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Abstract—Exact schedulability analysis of limited-preemptive
(or non-preemptive) real-time workloads with variable execution
costs and release jitter is a notoriously difficult challenge due
to the scheduling anomalies inherent in non-preemptive exe-
cution. Furthermore, the presence of self-suspending tasks is
well-understood to add tremendous complications to an already
difficult problem. By mapping the schedulability problem to
the reachability problem in timed automata (TA), this paper
provides the first exact schedulability test for this challenging
model. Specifically, using TA extensions available in UPPAAL,
this paper presents an exact schedulability test for sets of periodic
and sporadic self-suspending tasks with fixed preemption points
that are scheduled upon a multiprocessor under a global fixed-
priority scheduling policy. To the best of our knowledge, this is
the first exact schedulability test for non- and limited-preemptive
self-suspending tasks (for both uniprocessor and multiprocessor
systems), and thus also the first exact schedulability test for the
special case of global non-preemptive fixed-priority scheduling
(for either periodic or sporadic tasks). Additionally, the paper
highlights some subtle pitfalls and limitations in existing TA-
based schedulability tests for non-preemptive workloads.

I. INTRODUCTION

The current state of the art in worst-case execution time
analysis (WCET) favors non-preemptive execution due to its
inherent predictability advantages [1]. To counteract latency
spikes that may arise from long-running jobs, it is common
practice to insert fixed preemption points to break jobs into a
sequence of segments, where each such segment is executed
non-preemptively, but the job overall is limited-preemptive (i.e.,
the job can be preempted, but only at well-known points in its
control-flow graph, which aids WCET analysis). Furthermore,
when jobs engage in synchronous I/O (e.g., network communi-
cation, storage devices), synchronize via semaphores, or offload
computation to accelerators such as GPUs, DSPs, or other co-
processors, segments may be separated by self-suspensions
(i.e., after one segment completes, the next segment may not
immediately be available for execution) [2].

A sound schedulability analysis of this practically relevant
class of workloads, on either uni- or multiprocessors, is however
presently beyond the reach of the state of the art, due to
a number of challenges. For one, the analysis of limited-
preemptive (or non-preemptive) real-time workloads is already
on uniprocessors a notoriously difficult problem due to the
scheduling anomalies that arise from non-preemptive execution.
Additionally, the complex effects of self-suspensions cause
further timing anomalies that, if not carefully handled, may

result in unsound schedulability tests (as explained in detail
in Chen et al.’s recent survey [2]). In fact, as we show in this
paper, non-preemptive self-suspending tasks (either periodic
or sporadic) suffer from anomalies that render it unsafe to
treat suspensions as execution segments (i.e., to simply over-
approximate processor demand). This is in contrast to the
preemptive case, in which such a suspension-oblivious approach
is commonly used and has been shown to be safe [2,3].

This paper. We provide the first exact schedulability test for
this difficult setting, that is, a test that decides whether a set of
segmented, self-suspending tasks scheduled non-preemptively
upon either uni- or multiprocessors will meet all deadlines. By
extension, our test also applies to limited-preemptive tasks (i.e.,
non-suspending tasks with preemption points). This is also the
first exact test for the special case of global non-preemptive
scheduling (without suspensions or preemption points).

Our test models the system as a synchronized network of
timed automata (TA) [4] and maps the schedulability problem
to a reachability query. In extensive experiments that evaluate
the scalability of the solution with regard to the number of
cores, tasks, segments, magnitude of release jitter, and system
utilization, it is shown to scale up to 60 periodic tasks scheduled
on 2 cores, 30 tasks on 4 cores, and 15 tasks on 8 cores.

Besides scaling to small- and even moderately-sized work-
loads, the proposed test also provides the first exact baseline
against which future, more efficient, but inexact schedulability
tests can be compared and thus lays an important foundation
for future research into self-suspensions and limited-preemptive
models. Additionally, the paper highlights some subtle pitfalls
and limitations in existing TA-based schedulability tests for
non-preemptive workloads.

Prior work. To the best of our knowledge, no exact schedu-
lability test for non-preemptive (or limited-preemptive) self-
suspending tasks has been proposed to date (for either unipro-
cessor or multiprocessor platforms).

Several exact schedulability tests have been introduced
for preemptively scheduled uni- and multiprocessor platforms
(i.e., for global fixed-priority scheduling) [5]–[8] and for non-
preemptive scheduling upon uniprocessor platforms for both
sporadic [9,10] and periodic tasks [11]. None of these tests
supports self-suspending tasks. Further, even for the special case
of non-preemptive global scheduling without self-suspensions
or preemption points, no exact test has been proposed to date.
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The TA formalism has been previously leveraged in a number
of schedulability tests for preemptive tasks scheduled by a
global scheduling policy upon a multiprocessor platform [12]–
[18]. These tests, however, are not designed for self-suspending
tasks, cannot handle blocking times caused by non-preemptive
execution, and some use stopwatches (e.g., [14,17,18]) that
render the TA reachability problem undecidable [19]. As we
discuss in Sec. III, the use of stopwatches significantly limits
the practical applicability of the tests. There are further a
few TA-based schedulability tests for non-preemptive tasks
[14,20,21]. These tests, however, are limited to uniprocessors
and do not support self-suspensions or preemption points.

Finally, prior work has yielded several sufficient schedula-
bility tests for global non-preemptive scheduling that target
either sporadic [22]–[25] or periodic tasks [26], but these tests
do not support self-suspending or limited-preemptive tasks.

II. SYSTEM MODEL AND BACKGROUND

We consider a multiprocessor system with m identical
processors and a set of n independent, self-suspending tasks
τ = {τ1, τ2, . . . , τn}. Each task τi is represented by a tuple
(Ti, Di, Oi, Pi, ki,Si), where Ti is the period (or equivalently,
the minimum inter-arrival time), Di ≤ Ti is the relative
deadline, Oi is the initial offset, Pi is the priority, ki is the
number of segments, and Si is the vector of segments of the
task. Smaller values of Pi indicate higher priorities. We assume
global fixed-priority scheduling and that P1 < . . . < Pn.

The jth segment of a task τi is denoted by a tuple
Si,j = ([smin

i,j , smax
i,j ], [Cmin

i,j , Cmax
i,j ]), where smin

i,j and smax
i,j

are the best-case suspension time (BCST) and worst-case
suspension time (WCST), and Cmin

i,j and Cmax
i,j are the best-

case execution time (BCET) and the worst-case execution time
(WCET) of the segment, respectively. Our model implicitly
supports release jitter, i.e., the first suspension prior to the first
execution segment represents the release jitter of the task.1 Both
the BCST and WCST can be zero for any or all of the segments,
which turns such a segment boundary into a fixed preemption
point (i.e., for a limited-preemptive task, smin

i,j = smax
i,j = 0

for 1 < j ≤ ki). Once a segment starts execution it is not
preempted until it finishes. If ki = 1 for every τi ∈ τ , then
the problem reduces to non-preemptive global scheduling.

We assume Ci + Xi ≤ Di, where Ci =
∑ki

j=1 C
max
i,j is

the total execution time and Xi =
∑ki

j=1 s
max
i,j is the total

suspension time of task τi. The system utilization is given by
U =

∑n
i=1 ui, where ui = Ci/Ti is the utilization of task τi.

The execution time ratio of τi is given by βi = Ci/(Ci +Xi).

Timed automata. A timed automaton is a finite-state machine
extended with a finite set of real-valued clocks that progress
monotonically at the same rate and measure the time spent after
their latest resets [4].2 UPPAAL3 extends the formal definition
of timed automata with integer variables, structured data

1 For example, if a task τi has a minimum and maximum release jitter
equal to [rmin

i , rmax
i ], then smin

i,1 = rmin
i and smax

i,1 = rmax
i .

2 This paper assumes the reader to be familiar with the timed automata
formalism; an overview and tutorial may be found in [19,27].

3 http://www.uppaal.com

types, C-like programming constructs, specialized locations,
and synchronization channels for modeling, simulating, and
verifying real-time systems by defining them as networks of
timed automata. In UPPAAL, the state of a system, i.e., a
network of timed automata, is defined by the present locations
of all timed automata, the values of all clocks, and the values of
any discrete variables. Hence, the number of locations, clocks,
and discrete variables has a significant effect on the size of
the state space as well as the verification time.

Our schedulability test uses three special features of UP-
PAAL: committed locations, urgent channels, and broadcast
channels. Whenever a state includes a committed location, the
next transition must be one of the outgoing transitions of (one
of) the committed location(s). Whenever a transition with an
urgent channel is enabled, it must be taken without any time
delay. Finally, a broadcast channel is used for synchronizing
more than two timed automata: whenever a transition with a
broadcast channel is taken, all other enabled transitions that
use the same channel must be taken, too. When one location
has multiple enabled transitions that use the same broadcast
channel, UPPAAL selects one of them non-deterministically.

III. MOTIVATION AND PITFALLS

In this section, we discuss a few potential pitfalls and
challenges related to the design of TA-based schedulability
tests and the analysis of non-preemptive self-suspending tasks.

Stopwatch limitations. Since UPPAAL introduced stop-
watches in version 4.1, several TA-based schedulability tests
have used stopwatches for the analysis of preemptive and
non-preemptive tasks [14,17,18]. However, in our experi-
ments (Sec. V), we found that stopwatch-based tests are unable
to provide any concrete schedulability answer even for very
simple task sets. That is, due to the underlying undecidability
result [19], instead of concluding that a task set is “schedulable”
or “not schedulable,” the evaluated stopwatch-based tests yield
“may not be schedulable” as the analysis result for almost all
task sets, unless the task set has only two tasks and the total sum
of WCETs is less than the shortest period. To the best of our
knowledge, this is a new observation; prior work on stopwatch-
based tests [14,17,18] did not report on empirical evaluations
of the tests in the context of non-preemptive workloads.

Impossible event ordering. The ordering of the start times of
jobs plays a crucial role in the analysis of non-preemptive tasks
since it determines the amount of blocking incurred by high-
priority tasks. To be exact, a schedulability test must hence
discount any impossible orderings. However, some previous
studies (e.g., [14,21]) have modeled tasks as independent TAs
without synchronizing transitions related to their respective
job releases. Consequently, tasks with the same release time
could be scheduled in any order, including in orders contrary
to their assigned priorities, which is actually impossible
when a deterministic scheduling algorithm such as fixed-
priority scheduling is used. As a concrete example, consider
the following periodic task set, which is schedulable on a
uniprocessor under non-preemptive fixed-priority scheduling,
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which is however deemed not schedulable by David et al.’s
analysis [21] due to the inclusion of impossible event orderings.

Counterexample 1. When applying David et al.’s test [21]
to the periodic task set τ1 = (3, 3, 0, 1, 1, {([0, 0], [1, 1])})
and τ2 = (6, 6, 0, 2, 1, {([0, 0], [3, 3])}), UPPAAL reports the
following scenario to result in a deadline miss: at time 0, τ2
enters its ready location before τ1.4 Next, UPPAAL activates
the scheduler, which dispatches the only job in the ready queue,
i.e., τ2 (at time 0). This is allowed as the scheduler and task
automata are independent of each other [21], i.e., UPPAAL is
allowed to non-deterministically pick any enabled transition,
including the scheduler transition. Finally, τ1 also moves to its
ready location (still at time 0). However, the processor has
already been allocated, so τ2 blocks τ1 for three time units.
Consequently, τ1 is reported to miss its deadline at time 3. This,
however, is actually impossible, since a fixed-priority scheduler
will always select the higher-priority task τ1 if both τ1 and
τ2 release a job at exactly the same time (note the absence
of release jitter). The problem can be avoided if, at time 0,
both tasks are forced to synchronously move to their ready
locations before the scheduler can be called.

UPPAAL’s scheduling framework [14], which uses stop-
watches, reports “may not be schedulable” for this example.

Suspension-oblivious analysis is unsound. The following
example shows that, given a self-suspending task set (either
periodic or sporadic), if suspension segments are analyzed as if
they were execution segments (i.e., using a suspension-oblivious
approach [2]), then the resulting task set may be deemed
schedulable while the original task set is in fact not schedulable.
Hence, naı̈vely accounting for suspensions as execution time
is not safe for limited-preemptive self-suspending tasks.

Counterexample 2. Consider three tasks τ1 = (20, 6, 1, 1, 2,
{([0, 0], [1, 1]), ([1, 1], [1, 1])}), τ2=(20, 20, 2, 2, 1, {([0, 0],
[3, 3])}), and τ3=(20, 20, 0, 3, 1, {([0, 0], [3, 3])}). Fig. 1(a)
shows that the task set is schedulable if suspension time is
treated as execution time since τ1 can only suffer from one
low-priority blocking, while in reality it can suffer from two
such blockings and hence is not schedulable as shown in
Fig. 1(b). This counterexample holds also for sporadic tasks.

(a) suspension oblivious (b) suspension aware
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Fig. 1. (a) suspension-oblivious and (b) suspension-aware schedules.

The main contribution of this paper is a new TA-based exact
schedulability test that avoids all of the aforementioned pitfalls.

IV. PROPOSED SCHEDULABILITY TEST

Our solution includes three TA templates for tasks (TASK),
the scheduler (SCHED), and an event synchronizer (SYNC),

4Please refer to the original paper for an illustration.

as shown in Figs. 2(a)–(c).5 Fig. 2(d) provides details of
the functions used in the timed automata. A system with n
tasks requires n TASK instances, and one SCHED and one
SYNC instance each. The SYNC automaton uses a broadcast
channel synch, defined in Fig. 2(d), whose receivers are
the TASK automata. The SCHED automaton uses n high-
priority urgent channels called run to send signals to the
TASK automata. The system is schedulable if, in any reachable
state, no TASK automaton resides in its Missed location.

TASK. This automaton models a periodic, segmented, self-
suspending task with initial offset and release jitter. Each
TASK automaton uses two clocks: t keeps track of the arrival
time (and deadline) of the task, while x keeps track of the
execution and suspension time of each segment. The initial
offset of the task is enacted in the Start location, in which the
automaton is forced to stay for offset time units. Next, the
automaton enters the Suspended location, which realizes both
release jitter and suspensions. A task stays Suspended non-
deterministically for x units of time, where s_min()≤ x ≤
s_max(). The functions s_min() and s_max() return the
minimum and maximum suspension duration of the current
segment of the task (indicated by seg_idx), respectively.

When the suspension time (or initial jitter delay) has passed,
the task enters the Ready location, where it waits until it
receives a run signal from the scheduler to start its execution
and enter the Running location. During this transition, it
decreases the number of available processors by one as it
starts executing on one of the processors. The task remains in
the Running location until some time within the minimum and
maximum execution time of the current segment, denoted by
c_min()and c_max(), respectively. When the task completes
the execution of its current segment, it either enters the
Completed location (if seg_idx indicates the last segment
of the task), or goes back to the Suspended location to
model the next suspension. Whenever the task leaves the
Running location, it increments the current segment index
as well as the number of available processors. If a task
is not completed before its deadline, i.e., it is still in the
Suspended, Ready, or Running location when t exceeds
deadline, then it enters the Missed location. A task enters
the Completed location when it completes the execution of
its last segment, and stays there until the next arrival time (i.e.,
the end of its period, as is indicated by t == period()).

The TASK automaton can be easily modified to realize a spo-
radic task by (i) adding a self-loop to the Completed location
with guard “synch?” and removing the location invariant “t
<= period()”, and (ii) replacing “t == period” with “t
>= period” on the transition from Completed to Suspended.
The resulting automaton is shown in Fig. 4 and discussed in
the Appendix.

SCHED. This automaton is similar to the scheduler model used
5Fig. 2 differs in a minor way from the conference version. Specifically,

the SYNC automaton first sends a first_synch signal followed by
two synch signals (in the conference version, it simply sends three
synch signals in a row). This modification is required to address a corner
case in the analysis of limited-preemptive (non-suspending) tasks.
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(b) TASK (c) SCHED(a) SYNCH

(d) DECLARATIONS

(b) TASK (c) SCHED(a) SYNCH

(d) DECLARATIONS

(b) TASK (c) SCHED(a) SYNCH

(d) DECLARATIONS

(b) TASK (c) SCHED(a) SYNCH

(d) DECLARATIONS

1.1 Example

Listing 1 shows the simplest LATEX code to typeset Uppaal code:

Listing 1: The simplest Uppaal typesetting in LATEX.⌥ ⌅
1 \begin{uppaalcode}
2 int[0, M] avail_processors = M;
3 urgent chan run[N];
4 broadcast chan synch, first_synch;
5 chan priority first_synch < run;
6 chan priority synch < run;
7

8 bool is_last_segment() {
9 return seg_idx ==

10 Tasks[id].k - 1;
11 }
12

13 bool job_ready() {
14 return queue_len > 0;
15 }
16

17 bool processor_avail() {
18 return avail_processors > 0;
19 }
20 \end{uppaalcode}⌃ ⇧

The result is the following minimalistic listing:

int[0, M] avail_processors = M;
urgent chan run[N];
broadcast chan synch, first_synch;
chan priority first_synch < run;
chan priority synch < run;

bool is_last_segment() {
return seg_idx ==

Tasks[id].k - 1;
}

bool job_ready() {
return queue_len > 0;

}

bool processor_avail() {
return avail_processors > 0;

}

2

Fig. 2. The (a) SYNC, (b) TASK, and (c) SCHED automata with (d) key declarations. Locations marked with a ‘C‘ are committed locations. Initial locations are
indicated by an inner circle. The declarations of front(), enqueue(), and dequeue() have been omitted as they implement a standard priority queue.

by David et al. [14,21] and realizes a global work-conserving
fixed-priority scheduler using a priority queue that stores a
sorted list of tasks whose current segment is ready for execution.
The first task in the list has the highest priority among all ready
tasks. This automaton schedules a task as soon as there is a
ready task in the queue and at least one processor available, in
which case it sends a run signal to the highest-priority task.

SYNC. The purpose of SYNC is to synchronize the TASK au-
tomata such that all tasks that release a segment at a given
time t′ enter their Ready location at the same time before
the scheduler is triggered. This construct serves to avoid the
impossible event ordering problem mentioned in Sec. III.

Specifically, the SYNC automaton uses a broadcast channel
to synchronize the TASK automata. In UPPAAL, any receiver of
a broadcast channel is forced to activate the transition that has
become enabled upon receiving the broadcast signal. As a result,
any two tasks that are in their respective Suspended locations
and release their next segments at time t′, upon receiving the
synch signal, must move to the Ready location at the same
time. This ensures that, whenever SCHED is activated, all ready
tasks have indeed entered their Ready location.

Adding a broadcast signal to transition guards forces them
to react upon receiving a signal on the broadcast channel.
Hence, in order to allow TASK automata to stay in their
Suspended or Running locations for some time, we have
added self-loop transitions to these locations. Upon receiving
a synch signal (or, respectively, a first_synch signal), two
of the outgoing transitions of these locations will be enabled,

and since UPPAAL non-deterministically chooses one of them,
the tasks can stay in the Suspended or Running locations for
the duration of their current segment.

Another important detail of the SYNC automaton is that
it always sends a sequence of three synchronization signals
(one first_synchfollowed by two synch signals) due to the
two committed locations that follow the Init location in the
SYNC automaton. This design covers corner cases in which
a task finishes its execution exactly at the end of its current
period and hence must be able to reach the Ready location
from the Running location in the same instant (i.e., at the
period boundary). This requires a forced multi-step transition
from Running to Ready via Completed and Suspended
without any passage of time, which in turn requires first a
first_synch signal, as indicated in the transitions out of the
Running location, and two subsequent synch signals to move
from Completed to Suspended and then to Ready.

The reason for distinguishing between the first_synch

and synch signals, and for using the first_synch signal to
leave the Running location, is to align the SYNC automaton’s
sequence of three committed transitions with the TASK au-
tomaton’s multi-step transition. Specifically, this construction
ensures that whenever a task leaves the Running location, it
will receive a sufficient number of follow-up synch signals
(i.e., two) to let the task automaton reach the Ready location if
needed, which is required to ensure an exact analysis of limited-
preemptive tasks that do not suspend in between segments.
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Fig. 3. Experiments with various parameters. (a, b, c, d) The schedulability ratio and runtime in Exp1; (e, f) the runtime in Exp2 for both the TA-based test
and Nasri-G-NP; (g) the runtime in Exp3; and (h, i) the schedulability ratio and runtime in Exp4.

V. EXPERIMENTAL RESULTS

This section answers the following questions: (i) How is the
proposed test’s runtime affected by various system parameters,
such as the number of cores, tasks, etc., and (ii) to what extent
does it improve schedulability gain w.r.t. the state of the art?

We compared the proposed test against existing schedulabil-
ity tests for global non-preemptive (G-NP) and global limited-
preemptive (G-LP) scheduling in terms of average runtime
and schedulability ratio (i.e., the fraction of task sets deemed
schedulable for a particular set of parameters). We considered
the following baselines: Guan et al.’s test [24] for any work-
conserving G-NP policy (Guan-G-NP-WC), three tests for
fixed-priority G-NP scheduling by Guan et al. [24], Lee et
al. [25], and Nasri et al. [26] (denoted Guan-G-NP-FP, Lee-G-
NP, and Nasri-G-NP, respectively), and Serrano et al.’s test for
limited-preemptive scheduling [28] (Serrano-G-LP).

It should be noted that, with the exception of Nasri-G-
NP [26], all baseline tests were designed specifically for
sporadic tasks. We hence expect them to exhibit some degree
of inherent pessimism when applied to periodic workloads (i.e.,
some feasible periodic workloads become infeasible if tasks
exhibit sporadic arrivals). We focus on periodic tasks in the
following and report on experiments involving sporadic tasks
in the Appendix.

We generated periodic task sets following the guide-
lines of the Autosar benchmark introduced by Kramer et
al. [29]. Specifically, for a given number of tasks n, we

sampled the (non-uniform) distribution of common periods
({1, 2, 5, 10, 20, 50, 100, 200, 1000}ms) reported by Kramer et
al. [29] to randomly draw a realistic period for each task.
Due to UPPAAL’s restricted support for integer variables and
parameters, we multiplied each period by ten to obtain integer
execution times while ensuring that periods can still be stored
in 16-bit integer variables. Next, given a target total utilization
U , we used the RandFixSum algorithm [30] to generate a
random utilization value ui for each task, from which we
obtained Ci as ui · Ti. We took ki and βi as input parameters
for each experiment and derived Xi = (Ci − βiCi)/βi. Based
on Ci and Xi, we used the RandFixSum algorithm [30] to
distribute Ci among the Cmax

i,j values and Xi among the smax
i,j

values, respectively. Finally, for each segment, we assigned
Cmin

i,j = 0.1 ·Cmax
i,j and smin

i,j = 0.1 · smax
i,j , respectively. Tasks

were assumed to have implicit deadlines and to not have release
jitter, and were assigned rate-monotonic priorities. Moreover,
we discarded task sets that did not pass even a trivial simulation-
based necessary test that considers only one execution scenario
in which each task executes for Ci time units and suspends
for Xi time units (i.e., where all job parameters are maximal).

We performed four experiments by varying (Exp1) the
number of cores and total utilization U (for U ∈
{0.3m, 0.5m, 0.7m}, n = 10, one segment per task, and no sus-
pensions); (Exp2) the number of tasks n (for m ∈ {1, 2, 4, 8},
U=0.3 · m, one segment per task, and no suspensions);
(Exp3) the maximum execution time ratio β (for m ∈ {1, 2},
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U ′ ∈ {0.5m, 0.7m, 0.9m}, where U ′=(Ci + Xi)/Ti, n = 5,
and up to 5 segments separated by suspensions); and (Exp4) the
maximum number of execution segments (for m = 2, n = 10,
U=0.3m, and no suspensions). For each parameter combina-
tion, we generated and analyzed at least 100 task sets. For
instance, Exp2 evaluated 27,000 task sets for all parameter
values, with 1,300 jobs per hyperperiod on average (with a
minimum of 3 and a maximum of 10,728 jobs).

For each task set, we ran an instance of UPPAAL’s
verifyta tool (a mainly single-threaded computation) on
an Intel Xeon E7-8857 v2 processor clocked at 3 GHz. A
task set was deemed unschedulable either if it was rejected
by the proposed test or if the proposed test could not reach
a conclusion within one hour. We applied the same timeout
to all other tests as well. Moreover, to avoid wasting compute
resources, we stopped an experiment (e.g., in Exp2, stopped
increasing n) when the analysis of more than 50% of the task
sets timed out. Fig. 3 reports the results of our experiments.6

When reporting average runtimes, we consider only schedulable
task sets (i.e., we exclude unschedulable task sets) to avoid
biasing the results since tests can typically reject unschedulable
task sets very quickly without exploring the whole state space.

Schedulability. Figs. 3(a,b,c) and (h) confirm that our exact test
identifies many more schedulable task sets than prior G-NP and
G-LP tests (when applied to periodic tasks). Our results show
that, for the tested workloads, Nasri-G-NP is actually as precise
as the exact test, even though it is technically only a sufficient
test if m > 1 [26]. In fact, thanks to its efficient, interval-
based state-space exploration approach, which in contrast to
UPPAAL is tailored to the schedulability problem, Nasri-G-NP
was able to identify more schedulable task sets than the exact
test within the one-hour time limit, as for instance can be
seen in Figs. 3(b,c). In future work, it would be promising to
extend Nasri-G-NP to the full task model considered herein
(i.e., limited-preemptive, self-suspending workloads).

Moreover, our test reveals considerable pessimism in the
state-of-the-art schedulability test for limited-preemptive tasks
(Serrano-G-LP [28]), which can be observed in Fig. 3(h).
While our test confirms that schedulability improves with
an increase in the number of cores, the test of Serrano et
al. [28] actually indicates the opposite: the number of task
sets deemed schedulable by Serrano-G-LP drops considerably
when multiple cores are available. This reveals further room
for improvement in state-of-the-art global limited-preemptive
schedulability analyses and demonstrates the benefit of having
an exact baseline to compare sufficient tests against.

Runtime. As expected and as shown in Figs. 3(d,e,g,i), the
exact test’s runtime increases rapidly when U , m, the number
of execution segments, or the length of suspension segments
increase since each of these changes increases the number of
execution scenarios that must be explored. The decrease in
the runtime of the analysis in Fig. 3(g) is due to the fact that

6Fig. 3 has been updated to reflect the aforementioned tweak of the SYNC
automaton and hence differs in minor ways from the conference version.
However, none of the general conclusions have been altered.

with the increase in the execution time ratio, the suspension
segments become shorter and hence the number of interleavings
that must be considered by the analysis is reduced. This makes
the analysis faster. Finally, comparing Figs. 3(d) and (e), we
observe that the proposed test’s runtime is more affected by
joint increases in m and n than by joint increases in m and U .

Discussion. While the proposed test suffers from the typical
scalability limitations expected from TA-based analyses, we
nonetheless found it to be able to scale to periodic workloads
of nontrivial size: up to 60 tasks on 2 cores, 30 tasks on
4 cores, and 15 tasks on 8 cores. The test performs worse
when the number of possible execution scenarios increases,
e.g., when there are more segments or longer suspension times
(see Fig. 3(g)). Similarly, its runtime grows very quickly in
the presence of sporadic tasks (as reported in the Appendix).

Nonetheless, our exact test provides a useful baseline for
evaluating the accuracy of other, only sufficient tests. For
instance, in the special case of G-NP scheduling (i.e., no
preemption points, no suspensions), Nasri-G-NP is as accurate
as the exact test while scaling much better: Figs. 3(e) and (f)
show the Nasri-G-NP test to be three orders of magnitude faster.

VI. CONCLUSION

We have proposed the first exact schedulability test for
limited-preemptive (and non-preemptive) self-suspending real-
time tasks scheduled upon a uniprocessor or multiprocessor
platform (under a global fixed-priority scheduling policy). We
mapped the schedulability problem to the TA reachability
problem, discussed some subtle pitfalls and limitations of prior
TA-based schedulability tests, and proposed task, scheduler, and
event synchronizer automata to realize an exact test. In addition
to scaling to nontrivial workload sizes before succumbing to
the state-space explosion problem, our work also provides
the first exact baseline against which sufficient schedulability
tests can be compared and thus enables future research into
self-suspensions and limited-preemptive models.
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APPENDIX

Timed Automaton for Sporadic Tasks

Fig. 4 shows the TASK automaton for sporadic tasks. There
are only a few differences between the periodic and sporadic
task automata. First, in the sporadic TASK automaton, the
Completed location has a self-loop with guard “synch?” to
implement sporadic release behavior (i.e., a task does not
necessarily release its next job after exactly Ti time units).
Second, the invariant on the Completed location (i.e., “t
<= period()”) is removed so that the task can stay in
this location even after its minimum inter-arrival time has
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Fig. 5. The runtime of the test as a function of the number of sporadic tasks
for m = 1 and m = 2 cores and U = 30%.

been exceeded. Finally, we have replaced “t == period”
with “t >= period” on the transition from Completed to
Suspended so that this transition can be activated at any point
after the minimum inter-arrival time of the task has passed.

Extended Experiments on Sporadic Task Sets

We conducted additional experiments on sporadic task
sets to assess the scalability of the model shown in Fig. 4.
Unfortunately, sporadic task behavior induces a much larger
state space, which translates into substantially worse runtimes.

We used the same task set parameters as in Exp2 in Sec. V
(varying the number of tasks for n = {2, 3, 4}) and assumed
that every task is sporadic. Fig. 5 shows the observed runtime
of the analysis for m = 1 and m = 2 cores and a varying
number of tasks.

The results depicted in Fig. 5 clearly indicate that the runtime
of the analysis increases exponentially with the increase in
the number of sporadic tasks even for very small task counts.
This is due to the large number of possible release scenarios
in sporadic task sets. Unfortunately, for m = 1 and n > 4
as well as for m = 2 and n > 3, the analysis did not finish
within the configured four-hour time budget. In conclusion, an
exact analysis of sporadic workloads that scales to industrially
relevant workload sizes remains a challenge for future work.
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