2;)) € [r;(0)[k/b]]

This means we need to prove that

(f @y (k+2ge Jild/i]),0(x5)) € [m ()[k/0]] (SM1)
Instantiating (SMO) with the given x; and (k +)_,_, J;[d/i]) we get

(f 25 (k4 > acq Jild/i)), 6(25)) € [ol(k + 3 qc, J5ld/d)) /]
And from Definition [54] we get the desired

(b) (ij:K,,j(im(i)en[i/a] ZO§k<Jj(i) [l ok) <ps
It suffices to prove that
(sz3b<Jj(i)Tj(i)€Q[i/a] ZO§k<J' (i) fa(k+ Zd<z ‘[/i) < pi
Since we know that p; is }°, . e (07 (DEQ)) 20<k<d; () f Ti (k43 Jjld/i]) therefore we are
done
O

Theorem 64 (Fundamental theorem). VU, 0, A Q T e, 7 € Type.
U0, AT Fe:7 A (p, T,7v) €T ot]e A (pm, T,0) €E[Qot]e N.EA L =
(p1 + pm, T e v0) € [1 ot]e.

Proof. Proof by induction on the typing judgment
1. T-varl:

T-varl

U0, A7z T

Given: (p;,T,v) € [T,z : 7 ot]e and (p, T,0) € [Q ot]e
To prove: (p; + pm, T, x 07) € [T ot]e

Since we are given that (p;,T,v) € [,z : 7 ot]¢ therefore from Definition [59 we know that
3f.(f(2),T,~(x)) € [7 oi]e where f(z) < p,

Therefore from Lemma [62] we get (p; + pim, T, 2 67) € [ot
2. T-var2:
0,AET>1
U:0; A0, 2 e ;T F 22 7[0/4]

Given: (p;,T,v) € [I',0t]e and (pm,T,0) € [(Q,x 1q<s T) ot]e
To prove: (p; + pm,x 67) € [7[0/a] ot]s

T-var2

Since we are given that (p.,,T,0) € [(Q, :q<1 7) ot therefore from Definition [59| we know that
3f Vars — Indices — Pots.

((f z0,T,6(x)) € [r[0/a] ot]e) where (f = 0) < pp,

Therefore from Lemma [62] we get (p; + pim, T, 2 67) € [7[0/a] ot]e
3. T-unit:

T-unit

TU:0;A; 0T H():1

104

Given: (p;,T,7) € [Tot]e, (pm,T,0) € [Q ot]e and = A ¢
To prove: (p; + pm,T,() 6v) € [1 oi]e

From Definition [68|it suffices to prove that
vI'<T .U) = m +p, T =T',() € [1]

This means given () {o () it suffices to prove that

We get this directly from Definition
. T-base:

T-base

U:0:A; QT He:b
Given: (p;,T,v) € [T',ot]e, (pm,T,90) € [Q ot]c and E A ¢
To prove: (p; + pm,T,c) € [b]e

From Definition [68|it suffices to prove that

Vo, T'<T .clrv = (pm +pi, T — T, ¢) € [b]

This means given some v, T'<T s.t ¢ {7+ v. Also from E-val we know that 7"= 0 therefore it suffices to
prove that

(pl + Pm, Tv U) € [[bﬂ

From (E-val) we know that v = ¢ therefore it suffices to prove that

(pl + Pm, Tv C) € [[b]]
We get this directly from Definition
. T-nil:

T-nil

U, 0;A; T Fnil - L0 7
Given: (plvTa 7) € [F70LH53 (pmaT7 5) € HQ O'L]]g
To prove: (p; + pm, T, nil 6v) € [L° T oi]e
From Definition [I5] it suffices to prove that
VT'<T,v' il v = (pi + pm, T —T',0") € [L° 7 0]
This means given some T'<T, v’ s.t nil |7 v’ it suffices to prove that
(p1+ pm, T —T',0") € [L° 7 04]

From (E-val) we know that 7= 0 and v’ = nil, therefore it suffices to prove that
(p1 + pm, T, mil) € [L° 7 01]

We get this directly from Definition [I5]

. T-cons:

U:0;A;0; 1 Fey: 1 U:0;A; Q0o Fey: LT OFn:N
U:0;A; N BT @b eg ey L7

Given: (plvTv 7) € H(Fl S2) FQ)O-L]L‘:? (pmvT’(S) € [[(Q) O—L]]S
To prove: (p; + pm, T, (e1 :: €2) §v) € [L" ™! 7 oi]e

T-cons

From Definition [68|it suffices to prove that
Vvﬂt <T .(61 i 62) 6’}/ U I (pl +pm, T —t,v’) c [[L'fb‘i‘l T O'L]]

This means given some v',t <T s.t (e :: es) d J¢ v’, it suffices to prove that

(p1 + pm, T —t,v") € [L" ! 7 04]

From (E-cons) we know that Jvy,l.v' = vy = 1

Therefore from Definition [58|it suffices to prove that

Elple)Q-pl +p2 S Di +pm A (p17T —t,Uf) € [[T U”]] A (anT _tvl) S [[LnT UL]] (F_CO)

From Definition [59] and Definition [57] we know that Ip;1, pi2.pi1 + pi2 = pi s.t

(p1, T,7) € [(T1)ot]e and (pi2, T,) € [(T2)ot]e
Similarly from Definition [69] and Definition [56| we also know that

EIpm,17pm2~pm,1 +pm2 = Pm s.t
(Pm1,T,0) € [(Q1)ot]e and (pma, T,d) € [(Q2)oi]e

TH1:

105

(pll +pm1; Tv €1 57) € [[7_ 0LH$
Therefore from Definition 58| we have
Vil < T.€1 (S’Y U, vf — (pll +pmlaT —tl,Uf) € [[TH

Since we are given that (e; :: e2) 6 |4 vy :: [therefore fom E-cons we also know that 3t1 < t. e; dy {41 vy
Therefore we have (py1 + pm1,T —tl,vy) € [T ot (F-C1)

TH2:
(plQ + Dm2, Ta €2 6’7) S [[LnT O'Lﬂg
Therefore from Definition 58 we have

VE2 <T ez 0y 2l = (pi2 + pma, T —12,1) € [L™1 o!]

Since we are given that (e; :: e2) 0y ¢ vy = I therefore fom E-cons we also know that 3t2 < ¢ — t1.

ex 0y 1
Since t2 < t — t1 < t <T, therefore we have
(pi2 + pma, T —t2,1) € [L™T o] (F-C2)

In order to prove (F-CO0) we choose p1 as pj1 + pm1 and ps as pi2 + pma, we get the desired from (F-C1),
(F-C2) and Lemma [61]
. T-match:

U:0;A; Q0T e L™ T U:0;An=0;0;TsFe; : 7
U0, A n=I+1;Q:Ts.h:7,t:Littey:7 OFn:N U:0:AFT K
U;0;A;0 @ Q371 &g - match e with |nil —eq [h it eq: 7

Given: (pi,T,7) € [T1 & T2) otle, (pm,T,0) € [Q ot]e
To prove: (p; + pm, T, (match e with |nil — ey |h it — e2) §v) € [/ ot]e

T-match

From Definition [58|it suffices to prove that
Vit <T',vg.(match e with [nil — ey |h it —e2) oy b vy = (o1 +pm, T —t,v5) € [T 0t

This means given some ¢t <T',vs s.t (match e with |nil — ey |k :: t — e2) dv |4 vy it suffices to prove that
(p1 + pm, T —t,vf) € [T 0l (F-MO)

From Definition and Definition [57] we know that Jp;1, pio.pi1 + pio = pr s.t
(p1, T,7) € [(T1)oe]e and (pi2, T,) € [(T2)ot]e

Similarly from Definition [59] and Definition [56| we also know that
Elpmlame-pml + Pm2 = Pm st

(pm1,T,0) € [(Q1)ot]e and (pm2,T,0) € [(Q2)ot]e

IH1
(pi1 + Pm1, T,e 67) € [L™1 oi]e

This means from Definition [58 we have
Vt' <T .e oy Yy vi = (pix + pm1, T —t',v1) € [L"7 01]

Since we know that (match e with |nil — ey |h :: t — e3) 6 | vy therefore from E-match we know that
3t < t,vi.e 6y Yy vy.
Since t' < t <T, therefore we have (p;1 + pm1, T —t',v1) € [L"T oi]
2 cases arise:
(a) vy = nal:
In this case we know that n = 0 therefore
IH2
(pi2 + pma, T,e1 67) € [T/ ol]e
This means from Definition 58] we have
Vit <T .eq 67 Iy, v5 = (D2 + Pm2, T —t1,v5) € [04]
Since we know that (match e with |nil — eq |h 2 t — ea) 0y {; vy therefore from E-match we know
that 3t < t. er 0y iy vy
Since t; < t <T therefore we have
(pl2 +pm27 T _t17 Uf) € [[T/ UL]]
And from Lemma [61] we get
(P12 + Pm2 + 011 + pm1, T —t,vg) € [T/ ole
And finally since p; = pi1 + pi2 and py, = Pm1 + Pmatherefore we get
(P + pm, T —t,vp) € [7" ot]e
And we are done

106

(b) v =v L
In this case we know that n > 0 therefore
IH2

(pi2 + Pma2 + i1 + pm1, Tye2 67) € [77 ol/]e

where

v =vyU{h—v}U{t— 1} and

/=1U{I—n-1}

This means from Definition 68 we have

Viy <T .e2 07 Y1, vy = (pi2 +pm2 + 01 + pm1, T —ta,v5) € [7" 0]
Since we know that (match e with |nil — ey |h :: t — e2) 07 ¢ vy therefore from E-match we know
that 3ty < t. eq 67" | vy.

Since ty < t <T therefore we have

(P2 + Pm2 + 011+ Pm1, T —ta,vp) € [7 0]

From Lemma [61] we get

(pl2 + Pm2 + P +pm1,T —t,’Uf) S [[7'/ O'L/]]

And finally since p; = pi1 + pi2 and pm, = pm1 + pm2 therefore we get
1+ pm, T —t,vyp) € [T o']e

And finally since we have ¥; ©; A F 7/ : K therefore we also have

(p1 + pm, T —t,v5) € [T ot
And we are done
8. T-existl:

U:0;A; 0T Fe:7[n/s OFn:S
U:0;A;QT'Fe:ds: St

Given: (p;,T,v) € [T ot]e, (pm,T,9) € [Q ot]e
To prove: (p; + pm, T, e 67) € [Is.7 ot]¢

T-existl

From Definition [5§| it suffices to prove that
Vit <T,vp.e 0y vy = (1 +pm, T —t, vy 67) € [3s.7 0l

This means given some t <T',v; s.t e 4y {; vy it suffices to prove that
(pr + pm, T —t,vy) € [Fs.7 0]

From Definition [68] it suffices to prove that

3s’.(p1 + pm, T —t,vy) € [7]s'/s] o] (F-E0)

This means from Definition 58 we have

Vt' <T .e 6y Yy vy = (pi + pm, T —t',vf) € [7[n/s] o]
Since we are given that e §v |J; vy therefore we get

(pl + Pm, T —t, Uf) € [[T[n/s] JLH (F'El)

To prove (F-E0) we choose s’ as n and we get the desired from (F-E1)
9. T-existsE:

U:0;A; 0, Fe:dsr U:0,5;A: 0y, x:7He i 7 U:0;AFT K
U0 AN D1 e xe 7

Given: (p;,T,v) € [(I'1 ®T2) oife, (pm,T,90) € [(2) ot]e
To prove: (p; + pm, T, (e;x.€") 0v) € [7' oi]e

From Definition [68| it suffices to prove that
Vt <T,vys.(e;x.€) 0y e vy = (D1 + pm, T —t,v5) € [T 0l

T-existE

This means given some t <T,vs s.t (e;z.€’) 6y |, vy it suffices to prove that
(p1 + pm, T —t,vp) € [T 0l] (F-EE0)
From Definition [59] and Definition [57] we know that Jp;q, pra.pi1 + pi2 = pr s.t

(pllvTa ’Y) € [[(FI)O'L]]E' and (pl27T7 ’Y) € [[(FQ)O.LHS
Similarly from Definition [59) and Definition [56] we also know that

Elpmlapm?-pml +pm2 = Pm s.t
(Pm1,T,6) € [()ot]e and (pme, T,0) € [(Q2)ot]e

107

10.

11.

1H1

(pi1 + pm1, T,e 67) € [Is.T ot]e

This means from Definition B8 we have
Vir <T .e 6y i, vi = (pi, T —t1,01) € [Fs.7 o]

Since we know that (e; x.e’) dy | vy therefore from E-existE we know that 3t; < ¢,v;.e 0y {} v1. Therefore
we have
(pi1 + pma, T —t1,v1) € [3s.7 0l

Therefore from Definition 58 we have
3s".(pin + pm1, T —t1,v1) € [7[s'/s] ol (F-EE1)

1H2

(P12 + Pm2 + pi1 + pma, Ty’ ') € [77 ol']e

where

=6U{z—e}and/ =1U{s— s}

This means from Definition [58 we have

Vit <T e’ 5/’)/ ‘U’tz Vf = (plg + pPm2 + P11 +pm1,T 7t2,vf) S [[7'/ O’L/]]

Since we know that (e;x.e’) 07 ¢ vy therefore from E-existE we know that 3ty < t. €' 6’y | vy.
Since ty < t <T therefore we have

(P12 + Pm2 + i1 + Pm1, T —ta,vp) € [T 0l]

Since p; = pi1 + pi2 and Py, = Pm1 + Pme therefore we get

(o1 + pm, T —ta,v5) € [7" 0]

And finally from Lemma [61] and since we have ¥; ©; A I 7/ : K therefore we also have
(pr + pm, T —t,v5) € [T ol

And we are done.

T-lam:

U:0; A QT x:mFe:m
U:0; A QT F Azee : (11 —o 72)

Given: (p;,T,v) € [T, ot]e, (pm,T,d) € [ot]e and = A ¢
To prove: (p; + pm, T, (Ax.e) o) € [(11 — T2) ot]s

From Definition [68| it suffices to prove that
Vt <T,vs.(Az.e) 6y i vy = (pi + pm, T —t,vg) € [(T1 — T2) 0t

T-lam

This means given some t <T',vs s.t (Az.e) 0y {4 vy. From E-val we know that ¢ = 0 and vy = (Az.e) 6.
Therefore we have

(o1 + pm, T, (Az-€) 07) € [(11 — 72) 0]

From Definition [58|it suffices to prove that

V', e, T'<T .(p/,T',€) € [y ot]e = (1 +pm +9, T ele'/x]) € [12 ol]¢

This means given some p’,e’, T'<T s.t (p/,T',€’) € [, o]¢ it suffices to prove that
(o1 +pm + 0, T €[e/[z]) € [12 0t]e (F-L1)

From IH we know that

(oi+p" +pm,Tedy) €[otfe
where
v =qyU{z—e}

Therefore from Lemma [62] we get the desired
T-app:
U;0;A; Q1T Fep: (11— 1) U:0;A;0; s ey :m
U:0;A; Q0 @O Ty dTo ke eg:my

Given: (p;,T,v) € [(T1 @ T2)oi]e, (Pm,d) € [(1 B Q2) ot and = A
To prove: (p; + pm,T,e1 e3 §7) € [12 ot]e

T-app

From Definition [b8|it suffices to prove that
Vit <T,vp.(e1 e2) Oy b vf = (pm + 01, T —t,v5) € [T2 01

This means given some t <T', v s.t (e1 e2) 0y |+ vy it suffices to prove that

108

12.

13.

14.

(Pm +p1, T —t,v5) € [12 01 (F-A0)

From Definition [f9] and Definition [57] we know that Ip;1, pi2.pi1 + pi2 = pr s.t
(pl17Ta ’Y) S [[(F1>0L]]5 and (pl27T7 ’Y) € [[(F2)O-Lﬂ5

Similarly from Definition [59] and Definition [56] we also know that 3p,,1, pm2-Pm1 + Pm2 = Pm s.t
(Pm1,T,90) € [(Q1)ot]e and (pm2, T,0) € [(Q2)ot]e

IH1
(P + pm1, Ty e1 67) € [(11 — 72) ot]e

This means from Definition B8 we have

Vi, <T .e1 Iy Axe = (pi1 + pm1, T —t1, Az.e) € [(11 — T2) o1]

Since we know that (e; es) 6 s vy therefore from E-app we know that 3t; < t.e; 4, Ax.e, therefore we
have

(pi1 + pm1, T —t1, Az.e) € [(11 — T2) o1

Therefore from Definition 58] we have
Vo' e, Th<T —t1.(p', Th,¢€}) € [11 ot]le = (pi1 + pm1 + ', 11, ele} /x]) € [m2 ot]e (F-Al)
IH2

(p:—f—pmg,T —t; —1,e9 07) € [11 ot]e (F-A2)

Instantiating (F-Al) with p2 + pme and e; 6y we get

(P11 + Pm1 + P2 + Pm2, T —t1 — 1,eles dv/z]) € [0 ol

This means from Definition (8 we have

Vit <T —t1 — l.efeg 07/ Yi, vy = (p1 +Pm, T —t1 — 1 —ta,vy) € [12 0]

Since we know that (eq ez) 6y |+ vy therefore from E-app we know that 3ts.eles v/x] Jt, vy, where
to =t —t1 — 1, therefore we have

(pl +pm7T —t1 —t2 —].,Uf) € IITQ JL]]

Since from E-app we know that ¢ = ¢; 4+ ¢t + 1, this proves (F-A0)

T-sub:

U0 AT Fe: T O;AFT < T
U0 A QT e 7’
Given: (plvT7 ’Y) € [[(F)O-Lﬂfv (pm7T76) € [[(Q) UL]]S

To prove: (p; + pm,T,e 0vy) € [t ot]e
IH (p1 +pm, T e 0v) € [7 ot]e

We get the desired directly from IH and Lemma 22]
T-weaken:

T-sub

U:0;A; QT Fe: T U0 <:T U0 EQ <
U0 A; Q0 T e T

Given: (pi, T,7) € [(I")ote, (pm,T,06) € [(¥) ot]e
To prove: (p; + pm,T,e 07) € [T ot]e

T-weaken

Since we are given that (p;, T,7) € [(I")ot]¢ therefore from Lemma [67) we also have (p;, T,7) € [(I)od]e

Similarly since we are given that (p,,T,d) € [(€?)ot]s therefore from Lemma |68 we also have (p,, T
,0) € [(Q)oi]e

IH:

(p1 + pm, T, e 87) € [1 ot]e
We get the desired directly from IH
T-tensorl:
U:0;A; QT Fep iy U:0;A; Q05 Fey:
v, @;A;Q1 (&) QQ;Fl dIsF <<61,62>> : (T1 4 T2)

Given: (p;,T,v) € [(T1 ®T2)ot]e, (pm,T,0) € [(1 & Q) ot]e
To prove: (p; + pm, T, {e1,e2)) 6v) € [(11 ® T2) ot]e

T-tensorl

109

15.

From Definition [68| it suffices to prove that

Vi <T .(e1,e2)) 67 Ut (vr1,vp2) = (D1 +Pm. T —t, {vp1,v52)) € [(11 ® T2) 01]

This means given some t <T s.t {(e1, e2) oy U (vr1,vr2)) it suffices to prove that

(o1 + pm, T =1, (vp1,v52))) € [(11 ® 72) 01] (F-TI0)

From Definition [59] and Definition [67] we know that Jp;q1, pio.pin + pi2 = pi s.t

(p1, T,7) € [(T1)oe]e and (pi2, T,) € [(T2)ot]e

Similarly from Definition [59] and Definition [56] we also know that Ip,.1, Pm2-Pm1 + Pm2 = Pm S-t
(anl)Ta 5) S [[(Ql)ULHS and (pm27Ta 6) S [[(QQ)ULHE

IH1:

(P11 + pm1, Ty e1 0) € [y ot]e

Therefore from Definition (8 we have

Vir <T .e1 6y 4, vi1 = (pn +pma, T —t1,v51) € [11 01]

Since we are given that ((eq,e2)) 07 It (vr1,vyr2)) therefore fom E-TI we know that 3tq < t.eq 0y iy vp1
Hence we have (pj1 + pm1, T —t1,v51) € [11 0¢] (F-TI1)

1H2:

(P12 + Pm2, T, ez 67) € [12 ot]e
Therefore from Definition [58 we have
Vg <T .ex 6y i, vpo = (P12 + Pm2, T —t2,v52 € [12 01

Since we are given that (e1,e2)) 0 |+ (vf1,vy2)) therefore fom E-TT we also know that 3ts < t.es 67 |4,
V2

Since ty < t <T therefore we have

(P12 + Pm2, T —t2,vy2) € [12 0] (F-T12)

Applying Lemma on (F-TI1) and (F-TI2) and by using Definition We get the desired.
T-tensorE:
U:0; AT Fe: (11 ®2) U 0;A; Q00,2 :71,y:o e 7
U;0;A;0 & Qo Ty @l - let{(z,y) =eine i 7

Given: (pl,T, ’)’) S H(Fl @Fg) O’L]]g, (pm,T, 5) € [[Q ULHg
To prove: (p; + pm, T, (let{x,y) =eine’) dv) € [7 ot]s

T-tensorEl

From Definition [L5] it suffices to prove that
Vi <T,vp.(let{z,y) =eine) oy vy = (pr+pm,T —t,vy) € [1 0t

This means given some t <T, vy s.t (let{(x,y) = eine’) v | vy it suffices to prove that
(pl + Pm, T —t, Uf) € [[T ULH (F'TEO)

From Definition and Definition we know that dp;1, pia.pin + pi2 = pi s.t

(pllvTa ’Y) c [[(FI)O'L]]E' and (pl27T7 ’Y) € [[(FQ)ULﬂf

Similarly from Definition [59] and Definition [56] we also know that 3p,,1, pm2.-Pm1 + Pm2 = Pm s.t
(Pm1,T,9) € [()ot]e and (pm2,T,0) € [(Q2)ot]e

IH1
(pll +pm1; T7 € 67) S [[(Tl Y TQ) O.LHE

This means from Definition [[5] we have
Vi, <T .e dy by, (v1,02) 0y = (pin + Pm1, T —t1, (v1,02))) € [(1 ® 72) 04]

Since we know that (let((x,y)) = e in €’) 6 |+ vy therefore from E-subExpE we know that 3t; < ¢, v1,vs.€ v Uy,

{(v1,v2). Therefore we have

(Pi1 + Pm1, T —t1, (v1,v2)) € [(11 ® 72) ot]e
From Definition [[5] we know that

E'pl,pg.pl + p2 < P11+ Pm1 A\ (pl,T, 'Ul) S [[Tl O'L]] A\ (pQ,T, ’UQ) S HTQ O'L]] (F—TE].)

1H2

(pl2 +p7n2 +p1 +p27Ta el 6’}/) € [[T U”]]g
where

v =qyU{z = v} U{y— v}

110

16.

17.

This means from Definition [[5] we have

Vto <T €' 07 Ji, vy = (Di2 + Pm2 + 1 +p2, T —ta,v5) € [7 0/]

Since we know that (let{(z,y)) = e in ¢’) é |, vy therefore from E-TE we know that 3te < t.¢’ §v' {4, vy.
Therefore we have

(plZ +pm2 +P1 +p27T 7t2,Uf) € [[7_ JLH

From Lemma [61] we get

(p1 +pm, T —t,vf) € [T ot]¢
And we are done
T-withl:

U, 0;A; 0T Fey:my U, 0;A; Q0T Feg: g
U 0; A; T F (er,ea) : (11 & 72)

Given: (p;,T,7) € [Toi]e, (pm,T,0) € [Q oi]e
To prove: (p; + pm, T, (e1,e2) 07) € [(11 & 72) oi]¢

T-withl

From Definition [L5] it suffices to prove that
Vt <T (e1,e2) 0y It (vp1,vp2) = (pr+pm, T —t,(vs1,052) € [(11 & T2) 01

This means given (e1, ea) §y J¢ (vs1,v52) it suffices to prove that
(Pr+pm; T =t (vp1,052)) € [(m & 72) ou] - (F-WIO)

IHI:

(Pt + pm, T, €1 67) € [11 o]

Therefore from Definition [I5] we have

Vt1 <T .e; 5’}/ Utl vfp = (pl +pm,T 7t1,1)f1) c [[Tl O’L]]

Since we are given that (e1, es) 0y s (vf1,vy2) therefore fom E-WI we know that 3t; < t.eq dv Iy, v

Since t; < t <T, therefore we have
(D1 + P, T —t1,v51) € [11 0] (F-WI1)

TH2:

(pl +p’maT7 €2 5'7) S [[’7'2 O'Lﬂg
Therefore from Definition [[5] we have
th <T .€o (5’}/ ‘Utz Vo e (pl —f—pm’T _tQ,UfQ c [[7-2 O'L]]

Since we are given that (e1, e2) 6y s (vs1, vy2) therefore fom E-WI we also know that 3ty < t.ea 0y {4, vy2
Since to < t <T, therefore we have
(p1 + pm, T —ta,v52) € [12 01] (F-W12)

Applying Lemma [61] on (F-W1) and (F-W2) we get the desired.
T-fst:
U;0;A; 0T Fe: (11 & 72)
U 0; A; QT - fst(e) : 7y
Given: (p;,T,v) € [(T) ot]e, (0,T,9) € [Q ot]e
To prove: (p; + pm, T, (fst(e)) o) € [r1 ot]e

From Definition [L5] it suffices to prove that
vt <T, vf.(fst(e)) oy e v = (pl +pm, T’ —t,’Uf) € [[71 U”H

T-fst

This means given some t <T, vy s.t (fst(e)) é |, vy it suffices to prove that
(o1 +pm, T —t,v5) € [11 01] (F-F0)

IH
(pl +pm, T, e 57) € [[(7—1 & TQ) O'L]]f

This means from Definition [[5] we have
Vi, <T .e 0y Ui, (v1,v2) 07y = (pi + pm, T —t1,{v1,v2)) € [(11 & T2) o]

Since we know that (fst(e)) dy ; vy therefore from E-fst we know that 3t; < t.v1,ve.e oy Yy (v1,v2).
Since t; < t <T', therefore we have
(pl +pmaT —t1, <’l}1,1)2>) € [[(71 & 7—2) UL]]

From Definition [I5 we know that

111

18.

19.

20.

21.

(pl +pmaT _tlavl) S HTl O—L]]

Finally using Lemma [61] we also have

(D1 + P, T —t,v1) € [11 01]

Since from E-fst we know that vy = v, therefore we are done.
T-snd:

Similar reasoning as in T-fst case above.

T-inl:

U:0;A; 0T Fe:ny
U:0;A; QT Hinl(e) : 11 & 7
Given: (p;,T,v) € [Toi]e, (0,T,6) € [Q o]
To prove: (p; + pm, T,inl(e) dv) € [(T1 @ 72) ot]e

From Definition [L5] it suffices to prove that
Ve <T .inl(e) 0y ¢ inl(v) = (p1 + pm, T —t,inl(v) € [(11 & 72) oi]

T-inl

This means given some ¢ <T s.t inl(e) 0 {; inl(v) it suffices to prove that
(pl + Pm, T —t, inl(v)) € [[(Tl & 7—2) UL]] (F'ILO)

IH:

(Pt + pm, T, e1 67) € [11 o]

Therefore from Definition [I5] we have

Vi1 <T .e1 6y Ji, v;1 = (D1 + Pm, T —t1,v51) € [11 01

Since we are given that inl(e) d+ {; inl(v) therefore fom E-inl we know that 3t; < t.e dv |y, v
Hence we have (p; + pm, T —t1,v) € [11 01

From Lemma [61| we get (p; + pm, T —t,v) € [11 ot

And finally from Definition [15| we get (F-ILO)

T-inr:

Similar reasoning as in T-inr case above.

T-case:

U:0; AT e (11 @) U:0;A; Qs z:mbe T U, 0;A; 0T, y:mo ke T

T-case
U 0;A; QT ®Ts Fcase e, x.e1,y.e0: T

Given: (p;,T,v) € [(T1 ®T2) oi]e, (0,T,0) € [Q ot]e
To prove: (p; + pm, T, (case e, x.e1,y.e2) 0y) € [T ot]e

From Definition [I5] it suffices to prove that
Vt <T,vy.(case e, x.€1,y.e2) 6y It vy = (pi +pm, T —t,vy) € [T 01

This means given some t <T,vs s.t (case e, x.e1,y.e2) 6y |}, vy it suffices to prove that
(p1 + pm, T —t,v5) € [01] (F-C0)

From Definition [T6] and Definition [T4] we know that 3p;1, pi2.pi1 + piz = i st
(pllaTa 7) € H(FI)O—L]]Z:: and (pl27Ta 7) € [[(F2)0Lﬂ5

Similarly from Definition [59] and Definition [56] we also know that Ip,.1, Pm2-Pm1 + Pm2 = Pm S.t
(pm1,T,9) € [(Q)oi]e and (pm2,T,9) € [(Q2)ot]s

IH1
(pll +pm17 T7 € 67) € [[(Tl @ T2> O-Lﬂg

This means from Definition [[5] we have
V' <T .e (5’}/ ‘Ut’ V1 5’}/ =4 (pll +pm1,T —t/,’l]l) S [[(’7'1 b 7'2) O'L]]

Since we know that (case e, z.eq,y.e2) §v I vy therefore from E-case we know that 3¢’ < ¢,v1.e 6y |4 v1.
Since t' < t <T, therefore we have
(i1 + Pm1, T —t',v1) € [(11 © 72) 01]
2 cases arise:
(a) vy =inl(v):
IH2
(P12 + Pmapir + pm1, T —t',e1 69') € [T ot]e
where

112

v =yU{x— v}

This means from Definition [[5] we have

vty <T —t'.e; 0" Ui, vy = (D12 + Pm2 + 211 + P, T —t' —t1,v5) € [T 01

Since we know that (case e, z.eq,y.e2) dv s vy therefore from E-case we know that 3t1.e; 67 | vy
where t; =t —t' — 1.

Since t; =t —t' — 1 <T —t' therefore we have

(P12 + Pm2 + P11 + Pm1, T —t' —t1,vp) € [1 01]

From Lemma [61] we get
(P12 + Pm2 + P11 + Pm1, T —t,vf) € [T 0t]e
And we are done
(b) vy =inr(v):
Similar reasoning as in the inl case above.
22. T-subExpl:

U:0,a;A,a< ;. Fe:T
U: 0; A; Z Q. He:loorr
a<l

Given: (pi,7) € []es (Pm,0) € [(QX,cr) ot]e and = A v

To prove: (p + pm.le 07) € [la<iT ot]e

From Definition [68|it suffices to prove that

vVt <T .(le) o Ut (le) &y = (pm + 01, T —t,(le) 67) € [laciT 0]

This means given some t <T' . s.t (le) v |+ (le) o it suffices to prove that

(pm +p0, T 1, (le) 67) € [laciT 01]

From Definition [58] it suffices to prove that

Jpo, .- pr-1po+ .o+ pr-1 < (P +) AVO <0 < L(p;, T, e 07) € [ri/a]]e (F-S10)

Since we know that (p,,,T,9) € [(D_,.; Q) ot]e therefore from Lemma 63| we know that
G, Py Dot P <P AV0<i<I(p;,T,0) € [Qi/alle (F-S11)

T-subExpl

Instantiating TH with each pj...p7_; we get
(ph, T, e 0) € [T]0/a] ot]e and
Wy_1, T e 0v) € [r[I —1/a] ot]e (F-SI2)
Therefore we get (F-SI0) from (F-SI1) and (F-SI2)
23. T-subExpE:
U;0;A; Q101 Fe: (lger) U:0;A; Q0,2 gy ;o e i 7/
U0 AN B0 T @Iy Fletlz=cine : 7/

Given: (p,7) € [(T1®T2) ot]e, (Pm,0) € [(Q1 ®N2) ot]e and = A v
To prove: (p; + pm, (let!x =eciné’) §v) € [/ oi]¢

T-subExpE

From Definition [68|it suffices to prove that
Vi <T,vp.(letlz=eine) dy vy = (pm +pi, T —t,vp) € [T 0/]

This means given some ¢ <T s.t. (let!z =ein¢e’) dv |, vy it suffices to prove that
(Pm +p1, T —t,vy) € [7" 0l (F-SE0)

From Definition [59] and Definition [57] we know that 3p;1, pi2.pin + piz = i st

(p,T,7) € [(T1)ot]e and (pi2, T',7) € [(I'2)ot]e

Similarly from Definition [59] and Definition [56] we also know that Ip,.1, Pm2-Pm1 + Pm2 = Pm S.t
(ptha 5) S [[(Ql)ULHS and (pm27Ta 6) S [[(QQ)ULHE

IH1

(pll +pmi1,T,e 67) S [!a<l7- ULHS

This means from Definition 58 we have
Yty <T .e 0 Ui, ler 0y = (pin + pm1, T —t1,'e1 67) € [laciT 0]

Sice we know that (let!x = eine’) §v | vy therefore from E-subExpE we know that 3t1 < ¢,e1.e 6 {4,
le; 0. Therefore we have

113

24.

25.

(P11 + Pm1, T —t1,le1 67) € [la<ciT 0t

Therefore from Definition 58] we have
o, sDi—1P0F -+ Pr—1 < (P11 + Pm1) AVO < i < L.(p;, T —t1,e1 §v) € [7]i/a]]e (F-SE1)

1H2

(P12 + pm2 +po+ ... +pr-1, T —t1,€ ') € [7" ot

where

y=6U{z— e}

This means from Definition B8 we have

Vio <T —t1.€/ 6"y Vi, vy = (Piz+Pm2+po+ ... +pr-1, T —t1 —ta,vy) € [T/ 0/]

Since we know that (let!z = e in €’) 67 |+ vy therefore from E-subExpE we know that 3ts.e’ 6’y | vy s.t.
to =t —t; — 1. Therefore we have

(P12 +Pm2 + Do+ ...+ pr—1, T —t1 — ta,vy) € [T 01]

Since from (F-SE1) we know that pg + ...+ pr—1 < pi1 + pm1 therefore from Lemma we get
(P2 + Pm2 + P11 + P, T —t,v5) € [T 01]

And finally since p; = p;1 + pi2 and pp, = Pm1 + Pme therefore we get
(p1 + pm, T —t,vf) € [T 0l

And we are done

T-tabs:

U a:K;A; QT Fe: T
U:0;A; T F Ae: (Vo : Kur)

Given: (p;,T,v) € [Tot]e, (pm,T,0) € [Q ot]e and E A ¢
To prove: (p; + pm, T, Ae o) € [(Va : K1) ot s

From Definition [68|it suffices to prove that
Vt <T,v.Ae oyt v = (pm + 01, T —t,v) € [(Va : KiT) 01]

T-tabs

This means given some v s.t A.e 6y |} v and from (E-val) we know that v = A.e 0 and ¢ = 0 therefore it
suffices to prove that
(1 + P, T, Ace 67) € [(Va : KiT) o4

From Definition [58|it suffices to prove that
V', T'<T (py + pm, T’ e o) € [7[7'/a]ot]s
This means given some 7/, 7'<T it suffices to prove that

(Pt 4 pm, T" e 07) € [7[7" /o] ot]e (F-TAbO)

IH (1 + pm, T e 07) € [o']e
where
o'=cU{a— 1"}
We get the desired directly from IH
T-tapp:
U:0;A; ;T He: (Va: Kr) U:0;AFT K
U 0; AT ke]2 (7] /al)
Given: (p;,T,v) € [Tot]e, (pm,T,0) € [Q ot]e and E A ¢
To prove: (p; + pm, T e[| 67) € [(7]7'/a]) ot]e

From Definition [68|it suffices to prove that
Vt <T,vg.(e]]) Oy bt vp = (Pm + 01, T —t,vy) € [(7[7'/a]) o1]

T-tapp

This means given some t <T,vs s.t (e []) oy J: vy it suffices to prove that
(Pm +p1, T —t,vp) € [(r7'/a]) v (F-Tap0)

IH

(p1 + pm, T, e 6v) € [(Va.7) ot]e

This means from Definition 58 we have

th <T7 v'.e 57 ‘U’tl v = (pl +pWL7T _tlyvl) € II(VO”—) UL]]

Since we know that (e []) 0y |+ vy therefore from E-tapp we know that 3¢, < t.edy {4, A.e, therefore we
have

114

26.

27.

(p1 + pm, T —t1,Ae) € [(Va.T) 0]

Therefore from Definition 58| we have

VT TV <T —t1.(pr + pm, T —t1— Th,e 0) € [7[7"/a] oi]e

Instantiating it with the given 7/ and T —t; — 1 we get

(p1 + pm, T —t1 — 1,e §v) € [r|7'/a] ot]e

From Definition B8 we know that

Vio <T —t; — 1,v".e dy I, v/ = (1 + D, T —t1 — 1 — t2,0") € [7[7" /] 0(]
Since we know that (e []) 6 4 vy therefore from E-tapp we know that Jto.e 4, vy where to =t —t; — 1
Since to =t —t; — 1 <T —t; — 1, therefore we have

(o1 + pm, T —t,v5) € [7[7"/c] o1]

And we are done.

T-iabs:

U:0,i:S; A, kFe: T
U0, AT F Ae: (Vi:S.7)

Given: (p;,T,v) € [T',ot]e, (pm,T,d) € [Q ot]e and = A ¢
To prove: (p; + pm, T, A.e o) € [(Vi:S.7) ot]¢

T-iabs

From Definition [58|it suffices to prove that
vVt <T,v.Ae Syt v = (pm + 01, T —t,v) € [(Vi:S.7) o1

This means given some ¢ <T,v s.t A.e §v |; v and from (E-val) we know that v = A.e §y and t = 0
therefore it suffices to prove that

(o1 + P, T, Ace) € [(Vi: S.1) ol

From Definition [58] it suffices to prove that

VI.(pi + pm,T,e) € [T[I/i] ot]e

This means given some [it suffices to prove that

(P +pm; Ty e) € [7[1/i] oi]e (F-TAbO)

IH (p1 + pm, Tse dv) € [1 ol']e
where
J=1U{i— T}

We get the desired directly from ITH
T-iapp:
U0, A; 0T e (Vi:Sor) OFI:S
U 0: AT e []: (7[1 /i])
Given: (p;,T,7) € [Tot]e, (pm,T,0) € [Q o] and = A ¢
To prove: (p; + pm, T e[| 07) € [(7[I /i]) ot]s

From Definition [b8|it suffices to prove that
vVt <T,vg.(e]) oy e vy = (Pm + 01, T —t,v5) € [(T[1 /i]) o1]

T-iapp

This means given some t <T',vs s.t (e []) dv J+ vy it suffices to prove that
(Pm + 00, T —t,vp) € [(7[T /i]) o] (F-Tap0)

1H

(Pt +pm; Ty e 07) € [(Vi: S.r) ot]e

This means from Definition 58 we have

Viy <T,v'.e dvy 4y, vV = (D1 + pm, T —t1,0") € [(Vi : S.7) 0(]

Since we know that (e []) 0 ¢ vy therefore from (E-iapp) we know that 3t; < t.edy |+, A.e, therefore we

have
(pr + pm, T —t1,Ae) € [(Vi:S.7) o1

Therefore from Definition 58 we have
VI//,T1<T _tl-(pl +pm7T —t1—1T1,e 5’}/) S [[T[I,//i] UL]]g

Instantiating it with the given I and T' —t; — 1 we get
(pl + Dm, T —t1 — 1€ 57) € [[T[I/Z] ULHE

115

28.

29.

From Definition B8 we know that
Vo' te <T —t1 — l.e 0y i, v/ = (p1 + P T —t1 — 1 — to,0") € [7[1/i] oi]

Since we know that (e []) 6y §; vy therefore from E-iapp we know that Jts.e |, vy where to =¢ —t; — 1
Since to =t —t; — 1 <T —t; — 1, therefore we have

(P + Pm,vy) € [T[1/1] o1]
And we are done.
T-CI:

U:0;A, ;T Fe: T
U 0; AT F Ae: (e=7)

Given: (p;,T,7) € [Toi]e, (pm,T,0) € [Q ot]e and E A v
To prove: (p; + pm, T, A.e §7) € [(c=7) o]

T-CI

From Definition [68|it suffices to prove that
Yo, t <T Aedy bt v = (pm +p1,T —t,v) € [(c=7) 0i]

This means given some v,t <T s.t A.e §v |; v and from (E-val) we know that v = A.e §y and t = 0
therefore it suffices to prove that
(5t + p T, A 87) € [(c=7) 1]

From Definition [58|it suffices to prove that
VT'<T . Ect = (pi+pm,T',edy) € [rot]e

This means given some T'<T s.t. . |= ¢ ¢ it suffices to prove that
(Pt +pm, ", € 07) € [ot]e

m (pl +pmaT/ae 6’7) € [[T ULHS
We get the desired directly from IH
T-CE:
U 0; AT e (e=1) ;A Ec
U:0; AT el 7
Given: (p;,T,v) € [Tot]e, (pm,T,0) € [Q ot]e and E A ¢
To prove: (p; + pm, T,e [] 67) € [(T) oi]e

From Definition [58|it suffices to prove that
Vop, t <T (e[]) 0yt vy = (pm +p1, T —t,vg) € [(7) 0t

T-CE

This means given some vy, t <T' s.t. (e []) oy ¢ vy it suffices to prove that
(Pm + 01, T —t,v5) € [(7) 01] (F-Tap0)

1H

(pi +pm,T,e 6y) € [(c=71) o]

This means from Definition B8 we have

Vo't <T .e 0y b v/ = (pi + pm, T —t',0") € [(c = 7) 0/]

Since we know that (e []) ¢ |+ vy therefore from E-CE we know that 3¢’ < t.edy | A.€/, therefore we
have

(p1 + pm, T —t',A.€¢)) € [(c = 7) o]

Therefore from Definition [58 we have

V' <T —t'. = ct = (p1 + pm, T —t' —t",¢' §v) € [T ot]s

Since we are given ©; A = ¢ and . | A . Therefore instantiating it with 7 —¢' — 1 and since we know
that . = ¢ ¢. Hence we get

(p1 + pm, T —t' —1,€' 67) € [T ol]e

This means from Definition (8 we have

Vol t" <T —t' = 1.(¢') oy 4 v = (pm +p1,v}) € [(7) 0]

Since from E-CE we know that €’dv |, vs therefore we know that 3t”.e’ 0y {p vy st t =t +¢" +1
Therefore instantiating (F-CE1) with the given vy and t” we get

(pm +p1, T —t,vf) € [(1) 0]
and we are done.

116

30. T-CAndI:
U, 0;A; QT Fe: 7 0;A =c¢
U:0;A; QT Fe: (c&r)

Given: (p;,T,7v) € [T ot]e, (pm,T,9) € [Q oi]e
To prove: (p; + pm, T, e 67) € [c&T oi]s

T-CAndl

From Definition [68|it suffices to prove that
Vog, t <T .e 0y b vy = (D1 + pm, T —t,vf 07) € [c&T ol

This means given some v¢,t <T s.t e §y |, vy it suffices to prove that
(p1 + pm, T —t,v5) € [c&T 0(]

From Definition [68| it suffices to prove that
Ea N (pr+pm, T —t,vp) € [T 0l

Since we are given that . = Ar and ©; A |= ¢ therefore it suffices to prove that
(p1 + pm, T —t,v5) € [1 01] (F-CAI0)

m: (pl + Pm, Tv € 67) S HT UL]]S
This means from Definition E8 we have
Vt' <T .e 6y Yy vy = (D1 +pm, T —t',vf) € [T 04]
Since we are given that e §y |J; vy therefore we get
(pl + pm, T —1, vf) € [[T ULH (F_CAll)
We get the desired from (F-CAIl)
31. T-CAndE:
U:0;A; QT Fe: (c&r) U0 A, ;D7 o7
U;0;A; 0T, dTakcletz =cine : 7

Given: (p;,T,v) € [(T1 ®T2) oi]e, (pm,T,9) € [(Q) oi]e
To prove: (p; + pm, T, (cletz =eine’) 0y) € [7/ ot]s

T-CAndE

From Definition [b8|it suffices to prove that
Vop,t <T .(cletx =eine’) oy vy = (o1 +pm,T —t,v5) € [0t

This means given some vy, t <T s.t. (cletz = eine’) 6y |, vy it suffices to prove that
(Pt 4 pm, T —t,vg) € [7" 0l (F-CAE0)

From Definition and Definition we know that Jp;1, pio.pin + pi2 = pi s.t

(pllvTa ’Y) € [[(FI)O'L]]E' and (pl27Ta ’Y) € [[(FQ)O.LHS
Similarly from Definition [59) and Definition [56] we also know that

Ipm1, Pm2-Dm1 + Dm2 = Dm, S.t
(Pm1,T,0) € [(Q1)ot]e and (pm2, T,) € [(Q2)ot]e

1H1

(pi1 + pm1, Ty e 07) € [c&T ot]e

This means from Definition (8] we have
Vi, <T .e 0 U, v1i = (p1, T —tyv1) € [e&eT ot]e

Since we know that (cletz = e in €’) 0 {}+ vy therefore from E-CAndE we know that 3t < ¢,vq.e 0y {4, v1.
Therefore we have
(P11 + pm1, T —t1,v1) € [c&T o1

Therefore from Definition [58 we have
Ea (it pm,T —ti,m) €[0l (F-CAE1)

1H2

(P2 + Pm2 + P11 + P, T —t1,€" 87') € [T oi]e
where

V' =vU{z— o}

This means from Definition B8 we have
Ve <T € 04" s, vy = (P12 + Pm2 + P11 + Pm1, T —t1 — to,vp) € [T 04]

117

32.

Since we know that (cletz = e in €’) 0y {; vy therefore from E-CAndE we know that Jto.e’ 6’y 4, vy s.t

to=t—1t; —1

Therefore we have

(P12 + Pm2 + P11 + D1, T —t1 — to,v5) € [T 0]

Since pr = pi1 + pi2 and py, = pm1 + pm2 therefore we get
(Pt 4 pm, T —t,vg) € [7" 0!]

And we are done.
T-fix:

U0, A,b< L; Qxqer T[(D+ 1 +@lg+1,a1)/b];_ Fe:r L> @2,11 .
U; 0; A; Z Q; . F fixz.e : 7[0/0]
b<L

Given: (pi,T,7) € [le, (om,T,0) € [y R ot]e and = A
To prove: (p; + pm, T, (fixx.e) 6) € [7]0/b] ot]e

-fix

From Definition [68|it suffices to prove that
VT'<T,vp.(fixe.e) 6y b vy = (o +p1, T —T',v5) € [7]0/b] o1]

This means given some t <T',vy s.t. fixx.e v {1+ vy therefore it suffices to prove that
(o1 + pm, T = T",v5) € [7[0/0] 0] (F-FXO0)

Also from Lemma [63] we know that

Ipg, - - - 7}9’(171). Pyt —|—p’(L71) < pm AV0 <i < L(p;,6) € [Qi/a]e

We define

pN(leaf) é p;eaf 1

pv(®) 2t (Cacr v ((t+ 1+ OFI0)))
Claim
YO <t< L. (pn(t),T,e d'v) € [r[t/b] ot]e
where

§ =dU{z — fixz.ed}

This means given some t it suffices to prove
(pn(t), T,e 6'y) € [[t/b] ou]e

We prove this by induction on ¢
Base case: when ¢ is a leaf node (say 1)
It suffices to prove that (p;,T,e §'y) € [7[l/b] ot]¢

We know that I(l) = 0 therefore from IH (of the outer induction) we get the desired

Inductive case: when t is some arbitrary non-leaf node
From IH we know that
Va < I(t).(pn(t'), Tye 8'y) € [7[t' /b] ou]e where t' = (t+ 1+ @} "1(b))

Claim
V7' (pn ('), Tye §') € [7" o] where §' = § U {z — fixz.ed} =
(pn (), T, fixx.e 07) € [t oi]e

Proof is trivial

Therefore we have
Ya < I(t).(pn(t), T, fixz.e 8v) € [7[t'/b] ou]e where t' = (t + 1+ O} *1(b))

Now from the IH of the outer induction we get
(Pt + 2 acr PN (), Tie 0'y) € [T[t/b] oi]e

Which means we get the desired i.e
(pn (), Te 6'y) € [r[t/b] ot]e

118

33.

34.

Since we have proved

YO <t <L. (pn(t),T,e &) € [r[t/b] ot]e
where

§ =dU{z — fixz.e}

Therefore from Definition B8 we have

VO<t <L VT'<T .ed'y{rrvy = (pn(), T —T",vy) € [7[t/b] ot]e

Instantiating with ¢ with 0 and since we know that fixz.e 6 {7 vy therefore knwo that 3 7" <T" .e 6"y {1~
vy where T"=T" —1

(pn(0),T — T",vs) € [7][0/b] ot]e

Since py(0) < py, therefore pn (0) < pr + pm

And we get the (F-FX0) from Lemma

T-ret:

U:0;A:; QT kFe: T
U, 0;A; QT Frete: MOT

Given: (p;,T,7) € [Tot]e, (Pm,T,0) € [o] and = A ¢
To prove: (p; + pm,T,rete 0y) € [MOT ot]s

T-ret

From Definition [68|it suffices to prove that
Vi <T .(rete) o | (rete) oy = (pm +p1, T —t,(rete) 6v) € [MOT o/]

Since from E-val we know that ¢ = 0 therefore it suffices to prove that
(pm +plaT7 (rete) 6'}/) S IIMOT O'LH

From Definition [68|it suffices to prove that
vn' ' <T,vr.(rete) oy Iy vy = '/ +0" <pr+pm AP, T —t',vp) € [7]

This means given some n/,t’ <T,vy s.t. (rete) §y ll?/' vy it suffices to prove that
W'+ <prtpm ATt vp) € [7]

From (E-ret) we know that n’ = 0 therefore we choose p’ as p; + p,, and it suffices to prove that
(p1 + pm, T —t',vy) € [0l (F-R0)

1H

(pi + pm, T,e 67) € [T ot]e

This means from Definition (8] we have
Vi1 <T .(e) 0y I, vf = (pm +p1, T —t1,vy) € [1 0l

Since we know that (rete) 6y {9, vs therefore from (E-ret) we know that 3ty < t.e &y by vy sttty +1 =+
Therefore we have (p,, + p1, T —t1,vy) € [T 0] and from Lemma we are done
T-bind:
U:0:;A; Q0 ey :Mnyimy
U:0;A;Q0;T5,2: 1 Fes: Mnomo OFn; :RT OFny:RT
U;0;A;0 & Qo; Ty ® ok bindz =eq in ey : M(ng + n2) m

Given: (p;,T,7) € [(T1 & T2)ot]e, (pm,T,0) € [(Q1 & Q) ot]e and = A v
To prove: (p; + pm,T,bindx = ey ineg §7y) € [M(n1 + n2) 72 otfe

T-bind

From Definition [58] it suffices to prove that
YVt <T,v.(bindz =ejines) 0y bt v = (pm +pi, T —t,(bindx = ey ine3) §v) € [M(n1 + n2) 72 o]

This means given some t <T,v s.t. (bindx =e;ines) 6y §; v and from E-val we know that v =
(bindz = ey in e2) v and t = 0. It suffices to prove that
(pm +p1, T, (bindx = ey ine3) §7) € [M(n1 + n2) 72 ot

This means from Definition [68]it suffices to prove that
Vst <T,vs.(bindz =eyines 6v) I vy = '8 +p <pr+pm+nA Q. Tt vf) €12 0/

This means given some s',t' <T, vy s.t (bindz = ey in ez 67) llf/l vy and we need to prove that
s +p <pitpm+n AT -t vf) € [12 01 (F-BO)

From Definition and Definition [57| we know that Jp;1, pi2.pi1 + pi2 = pr s.t
(P, T,7) € [(T1)ot]e and (pi2, T,) € [(T2)oe]e

119

Similarly from Definition [59] and Definition [56] we also know that Ip,,1, Pm2-Pm1 + Pm2 = Pm S.t
(Pm1,T,0) € [()ot]s and (pm2,T,0) € [(Q2)ot]s

IH1
(P11 + Pm1, Ty e1 6y) € [M(n1) 71 ot]e

From Definition B8 it means we have
Vi1 <T .(e1) 0y Us, (e1) 0y = (Pm1 +pu1, T —t1, (e1) 67) € [M(n1) 71 01]

Since we know that (bindz = ey in e3) 07y llf,l vy therefore from E-bind we know that 3¢1 < ¢/, vp1.(e1) 07 |
(e1) 6.

Since t; < t' <T, therefore we have

(Pm1 +pin, T —t1, (e1) 67) € [M(n1) 11 od]

This means from Definition 58 we are given that

vty <T —t1.(ex 07) Uf[f v = Ipl.s1+p) <piu AP 0 AT —t —th,v) € [11 0l

Since we know that (bind z = ey in e2) 6y | vy therefore from E-bind we know that 3t} < t'—t1.(eq1) oy l}f,ll
V1.

This means we have

s+ 0L <pin+pma+n1 AT —ty —th,v) € [ol (F-B1)

1H2

(P12 + pm2 + 01, T —t1 — th,e2 0y U{z = v1}) € [M(n2) 72 o]

From Definition 58l it means we have

Vo <T —t1 —th.(e2) Sy U {z — v1} Y4, (e2) Sy U{z — v1} = (Pm2+pi2 + 0} + 12, T —t1 — 1] —
to, (e2) Sy U{z — v1}) € [M(n2) 72 ot

Since we know that (bindz = e; in es) 6 || — I, vy therefore from E-bind we know that

Tty <t/ —t1 —th.(e2) Sy U {x — v1} Ui, (e2) Iy U{z — v1}.

Since ty < t' —t; — t) <T —t1 — t} therefore we have

(me +p12 +p/1 —+ ng,T 7t1 — tll — tg, (62) 5’)/ U {QJ —> Ul}) S [[M(TLQ) T2 O'L]]

This means from Definition [58| we are given that

Vi <T' =ty =ty —ta.(e2 0y U{z = vi}) 437 v2 = Tphesa +ph < piz + pma + P + 12 A (05, T
—t1 — tll — 19 —t/Q,'UQ) S [[TQ O'L]]

Since we know that (bindz = ey inez) dv | — ||, vy therefore from E-bind we know that 3t, < ¢’ —t; —
t/l — 12, S2,U2.Um2 U':/j V2.

This means we have

Ipy.s2 + 05 < pig 4+ Pm2 +pi+n2 A (py, T —t1 — 1) — ta —t5,02) € [12 01] (F-B2)

In order to prove (F-B0) we choose p’ as p), and it suffices to prove
(a) s’ +p/2 <pi+pmt+mn
Since from (F-B2) we know that
52+ Py < Pi2 + Pma + Py + 12
Adding s; on both sides we get
51+ 82+ py < pi2 + P2 + 81+ Py + N2
Since from (F-B1) we know that
s14+p) <pin+ Pm1 + 1
therefore we also have
51+ 82+ py < pi2 + Pm2 + pi1 + prma + 11+ g

And finally since we know that n = ny +naq, s’ = 51+ 59, p; = pi1 +pi2 and p,,, = P1 + Pme therefore
we get the desired
(b) (ph, T —t1 —t) —ta —t5,vf) € [12 0u]:
From E-bind we know that v; = vy therefore we get the desired from (F-B2)
35. T-tick:

OFn:RT
U:0;A; QT HET":Mnl
Given: (p;,T,7) € [Tot]e, (Pm,T,0) € [ot]e and = A v

T-tick

120

36.

To prove: (p; + pm, T, T" 07) € [Mnl oie
From Definition [5§| it suffices to prove that
(") oy Yo (1) 0y = (P +pi, T, (1) 07) € [Mn1 o/]

It suffices to prove that
(Pm +pi, T, (1") 07v) € [Mn1 o

From Definition [58|it suffices to prove that
Vi <T,n/.(1") oy) () = ' +p <p+pm+nnA@,T -t () e[l]
This means given some ¢’ <T,n/ s.t. (1") & % () it suffices to prove that
W' +p <pr4+pm+nA@,T-t()e][1]
From (E-tick) we know that n’ = n therefore we choose p’ as p; + p,, and it suffices to prove that
(p1 +pm, T =", () € [1]
We get this directly from Definition [5§|
T-release:
U:0;A;0;T Fey i [ng]m
U:0;A; Q00,201 b eg : M(ng + ng) 72 OFng:RT OF ny: R*
U:0;A;0 @ Qo; T BT Freleasexr =1 in ex : Mnag 7

Given: (p;,T,7) € [(T1 & T2)oi]e, (pm,T,0) € [(Q1 & Q) ot]e and = A v
To prove: (p; + pm,T,releasex = ey in ez §7) € [M(n2) 72 ot]e

T-release

From Definition [5§| it suffices to prove that

(releasex = ey in e3) dv o (releasex = ey in €2 67) = (pm+pi, (releasex = ey in ez) §v) € [M(nz2) 72 o1
This means given (releasexz = ey in eg) 6 Jo (releasex = e in ez) &7 it suffices to prove that

(Pm + p1, (releasex = eq in e3) §v) € [M(nz2) 72 ot

This means from Definition [58| it suffices to prove that
Vt' <T,vg,s (releasex = ey in ez 67) | vy = /s’ +p < pr+pm+n2 AP, T —t',v5) € [12 01]

This means given some ' <T',vy, s’ s.t. (releasex = e in ez §7) th,/ vy and we need to prove that
W'+ <pr+pm+ne AQ,T -t vf) € 12 01 (F-RO)

From Definition [59) and Definition [57| we know that Jp;1, pio.pi1 + pi2 = pi s.t

(pl17T7 ’Y) S [[(F])O'L]]g and (pl27T7 7) € [[(FQ)ULHS

Similarly from Definition and Definition we also know that Ip,1, Pm2-Pm1 + Pm2 = DPm S.t
(pm17T7 6) € H(Ql)ULHS and (pm27T7 5) S [[(Q2)ULH£

IH1

(P11 + pm1, Tyer 0) € [[ma] 11 ot]e

From Definition B8 it means we have

Vi1 <T .(e1) 0y b, v1 = (D1 + 011, T —t1,01) € [[n1] 71 0]

Since we know that (releasex =e;in e2) 67 | — |, vy therefore from E-rel we know that 3t; <
t'.(e1) 07 U¢, v1. This means we have

(Pm1 +pu1, T —t1,v1) € [[na] 71 ot

This means from Definition [58 we have
Iy Pl + 1 < pi A pmr A (01T —t1,v1) € [11] (F-R1)

1H2
(P12 + Pm2 + 01, T —ti,e2 oy U{x — v1}) € [M(n1 + n2) 72 otfe

From Definition B8 it means we have
Vio <T —ti.(e2) dyU{x — v1} Ut, (e2) oyU{x = v1} = (Pma+piz+p)+n2, T —t1 —ta, (e2) oyU{z —
v1}) € [M(n1 + n2) 72 ot

Since we know that (releasex = ey in e2) 0y |} — |}, vy therefore from E-rel we know that
Jto <t —t1.(e2) dyU{x — v1} i, (e2) 97U {z — v1}. This means we have
(Pm2 + D12 + D) + 12, T —t1 —ta, (e2) 0y U{z = v1}) € [M(n1 + n2) 1 o]

This means from Definition [58| we are given that

121

Vty <T —t; — ta.(e2 oy U {z — v1}) U}Z vo = 3Jph.sa +ph < P2+ P2 + D) + 11 +n2 A (py, T
—t1 —tg — th,va) € [12 01]

Since we know that (releasex = ey in e2) 0y | — |}, vy therefore from E-rel we know that 3t5.(e2) oy U
{z—= v} d2vest. th=t/ —t; —ta—1

Since th, =t —t1 —ty <T —t1 —to — 1 <T —t; — to, therefore we have

Aph.s2 + ph < pia + Pm2 + 05 + 11 +na A (ph, T —t1 — ta — th,va) € [12 0l (F-R2)

In order to prove (F-R0) we choose p’ as p, and it suffices to prove
(a) 8"+ ph < pr+ pm + na:
Since from (F-R2) we know that
s2+ph < pi2 + Pm2 + Py + 01+ 1o
Since from (F-R1) we know that
p1+n1 < pi+ pma
therefore we also have
s2 +py < pi2 + Pm2 + Pi1 + Pm1 + N2

And finally since we know that s’ = so, p; = pi1 + pi2 and P, = Pmi1 + Pme therefore we get the
desired
(b) (ph, T —t',vy) € [12 ou]:
From E-rel we know that vy = vy therefore we get the desired from (F-R2) and Lemma
37. T-store:

U:0;A;QT'kFe: T OFn:RT
U 0;A; ;T - storee : Mn ([n] 7)

Given: (p;,T,7) € [Toi]e, (pm,T,0) € [Q ot]e and E A v
To prove: (p; + pm,T,storee §v) € [Mn ([n]T) ot]e

T-store

From Definition [68|it suffices to prove that
(storee) dv || (storee) 0y = (pm +pi, T, (storee) dv) € [Mn ([n] T) oi]

It suffices to prove that

(pm +p1, T, (storee) 67) € [Mn ([n]T) ot

From Definition [68|it suffices to prove that

V' <T,vp,n (storee) dy I} vy = ' +9 <pr+pm+nA Q. T —t,vy) €[[n]7 ol
This means given some ¢’ <T,vs,n’ s.t. (storee) oy Mil vy it suffices to prove that

W' +p <pr+pm+nAQ,T -t v)€[n1 ol

From (E-store) we know that n’ = 0 therefore we choose p’ as p; + p,, + n and it suffices to prove that
(pl + Pm + n, T _t,7 Uf) € [[[n] T ULHS

This further means that from Definition 58 we have
W' +n<p+pm+nA@,T -t v)€[role}

We choose p” as p; + pn, and it suffices to prove that
(pr + pm, T —t',vy) € [T ot} (F-S0)

IH

(D1 +pm, T,e 67) € [r otfe

This means from Definition (8] we have
Vt1 <T .(e) 0y Ui, vy = (pm +p1, T —t1,vy) € [T ot

Since we know that (storee) dy | — {9, vy therefore from (E-store) we know that 3t; < t'.e &y {4, vy
where t; +1=1¢

Therefore from Lemma 61| we get (p., +pi, T —t1,v5) € [T ot]¢ and we are done
Lemma 65 (I' Subtyping: domain containment). Vp,~,I'1,T's.
U,0;AFD <y = Ve:relgao: 7 el A0 ART <7
Proof. Proof by induction on ¥;0; A +T'y <: 'y

122

1. sub-1Base:

b-1B
U:0;A T, <:.Su ase
To prove: Ve : 7' € (o : 7€ AV;0; AT <7
Trivial
2. sub-lInd:

z:7 ey U:O;AFT < T U:0; AR /x <: Ty
U0, AR <o,z 7

sub-1Base

To prove: Vy: 7 €loy:71e T AU, A T < 7

This means given some y : 7 € (I'2, x : 7) it suffices to prove that
y:1e A0 AT <7
The follwing cases arise:
e y=u:
In this case we are given that z: 7/ € T4y AU; ;A7 < 7
Therefore we are done
oy £
Since we are given that ¥;0; A - I'y /x <: 'y therefore we get the desired from IH

Lemma 66 (2 Subtyping: domain containment). Vp, vy, Q1,Qs.
U,0;AFQ <:Qy =
VT g TEDo. T iy T EM AV AFTI<S<ITAY;0,0;Aa< T <7

Proof. Proof by induction on ¥; ©; A F 0y <:)y

1. sub-1Base:
—— sub-mBase
UO;AFQ <.
To prove: Vo i(qer T € () iqeg T €U AV AFT < JAY;0,a;Aa<IHT <7
Trivial
2. sub-lInd:

T iaey T €N U0, a<IF7 <7 OAFI<J U:0;AF O/ <: Qo
U:0;AFQ < Qo iqer T

sub-mInd

To prove: Yy iqe1 TE Qo iacy T EU AV AT TAY;0,0;Aa< T <7

This means given some ¥y :(q<; 7 € (2, :q<s 7) it suffices to prove that
Yiac) T EM AV AFTI<SITAY;0,0;Aa<IFT <7
The follwing cases arise:
o y=u:
In this case we are given that
Tigeg T EMAT;AFTI<JIATY;O0,a;Aa< kT <7
Therefore we are done
oyt
Since we are given that ¥;0; A F Qq/x <: Qs therefore we get the desired from TH

Lemma 67 (I subtyping lemma). Vp,~,T'1,T2,0,¢.
U:0;AFT <: Ty = [[10¢] C [I20t]

Proof. Proof by induction on ¥;0; A FT'; <: 'y
1. sub-1Base:

sub-1Base

U,0;AFT <.
To prove: Y(p,T,v) € [T10t]e.(p, T,7) € []e
This means given some (p,T,v) € [['10t]¢ it suffices to prove that (p,T,~) € [.]¢

123

From Definition [59] it suffices to prove that
3f Yars — Pots. (Va € dom(.). (f(z),T,v(z)) € [L'(2)]e) A (Xrcaom() f(2) <p)
We choose f as a constant function f'— = 0 and we get the desired

2. sub-lInd:

z:7 e U O:AFT <7 U;0; AFTy /o <: Ty
U,0;AFD <:Tg,z: 7

sub-1Base

To prove: ¥(p,T,7) € [T1ot]e.(p, T,7) € [T, 2 : T]e
This means given some (p,T,7v) € [I'10t]¢ it suffices to prove that (p,T,7) € [['2,x : 7]e

This means from Definition [59] we are given that
3f : Vars — Pots.

(Vo € dom(I'1). (f(2), T,~v(x)) € [T'(2)]e) (LO)
(X scdomry) (@) < p) (L1)

Similarly from Definition [59]it suffices to prove that
3f" :Vars — Pots. (Vy € dom(La,x 7). (f'(y),T,7(y)) € [FW)]e) A e dom(s,wry I W) <p)

We choose f’ as f and it suffices to prove that

(a) Vy € dom(La, 2z : 7). (f(y),T.v(y)) € [L'(y)]e:
This means given some y € dom(T'y, x : 7) it suffices to prove that

(f(y), T,v(y)) € [r2]e where say T'(y) = 7
From Lemma [65] we know that

y:m ETLAV:0;AFT <7

By instantiating (L0) with the given y
(f):T,v(y)) € [mle

Finally from Lemma [70] we also get (f(y),T,7(y)) € [r2]e
And we are done

(b) (Eyedom(]__‘z)z:r) f(y) S p):
From (L1) we know that (Zmedom(m) f(x) < p) and since from Lemmawe know that dom(T's,x :
7) C dom(T'1) therefore we also have

(ZyEdOWL(Fz,w:T) f(y> S p)
O]

Lemma 68 (Q subtyping lemma). Vp,v,Q1,Qs,0,¢.
U:0;AF O <:Qy = [Q0t] C Q0]

Proof. Proof by induction on ¥; 0; A - ; <: Q9
1. sub-1Base:

sub-mBase

U:0;AFQ <.
To prove: V(p,T,7) € [Quoi]e.(p,T,7) € [Je

This means given some (p,T,v) € [Q10¢]¢ it suffices to prove that (p,T,7v) € [.]e

From Definition [59] it suffices to prove that

3f Vars — Indices — Pots. (V(z 1acr 7) € VO <0 < L. (f2d,T,0(x)) € [7]i/a]le) AN (X2, re. 2oo<icr [21) <
p

We choose f as a constant function f’— = 0 and we get the desired

2. sub-lInd:

T iaey T €N U:0,0; A\ a<IF7 <1 O;AFI<J U0, AR O/ < Qo
U:0;AFQ <:Qo, T iger T

sub-mInd

To prove: ¥(p,T,7) € [Qot]e.(p, T,7) € [Q2,2 : T]e
This means given some (p,T,7v) € [210t]¢ it suffices to prove that (p,T,7) € [Q2,x : T]e

This means from Definition [f9] we are given that
3f : Yars — Pots.
V(@ iqer 7) €. VO<i<I.(f xi,T,0(x)) € [7]i/a]]e) (LO)

124

(Zx:a<17691 ZO§i<I fzi)<p (L1)

Similarly from Definition [59|it suffices to prove that

3f" + Vars — Indices — Pots. (V(y <1, Ty) € Qo,x:7.¥0 <0 < L. (f 2 4,T,6(y)) € [ryli/a]le) A
(Zy:a<1y‘r€ﬂ27w:‘r 20§i<1y f/ Y Z) < p

We choose f’ as f and it suffices to prove that
(a) (VY ta<r, 7y) € Q2 :7.V0 <0 < L, (f 24, T,0(y)) € [ryli/a]]e):
This means given some (y o<1 Ty) € Q2,2 : 7 and some 0 < ¢ < I, it suffices to prove that

(f x z,T,é(y)) € HTy[Z/a]]]g)

From Lemma [65] we know that
Yiacs, M €U ANY;OAFT, < J, AV;0,0;Aa< [, b1 <i7y

Instantiating (L0) with the given y and i we get
(f 2 4,T,0(y)) € [mali/a]le
Finally using Lemma [70] we also get
(f 24,T,0(y)) € [ry[i/al]]e
(b) (Zy;udyryeﬂz,x;f Zo§i<1y fryi)<p:
From Lemma [66] we know that
VY tacr, Ty € (2,2 : 7)Y tacy, 1 €U ANYO,AFT, < J, AV;0,0;A,a < Iy -7 <: 7y
And since from (L1) we know that (3_,. . cq, 2 0<i<r [@ @) < p therefore we also have

(Zy:a<1yry6522,r:7 20§i<1y fl Y 7’) < p

Lemma 69 (Value subtyping lemma). V¥, 0, A, 7 € Type, 7/, 0,¢.
VAT <7 AN EAL = [t o] C[r o

Proof. Proof by induction on the ¥;0; A+ 7 <: 7/ relation
1. sub-refl:

———— sub-refl

UV,0;AFT < T s
To prove: ¥(p,T,v) € [t o] = (p,T,v) € [1 0/]
Trivial

2. sub-arrow:
U;0;A k1 <7y U:0;AF <)

U;0;AF 71 —oTg <7 —0Th

sub-arrow

To prove: V(p, T, Ax.e) € [(11 — 72) ot] = (p, T, Ax.e) € [(1] — 73) 0!]
This means given some (p, T, A\x.e) € [(T1 —o T2) ot] we need to prove
(T, Az.€) € [(71 — 73) 0]

From Definition [58| we are given that
V', e\ T'<T .(p', T, ¢') € [ot]le = (+p,Tele/z]) € [m2 ot]s (F-SLO)

Also from Definition [58] it suffices to prove that
Vo', e/, T"<T (p/,T",e') € [r] o]se = (p+p,T" ele/z]) € [15 ot]e

This means given some p’,e', 7" s.t (p/, T",€e') € [1] ot we need to prove
(p+p,T" ele'[x]) € [15 ot]e (F-SL1)

Since ¥; ©; A - 1{ <: 7; therefore from Lemma [70] we know that given some (p/,T",€") € [r{ o] we also
have (p/,T",¢") € [11 o(]

Therefore instantiating (F-SL0) with p/,e”, 7" we get
(p+p, 1" ele"/z]) € [r2 0t]e
From Lemma [70] we get the desired
3. sub-tensor:
U, 0;AFm <7 U, 0;AF 1<)
U0 AFT @ <: 7] @ Th

sub-tensor

125

To prove: V(p, T, ((v1,v2)) € [(11 ® 72) ot] = (p, T, ((v1,v2)) € [(T{ ® 73) o1]

This means given (p, T, {v1,v2)) € [(11 ® T2) o]

It suffices prove that

(0, T, (v1,02))) € [(11 ® 73) o1

This means from Definition 58 we are given that

Ip1,p2.p1 +p2 <p A (p1, T, v1) € 11 o] A (p2, T, v2) € [2 0t]

Also from Definition |58 it suffices to prove that
L pe-py + 05 Sp A (P, T v1) € [o] A (ph, T, v2) € [73 0]

Instantiating p), p5 with p1, ps we get the desired from IH1 and TH2
. sub-with:

U, 0;AFm <7 U, 0;AF 7<)
U0 AR & <1 &Th
To prove: V(p, T, (v1,v2)) € [(11 & 2) ot] = (p, T, (v1,v2)) € [(71 & 73) 0]

sub-with

This means given (p, T, (v1,v2)) € [(T1 & T2) 0]

It suffices prove that

(2, T, (v1,v2)) € [(11 & 73) o1]

This means from Definition [5§ we are given that
(p,T,v1) €1 o] A (p,T,v2) € [12 0t (F-SWO0)

Also from Definition [58] it suffices to prove that
(p, T, v1) € [r{ o] A (p, T, v2) € [15 0]

IH1 [(11) o] C [(r{) o]

IH2 [(72) o¢] C [(73) ot]

We get the desired from (F-SWO0), TH1 and IH2

. sub-sum:

U,0;A k7 <7 U, 0;AFm <)
U;0;A b1 &1 <1 &Y

sub-sum

To prove: V(p, T, (v1,v2)) € [(11 ® T2) ot] = (p, T, {v1,v2)) € [(1{ ® 75) o]

This means given (p,T,v) € [(71 & T2) 0(]
It suffices prove that
(p,T,v) € [(r1 ® 73) 01]

This means from Definition 5§ 2 cases arise
(a) v =inl(v'):
This means from Definition [58| we have (p, T,v’) € [11 ot (F-SS0)

Also from Definition [58| it suffices to prove that
(p,T,v") €[] 0]
IH [(r) ou] € [(71) 0]

We get the desired from (F-SS0), TH
(b) v=inr(¢v):

Symmetric reasoning as in the inl case

6. sub-potential:

U:0;AFT <7 U:0:AFn <n
U;0; A+ [n]r <: [n]7
To prove: ¥(p,T,v) € [[n] T ot].(p,T,v) € [[n'] 7 o/]

sub-potential

This means given (p,T,v) € [[n] T ot] and we need to prove

126

(., T,v) € [[n]7" 01]

This means from Definition [b8| we are given
WP +n<pA@p,T,v)er ol (F-SPO)

And we need to prove
W' p"+n <pAp',T,v) e[o (F-SP1)
In order to prove (F-SP1) we choose p” as p/

Since from (F-SP0) we know that p’+n < p and we are given that n’ < n therefore we also have p’+n’ < p

IH (p/,T,v) € [o/]

(p',T,v) € [7" o] we get directly from IH

. sub-monad:

U 0;AFT <7 U:0;AFn<n
U:0;A-MnT <:Mn' 7

sub-monad

To prove: ¥(p,T,v) € [MnT oi].(p,T,v) € [Mn' 7" o/

This means given (p,T,v) € [Mn T ot] and we need to prove

(p,T,v) € [Mn' 7" o/]

This means from Definition 5§ we are given

V' <T,ng, v’ v ' v = '+ <p+nA @, Tt elrol] (F-SMO)

Again from Definition [58| we need to prove that
Vt" <T,ng,v" v g7 v = " i +p" <p+n' A", T —t" V') e[o

This means given some t" <T',ng,v"” s.t. v |}}77 v" it suffices to prove that

W' +p" <p+n AT —t"0) er ol (F-SM1)

Instantiating (F-SMO0) with ¢, no, v” Since v {)? v therefore from (F-SMO0) we know that
Yo +p <p+nA@,T-t"V")e]r ol (F-SM2)
IH [o] C [o]
In order to prove (F-SM1) we choose p”’ as p’ and we need to prove
(a) ny+p <p+n':
Since we are given that n < n’ therefore we get the desired from (F-SM2)
(b) (p/, T —t",0") € [r' o]
We get this directly from IH
. sub-subExp:

U0, a< J-1< 7 U:0,a;AFJLT
U0, A Hlyorr <lyest’

sub-subExp

To prove: V(p,T,v) € [la<1T 0t].(p, T, v) € [lacsT’ l]

This means given (p,T,!v) € [la<s7 ot] and we need to prove

(pa Ta "U) € [[!a<J7J ULH

This means from Definition [58| we are given

oy -y pr—1po+ .. FpPr1 <KPAVOL< i< I.(pi7T, U) S [[T[Z/a]]] (F-SEO)

Again from Definition [58] we need to prove that
G, P po D < pANVO<j < J(p;, T,v) € [r'[j/a]] (F-SE1)

In order to prove (F-SE1) we choose pf...p’;_; as po...ps—1 and we need to prove
(@) po+...+pj1 <p
Since we are given that J < I therefore we get the desired from (F-SEO)
(b) YO <j < J(p;,T,v) € [7'[j/a] o]
We get this directly from IH and (F-SEO)

127

9.

10.

11.

sub-list:
UV:0;AFT <7
UVO;AFLY < L™ 7
To prove: ¥(p,T,v) € [L" 7 o].(p, T, v) € [L" 7' o1]

sub-list

This means given (p, T,v) € [L™ 7 o] and we need to prove
(p,T,v) € [L™ T’ 0/]

We induct on (p,T,v) € [L™ 7 o]
(a) (p,T,nil) € [L° T ou]:
We need to prove (p, T, nil) € [L° 7' o.]
We get this directly from Definition
(b) (p,T,v" ::1") € [L™F! 1 ou]:
In this case we are given (p, T,v" :: ') € [L™! 7 o]
and we need to prove (p, T,v' : I') € [L™F 7/ o4]

This means from Definition [58| are given
Ip1,p2pr+p2 <p A (pr, T,0") € [T ol A (p2, T, 1) € [L™T o]

Similarly from Definition [5§ we need to prove that
I Py + 0o <p AL T V) € [T o] A (p2, T, 1) € [L™ 7" 0]

We choose p as p; and p} as ps and we get the desired from (Sub-List0) IH of outer induction and

IH of innner induction
sub-exist:

U:0,sAFT1 <7
U:0; A Js.1 <: Js.7’
To prove: ¥(p,T,v) € [3s.7 oi].(p, T, v) € [Is.7" o1

sub-exist

This means given some (p,T,v) € [3s.7 ot] we need to prove
(p, T,v) € [3s.7" o]

From Definition [58| we are given that
3s'.(p, T, v) € [rois'/s]] (F-exist0)

IH: [(7) oeU{s+— s} C[(7') oeU{s+> s'}]
Also from Definition [58] it suffices to prove that
3s".(p, T,v) € ['o]s"/4]]
We choose s” as s’ and we get the desired from IH
sub-typePoly:
U o, U:0:;AF 7 <7
U;0; A F Vo <:Va.m
To prove: ¥(p, T, Aa.e) € [(Va.m1) oi].(p, T, Aa.e) € [(Va.12) oi]

sub-typePoly

This means given some (p, T, Aa.e) € [(Va.m1) ot we need to prove
(p, T, Aa.e) € [(Va.12) 0i]

From Definition [58 we are given that

V7', T'<T .(p, T, e) € [m[r"/a]]e (F-STFO0)

Also from Definition [58 it suffices to prove that

V7' T"<T (p, T" €) € [r=[t"/a]]e

This means given some 7", 7" <T and we need to prove
(p, T" e[r" /a]) € [=[7"/a]]e (F-STF1)

IH: [(r1) oU{a— 7"}] C (1) o U{a— 7"}]
Instantiating (F-STF0) with 77, 7" we get

(0.T".0) € [n[r" /o]l

and finally from IH we get the desired

128

12. sub-indexPoly:
U:0,iAFm <1
U:0; A FVim <: Vi
To prove: ¥(p, T, Ai.e) € [(Vi.1) ou].(p, T, Ai.e) € [(Vi.T2) o1

sub-indexPoly

This means given some (p, T, Ai.e) € [(Vi.11) o] we need to prove
(p, T, Ai.e) € [(Vi.ma) 0i]

From Definition [58| we are given that

VI,T'<T .(p,T",e) € [1[I/i]]e (F-SIF0)

Also from Definition |58 it suffices to prove that

VI, T"<T .(p, T e) € [=[I'/i]]e

This means given some I’, 7" <T and we need to prove
(p, T",e) € [r=[I'/i]]s (F-SIF1)

IH: [(11) o U{i—=I"}] C[(2) oeU{i—T'}]
Instantiating (F-SIFO0) with I’, T" we get

(p,T",e) € [m[I'/i]]e

and finally from IH we get the desired
13. sub-constraint:

U:0;AF 71 <7 OAE = ¢

sub-constraint
U:0;AbFci =7 <ico=T

To prove: ¥(p,T,A.e) € [(c1 = 1) ot].(p, T, A.e) € [(ca = 72) ot

This means given some (p, T, A.e) € [(¢c1 = 71) o] we need to prove
(pa TvA'e) € [[(62 = T2) UL]]

From Definition [b8| we are given that

VI'<T.Ec = (p,Te) € [r1iol]e (F-SC0)
Also from Definition [58] it suffices to prove that
VI'<T . Ecat = (p,T",¢) € [r20t]s

This means given some T”<T s.t. = cat and we need to prove
(p, T" e) € [ra0t]e (F-SC1)

Since we are given that ©; A = ca = ¢ therefore we know that . = ¢yt
Hence from (F-SC0) we have

(p,T",¢€) € [r10t]e (F-5C2)

IH: [(r1) o] € [(72) o¢]

Therefore we ge the desired from ITH and (F-SC2)
14. sub-CAnd:

U:0;AF T <:7y O;AEFEc =
U:0;AF & < ea&ers

To prove: V(p,T,v) € [(c1&71) ot].(p, T, v) € [(c2&eT2) 0t

sub-CAnd

This means given some (p,T,v) € [(c1&T1) ot] we need to prove
(pa T,’U) € [[(62&7—2) Ul’]]

From Definition [58] we are given that
JEcatn @ T,e) € note (F-SCA0)

Also from Definition [58] it suffices to prove that
. ': cat N\ (vaa 6) € [[TQUL]]E

Since we are given that ©; A |=co = ¢; and . |= ¢q¢ therefore we also know that . = cot

129

Also from (F-SCAQ) we have (p,T,e) € [riot]e (F-SCA1I)
IH: [(11) o¢] € [(72) 0]

Therefore we ge the desired from IH and (F-SCA1)
. sub-potArrow:
U:0;AFE

U;0; A b [k](11 —o 72) <: ([K]71 — [k + k] 2)
To prove: ¥Y(p, T, Ax.e) € [([k](11 — 72)) ot].(p, T, Ax.e) € [([K'] 71 —o [K' + k] 72) o1
This means given some (p, T, A\x.e) € [([k](T1 — 72)) ot] we need to prove
(2, T, Ax.e) € [([F] 11 — [K' + k] 72)) o]
From Definition [58| we are given that
WP +k<pA®,T,Axe)€[(r1 — 1) o]} (F-SPAO)

Again from Definition [58 we know that
vp'' e, T'<T .(p/", T, ¢) € [olle = (' +p",T,ele’/x]) € [r2 ol]e (F-SPA1)

sub-potArrow

Also from Definition [58|it suffices to prove that
V" e\ T"<T .(p",T",e") € [[K']m1 ot]le = (+p",T" ele"/x]) € [[k+ K] ot]e

This means given some p”,e” T"<T s.t (p”,T",e") € [[k'] 11 ot]e we need to prove
(p+p",T" ele"/x]) € [[k + k]2 ol]e (F-SSP2)

Applying Definition [58 on (F-SPA2) we get

Vop, t' <T" ele’[/z] by vy = (p+p", T" —t',vy) € [[k+ k]2 o]

This means that given some vy, ¢’ <T" s.t. ele”/z] |+ vy and we need to prove that
(p+p",T" —t' vy) € [[k+ K72 0]

This means From Definition [68|it suffices to prove that
Ipyp5 + (k+E) < (p+p") A (g, T =t',vyp) € [r2 0]} (F-SPA4)

Also since we are given that (p”,T",e") € [[k'] 71 ot]e we apply Definition [58| on it to obtain
Vit <T" v e v = (p",T" —t,v') € [[K] 1 ol

Also since we are given that e[e” /z] || vy therefore we also know that

" <t <T" & Yy v

Instantiating with ¢, v we get (p”,T" —t",v") € [[k'| 11 o]

Again using Definition [58| we know that we are given

o + K <p" A, T" —t"v") €[o/ (F-SPA3)

Since (pf,T" —t",v") € [11 o] therefore from Definition [58| we also have

!, T" —t",v") € [m1 ot]e

Instantiating (F-SPA1) with p{,v”, T —t" we get

(' +p{, T" —t" e[v" [x]) € [12 ot]¢

From Definition B8] this means that

Vi <T" —t" vy.el” /x| vy = (p +p{,T" —t" —t",vf) € [12 0/] (F-SPA4.1)

Since we know that e[e” /x] |y vy therefore we also know that 3t .e[v” /x| pr vy s.t. " + 1" <t/
Since we already know that 3t” <t/ <T" . |4 v” therefore we have t”" +t"" <t <T".

Instantiating (F-SPA4.1) with ¢ we get

' +p!, T" —t" —t" vy) € [12 0l (F-SPA5)
Since from (F-SPAO) we know that

p+k<p

And from (F-SPA3) we know that

P+ K <

We add the two to get

P+l +k+k <p+p”’ (F-SPA6)

In order to prove (F-SPA4) we choose pf as p’ + p{
and we get the desired from (F-SPA6) and (F-SPA5) and Lemma [61]

130

16.

17.

18.

19.

sub-potZero:

b-potZ
\IJ;Q;AFT<:[O]TSH potaero

To prove: Y(p,T,v) € [t ot].(p, T, v) € [[0] T o(]
This means that given (p,T,v) € [7 o]
And we need to prove (p,T,v) € [[0] T o1

From Definition [58] it suffices to prove that
WP +0<pAQ,T,v)€|r ol
We choose p’ as p and we get the desired
sub-family Abs:
U:0,i:Skr <7
U:OF M\i i ST <t Mi 2 ST/

sub-family Abs

To prove:
Vf e [Mi: ST ol.f €\i:ST ol

This means given f € [\ : S.7 ot] and we need to prove
feri:S.7 ol

This means from Definition 5§ we are given
VI.f I€[r[l/i] ol (F-SFAbs0)

This means from Definition [58] we need to prove

VI'.f I' e [7'[I'/i] o.]

This further means that given some I’ we need to prove
f I elr''/i ol (F-SFAbsl)

Instantiating (F-SFAbs0) with I’ we get

fIe[r[l'/i ol

From TH we know that [7 ot U{i— I' 1}] C[7/ o U{i — I' 1}]
And this completes the proof.
Sub-tfamily Appl:

b-family Appl
U:0;AF M\i: Sor I <:7[1]1] R

To prove: ¥(p,T,v) € [Mi:S.7 1 ot].(p,T,v) € [7[1/i] o1]

This means given (p,T,v) € [Ai : S.7 I o] and we need to prove
(p,T,v) € [r[1/i] o]

This means from Definition [58| we are given

(p,T,v) € [Ai:ST] I o0

This further means that we have

(p,T,v) € f I where f I = [ro[I./i]]

This means we have (p,T,v) € [ro[l/i]]
And this completes the proof.
Sub-tfamily App2:

b-family App2
U:0;AFT[I/i] <t Ai:ST 1 SHbTAmIyAPP

To prove: V(p,T,v) € [r[I/i] oi].(p,T,v) € [Mi:S.7 1 oi]
This means given (p,T,v) € [7[I/i] oi] (Sub-tF0)

And we need to prove
(p,T,v) € [Ai:S.7I 0l

This means from Definition [58] it suffices to prove that
(p,T,v) € [Ai:ST] I o0

It further suffices to prove that

(p,T,v) € f I where f Iv = [ro[l/i]]

131

which means we need to show that

(p,T,v) € [rolle/i]]

We get this directly from (Sub-tF0)
20. sub-bSum:

sub-bSum
U:0; Ak [Z Klgerm <locr [K]T

a<l
To prove: Y(p, T,v) € [[D_qc; K]la<iT o] = (p,T,0) € [lacs [K] T 01]
This means given some (p,T,v) s.t (p,T,v) € [[>
(0, T,v) € [lacs [K] T 0]
This means from Definition [5§ we are given that
I D K< A, T,v) € [lactT 0t]} (Sub-BS0)
Since (p', T, v) € [la<rT ot]} therefore again from Definition [58| it means that Je’. v =le’ and
o,y pr—1-Po+ .-+ i1 <P AVO<i<I.(p;,T,€) € [r]i/a] ot]s (Sub-BS1)

Since V0 < i < I.(p;, T, €e') € [7]i/a] ot]e therefore from Definition 58 we have
VO <i<IVt<T,w".e |4v" = (p;, T —t,v") € [r]i/a] o] (Sub-BS1.1)

wct K]laciT 01] it suffices to prove that

Since we know that v =le’ therefore it suffices to prove that (p,T',!e’) € [lo<s [K] T 0t

From Definition [58|it further suffices to prove that
hs D Po+ AP SPAVO<i<I.(p},T,€) € [[K|7]i/a] oi]e

We choose p{, as pg + K[0/a] ...p7_; as pr—1 + K[(I — 1)/a] and it suffices to prove that
o py+...+pr <p:
We need to prove that
(9o + K[0/a)) + ... + (p11 + K[(I ~ 1)/a]) <p
We get this from (Sub-BS0) and (Sub-BS1)
o V0 <i< I.(p,T,¢)e[[K]T[i/a] ot]e:
Given some 0 < ¢ < [it suffices to prove that
(W, T,) € [[K] 7li/a) 1]

Since p} is p; + K[i/a] therefore it suffices to prove that

(pi + K[i/a], T, ¢') € [[Kli/a]| T[i/a] o]e

From Definition [58] we need to prove that

Vo' 1" <T e Yy v = (pi + Klifa], T —t",v") € [[K[i/a]] T[i/a] ot]
This means given some v’ s.t €’ |} v' we need to prove that

(pi + K[i/a], T —t", ") € [[K[i/a]] 7[i/a] o]

From Definition [58]it suffices to prove that

" p" + Kli/a] < p; + K[i/a] A (p", T —t",v") € [r[i/a] o]}

We choose p” as p; and we need to prove

(pi, T —t", ") € [r[i/a] o1]

Instantiating (Sub-BS1.1) with the given ¢ and v’,t” we get the desired

Lemma 70 (Expression subtyping lemma). YU, 0, A 7 € Type, 7’.
U:0;AFT<:7 = [roe C[r ole
Proof. To prove: ¥(p,T,e) € [T ot]s = (p,T,e) € [7" ot]e
This means given some (p, T, e) € [7 ot]¢ it suffices to prove that
(paTae) € [[T/ JL]]E
This means from Definition [68| we are given
Vo, t <T ey v = (p, T —t,v) € [1 oi] (S-E0)
Similarly from Definition [58|it suffices to prove that
Vo', <T ey vV = (p,T —t',v") € [/ o]

This means given some v’, ¢ <T s.t e {4 v’ it suffices to prove that
(p, T —t',0v") € |7 o]

132

Instantiating (S-E0) with v’,t' we get (p, T —t',v') € [T 0(]
And finally from Lemma [69] we get the desired.

Theorem 71 (Soundness). Ve,n,n’, 7 € Type,t.
Fe:MntAell) v = n'<n

Proof. From Theorem [64] we know that (0,¢+ 1,e) € [Mn7]e

From Definition B8] this means we have
Vil <t+lelpy v = (0,t+1—¢2") € [MnT]

From the evaluation relation we know that e {}¢ e therefore we have
(0,t+1,e) € [MnT]

Again from Definition [58] it means we have
Vi" <t+lelp v = ' +p <0+nA@,t+1-t"v)€][r]

Since we are given that e |} v therefore we have
' +p <nA@p, L) e|r]

Since p’ > 0 therefore we get n’ <n

Theorem 72 (Soundness). Ve,n,n’,7 € Type.
Fe:[n]l =MOT Ae() sy — U}, v = n'<n

Proof. From Theorem |64 we know that (0,t; +t2 + 2,e) € [[n]1 — MO 7]

Therefore from Definition [58 we know that
V' <ty +to+2,vellp v = (0,t1 +ta+2—t',v) €[[n]1 - MOT] (S0)

Since we know that e () {¢, — therefore from E-app we know that Je’.e |, Az.¢/
Instantiating (S0) with t1, Az.e’ we get (0,t2 + 2, Az.e’) € [[n]1 — MO 7]

This means from Definition [58] we have
Vp' et <ty +2.(p ", e") € [[n]1]e = (0+p',t",e'[e"/z]) € [MOT]e (S1)

Claim: Vt.(I,t,()) € [[I] 1]

Proof:

From Definition [58| it suffices to prove that
() bov = (I,t,’U) € [[[I] 1ﬂ

Since we know that v = () therefore it suffices to prove that
(I,t,v) € [[1]1]

From Definition [58|it suffices to prove that
W +I<TA@P,tv) €]}

We choose p’ as 0 and we get the desired

Instantiating (S1) with n, (),t2 + 1 we get (n,t2 + 1,€'[()/z]) € [MO07]e

This means again from Definition [58 we have
Vi <ty + 1.e'[()/z] b vV = (n,ta+1—t,v") € [MOT]

From E-val we know that v' = €’[()/z] and ¢’ = 0 therefore we have
(nv ta + 1, el[()/x}) € [[MOTH

Again from Definition [58) we have
V' <t + 1.e[()/x] I3 v = I/ +p <n+0A (P, ta+1-t,0") € [7]

Since we are given that e §;, — llg v therefore we get
' +p <nA@p,L0")e|r]

Since p’ > 0 therefore we have n’ < n

133

B.5 Embedding dIPCF
Type translation
()] =0
(la <Ilmi—om) = (la<rMO(m1)) —o [[]1 — MO (72)

Judgment translation
O;A;Threq:7 ~ 60;A;(0);. Feq: [K+ count(T")] 1 — MO (7) ‘

where

count(.) =0
count(T,z : [a < IlT7) = count(T)+1

Definition 73 (Context translation).

() = .
Cz:la<Ilr) = (D)2 acr MO(7)

Expression translation

O;AEJT>0 O;AET>1 ©;AFo[0/a] <: 7 O;AEa<Ilcl ©;AET]
O;A;T,z:[a<I|tFyx:7[0/a] ~ Ap.release — = p in bind — =1 inz

var

;AT z:la<Ilmbye:m~e

lam
O; ATy Axe: ([a < Il.1y) —o T2 ~
Ap1.ret Ay Apo. let! x = y in release — = p; in release — = py in bind a = store() in e; a
O;A;THyer: (Ja<I]m) —o 1~ ey
O,a;A,a<I;AFges:T ~ e F’QFEBZA H2J+I+ZK
a<lI a<l
;AT Felex:my~ app
Ap.release — = p in bind a = store() in bind b = €41 a in bind ¢ = store!() in bind d = store() in b (coercel less ¢) d

O, A b< LiTyz:[a<Ilobge:T~ e
7[0/a) <: p @,a,b;A,a<I,b<L;F}—T[(b—kl—i-@gﬂ’al)/b] <ic
e r LM>@)I N>M-1+) K
b<L b<L

T-fi
O; AT Fy fixx.e : pp ~ Ey *

E() = fIXYEl
E1 =)\pEg
FEy =release— =pin FEj

E5 = bind A = store() in Ey4
Ey=let!lz = (E4‘1 E4‘2) in Es
FE41 = coercel 'Y

Es5 = bind C = store() in Eg
E6 = €t c

B.5.1 Type preservation

Theorem 74 (Type preservation: dIPCF to A-amor). If ©;A;T ;e : 7 in dIPCF then there exists €' such
that ©; A;T by e : 7~ € such that there is a derivation of .;0;A;([);. F € : [I + count(T")]1 — MO (7) in
A-amor.

Proof. Proof by induction on the ©;A;T'Fre: 7

134

® var:

OAEJT>0 OAEI>1 ;A Fol0/a] <: 7 ;A Ea<Ilol AET |

O;A;T,x:[a<I]otyx:7[0/a] ~ Ap.release — = pin bind — =1'inz v
b 0;AF o[0/d]
olU/a) <: 7T
SAF b/ <@
D1:
50: A (1), @ raes MO (o), - 2 - MO ()0/a]
Lemma [80]
50; A5 (T), @ taer MO (o), F z: MO (o]0/a])
Do:
5 0; A (T, @ tqer MO (o), F 11 :M11
50;A; (1), 2 taer MO (o), - 11 M(I + J + count(T)) 1)
56 A(T). % taer MO (o), bind — = 1 in 2 : M(I + J + count(D)) (o[0/a]) "
Main derivation:
5O A; (D), iacs MO (o), p: (I + J + count(T)] 1) - p:([I+J+ count(T)] 1)
50; A5 (T), @ saer MO (o);p: ([T 4+ J + count(T)] 1) F release — = pin bind — = 1! in 2 : MO (7) Trrelease

T-1
50, A; (D), 2 tqer MO (o);- - o

Ap.release — = pin bind — =1 in 2 : (([I + J + count(I')] 1) — MO (7))

e lam:
ATz la<Ilmmbyje:m~e
AT FyAze: ([a<I]m) —o T~
Ap1.ret Ay.Aps. let!z = y in release — = p; in release — = py in bind a = store() in e; a
Ey = Apy.ret \y.Aps. let!x = y in release — = p; in release — = po in bind a = store() in e; a
E; =ret Ay Aps.let!x =y in release — = p; in release — = po in bind a = store() ine; a
E5 = Ay Aps.let!x =y in release — = p; in release — = py in binda = store() in e; a
E5 = Aps.let!z =y in release — = p; in release — = py in bind a = store() ine; a
E, =let!z =y in release — = p; in release — = py in bind a = store() ine; a
E, 1 = release — = p; in release — = po in bind a = store() in e; a
E, o = release — = po in bind a = store() in e; a

E, 3 =binda = store() ine; a

To = [J + count(T')]1 — MO (([a < I]11) —o T2)
To1 = [J + count(T)] 1 — MO((la«r MO (1)) —o [I]1 — MO (72))
TOQ—[J“FCOUTLt()1
=MO((la<s MO (1)) — [I]1 — MO (72))
T2 ((ta<r MO (71)) —o [I]1 — MO (72))
Ty1 =lacr MO (71)
T3:[I]1—OMOQ7'2D

T31 =[I]1
T4 = MO (]TQD
T4_1 = M(J + I + count(F)) 1
Tyo=M(J + I+ count(I")) (m2)
Ty3 = M(J + count(T)) (72)
=[(J+ I+ count(T'))]1 — MO (72)
Dé6:
var
5050550 [J+ T4 count(D)]1Fa:[J+ 1+ count(T)]1
D5:
IH
5O, A; (T), 2 taer MO (715 Fer: T
D4:

D5 D6
SO A (D), @ iaer MO(mi);a: [J+ T4 count(T)]1 e a:Ty

app

135

D3:

D2:

D1:

DO:

Main derivation:

app:

store D4

5 O;A; -+ store() 1 Tyq
5O, A (D), 2 iy MO(T1);- = By : Tyo

bind

D3
5O;A 5 pe T Fp2 T3 bind
5054 (T, 2 tacr MO (T1]);p2 : T30 1 Eyo: Tys
D2
505 A 5p1 T2 Fpr i To2
release

5O, A (), 2 tacs MO (m1);p1 : To2,p2 1 T30 - Egq 2 1

D1

SO A sy To Py Thy
505 A (T);py i To2,y - Toa,p2 T30 - By
',@7A76 IE 1.T0,2,y.T2,1}—E3.T3

T-subEXpE

lam

DO
50, A5 (D)sp1 i Too b By Tp
505 A5 (C);p1 s Too By T
50;A;(T);-F Eg: Toa

lam

ret

lam

;AT Fyer:(Ja<I|m) —om~en

©,0;8,a <IiTobgey:im~en T'IT1®Y Ty H>2J+I1+Y K

a<l a<lI

app
;AT Felex:m~

Ap.release — = p in bind a = store() in bindb = e;1 a in bind ¢ = store!() in bind d = store() in b (coercel le;s ¢) d

EO = /\p E1

Ey =release— =pin Ey

E5 = bind a = store() in E3

E3 =bindb=-¢;; ain Ey4

E, = bind ¢ = store!() in Es

E5 = bind d = store() in b (coercel e c) d

To = [H + count(I”)] 1 — MO (72)
Toar=[J+ 1+ ;K + count(T'y) + count(D_,.;T'2)] 1 — MO (72)
Toa=[J+I1+>,.; K+ count(I'y) + count(}",_; T2)]1

To.2 = MO (72)

Toz =M +1+>,.; K+ count(T'y) + count(_, ., T'2)) (m2)
= [(J + count(T"))] 1 — MO (([a < I]T1) —o T2)

T1.1 = [(J + count(T))]1

Ty 11 = M(J + count(T)) [(J + count(T))] 1

Traz =M + 3,1 K + count (3, T'2)) (m2)

Tiaz = M ger K + count (3,1 1'2)) T4

Ti131 = M(Za<[K+ count(E(KI Fg)) Ti 15

Tiaa = [(Za<1K + count (3, '2))]lacrl = Do, /(K + count(I'2))] lacs1

T1 15 = a<I [(K + count(Fg))]

T2 =MO(([a < I]T1) —o 72
= [(J + count(T'))]1 — MO (1o« MO (71)) — MO (72)

To1 = [(J + count(T)

)11
(

To2 =MO ((laxcr MO (1)) — [I]1 — MO (72))

Tr91 = (laxsr MO (1) —

[1]1 — MO (72)

TQ_QQ = [I] 1— MOOT D

T3 =MO ()
T31 =MI ()
T4 == MO(]Tll)

136

T41 =lacr MO (1)

T5 0 =la<r([(K + count(T'2))] 1 — MO (7))

==
= [(K 4 count(T'2))] 1 — MO (71)
=
=

Ts51 =la<rt [(K + count(T3))] 1 —olycr MO (1)

DO0.7:

DO0.6:

DO0.5:

D0.4:

DO0.3:

D0.21:

DO0.2:

DO0.12:

Do.11:

DO0.1:

DO:

T-var

50;A; e Tias ke Thias

IH

50,a;Aa < I; ([9);- + : Tt
¢ ¢ (L2 275 subExpl DO0.7

50;A;) (Ta);- - less : Th
a<l

S CHVAY: ZQF2D; b:Ts01,c:Th15 F b (coercel lew ¢) : To.oo

Lemma [84]
505 A; ZGF2D; c:Ti15 F coercel leyy c: Ty q
a<l
DO0.6
$O;A;Y (Talib: Toor Fb:Thm
a<l
T-app

a<lI

DO0.5

5O A d:[I1Ed: (1)1

5O;A;) (Talib: Toor,c: Tras,d: [I|1F b (coercel legy ¢) d : T

a<lI

D04

5 0;A; ;- store() : M [I]1

505 A; Z (Ca);b:Too1,c:Thas = Es : Tz
a<lI

bind

sub-bSum

SO AT < Thas

@ A7) l_'() a<11
5 O;A; - storel() : Ty 13
505 A; ;- storel() 1 Ty 131
50;A;) (Pa)ib: Toor b Byt Tigo

a<l

D0.21

T-sub DO0.3
bind

T-var

50 A sa:Te 1 Fa:Thq

IH1

SO A (). Fen:Th

DO0.11 DO0.12
50, A;(T1);a:Tor ke a:Tos

5O; A5 (T1) © Y (Ca)ia: Toa b Es: Ty
a<l

app D0.2

bind

DO0.1

505 A store() : Thop

5O; A5 (T1) @Y (Lo~ Ey: Tos
a<l

bind

137

DO0.0:

By inversion
;AR grl@ZPQ

a<l

Lemma [T7
O;AF ((C1 @) Ty)
a<l
Main derivation:
DO
504 p:Toa Fp:To
release
50 A; () @ Z(]F2D;p :ToaFEy:Th2
a<l
50;A;(T1) @ Y (Ta);- + Eo : Tona
as! Lemma [T6]
® (]Z Do); -+ Eo : Toan
a<I Lemma [75]
5 0;A; (T @ ZFQD;' = Eg:To.11
a<l

DO0.0

5O, A (C); - + Eo : Ty

o fix

O, A b<LiTz:[a<Ilobge:T~ e

7[0/a] <: p @abAa<Ib<LFT[(b+1+@b+1“I)/b]<cr
'cH T LM>Q)'] N>M-1+Y K
b<L b<L
O; AT Iy fixx.e : p ~ Ey

E():ﬁXY.El
Ey = \p.Bs
FEy =release— =pin Ej

E5 = bind A = store() in E,
E4 =letlz = (E4_1 E4.2) in E5
Ey1 = coercel 'Y

E o= (ul() A

E5 = bind C = store() in Fs
E6 = €t C

< (@) B)) then /
1) + count(T()) + (Zpgr) cost((+ 1+ 0} 1)

7' (b') = [cost(b')] 1 — MO (7(V'))
Too =7[(t +1+ O 1)V
— [(N + count(T")}] 1 — MO (1)
Ty = (M — 14 Yy)+ count(Sy ;D)1 — M0 (7(0)
by = (b/ +1+ @2 -‘rl,aI)
Ti.0 =la<r()([cost(b”)] 1 —o MO (7(b")))
T, = a<I(b’) [cost(b")] 1 —oluc 1y MO (7 (b))
Ty =lacipyMO(7(b"))
T111 =MO(r (b))
T1.12 = MO (o
15 = [Za<[(b’) cost(b")]1
T30 —Z ICOSt(b) a<11
T3 = a<1[cost(b”)]

Ty = M(K(0') + I(V) + count(I'(b"))) (r (b))
Tyq = M(E) 4 I(V') + count(I'(6))) [(K (V) + I(b') + count(I(V)))] 1
Tyo=[(K®)+ 1)+ count(T'(V')))]1

138

T-sub, T-weaken

T-fix

T5 = [(K(@b") + I(V') + count(T'(b')))] 1 —o MO (7 (b))
Teo=1—0lcr1

Teo1 = [0] (1 —lycrl)

Ter = [gy cost()] 1 —o [32, ;cost(b”)] lacr

D5.2:

D5.10:

D5.1:

D5:

D4:

D3.2:

D3.11:

D3.12:

Dc2:

Decl:

D3.1:

D3:

D2:

ar

SOV AN < L;iC:TyatC:Tag

Given

SO0 AN <LETOW) <o

L
SO0 A0 < LE (r(0") < (o) emma 7]

IH D5.10

50,05 A0 < Ly (T), @ tqery Traz;- e s Ts
) @,b/;A,b/ < L7 GFDax fa<I(b) TLll; - €t : T5

T-weaken

D5.1 D5.2
SOV AY < Ly(T), 2 ta<ivy T111;C : Tya bep O MO (7)) B

PP

D5

50,0 A0 < L+ store() : Ty q
';@,b/; A,b/ < L (]FD,I’ fa<I(b) Ty 1; C:Tyot Es:Ty

Lemma [B]

SO AY < LY iqer Toos- HY :Thg

D3.2

L
50,0 A < LY tqcq Too;- b coercel (1Y) : Ty cmma

sub-bSum

.;@,b/; A,b/ <LFT50<: T3

sub-potArrow

E @,b/;A,b/ <Lk TCOJ <: Tcl

T-unit

SO0 AN <Lia<I;-F():1
SOV AY < Lyu:1H() laerl

T-subExpl, T-weaken

T
SOV A < Ly F () : Teo o
Decl b-potZ
c SO AN < LF T < To, o PO
7 S T-sub Dc2
5O, A0 < Ly B Awl!() : Teon
T-sub

SOV ALY < Ly b)) Ty

D
¢ O ALY <Ly AT AT, var

T- D3.12
. COVAY <LisA:ThF Oal() A:Tye PP .
' SOVIAY <LiiA:TaF (ul() A: Ty i

5O,V AN < LyY iy Too; A: To b Egq Eqo: Ty app

D3.1 D4
50,6 A0 < Ly (1),Y tger Too; A: T Ey 1 Ty

D3

5OV AW < L (IV); - + store() = M(Z cost(b")) Ty
a<I(b")
50,0 A0 < Ly (1), Y tact Too;+ F Es : M(cost(b)))(r(b))

139

D1:
D2

5OV AW < Li(D);p : [cost(B)] 1+ p: [cost(V)] 1
-0, bl7 A, b < L; QFD, Y tacr Toosp: [COSt(bl)] 1+ FEy: M(0)(]’7’(()/)[)

release

DO:

D1
50,05 A0 < Ly (1), Y tacr Too;-F Er o 7'(V)

T-fix
$O:A;) (T);- - Eo 7 (0)
a<L .
Claim
50; A5y (T);- + Eo: Toa
a<k Lemma, [T6]
50; A5 () T);-+ Eo: Toa
a<L
L T- k
5054 (]FIDJ' F Eo:Tox emma [T T-weaken
Main derivation:
Do T-sub
50 A; () F By : T -
Claim:
m(0) =[(M =1+, K) + count (3 ., T')] 1 — MO (7(0))
Proof.

It suffices to prove that
cost(0) = (M =14, . K) + count (3, ., T')

From Definition of cost we know that

cost(0) = (Qyp L(V) 4+ 2pap K(O)) + 3y, count (L)
= (M—=1+> . K®))+ > count(T) Definition of I and M
= (M—-1+> . K)+count(3 . T) Lemma

Lemma 75 (Relation b/w dIPCF context and its translation - binary sum). ¥I'y,T's € dIPCF'.
Ty @ Ta) = (Ta) @ (T2

Proof. Proof by induction on I'y

r=.
(]. D FQD = (]FQD Definition
= ()+(C2) Definition
I =Tya:[]-
When z : [-]— €T

(Cz:fa<ITely) = Y@, x:[a<I]7) Definition
o)),z tqcr MO(7) Definition

(I
G(F
= (M) & (2), 2 10y MO(r) IH
(T,
(),

), & tacr MO (7) @ (T2) Definition
x:[a < I7T) @ (T2) Definition

When z : [b < J|7[I +b/c] € T'5
Let (T, x: [a < I]Tla/c]® TS,z : [b< J|T[I +b/c]) =T

r, = (TielY),z:[c< I+)7 Definition
= (T} eTr})[)7 fec(147) MO (7) Definition [73
= (T D (T5)), 2 tec(z4.0) MO () IH
= (T4, 2 :acr MO(7)[a/c] ® (T5), z :pey MO(7)[I +b/c] Definition @
= (%), 2 :acs MO(r[a/c]) ® (Th), z :p<y MO (7[I + b/c]) Lemma@
= (D4, z:[a<Ir[a/d) ® [Tz : [b< Jr[I +b/d]) Definition [56]

Lemma 76 (Relation b/w dIPCF context and its translation - bounded sum). VI" € dIPCF.
(]Za<1 FD = Za<IqFD

140

Proof. Proof by induction on I
r=.
> acrd = () Definition
. Definition
= Y.<) Definition

r=r,z:[-]-

[
Let (3, 2 [b<Jlo[} 4, JId/a] +b/c])) =
L, (P acr @)z [e <>, T]0) Definition
(> et F')D, te<y, ., 7 MO (o) Definition
Za<1(] c<Ea<,JM0q0D H
= Yl D T ey MO (o) >4, Jld/a] +b/c]) Definition |54
=

a<(

- Z:a<1 ('), 2 :pcg MO (o[> 40, Jld/a]l +b/c])) Lemma 80

yx i [b< Jlo[d o e, Jld/a] +b/c]) Definition [73

Lemma 77 (Relation b/w dIPCF context and its translation - subtyping). VI',IV € dIPCF.
O;AET LT, = 56;A E (M) <: (T2)

Proof. Proof by induction on the ©; A+ T'; C TI'y relation
1. dlpcf-sub-mBase:

LA () < mBese
2. dlpcf-sub-mInd:
D4: | |
SO;AFRT /o <: Ty By inversion .
GO A (T) /2 < (T2)
D3:
m By inversion
D2: | |
20, ANa<ItFT <1 By inversion
50, a;Aa < TH () <: (7) Lemma [T9]
50,a;Aa < THMO(7r') <: MO (7)
D1:

7 By inversion
z:la< Jr eIy

T la<J MO(]T/D € GFID

Definition

Main derivation:
D1 D2 D3 D4

3O AR (1) <: (Th), 2 taer MO (7)
5O, AF(T) <: (TS, : [a < I]7)

Lemma 78. VL,T.
> aer count(l') = count(_, .. T')
Proof. By induction on T’
r=.
From Definition of count we know that count(.) = 0 therefore
Y oacr count(.) =0

From Definition 54 we know that > _, . =
Therefore again from Definition of count we know that count(.) =0
And we are done

F:F/71'Zb<JT

141

count(3 o, U wwey 7)) = count(y, 1,2 cy, 7 0) Definition
where 7 = o[(},., J[d/a] +b)/c]
= count(} . T)+> .o Definition count(.)

Yoaer count(I") + 37 1 J IH
= D aepcount(I”,x ey 7)

Lemma 79 (Subtyping is preserved by translation). ©;AFP o <:7 = 0;A 4 (o) <: (7)

Proof. By induction on ©;A FP o <: 7
1. [a < Ijog — 09 <:[a < J]11 —o To:
D1:

——41 7 By inversion) 1H2
AT <J O; A F (o2 <: (m2)

;AR [J]1 < [I]1 0; A A MO (o2) <: MO (72)
O; A FA [I]1 —o MO (o2) <: [J]1 —o MO (72)

Main derivation:

IH1

O;AHA (1) <: (o1)
0,a;AFAT<J O; A FA MO () <: MO (o1)
©; A ey MO (71) <tlaws MO (o1)

By inversion

D1

@;A FA!a<IMO(]0'1D —o [I] 1— MO(]O’QD <I!a<JMO(]T1D —o [J] 1—o MOGTQD

Lemma 80 (Index Substitution lemma). V7 € dIPCF, J.
(rD[J/b] = (r[J/blD

Proof. By induction on 7

1. 7=0:
(6)[J/0]
= b

= (b[J/bl
2. r=la< I —o 7o
(fa < T — /8]
= lacsMO(r1) —o [I]1 — MO (72)[J/b]
<1 MO Y] —o [T)LI/B1 —o 110 (2 /0
!a<I[J/b] MO(]Tl [J/bw —o [I] [J/b]]_ —o MO (]TQ[J/b]D (From IH)
= (la <I[J/b]Jr1[J/b] —o T2[J/0])

Lemma 81. U:0:A;z gy ;- Ha:lyogm

Proof.
T-var2

U;0,a;Aa < I;2 pey Tla+b/al;- Fa T
\I/;@;A;Za: <1 Tla +b/al;- Hla ooy r

a<l
U0, A2 gy 73 Hla iy

T-subExpl

Lemma

Lemma 82.) ;2«1 Ta+b/a] = xocT
Proof. 1t suffices to prove that
Yac1 <1 Tla+b/a] = xecyT[c/al
From Definition [54] it suffices to prove that
Diacr T n<1 Tla+b/a] = zecs, 17le/d]

Again from Definition [54] it suffices to prove that
7le/al[(Xogeq 1d/al +b)/c] = T[a + b/d]

7le/al[(Xg<q 1d/a] +0)/c] =
Tle/all(Xa<q Hd/a] + b) /] =

142

7le/all(a +b)/c] =
7((a +b)/a]

So, we a re done

Definition 83 (Coercion function). coercel F X £
let! f = Finlet!z = X inl(f x)

Lemma 84 (Coerce is well-typed). ;- F coercel :lucr(m1 —0 T3) —0lacrm —olaciT

Proof. D2.2

saya < Iyx ey mla+ b/al;-Fxin

D2.1:
saya < I f ey (11— To)la+b/al;-F f:1 —o T
D2:
D2.1 D2.2
saya < I f iper (1 — m2)[a+b/a], @ iper Ti[a+b/al;- = (f) 1 72
T-subExpl
55 Y f e (1 —o mo)la+b/al, @ er mila+b/al FU(f @) Hlacimo
a<l
Lemma [85]
s f tacr (11— T2), 2 tacr T15 - FI(f 2) Hlacrmo
D1:
D2
5 fracr (1 —o 12); X lacrm FU(f 2)
o5 foracr (11— m); - Fletle = X inl(f x)
DO:

T-varl D1

s F acr (o) FF tlacy(n — 1
s Filacr(mn —o) Flet! f=Finletla = X inl(f x)

Main derivation:

DO
-;-;-;-;F"a<1(71 —072) FAX. Iet'f—Fin let!z = X inl(f x)

Lemma 85. Y _; f <1 (11 — 72)[a+b/a],x <1 Tia+b/a]l = fiacs T1 —0 T2, T lacr T1

Proof. 1t suffices to prove that
Yoacr [<1 (11— mo)[a+b/al,x peq Tila+b/a] = fiecr (11— T2)[c/al, x ecr T1[c/al
From Definition [54] it suffices to prove that
Yoacr fv<r (11 — m)[a+b/al,x ipe1 Ti[a +b/a] = f S S (11 — 19)[c/al,x o<y, p 1 T1[c/a]

Again from Definition [54] it suffices to prove that
L (11 — m)[c/a][(Xog<q 1[d/a] + b)/c] = (1 — T2)[a + b/al:
(11— m2)le/al[(Xacq Ld/a] +b) /] =
(11— m2)[e/al[(D gy Hd/a] + b) /] =
(11 —o m2)[c/a][(a+b)/c] =
(11 —o m)[(a +b)/d]

2. mule/al[(Xacq Ld/a] +b)/c] = Ti[a+ b/al:

Tile/al[(Xg<q 1d/al +0)/c] =

mle/al[(Xogeq 1d/a] +b)/c] =
n[c/all(a +b)/c] =

71[(a+b)/a]

So, we are done

143

B.5.2 Cross-language model: dIPCF to A-amor
Definition 86 (Logical relation for dIPCF to A-Amor).

[blyv 2 {(v,t) | *v € [b] Atv € [b] ASv =tv}
l[a < I]71 —]y = {(Az.es, \zAp.let!x =yine;) | Ve, e).
(e5,e) € lla <Ilm|ne = (esles/al] eler/yl[()/p)) € [m2]E}
|7 e £ {(es,er) | Vovees I 50 = Ty, top, Jeey I to U7 Loy A (S0, top) € 7]V}

[I>

lla < I|T|NE {(es,et) | Jej.er = coercel le; \() AV0O <i < I.(es,e;()) € |7[i/a]]p}

Definition 87 (Interpretation of typing contexts).

Ple = {(6s,01) |
(Va : [a < J]7 € dom().¥0 < j < J.(8(x),8:(2)) € |7[j/a]])

Theorem 88 (Fundamental theorem). VO, AT, 7, es, €4, I, ds, O¢.
O;A;ThFres:T~ e A (0s,01) €T elg A EAL
_—
(esds,er () 0¢) € |7 L

Proof. Proof by induction on the translation relation:
1. var:

O;AEJ>0 O;AEI>1 O6;AFT0/d <7 O AE<IT| ©AET|
O;A;T,z:[a<I)7' Fyax:7[0/a] ~ Ap.release — = pin bind— =1'inz v

ar

E; = M\p.release — = pin bind— =1l inz
Given: (d5,0:) € |[I',z]p
To prove: (xds, E1 ()d:) € [7]0/a]|E

This means from Definition |86| we need to prove that

Vovads | 5o = Fto,top, J B () U tu 47 top A (So,tuy) € |7]0/a] | v

This means that given some v s.t xd, | *v it suffices to prove that

Frug, top, J By () 4 toy U7 Pop A (Pu, o) € [7[0/a] |v (F-DA-V0)

Since we are given that (ds,d;) € |I', 2] g therefore from Definition |87| we know that
Yy : [a < J|T € dom(T', x). YO < i < J.(05(y),0:(y)) € [7[i/all e

This means we also have (d5(z), d¢(x)) € |7[0/a]] . This further means that from Definition 86| we have
Vo Ss() b ov” = 3J7 byl ol () Bty VT B A (B0) € |r[0/al)y (F-DA-V1)

We instantiate (F-DA-V1) with *v and in order to prove (F-DA-V0) we choose J' as J”, ‘v; as tv/’ and
‘v as 'vf and we get the desired from (F-DA-V1).

2. lam:
;AT z:fa<IImbye:m~ e ,
am
;AT Fy Azee: ([a < I].11) —o T2~
Ap1.ret \y.Apo.let! x = y in release — = p; in release — = py in bind a = store() in e; a

Eq = Ap1.ret \y. Aps. let!x = y in release — = p; in release — = po in bind a = store() in e; a

Ey = Ay Aps.letlz =y in Es

E5 = release — = py in release — = py in binda = store() in e; a

Given: (ds,6:) € |I'| g
To prove: (Az.eds, E1()0;) € |([a < I].11) —o 2] E

This means from Definition [86| we need to prove that
Vevdz.eds § v = 3T o, top E1 () U tog 47 top A (Bo,top) € [([a < 1)) —o T2y

This means that given some v s.t Az.eds || *v it suffices to prove that
3 b, top B () U P U7 top A (o, top) € [([a < I]m) —o 2] v (F-DA-L0)

We know that v = Az.ed,. Also from E-app, E-ret we know that ‘vy = E5 and J' =0

144

Therefore it suffices to show (Az.e 05, E2) € [(([a < I].71) —o T2)t]v

From Definition [86] it further suffices to prove that

ey, ep(eser) € lla <lmine = (esley/x], Eslei/yl[()/p2]) € |72 «Je (F-DA-L1)
This means given some e, e} s.t (e}, €}) € |[a < I|T1t] ng. We need to prove that
(eslel/], Exlei/al[()/p2]) € [m2 eJp (F-DA-LL.1)

Since (e}, e}) € |[a < I|T1t|nE therefore from Definition [86] we have

Je}/.e; = coercel le} 1() AVO <i < I.(e,ef() e |nli/a] t|E

Let

§ =06 U{x— €.} and

=6U{z—e ()}

From Definition [87 we know that

(04, 0) € |Dyz:[a<Ilm tg

Therefore from IH we have

(es 04,e.() 07) € |2 t]E (F-DA-L2)

This means from Definition 86l we have
Voup.es 0L U Sy, = ATy, torr, tuper() 0F U fog U7 toy A (Cup, tp) € | L]y (F-DA-L3)

Applying Definition |86/ on (F-DA-L1.1) we need to prove
Voup.eslel/a]os b vy = 31, v, tup Baley /a][() /p2]de & Poe U Fup A (Pup, Py € [Tae]v

This means given some *vy s.t e;[e},/z]|ds | *vy it suffices to prove
3J1, b, topBaley /2] [() /p2)0e 4 tue U7 top A (Sup,top) € [Tat]v (F-DA-L4)

Therefore instantiating (F-DA-L3) with *vy and we get the desired

. app:
;AT Fyer:([a<Ilm) —o1a~en
O,a;A,a<I;Abges:T~ e IV EI‘@ZA H> J—|—I+ZK
a<l a<l
;AT Feiey: T~ app
Ap.release — = p in bind a = store() in bindb = e;1 a in bind ¢ = store!() in bind d = store() in b (coercel e ¢) d

E; = Ap.release — = p in bind a = store() in bindb = €41 a in bind ¢ = store!() in bind d = store() in b (coercel lews ¢) d
Given: (d5,6¢) € [I" ¢|E
To prove: (ey e2ds, E1()8;) € |72] E

This means from Definition [86| we need to prove that

Vour.(er e2)ds I vy = I tuy, top Er () 4 Pog U7 Top A (Bup,top) € |2 L)y

This means that given some *v; s.t (e1 e2)ds | *vy it suffices to prove that

377 oy, top By () 4 Pog U7 top A (Bup, tog) € | by (F-DA-A0)

IH1

(e105,e:1()0¢) € |([a < IJ11 — 72) t]E

This means from Definition [86] we have

Vour.e18s | o = 3J1, 0], tor.e (06 U tol U7t tog A (Bop, o) € [(Ja < T)m —o) o]y
Since we know that (e; e2)ds | *vy therefore we know that 3¥v; s.t e165 J *v1. Therefore we have
3J1, 0], toren ()6 U tof U7 top A (Sog, toy) € [([a < T)mp —o 1) ¢y (F-DA-A1)
Since we know that (*vi,'v) € [([a < I]T1 — T2) t]v

Let *v; = Az.eps and fvg = Az Ap.let!z =y in ey

Therefore from Definition [86] we have

ey, er.(es,e) € [la < It o Jng = (ensles/a], ewler/2][()/p]) € [m2 e (F-DA-A2)

1H2

(e20s,€t2()0¢) € |11 tU{a— 0}
(e2ds,€t2()0¢) € |11 tU{a— 1}

145

(e20s,ei2()0¢) € | tU{a— T -1} (F-DA-A3)

We claim that
(e20s, coerce lews 1()0r) € |[a < I|Ty tNE

From Definition B3] we know that
coerce F X &
let! f=Finletle = X inl(f z)

therefore the desired holds from Definition [86| and (F-DA-A3)
Instantiating (F-DA-A2) with exds, coerce les 1()d; we get
(evs[e2ds/x], ept[coerce e ()01 /x]() € |72 t]E (F-DA-A4)

This further means that from Definition [86] we have
Voupp.epsleads/x] I Svpy = 3z, tog, Luppepe[coerce lew 1) /2] () U tow 472 Lupy A (Cupp, tuny) € |72 t]v

Since we know that (eq e2)ds | *vy therefore we know that Fupr, no s.t eps[eads/x] 2 *vyp. Therefore
we have

T2, tog, oy g et [coerce e 1)0: /2] () U Pow 472 Popp A (Sopp, tung) € |72 L)y (F-DA-A5)

In order to prove (F-DA-AQ) we choose J' as J; + Jo, 'v; as ‘v, and ‘vy as ‘o, we get the desired from
(F-DA-A1) and (F-DA-A5)

. fix:
0,b; A b< LiTyz:[a<Ilobge:T~ e
T0/a] <:p O,a,b;A,a < ,b< LiTFr[(b+14+ O I)/b <: 0
e LM>Qp N>M-1+) K
b<L b<L
- T-fix
O; AT by fixz.e : p~~ Ey

EO = fIXYE1
E1 =)\pEQ
FEy =release— =pin Ej

Es3 = bind A = store() in E,
E4 =let!lz = (E4_1 E4.2) in E5
Ey1 = coercel 'Y
Eso=(ul() A

E5 = bind C = store() in Fs
E6 = €t C

Given: (d5,6¢) € [T']g
To prove: (fixz.eds, (fixY.E1)()6;) € | t|E

This means from Definition |86| we need to prove that
Vo fixz.eds | v = 3T Lo, top Eo() U tue U7 top A (o, top) € oty

This means that given some *v s.t fixz.ed, | *v it suffices to prove that
3 b, b Eo () U Pue U7 Top A (o, top) € oty (F-DA-F0)

Claim 1

YO<t< L. (ed,Er())€ |Tt/b] t|r

where !, = §; U {z — (fixz.e)d,} and 0; = 6; U {x — (fixx.F1)d:}
We prove this by induction on the recursion tree

Base case: when t is a leaf node

Since for a leaf node I(t) =0 and = & free(e) therefore from IH (outer induction) we get
(€ ds,et () &) € |7[t/b] L] E

This means from Definition [86] we have

Vou'es 6. Ik v = 30l bf, e ()00 Pl U7 Pop A (S0 Py € LT[t/ oy (BCO)
Since we have to prove (e ¢%, E1 () 0;) € [7[t/b] t|E

Therefore from Definition [86] it suffices to prove that

Vov.es 801 S0 = o, top, JEL () 4 fog 47 top A (S, toy) € [T[E/6] v

146

This means given some v s.t e % |} Sv it suffices to prove that
Ftvg, top, JEL () U Pue U7 g A (So,top) € [T[E/0] v (BC1)

Instantiating (BCO) with v we get
oy, top, I e ()0, U Fof 7 Fop A (P!, fup) € [Tft/b] oy (BC2)

From E-release, E- b1nd E-subExpE we also know that if
et ()0 U tv {L‘] ty then Ey ()8, ty) tv’

Therefore we get we choose ‘v, “vy, J as ‘vf,*vf, J' in (BC1) and we get the desired from (BC2)
Inductive case: when ¢ is a some internal node

From IH we know that
YO <a<I(t).(ed, By () &) € |7[t'/b] t|g where t' = (t+ 1+ Oy I(t))

Since ©,a,b; A;a < I,b< L;. - 7[(b+ 1+ @ZH’GI)/b] <: o therefore from Lemmawe know that
VO<a<I(t).(ed,Er()d)€|otlr (F-DA-F0.1)

Claim 2
(e 6L,E1 () 0;) € lo t|]g = ((fixxz.e) ds, ((fixz.(Ap.E2)) () 0;) € |o t]E

Proof is trivial

O
Since from (F-DA-F0.1) we know that
VO<a<I(t).(ed,E1()6}) € |otr
Therefore from Claim2 we also get
V0 < a < I.(fixz.e §s, fixe.Ey () 6) € |0 t]E
Let
87 =65 U {zx — fixx.eds }
o) = 0 U{a — ((fixe.E1)d: ()}
From Definition [87] it can been that (67,6}) € |I',z o<1 0 E
Therefore from IH (outer induction) we get
(e 65,0 ()) € [7[t/b]]
This means from Definition [R6 we have
Voug.es 87 I Svg = FJo,tur, tvp.er () 6 U Loy 70 top A (Suo, top) € |T[t/B] v (F-DA-F1)
In order to prove (e 8., E1 () d;) € |7[t/b] LJE from Definition it suffices to prove
Voug.e 64 1 Sy = 3J1, 0], o Eo[()/p]0) U tof U7 oy A (Bus, toy) € |T[E/D) ¢]v
This means given some “vg s.t e 0. |} *v; and we need to prove that
31, o Bo[() /plog 4 fuf U Py A (P, fo) € ([/0] o]y (F-DA-F2)
From E-release, E-bind, E-subExpE we also know that Fs[()/p]d) = e;[(fixY.Ey) ()/] ()
therefore from (F-DA-F1) we get the desired.
This proves Claim1
O

Since from Claiml we know that VO <t < L. (e ., E1 () 0;) € |7[t/b] ¢| g. Therefore instantiating it with
0 we get

(e 05, Bx () &) € [7[0/0] ¢]

This means from Definition [86] we have

Vou'ed | Sv = Ff, g, B ()0, U Pup RS fob A (P!, op) € [T[0/0]]y

Instantiating it with the given *v and since know that fixz.eds || *v therefore from E-fix we also know that

elfixz.e/x]ds | *v. Hence we have
oy, fop, I B ()0, Ut s Pob A (P’ Fop) € [T[0/0)e]y (F-DA-F3)

Since By ()0, | tof |7 ‘v} therefore from E-fix we also know that fixz.Ey ()0, 4 ‘v Rs ‘v}. Also since
7[0/b] <: pu therefore from (F-DA-F3) and Lemma [89 we get the desired.
O

Lemma 89. VO, A 7,7/ e, 4, 1.
(a) ;AT <7 ANEAL = |7 v C |7 ¢y

147

) O;AF[a<Iltr<:[a<JlT NEAL = |la<I|T tng Clla < J|]7 tNE

Proof. Proof by simultaneous induction on O;A F 7 <: 7" and ;A F [a < [T <: [a < J]7’
Proof of statement (a)
We case analyze the different cases:

1. —o:

0;AFB<: A O;AFT <7
O;AFA—oT7<:B-—o7

To prove: |[(A—o7)]y C|(B—7')t]y

This means we need to prove that
V()\x.e, /\x-)‘p-et) € _A —oT LJV.(AQT.@, /\x.)\p.et) S |_B —o 7! [/JE

This means given (Az.es, \y.Ap.let!z =yine) € |[A — 7 1|y and we need to prove
(Az.es, \yAp.letlz =yine) € |[B — 7' t]y

This means from Definition [86] we are given that

Ve ep(es,ep) € A ne = (eslel/a], edler/yll()/p]) € [T /et (SV-AD)

And we need to prove that

Vel e/ (e, €t) € | B o ne = (es[el/x],eulel /yll()/p]) € 7' ¢] £}

This means given (€7, e;) € | B ¢] g we need to prove that

(eslel/x], edled /yll0/y]) € [T eJp (SV-AL)

Since we are given that (€7, e}) € | B ¢]ng therefore from IH (Statement (b)) we have
(ed,e) € [A g

In order to prove (SV-Al) we instantiate (SV-A0) with e?, e} and we get

(esles /], edley’ /yll0/p]) € |7 el

Finally from Lemma [00] we get

(eslel/x], edled /y][0)/p]) € 7" ¢] e

Proof of statement (b)

O;AFJI<L]T O;AFT <7
;A [a< It <:[a< J)T’

To prove: |[a < I|T t|ng C |[a < J)7" t|NE

This means we need to prove that

V(es,er) € |[a < IT t|ng-(es,er) € [[a < J|T" ¢ NnE

This means given (es,e;) € |[a < I]T ¢/ yg and we need to prove
(es,er) € [la < JIT" t|NE

This means from Definition [86] we are given

Jej.e; = coercel le; 1() AVO <i< I.(es,e;) € |T[i/a] t]E (SNEO)
and we need to prove

de}.e; = coercel lef 1() AVO < j < J(es,ef) € |7']j/a] e (SNE1)

In order to prove (SNE1) we choose e/ as e} from (SNEO) and we need to prove
VO <j < Jes,ep) € |7'[j/a] o]p

This means given some 0 < j < J and we need to prove that

(es,€t) € [7']5/a] ¢]e

From (SNEO) we get

(es,€i) € [T[i/a] W

And finally from Lemma [90] we get

(es,ef) € [7'[j/al]E

Lemma 90. VO, A, 7,7, e, €4, L.
OAFT<TTANEA = |7 C |7 E

148

Proof. Given: ;A1 <: 7/
To prove: |7 t|g C |7’ t|E

It suffices to prove that
V(es,er) € |7 t|g-(es,et) € |7 L] E

This means given (eg, e;) € |7 ¢| g it suffices to prove that
(es,er) € |7 t|E

This means from Definition [86] we are given that
Voup.es I Svo = 3Jo, L0, tug.e I Lug 70 tug A (Pwo,two) € [T Ly (S0)

And it suffices to prove that
Vevees | S0 = 3J, v, topes 4 fog U7 top A (S, top) € 17 0y

This means given some ‘v s.t es || *v and we need to prove
3T, by, topeer U tug U7 tup A (So,top) € [T L)y (S1)

We get the desired from (S0) and Lemma [89]

B.5.3 Re-deriving dIPCF’s soundness

Definition 91 (Closure translation).

(e, D

(]<€,C1, .. .,Cn)[)

> >

Definition 92 (Krivine triple translation).

((e, s)
((e, p; c.0)) ((Ce, D eb -, 0D

Lemma 93 (Type preservation for Closure translation). VO, A e, p, 7.
O;AFy (e,p) 10 = O;4;. 5 ((e,p)) : 0

1> 11>
=N
—~
v('h
S
~—
4

Proof.
;A [a<hm...zp:fa<)mbre:o

0,a;Aa < Iy, Ci:my J2K+Il+...+ln+ZH1+...+ZHn

a<ly a<ln
O;At;(e,(C1...Cp)) o
J/:K+Il+..~+In+2a<hH1+".+Za<Ian
D1:
IH
0,a;A;.a < Iy, (C): i
DO:
G
O;Aszy t[ar < Lmi, .., wn lan < IplT —bgero - D-1
O;A;. Fr Az .. .xp.e:fa; < L)1 —o [ag < Is]my —o ... [an < In]7 — 0 -

Main derivation:

DO D1
O;A;. Fpdry...xpe(Ch) ... (Cn):0o
O;A;. FyAxy...xpe(C) ... (Cu):o
0;A;.Fy((e,C1...Cn)) i 0

D-app

Lemma 3.5 of [9]
Definition

Theorem 94 (Type preservation for Krivine triple translation). VO, A e, p,0, 7.
O;A by (6,p,0): 7 = O:;A;. b1 ((e,p,0)) : T

149

Proof.
O;AFk (e,p):o O;AF;0:(0,7) I>K+J

O;A; (e, p,0):7

Let I' =K+ J
Proof by induction on 6
1. Case €
Given: ©;A by (e, pye): 7
To prove: ©; A; .y ((e,p,€)) : 7
DO:
Lemma [93]

O;A;. Fx ((e,p)) : o
Main derivation:

DO
©;A;. Fp ((e;p)) : 7
O;A;. Fr (e, p,e)) : T
O0;A;. k1 ((e,py€)) i 7

Lemma 3.5 of [9]

Definition [02]

Lemma 3.5 of [9]

2. Case C.0":
Given: ©; A by (e,p,C.O") : T
To prove: ©;A;. F; ((e,p,C.0") : T

Since 6 = C.6’ therefore from dIPCF’s type rule for C.6" we know that
o=[d<Lly—pn

That is we are given that

O,d;A,d < Lytg, C:vy O;Atbp, 0 (p,7) J2Hg+ZKg+Lg
d<L,

O;AF;CH :([d<Lyly—o)

D2:
Gi
O;AF;CH : ([d< Lyly —o p,7) ven))
oA }_Hg 7 (0.7) By inversion
D1:
Lemma [03]
O;A;. Fi ((e,p)) s [d < Lgly —o
DO:
Given
O,d;A,d< Lgkg, C:v
D1 g Lemma [93]
O,d;A,d< LyFk, (C): vy b
-app
O A FriL,4y,, K, (&) (C) 2 p
DO.1:
DO
O; A FriL 4y, K, (((esp)D (C),) =
DO0.0:
Dol D2 J>Ly+> Ko+ H
6;A FE4L+5,, KotH, (((e;) (2, -,0") = 7 - L ! !

0:AFicrs (I(ep)) (). 0) 27 Lemma 35 of [

Main derivation:
DO0.0
IH
G); A7 . l_I’ (](6, p) GCD, ©y 6[) T
O;A;.Fp ((e,p,CO)) = T
O;A;. by ((e,p,CO) : T

Definition [02]

Lemma 3.5 of [9]

150

Definition 95 (Equivalence for A-amor).

’

’

e1 [es'/x] Rap €2 e /]

True =0 ne=0

S
Ve',e",s' < s.e' =g e’ — V1 = AT.ea A Vs = A\T.e

€1 ~aE €2 vy =le; A vg =leg
U1:A.61/\02:A.62
Vi < s P v, = v] = ret — A vg = ret —
k2
s k 8’:1' R o . N o .
Ul"N-‘aVUQé v ¥ vp AUy R oE U vy = bind—=—in— Awvy =bind— = —in—

S A . s—1
e1 Rgp 62 =Vi<ser ive = el vp Avg = vp

01 éaE 0o = dom(él) = dO’ITL((SQ) AVx € dom(51)61(x) éaE (52($>

Lemma 96 (Monotonicity lemma for value equivalence). Yvi,vs, s.

’

S / S
V1 Ry V2 = Vs < 501 Ry v

. S
Proof. Given: vy =,y v9

’
S

To prove: Vs' < s.v1 Rqy U2
’

. . . S
This means given some s’ < s and it suffices to prove that vy ~,y vg

We induct on vy
1. v = ()

Since we are given that vy éav v therefore we get the desired Directly from Definition

2. v1 = A\x.eq:
Since we are given that vy éaV vo therefore from Definition [95| we are given that
Ve, e, 5" < 5. map ! = e|e)z] Rap el /1] (M-L0)

’

and we need to prove that vq %av v therefore again from Definition [95| we need to prove that

1" "
Vel e, s) < s.e} Rup e] = ele}/x] %GE ealel /]
1"

. . S1
This means given some e}, ey, s/ < s’ s.t €] =,p e/ we need to prove that

"

/ < "

eile)/x] Rap ealel /x]
s
Instantiating (M-LO0) with e}, e, s{ we get e1[e} /x] =qp eale] /]
3. vy =ley:
] 3 S o, .

Since we are given v =,y vo therefore from Definition [95| we have

S
€1 Rqg €2 Where vy =leg

Similarly from Definition it suffices to prove that e; fswa E €3
We get this directly from Lemma
4. v = A61:
Similar reasoning as in the le; case
5. v1 = retey:
. . s ..
Since we are given v =,y ve therefore from Definition [95| we have
Vi < s.01 l}f Vo = U2 IF vy A vg s’gaE v, where vy = reteg (MV-RO0)

Similarly from Definition [05] it suffices to prove that

’

. / k k i
Vi <s' v 7 ve = v2a "0 Avg R 4E W

151

v =1" ANvg =1"
vy = release — = —in — A vy =release — = — in —
v1 = store — A vy = store —

Va1 Rav Vb1 A Va2 Rav Vs v1 = {(Va1,Va2)) A v2 = Vb1, Ub2))
Va1 Rav Upt A Va2 Rav U v1 = {Va1, Va2) A V2 = (Up1, Vp2)
Vq éaV Uy (= inl(va) N vy = inl(vb)
Va RV b vy = inr(ve) A vy = inr(vp)

This means given some j < s' and vy l}f v, and it suffices to prove that

s'—j
va WP vy Avg =g v
Instantiating (MV-R0) with j we get vy {|* vy A v SgaE U

Since we have v, SgaE vp therefore from Lemma |97 we also get v, Séja E Up
6. v1 = bind — = — in —, 1" release — = — in —, store —:

Similar reasoning as in the ret — case
7. v1 = {(Va1, Va2):

From Definition [05] and IH we get the desired
8. v1 = (Vg1,Va2):

From Definition [95] and TH we get the desired

9. vy =inl(v):
From Definition [95| and TH we get the desired
10. v; = inr(v):

From Definition [05] and IH we get the desired

Lemma 97 (Monotonicity lemma for expression equivalence). Ve, e, s.

’
S

S ’
e1 Rgg €2 — Vs < s.e1 Ryug €9

. s
Proof. Given: e; =,g es

’
S
To prove: Vs’ < s.e1 Rqp €2

’
S

This means given some s’ < s and we need to prove e; ~,g €2

Since we are given e; éa E €3 therefore from Definition We have
Vi< s.er Jive = ex vy Avg sf\:ﬁzav vp (MEO0)
Similarly from Definition [95] it suffices to prove that

. s'—j
Vi<sedjvg = ealvAvy, = qv

This means given some j < s’ s.t e1 |}; v, and we need to prove
.
S —

e2 vy Avg = qv Uy

We get the desired from (MEO) and Lemma [96]

Lemma 98 (Monotonicity lemma for § equivalence). Vdy, o, s.
8y Rup By = V' < 5.01 Map 02

Proof. From Definition [95] and Lemma [97]

Theorem 99 (Fundamental theorem for equivalence relation of A-amor). Vdy,ds, e, s.
51 Rop 0y = €81 Rgp b

Proof. We induct on e
1. e=ux: .
We need to prove that xd; ~,g xdo

This means it suffices to prove that &1 (z) ~p 62(z)

We get this directly from Definition
2. e = M\y.e:
We need to prove that \y.e’d; R Ay.€' 09
This means from Definition [95] it suffices to prove that
Vi < s.Ay.€'01 U5 va = Ay.€’ds | vp A vy sélav v
This means that given some 7 < s s.t Ay.e’d; {J; v, it suffices to prove that
My.€/0y b vp A Vg = v Up (FTE-LO)
From E-val we know that v, = A\y.e’d;

From (FTE-L0) we need to prove that

152

(a) Ay.€’d2 | vp:

From E-val we know that v, = \y.e’d,
(b) Va sélav Vp:

We need to prove that

My.€'0q éav Ay.€' 09

This means from Definition [95] it suffices to prove that
S/ S/

Vel eh, s’ < s.e) map e, = €'d1[e}/y] Rap €'daleh/y]

This further means that given some €}, e}, s’ < s s.t €} Rqp €} it suffices to prove that
S,
e'd1(€) /Y] Rap €'02]€5 /Y]
We get this from IH and Lemma
3. e =fixy.e"
We induct on s /
IHi: Vs" < 5. 8) Nap 0y =—> fixy.e’'d; Xup fixy.e'dq
To prove: 41 éaE 09 = fixy.e'd; éaE fixy.e' oo
This means we are given §; éa g 02 and we need to prove
fixy.e’'d; éaE fixy.e' 5o
From Definition [95] it suffices to prove that
Vi < s.fixy.e’d1 | v = fixy.e'do | vy A vg Sélav p

s—1

This means given some i < s s.t fixy.e’d; |; v and we need to prove fixy.e'ds | vy A V4 = v Vp
Since we are given that fixy.e’d; {J; v, therefore from E-fix we know that

e’[fixx.e’él/y]él ui—l Va

Instantiating ITHi with s — 1 and using Lemma [98| we get

. s—1 .

fixy.e'd; '~ up fixy.e' 5o (F1)

Let
§1 = 01 U {y — fixy.e’01}
8, = 02 U {y — fixy.e'd2}
-1
From Lemma (98| and (F1) we know that &} ~ .z 0}
Therefore from IH of outer induction we know that we have
rsr 71 3V
e (51 ~ aFE e (52
This means from Definition [05] we know that
—1—4
Vi < (s —1).e'd) i va = €85 | vp A vy T oV Up
Instantiating with ¢ — 1 and since we know that €’0] {};—1 v, and therefore we get

S—1 . . .
e’'04 |} vp A vg & 4y vy which is the desired.
4. e = e e3:
S
We need to prove that e; €201 Rqg €1 €209

This means from Definition [95|it suffices to prove that
Vi < s.eq €201 {; v = €1 e3ds || vy A v Sézav p

This means that given some ¢ < s s.t e €291 |; v, it suffices to prove that
e1 €202 | vp A vg Sélav Uy (FTE—AO)

IHL: €16) R €102

Therefore from Definition 05 we have
Vj < s.e1dr 4 v, = e1da vy A ézjav vy, (FTE-A1)

Since (e1d1 e281) |i v, therefore from E-app we know that Ji; < i.e1d1 {4, Ay.€’
Therefore instantiating (FTE-A1) with i1 we get e102 | v, A v), Xy vy, (FTE-A1.1)

Since v/, = Ay.¢’ and since v/, ~ oy v, therefore from Definition (95| we know that v; = Ay.e”

153

Again since Ay.e’ "~ o1 Ay.e” therefore from Definition [95{ we know that
Vel eh, s < (s —i1).€) Rap €y = €'[¢)/y] Far €”[eh/y] (FTE-A2)

i1

IH2: ep0; 37%71‘“2 e202
Instantiating (FTE-A2) with exd1, €202 we get

S—il—l

e'le2d1/y] = ap €’[e201/y]

Again from Definition [05] we have

Vj < (s—i1—1).€/[eadr/y] I v = €"[eadr/y] I v A0l s_ilz_l_jav vy (FTE-A2.1)
Since (e101 e201) {4 v, therefore from E-app we know that Jig =i — iy — 1.€[ead1/x] V4, va

S—il—l—iz

Instantiating (FTE-A2.1) with io we get €”[e201/y] § vy A vg A vy
Since i = 41 + 92 + 1 therefore this proves (FTE-A0) and we are done.

. e={(eg,ea):

We need to prove that {(eq, e2))d; Rk {e1, e2))d2

This means from Definition [95] it suffices to prove that

Vi < s.{(e1,ea)01 i va = ((e1,€2)02 § vp A vg v b

This means that given some i < s s.t {(e1,e2)d1 {; v, it suffices to prove that
{e1,e2)02 I vp A v, Sgiav Vp (FTE-TI0)

From E-TT we know that v, = {(va1,va2) and e181 i, va1 and e201 i, Va2

IH1: 6161 r\’fiaE 6162
Therefore from Definition 05 we have '
. 8§—1
Vi < s.e101 i va1 = €102 4 vp1 A va1 R av Up1

Since we know that e;d; {4, vq1 therefore we get
€102 | vp1 A Va1 Sglav Vp1 (FTE—TIl)

IH2: ep01 éaE €202
Similarly from Definition [95| we have

s—

. 1
Vi < s.€201 4i Va1 = €202 § Vb1 A Va1 R qv Vbt

Since we know that esd; {4, vq2 therefore we get
€209 |} vpo A Vg2 ngav Vp2 (FTE—TIQ)

From (FTE-TI0) we need to prove

(a) (e1,ea)d2 I vp:
We get this from (FTE-TI1), (FTE-TI2) and E-TI

(b) g Sgszav Vp:
Since © = i1 + 12, Vg = {(Va1,Va2)) and vy, = (vp1,vp2)) it suffices to prove that
(vat:va2) * A v (o1, vs2))

From Definition [05]it suffices to prove that
S*ilfig S*ilfig
Va1 R qv Upt and g2 R Tqv Vb2
We get this from (FTE-TI1), (FTE-TI2) and Lemma
. e=let{(z,y) = ey inea:
We need to prove that let((z, y)) = e1 in e201 o let{(z,y) = e1 in eady
This means from Definition [05] it suffices to prove that
Vi < s.let{{z,y) = e1 in esdy i va = let{(z,y) = €1 in e26s § vy A va = ay v
This means that given some i < s s.t let{(z,y)) = e in e201 {; v, it suffices to prove that
let((z,y) = €1 in e2dy I vy A Vg = qv Vb (FTE-TEO)

IH1: e101 éaE e10s
Therefore from Definition [05] we have

154

10.

Vi < s.e1d1 i var = €102 b vp1 A var A av U1
Since we know that let((z,y)) = ey in e2d; {; v, therefore from E-TE we know that Ji; < s.e;d1 |
{(vh1,v.5). Therefore we get

e102 | vp1 A Va1 Sglav Up1 (FTE-TE1)

Since vg1 A qv vp1 and va1 = (vl VL)) therefore from Definition [95 we have
vp = (vhy,vh,)) (FTE-TEL1)

Let

01 = 01 U{z = (51, v42)) }

0y = 0a U{x = (vpy, vpo))}

H{JZ 62(51 S:&‘ZIGE 62(5’2

Therefore from Definition [05] we have o

Vi < (S — 7;1).626/1 Vive = 62(% U vpa A v, Sij’éizav Vp

Since we know that let(z,y)) = ey in e3d1 |; v, therefore from E-TE we know that Jis = i —iy.e287 i, vq.
Therefore we get

577;171‘2

e2dy b v Ava R av v (FTE-TE2)
This proves the desired

. e={eq1,€q2):

Similar reasoning as in the (€41, e42)) case above

e = fst(e'):

We need to prove that fst(e/)d; R,z fst(e’)ds

This means from Definition [95] it suffices to prove that

Vi < s.fst(e')dy i va = fst(e/)da | vp A v, Séiav vy

This means that given some i < s s.t fst(e’)d; {}; v, it suffices to prove that
fst(e')0s I vp A va ~av vy (FTE-FO)

Since we know that fst(e’)d; {}; v, therefore from E-fst we know that €’d1 {; {(va, —)
IH: '8, Rup €6

This means from Definition 05 we have

Vj < s.€'01 | va1 = €02 | vp1 A var X v vn

Instantiating with i we get €'ds |} vp1 A V41 SQJGV Up1

Since we know that v41 = ((v4, —)) therefore from Definition 95| we also know that

Vb1 = <<vbv 7>> s.t vg éaV)
This proves the desired.

. e=snd(e'):

Similar reasoning as in the fst(e’) case

e =inl(e):

We need to prove that inl(e’)d; ~qp inl(e’)ds

This means from Definition [95] it suffices to prove that

Vi < s.inl(e’)d1 4; v = inl(e')dy § vp A v, séiav v

This means that given some i < s s.t inl(e’)d; {}; v, it suffices to prove that
inl(¢/)0s I vy A va ~ay vy (FTE-ILO)

Since we know that inl(e’)d; {J; v, therefore from E-inl we know that v, = inl(()v),) and €'d; {; v/,
IH: €'6; Rop €0

This means from Definition 05 we have

Vi <s.€d §jvar = €d2d vp1 A var ~av vt

Instantiating with ¢ we get €'ds |} vp1 A V41 Sgav Up1

Since €’d2 |} vp1 therefore from E-inl we have inl(e)da | inl(vp1)

And since we know that v, Sgav vp1 therefore from Definition [95| we also know that
. s—1 .

inl(ve1) =~ qv inl(vp)

This proves the desired.

155

11. e =inr(e'):
Similar reasoning as in the inl(e’) case
12. e = case e.,x.e,y.e,:

We need to prove that case e., x.e;, y.€,.01 éaE case e, x.ep,y.e.09

This means from Definition [95|it suffices to prove that

Vi < s.case eg, x.e;,y.€.01 {|; v, = case e., x.e;,y.e.02 | vp A v, sgav Up

This means that given some ¢ < s s.t case e, x.€, y.e.-01 i vg it suffices to prove that
case e, T.ep,y.e;00 | vp A g ~ v v (FTE-C0)

Since we know that case e., x.e;,y.e,.01 |; v, therefore two cases arise:
2 cases arise:
(a) eco1 | inl(ver):
H—Iil 6061 éaE 6c52
This means from Definition [05] we have

S

. —J
V] < 5.€.01 ‘Uj Vel = €0 Y ve2 Aver & v ve2

Since we know that case e.,x.e;,y.e,01 {; v, therefore from E-casel we know that Jiy s.t e.d1 {4,
inl(u,)

—1

Therefore instantiating with i, we get e.ds | veo A ver Szlav Ve

o . . S—il
From Definition [95| we know that Jvl,.ve.e = inl(vly) st vl = v Vg

IH2 e161[vly /2] &' up erdalvia/x]

This means from Definition [05] we have o

Vi < (s—i1).e61[vi/z] U vn = edalvie/x] I vig A v TR v w

Since we know that case e, z.e;, y.e,.01 i v, therefore from E-casel we know that Jis s.t €;01 {i, vq

Therefore instantiating with io we get e;d2[vly/x] viz A vq Sﬂzrjav U

This proves the desired
(b) ecd1 I inr(ver):
Similar reasoning as in the previous case
13. e =le”:
We need to prove that le’d; éaE!e’ég

This means from Definition [95] it suffices to prove that
Vi < s.le'01 | vg = 1e'ds || vy A vy sfgav Vp

This means that given some ¢ < s s.t le’d;1 |; v, it suffices to prove that
le/65 I vp A Vg & ay v (FTE-BO)
From E-val we know that v, =!¢’d; and ¢ = 0
TH: €'6; ~up €09
From (FTE-B0) we need to prove that
(a) le'dy J vp:
From E-val we know that v, =!e’d,
s—1
(b) vg = qv vp:
We need to prove that
1e/8) Rqy e’ 0y
This means from Definition [95] it suffices to prove that
6/51 éaE 6/52
We get this directly from TH
14. e=letlz = ¢} ineh:
We need to prove that let!z = €} in €46, ~qp let!z = €] in)b,
This means from Definition [95] it suffices to prove that

. . . 5—1
Vi< s.letlx =¢€)ineyd) v, = letlez =€) inebds | vp A vy = av vp

156

15.

16.

17.

This means that given some i < s s.t let!x = €] in e5d; {J; v, it suffices to prove that
let!z = e} in e5ds | vp A vg Sélav p (FTE-BEO)
IH1: 6/161 éaE 6/1(52
This means from Definition [95] we have ‘
. 5—j
Vj < s.€161 j varr = €102 § vp1 A var ~av vbn1

Since we know that let!z = €] in €47 |}; v, therefore from E-subExpE we know that Jiy.e]d1 {4, ey

.. . . s—i1
Instantiating with i; we get €12 | vp11 A Va11 = av Ub11

Since we know that v,11 =!ep; therefore from Definition [95] we also know that
s—1

1
vp11 =lepa 8.t ep1 R oE €2

IH2: ehfer/2]0y "~ ap ehlera/7]0

This means from Definition [95] we have o

Vj < s.ehlepr/x]o1 Ij va = ehlena/x]02 | vp A v, TR]aV vp

Since we know that let!x = €} in €461 |; v, therefore from E-subExpE we know that Jis.e][ep1/2]01 i, va

Instantiating with io we get eh[epa/x]d2 | vp A vg s_%_wav Vp

This proves the desired

e=A.c"

Similar reasoning as in the \y.e’ case

e=¢|:

Similar reasoning as in the app case

e=rete: ‘

We need to prove that rete’d; . g retedy

This means from Definition [95] it suffices to prove that
Vi < s.rete’dy i vg = rete’ds | vp A v, Sgav v

This means that given some i < s s.t rete’d; |; v, it suffices to prove that
rete'ds I vy A ve ~av oy (FTE-RO)

From E-val we know that v, = rete’d; and i = 0

From (FTE-R0) we need to prove that

(a) rete’ds | vp:
From E-val we know that v, = rete’ds
s—1
(b) Vo = aqV Up:
We need to prove that
s 2 ’
rete’d, ~,v rete’ds
This means from Definition [05] it suffices to prove that
rete’dy ¥ v, = rete/dy UF vy A v, Sélav U
This further means that given some rete’d; ||¥ v, it suffices to prove that
rete’do IF vy A vg Sgav vp (FTE-R1)

From E-return we know that & = 0 and ¢’d; {; v,

IH: €6 éaE €0y

This means from Definition [05] we have

Vj < s.€01{;va = €d2 vy Avg s%jav v

Since we are given that e’d; {}; v, therefore we get
8 by Ava N av v

Since €'dy |} vy, therefore from E-return we also have

rete/dy 10 vy
This proves the desired

157

18. e =bindz = ¢ ine.:
We need to prove that bindz = e in e.d; éaE bindx = ¢ in e.09
This means from Definition 95| it suffices to prove that

. s—1
Vi < s.bindxz =€ ine.d |; v = bindz =epineda | vp A vy = aqv v

This means that given some i < s s.t bindx = ¢, in e.01 {; v, it suffices to prove that

bind z = ey in e.0s I vy A va ~ay vy (FTE-BIO)
From E-val we know that v, = bindz = ¢, ine.0;1 and i =0

We need to prove
(a) bindx = ¢ in e.da | vp:
From E-val we know that v, = bindz = ¢} in e.d2
s—1i
(b) Vg =~ qV Up:
. . S . .
We need to prove that bindz = e in e.d1 =4y bindx = e in e.09
From Definition [95] it suffices to prove that

s—1

bindz = ¢y in e.01 l}f vi1 = bindx = ey in ecda UF vio A vi1 = gy Us2
This means that given bindx = e, in e.01 llf vy it suffices to prove that

bindx = ¢ in e.do U«k WA S Sézav Vg2 (F-Bll)

TH1: ebél ’:‘f‘ﬁaE 61,(52
This means from Definition 05 we have
. s—j
Vi < s.ep01 Uy va1 = epdo d vp1 A Va1 R av Up1

Since we know that bind x = ey in e.d1 ; v, therefore from E-bind we know that Jiy.epd1 {i; va1

Instantiating with i1 we get epds || vp1 A Va1 Sglav Up1

Since v, is a mondic value and v, llf,l vl
1

. s—1i1 ..
Since v,1 & v vp1 therefore from Definition |95 we know that
o
S—i1—1
k1,7 k1,7 ! ~ 1 /
Val Ui; Vg = v U7 vy Avg R av Uy
Since we are given that v, |5 v/, therefore we have
1
. ./
S—11—1
k1 .,/ ! ~ 1 /
opt B vy Avgr R av Uy
, s—i1—1i) ,
IH2: e.fel /x]01 =~ op ecley,/x]o2
This means from Definition [95] we have
o,
s—i1—i1—]

Vi < s.ecleli/x]o1 4j va2 = ecle); /x]d2 4 vp A vg =LV U
Since we know that bindz = e in e.d1 |; v, therefore from E-bind we know that Jig.e.[e];/x]d1 Vi,
Va2

s—ip—i,—i
Instantiating with io we get ec[ep;/z]d2 § vy A Vg2 = Qav Vpo

From E-bind we know that v,s is a mondic value and vg,o Uiﬁz Vo
2

L
. 8—7,1—11—12 ..
Since vq2 ~ av Upz therefore from Definition |95 we know that
. -/ . -/
S§—11—1] —12— 1y
k2 ./ k2 ../ / A /
Va2 %/2 Vg = Up2 7% vpy A vgo ~ aV Uy

Since we are given that ves |52 v}, therefore we have
2

VR
S§—11—1] —12—1y
k2 ./ / A /
bz 77 Vpa A Voo ~ aV Upy

This proves the desired
19. e=1":
Trivial
20. e = releasee, =z in e.:
Similar reasoning as in the bind case

158

21. e = storee:
Similar reasoning as in the return case

O

Lemma 100 (Equivalence relation of A\-amor is reflexive for values). Vv, s. v éav v
Proof. Instantiating Theorem with . for §; and d2, v for e and with the given s we get v éa EU

From Definition 05 this means we have

Vi< swliveg = vl vy Avg Sgav Vp

Instantiating it with ¢ as 0 and since we knwo that v | v therefore we get the desired O
Lemma 101 (Property of app rule in A-Amor). Ve, es, e, s.

e éaE e — eeq éaE € e
Proof. We get the desired from Theorem O
Lemma 102 (Lemma for appl : empty stack). V¢, u,p,0,vq,v1,7.

O;A;. F_ ((tu,p,e)) : — A

@ A F— (](t Ps (u,p)e)D A

((tw,p,) bva W o1 =

Jup, v2. ((t, p, (1, p).€))) I vp P2 v2 A Vs.v1 Rgp v2
Proof. From Definition [02] know that

((t u,p,e)) = (tu, p) =

(A1 ...zt u) (C1) ... (Cn) (A1.0)

Similarly from Definition [92| we also have

((t, p, (u, p)-€)) = ((E, p)) ((; p)), - €) = (1(E, p)) ((w, LD,) = ((E, p)) ((u, P)) =

(Az1...2n) (C1) ... (Cn)) (Az1...2pn.u) (Ci) ... (Chn) (A1.1)

Since ©; A;. F_ ((t u, p,€)) : — therefore from Theorem |74 we know that

((t u, p, €)) =

(Azy...xntuw) (Cr) ... (Cu) =

Ap.release — = p in bind a = store() in bind b = €41 ,, @ in bind ¢ = store!() in bind d = store() in b (coercel less ,, ¢) d

where

€tl,n = ()\xl . l'n.t U) (]C1D e QCn,ll)

€t2,n = (]Cnl)

€t1,n =

(Azy...xptu) (Cq) ... (Choq) =

Ap.release — = p in bind a = store() in bindb = €41 ,,—1 @ in bind ¢ = store!() in bind d = store() in b (coercel le;s 1 ¢) d

where

€tl,n—1 = (/\Il e In.t U) (]Cll) N (]Cn_QD

et2.n—1 = (Cn-1)

€t1,2 =

(Axy...xntu) (Ch)) =

Ap.release — = p in bind a = store() in bindb = ¢;1 1 @ in bind ¢ = store!() in bind d = store() in b (coercel le;a 1 ¢) d

where

en1 = Az1... .zt uw)

er2.1 = (Cq)

€t1,1 =

Ay ...xptu) =

Ap1.ret \y.Apo. let! = y in release — = p; in release — = py in bind a = store() in 2 a

where

ers = Az ...zt u)

159

€in—1 =

(Aep_1Tnt u) =

Ap1.ret \y.Apo. let! = y in release — = p; in release — = py in bind a = store() in e, a
where

etn = (Azy,.tu)

€in =

(Aep.tu) =

Ap1.ret Ay Apo. let! x = y in release — = p; in release — = py in bind a = store() in €} a
where

¢ = (tw)

&=

(tu) =

Ap.release — = p in bind a = store() in bind b = e; a in bind ¢ = store!l() in bind d = store() in b (coercel le, c¢) d
where

et = f

€y =1

Since we know that ((¢ u, p,€))() I vq |7 vy therefore from the reduction rule we know that

3ji, L.t) () b — ' L and Jjo.L (coercell(u)!()) () 4 — W' v1 8.6 5 = ji + ja

Similarly from (Al.1) we know that

((t, p, (u, p)-€)) =
(Azy...208) (C1) ... (Cn)) (Az1...2n.u) (C1) ... (Cyn)

Since ©; A;. F_ ((t, p, (u, p).€)) : — therefore from Theorem [74| we know that

((t, p, (u, p)-€)) =
(Az1...2n8) (C1) .. (Cn)) ((Az1...2Hw) (C1) ... (Cu)) =
Ap.release — = p in bind a = store() in bindb = €, ,, a in bind ¢ = storel() in bind d = store() in b (coercel le, , c) d

where
ern = ((Az1...2n.t) (C1) ... (Cn))
(Cn))

eun = ((Az1...25.u) (C1)
ern = ((Az1...2n.t) (C1) ... (Cu)) =

Ap.release — = p in bind a = store() in bind b = €41 ,, @ in bind ¢ = store!() in bind d = store() in b (coercel less ,, ¢) d
where

et = (Az1...2n.t) (C1) ... (Cn-1))

€t2,n = Cn

enn = ((Az1...2n.t) (C1) ... (Cho1)) =

Ap.release — = p in bind a = store() in bindb = €41 ,,—1 @ in bind ¢ = store!() in bind d = store() in b (coercel le;s —1 ¢) d
where

€tl,n—1 = ((Al‘l NN ll?n.t) (]ClD N (]Cn—QD)

et2n—1 = Cp_1

e 2= ((Az1...zn.t) (C1)) =

Ap.release — = p in bind a = store() in bind b = €;1 a in bind ¢ = store!() in bind d = store() in b (coercel les ;1 ¢) d
where

€|l = ()\33‘1 e CEn.t)

€t2,1 = Cil

en =(Azy...x,.t) =
Ap1.ret Ay.Aps. let!zqy = y in release — = p; in release — = po in binda = store() in ej2 a
where

160

el = (Azg...xp,.1)

€in = (/\xn-t) =

Ap1.ret \y.Apo. let! x,, = y in release — = p; in release — = po in bind a = store() in er a
where

er =1t (A1.2)

Similarly we also have
eun = ((Az1...zp.u) (C1) ... (Cn))

Cun = ((/\xl .. -xn.U) GC1D .. anD) =

Ap.release — = p in bind a = store() in bind b = €415, @ in bind ¢ = store!() in bind d = store() in b (coercel ez, c) d
where

eutn = ((Az1...2nu) (C1)) ... (Cni))

Cu2,n = Cn

euin = ((Az1...zpu) (C1) ... (Cpha)) =

Ap.release — = p in bind a = store() in bind b = €,1,,—1 a in bind ¢ = store!() in bind d = store() in b (coercel leysn—1 c) d
where

Cul,n—1 = (()\1'1 . xnu) qch N (]Cn,QD)

€u2n—1 = Cn-1

Cul,n—1 = ((/\.’L‘l .. xnu) qch N (]Cn_gl)) =

Ap.release — = p in bind a = store() in bind b = €41 ,—2 a in bind ¢ = storel() in bind d = store() in b (coercel leysn—2 c) d
where

Cul,n—2 = (()\1'1 . SUn’LL) qch N (]Cnfgl))

€ul,2 = ()\Il e xnu) (]01|) =

Ap.release — = p in bind a = store() in bindb = e, 1 @ in bind ¢ = store!() in bind d = store() in b (coercel ley21 ¢) d
where

Cul,l1 = ()\131 PN xnu)

€u2,1 = Cil

euin = (Az1...zpu) =

Ap1. ret Ay.Apa. let!zq = y in release — = p; in release — = py in binda = store() iney1 a
where

U1 = ()\.’[72 N xnu)

eyl = ()\.132 ce a:nu) =

Ap1.ret A\y.Aps. let! zg = y in release — = p; in release — = py in binda = store() in ey 2 a
where

evz = (Azg...zp.u)

evn—1= (Azp.u) =

Ap1.ret A\y.Aps. let! x, = y in release — = p; in release — = py in binda = store() in ey, a
where

eyn =1u (A1.3)

Ey = Ap.release — = p in bind a = store() in bindb = €, ,, a in bind ¢ = store!() in bind d = store() in b (coercel le, , c) d
vp = release — = () in bind a = store() in bindb = e, a in bind ¢ = storel() in bind d = store() in b (coercel le, ., ¢) d
Ey.1 = binda = store() in bindb = e; 5, a in bind ¢ = store!() in bind d = store() in b (coercel le, , c) d

161

Ey.2 = bindb = e, a in bind ¢ = store!() in bind d = store() in b (coercel le, , c) d
Ey.3 = bind ¢ = storel() in bind d = store() in b (coercel le, , ¢) d
Ey.4 = bindd = store() in b (coercel ley, ¢) d
et,n = Ap.release — = p in bind a = store() in bindb = e;1 5, a in bind ¢ = store!() in bind d = store() in b (coercel lew ,, ¢) d
E;n1 = release— = () in binda = store() in bindb = €41, a in binde = store!() in bindd = store() in
b (coercel e ¢) d
Ey 1.1 =bindb = €41, () in bind ¢ = storel() in bind d = store() in b (coercel lea,,) d

€tl,n =)\p.
release — = p in bind a = store() in bindb = e;1,,—1 a in bind ¢ = storel() in bind d = store() in b (coercel leiz n—1 ¢) d
Ei1n1 = release— = () in binda = store() in bindb = e41,,—1 a in bindc = storel() in bindd = store() in

b (coercel ey p—1¢) d
By 2 = bindb = e -1 () in bind ¢ = store!() in bind d = store() in b (coercel leys n—1 ¢) d
Ei1 3 = bind ¢ = store!() in bind d = store() in b (coercel le; 1 ¢) d
Ei1 n,a = bindd = store() in b (coercel le;s n—1 ¢) d
e11,2 = Ap.release — = p in bind @ = store() in bindb = e;; a in bind ¢ = store!() in bind d = store() in b (coercel le;a1 ¢) d
Ei121 = release— = () in binda = store() in bindb = e;; a in bindc = store!() in bindd = store() in
b (coercel lesq ¢) d
Ei1 22 =bindb = €)1 a in bind ¢ = storel() in bind d = store() in b (coercel lew 1 ¢) d
Ei1 2,3 = bind ¢ = store!() in bind d = store() in b (coercel lesa ¢) d

€11 = Ap1.ret \y.Apo. let! x1 = y in release — = p; in release — = py in bind a = store() in ¢;2 a
Ejp =ret A\y.Aps.let!zq; = yin release — = () in release — = py in bind a = store() in €2 a
Ei11 = Ay.Ape.let!zq =y in release — = () in release — = py in bind @ = store() in e;2 a
E;19 =letlz; =yin release — = () in release — = ps in bind a = store() in ;2 a

Ej 13 = release — = () in release — = () in binda = store() in e;2 a[((C1) ())/z1

]
Ejp = ret \y.Apo. let!zy =y in release — = () in release — = py in bind a = store() in ;3 a[((C1) ())/z1]
Ei21 = Ay.Ap2.let!xs =y in release — = () in release — = po in binda = store() in ;3 a[((C1) ())/z1]
Ej 25 = release — = () in release — = () in bind a = store() in e;3 a[((C1) ())/=1][((C2) ())/z2]

e

(

Ej3 = ret \y.\ps. let! x3 = y in release — = () in release — = po in binda = store() in 4 a[((C1) ())/z1][((C2) ())/x2]

Ei31 = Ay.Ap2.let!zs =y in release — = () in release — = py in bind a = store() in e;4 a[((C1]) ())/z1][((C2) ())/z2]

Dn,321
Ei -3, (coercel 1(Cps) 1()) () 4™ Eipn—2.
D42
By 11 (coercell([C)!()() I — U Bra.
Dlli
En 4’ By
D52.3:
E3z ™ B3,
D22.22
ez 01((C1) 0)/x1][((C2) 0) /2] U Ens
D22.12
(coercel (Ca) () YA((C2) ()
D222
Ds2.1
— D52.2 D52.3
Ey2.1[(coercel Y(Ca) 1())/yl[()/p2] I Ein 2,2
Ei21 (coercel lewn1 1) OV~ Eisa
D215

R T D1 D2
en ()4 En ! !

0
Ey21 0" Ej21

162

Dgl:

Dn—22:

Dn,Q].Z

Dn_122

Dn,11:

D2:

T1:

TO:

DO0.0:

E; 3.1 (coercel 1(Cs) 1)) V™ Eran

er2 () B D51 D52
Eunzi | Bz

Ej (n—2)1 (coercel 1(Cr—2) 1))) 4° By n1)a

_ D31 D32
€t1,3() [} Et1,3,1

D, _32
erin—3 () 4 Erin—s1

Ein-o1l" Ejn_21

Eyn—1.1(coercel!(Cn_1)!()() 4° Erna

Dn—21 Dn—22

erin—2)V Ern_21
Etl,n—l,l ll El,n—l,l

y inversion

(0)/ 4P L
Finalicoerce 1 G110 /2l (0/p2] V7 L
By (coercel!(Ca)!()) () 7' L

Doyl Diy1)2
etin—1)4 a1, (n=1) (n=1)

EnniV Ejna

W Given <
Vq U1 Va gV Vb
- 3 . 9 Definition 05
vp 7 o V1 Ry U2
- 5 Claim, Lemma Definition
L (coercel leyn 1())) 4 — 7@ v Vg Rgy Up

Eo.4[L/b][1()/c] W vy

Eo3[L/b] 7= vy

_ D,1 D,2
ern () Eeina

- E-bind
Et,n,l llj L

- T0 T1 D2
€t.n () ‘U Et,n,l

store() 4 () Eoz IV vy
Eo1 I vy

vy 7 vy

E-bind

E-bind

E-release

163

Main derivation:

R T— DO0.0
Eo() I vy

Eo () 4oy W vy
(A1 ...xnt) (C1) ... (Ch)) (Az1...2H.1) (]ch o (Ca) O Uy I g
(](t7p7 (u7p)‘€)D () Jop W ve

Claim: Vs.coercel 'ﬂ[@ O/x1] ... [m O/zn] 10 éaE coercel ley, n 1()

Proof
From Definition [95| it suffices to prove

Vi < s.coercel 1a[(C1) ()/z1] ... [(Cn) ()/2n] 1) Ui v1 = coercel leyn () I va A vy séiav Vg

This further means that given some i < s s.t coercel u[(C1) ()/z1]...[(Crn) ()/zn] () Vs v
and we need to prove

coercel le, , 1() 4 va A g X v Vs (CO)

Since we are given that coercel 'u[(C1) ()/z1]...[(Cn) ()/zn] ') Y v

This means from Definition [83| we have vy =!(@[(C1) ()/z1] ... [(Cr) ()/zn] ()

Similarly again from Definition [83]| we know that
U2 :!(eu,n 0)

In order to prove that [(@[(C1) ()/z1]...[(Cn) ()/zn] () = ar'(eun ()
from Definition [95] it suffices to prove that

S§—1

@l(cid (/2] [(Ca) O/2n] ()) = ar (un ()

Using Definition 05] it suffices to prove

Vj < (s —i).@l(C1) O0/21]..[1Ca) O/2n] 0) U5 v} = (cun 0) bvh Avh "oy)

This means given some j < (s —) s.t (@[(C1) ()/x1]...[(Cad ()/zn] () U5 v}
it suffices to prove th_at'

s—i—j
(eu,n 0) by Avy = "av vy

From the embedding of dIPCF into A-amor we know that v] is a value of monadic type

Since we know that

€yun = AD.
release — = p in bind @ = store() in bindb = e,1 ,, @ in bind ¢ = store!() in bind d = store() in b (coercel leys ,) d
where
Cul,n = @$1 N xnu) (]Cll) e (]Cnfll))
€u2,n = Cn

eun () 4 v5 from E-app where
vy = release— = () in binda = store() in bindb = ey,1, a in binde = storel() in bindd = store() in
b (coercel leyan ¢) d

J

s—i—
Now we need to prove that vj = ",y v}

From Definition [95] it suffices to prove that
s—i—j—l
ViR = vy Ul Al T R v

This means given v} ¥ v/, it suffices to prove
s—i—j—1
vh UF v Al ~ v vy
vy = release— = () in binda = store() in bindb = e,1, a in binde = storel() in bindd = store() in
b (coercel leys,,) d
E, n1 = binda = store() in bindb = €41, a in bind ¢ = storel() in bind d = store() in b (coercel leysr, c) d
Eyn1.1 =bindb=ey1, () in bind ¢ = storel() in bind d = store() in b (coercel leysn ¢) d

164

Ey n.1.2 = bind ¢ = storel() in bind d = store() in b (coercel leysp ¢) d

€yuln = AD.
release — = p in bind a = store() in bindb = e,1 ,—1 @ in bind ¢ = store!() in bind d = store() in b (coercel leys n—1 ¢) d
Ey1n1 = release— = () in binda = store() in bindb = ey1,,—1 a in bindc = storel() in bindd = store() in

b (coercel leys n—1c) d
Eyin,2 =bindb = ey1,n_1 () in bind ¢ = store!() in bind d = store() in b (coercel leysn—1¢) d
Ey1 n,3 = bind ¢ = storel() in bind d = store() in b (coercel leyan—1 ¢) d
E,1.n,4 = bindd = store() in b (coercel leyan—1c) d
eu1,2 = Ap.release — = p in bind a = store() in bindb = ¢;; a in bind ¢ = storel() in bind d = store() in b (coercel le,2,1 ¢) d
E, 121 = release— = () in binda = store() in bindb = e;; a in binde = store!() in bindd = store() in
b (coercel leyz1 ¢) d
Ey1 2,2 = bindb = ¢;; a in bind ¢ = storel() in bind d = store() in b (coercel leys1 ¢) d
Ey1,2,3 = bind ¢ = store!() in bind d = store() in b (coercel ley21 ¢) d

€11 = Ap1.ret \y.Apq. letlzq =y in release — = py in release — = py in binda = store() in ey 2 a

Epjn = ret \y.Aps. let!z1 = y in release — = () in release — = ps in binda = store() iney 2 a

Ei11 = Ay.Ape.let!zq =y in release — = () in release — = p, in bind a = store() in ey 2 a

Eij12 =letlz; =yin release — = () in release — = po in bind a = store() in ey 2 a

Ej13 = release — = () in release — = () in binda = store() in ey2 a[((C1) ())/21]

Ejp = ret \y. \pa. let! 25 = y in release — = () in release — = py in bind a = store() in ep3 a[((C1) ())/21]

Ei91 = \yApa.let!zo =y in release — = () in release — = py in bind a = store() in ey 3 a[((C1) ())/z1]

E; 52 = (release — = () in release — = () in bind a = store() in ey 3 a) Sz

Ei3 = (ret A\y.Apa. letlzg = y in release — = () in release — = po in bind a = store() in ey 4 a) Sz

El 31 = (Ay.Aps.let! x3 =y in release — = () in release — = py in binda = store() in ey 4 a) Sz

[(G 1) 0)/za][((C2) ())/2]

El n1 = (Ay.Apa.let!z,, =y in release — = () in release — = py in bind a = store() in ey, @) Sp—1
Sn-1 = [((C1) O)/2a] .- [((Cn=1D ())/7n-1]

Dn_321

By (n—3).1 (coercel '(Cp—3) 1))) I B, (n-2)1

D12Z
Ey 11 (coercel!(C)!())() 4 — I Er2.
Dl].i
En 0 Epia
D52.3:
Ei° Ej3q
D22.22
ers O[((C1) ())/21][((C2) () /2] I Eis
D22.12
(coercel 1(Ca) 1()) H1((C2) ())
D222
D52.1
— Dy2.2 D52.3
By 2,1[(coercel Y(Ca)) 1) /y][()/p2] I Ein 2,2
Ej2. (coercel leyar () () 4° Eiza
D212
enn () I En bl D2
Eui01 4" Ea
D32:

Ey3,1 (coercel 1(Cs) 1)) () 4" Epa,

165

eut,2 () ¥ Eui2 Ds1 D52
Euzil Bz

Dn—22:

Bl (n—2).1 (coercel '(Cn—2) 1)) () 4° By (n-1)1
D, _51:

_ D51 D32
eu1,3() I Eui 31 ’ ’
D, _32
€ul,n—3 () U’ Eul,n—S,l
Euin-21 1" Elp_21
Dn_122
Ey 1,1 (coercel!(Cr—1)!())() I° Eynn
Dn—ll:
D, 51 D, _52
€ul,n—2 () \[8 Eul,n—Z,l ? ?
Eun-114° Erpn-11
D,2
— P — Given
ul!((C1) ())/24]... [M((Cn) O))/2n] ¥ v 47 v
Ey .1 [(coercell(Cu)!() /2l [()/p2] I v} 4 0]
Ej na(coercell(Cn)!()) () P!

D, 1

Dol Dp)2
eutn—1)4 Euin-1,1 (n=1) (v=1)

0
Eul,ml U’ Elm,l

Main derivation:

D,1 D,2
€ul,n () 'U Eul,n,l

k
Eu,n,l ‘U’ ’U;

o U]

E-bind

E-release

s—i—j—l1
From Lemma we get v A~ Lp v

Lemma 103 (Lemma for appl: non-empty stack). V¢, u, p, 0, 0., V1, Vio, Vez, Vo1, 7,5 55" -
(t u, p,€) and (t,p, (u, p).€) are well-typed
(t u,p,0) and (t,p, (u, p).0) are well-typed
(tu,p,€) = (t,p, (u p)-€) A (tu,p,0) = (L, p, (u,p).0) A
@) 0401 9 v A T o, (09D O vl 1 v A V01 Ry vz A
((tw,p,0)) () U vgy V7" vpr
:> T T~ 1" S
g, vo2, 5" (L, (u,p).0)) () 4 vgo 7 vea A (5 = 5') = (3" = 5") A Vs.v61 Rav ve2

Proof. We prove this by induction on 6
1. Case 0§ = e:
Directly from given
2. Case 0 =C'.0":
Let ¢/ =C}...Cl,and 0" =C}...Cl,_,

n

Given:
(t u,p,C".0") and (¢, p, (u, p).C’'.0") are well-typed A

(t u, p,C".0") = (t,p, (u,p).C".0") A ((t u, p,C".0)) () 4 vhy 1" ven
We need to prove that

166

)y, voa, §"-
(€, p, (w, p).C-0N) () U Vhy V" vga A (j — 5') = (" — 5"") A Vs.vp1 Rav ve2 (ET-0)

From IH we know

(t u,p,C".0") and (¢, p, (u, p).C".0") are well-typed A

(tu, p,C.0") = (t, p, (u, p).C.0") A ((t u, p,C.07)) () I vhyy U7V w1 = TGV, Voo, voa2.
(0t p, (1, p)-C07)) () I gy VT g2z A (G —5) = (G = 41) A Vs.0911 Rav veaz (ET-TH)

From Definition [01] and Definition [92] we know that
((tu,p,C.0N) = (((t w,p) (C') ... (Cr1) (Ca))) (ET-1)

Since (t u, p,C".0") is well typed therefore we know that

1 w9, 0 = (It w,) (C] - (Co1) (Ca)) =

Ap.release — = p in bind a = store() in bind b = €41 a in bind ¢ = store!() in bind d = store() in b (coercel less ¢) d
where

ern = (((t u, p) (¢') .- (Cna)))

e = (Ca) (ET-1.1)

From Krivine reduction (app rule) we also know that (¢ u, p,C".0") — (¢, p, (u, p).C".6")
Also since we know that ((t u, p,C".0")) () | vp; ¥ ve1 therefore we also know that 3j7, vi,vi.en() |

-1
vy 1 v

Also since we know that

(t u,p,C.0") and (¢, p, (u, p).C’'.0") are well-typed
therefore from Lemma [[08 we also know that

(t u,p,C'.0") and (¢, p, (u, p).C".0") are well-typed

Therefore from (ET-IH) we have
1”5 Voo, voza- ((E p, (u,p).C0")) () ¥ vy W vo22 A (5 —3") = (437 — 41")
A VS.’Ugll oV V22 (ET—Z)

From (ET-0) and Definition Definition [92] it suffices to prove that

35", 0o vea- (0) (s) (C) - (Caa) (CaD)) O 4 g W77 woa A (G —3") = (5" = 3"") A V5.001 Rav vo2
(ET-3)

Since (¢, p, (u, p).C".0") is well typed therefore we know that

(((t,) (s) (€ - - (Cra (Cn))) =

Ap.release — = pin bind a = store() in bind b’ = e}; @ in bind ¢ = store!() in bind d = store() in b (coercel le}, ¢) d
where

ein = ([, p) ((u, p)) (C') ... (Cna)D

erp = (Cn

From (ET-2) we know that e}, () |} v)yy 197 vgan

’

and we need to prove that vgas (coercel lely ¢) d b vy 77 91" vgy (ET-p)

Since we are given that ((t u, p,C’.6")) () I vj, 7" vgy this means from (ET-1.1) we have

Ap.release — = p in bind a = store() in bind b = €41 a in bind ¢ = store!() in bind d = store() in b (coercel less ¢) d |
Ulol 7 ver

Also since we are given that ((t u, p,C".07)) () | vh,, 477 ve11 this means we have
et () ¥ vpyy W1 venn

This means vg11 (coercel leg ¢) d || — Y vgy for some y s.t y + 57 = 5"

. S .. s
Since Vs.vp11 Rqy Veaz and e = e}y = (Cp)) therefore from Definition we get Vs.vgy Rqv Vg2. Also

from Definition [05 we have

]:// _.]1/ — jf// _j:i// —

G — " =]f 7‘71// _

j" —=j" =4 —j (From ET-TH)

167

Lemma 104 (Cost and size lemma). Ve, Dy, F.
(es,€,€) = Dy — Eg A
Dy is well-typed N
E is well-typed A
et =(Ds) Ner () bva I 0

Je}. €} zm Aep () o l}j, va A Vs. 11 éaE va A
1. 7 =j N|Ds| > |Es| or
2. j/ =j—1A |Es| < |Ds| + |es|
Proof. We case analyze on the Dy — F, reduction
1. Appl:
Given D, = (t u,p,0) and Es = (¢, p, (u, p).0)
Let D, = (t u,p,¢e) and E. = (t, p, (u, p)-€)
Since we are given that D, is well-typed and Ey is well-typed therefore from Lemma [105| we also have
D’ is well-typed and E is well-typed

Also since we know that e; () | va |/ v1 therefore from Lemma we also know that
Fe-(Dg) O ¥ vg ¥ va
From Lemma we know that Jv,. (E1) () I vl e v, s.t Vs.0g Ry ve

And finally from Lemma we know that (E)) () { vy {7 ve s.t Vs.vy éav Vg

|Ds| > |Es| holds directly from the Definition of | — |
2. App2:
Given: (Az.t,p,c.0) — (t,c.p,0)
We induct on 6
(a) Case 8 =e:

Since we are given that Dy i.e (Az.t, p, c.€) is well typed
Therefore from Theorem |94] ((Az.t, p, c.€)) is well-typed
From Definition [92] (((Ax.t, p) (¢), ., €)) is well-typed
Again from Definition (92| (Az.t, p)) (c) is well-typed
From Definition @1] we have
((Axy...xpAxt) (C1) ... (Cn) () is well-typed

Therefore from Theorem [74] we know that

(Ds) =

(A1 ... xpAxt) (C1) ... (Cn) (C)) =

Ap.release — = p in bind a = store() in bind b = €41 a in bind ¢ = store!l() in bind d = store() in b (coercel lesxs ¢) d
where

e = ((Ar1...xp.Axt) (Ci)) ... (Cn))

etz = (C) (S-A0)

Since we are given that (D) () § va ¥ v

therefore from the evaluation rules we know that

BUDO/I(CDO /2] - HCDO /2] & = W o (S-A0.1)

Similarly since we are given that Ey i.e (¢, c.p,¢€) is well-typed

Therefore from Theorem [94] (¢, c.p, €)]) is well-typed

From Definition [92| (¢, c.p) is well-typed

From Definition (91| we have ((Az,x1 ... x,.t) (C) (C1) ... (Cn)) is well-typed

Therefore from Theorem [74] we know that

(Es) =

((Ax 21 ...20.8) (C) (C1) ... (Cn)) =

Ap.release — = p in bind a = store() in bindb = e;1 @ in bind ¢ = store!() in bind d = store() in b (coercel les ¢) d
where

€41 = ((AI’ Ty ... l’nt) (]CD, (]ClD e (]Cn—lD)
e =(C) (S-A1)

From (SA-0.1) we know that

168

(Es) O =W

And finally from Theorem |99| we have Vs.vq éav v
(b) Case § =C'.0"

Let 0/ = Cgl .. .an and p = Cp1 .. 'Cpn

Since we are given that Ds i.e (Az.t, p,C.C".0") is well typed

Therefore from Theorem (94| we know that ((Az.t, p,C.C".0")) is well-typed

From Definition [92| we also have (((Az.t, p)) (C),.,C".0")) is well-typed

which further means that (((Az.t, p) (C) (C'),.,8")) is well-typed

which further means that ((Az.t, p) (C) (C’) (Ce,) - - (Co,)) is well-typed

which further means that (Azy...x,.Ax.t) (Cp,)...(Cp.) (C) (C') (Co,) ... (Co,,) is well-typed

From Theorem [74 we have

(Ds) = (Azq...xp. A x.t) (Cpy) ... (Cp,) (C) (C') (Coy)---(Co,.) =

Ap.release — = p in bind a = store() in bind b = e41 a in bind ¢ = store!() in bind d = store() in b (coercel lesx ¢) d
where

en = (Az1...zp.A2.8) (Cp,) ... (Cp,) (C) (C') (Coy)---(Co,)

et = (]Cgml) (S-A2)

Since we are given that (D) () 4 va {7 v1

therefore from the evaluation rules we know thatl

3¢/, - (D [C)) /2] [(CoD () /2] - - - [(CL)) /aa] & — W0 Aa'my . €
s.t

Aa'wy e @(CD)/2][(Co,D () /21] - - [(Co,) 0/2m] § = 472 vy
and]1 +j2 :] (S—AQI)

Similarly since we are given that Fy i.e (¢,C.p,C’.0") is well typed

Therefore from Theorem (94 we know that ((¢,C.p,C’.0")) is well-typed

From Definition 92 we also have (((¢, C.p) (C'),.,8")) is well-typed

which further means that (((¢, C. p[) (] [) (Co,) ---(Ca,.))) is well-typed

which further means that (Az, z1...2,.t)(C) (Cp,) ... (Cp.) (C) (Co,) ... (Co,.) is well-typed

From Theorem [74] we have

(Es) = Az, @y ... 20 t)(C) (Cp,)---(Cp,) (C) (Co,)---(Co,.) =

Ap.release — = p in bind a = store() in bind b = €41 a in bind ¢ = store!() in bind d = store() in b (coercel les ¢) d
where

en = (Az, 21 ... 2,.8)(C) (Cp,) ... (Cp.) (C') (Co,) ... (Co,, ,)

etz = (Cy,,) (S-A3)

From (S-A2.1) it is clear that
ED 04— o ,
And finally from Theorem |99| we have Vs.v; éav U1

|Ds| > |Es| holds directly from the Definition of | — |

. Fix:

Given: (fixz.t,p,0) — (¢, (fixz.t, p).p, 0)
Let D, = (fixz.t, p,€) and E. = (¢, (fixx.t, p).p, €)

Since we are given that Dy and F; are well-typed therefore from Lemma we know that D, and E/
are well-typed too.

Also since we know that e; () | v, |7 vy therefore from Lemma we also know that

e OD/D N3 e v,
From Lemma [109| we know that (E%) () |} v/ |7 v,

And then from Lemma we know that (E) I vy ¥ vy s.t Vs.v1 Rqy vy

|Ds| > |Es| holds directly from the Definition of | — |

169

4. Var:
Given: Dg = (x, (to,po) .- (tz,pz) - (tn, pn),0) and Es = (ty, ps, 0)
Let D, = (z, (to, p0) - - - (tz, pz) - - - (tny pn), €) and EL = (tz, pa, €)

Since we are given that D; and E, are well-typed therefore from Lemma we know that D, and E’
are well-typed too.

Also since we know that e; () |} — 7 v; therefore from Lemma we also know that

Fj..(DL) Je v,
From Lemma we know that (E.) |} — {7« 1 v

And then from Lemma we know that (E) || — 771 vy s.t Vs.vg éaV Vg
|Es| < |Ds| + |es| holds directly from the Definition of | — | and from Lemma 4.2 in [J]
Lemma 105 (e typing). VO, A, I e, p,0.
O;AF_(e,p,0): — = O;AF_ (e,p,€): —
Proof. Main derivation:

Given

;A (e,p,0):7
O;Aby(e,p):o
O;AF; (e, pe):o

By inversion

O;Alqe: (0,0)

Lemma 106 (e reduction). Ve, p,6.
(e, p,0) is well typed A ((e,p,0))) I — U7 — = ((e;p,)) O 4 — U7 =

Proof. Since (e, p,) is well typed therefore from Lemma we also know that
(e, p,€) is well typed

From Theorem [94] we know that ((e, p, €)) is also well typed
From Definition [92| we know that ((e, p, €)) = ((e, p))

Let 0=Clcn

Similarly from Definition 92| we also know that
((e; p, 0)) = ((e, p,Cl Cn)) =

(((e; p) (Ca), [1,C2- .. Cn)) =

(((e, p) (Ca) - G .09 =

(((es pD (€1 - - (Ca)))

From Theorem [74] we know that
(](e» P G)D =
(e, oD (C1) ... (Cu)) =

Ap.release — = p in bind a = store() in bindb = e;41 a in bind ¢ = store!l() in bind d = store() in b (coercel les ¢) d
where

(e, p) (C1)---(Cu))) ¥ — I~ —, therefore we also know that ((e,p)) I — §~ —

Lemma 107 (Lemma for fix : non-empty stack). V¢, p,0,7,5", 7", ve1, vea, vo1.
(fixxz.t, p,€) and (¢, (fixz.t, p).p,€) are well-typed
fixx.t, p,0) and (t, (fixx.t, p).p,0) are well-typed

(
g(m £0,9))4 = W v A (Fixat, p)p,€))) 4 = 17 v A Vs.0a Rav vea A

(fixx.t, p,0)) () I — P ver A
—

T, 5. ((t, (fixz.t, p)-p, 0)) () b — 1" vga A Vs.vp1 gy vea A (G — 57) = (" —)

Proof. We prove this by induction on 6

170

1.

2.

Case 0 = e:

Directly from given

Case 6 = C'.0":

Let ¢/ =C}...Cl,and 0" =C}...Cl,_4

Given:

(fixz.t, p, C'.0") and (¢, (fixz.t, p).p,C".0") are well-typed A

((fixz.t, p,C".0")) () b — U7 vor

We need to prove that

((t, (fixat, p).p,C"-0N)) () b — 17" vgo A Vs.vg1 mav vo2 A (5 — 5') = (" — §"") (ET-0)

From IH we know

(fixxz.t, p,C".0") and (¢, (fixz.t, p).p,C.0") are well-typed,

(](ﬁXl’.t, 2 C/ﬂ”)[) () U - lljl vg11 =

(2, (Fixa.t, p).p, C07)) () 4 — V" vgaz A Vs.v911 Rav veza A (G — 5') = (5F — 57") (ET-IH)

From Definition [01] and Definition 02] we know that
((fixz.t, p,C".0")) = (fixz.t, p) (C') ... (Cr_1) (Cn) (ET-1)

Since (fixz.t, p, C".0") is well typed therefore we know that

((fixx.t, p,C".0")) = (fixz.t,p) (C')... (Cn-1) (Cn) =

Ap.release — = p in bind a = store() in bindb = ¢4 a in bind ¢ = store!() in bind d = store() in b (coercel les; ¢) d
where

en = [ixat /) (- (Ca 1)

€t — (]CnD (ET-ll)

Since we know that ((fixz.t, p,C".0")) () |} — 17" vgy therefore we also know that
Jjisvi-en() ¥ — 91 von

Also since we know that

(fixx.t, p,C".0") and (¢, (fixx.t, p).p,C".0") are well-typed
therefore from Lemma [[0§ we also know that

(fixz.t, p,C".0") and (¢, (fixz.t, p).p,C'.0") are well-typed

Therefore from (ET-IH) we have
g2, 31"+ (&, (fixat, p).p, 0N b — W vgon A Vs.vgrr Rav vosa A (5 —§') = (G = 3) (ET-2)

From Definition [01] we know that

((t. (fx.t, p)-p, ©-07) = ({t, (Fxed, 9)-A) (€D - (Cos) (C))

Since (¢, (fixz.t, p).p,C’.0") is well typed therefore we know that

((t, (fixz.t, p).p,C'.0")) =

((t, (fixat, p).p) (C') - (Cna) (Cnl) =

Ap.release — = p in bind a = store() in bind b’ = €}, a in bind ¢ = store!() in bind d = store() in b (coercel le}, c) d
where

e = ([t (fixz.t, p).p) (C') .- (Cn-1) (Cna))

622 = (Cn)

111

Since from (ET-2) we know that ((¢, (fixz.t, p).p,C".0")) | — 71 vpaa

Therefore it suffices to prove that

vgaa (coercel lej, ¢) d | — 7 791 wyg and Vs.vg éaV Vo2 (ET-p)

Since we are given that ((fixz.t, p, C".6")) this means from (ET-1.1) we have
Ap.release — = p in bind a = store() in bind b = ¢4 a in bind ¢ = store!() in bind d = store() in b (coercel lesy ¢) d |}
— " v

This means .
1) en () 4 — W vpr1 and

2) This means vg11 (coercel legs ¢) d || — |JY vy for some y s.t y + ji = 5"

171

Since from (ET-2) we know that Vs.vg11 éa\/ vg22 and since ez = ej, = m therefore from Definition
and Lemma [I01] we have

vgaz (coercel lely ¢) d | — 7" =9 vy and Vs.vgy 2oV Voo

This means

j/l _ji/ — jl// _ji// —

jl/ _j/l/ —]i/ _jil/ —

j// _j/// — J _ jl (FI‘Om IH)

Lemma 108. VC, 4.
0.C is well-typed = 0 is well-typed

Proof. Proof by induction on 6

1. Base case § = e:
Directly from the typing rule for e

2. Case § =C'.0/
This means we have C'.0’.C is well-typed. This means from the stack typing rule for closure we know that
0'.C is well-typed.
From IH we know that 6 is well-typed.
Since C’ is well tped and €’ is well-typed therefore C’.6’ is well-typed.

O

Lemma 109 (Lemma for fix : empty stack). V¢, p, 0.

((fixz.t, p, €)) is well-typed N

((t, (fixz-t, p).p, €))) is well-typed A

(ixed,p,)) b — W vy =

(](ta (fIX.’I}t, p)p7€>D() ‘U - llj v2 A v5-1}1 RV V2
Proof. Let p=(Cy,...,Cpn)

Since we know that ((fixx.t, (C1,...,Cp),€)) is well-typed and

((fixx.t, (C1,...,Cpn),€)) = ((Azq ...z fixz.t) (C1) ... (Cn))

Therefore from Theorem [[4] we know that

((fixx.t, (C1,...,Cpn),€)) =

((Azq ...z, fixe.t) (C1) ... (Cu)) =

Ap.release — = p in bind a = store() in bindb = e41 @ in bind ¢ = store!l() in bind d = store() in b (coercel les ¢) d

where

et = (Azq ...y fixe.t) (C1) ... (Cno1))

ew=(C) (F1)

Since we know that _

((Axy ... xpfixxet) (C1) ... (Cu)) OV — 2 vy

Therefore from E-release, E-store, E-bind, E—subExpE and E-app we know that

lfixe Z(C00 /2] .- [Ca) O) O/ 4 — W 0y (F2)

Similarly since we know that ((¢, (fixz.t, (C1,...,Cn)).(C1,...,Cp),€)) is well-typed and

((t, (fixz.t, (C1y...,Cn))-(C1y- .-, Cp)y€)) = (Azy 2y ... 2y) (fixa.t, (Cp,...,Cr)) (C1)--- (Cn))

Therefore from Theorem [[4 we know that

(](tv (fin’.t, (Cla) Cn))'(cla) Cn)v 6)D =

(Az, 21 ... xn.t) (fixx.t, (Cr,...,Cpn)) (C1) ... (Cu)) =

Ap.release — = p in bind a = store() in bindb = e}; a in bind ¢ = store!() in bind d = store() in b (coercel le}, ¢) d

where

ey = ((Az,x1 ... xp.t) (fixe.t, (Ci,...,Cn)) (C1) ... (Crn-1))

ey =(C) (F3)

We need to prove that ,

(Az, 21 ... xn.t) (fixa.t, p) (C1) ... (Cn)) U — V7 w2

This means it suffices to prove that _

tffixz t[(CL) () /1] . . [(CaD () /2n] ()/2] I — I v

We get this directly from (F2) and Lemma m O

172

Lemma 110 (Lemma for var : non-empty stack). Vi, p, 0, 7,5", 7", Ve1, Ve2, Vo1.
(z, (to, po) - - - (tay pa) -« - (tny pn), €) and (tz, pz,€) are well-typed
(x, (to, po) - - - (tzy pz) - - - (tn, pn),0) and (¢, (fixz.t, p).p,0) are well-typed
(@, o, po) - o)~ s 0 O — 9 0t A (s) O b — 47" 0 A
v3~'Uel éaV Ve N
(](337 (to,po) s (tmpw) s (tnvpn)79)l) () = uj” Vo1 A
:> —_— S
Fvoz, 5. ((tws par O () 4 = 177 w92 A Vs.vo1 Rav vo2 A (5 —§') = (5" — §")

Proof. We prove this by induction on 6
1. Case 0 = e:
Directly from given
2. Case § =C'.0"
Let ¢ =C}...Cl,and 0" =C}...Cl,_,

Given:

(@, (t0, po) - - - (tas pz) - - - (s pn), C'0") and (4, ps, C".0') are well-typed A
(](.’E, (t07 PO) v (tarv px) cee (t’na pn)v CIG,)D () ‘U - ‘U’] Vo1

We need to prove that

[t par C0N)) O 4 = 7" v A Vsvg1 Ray ve2 A (5 — 5') = (5" — ") (ET-0)

From IH we know

(z, (to,po) .- (te, pz) .- (tn, pn),C.0") and (ts, ps,C.0") are well-typed,

(](37; (t07 Po) e (tz> Pz)- - (tTH pn)7 CI'QII)D 0Od- Uji/ vg11 =

[t P2 7)) () & = 17V w922 A V5.0911 Rav vo22 A (5 = §) = (31 — 1) (ET-IH)

From Definition [01] and Definition [92] we know that
(](I, (t07 pO) cte (tah pﬂ?) te (tn7 pn)’ CIQI)D = (]‘1:7 (t07 PO) ce (tah pﬂf) e (tn7 pn)D OC/D Tt (]Cn—lD (]CVLD (ET_
1)

Since (z, (to, po) - - - (txs pa) - - - (tny pn), C'.0") is well typed therefore we know that

1@ (0 P0) - (s) - - (b) 8] = (2 (£ 0) - - (s) - (s p)) (€ - (G 1) (1G] =
Ap.release — = p in bind a = store() in bind b = €41 a in bind ¢ = store!() in bind d = store() in b (coercel less ¢) d
where

er1 = (x, (to, po) -« (tzy pz) -« (Eny pn)) (C') - .. (Cr—1)

e =(Ca) (ET-1.1)

Since we know that ((, (f0, p0) - - - (tz» p) - - - (b pr), C-0)) () 4 — 47 vgy therefore we also know that
357, vien() 4 — W1 vy

Also since we know that

(z, (to, po) - - - (tes pa) - - - (tn, pn), C.0") and (¢, (fixxz.t, p).p,C'.0") are well-typed
therefore from Lemma [I0§ we also know that

(x, (to, po) - (tzy pz) -« - (tn, pn),C.0") and (tg, ps,C.0") are well-typed

Therefore from (ET-IH) we have
Fvgaz, 31" (e, par C07)) b — 1V vz A Vs.011 Rav vo22 A (5 — ') = (i — 31") (ET-2)

From Definition 01] we know that
((tzs pus €.0")) = ((tas pz) (€D - (Cn—1) (Cu))

Since (s, pz, C'.0") is well typed therefore we know that
((tz; pu, C'.0")) =
((tz: pa) (C) - .. (Cn—1) (Cn)) =

Ap.release — = p in bind a = store() in bind b’ = e}, @ in bind ¢ = store!() in bind d = store() in b" (coercel le}, ¢) d
where

ey = ((ta, pa) (€') ... (Cr-1) (Cn-1))

ety = (Cn)

Since from (ET-2) we know that ((z, pe, C'-0"7)) I — 491" vggo

Therefore it suffices to prove that

173

vg22 (coercel lei, ¢) d || — P9 vy and Vs.vg, 2oV Voo (ET-p)

Since we are given that ((x, (to, po) - - - (tz,) - - - (tn, pn), C'-0")) I} — U7 vy this means from (ET-1.1) we

have

Ap.release — = pin bind a = store() in bind b = €41 a in bind ¢ = store!() in bind d = store() in b (coercel less ¢) d |
— " vy

This means

1) ((z, (to, po) - - - (tzs pa) - - - (s pn), C07)) () 4 — lljil vp11 and
2) This means vg11 (coercel lews ¢) d || — |JY vy for some y s.t y + ji = j”

. S . ey o, .
Since from (ET-2) we have Vs.vg11 Rqv vg22 A and since e;s = e}, = (Cp) therefore from Definition
and Lemma [I01] we have

11 11 S
vga2 (coercel lef, ¢) d || — 7 771 vpy and Vs.vg1 Rqy Vg2

This means

]:// _ji/ — jf// _j:i// —

]// _jl// — Ji/ _ji// —
j"—3" =7 —34 (From IH)

O

Lemma 111 (Lemma for var : empty stack). Vi, p, 6.

O; A;. F_ ((z, (t0,00) - - - (tay pz) « - (tny pr)s€)) 1 — A

05 A;. - ((te, par€)) : = A

(](33‘, (to,Po) e (txapz) e (tnapn)v 6)[) () - U’j v =

(](txapme)[) () ‘U - lljil v
Proof. From Definition [92] we also have

(2, (to, p0)s - - - (tzs Pz)s - - - (tn, pn)s €))

= (=, (to, po), - -- (tr7p$)7 oo (tny pn))

=Az1...x...20.2) ((to, o)) - - ((Enyon))

Similarly from Definition [92] we also have

q(tmapzve)l) = (](tm,pm)[) (S_Vl)

Therefore from Theorem [74] we know that

((@, ((t1,p1)s - (s pu) - -, (tny pn))s €)) =

(A1 ... xpx) (B, 01)) - ((Eay p2)) - - ((Eny p0))) =

Ap.release — = p in bind a = store() in bind b = €41 ,, @ in bind ¢ = store!() in bind d = store() in b (coercel less ,, ¢) d

where

enn=(Az1...x...xn.x) ((t1,00)) - (Ezs p2)) - - ((Frm1s pn—1)))

et2,n = ((tn, pn)) (V4)

Simialrly

€tl,n =

Ap.release — = p in bind a = store() in bindb = €41 ,,—1 @ in bind ¢ = store!() in bind d = store() in b (coercel less n—1 ¢) d

where

erin—1=((Az1...z...2n.2) ((t1, 1)) - - - ((Ezy p2)) - -+ T2y Pr—2)])

e2n—1 = ((tn-1, Pn—1))

In the same way we have

€t1,1 =

Ap.release — = p in bind a = store() in bindb = €41 1 a in bind ¢ = store!() in bind d = store() in b (coercel les 1 ¢) d

where

€t1,1 = ()\.131 R A xn]})
er21 = ((t1,01))

Similalry we also get

€t1,1 =

Ap1. ret Ay.Apa. let!z =y in release — = py in release — = ps in bind a = store() ine; 1 a
where

e1=((Axe...z...2,.2))

174

and

€in =

Ap1.ret \y.Aps. let!z = y in release — = p; in release — = ps in binda = store() in e, a
where

€ln =0T = Ap.release — = pin bind — = Tl in oz

Since we know that

(Mg ... cxn.2) (T, p0)) - -+ ((tny) O U — W o
this means from E-release, E-bind, E-store, E-app that

(bind — =1 in ((tz, p2)) 0) 4 — 47 v S ,
Therefore from E-bind, E-step and E-app we know that ((tz,p.))) 4 — 4"t v O

Theorem 112 (Rederiving dIPCF’s soundness). Vt, I, 7, p.

Fr(tee):TA(tee) = (v,p€) = n<|t|*(I+1)
Proof. Let us rename ¢ to t; and v to t,41 then we know that

(tlv €, 6) — <t27 P2, 92) DR (tna Pns Hn) — (tn+17 12 6)

Since we are given that (¢, ¢, €) is well-typed therefore from dIPCF’s subject reduction we know that (t2, p2, 62)
to (tn, pn,0n) and (.11, p,€) are all well-typed.

From Theoremwe know that V1 < i < n.((t;, ps, 0;)) — —
Also from Theorem [94] we know that V1 < i < n.((¢;, ps, 0;)) is well typed

So now we can apply Theorem |88 and from Definition [86|to get
V1 <i<n+135.((t,pi,0)) O — Vi —
Next we apply Theorem for every step of the reduction starting from (¢1, ¢, ¢) and we know that either

the cost reduces by 1 and the size increases by |t| or cost remains the same and the size reduces.

Thus we know that size can vary from ¢ to 1 and cost can vary from j; to 0. Therefore, the number of
reduction steps are bounded by |¢| x (51 + 1)
From Theorem [72| we know that j; < I therefore we have n <|t|* (I + 1) O

B.5.4 Cross-language model: Krivine to dIPCF
Definition 113 (Cross language logical realtion: Krivine to dIPCF).

(Uk,p7€) ~y Ud £ Vg = Vg P

(ekap7 0) ~e €4 = vvk?7p/'(€k:7p7 9) i> (Uk7/)/7€) - 3’Ud-ed i> (% A (’Ulﬁp/ae) ~y UVd

Lemma 114. Vey,p,0,¢),p',6'.
(er,p, 0) = (€h, 0/, 0) = Fe/j.((ex, p,0)) = €y A ey = ((e}, p',0"))

Proof. Given: (ex, p,6) = (e, 0", 0")
To prove: 3e/y.((ex, p, 0)) — €/ A ey = ((e}, p',0"))

Lets assume it takes n steps for (ex, p,0) = (e}, o', 0)

We induct on n
Base case (n = 1)
1. Appl:
In this case we are given (t u, p,0) — (¢, p, (u, p).0)
Let p=C,,...C,, and 0 =Cg, ...Cp

From Definition 32 we know that

(](ek7 Ps 0)[) =

(Azy...zn.t uw)(Cp) ... (Cp.) (Co,)---(Co,)

From dIPCF’s app rule we know that

(Azy...2n.tu)Cp, ...Cp, Coy...Co, —

t{(CpuD/x1) - [(Cp) /n] wl(Cpr) fa] - - [(Cp, D /2] (Cor) - - (Co,)

We choose €], as t[(Cp,)/x1] ... [(Cp,D/xn] u[(Cp,)/x1] ... [(Cp.)/zn] (Co,)-..(Cs,) and we get thedesired
from Definition [02]

m

175

2. App2:
In this case we are given (A\x.t, p,C.0) — (t,C.p,0)
Let p=C,, ...C,, and 0 =Cg, ...Cy
From Definition 02] we know that
((A\z.t,p,C.0)) =
(Az1...zpAzt)(Cp) ... (Cp,) (C) (Co,) - .. (Co,.)
From dIPCF’s app rule we know that
Ay ... 2y Azt)(Cpy) - .- (Cp) (C) (Coy) - - - (Cay) =
t[(Cp.D /2] - - [1Cp,) /2n][(CD /] Co, - - . Co,,
We choose €/, as t[(Cp,)/x1]...[(Cp,)/2n][(C)/2] Co, ... Co
3. Var:
In this case we are given (z, (to, po) .- - (tn, pn),0) = (tz, pz,0)
Let 6 =Cp, ...Cyg,,

From Definition 02 we know that

(]('1:’ (to, pO) s (tna pn)v 0)[) =
Az1 . 2 ALL)(Cpr) -+ (Cp) (Co) - - (Co)

From dIPCF’s app rule we know that

(Azy ... 20.2)((to, po)) - - - (tns Pn)) (Co,) ... (Co,) =

(](tr7 pm)l) Co, ---Co,,

Let pp = Cy, ...Cy, therefore from Definition [92| we know that

(](tal? pI)D Co, ---Co,, =

)\szl ‘e xzk.tw (]CﬂhD [SPEN (]ka[) 091 ST Cgm

Therefore from dIPCF’s app rule we know that

((tzs p2)) Coy - -Co, =+ ta[(Car) /1) - [(Car) /k] Coy - Co,

We choose €} as t,[(Cy,)/z1] - .. [(Cx)/zk] Co, - .- Cy,, and we get the desired from Definition
4. Fix:

In this case we are given (fixz.t, p,0) — (¢, (fixx.t, p).p,0)

Let p=C,,...C,, and 0 =Cg, ...Cs,,

From Definition 02l we know that

((fixz.t, p,0)) =

(Azy ...y fixe.t)(Cp) ... (Cp.) ((fixz.t, p)) (Co,)---(Co,.)

From dIPCF’s app and fix rule we know that

(Azy ...y fixz.t)(Cp) - .. (Cp,) (C) (Cay)---(Co,) —

fixz.t[(Cp,) /1] - - . [(Cp,,) /xn][((fixx.t, p)) /2] Co, ... Cq,, —

t[(Cp, /1] - - - [(Cp, D /2n][((fixz.t, p)) /2] Co, ... Cp,

We choose €/, as t [(Cp,])/z1] ... [(Cp,)/zn][((fixz.t, p))/z] Co, ...Co

tion

m

and we get the desired from Definition

m

m

Inductive case
We get this directly from IH and the base case

Theorem 115 (Fundamental theorem). Ve, p, 6. (ex, p,0) ~ ((ex, p,0))
Proof. From Definition [I13]it suffices to prove that
Vg, p'.(ex, p,0) =5 (v, p'ye) = Fvg.eq 2 0g A (Vk, P’y €) ~y Vg
This means athat given some vy, p’ s.t (ex, p,0) — (v, o, €) it suffices to prove that
Fvg.eq — va A (Vg 05 €) ~u Vg
From Lemma [[14] we know that
3ey-(en, p,0)) = €y A ey = ((vr, ps)
Let p’ = Cy...C, therefore from Definition [92] we know that
((v, p's€)) = Az ... zpvg) (C1) ... (Ch)
Therefore from dIPCF’s app rule we know that
(o, 0 €)) = vi[(CaD /1] - . [(Cu /0]
We choose vq as vi[(C1)/z1] . .. [(Cn)/2,) and we get the desired from Definition [113]

176

and we get the desired from Defini-

C Examples

C.1 Church numerals

Nat = Mn.Va : N — Type.VC : N — N.
(V- ((a jin @ [C jn] 1) = MO (@ (jn +1)))) = MO (@ 0@ [([CO+...+C (n—1)+n)]1) — MO (e n))

e1 ey £ bind — =1line; ey

U:0;A; QT ey i —oM(n) U:0;A; Q05 Fey:
U:0;A; 0 ®Q;T1dTa F ey TleglM(n-i-l)TQ

Type derivation for 0

0=AAMN.ret \z.let{(y1,y2) = x in rety; : Nat 0

Ty =

Va.VC (V. (@ jn @ [C jn]1) = MO (0 (jin, +1)))) —= MO ((w 0 ® [0]1) — MO (v 0))
To.1 = VO (Vjn.((a jn @ [C jn] 1) — MO (a (jn +1)))) — MO ((0 @ [0]1) — MO (a 0))
To.2 =!(Vjn-((jn @ [C jn]1) = MO (a (jn +1)))) — MO ((a 0 ® [0]1) — MO (a 0))
To.3 =!(Vjn-((@ jn @ [C §n]1) — MO (a (jn +1))))
T =MO((0®[0]1) —o MO (x 0))
Tii=((a0®[0]1) — MO (a 0))

To1=a0
Tro =10]1
Ty = MO (o 0)
TI=a:N—=Type;C : N — Sort
D1:
TI; s f i Tos,yr i Toa,y2 i Too ety : MOTo
DO:

TL 5 f Tos,x Tk x:Th
Main derivation:

DO D1
TI; 5 f :Tos,x: To b let{(yr,y2) = x inrety; : T
TI; . f Tos b Az let{yr,y2) =z inretyy : Tha
TI; ;. f :Tos b ret . let{(y1,y2) = x inrety; : Ty
TI; ... B Af.ret \x. let{(y1,y2)) = x inrety; : Tp2
a:N = Type; ;.55 F AXf.ret Az let{(y1,y2) = x inretyy : Toa
g EAA (S ret Az let{(y1, y2) = zinretyy) : Tp

Type derivation for 1

T=AANf.ret \z.let! f, = finlet{{y1,y2)) = = in release — = y5 in E; : Nat 1
where
E; = binda = store() in f, [| T'{(y1,a)

To =Va :N = TypeNC : N — Sort.

{(Vjn-((jin @ [C jn] 1) — MO (a0 (jin +1)))) — (@ 0 @ [C 0+ 1]1) —o MO (ar 1))
To1 = VCNYjn.((@ jn @ [C jn] 1) — MO (a (jn +1)))) — ((¢ 0® [C 0+1]1) — MO (a 1))
To.2 =N (Yjn-((@ jn @ [C ju] 1) — MO (a0 (ju +1)))) — ((@ 0@ [C 0+ 1]1) — MO (a 1))
To.3 =/ (Vjn-((@ jn @ [C ju] 1) — MO (a (ji +1))))
To.a = (Vjn-((jn ® [C jin] 1) — MO (a ()
T =MO((a0®[C0+1]1) =MO(a 1))
Tia=((a0®[CO0+1]1) MO (a 1))
Th=(a0®[C0+1]1)

177

T2,1:Oé0
Tyo=[C0O+1]1

T35 =MO (1)
TI =a:N— Type;C : N — Sort
D7:

TI s fu s Toasyr : Tonsa: [CO]1E (y1,a)) : (T20 @ [C 0]1)
D6:

TI; ';fu : T0.4; . F fu H : T0.5
D5:
D6 D7

TI; . fu i Toasyn : Toz,a: [COILE f [| M {(y1,a) :Mlal

D4

D4
TI; . fu:Toa;y1 : Toa,y2 : Too b store() : M(C 0) [C 0] 1
TI; 5 fu: To.45y1 : To1,y2 : To2 F binda = store() in f, || T1(<y1,a>> M(CO+1)al

D5

Da3:
D4
TL 5 fu:Toasyn : Toa b B - M(CO+ 1)l
D2:
D3
TI; 5 fu i Toa5y2 : Too b y2 : Too
TI; .;fu : T0'4;y1 : T2.17y2 : TQ.Q F release — = Y2 in E1 : T3
D1:
D2
TI . fu:Tosx:To bk x:Th
TI; . fu: Toa;x: To b let{{yr, y2)) = x in release — = yo in Ey : T3
DO:

TIsf:Tost f:Tos
Main derivation:

Do D1
TI; . f :Tos,x:Toblet! fy, = finlet{(y1,y2)) = x inrelease — = yo in Ey : T
TI; ;5 f Tost A let! fi, = finlet{(y1,y2)) = x in release — = yo in Ey : 11 4
TI; ;. f :Tostretdx.let! f,, = finlet{{y1,y2)) = x in release — = ys in Ey : T}
TI; ... B AMf.retXx.let! f,, = finlet{{y1,y2)) = x in release — = yo in Ey : T2
ga:N = Type; ;. F AXf.ret \x let! f,, = finlet{(y1,y2) = x in release — = yo in Ey : Ty
g EAANf ret Az let! £, = finlet{(y1,y2) = 2 in release — =y in Ey : T

Type derivation for 2

2=AANf.ret\z.let! f, = finlet{{y1,y2)) = = in release — = y5 in bindb = E; in E5 : Nat 2
where

E; = binda = store() in f, [] 1*{(y1,a))
Ey = bindc = store() in f, [] 11((b,¢)

Ty =
Va : N = Type VC(Vjp.((a jn @ [C jn]1) o MO (e (jn +1)))) = (¢ 0® [C0+C 1+2]1) — MO (a 2))
Toa =VC!(Vjn.((a jn ® [C jn]1) = MO (e (jn+1)))) = (¢ 0@ [CO0+C1+42]1) — MO (« 2))
To.2 =N (Vjn-((jn @ [C ju] 1) = MO (v (jn +1)))) —= (@ 0@ [C 0+ C1+42]1) — MO (a 2))
To.a = (Vjn-((@ jn @ [C jn] 1) — MO (a (jn +1))))
Tos=(a0®[C0]1) MO (1)
T1 =MO((c0®[CO0+C1+2]1) — MO (a 2))
Ti1=(c0®[C0+C1+2]1) -MO(«a 2))

178

Th=(a0®[C0+C1+2]1)

Tg‘l =al

Too=[C0+C1+2]1
T3=M1(O(2)

T35 =M(CO0+C1+2)(x2)
TI =a:N— Type;C : N — Sort

D5.22

D5.21

D5.2

D5.1

D5:

D4.12:

D4.11:

D4.1:

D4:

D3.2:

D3.1:

D3:

D2:

D1:

DO:

TI; . fu:Toasb:al,e: [(CH]1TE{(bc): (al®[(C1)]1)

TI; . fu:Toa-F fu ll - Tos

D5.21 D5.22
TI; fu :Toasb:al,c: [(CD1E fu] 41 (b, c)y : Ts

TT;.; fu: To.a;- b store() : M(C 1) [(C 1)]1

D5.1 D5.2
TI; . fu:To4;b:alk binde=store()in f, [] (b,c)) : M(C 1+41) (2)
TI; fu:Toa;b:albFEy: M(C1+4+1) (2)

TI; 5 fu: Toa; 1 : Toa,a: [(C0)1F (y1,a) : (Toq @ [(C 0)]1)

TI;';fu :Toa;. fu H :Tos

D4.11 D4.12
TI . fu: Toasyn - Tog,a: [(CONLE fo [1 (y1,a) : M1 (al)

TI;.; fu:To.4;. Fstore() : M(C 0) [(C 0)]1 bad

TT; . fu:Toa;yr: Toa F binda = store() in f,, [| T {(y1,a) : M(C 0+ 1) (a 1)
TL; 5 fu:Toasyr : Toa b B M(C0+1) (1)

D4 D5
TI, . fu : T0.4;y1 : T2_1 F bindb = E1 in E2 : Tg.l

TI; 5 fu:Toasy2 : oo y2 : Too

D3.1 D3.2
TI, ,fu : T0.4;y1 : Tg,l,yg : T2A2 F release — = Y2 in bindb = E1 in E2 : T3

TI; . fy :Tog;x:To b x:To

D2 D3

TI; . fu: To.a;2 : To k- let{{y1, y2)) = @ in release — = yo in bindb = Ej in By : T}

TI; . f:Tosk f:Tos

179

DO0.0:
DO D1

TI; .. f :Tos,v:To - let! f,, = finlet{{y1,y2) = z in release — = yo in bindb = FE; in Ey: T3

TI;.;.;f :Tos Az.let! f,, = finlet{{y1,y2)) = x in release — = y5 in bindb = E; in Ey : T1 4

TI; ;. f :Tost ret Az.let! f, = fin let{(y1,y2)) = 2 in release — = yo in bindb = FE; in By : T

TI;.;.;. Af.ret Ax.let! f, = finlet{(y1,y2)) = = in release — = yo in bindb = E; in By : Ty 2

Main derivation:

DO0.0

o :N— Type;.;. F
ACAf.ret Az.let! f,, = fin let{(y1,y2)) = x in release — = ys in bindb = E; in B : Ty
g EAANfret Az let! f, = finlet{(y1,y2) = x in release — = yo in bindb = Ey in Ey : Ty

Type derivation for succ: Vn.[2]1 — MO (Nat n — MO (Nat (n + 1)))

succ = Ap.ret A\N.ret A.ANf.ret \z.let! f, = f in let{y1,y2)) = x in release — = g5 in Ey
where

FEy =release — =pin binda = F; in F,

E1 = bindb = store() in bindby = (N [] [] tH!f) in b1 ™ {y1,b)

E3 = bind ¢ = store() inret f,, [] 11 {((a, c))

T,=[2]1
Ty = Vn.T, — MO (Nat[n] — MO0 (Nat[n + 1]))
To.o = T, — MO (Nat[n] — MO (Nat[n + 1]))
Tp.01 = MO (Nat[n] — MO (Nat[n + 1]))
To.1 = Nat[n] — MO (Nat[n + 1])
To.2 = MO (Nat[n + 1])
TO.ll = Nat[n]
Toa2 =
Va : N = Type VC I (Vjn.((a jn @ [C] 1) —o
MO (a (jn + 1)) =MO((@0®@[CO+...+C (n—1)+n]1) — MO (a n))
Toas = YCU(Vjn-((Gn ® [C ju] 1) — MO (@ (ju + 1)))) —
MO((a¢0®[CO+...+C (n—1)+n|1) = MO (an))
To1a =/(Vja-((@ jn @ [C ju] 1) — MO (@ (ju +1)))) —o
MO((a0®[CO+...+C (n—1)+n]1) MO (an))
To5 =MO((¢0®[CO+...+C (n—1)+n]1) MO (a n))
Tois=((a0®[CO+...4+4C (n—1)+n]1) =MO(a n))
T0,2 = Nat[n-i—l]
T =
Va : N = Type VO (Vijn. (a0 jn @ [C jin] 1) — MO (a (jn +1)))) —
MO((@0®[(CO+...+C (n)+ (n+1))])wMO((n+1)))
Tyy = YO (@ G © [C 4] 1) —> MO (t (ju + 1)) —
MO(@a0® [(CO+...4+C (n)+(n+1))]1) MO (x (n+1)))
T1.2 =!(Vjn-((@ jn ® [C jn] 1) — MO (a (jn +1)))) —
MO((c0®[(CO+...+C (n)+(n+1))]1) — MO (a (n+1)))
T1.3 =!(Yjn-((a jn ® [C jn] 1) = MO (a (jn +1))))
Tyt = (Fjn((0 n © [C ja] 1) — MO (@ (ja + 1))
Tiao=MO((¢0@[(CO+...4C (n)+(n+1))]1) =MO(a (n+1)))
Tia=((a0®[(CO+...4C(n)+(n+1))]1) =MO(a (n+1)))
Tisn=(@0@[(CO+...+C (n)+(n+1))]1)
Thi411=a0
Ti42 =MO(a (n+1))
Tia3=M(CO+...+C(n)+ (n+1)) (e (n+1))
T14s=MCO+...+C(n—=1)+n+2)(an)
Ty 45 = M(Cn+ 1) (a (TlJr 1))
TI = a;n,C

180

D3.1:

TI i fu: Traa:ane: (CmILF fo | 1 (a.c): Mla (n+1)

D3:
D3.1

TI;.; fu :Tis1;. F store() : M(C n) [(Cn)|1
TI; . fu:Tisi;a: an b binde=store() in f, [| T {a,c) : Th 5

D2.3:

TI; . fu: T390 : Thiann, b [nx C1 1,6y Toae b1t Toae

TI;.;fu : T1_31;y1 ZT1.411,bZ [(CO+ +C (TL— 1) + (n))] 1,b1 :/1—’().16 [
(1,0) : (T @ [(CO+...+C(n=1)+(n))]1)
TI,,fu : T1.31;y1 2T1.411,b5 [(CO+ +C (’Il* 1) + (n))] l,bl 2T0_16 - b1 T1<<y1,b>> SMIOZ n

D2.2

TI; . fu: T1.31§N Toa - N [] [] Tllfu : To.151

D2.1:
D2.2 D2.3
TI, ;fu : Tl.gl;N : T0_1Ly1 : T1_411,b : [(C O+...+ C (n - 1) + (n))] 1+
bindby = (N [] [| t'1£.) in by 1 {(y1,b) : M2an
D2:

D21

TI; . fu:Tis1;.Fstore() :M(CO+...4C(n=1)+n)[(CO+...4+4C (n—1)+ (n))]1
TI; . fu:Tisi; N : Toqr,v1 : Thann b bindb = store() in bind by = (N [[| 111f.) in by 1 {y1, b)) : Thaa
D1.5:

D2 D3
TL; . fu:Tis; N :Tor1,v1 :Thann b BT TI; . fu:Tisisa:ant Ey i Thys
TI; . fu: Ths;91 : Than Fbinda = By in By : T 431

D1.4:
TL 5 fy Thaup: Ty Fp: T,
D1.3
D1.4 D1.5
TI; . fu:Tis; N To1,p: Tp,y1 : Th.411 Frelease— =pin binda = Fy in By : T 43
TI; fu:Tis; N Toar,p: Ty, yr : Trann b Eo : Thag
D1.2
D1.3
TI; . fu:Ti31592 : Trai2 & Y2 2 Tha12
TI; . fu:Tisi; N : Toa1,0: Tpoyr : Thann, Y2 : Tharo b release — = yo in Eg : T4 40
D1.1
T fu:Tisye:Timbx:Tia
D1:
D1.1 D1.2
TI; 5 fu:Tis13 N Toa,p: Tpyx o Tian Flet{(yr, y2) = x in release — = yo in Ep : T 42
DO:
TI; . f Thsb f:T13
DO0.0:

DO D1
TI; ; ,N :To.11,p: Tp, f Tys,x: Ty B Iet!fu = f in Iet((yl,y2>> =z in release — = ysin Fo 1 TY 40

TI; . .;N :To11,D: Tp7f Ty 31 F Az Iet!fu = f in |et<<y1,y2>> =uxinrelease — = ys in Fy:Ti4

TI; ;5N :Toa1,p: Ty, f : Tis b ret Az let! fi, = finlet{(y1, y2)) = x in release — = ya in Ey : T1 40

TI:.::N:Ty11,p: T, F Af.retdz. let! f,, = finlet{(y1,y2)) = x in release — = yo in Ey: Th o

;s N Toar,p: Ty B AANf. ret Az let! f, = finlet(y1,y2)) = x in release — = ys in Ey: T}

a3 N Toar,p: Ty b ret AAANSf. ret Az let! f, = fin let((y1, y2)) = z in release — = yo in Eq : Tp 2

181

Main derivation:

DO0.0
;s ap: Ty AN ret AANf. ret Az let! f, = fin let{(y1,y2)) = x in release — = y2 in Eo : Ty
an; g ap: Ty ret AN.ret AANf. ret Az let! f, = fin let{(y1, y2)) = @ in release — = ya in Ey : Tp.01
;. FAp ret AN ret ALANf. ret A\x. let! f, = finlet{{y1,y2)) = x in release — = y5 in Ey : To.o
G E A ret AN.ret ALAANf. ret A\z. let! f, = finlet{(y1,y2)) = x in release — = y2 in Ey : T

Type derivation for add : ¥ni,ns. [(n1 * 3+ n1 +2)]1 — MO (Nat ny — M O(Nat ny — MO (Nat (n1 + n2))))

add = A.Ap.ret AN;. ret A\Ny.Ey

where

FEy =release — =pin binda = F; in Fy

E0.1 = release — = y, in bind by = (bind by = store () in succ [ba) in by 1 1

E; =Ny [[] TH(AN. let{(y1,y2)) =t in E0.1)

E5 = bind b = store() in a (N2, b))

T,=[(n1 *3+n +2)]1

Ty = Vni,n9. T, — MO (Nat ny — MO (Nat no — MO (Nat (n1 + n2))))

To.1 = Vng. T, — MO (Nat ny — MO0 (Nat ng — MO (Nat (n1 + ng2))))

To.2 =T, — MO (Nat ny — MO (Nat ng — MO (Nat (n1 + n2))))

To.20 = MO (Nat n; — M0 (Nat ny — M 0 (Nat[ny + ns))))

T0_21 = (Nat ny —o MO (Nat g —© MO (Nat[m + TLQ])))

T0,3 = MO (Nat N9 —0 MO (Nat (77,1 + TLQ)))

To.31 = Nat no —o I\\/JIO(Nat (n1 + 712))

Toa=M1 (Nat (n1 + ’I’Lg))

To.20 = MO (Nat (n1 + ng2))

Tos = M(ny *3+mny +1) (Nat (n1 + n2))

TO'G = M(nl * 3 +ny + 2) (Nat (77,1 —+ TLQ))

T =
Vo : N = Type VCI(VE.((a k @ [C k]1) — MO (o (k+1)))) —
MO((a0®@[(CO+...4+C (ny —1)+n1)]1) — MO (a (n1))

ay = Ak.Nat (no + k)

Ty = VYON(Vk.((ay k ® [C k] 1) — MO (ay (k+ 1)) —
MO((af 0® (CO+...4+C (n1 —1)+n1)]1) — MO (ay n1))

T2 =VCI(Vk.((Nat (ng + k) ® [C k]1) —o MO (Nat (ne + (k+1))))) —o
MO ((Nat (no+0)® [(CO+...+C (ny —1)+n1)] 1) —o MO0 (Nat (n2 + n1)))

Ty 21 =!(Vk.((Nat (na + k) ® [C k]1) o MO (Nat (ny+ (k+1))))) —
MO ((Nat (no+0)@[(CO+...4+C (ny —1)+n1)]1) — MO (Nat (n2 +n1)))[(As —.3)/C]

Ty 90 =!(Vk.((Nat (n2 + k) ® [3]1) — MO (Nat[ng + (k + 1)])))

Ty 23 = (Vk.((Nat (no + k) ® [3]1) — MO (Nat[ns + (k + 1)])))

T1.24 = ((Nat (n2 + k) ® [3]1) — MO (Nat (n2 + (k+1))))
T1_241 = (Nat (ng + k’) &® [3] 1)
T 2411 = (Nat (ng + k)
T 0412 = [3]1
T1,242 = MO (Nat (TLQ + (k + 1)))
Ti.3 =MO((Nat (ng +0) @ [(n1 * 3+ n1)] 1) — MO (Nat (ng +nq)))
Ti.30 = M1 ((Nat (ng +0) @ [(ny *3+mn1)] 1) — MO (Nat (ny +n1)))
T131 = ((Nat (n2 +0) ® [(n1 *3+n1)]1) — MO (Nat (n2 +n1)))
T2 = Nat %)
T3 = (Nat (ng + k) — MO (Nat (n2 + k +1)))

D3:

ani,ng; s Ny Ty E Ny T
D2.10:

D3
5y, .. B (Adk.Natng + £]) : N — Type

ani,ng; s Ny T BNy () Tha
ani,ng; s Ny T BNy [T

182

D2:
D2.10

sny,ng; . (A —.3) N> N
sn1,ng; s N TN [] T

D1.32:
5n1,na, ks be 2] 1 suce [be : MO T3
D1.31:
D1.32
sni,ne, ks ... store() : M 2[2] 1
smy,ng, k; ... F (bind by = store() in succ [| b) : M 275
D1.3:

D1.31 .
.;ﬂ17ﬂ27k‘; ey T1_2411,b1 : T3 }_ bl T Y1t Ml Nat[n2 +]f + 1]

N1, M2, ks sy Thoarn F bind by = (bind by = store () in succ [by) in by T y1 : M(3) Nat[ny + k + 1]

D1.2:
D1.3
sn1, N2, kg2t Tiog12 B oy2 c 10412
an1,n2, ks gy Tioann, Y2t Tioaie B
release — = yo in bind by = (bind by = store () in succ [] by) in by 1" y1 : MO Nat[ng + k + 1]
D1.1:
D1.2
sni,ne, kgt T Ft i Tog sni,ne, kg sy Thoarn, yo i Tiogro = E0.1: Ty
ani,ng, kst Thog Flet((yr,y2) = tin E0.1: Ty 940
ani,ne, kg B At let{(y1, y2)) = tin E0.1) : Ty 04
D1:
D1.1
D2 N1, N5 F (A)\t |et<<y1,y2>> =tin EOl) : T1_23
a1, ne; e FIAME let{(yr, y2) = tin E0.1) : Ty 29
an,ng; s Ny TV E Ny [PHUANE let((yr, yo) = tin EO0.1) : Ty .30
DO0.1
D1
ani,nos s Ny T, Nyt Ty b By Tt o
D2.1:
4 N1,N2;5 g ,E N Tz,a . T1.317b : [(nl * 3 + nl)} 1 l_ a Tl«ﬁg, b>> N T0'4
D2.0:
D2.1
M1, ne; ... Eostore() : M(ny %3+ n1) [(n1 x34+n1)]1
n1,n2; 53 Ny T, Nyt Toya: Ty 31 - bindb = store() ina 1 (N2, b)) : To.s
DO0.2:
D2.0
ana,ne; 53Ny T, No i Toya:Tis - By i Tos
DO:
DO0.1 D0.2
N1, Na; g .;ﬁl : Tl,ﬁg : T2 F binda = E1 in E2 : T()_G

DO0.0

DO

gny,ne; s ap:i Ty Ep T,

5 MN1,N2; D TP,E:TLE :Th - release — = pin binda = Fy in FEs : Ty 49

183

Main derivation:
DO0.0

5 MN1,MNe; D Tp,ﬁl :Ty - AN2.Ey : T3,
SN, N9; P Tp,ﬁl T Fret AN2.Ey : Ty 3
gn,ne; . ap Ty AN . ret \N5.Ey : Tp.01
5mn1,ne; . ap Ty b oret AN . ret AN3.Ey : Tp.20
M, Mes . Ap. ret AN ret ANo. Ey : To.o
anas . E Ap. ret ANy ret ANo.Ey : To 1
g FAANp. ret AN7. ret AN2.Ey : Ty

Type derivation for mult
mult : Vg, ng. [(n1 x (ng %3 +ng +4) +n1 +2)]1 — MO (Nat ny —o MO0 (Nat ny — MO (Nat (n1 xn2))))

mult = A.A\p. ret \Ny. ret(AN5.Ep)

where

FEy =release— =pin binda = F1 in Ey

E0.1 = release — = y5 in bindb; = (bind by = store () in add [] [| bo 11 Na) in by 1ty
El = N1 [] H Tl '(A)\t |et<<y1,y2>> =tin EO].)

E5 = bind b = store() in a 11((0, b))

Tp: [(nl*(n2*3+n2+4)—|—n1—|—2)]1
Ty = Vnq,n2.T, — MO (Nat ny — MO (Nat ng — MO (Nat (n1 *ng2))))
To.1 = Vno. T, — MO (Nat n; — MO (Nat ng — MO (Nat (n1 * n2))))
To.2 = T, — MO (Nat ny — MO (Nat no — MO (Nat (nq *n2))))
To.21 = MO (Nat n; — MO (Nat ng — MO (Nat[nq * n2])))
T0,22 = (Nat ny —o MO (Nat Nng —o MO(Nat (n1 * ’I'LQ))))
To.3 = MO (Nat ng — MO (Nat (nq % na)))
To31 = (Nat ng — MO (Nat (n1 * nz)))
T0,4 =M 1 (Nat (n1 * 77,2))
Tos = M(nq * (ng *3+ng +4) +n1 + 1) (Nat (ng *xn2))
To.s = M(ng * (na * 3+ na +4) +ny + 2) (Nat (nq xns))
T, =
Yo N = Type¥CI(Fjn((@ jn © [C ju] 1) o MO (a (n +1)))) —o
MO(a0®@[(CO+...+C (ny—1)+mn1)]1) oMO (a n1))
ay = Ak.Nat[ng * k]
Tha= VC~!(an'((af Jn @ [C Jn] 1) = MO (af (Jn + 1)))) -
MO((af 0@ [(CO+...4+C (n1—1)+n1)]1) — MO (af n1))
Ty 2 =VCI(Vj,.((Nat[ng * j,] & [C jn]1) — MO (Nat[ng * (4, + 1)]))) —
MO ((Nat[nz x0] @ [(C O+ ... +C (ny — 1) +nq1)] 1) — MO (Nat (ng *nq1)))
Ty =! (V- (Nat[ns 5 ju] © [C ja] 1) —o MO (Natlna % (i + 1)]))) —
MO ((Nat[ne 0] @ [([CO+...4+C (n1 — 1) +nq1)]1) — MO (Nat (nz *n1)))[C/(A.(n2 * 3+ n2 + 4))]
T1.22 =!(Vjn.((Nat[ng * jn] ® [(ng * 3+ ng +4)] 1) — MO (Nat[ng * (jn +1)])))
Ty a5 = (¥ ((Natlnz] @ [(n2 %3+ o+ 4)] 1) — M0 (Nat[n * (j, + 1)])))
T1_24 = ((Nat[’l’bg * k] X [(7’2,2 * 3+ no + 4)] 1) —o0 MO (Nat[n2 * (k + 1)))
T1,241 = (Nat[ng * k] X [(ng * 3+ no + 4)} 1)
T1.2411 = (Nat[ng * k]
Ty 2412 = [(ne * 3+ ng +4)]1
T} 242 = MO (Nat[ng * (k + 1)])
T1.3 = MO ((Nat[ng * 0] @ [(n1 * (n2 * 3+ ngo+4) +n1)]1) — MO (Nat (ng *n1)))
T1_30 = Ml ((Nat[ng * 0] ® [(n1 * (TLQ * 3+ ng + 4) + Tll)] 1) —o MO (Nat (n2 * nl)))
T1.31 = ((Nat[ng * 0] ® [(n1 * (n2 * 3 +n2 +4) +n1)] 1) — MO (Nat (nz *n,)))
T5 = Nat no
T3 = (Nat[ng * k] — MO (Nat[ng * (k4 1)]))

D3:

ani,ne g o N TV F N T

184

D2.10:

D3
51,9 B (Ak.Natng x k]) : N — Type
ani,ng; s Ny TNy [T
sn1,ng; s N T E Ny [T
D2:
b2.10 ST, NS .:(/\S - (E* 34+ns+4):S—S Toinpp
sni,ng; . Ny T H Ny [] [] 2101
D1.32
g, ng k. Fadd][] by T Ny M1 T3
D1.31
sni,ne, ki Estore () : M(ng 34+ no +2) [(ne 3 +ns +2)] 1 b3z
sni,ne, kg yr s Thear, b1 0 Ts F (bind by = store() in add [] [] b2 Ny : M(ng * 3 4 no + 3) Ts
D1.3
D1.31 -
sni,ne, kg yr s Thear, by : Ts H by 15 y1 : M1 Natng x (k+ 1)]
1, ng, ks e bind by = (bind by = store () inadd [] [| by 1 No)inby 1y :
M(ng * 3 + ng + 4) Nat[ng * (k + 1)]
D1.2:

D1.3

sn1,n2, kY2 Tioaie B ya c 10412

snasng, kg s Tioan, vzt T b
release — = yo in bind by = (bind by = store () in add [| [| b 1! N3) in by 1!y : MO Nat[ng * (k + 1)]

D1.1
D1.2
any,ne kst Tiea Bt Ty sn1,ne, ki yn s Thioan, Yo 2 Ti2aie B E0.1 T 240
any,no, kgt Thogr Flet{(yr, y2) = tin E0.1) : Tq 040
amy,na, kg E A let{(yr,y2) = tin E0.1) 1 17 04
D1:
D1.1
D9 any,ng; . B (A let{(y1, y2) = tin E0.1) : T} .03
sy, ne; . FHAME let{(yr, y2) = tin E0.1) : T 29
ang,nas N Ty N [] (AN let{yr, y2)) = tin E0.1) : T} 50
DO.1:
D1
sm1,ng; 3 Ny T, Ny Ta = By Thgg
D2.1:
a1, ne; 3 Ny i Tava s Tigy, b [(ng * (ng x3+no4+4) +n1)]1Fa 12(0,b) : Toa
D2.0:

D2.1

M1, Me; .. ostore() t M(ng * (ng %34+ ng +4) +n1)[(ny * (ne*3+ng+4)+nq)]1
an1,n9; Ny Ty, Ny : T, a: Ty g1 b bindb = store() ina 11((0,b) : Tos

DO0.2:
D2.0

ani,ne; s Ny T, No c Tosa: T - By i Tos

DO:
DO0.1 DO0.2

.;nl,ng;.;.;ﬁl . Tl,ﬁg : T2 F binda = E1 in E2 : T().(;

185

D0.0
DO

ani,ne; s ap Ty Fp T,

n1,n2;5. 50 Ty, N1t Ty, Ny : Ty - release — = pin binda= Ey in Ey: Ty

Main derivation:
DO0.0

M1, N95 5P Tp,ﬁl Ty F AN2.Ey : Tosn
SN1,M2; D Tp,m Ty ret AN5.Eo : Ty 3
ani,no;.p Ty B ANy ret ANo.Ey : Tp 22
sni,ne; g T F ret AN7. ret \N3.Ey : Tp.01
Sn, e Ap ret ANT . ret AN>. Eg = Ty.o
ana; . E Ap. ret ANT. ret ANo. Eg : To 1
g FAANp. ret AN7. ret AN2.Ey : Ty

Type derivation for exp
exp 1 YNy, n2. [3 e 10,13 (Ak.(n1 * (n¥ *3—|—n1 +4)+n1+4) (1) +na+2]1—o
MO0 (Nat ny — MO (Nat ny — MO (Nat (n]?))))

exp = A ADp. ret AN7. ret AN>. E

where

FEy =release — =pin binda = F; in Fy

Eo.1 = release — = yo in bindb; = (bind by = store () in mult [] [| b2 1 Ny) in by 1t
E1 N2 [] H Tl '(A AE. Iet(<y1,y2>) =tin EO. 1)

Ey = bindb = store 1 in a 11((1, b))

P =3 ictoms—1yMk.(n1 (nf 3+ nf +4) +ny +4) 1) +nz +2

T,=[P]1

Tb: [P—1]1

To = Vni,n2.T, — MO (Nat ny — MO (Nat no — MO (Nat (n}?))))
To.1 = Vno. T, — MO (Nat n; — MO (Nat no —OMO(Nat (n1?))))

Too =T, ﬂMO(Nat ny — MO (Nat no — MO (Nat (n7?))))
To.20 = MO (Nat n; — MO (Nat no — MO (Nat[n]?])))
To.o1 = Nat ny —o I\\/JIO(Nat Ng —o MO(Nat (n?"’)))
To.3 = MO (Nat ne — MO (Nat (n7?)))
T0_31 = (Nat Mo —° MO (Nat (n’lu)))
T0_4 = Ml(Nat (n2))
Ty = W(P 1) (Nat (}*))
To.c = MO (Nat (nf?))
T, =
Yo N = Type IO (Fjn-((@ ju @ [C ju] 1) — MO (a (n +1)))) —o
MO(a0®[(CO+...+C (ng—1) +n3)]1) MO (a na))
ay = Ak.Nat[nh]
T =
VC‘!(vjn'((af Jn ® [C jn]1) — MO (ar (Jn + 1)))) —o
MO((af 0@ [(CO+...4+C (n2—1)+n9)]1) — MO (af n2))
Tio =

vc'om ((Nat[nd'] @ [cm 1) — MO (Nat[ny" ")) —
IgNat[ng} [(CO+...4C (n2 —1) +n2)] 1) — MO (Nat (n]?)))
1.21 —

|(Vj.(Nat[nd] @ [(nq % (nd" % 3+ nd" +4) + ny +4)] 1) — MO (Nat[n§"T™]))) —
MO ((Nat[nd] ® [P] 1) — M0 (Nat (n}?)))
P =
Mk(nyx (E*34+nk +4)+n +4)0+... 4+ Ne.(n* (nF *3+nk +4) +ny +4) (ng— 1) +no
T} .22 =!(VE.((Nat[n§] @ [(n1 % (n} %3+ nf +4) +ny +4)]1) — MO (Nat[ny ™))
Ti23 = (VE.((Nat[nh] @ [(n1* (n} 3+ nf +4) +ny +4)] 1) — MO (Nat[ng""))))
Thos = ((Nat[nk] ® [(ny * (nf %3 +nb +4) +ny 4+ 4)] 1) — MO0 (Nat[n$ 7))
Ty 041 = (Nat[n’f] ® [(n * (n’f * 3+ n’f +4)+n; +4)]1)
Ti2411 = Nat[n’g]
T1.2412 = ([(nl * (nl * 3 + ’I'L]f + 4) + nq + 4)] 1)

186

Ty .242 = MO (Nat[nng)])

T3 = MO ((Nat[ng] ® [P]1) — MO (Nat (n}?)))
Ti.30 = M1 ((Nat[n] @ [P]1) — MO (Nat (n7?)))
Ti.31 = ((Nat[n3] ® [P]1) — MO (Nat (n}?)))

T2 = Nat ni

Ty = (Nat[nf] — MO (Nat[n{" "))

Da3:
ani,ne; 5 No Ty F Nyt T
D2.1:
D3 _
sn1,ne; ... B (Adk.Nat[ng]) : N — Type
ani,ng; s No T B Ny [] T
ani,ng; s No T BNy [i Tho
D2:
D21 = =
sn,ne; . Ak (nx (N *34+nf +4)+n +2)) : NN
ani,ng; s No:TiE Ny [] T
D1.32
ang,ng, ks aby s [(nnx (nE 340k +4) +ng +2)] 1 mult [[by 1Ny - M1T3
D1.31

a1, g, ks Fostore () M((ng % (nF %34+ nf +4) + 0y +2) [((ng * (0«3 +nF +4) +ny +2))]1
D1.32

1, M2, ks Thoar, by 2 T F (bind by = store () in mault [] [| by 11 N7) -
M(ng * (n¥«34+nk +4)+n1 +3) T3

D1.3
D1.31 - D
sni,ne ks yn c Thioan, by T b1 15y : M1 Nat[ng 7]
n1, Mg, ks sy - bind by = (bind by = store () in mult [[| by T2 Ny) inby 1y, -
M(ng * (n¥ % 34+ n¥ +4) +ny +4) Nat[ngkﬂ)]
D1.2:

D1.3

51, N2, kY2t Thoa12 B ya t Thoa12

an,n2, ks sy Tioars, Y2t Tioa1o B

release — = gy in bindb; = (bind by = store () in mult by ny (n§) 1 Ny)inby 11y : MO Nat[ngﬁ_l)}
D1.1
D1.2
sny,ne kst Tioa HETion sny,ne ks yn s Tioain, y2 Tieaia B EOL 0 T4
any,no, kgt Thogr Flet{(yr, y2) = tin E0.1) : T 040
amy,na, ko E A let{(y1,y2) =tin E0.1) 1 Th 04
D1:
D1.1
D9 gy, ng; . B (A let{(y1, y2) = tin E0.1) : T} .03
a1, ne; . FIAME let{(yr, y2) = tin E0.1) : T 29
ani,ng; s Ny T E Ny) AN let{(yr, o) = tin E0.1) : Ty .30
DO0.1:
D1
anime; s Ny T, No: T - Ey 2 Ty g
D2.1:

an1,no; 5 Ny Tova: Tist, b Ty ba tH(T,0) : Toa

187

D2.0:
D2.1

5 my,ng; ;.. Fstore() : M(P —2) Ty
1, n; s Ny T, Nt Ty a: Thzy F bindb = store() ina 1 ((1,b) : Tos

DO0.2:
D2.0
ani,ne; s Ny T, Ny i To,a:Tigi E By : Tos
DO:
DO0.1 DO0.2
ani,n9; o N Ty, Ny : To Fbinda=E1in Es:Ths
DO0.0

DO

gny,ne; s ap Ty Ep T,

SMN1,N9; G D Tp,m 2Ty, Ny : Ty Frelease — = pin binda = E; in Ey: Ty

Main derivation:

DO0.0

SM1,N9; P Tp,m Ty F AN2.Ey : Tos1
SN1,M2; D Tp,m : Ty Fret AN5.Eo : Ty 3

sni,n2; G ap Ty - AN;.ret AN3.Ey : Tp.o1
sni, e Ty F ret AN7. ret \AN5.Ey : Tp.20

Sn, e Ap ret ANT . ret AN5.Eg : Ty.o

ana; . E Ap. ret ANT. ret ANo. Eg : To 1

g FAANp. ret AN7. ret AN2.Ey : Ty

C.2 Map

map : Vn,c!l(11 —o MecTe) —o L™([¢] 1) — MO (L"72)
map =

fixf.A.ANgl.let! g, = gin Ey

Ey = match [with |nil — Egq |h::t— Epo

EO.I = ret nil

FEyo =releaseh, = hin Ey3

Eo3 =bindhy, = gy he in Eg 4

Ey4 = bindt, = f[][] lgu t in reth, :: t,

Typing derivation
E =fixf.A.AXgllet!g, = gin Ey
Ey = match [with |ml — Fo1 |h st FEyo
E0_1 = ret nil
FEyo =releaseh, = hin Ey3
Ey3 =bindh,, = g, he in Eg 4
Ey.4 = bindt, = f[][] lgu tinreth, :: t,
Ey = AAMglletlg, =gin Ey
Ey = Mgllet!g, =gin Ey
E3 = Iet!gu =g in EQ

To =Vn,c!(m11 — Mecta) —o L™([¢] 71) — MO (L"72)
T1 :!(Tl —0 MCTQ) —0 Ln([C] Tl) —0 MO(L”TQ)
Tiq=(n —Mc)

Tl.g = L”([c] T1)

T3 =MO(L"72)

D1.2:

anyeiin =14+ 1;f Ty, gu : Tia; hn : To tn : Lito b rethy, o2ty - MO L™

D1.2

gy iin =i+ 1;f Ty, g Tia;he o F F]]] lgu t : MO LiTy
anyciimn =1+ 1;f :To,gu: Tiashn i To,t 2 L([c]71) F Eo.q : MO L™y

188

D1.0:
D1.1

sneiin=1i+1;f:To,gu:Ti1;he : 71 F (gu he) : McTo
anyeiin=1+1;f: Ty, gy : T11;he : 71, ¢ Li([c] T1)F Eps:McL"my

D1:
D1.0

snye,iin=1i+ 1 f:To,gu : T1a;h: [T Fh:[dn
anycisn =14+ 1, f : Ty, gy : Tia;h: [d1i,t: L([] 1) F Eoo : MO L™y

DO:

an,en=0;f:Ty,gu:Tia;. Fnil : L'
an,en=0;f:Ty, 9y :T11;. Fretnil : MOL"
sn,en=0;f:To,gy : Tha;. = Eg1 : MOL" 7o

Main derivation:

DO D1

asn, e f T, g0 Tl i T E LT

anye; f Ty g1 g:1Th an, ¢ f i Toygu :T11;l: Tho b Eg : MOL"

anyc s fiTo;g: T, T o Es: MOL 1o

anyc s f T F By i Ty

gaafiTy . BTy

gaaa.FE Ty

C.3 Append

append : Vsq, s9.L5[1] T — L5217 —o M0 (L5 7527)
append = fixf.A. A\ ls.Ey

FEy = match [; with |7’LZl — Eoq |h st FEgo

Eyq1 =retnil :: Iy

Ey.o = release h, = hin bindt, = f[][] t l2in Ep3
Ep3 =bind— =1t inreth, :: t.

Typing derivation
FEy = match [; with |TLZZ — Fy1 ‘h st FEyo
E0_1 = ret ml o lg
Eyo =releaseh, = hin bindt, = f[][] t l2in Ep.3
E(].3 = bind — = Tl in ret he e

To = Vs1,80. L5 1] 7 —o L*27 — MO (L51F527)
Ty = L5 [1] 7 —o L5217 —o MO (L517527)

Tl.l = le[].]’r

Tio=L%2T

T1_3 = MO (L51+827’)

To = L%27 —o M s (L517927)

D1.2:
81,80,481 =i+ 1; f i Toshe : Tyte : L5271 b (he i t,) « L2
81,80,481 =i+ 1; f 1 Toshe : Tyte : L5271 b= ret(he i te) : MO (L*1F527)
D1.1
S1, 80,051 =i+ 1. F M1l b2
81,80,0581 =04+ 15 f : Toshe : Tote : L7527 - bind — = 1t inret hy =2 te : M1 (L5 7°27)
D1.0:

D1.1

5 81,80,0351 =i+ 1; f : Tost: Lir,ly : L5217 f00 tlz : M(0) (LHSQT)

5 81,89,0581 =i+ 1 f : Toshe : 7.t : L1, 1y : L¥27 F bindt, = f[][] t Iz in ret(he = te) : M1 (L**F527)

D1:
D1.0

581, 80,51 =1+ 1 f:To;h: [h:[1]7
81, 80,081 =i+ 1; f i Tosh: [1]1,t: Lit,ly : Tyo - Eoo MO(L(51+52)7')

189

DO:

581,82;81 =05 f : To;la: Tyo b ot LP2T
.381,82;81 = 0; f : To;lg : T1_2 F retlg : MO (L51+52)T

Main derivation:

DO D1
81,82 f tTosly Tl 2T

81,80 f i Tosly : Tl : Tio b Eg : MO (L2 °27)
581,825 f 1o F Alile.Ey - Ty
gaafiTo; . EANANG.Ey 2 Ty
G FAxf A AN Ey 2 Th

C.4 Eager functional queue

enqueue : ¥Ym,n.[3]1 —o 7 —o L"([2] T) —o L™7 — MO (L"T1([2]) ® L™7)
enqueue = A\ p a ly lo.release — = p in bindz = storea in bind — = 11 in ret(((z :: 1), o))

Typing derivation for enqueue enqueue
To =VYm,n.[3]1 — 7 — L"([2] 7) —o L™7 — MO (L"!([2] 7) @ L™T)
Ty =[3]1 -7 — L"([2]7) —0 L™7 — MO (L""*([2] 7) ® L™7)
Tio=1[3]1
Ty =7— L"([2] 7) — L™7 — MO (L"T([2] 7) ® L™7)
Ty = L"([2]) —o L™7 — MO (L"([2] 7) ® L™7)
Tg.l = Ln([2] 7')
T3_2 =L"r
Ty =MO (L™ (2] 7) ® L™T)
Ts =M1 (L"Y([2] 1) ® L™7)
Te = M3 (L"H([2]7) ® L™T)

enqueue = A\ p a Iy l.release — = p in bind x = storea in bind — = 11 in ret{((x :: [1),12))
E; = Xpallyrelease— = pin bindz = storea in bind — = 1! in ret((x :: 1), 2))

Ey = release — = p in bind x = storea in bind — = 1! in ret({(z :: I1), l2))

E3 = bindx = storea in bind — = 1! in ret({(z :: I1),l2))

Ey =bind — =1 inret{((z = 1), 12)

Es =ret{{(z :: 11),12)

D2:
amyng s 2]l LM([2)7),le : L™ - By Ty
D1:
.;m,n;.;.;.l—T1 :M11
smyn; gz 2]l LM([2)1),le : LT Ey Tk
DO:

D1

smym; ;a7 storea s M2([2)7)
smyn; . gac Ty L7([2]7),la: L1+ Es 2 T

Main derivation:

DO
amyn; s ap:TiobFp:Tig

smyn; s ap:Tio,a:7mlyc L([2]7),le : L™ By : Ty
amyn; ... E Ty

5. Fenqueue Ty

Dq:¥Ym,n.(m+n>0)=[1]1 — L™([2] 7) — L"T —o

MO (Fm/,n/.((m/ +n/ +1) = (m +n)&(L™ 2] T © L™ 7))

Dq 2 AAANply lp.match Iy with [nil = By |hg 2l — Es

E, =bindl, = M [|[] l1 nil in match I, with |nil — — |k, 2 I, — E14
E11 = release — = pin bind — = 11 in ret A.{(nil, I.))

Ey = release — = p in bind — = 1! in ret A.((I1,15))

190

Typing derivation for dequeue Dq
To=Vm,n.(m+n>0)=[1]1 — L™([2]T) — LT —o
MO (3m!,n/.(m! +n' +1) = (m+n)&(L™ 2] 7 ® L™ 7))
Ty, =(m+n>0)=[1]1— L™([2]7) — L"T —
MO @m0/ .(m! +n' +1) = (m+ n)&(L™ 2] 7 © L" 7))
Ty = [1]1 — L™([2] 7) —o L1 — MO (Im/, n/.(m/ +n/ +1) = (m + n)&(L™ [2] 7 ® L™ 7))
Tg‘l :Lm([Q] T) , ,
T3 =L —MO@@m/ ,n'.(m' +n' +1) = (m+n)&(L™[2] 7 @ L™ 7))
T3_1 =L"T
Ty = MO @/, n/.(m' +n' +1) = (m+n)&(L™ 2] 7 ® L™ 1))
Ty =M1GEm/ 0. (m' +n' +1) = (m+n)&L™[2] 7 © L" 7))
Ts = 3m/,n/.(m' +n' +1) = (m+n)&(L™ 2] T @ L 7))
Tsi = (3m/,n'.(m' + 0/ +1) = (m +n)&(L™[2] 7 @ L 7))[m/m’][i/n/]
T5.2 = (Lm[Q] T LnT) , ,
To=(m' +n' +1)=(m+n)&(L™ 2] T @ L™ 7)[0/m/][i/n']
T; = (LO2] 7 @ LiT)

Eo = AAAN ll lg.match lz with \ml — E1 ‘hQ o 1/2 — E2

FEyp1 = X ply ls.match I with \ml — |h2 i 1/2 — Eo

FEy.o = match [5 with |7’lZl — F4 ‘hg i l/2 — Eo

E, =bindl, = M [J[] Iy nil in match I, with |nil — — |k, 2 I — E14
Ej1 = release — = pin bindz = 11 in A. ret{(nil, I.))

Ey = release — = pin bindx = 11 in A.ret((ly,15))

D1.3:
.;m,'rL,i; (] +1= TL), (m+n) > O, .;hg : T,ZIQ : LiT,ll ZT2_1 H <<ll,l/2>> ZT5A2
D1.2:
— , D1.3
sm,n, i (j+1=mn),(m+n) >0 (m+i+1)=(m+n)
amyny iy (§4+1=n),(m+n) >0, hy 7,0yt Lty : Toq b A, 15) : Tsy
amyn, i (j+1=mn),(m+n)>0; . hy: 7,0y L)1y : Toq B A(I1,15) : Ts
amyn, i (5 4+1=mn),(m+n) >0 hy: 7,0y Lit,ly : Toq Fret A1y, 15) : Ty
D1.1:

D1.2

amyn,is(j+1=mn),(m+n) >0 hy: 70y P M11
amyn,is(j+1=mn),(m+n)>0;. hy: 7,0y LI7,1y : Taq Fbind — =1 inret A.(Iy,15) : Ty

D1:

D1.1
smyn,i;(j+1=n),(m+n)>0;p:[1J1Fp:[1]1

amyn, i (j+1=mn),(m+n)>0;. hy: 7,0y LI7,1y : Toq b release — = pin bind — = 1 in ret A.(I1,15)) : Ty

amyn,is(G+1=mn),(m+n) >0 hy: 7,0y Litly :To - Ey: Ty

D0.05:

smynyis(n=0),(G+1=m),(m+n)>0,0+u+1)=(m-+n);.;h.: 70 L'v+ {nil,I.) : Ty

D0.04:
smyn,i;(n=20),Gi+1=m),(m+n) >0 0+i+1)=(m+n) Do.05
amyn,is(n=0),(i+1=m),(m+n)>0;;h.: 7,0 : L'r = A{nil 1)) : Tg
amyn,is(n=0),(i+1=m),(m+n)>0;;h.: 70 : L'7 = A{nil 1)) : Ty
amynyis(n=0),(i+1=m),(m+n)>0;;h,: 7,0 : L't - ret A.{(nil, 1)) : Ty
D0.03:

D0.04

amyn,yi;(n=0),(+1=m),(m+n)>0;;h.: 70 Lr-1' :M11
amyn,i;(n=0),(+1=m),(m+mn)>0;.;h,: 70 : L' bind — = 11 in ret A.((ndl, I.)) : Ty,

191

D0.02:
DO0.03

smyn;(n=0),(i+1=m),(m+n)>0;;p:[1]1Fp:[1]1
smyn;(n=0),(i+1=m),(m+n)>0;;h. 7,0 :L'rp:[1J1FE;1:Ty

D0.01:

amyn;(n=0),(m+n)>0;.;.Ffixzx: Ty
DO0.0:
D0.01 D0.02

smyn;(n=0),(m+n)>0;;0: L"r k. : LMt

smyn; (n=0),(m+n)>0;.;l : L™, p:[1]1+F match I, with |nil — — |h, =1, — E11: Ty

DO:
DO0.0

smyn;(n=0),(m+n)>0;;l :Teqg =M [[] L1 nil : MO (L™7)
smyn;(n=0),(m+n)>0;;0:Teq,p: [1]1F Ey : Ty

Main derivation:

DO D1
smyn;(m+n)>0;5l: T3 Fle T

S Mm,n; (m+n) > O;.;ll ZTQ.l,lg : Tg.l,pi [1]1 l_EO,Q ZTO
smyn;(m—+n)>0;.;.F Egq: T
Gaaa.EEy Ty

Move : Vm,n.L™([2] 7) —o L™ — MO (L™""7)

Move £ fix MA.AX 1y ly.match Iy with |nil — Ey |hy 2 1} — By
E1 = ret(lg)

Ey = release — = hin bind — =12in M [|[] I} (hy :: l2)

Typing derivation for Mowve
To = VYm,n.L™([2] 7) —o L7 — MO (L™*"7)
Ty = L™([2] 7) —o L7 —o MO (L™F"7)
Tia=L™([2]7)
Ty = L't — MO (L™+"7)
Ton =1L"1
T3 = MO (L™"r)
Ty = MO (L7
Ts = M2 (L")

Ey = fix M.AAX Iy la.match Iy with |nil — Ey |hy 0 1] — Es
Epo = AAXI la.match Iy with |nil — By |hy 2l — Es
Eo1 = Ay la.match Iy with |nil — Ey |hy 1] — Es

Eyo = match [y with |nil — Ey |hy 1 1] — Es

E1 = I’et(lg)

Ey = release — = hin bind — =12in M [|[] I} (hy :: 12)

E2.1 = bind — = TQ in M HH lll (hl b lg)

Eyo =M [|[| 1} (k1 ::12)

D3:

amynyizi 1 =m; M To;l) : L2 7, 0lo : Tog b M [1 (hy 2 1p) : Ty

amynyisi 1 =m; M To;ly : L2 7,0y : Tan = M (|| 1} (hy 2 1p) : Ty
D2:

— 5 D3
smyn,ii+1=m;M:Ty;. H1°:M21
amynyisi 1 =m; M To;ly : L'[2) 7,0y : Tag - Eoq 2 Ts

D1:

D2

amyn, i+ 1=m; M :To;hy 2 2] 7 F hy 2 2] 7
amyn,izi+1=m; M : Ty hy (2] 7,05 L2] 7,1 : Toq b By : T

192

DO:

amyan; M Ty ls T - By T3

Main derivation:
DO D1

amangy M Tyl 2Ty Fl 2T
amyny s M Tyl i Ti,le T Eyo i 1Y
asm,n; o M Ty, - Ego:Th
oM Tos B Eoa:Too
Gaaa.EEy Ty
G E Move : Ty

C.5 Okasaki’s implicit queue
Typing rules for value constructors and case analysis

U0, A; 0 TTkFe: 7
T-CO0 T-C1
U:0;A; QT F CO : Queue T U:0;A; 0T FCI e: Queue T

U:0;A; ;T He:[1]1 —MO (T ® Queue (T ® 7))

T-C2
U:0;A; 0T C2 e: Queue T

U:0;A; QT Fe:[0]1 —MO((r ® Queue (TQ® 7)) ® 7)
U:0;A; 0T C3 e: Queue T

T-C3

U:0;A; QT Fe:[2]1 oMO((r®7) ® Queue (T ® 7))

T-C4
U:0;A; 0T CY e: Queue T

U:0;A; QT Fe: [1]1 =MO(((7 ® 7) @ Queue (T Q7)) @ 7)
U:0;A; 0T F C5 e: Queue T

T-C5

U:0;A; QT ke (Queue 7) U:0;A; 0T ey 1
U0 AT, z:7he 7 U;0;A; ;0,2 : [1]1 MO (T ® Queue (1@ 7)) Feg: 7
U;0;A; ;79,2 : [0]1 — MO (1 ® Queve (1 ® 7)) @7)Fez:7
U;0;A;Q;T9,2: 21 MO ((71®7) @ Queue (1@ 7)) Feq: 7
U;0;A; 0T, 2: [1]1 MO (((7®@7) @ Queue (TR7))@7T)Fes: 7
U 0;A; Q0T o - case e of |CO— ey |C1 z+—e1 |C2 x> ey |C3x > e3 |Claxrreq |Coxses:T

s T-caselQ

snoc : [2]1 — Va.Queue o — o — M0 Queue «
fix snoc.A\p. A\ q a.
— =releasepin — =11 ret
case ¢q of
|CO — ret C1 a

|C1 x—ret CL (Np”.ret{({(z,a)), COY)

|C2 x—
bind p’ = store() in
bindz' =z pin
let{(f,m)) =z’ in
ret(C3 (Ap".((f,m)), a))

|C3 x—
bind p’ = store() in
binda' =z p’inlet{(fm,r) =2’ in
let{(f,m)) = fmin bindp, = store() in
ret C2 (A\p”.
— =release p, in — = release p’’ in bind p"”’ = store() in
bindm’ = snoc p"" m (r,a)) in ret{(f,m’))

/11

193

|C4 ©—
bind p’ = store() in
ret C5 (\p”.
— = releasep’ in — = releasep” in
bind p"" = store() in let{(f,m)) =z p"" in

ret(({f, m)), a)

|C5 = —
bind p’ = store() in
bindz’ =z p'in
let{(fm,r)) = 2" inlet{(f,m)) = fm in
ret(C4 (Ap”.
bindm’ = snoc p” m in ret((f,m'))

Listing 4: snoc function

FEpo=— =releasep inEy 1

Eo1=—=14FEo2

Eo,g = case ¢q 0f|00 — E0|Cl €T — El\CQ T E2|03 €T +— E3|C4 T E4|C5 €T — E5
Ey =ret(C1 a)

Ey =ret Cf (\p".ret{({(x,a)y, COY)

E5 = bindp’ = store() in Eq 1

Eyq1=bindz’ =x p in E3,

Epo =let((f,m)) =2’ in Ey3

Eay = ret(C3 O {((f> m}) o))

E3 = bindp’ = store() in F3 1

E3_1 = bind l‘/ =X p, in E3.2

Eso = let{fm,r) =2’ in F33

Es 3 =let{(f,m)) = fmin E33

Es5.31 = bindp, = store() in E34

E3 4 =ret C2 (/\p".E3_41)

Es3 41 = — = releasep, in — = release p” in bind p
Es5 40 = bindm/ = snoc p"”" m (r,a) in ret((f, m"))

E, = bindp’ = store() in Ey1

Es1=retCH ()\p//.E4,11)

Es11 = — =releasep’ in — = releasep” in Ey 12

E4 12 = bind p"”" = store() in let{(f,m)) = x p""" in E413
Ei1s = ret({(f,m),)

E5 = bindp’ = store() in E5 1

E5q,=bindz’ =x pin E5,

Eso = Iet((fm,r)) =2z'in FEs3

Es3=let{f,m) = fmin Es5 4

Es54 =ret(C4 (Ap”. bindm' = snoc p’ m in ret{{f,m')))

""" = store() in E3 42

To.o = [2]1 —o Va.Queue o —o o — MO Queue o
To = M0 Queue o

Ty = M1 Queue

Ty = M2 Queue «

T3 = MO (a ® Queue (o ® a))

T5.1 = (@ ® Queue (o ® a))

T3.2 = Queue (@ ®)

Ty =MO (o ® Queue (0 ® o) ®)

Ty1 = (@ ® Queue (a ® o) @ a)

Tyo =a® Queue (@ @ «

Tis = Queuve (o ® «)

T5 =[2]1 o MO (a® a) ® Queue (@ @ «)
Ts1 = MO (o ® o) ® Queue (a ®)

T52 = (a® a) ® Queve (@ ® a)

Ts3 = (0 ®)

T5.4 = Queuve (o ® «)

194

Ts=[1]1 o MO ((¢ ® @) ® Queue (a ® a) ®)
To.x =MO ((a ® @) ® Queve (@ ® a) @)
To2 = (@ ® a) ® Queve (o ® a) @ «)
Tos3 = (@ ® a) ® Queve (@ ® a)

Toa = (0 ®)

T6.5 = Queue (o ® «)

T7 = MO (a ® Queue (o ® a))

Tr1 =M1 (a® Queue (o ® o))
Tra=M2(a ® Queue (a ® «))

Ts =MO(((a ® @) ® Queue (¢ ® a)) @)
Ts1 = ((a ® a) @ Queve (a ® a)) ® «

To =MO((a ® @) ® Queue (o ® «))

To1 = ((a® a) ® Queve (o ® a))

D5.5:

;558 Toosata, fiTea,m:Tos,p" : [2]1,m' 1 Queue (o @ o) F (f,m") : Ty,
a;.5.58 :Toosa:a, f:Tea,m:Tes,p" : [2]1,m : Queue (a ® a) & ret{(f,m") : Ty

D5.4:

D5.5
a; 58 Tooir:a,a:a,m:Tesp" 21 Sp" [| m {r,a) : MO (Queue (o ® a))

a;.;38 :Too;r:aaa, fi:Tga,m:Tes,p" : [2]1Fbindm' =8 p” [| m {r,a) in ret((f,m") : Ty
a;; 58 Toosr:a,a:a, f:Toa,m:Tes = (Ap”.bindm’ =S p” [| m {(r,a)) in ret((f,m")) : [2] 1 — Ty

;558 Toosria,aco, f i Toa,m:Tes -
(C4 (Ap".bindm’ = S p" [| m {(r,a)) inret((f,m'))) : Queue o

a;.558 :Toosr:aya:a, f:Tea,m:Test ret(C4 (Np”.bindm' =8 p” [| m {(r,a) inret{(f,m’)) : Ty

;S Togsria,a:a,f:Tga,m:TesE Esq:Th

D5.3:
D5.4
a;.;.58 : Toos fm:Tes b fm: T3
a; .58 Toosa:a, fm: Tz, r:aklet(f,m) = fmin E54: Ty
a;; 58 Tooa:a, fm: Tz, r:al Ess: Ty
D5.2:
/ , D5.3
;.08 ooz Teo b i Tyo
a;.558 Togsa:o,x’ : Teo b let{fm,r) = 2" in Es3: Ty
a; ;.58 Too5a: CV;CUI :Ts2 b Esa:Th
D5.1:
, , D5.2
a; 558 Toosx: Te,p' i [11F 2 p T
a;.;;S :Toosa:a,x:Te,p :[1]1Fbindz’ =z p'in Eso: Ty
a;.;.S :Toosa:a,x:Te,p 1)1+ Esq: To
D5:
D5.1
a; .38 : Too; . Fstore() : M1 ([1]1)
a; 558 Topsa:a,x:Tgh Es: T
D4.5:
;58 Togsa:a,x:Ts, f: Tsa,m:Tsa B ({f,m),a) : Ts1
;558 Toosa:ayx: Ty, f: Tsz,m: Tsa b ret{({(f,m),a)) : Ts
a;.558 Toosar o Ts, f i Tsg,m:Ts g Eyag: Ty
D4.4:

D4.5
;558 Toosw: Ts,p” 21 ko p” : Ts,4

a;558 :Togya:a,x: T, p" 211 Flet{(f,m)) =z p" in Ey13: Ty

195

D4.3:
D44

;.8 Topya:a,x: Ty Fstore() : M2 ([2]1)
a;.;.38 :Too;a: a,z: Ts = bindp” = store() in let((f,m) =z p”" in Ey13: Ts2
a; 558 Togsa:a,x:Ts - Ey10:Tgo

D4.2:
D4.3
a;.;.58 Toop" (1)1 Fp" : [1]1
o558 Toosa:a,x:Ts,p" (F — =releasep” in By 10 : Tg 1
D4.11:
: : D42
;58 Toosp (11 Ep (1)1
a;.;.38 :Toosa:a,xz:Ts,p' : [1]1,p" : [1]1+ — = releasep’ in — = releasep” in Ey12: Ty
D4.1:

D4.11
a;; 58 :Topsa:a,z:[2]1 MO (o ® @) @ Queue (a @ a),p’ : [1]1,p" : [1]1F Eyq1: Ty
;558 Too;a:a,z:[2]1 MO (a0 ® a) ® Queue (o ® a),p’ : [1]1F (Ap".Ey11) : [1]1 — Ty

/
1]
a;.;8 :Toosa:a,z:[2]1 —o MO (a® a) ® Queue (a ® a),p’ : [1]1F+ C5 (A\p”.Ey11) : Queue

a;.;.5S8 :Topja:a,z:[2]1 —MO(a® a)® Queue (o ® «),p’ : [1]1Fret C5 (Ap”.Eq11) : T

a;.;.3S :Tooja:a,z:[2]1 —MO(a® a)® Queue (a ®),p’ : [1]1F Eyq: T

D4:
;338 : Too;. - store() : M 1([1]1) b
;.58 Topa:a,x:[2]1 —-MO(a® a)® Queue (a @ o) - Ey: Th
D3.43:
a; .58 Too; fa,m’ = Queue (o ® a) b ret((f,m") : Ty
D3.42:

D3.43

a;.; 58 Toosm:Tys,r:a,a:a,p” 2118 p" [m (r;a) : MO (Queve (o ® a))
;.58 Toos fraym:Tys,ra,a:a,p” [2]1F bindm’ =S p” [| m (r,a) in ret{(f,m")) : T;
;538 Too; fraym:Tys,r:a,a:a,p” 2] 1F B340 : Ty

D3.41:
0535 Tog Fotoe) M2(L)
a;.;38 Too; fraym:Tys,r:a,a: ot bindp” = store() in B340 : Tro
D3.401:
a; 558 Toosp” (11 Fp" 1 [1]1 DAl
a; 558 :Too; fra,m:Tys,r:a,a:a,p” :[1]1F — = releasep” in bind p”’ = store() in F3.42 : T71
D3.40:
4338 Tooipe M1Fpo 1 oM
;558 Toos fraym:Tys,r:a,a:a,p,: [1]1,p" :[1]1F
— = releasep, in — = releasep” in bind p"”" = store() in E3.42 : T
;58 Too fram:Tys,r:a,a:a,p,:[1]1F
A\p”.— = release p, in — = release p”’ in bind p’”’ = store() in E3.42: [1]1 — T%
a;.; S Toos fram:Tys,r:a,a:a,py: [1]1F(Ap”" . E341):[1]1 — T4
D3.4:

D3.40
a;.;5S Toosa:a,fram:Tyg,r:a,a:a,p,: 1)1 C2 (Ap”.E3.41) : Queue «
a;.558 Toosa:a, fram:Tys,r:a,a:a,p,:[1]1Fret C2 (A\p".F3.41):Th
;58 Togsa:a, fram:Tys,r:a,a:q,p,: [1]1F Ezy4: Ty

196

D3.31:

D3.3:

D3.2:

D3.1:

D3:

D2.3:

D2.2:

D2.1:

D2:

D1:

DO:

DO0.2:

D3.4

;58 :Topsa:a, fra,m:Tys,r:akstore() : M1[1]1
;58 Toosa:a, fra,m:Tys,7:abk bindp, =store() in B34 : T

a; ;38 Tooa:a, fram:Tys,r:ab Ess 1T

D3.4

a;.;38 Toos fm: Tyo = fm: Ty
a; 558 Toosa:a, fm:Tya,r:ablet{f,m)) = fmin Es3 : Th
;.8 Toosa:a, fm:Tyo,r:ab E3s:T)

D3.3
;.58 :Too;x Tur b’ Tuq

;558 Too;. Flet{(fm,r) =2’ in E33: Ty
ag .y g S : TO'Q;G : Oé,LIZ‘/ : T4.1 = E3.2 . Tl

D3.2

a;.;.38 : Too;w: [0]1 — MO (o ® Queue (o ® o) @ a),p' : [0]1 -z p' : Ty
;58 :Top;a:a,z:[0]1 o MO (a® Queue (e ® @) ® @)k Egq1: Ty

D3.1

a; ;.58 Too; F store() : MO ([0] 1)
;.8 Top;a:a,x:[0]1 — MO (a® Queve (o ® a) ® o) - B3 : T

a; 558 Too;q: Queue a,a: o, f:a,m:Tsa F (C3 (A" ({f,m),a))) : Queue a
a; ;.38 : To0;q: Queue a,a: o, f:a,m:Taa b ret(C3 (Np” . ((f,m),a))) : Ty
;.58 Tpo;q: Queve a,a:a, f:a,m: T30 Eygz: T

D2.3
;.8 Too;x' :Teq ka2’ :Taq

a;558 Toosa:a,x < Tyq Flet{(fym) =2’ in BEy3: Ty
;558 :Toosa: a2’ Tz b Eyp: Tp

D2.2

a;.;3S :Too;r: ([1]1 MO (o ®@ Queve (@ «))),p' : [1]1Fxp : T3
a;.;5S :Toosa:a,z: (1)1 — MO (o ® Queue (o ® «))),p’ : [1]1F Faq : Ty

D21

a; .58 1 Too; - Fstore() : M1 ([1]1)
;558 Togsa:a,x: ([1]1 MO (o ® Queve (a @ @) - Eo : Th

;558 Tooa:a,x:abk Cf (M. ret{({x,a), COY) : Queue o
a;.;;S :Toosa:a,x:akret Cf (\p". ret{(({(z,a), COY) : Ty
a;.;5 S Toosa:a,x:akret Cf (Np". ret(({(z,a), CO)) : Th

a; ;58 Tooa:a,x:akE T

;.58 Thoa:al Cl a: Queue «
;.58 :Top;a:abret(Cl a): M1 Queue «
;58 Toopa:ab Ey: T

DO D1 D2 D3 D4 D5
;.58 To.0;q: Queue at q: Queue o

;.8 Tho;q: Queue a,a:a b Eyo: Ty

197

DO0.1:
DO0.2

a8 Too: . FH:M11
;.8 Tho;q: Queve a,a:a b Eyq:To

Main derivation:
DO0.1

;558 Too;p: [2]1Fp:[2]1
;.58 :Too;p:[2]1,q: Queue a,a:at Eyo: T
g FfixfAp. A g Aa.Ey o : To.o

head : [3] 1 —o Va. Queue o — MO«
head & \p.A.\ q.
bind ht = headTail p [] q in retfst(ht)

Listing 5: head function

Ey = bind ht = headTail p [] q in E;
Ey = ret(fst(ht))

To = [3] 1 — Va.Queue o — MO«

DO:

;.5 q 0 Queue a, bt : (o @ Queue o) - fst(ht) @ a
a; ... q: Queue ayht : (o ®@ Queue) F ret(fst(ht)) : MO«
;.55 q Queue a, bt (a0 ® Queuwe o) - Ey : MO«

Main derivation:

DO

a; .54 Queue a b headTail p [] ¢: MO (o ® Queue)
a; ... q: Queue ok bind ht = headTail p [] ¢ in E1 : MO«
;i [3]1,q: Quewe a- Ey: MO«
g a.FADANE Ty

tail : [3] 1 — Va. Queue o — MO (Queue «)
tail & \p.A.X q.
bind ht = headTail p [] q in retsnd(ht)

Listing 6: tail function

Ey = bind ht = headTail p [] q in E;
E; = ret(snd(ht))

To = [3] 1 — Va.Queue o — MO (Queue «)

DO:

a; .54 Queue o, bt (a ® Queue o) Fsnd(ht) : Queue «

a; .55 q 0 Queue o, bt (o @ Queue «) F ret(snd(ht)) : MO (Queue)

;.5 q Queue a,ht : (o ® Queue o) F Ey : MO (Queue «)

Main derivation:

- Do
a; .54 Queue a b headTail p [] ¢ : MO (o ® Queue «)

a; ... q : Queue a b bind ht = headTail p [] ¢ in By : MO (Queue «)
;i [3]1, ¢ Queue - Ey : MO (Queue «)
gaag.FApANEY - Ty

198

headTail : [3]1 —o Ya. Queue o — MO (o @ Queue «)
headTail = fix HT \p.A\ q.
— =releasepin — =11 ret
case g of
|CO — fixz.x

|C1 x> ret{(zx, CO))

|C2 z—
bindp’ = store() in bind p, = store() in
bindz' =z p’ inlet{(f,m)) =2 in
ret((f, (C4 (\p"”.— = releasep, in — = release p”’ in bind p, = store() in HT p, [] m)))

|C3
bind p’ = store() in bind p, = store() in
binda' =z pin let{(fm,r) =z’ in let{(f,m)) = fmin
ret{(f,(C5 (A\p”".— = releasep, in — = release p’’ in
bind p”’ = store() in bindht = HT p"" [] min ret{(ht,r)))))

|CL x—
bind p’ = store() in bindz’ =z p" in let{(f,m) = " in let{(f1, f2)) = f in
ret{(f1, C2 (Ap".ret{fz,m))))

|C5 ©—
bind = storel(in binda’ = & ' in let((fm.) = a’ in let((f.m) = fm inlet(fs. f2) = Fin
ret{(f1, (C3 (Ap". ret({(f2,m)), ™))

Listing 7: head and tail function

Eoo = fixHTAp.A ¢.Eoy
Ep1 = — =releasep in— = 11; E o
Eo.2 = case q of|[CO — Ep|C1 x+— E1|C2 v Eo|C3 v+ E3|C4 x — E4|C5 x— Ej
FEy = fixx.x

E\ = ret{z, C0)

E5 = bindp’ = store() in Eq

E5.o = bindp, = store() in F2 1

Ey1 =binda’ = p'in Ey 1y

Es 11 = let{(f,m)) = 2’ in Ey5

Eyo = ret(f,(C4 (\p".E23)))

Ey3 = — = releasep, in By 4

Ey4 = — =releasep” in Fy 5

E5 5 = bindp, = store() in HT p, [| m
E3 = bindp’ = store() in E3

E3 = bindp, = store() in E3

E31 =bindz’ =z p'in F51q

Ezq1 = let((fm,r)) = 2" in E3.12

312 = let(f,m)) = fmin E3 2

Fyz = ret((f, Fy.)

E35=C5 (A\p".E3.31)

B34 = — =releasep, in E3.4;

E3.41 = releasep” in E35

E3.5 = bindp"”' = store() in F3¢
Es¢=bindht = HT p" [] m in ret{{ht,r)
E, = bindp’ = store() in Ey 1

Ey1 =binda’ =z p'in By

Eyo =let((f,m)) =2’ in Ey3
Eyz=let((f1, f2)) = fin B4

Eya = ret((f1, C2 (\p".ret((f2,m)))
E5 = bindp’ = store() in Es51

Es1 =bindz’ =z p'in E5

Es5o = let{(fm,r) = 2’ in Es5 3

199

Es3=let{(f,m) = fmin E5 4
Es.4 = let(f1, fo)) = fin Es5
Es.5 = ret((f1,(C3 (A" ret({(f2,m), ™))

To.0 = [3]1 — Va. Queue o — MO (o ® Queue o)
To2=[1]1—-o MO (o ® Queue (a ® a))

To21 = MO (o ® Queue (o ® a))

To.22 = (@ ® Queue (o ® a))

Ty.23 = Queue (a ® a)

Toz =[0]1 = MO ((a ® Queue (a ® o)) ®)
Tos1 =MO ((a ® Queve (@ ® @) ®)

Tos2 = ((a ® Queve (a ® a)) ® a)

To.33 = (o ® Queue (o ® a))

To.31 = Queuve (a @ a)

Tos=12]1 - MO ((a® a) ® Queve (o ® a))
Toa1 = MO ((a ® a) ® Queue (o ® a))
Toa11 =M1 ((a ® @) ® Queue (o ® «))
Toa13 =M3 ((a ® @) ® Queue (o ® «))
To.a2 = ((a ® o) ® Queue (o ® a))

Toas = (0 ®)

To.44 = Queuve (o ® a)
Tos=[1]1—-MO(((a ® a) ® Queue (a
Tos1 =MO (((a® o) ® Queve (a @))
Tos11 =M1 (((a ® a) ® Queue (a ® a)
Tos12 =M2(((a ® a) ® Queue (a ®)
Tos13 =M3 (((a ® a) ® Queue (a ®)
Tose = (((a ® @) ® Queve (o ® a)) @ a)
Toss = (0 ® @) ® Queue (a @ a))

Toss = (0 ®)

To.55 = Queue (o ® «)

To = MO (a ® Queue)

71 =M1 (a® Queue o)

To =M2(a® Queue o)

D5.51:
a;.; 3 HT : Too; fo :aym: Toss,7 2 o, p” 2 [0] 1 F ret{({(fo, m)), r)To.31
;.3 HT = Too; fa : aym : Toss,m: a (Ap”.ret(((fo, m),) : To.3
a;.5 3 HT : Too; f2 :aym: Toss, 7 ak (C3 (Ap". ret{({ fo,m), 7)) : Queue «
D5.5:

D5.51

o, HT Ty fr:ak fi:a
;53 HT : Too; f1:a, faraym: Toss, 7k {f1,(C3 (Mp".ret{{{fa,m), ™)) : @ @ Queue «

;3 HT = Too; f1:a, fa i a,m: Toss, @ a b ret(fi, (C3 (Ap". ret{((f2,m), ™)) : Th

Ol;.;.;HTZT0.0;fl :a7f2:a,m:T0,557r:al—E5_5:T1

D5.4:
D5.5
(6290 ,HT : To_o; f . T0_54 F f . T0_54
;. .;HT : TO.O; f : T0,54,m : T0.55,7“ ca bk |et<<f1,f2>> = f in Es5: T}
a; 5 HT 2 To.0; f : Tosasm: Toss, ik Es g0 Ty
D5.3:

D54

a; . HT :Toyo; fm:Toss B fm:Toss
;s HT : Too; fm:Toss,r:ablet{fym) = fmin E54: T}
(0290 7flT‘ . TO.O; fm . T0.53,’I“ Hye |_ E5.3 . T1

200

D5.2:

D5.1:

D5:

D4.41:

D4.4:

D4.3:

D4.2:

D4.1:

D4:

D3.61:

D3.6:

D3.5:

D5.3

o HT : Ty’ : Tosa -2’ Tpos2
a; . HT Ty o x' To.50 - |et<<fm, 7">> =2 in Ess:Ty
o HT : Too;2' :Tosa - Eso : T

D5.2

a;.; HT : Too;x: Tos,p :[1]1Fz p i Tos
a;.5 3 HT : Too;x: Tos,p 1 [1]1Fbindz' =z p'in Eso: Th
a; 53 HT : Too;x: Tos,p' : 1)1+ Es1: Ty

D5.1

a; .5 HT 2 T o; . Fstore() : M1 ([1]1)
a; s HT :Too;x : Tos B Es 1o

a; 53 HT : Too; fo i aym: Toaa,p” : [1) 1 F ret((fo,m)) : To.21
a; 55 HT : Too; fa:aym: Toaa B (A" ret{(fa,m)) : To.o
a;.; 3 HT : Too; fa i aym: Toga b C2 (Np” . ret{(f2,m))) : Queue «

D4.41

a; s HT :Toos fr:alk fia

a; . HT : Too; f1:a, fa:aym : Toaa B (f1, C2 (A" . ret{(fa,m))) : @ @ Queue «

a; .5 HT Ty f1 i o, fo i aym : Toag b ret{(f1, C2 (A" . ret{(fo,m)))) : Ty

a; 5 HT :Toos fiia, foram :Toaa - Eqq:Th

D44

a; 5 HT :Too; f : Toas = f 1 To.as
(0290 ,HT : To_o;f : T0_43,m : T0.44 + |et<(f1, f2>> = f in E4_4 : TO
o; 55 HT :Toos f : Toaz,m : Toaa - Eyz : Tp

D4.3

Qg .y g HT : TQ.O;.”L’/ . T0,42 F x’ . T0.42
Qg .y g HT : Tovo;l’/ : T0_42 = Iet<<f, m)> = IL’/ in E4_3 : TO
o HT : Ty’ : Toas - Fao : Ty

D4.2

a;.5 HT : Too;x: Toa,p 212 p' i To.m
a;.; 3 HT : Too;x: Toa,p' : [2]1Fbindz’ =2 p' in Ego: Tp
;5 HT i Toosx : Toa,p' : 2|1 F Eyq 1 T

D4.1

o HT : Ty ;. Fstore() : M2[2] 1
a; ;s HT :Too;x : Toa b Ey - To

Qg .l HT : T(),O;?" Ly ht : T0.53 F ret((ht,r)) : T0_51

D3.61

a; .53 HT : Too;m : Tosa,r:a,p” : [3]1 = HT p"' [m: MO0Ty53
a;.; HT : Too;m : Toza,r :a,p” [3] 1+ bindht = HT p"" [] m in ret{(ht, 7)) : To.51
a;.; . HT : Too;m : Tosa, 7 a,p” : [3]1F Es: Tos

D3.6

a;. . HT : Tyo;. - store() : [3] [3] 1
a; .. HT : To.o;m : Tosq,7 : b bind p”' = store() in 36 : To.511
a;.; 5 HT 2 Too;m : Tosa, 7t ak Ess: Tosis

201

D3.41:

D3.4:

D3.3:

D3.2:

D3.12:

D3.11:

D3.1:

D3.0:

D3:

D2.51:

D2.5:

D2.4:

D3.5

a; 55 HT : Too;p” : [1]1Fp” 1)1

a;.5 3 HT : Too;m : Toza,r:a,p” i [1] 1+ — = releasep” in B35 : Ty 512

D3.41

;. HT : Tooipo : [2] 1 F po i [2]1

a;.5 3 HT : Too;m : Tosa,m:a,po: [2]1,p" 1 [1] 1+ — = releasep, in E3.41 : To51

a; 55 HT : Togo;m : Tosa,m o, p” : [1]1F Esy: Tos

D3.4
a;.; 3 HT : Too;m : Tosa,m:a (A" Es4) : Tos
a;.5 3 HT : Too;m : Toza,r o C5 (A\p".Fs.4) : Queue a
;. HT : Toog;m : Toa,7: a b E33: Queue «

D3.3

a; . HT :Too; f rabk fra
;3 HT :Too; f raym: Tosq,m:ak (f, Es3) : (o ® Queue «)

;. HT : Too; f :aym: Tosg,r: ok ret((f, Ess)) : To

;. HT :Too; fia,m :Tysa,r:ab E3g Ty

D3.2

(6290 ,HT . Toio;fm . T0'33 }_ fm . T0.33
;3 HT Ty fm: Toss,r:ablet{f,m) = fmin E35:Th
a; . HT :Too; fm:Toss,r:ab Esq9:Th

D3.12

;5 HT : Toos 2" : Tosa b o’ - Toso
a; . HT - T0,0;CE/ :To.30 - Iet<<fm,r)> =z in FE319: Ty
o HT : Too;a' : Tosa b Esq1: T

, . D3.11
;. HT : Too;2 : Tos,p' : [0]1 Fx p : Tos

a;5 5 HT : Too; 2 : Tos,p' 1 [0]1 Fbindz’ =2 p’ in E5 11 : T
a;.; HT : Too;x: Tos,p' 0] L,po: [2]1F B3 : Th

D3.1

a; . HT : Too;x : Tos - store() : M 2[2] 1
a; . HT : Tyo;x : Tos,p’ : [0] 1+ bind p, = store() in B3 : T
;5 HT i Too;2 : Tos,p' : [0]1F Ezg: Th

D3.0
a; . HT : Ty ;. F store() : MO1

a; ;o HT :Too;x : Tos B Es: Ty

a; HT : Too;m : Toos, pr - 3|1 HT py [m: Toun

D2.51

a;. . HT : To.o;m : Tpaz Fstore() : M3 [3]1

a; ;. HT : Too;m : Toas - bind p,. = store() in HT p,. [| m : Tp.a13

a; . HT : Too;m : Tooz - Eas : To.a13

D2.5

a;. HT : Too;p" - 211 9" : [2]1
a;.; . HT : Too;m : Toos,p” : [2] 1 F releasep” in Eo 5 : Th.411
;.3 HT : Toosm : Toos,p” : 2] 1 Eoy : Toann

202

D2.3:
D24

;5 HT = To.o;po - [1]1F p, : [1]1

a gy HT : T().();m : T0.23,p0 : [1] 1,])// : [2] 1F—= releasepo in E2.4 : T0'41

D2.21:
D2.3
a;.5 3 HT : Too;m : Tooz,po i [1]1,0" 1 [2] 1 F Ea 3 : To.sn
;.3 HT = Toosm : Toas,po - 1|1 Ap" . Eag: Toy
a; . HT : Too;m : Toos, po : [1] 1+ C4 (Ap”.E23) : Queue «
D2.2:
D2.21
a; s HT :Too fiabF fra
a;.5 3 HT : Too; f aym: Tooz,po i [1] 1 (f, (C4 (Mp".Ez3))) : (® Queue)
;53 HT 2 Too; f2o,m: Toos,po s 1] 1 Fret((f, (C4 (\p".Ez3)))) : Ty
;. HT : Too; f :aym: Toa3, 00 : [1]1F Eag: Ty
D2.11:
: i D22
(29PN ,HT : T0,0;x : T0_22 Fa T0.22
a; . HT : Too; 2" : Tooa, po : [1 1 F let{(f,m)) =2’ in B : T
o; . HT = Toosa" : To.o2,po = (1] 1+ By : To
D2.1:
: . D2.11
;. HT : Too;2 : Too,p" : [11F 2 p : Ty
a;.; HT : Too;1 : Too,po : [1]1,p" 1 [1]1 Fbinda’ =z p'in Eaq1q : Tp
a;.; HT : Too;x: Too,po i [1]1,p" 1 [1]1F Eyq : Tp
D2.0:
D2.1
o; . HT : Too; . Fstore() : M1[1]1
a; . HT : Too;x : Too,p’ 2 [1] 1 F bind p, = store() in Eqq : Ty
;5 HT i Tog;2 : Too,p' : [1]1F Eag: Ty
D2:
D2.0
a;. . HT : Too;. Fstore() : M1[1]1
a; s HT :Too;x: Too b Ey i Th
Di1:
;5 HT : Tyo;x : o ret (x, COY) : Th
a; 5 HT Ty al By 2Ty
DO:
;.55 HT Ty o; . F fixe.x : Th
;. HT :Tyo; . F Ey 2 Th
DO0.2:
DO D1 D2 D3 D4 D5
;. HT 2 Tyo;q : Queue a b+ q : Queue a
;.o HT :Tho;q: Queue a b Ego:Th
DO.1:

D0.2

;o HT :Too; F M1
;. HT : Tyo;q : Queue a b — :Tl;EOQ 1Ty

Main derivation:

DO0.1

;5 HT : Too;p:[3]1,q: Queue abp:[3]1
a; . HT : To.o;p: [3]1,q : Queue ot Ey 1 : T
G- EooToo

203

References

[1]
2]

3]

AHMED, A. J. Semantics of types for mutable state. PhD thesis, Princeton university, 2004.

ATKEY, R. Syntax and semantics of quantitative type theory. In Annual ACM/IEEE Symposium on Logic
in Computer Science (LICS) (2018).

AVANZINI, M., AND DAL LAGO, U. Automating sized-type inference for complexity analysis. Proc. ACM
Program. Lang. 1, ICFP (2017).

CARBONNEAUX, Q., HOFFMANN, J., AND SHAO, Z. Compositional certified resource bounds. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI)
(2015).

CHARGUERAUD, A., AND POTTIER, F. Verifying the correctness and amortized complexity of a union-find
implementation in separation logic with time credits. J. Autom. Reasoning 62, 3 (2019).

CICEK, E., BARTHE, G., GABOARDI, M., GARG, D., AND HOFFMANN, J. Relational cost analysis. In
Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL)
(2017).

CorMEN, T. H., LEISERSON, C. E., RIvEsT, R. L., AND STEIN, C. Introduction to Algorithms, 3rd
FEdition. MIT Press, 2009.

CrARY, K., AND WEIRICH, S. Resource bound certification. In POPL 2000, Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Boston, Massachusetts, USA,
January 19-21, 2000 (2000).

DaL LAco, U., AND GABOARDI, M. Linear dependent types and relative completeness. Logical Methods
in Computer Science 8, 4 (2011).

DAL LaAco, U., AND PETIT, B. Linear dependent types in a call-by-value scenario. Science of Computer
Programming 84 (2012).

DANIELSSON, N. A. Lightweight semiformal time complexity analysis for purely functional data structures.
In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL) (2008).

DANNER, N., LicATA, D. R., AND RAMYAA. Denotational cost semantics for functional languages with
inductive types. In Proceedings of the 20th ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP) (2015), pp. 140-151.

FELLEISEN, M., AND FRIEDMAN, D. P. Control operators, the secd-machine, and the A-calculus. In
Proceedings of the IFIP Working Conference on Formal Description of Programming Concepts (1987).

GABOARDI, M., KATSUMATA, S.-Y., ORCHARD, D., BREUVART, F., AND UUSTALU, T. Combining effects
and coeffects via grading. In Proceedings of the ACM SIGPLAN International Conference on Functional
Programming (ICFP) (2016).

GIRARD, J.-Y., SCEDROV, A., AND ScoTT, P. J. Bounded linear logic: a modular approach to
polynomial-time computability. Theoretical Computer Science 97, 1 (1992).

HorrMAN, J. Types with Potential: Polynomial Resource Bounds via Automatic Amortized Analysis. PhD
thesis, Ludwig-Maximilians-Universitdt Miinchen, 2011.

HoFFMANN, J., AEHLIG, K., AND HOFMANN, M. Multivariate amortized resource analysis. In Proceedings
of the Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL)
(2011).

HorFMANN, J., DAs, A., AND WENG, S.-C. Towards automatic resource bound analysis for ocaml. In
Proceedings of the ACM SIGPLAN Symposium on Principles of Programming Languages (POPL) (2017).

HorFFMANN, J., AND HOFMANN, M. Amortized resource analysis with polynomial potential: A static
inference of polynomial bounds for functional programs. In Proceedings of the 19th European Conference
on Programming Languages and Systems (ESOP) (2010).

204

[20]

[21]

23]

[24]

[25]

HoFMANN, M., AND JosT, S. Static prediction of heap space usage for first-order functional programs.
In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(2003).

Jost, S., HamMMoND, K., LoibL, H.-W., AND HOFMANN, M. Static determination of quantitative re-
source usage for higher-order programs. In Proceedings of the Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL) (2010).

Jost, S., LoipL, H., HAMMOND, K., SCAIFE, N., AND HOFMANN, M. "carbon credits” for resource-
bounded computations using amortised analysis. In Proceedings of Formal Methods (FM) (2009).

Jost, S., VAscoNcCELOS, P., FLoriDO, M., AND HAMMOND, K. Type-based cost analysis for lazy
functional languages. J. Autom. Reason. 59, 1 (2017).

Kavvos, G. A., MOREHOUSE, E., LicATA, D. R., AND DANNER, N. Recurrence extraction for functional
programs through call-by-push-value. PACMPL 4, POPL (2020).

KRrivINE, J.-L. A call-by-name lambda-calculus machine. Higher Order Symbolic Computation 20, 3
(2007).

MADHAVAN, R., KULAL, S., AND KuNcaAK, V. Contract-based resource verification for higher-order func-
tions with memoization. In Proceedings of the ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL) (2017).

MEVEL, G., JOURDAN, J.-H., AND POTTIER, F. Time credits and time receipts in Iris. In Furopean
Symposium on Programming (ESOP) (2019).

Mogar, E. Notions of computation and monads. Information and Computation 93, 1 (1991).

NEis, G., DREYER, D., AND ROSSBERG, A. Non-parametric parametricity. J. Funct. Program. 21, 4-5
(2011).

OKASAKI, C. Purely Functional Data Structures. PhD thesis, Carnegie Mellon University, 1996.

Pym, D. J., O’'HEARN, P. W., AND YANG, H. Possible worlds and resources: the semantics of bi.
Theoretical Computer Science 315, 1 (2004).

TARJAN, R. E. Amortized computational complexity. SIAM Journal on Algebraic and Discrete Methods
6, 2 (1985).

X1, H. Dependent ML an approach to practical programming with dependent types. J. Funct. Program.
17, 2 (2007).

205

	Introduction
	-amor-
	Syntax and Semantics
	Type system
	Model of types

	Examples
	Church encoding
	Eager functional queue
	Okasaki's implicit queue

	Embedding Univariate RAML
	A brief primer on Univariate RAML
	Type-directed translation of Univariate RAML into -amor-
	Semantic properties of the translation

	-amor full (with sub-exponentials)
	Changes to the type system: syntax and type rules
	Model of types

	Embedding dPCF
	A brief primer on dPCF
	Type-directed translation of dPCF into -amor
	Semantic properties of the translation

	Related work
	Conclusion
	Development for -amor-
	Syntax
	Typesystem
	Semantics
	Model
	Embedding Univariate RAML
	Type preservation
	Cross-language model: RAMLU to -amor
	Re-deriving Univariate RAML's soundness

	Development of -amor (full)
	Syntax
	Typesystem
	Semantics
	Model
	Embedding dlPCF
	Type preservation
	Cross-language model: dlPCF to -amor
	Re-deriving dlPCF's soundness
	Cross-language model: Krivine to dlPCF

	Examples
	Church numerals
	Map
	Append
	Eager functional queue
	Okasaki's implicit queue

