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January 2018



R E L AT I O N A L C O S T A N A LY S I S

A dissertation submitted towards the degree

Doctor of Engineering

of the

Faculty of Mathematics and Computer Science

of

Saarland University

by
ezgi çiçek

Saarbrücken, January 2018



Day of Colloquium: 22/01/2018

Dean of the Faculty: Prof. Dr. Frank-Olaf Schreyer

Chair of the Committee: Prof. Dr. Jan Reinecke

Reporters: Dr. Deepak Garg

Prof. Dr. Amal Ahmed

Prof. Dr. Gert Smolka

Academic Assistant: Dr. Marco Patrignani



Dedicated to the loving memories of

my grandfather

Ali Ulvi Çiçek

&

my great-grandfather

Hacı Burhan Deniz





A B S T R A C T

Programming languages research has made great progress towards
statically estimating the execution cost of a program. However, when
one is interested in how the execution costs of two programs com-
pare to each other (i.e., relational cost analysis), the use of unary
techniques does not work well in many cases. In order to support a
relational cost analysis, we must ultimately support reasoning about
not only the executions of a single program, but also the executions of
two programs, taking into account their similarities. This dissertation
makes several contributions to the understanding and development
of such a relational cost analysis. It shows how:

• Refinement types and effect systems can express functional and
relational quantitative properties of pairs of programs, includ-
ing the difference in execution costs.

• Relational cost analysis can be adapted to reason about dy-
namic stability, a measure of the update times of incremental
programs as their inputs change.

• A sound and complete bidirectional type system can be devel-
oped (and implemented) for relational cost analysis.
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Z U S A M M E N FA S S U N G

Die Programmiersprachen-Forschung hat große Fortschritte bei der
statischen Einschätzung der Ausführungskosten von Programmen
gemacht. Wenn man allerdings wissen möchte, wie die Ausführungs-
kosten zweier Programme sich zueinander verhalten (relationale Kos-
tenanalyse), funktionieren unäre Methoden in vielen Fällen nicht gut.
Eine relationale Analyse muss insbesondere nicht nur die Ausführung
eines einzelnen Programmes betrachten, sondern die Ausführung bei-
der Programme, um Ähnlichkeiten berücksichtigen zu können. Diese
Dissertation liefert mehrere Beiträge zum Verständnis und zur En-
twicklung solcher relationalen Kostenanalysen. Sie zeigt:

• Refinement-Typsysteme und Effekt-System können funktional
und relational qualitative Eigenschaften von Programmpaaren
ausdrücken, insbesondere die Differenz der Ausführungskosten.

• Relationale Kostenanalyse kann angepasst werden, um dynamis-
che Stabilität zu analysieren. Diese misst die Update-Zeit inkre-
menteller Programme, wenn deren Eingaben sich ändern.

• Ein korrektes und vollständiges bidirektionales Typsystem für
die relationale Kostenanalyse kann entwickelt und implemen-
tiert werden.
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1
I N T R O D U C T I O N

Software systems inevitably contain bugs. Fortunately, recent research
in programming languages has produced significant advances that al-
low automatic detection of bugs that cause a program to crash or to
produce an unintended result. With the help of formal verification sys-
tems, such as type systems or program logics, errors can be detected at
compile time by proving functional correctness properties of a program.

However, it is not enough for a program to execute without errors. In
safety- and security-critical systems, like flight control systems or cryp-
tographic applications, programs must not only execute correctly but
must also finish executing within specified resource bounds. Such perfor-
mance issues are significant because, in addition to wasting resources,
they can make programs insecure, e.g. by allowing unintended leakage
of secret inputs, or they can even render programs unusable, e.g. by al-
lowing malicious users to create denial-of-service attacks. Even in con-
texts where the stakes are not so high, the resource usage of programs
is still important for the purposes of usability and resource allocation: a
user of a mobile phone may want to know that a software update does
not slow down the phone significantly or cloud computation providers
may want to ensure that their users do not exceed available resource
quotas. In all of these scenarios, programming resource-aware systems
requires guaranteeing not only functional correctness properties but
also non-functional properties on the resource usage of programs.

While the programming languages community has already made sig-
nificant advances towards the former functional correctness guarantees
through strong typing, good language design and sophisticated pro-
gram logics, relatively less attention has been paid to expressing and
verifying resource guarantees. As software becomes more and more vital
to human life and operations, clearly, it is critical to address this issue
for a more reliable and secure software ecosystem.

The broad goal of this thesis is to guide program construction and
verification in such a way that critical resource and safety correctness
properties are guaranteed not only for a single program but also for a pair
of programs. This has the potential for tremendous practical impact not
only in safety-critical software but also in software deployed in every-
day use.
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2 introduction

1.1 applications of relational cost analysis

One of the traditional approaches for providing guarantees on resource
usage of programs is to statically analyze the amount of resources
needed to run a program. Formal techniques for performing such static
execution cost analysis build on extensions of classical techniques for
statically reasoning about functional properties of programs and usu-
ally focus on worst-case bounds. However, almost all of these tech-
niques are inherently unary, i.e. they only reason about individual ex-
ecutions of a single program. As we demonstrate in this thesis, many
important resource properties of programs are often relational, i.e. they
naturally talk about pairs of executions, of programs that are either
identical or closely related.

This relational nature of reasoning about resource usage can be ob-
served when programmers want to

a) compare the efficiency of two implementations for the same prob-
lem or of two similar problems

b) refactor a program fragment without increasing its resource us-
age

c) show that the execution cost of a program is independent of the
secret values of its inputs, i.e. given arbitrary input values, two
executions of the same program have the same execution cost
(constant-time analysis in cryptography)

d) show how the execution cost of a program varies depending on
changes to its inputs (stability analysis)

In all of these cases, in order to prove interesting quantitative cor-
rectness properties, one would need to reason how the cost of one
execution compares to the other. To statically reason about this com-
parison, one would need to prove upper bounds on the execution cost
difference between two closely-related programs or two executions of
the same program with different inputs. We refer to this difference, i.e.
cost(e1) − cost(e2), as the relative cost of e1 with respect to e2 and we
refer to this analysis as relational cost analysis. In general, the cost could
refer to the number of evaluation steps, abstract units of execution time,
or to some consumption measure of another resource.

To see how bounds on the relative costs could be useful in relational
verification in practice, consider the scenarios discussed above. For in-
stance, scenario a) might arise in the context of compiler optimizations
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where a compiler developer may want to prove that the optimized ver-
sion of a program, e ′, is no slower than the original program, e, i. e. es-
tablish that cost(e ′) 6 cost(e), or equivalently, cost(e ′) − cost(e) 6 0.
A similar scenario might arise in the context of approximate compu-
tations where a programmer may need to prove that the approximate
version of the program, ea, which often sacrifices precision for the sake
of efficiency, runs much faster than the original program, e, i. e. estab-
lish that cost(ea) − cost(e) 6 t. Unlike scenarios a) and b), where we
have slightly different programs, there could also be scenarios like c)
and d) where the two programs are identical but their inputs differ.
For instance, the scenario c) might arise in the context of cryptographic
applications where a programmer may need to prove that a program
doesn’t have a timing leak, i. e. establish that the relative cost of two of
its executions (under arbitrary secret inputs) is always zero, e. g. ∀v1, v2.
cost(e[v1/x]) − cost(e[v2/x]) = 0. Scenario d) might arise in the con-
text of algorithmic stability analysis where a programmer may need
to establish how the execution cost of a program e varies as its inputs
change, e. g. establish that ∀v1, v2. cost(e[v1/x]) − cost(e[v2]) 6 t. In
all of these scenarios, determining static upper bounds on the relative
costs of two closely-related expressions would be helpful.

why we need a new relational cost analysis A natural
way to statically establish an upper bound on the relative cost of a pro-
gram e1 with respect to another program e2 would be to first establish
an upper bound on e1’s cost and a lower bound on e2’s cost, i.e., find
t,k such that cost(e1) 6 t and k 6 cost(e2). Then, the relative cost of
e1 with respect to e2 can be upper bounded by the difference between
these upper and lower bounds, i.e., cost(e1) − cost(e2) 6 t− k.

Although combining worst- and best-case bounds as described above
is a sound way of establishing relative costs of two programs, this ap-
proach has two major limitations.

First, there could be cases in which naive non-relational cost analysis
is difficult or intractable, but where relational cost analysis becomes
easier or tractable. For example, consider a developer updating a dis-
tributed cloud application which uses almost all available hardware re-
sources such as memory on a single machine. Since every patch to the
application potentially increases memory requirements, the developer
has to ensure that the updated application does not run out of memory.
One solution would be to derive a global memory bound for the up-
dated application. However, this may be difficult or even impossible in
many situations. On the other hand, a formal relational analysis might
be able to show that the updated application does not use more memory than
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the original one. Such an analysis could be local—if, e.g., changes have
been made to the body of only one loop—and may match the intuitive
soundness reasoning in the mind of the developer.

Second, even in cases where non-relational cost analysis is possible,
often a naive combination of best- and worst-case bounds results in im-
precise bounds. To see how imprecise the naive non-relational method
can be, consider a simple program

if n > 0 then f(n) else 1

with a single input n, where f is a closed function with equal maxi-
mum and minimum execution cost c(n) that is linear in n. Assuming
that evaluation of a conditional takes 1 unit of cost, the program runs
slowest with cost c(n) + 1 when n is non-negative and it runs fastest
with cost 1 when n is negative. What can we say about the relative cost
of two runs of this program? Although one may naturally answer that
the relative cost is simply bounded by the difference in the worst- and
best-case executions costs of the two runs, i.e. c(n), the precise answer
depends on the values assigned to n in the two runs of the program.
If we know that the two values assigned to n will not differ in the two
runs, then the two executions would follow the same path and the dif-
ference in their execution cost would be 0, not c(n). A non-relational
analysis based on best- and worst-case execution times cannot establish
this 0 cost, whereas a relational analysis, which takes into account the
fact that n is the same in the two runs, may.

Instead of using existing unary analyses, which are not well-suited
for relational verification as demonstrated by the aforementioned prob-
lems, a relational analysis is needed. Before we describe our proposed
method of conducting such a relational cost analysis, there are several
desired properties that one might expect from such a relational cost
analysis, which are worth pointing out upfront:

• Similarity/dependency tracking In order to obtain precise bounds,
the analysis should track potential similarities/dependencies be-
tween the inputs as well as the program code.

• Size and cost sensitivity The execution cost of a program often
depends on the sizes of its inputs. Therefore, a relational cost
analysis should be able to track the sizes of the program’s inputs
statically.

• Precision A static analysis cannot, due to over-approximation, al-
ways achieve the same level of precision as a careful manual anal-
ysis. However, the underlying language to express the bounds on
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the execution costs should be expressive enough to obtain tight
bounds whenever possible.

• Support for local reasoning The analysis should not require more
information than necessary. For instance, to find the relative cost
of two programs that differ slightly, it should be possible to only
focus on parts of the programs that differ.

• Reliability and safety At a bare minimum, we would like to have
the assurance that the bounds obtained by our analysis are indeed
asymptotically upper bounds on the actual relative costs of the
two programs, i. e., the analysis is sound with respect to a cost
semantics.

• Verifiability It should be fairly easy for programmers to apply
the analysis—at least given their hunch about the bound. This
goal is vital to the practicality of the approach.

In this thesis, we propose a relational cost analysis that meets all of
these criteria.

1.2 contributions

The notions of refinement types and effect systems—the main tools we
use in this thesis—have been around for at least four decades. As one of
the main contributions of this thesis, we convincingly demonstrate the
use of refinement type and effect systems in a relational setting, i. e., to
reason about functional and quantitative properties of a pair of programs,
and we show that this approach is practical and can be applied to non-
trivial domains like incremental computations.1 1 For an overview of

incremental
computations, see
Section 7.1.

In particular, this dissertation makes the following contributions:

• We present relational cost analysis, a new type-based verification of
how the execution cost of one program compares to another, pos-
sibly similar program. We show how refinement types and type and
effect systems can be combined to statically verify precise bounds
on the differences on the execution costs of a pair of programs.

• We demonstrate how the relational cost analysis can be adapted to
reason about dynamic stability—a measure of the update times of in-
cremental programs as their inputs change. Apart from showing the
applicability of relational cost analysis to a seemingly unrelated
setting with a different, more complex evaluation semantics, our
incremental complexity analysis provides a high-level type-based
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verification mechanism for reasoning about dynamic stability of
incremental programs. Prior to our approach, reasoning about dy-
namic stability required tedious direct analysis of cost semantics.

• We design and implement a bidirectional typechecking technique for
relational cost analysis. Through a series of benchmarks, we eval-
uate our analysis to demonstrate that relational cost analysis can
be used to verify a variety of functional and quantitative safety
and correctness properties of programs from different areas such
as cryptography, incremental computations and algorithm analy-
sis, while imposing a low annotation burden on the programmer.

1.3 thesis outline

The rest of the thesis is broken into five parts.

Part I (relcost) Chapter 3 starts with an informal, example-
driven overview of relational cost analysis in the context of CostML, a
high-level, functional programming language which is a subset of ML.
The language is compact enough to keep proofs and definitions read-
able but expressive enough to type non-trivial programs from various
domains. This chapter introduces RelCost, a relational type and effect
system through examples.

Chapter 4 presents RelCost’s type and effect system. For RelCost’s
soundness, the execution cost of RelCost programs are formalized in
a parametric way that allows for a wide range of cost metrics. To
this end, Section 4.1 defines a big-step operational semantics that is
parametrized with execution cost metrics.

Chapter 5 proves RelCost sound with respect to this cost semantics by
developing an abstract semantic model combining step-indexed binary
and unary logical relations for relational and non-relational reasoning
about cost.

Chapter 6 discusses related work.

Part II(ducostit) Chapter 7 demonstrates how we can adapt the
relational cost analysis technique to the setting of incremental compu-
tation in order to reason about update times of incremental programs.
It starts with a review of incremental computation. Then it provides an
informal, example-driven overview of dynamic stability analysis in the
context of CostML by introducing a type and effect system called DuCos-
tIt that is similar to RelCost, but it has a different underlying semantic
model that is geared towards incremental computation.
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Chapter 8 presents DuCostIt’s type and effect system. For DuCostIt’s
soundness, in addition to the standard evaluation semantics, Section 8.1
defines an abstract change-propagation semantics, modeling incremen-
tal evaluation under arbitrary changes to inputs of a program.

Chapter 9 proves DuCostIt sound with respect to the from-scratch and
change propagation cost semantics by developing an abstract semantic
model combining step-indexed binary and unary logical relations for
relational and non-relational reasoning about cost.

Chapter 10 discusses related work.

Part III (birelcost) To demonstrate that all the power that comes
with RelCost’s rich type system can be used in practice, Chapter 11
presents BiRelCost, a bidirectional algorithmic type system for RelCost.

To show BiRelCost sound and complete with respect to RelCost, we
follow a two-step approach: 1) embedding of RelCost into an intermedi-
ate language, RelCost Core, and 2) algorithmic type checking of RelCost
Core.

Chapter 12 first discusses several aspects of RelCost’s type system—
such as non-syntax directed rules and relational subtyping—that make
it hard to algorithmize. Then, the chapter describes how these obstacles
can be circumvented by describing an embedding from RelCost to Rel-
Cost Core, an intermediate language that has only type-directed rules
and no relational subtyping. We use the embedding to argue that our
bidirectional type checking is complete up to non-determinism.

Chapter 13 describe an algorithmic type system for RelCost Core. We
rely on bidirectionality, which allows us to type check with very few
type annotations. We call our bidirectional system BiRelCost and we
discuss aspects of BiRelCost that differs from existing bidirectional type-
checkers. Section 13.2 proves that the algorithmic type system is sound
and complete w.r.t. the type system of RelCost Core.

Chapter 14 presents a prototype implementation of BiRelCost which
combines the two steps from RelCost to RelCost Core and from RelCost
Core to BiRelCost. The implementation reduces the problem of type-
checking to constraint satisfaction in SMT and makes use of a few
heuristics that eliminate the non-determinism inherent in RelCost’s typ-
ing rules. Section 14.4 uses this implementation to demonstrate the pre-
cision and generality of the approach by typechecking several example
programs ranging over compiler optimizations, security and algorith-
mic stability.

Chapter 15 discusses related work.



8 introduction

Part IV (epilogue) The thesis concludes with Chapter 16, which
summarizes the contributions and discusses several directions for fu-
ture work.

Part V (appendix) Appendices A to C contain the proofs of the
necessary lemmas and theorems for RelCost, DuCostIt and BiRelCost, re-
spectively. Appendix D contains additional lemmas and example pro-
grams considered throughout the thesis.

1.4 aspects of relational cost analysis not covered in
the thesis

Although the broad theme of this thesis is relational cost analysis and
its applications, certain aspects of relational cost analysis are not cov-
ered in the thesis. In order to establish the scope of the thesis, we list
these out-of-scope topics below.

• Inference of relational cost bounds: The thesis does not cover how the
relational cost bounds can be inferred automatically. Instead, we
focus on typechecking.

• Realizability of incremental update times: We do not describe how
the algorithmic change propagation technique, described in Sec-
tion 8.1, can be implemented. Zoe Paraskevopoulou’s Master’s
thesis [85] describes a concrete change propagation technique that
can be implemented.
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2
M E T H O D O L O G Y

I synopsis In this chapter, we discuss two necessary ingredients
for specifying and enforcing relational cost bounds: type and effect sys-
tems and refinement types. These two techniques are particularly well-
suited for establishing quantitative properties of programs and form
the basis of our work. Before we explain how these techniques can be
adapted to reason about relational properties such as relational cost
and dynamic stability bounds, we first provide a background for read-
ers that are unfamiliar with them.

2.1 capturing computation via type and effect systems

Type systems are one of the most lightweight static analysis techniques:
by capturing properties of sets of values, types enable programmers
to reason about the functional correctness of their programs. However,
most often one is interested in not only what the program computes but
also how the program computes. That is where type and effect systems
come into play: by capturing the side effects that occur during the com-
putation, type and effect systems can enable programmers to reason
about sophisticated functional and quantitative correctness properties
of programs.

Type and effect systems are usually formalized by the judgment
Γ ` e : τ , ε where ε is an effect term (hence it is simply called ef-
fect). Informally, the judgment can be read as: under the context Γ ,
which contains the type declarations of the program’s free variables,
the program e yields a value of type τ and during the computation the
program may have the effect ε.2 The meaning of the effect ε changes 2 We assume a

call-by-value
language here. For a
call-by-name
language, the context
Γ contains type and
effect assumptions of
the form x :εi τi
since variables may be
substituted by
expressions that may
themselves have
effects.

depending on the kind of the computational property the effect cap-
tures. For instance, in the context of memory management, where data
is allocated on the heap per region, one may want to statically track
the set of regions that are allocated during the evaluation of the pro-
gram. Then, such a type and effect system can be used to ensure that
no memory accesses, apart from the ones specified in ε (e. g., to unallo-
cated or deallocated regions), occur at runtime. Similarly, in the context
of a language with exceptions, one may want to statically track the set
of exceptions raised during the execution of the program. Then, such

11
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a type and effect system can be used to ensure that a program typed
with ε = ∅ would have no uncaught exceptions. In these two exam-
ples, the effect can be modeled by a set of events observed during the
computation. However, the effect doesn’t necessarily have to be a set:
e. g., in the context of cost analysis, the effect could capture the number
of evaluation steps or in the context of incremental computations, the
effect could capture the size of the evaluation trace.

Techniques based on type and effect systems have several strengths
compared to other static analysis techniques for verification (e. g. based
on program logics or abstract interpretation). First, type and effect sys-
tems work well with higher-order functions by means of effect anno-
tations on function types. (Consequently, the approach naturally sup-
ports separate compilation) Second, type and effect systems are a light-
weight method for verification, i. e. they are more amenable to adoption
in practice by programmers. Compared to program logics that often re-
quire domain-specific experts to prove the desired properties, type and
effect systems are usually equipped with type inference and typecheck-
ing mechanisms that reduce the burden on the programmer. Finally,
by supporting a rigorous analysis early in the development process,
the approach enables the development of correct-by-construction pro-
grams, reducing the need for extensive testing at runtime.

Even though type and effect systems are well-suited for modeling
and verifying many interesting computational behaviors, in order to
model relational cost analysis, existing type and effect systems do not
suffice due to two reasons.

First of all, existing type and effect systems are often unary, i. e.,
they reason about a single program, whereas relational cost analysis
requires us to reason about a pair of programs. In this thesis, we demon-
strate how effect systems can be generalized to the relational setting.

Secondly, the bounds on relative costs, as well as execution costs, usu-
ally depend on some properties of input values of programs which can-
not be captured by simple types. These properties themselves could be
unary, e. g., capturing the sizes of the program’s inputs, or they could
be relational, e. g., capturing how two inputs of a program differ from
each other. Next, to describe such unary and relational dependencies to
program values, we discuss a complementary type-theoretic approach
to increase expressivity of type and effect systems, namely refinement
types.
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2.2 middle ground on dependency : refinement types

One of the fundamental ways of modeling dependency on program
values is dependent types. Dependent types allow enriching the type
information so that types can refer not only to other types but also to
values. For instance, the usual function type A → B is generalized to
Πx : A.B so that type B of the return value may vary depending on its
argument x : A.3. For a short introduction to dependent types, see [22]. 3 If x doesn’t occur in

B, we have the usual
simple function type
A→ B

Dependent types enable programmers to express more program prop-
erties than what is possible with conventional type systems like ML
and Haskell. Properties that can be expressed by dependent types could
provide functional guarantees (e. g. showing that quicksort produces a
sorted list) as well as resource guarantees (e. g. showing that a pro-
gram doesn’t have memory leaks). Moreover, such properties can be
relational. In fact, full-fledged dependent types can express most prop-
erties which we know how to define mathematically.

However, this tremendous expressivity comes at a steep price: type-
checking dependent types is extremely complicated and undecidable
in general. This is because dependent types remove the isolation be-
tween values and types that exists in simply-typed languages, hence
lifting the general halting problem to typechecking.

Instead, researchers have designed restricted forms of dependent
types by sacrificing some of the expressivity of dependent types for
the sake of decidable and low-complexity typechecking. Such systems
are often called “lightweight dependent types” or “refinement types’.4. 4 There is no

consensus on the
actual nomenclature:
see [1] for a detailed
discussion on the
difference between
refinement and
indexed types.

A prominent example of refinement types is DML, which extends
ML with indexed types [106]. The main idea behind DML is to bring
back the isolation between values and types: by allowing types to only
refer to index terms which are separate from DML expressions, one
can create a phase distinction between typechecking and execution of a
program. Hence, while retaining additional expressivity, typechecking
is reduced to constraint satisfaction over the index terms, which is often
decidable.

DML’s type refinements are mostly in the form of indexed types
where list and tree types are indexed with the number of elements, al-
though they also consider richer refinements like the height of trees.
Crucially, the type system ensures that constructors and destructors
preserve the size information and pattern matching is index-dependent.
DML has demonstrated that–even using only lightweight refinements,
dependent types are powerful to statically prove the absence of notori-
ous bugs such as array index out of bounds errors.
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Motivated by the success of DML and recent use of refinement types
in mainstream languages (like LiquidHaskell [104]), in this thesis, we
build on ideas from refinement types. In particular, for relational cost
analysis, we employ DML-style unary index refinements to express
not only unary dependencies, such as input sizes, but also relational
dependencies, such as the number of elements that differ between the
two lists.



Part I

R E L C O S T





3
RELCOST B Y E X A M P L E S

I synopsis Recall that the goal of relational cost analysis is to de-
rive an upper bound on the difference in the execution costs of two pro-
grams, say e1 and e2. This difference, i.e. cost(e1) − cost(e2), is also
called the relative cost of e1 with respect to e2. When e1 and e2 have
the forms f e ′1 and f e ′2, the same analysis can be used to determine
how the cost of a function f varies with the argument.

In this chapter, we introduce a relational refinement type and effect
system for relational cost analysis. We first give an overview of Rel-
Cost’s type system and then present some of its features through exam-
ples.

two-layered typing Precise relational cost analysis requires un-
derstanding which expressions and values may be related. RelCost’s
types (shown in Figure 1) make this explicit by syntactically (as well as
semantically) separating the relational types τ from the non-relational
ones A: the former represent a pair of related values (expressions), cap-
turing the similarities between them, whereas the latter represent indi-
vidual values (expressions). For instance, the unary type int represents
integer values whereas the relational type intr represents pairs of iden-
tical integer values. In general, any non-relational type can be trivially
made relational by encapsulating it within the weakest relation using
the U · modality. For instance, the type U int represents a pair of un-
related integers whereas the type intr represents a pair of identical
integers.5 5 U · is generalized to

U (A1,A2), which
relates pairs of
arbitrary values of
different types A1
and A2.

Corresponding to these two layers of types, there are two typing
judgments in RelCost. The unary typing judgment has the formΩ `tk e : A,
where k and t are lower and upper bounds on the execution cost of e
under the unary (non-relational) typing environment Ω. The relational
typing judgment has the form Γ ` e1 	 e2 . t : τ, where t is an upper
bound on the relative cost of e1 with respect to e2 under the relational
typing environment Γ . Relational typing aims to benefit from the sim-
ilarities between the inputs and the programs, whereas unary typing
considers a single program and a single input in isolation.

size and cost refinements RelCost makes use of two kinds of
type refinements: size refinements and cost refinements.

17
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Unary types A ::= int | A1 × A2 | A1 + A2 | list[n]A |

A1
exec(k,t)−−−−−→ A2 | ∀i

exec(k,t)
:: S.A |

∃i::S.A | C & A | C ⊃ A | unit

Relational types τ ::= intr | τ1 × τ2 | τ1 + τ2 | list[n]α τ |

τ1
diff(t)−−−→ τ2 | ∀i

diff(t)
:: S. τ | ∃i::S. τ |

C & τ | C ⊃ τ | unitr | UA | � τ

Sorts S ::= N | R

Index terms I,k, ::= i | 0 | ∞ | I+ 1 | I1 + I2 | I1 − I2 |

t,α I1
I2

| I1 · I2 | dIe | bIc | log2(I) |

I
I2
1 |

In∑
i=I1

I | min(I1, I2) | max(I1, I2)

Constraints C ::= I1
.
= I2 | I1<I2 | ¬C

Constraint env. Φ ::= > | C∧Φ

Sort env. ∆ ::= ∅ | ∆, i :: S

Unary type env. Ω ::= ∅ | Ω, x : A

Relat. type env. Γ ::= ∅ | Γ , x : τ

Primitive env. Υ ::= ∅ | Υ, ζ : τ1
diff(t)−−−→ τ2 |

Υ, ζ : A1
exec(k,t)−−−−−→ A2

Figure 1: Syntax of RelCost’s types

First, since the execution cost of a program often depends on the
sizes of its inputs, unary list types are refined to the form list[n]A,
where n is the exact length of the list. Relational list types are refined
to the form list[n]α τ, which represents a pair of lists, both of length
exactly n and that differ in at most α positions.6 To statically deal with6 Note that n in

list[n]A is a unary
refinement whereas

the n and α in
list[n]α τ are

relational refinements,
relating a pair of list

values.

the remaining n − α elements that are not allowed to differ between
the two lists, RelCost introduces the comonadic type � τ, representing
the diagonal relation that relates only syntactically equal values (expres-
sions). The type list[n]α τ is interpreted such that at most α elements of
the two lists are of type τ and at least n− α elements are of type � τ,
i.e. identical.

Second, worst-/best-case execution costs and relative costs are treated
as unary and relational effects, respectively. The standard function type
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A1 → A2 is refined to the corresponding unary type A1
exec(k,t)−−−−−→ A2,

which carries k and t, the minimum and maximum execution costs of
the function body. Similarly, the type τ1 → τ2 is refined to the relational

type τ1
diff(t)−−−→ τ2, which carries t, the maximum relative cost of the bod-

ies of the two functions (given related arguments of type τ1). Similar
cost annotations are written on universally quantified types, capturing
the costs of their closures.

example 1 (conditional reconsidered) Coming back to the
example from Chapter 1, let us see how the relative cost of two runs of

e = if n > 0 then f(n) else 1

can be established in RelCost. If n is not allowed to differ in the two
runs, i.e., it has type intr, then the two runs of e can be typed relation-
ally with relative cost 0:

n : intr ` e	 e . 0 : intr (1)

The intuition behind this typing is that since the two runs take the
same execution path, it suffices to relationally type the two branches
f(n)	 f(n) and 1	 1 component-wise, i.e. synchronously. Both of these
branches have 0 relative cost and intr result type, so the two runs of e
can be typed as shown above in (eq. (1)).

In contrast, if the value of n may differ between the two runs, i.e.
n : U int, then these programs can be typed with cost c(n):

n : U int ` e	 e . c(n) : U int (2)

In this case, since the two executions might take different paths, we
lose the relational reasoning. In order to establish an upper bound on
their relative cost, we need to switch to a worst- and best-case execu-
tion cost comparison. In the type system, this is achieved by using the
following switch rule:

|Γ | `t1_ e1 : A |Γ | `_
k2
e2 : A

Γ ` e1 	 e2 . t1 − k2 : UA
switch

where e1 and e2 are two arbitrary programs that are typed indepen-
dently with maximum execution cost t1 and minimum execution cost
k2, respectively.7 (Note that the premises are unary judgments, while 7 The generalized

version of switch for
U (A1,A2) is shown
in Figure 10 (in
Chapter 4).

the conclusion is relational). Then the relative cost of e1 with respect
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to e2 is upper bounded by t1 − k2. Since the execution costs of e1 and
e2 are independent of their relation, we can type them with a non-
relational environment |Γ | obtained from Γ by ignoring the relations for
each type, e.g., |intr| = |U int| = int.

Using this rule, we can type e independently once with maximum
execution cost c(n) + 1 and once with minimum execution cost 1 and
obtain the typing in eq. (2). Note that because n is unrelated in the two
runs, any computation that depends on it must be unrelated as well.
Hence, the result type is also unrelated, i.e. U int.

example 2 (constant-time comparison) In cryptographic ap-
plications, it is often necessary to prove that a program is constant-time,
i.e., its execution time is independent of secret inputs, to prevent an at-
tacker from inferring the secret inputs by measuring the execution time.
Using relational cost analysis, we can prove that a program is constant
time without separately proving that its worst- and best-case execution
costs are equal (as would be necessary if we used non-relational cost
analysis). For example, consider the following constant-time compar-
ison function comp that checks the equality of two passwords repre-
sented as equal-length lists of bits.

fix comp(l1, l2).case l1 of
nil → true

| h1 :: tl1 → case l2 of nil → false
| h2 :: tl2 → boolAnd 〈comp 〈tl1, tl2〉, eq 〈h1,h2〉〉

Suppose that the function boolAnd returns the conjunction of the two
boolean values in constant-time; it has type88 The function

boolAnd can be
defined and typed in

our language, but we
assume eq to be a

primitive function.

boolAnd	 boolAnd . 0 : (U bool×U bool)
diff(0)−−−→ U bool

and that the function eq checks integer equality in constant-time; it has
type

eq	 eq . 0 : (U int×U int)
diff(0)−−−→ U bool .

We can now show that the function comp is constant-time by typing it as
follows:

` comp	 comp . 0 : ∀n,α,β::N.

(list[n]αU int× list[n]βU int)
diff(0)−−−→ U bool.
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The annotation on
diff(0)−−−→ means that the relative cost of two runs of the

function is 0 and, here, the universal quantification over α,βmeans that
this relative cost holds no matter how much the lists differ.9 The proof 9 The expression-level

introduction and
elimination forms for
universal and
existential quantifiers
such as those over
n,α,β are omitted
from all examples for
better readability.

of this judgment proceeds by induction on the input lists (via a typing
rule for fixpoints). The interesting case is when the two lists have at
least one element each. Inductively, we know that the relative cost of
comp〈tl1, tl2〉 is 0. Furthermore, we assumed that eq and boolAnd are
constant-time. Therefore, we can easily conclude that comp is constant-
time.

Note that this proof of the relative cost of comp is trivial compared
to a proof through a non-relational analysis that would have to estab-
lish best- and worst-case execution costs (taking into account constant
factors carefully) and show that they are equal.

example 3 (square-and-multiply) This example demonstrates
how we can combine RelCost’s relational and non-relational reason-
ing principles to obtain precise bounds on the relative cost of pro-
grams. Consider the square-and-multiply algorithm, a fast way of com-
puting positive powers of a number based on the observation that
xm = x · (x2)m−1

2 when m is odd, and xm = (x2)
m
2 when m is even.

The following function, sam, implements this idea, assuming that m is
stored in binary form in a list l of 0s and 1s, with the least significant
bit at the head.

fix sam(x).λl.case l of
nil → contra

| b :: bs → case bs of nil → if x = 0 then 1 else x
| _ :: _ → let r = sam x bs in if b = 0 then r2 else x · r2

Assume that multiplication (as in x · r2) has a fixed cost t. Consider
two executions of sam on the same base (x : intr) and two exponents
that differ in at most α bit positions (l : list[n]α (U int)). What is the
maximum relative cost of one run with respect to the other? Intuitively,
the relative cost is in O(α · t) since the two runs may enter the two
different branches of the if in at most α recursive calls and the difference
in the cost of the two branches is exactly one multiplication (r2 vs x · r2).
Hence, sam can be given the following type for a suitable linear function
P:

` sam	 sam . 0 : intr
diff(0)−−−→ ∀n > 0,α::N. list[n]αU int

diff(P(α·t))−−−−−−→ U int.

We explain how sam’s type is derived in RelCost, focusing on the branch
of the case analysis that recursively calls sam. From l’s type, we know
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that at most α bits differ in the two runs. However, we do not know
whether b is among these α bits. Accordingly, our case analysis rule
for lists, rule r-caseL in Figure 8, requires two sub-cases for the cons
branch: either the head b differs in the two runs or it does not. In
the first case, we assume that b may have different values in the two
runs and bs : list[n − 1]α−1 (U int). The total cost P(α · t) suffices for
the recursive call’s cost P((α− 1) · t) as well as t, the relative cost of
the two branches of the expression (if b = 0 then r2 else x · r2), which
is established through unary analysis of the expression and the rule
switch. In the second case, we assume that b has the same value in
the two runs and bs : list[n− 1]α (U int). In this case, the two runs can
differ only in the recursive call, which has an (inductive) cost of P(α · t).
Technically, the assumption that b has the same value in the two runs
is represented using the relational type constructor � τ, which is the
diagonal sub-relation of τ, i.e., the subset of τ containing equal (not just
related) values in the left and right components. Here, b : � (U int) in
the second sub-case.

Note that the relative cost of sam obtained by taking the difference of
worst- and best-case costs would be linear in n, not in α. Thus, direct
relational analysis makes the reasoning more precise in this example.

example 4 (two-dimensional count) This example also demon-
strates that RelCost’s relational analysis can establish that one program
is faster than another when a unary analysis cannot. Consider the fol-
lowing function 2Dcount that counts the number of rows of a matrix
M (represented as a list of lists in row-major form) that both contain a
key x and satisfy a predicate p. The function takes as argument another
function find that returns 1 when a given row l contains x, else returns
0.

fix 2Dcount(find).λx.λM.caseM of

nil → 0

| l ::M ′ → let r = 2Dcount find x M ′ in
if p l then r+ (find x l) else r

Consider the following two different implementations of find.

fix find1(x).λl.case l of
nil → 0

| h :: tl → if h = x then 1 else find1 x tl

fix find2(x).λl.case l of
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nil → 0

| h :: tl → if (find2 x tl) = 1 then 1
else if (h = x) then 1 else 0

The function find1 scans the row l from head to tail and returns 1when
an element matches x, whereas the function find2 recurs to the end of
l and scans it from tail to head, looking for a match. For simplicity, as-
sume that applications cost a unit and all other operations cost nothing.
We can establish that on input lists of length n, the unary cost of find1
lies in the interval [1, 3n] and that of find2 lies in the interval [3n, 4n].
Hence, find1 is never slower than find2 and, so, the relative cost of
(2Dcount find1) with respect to (2Dcount find2) is upper-bounded by
0 (assuming that the same matrix M is given to the two expressions,
i.e., M has type list[m]0 (list[n]0 int) for some m and n). In RelCost, this
cost can be established in three steps. First, we type 2Dcount. 10 10 If the arrow→ has

no cost annotations,
the cost is assumed to
be 0, i. e. we have
diff(0)−−−−→.

` 2Dcount	 2Dcount . 0 : (U int→ ∀n::N.U (list[n] int)
diff(0)−−−→ U int)→

intr → ∀m,n::N. list[m]0 (list[n]0 intr)
diff(0)−−−→ U int

This type means that, given two find functions with relative cost 0 (first
diff(0)−−−→ in the type above), the relative cost of 2Dcount with those find

functions is 0. This type is easily established by induction on M’s outer
list. Then, we show that the relative cost of find1 with respect to find2

is 0, i.e.,

` find1	 find2 . 0 : U int→ ∀n::N.U (list[n] int)
diff(0)−−−→ U int

This is done by establishing the best- and worst-case costs of find1

and find2 as outlined above (we omit the technical details). Using
these two types we can immediately prove that for a fixed matrix
M : list[m]0 (list[n]0 int), we have

` (2Dcount find1M)	 (2Dcount find2M) . 0 : U int

Importantly, this relational cost cannot be established using a naive
best- and worst-case analysis. This is because the cost of the function
(2Dcount find1 M) is as high as 3nm + 7m when the predicate p is
true on all rows of M and the element x does not appear anywhere,
and the cost of (2Dcount find2M) is as low as 4m when the predicate
p is false on every row. Clearly, 3nm+ 7m is more than 4m, so a unary
cost analysis cannot establish that (2Dcount find1 M) is always faster
than (2Dcount find2M).
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other examples Additional examples, including standard list func-
tions (e.g. append, reverse etc), selection sort, mergesort (a divide and
conquer program), an instance of approximate computation and loop
unswitching (an optimizing program transformation), can be found
in Appendix D.2. In Section 14.4, we describe typing of two example
programs, map and msort, in detail.



4
T H E RELCOST T Y P E S Y S T E M

I synopsis In this chapter, we present the technical ideas behind
RelCost. We first describe RelCost’s type grammar and expression syn-
tax, then we present the underlying abstract cost semantics (Section 4.1)
and explain the typing (Section 4.2) and subtyping rules (section 4.3).
The design of the type system reflects the underlying semantic model,
explained later in Chapter 5.

types RelCost’s type syntax is shown in Figure 1 and it consists of
two kinds of types. Unary or non-relational types, denoted A, are as-
cribed to single expressions, whereas relational types, denoted τ, are
ascribed to pairs of expressions. Both types contain familiar type con-
structors with some refinements. We explain a few salient points here.
The relational base types intr and unitr are distinguished from their
unary counterparts int and unit syntactically; for the remaining type
constructors such as sums and products, we rely on the context to make
this distinction clear. Similar to function types, universally quantified
types are also refined with costs for the bodies of their closures.

Relational types are interpreted as sets of pairs of values whereas
unary types are interpreted—as usual—as sets of values (explained in
Section 5). Any pairs of unary types A1 and A2 can be trivially made re-
lational using the full (weakest) relation U (A1 , A2) (read “unrelated”),
that contains all pairs of values of types A1 and A2. When A1 and A2
are both equal to some A, we simply write U A instead of U (A , A).
For instance, the type U int specifies two arbitrary values of type int.
In contrast, the relational type intr ascribes only those pairs of integers
where the two components are equal. The relational type τ1 + τ2 repre-
sents two values with the same tag: either both inl or both inr. Pairs of
values of a sum type with different tags can be typed at U (A1 + A2).

The type � τ specifies two values of type τ that are syntactically equal.
The � annotation is used mainly in typing list expressions, e.g., in typ-
ing related lists of type list[n]α τ, where at most α elements of the two
related lists are allowed to differ whereas at least n − α elements are
assumed to be identical, i.e., of type � τ. The need for � annotation as
a separate type constructor is best understood by looking at sum types.
For example, (intr + U int) contains pairs of tagged values which have
the same tag but whose content can differ if the tag is inr. The stronger

25



26 the relcost type system

type � (intr + U int) forces both values to be syntactically equal and
is, in fact, semantically equal to (intr + intr). Technically, � is a co-
monadic type: a constructive S4 necessitation modality, but with a rela-
tional interpretation.

Additionally, to represent arithmetic relations between parameters
like n,α, t and k, RelCost includes two forms of constrained types. The
constrained type C & A means that the constraint C holds and the type
is A. Analogously, the constrained type C ⊃ A means that if C holds
then the type is A. The relational counterparts of constrained types
are C & τ and C ⊃ τ and they are defined similarly. For instance,
((16n) & list[n]A) specifies non-empty lists. Constraints are drawn
from a rich language of predicates, explained below.

indices Index terms I,k, t,α are a key ingredient of RelCost’s rela-
tional cost analysis (shown in Figure 1). They serve two purposes: (i) as
refinements on the typing judgments and function types, they specify
relative or best- and worst-case costs and (ii) as refinements on the list
types, they specify the lengths of lists and the maximum number of
differences between related lists. We consider index terms to be sorted.
Index terms over list types are always interpreted over the domain N

of natural numbers, whereas the cost terms are interpreted over the
domain R of real numbers extended with {−∞,∞}. Most operations
over index terms are overloaded for the sorts N and R and there is a
natural subsorting from N to R. The index term ∞ is used to mean
that there is no guaranteed bound on the (relative) cost. The sorting
judgment ∆ ` I :: S assigns sort S to the index term I; its rules are
shown in Figure 2.

constraints Constraints C represent predicates over index terms.
They may appear in (a) constrained types like C & τ and C ⊃ τ, (b) as-
sumptions Φ in typing judgments (explained below) and (c) constraint
entailment in subtyping, denoted ∆;Φ |= C, and read “for any substi-
tution for the index variables in ∆, the constraint assumptions Φ entail
the constraint C”.We do not stipulate syntactic rules for constraint en-
tailment, but they are drawn from first-order logic extended with the
axioms of arithmetic.

expressions and values The syntax of CostML’s expressions and
values is shown in Figure 3. It includes the standard introduction and
elimination forms for RelCost’s types. Integer constants are written n.
Recursive functions are written fix f(x).e. This is also written λx.ewhen
f doesn’t occur in e. Index variable quantification and instantiation are
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∆ ` I :: S
∆(i) = S

∆ ` i :: S inVar
∆ ` 0 :: N

zero
∆ `∞ :: R

infinity

∆ ` I :: N

∆ ` (I+ 1) :: N
plus

∆ ` I :: R ◦ ∈ {b c, d e}
∆ ` (◦S) :: N

op-un-N

∆ ` I1 :: N ∆ ` I2 :: N � ∈ {min, max,+,−, ∗,÷,̂ }
∆ ` (I1 � I2) :: N

op-bin-N

∆ ` t1 :: R ∆ ` t2 :: R ? ∈ {min, max,+,−, ∗, /,̂ }
∆ ` (t1 ? t2) :: R

op-bin-R

∆ ` t :: R

∆ ` log2(t) :: R
op-log

∆ ` I :: N

∆ ` I :: R
iv

∆ ` I1 :: N ∆ ` In :: N ∆, i :: N ` I :: S S ∈ {N, R}

∆ `
In∑

i=I1

I :: S

isum

Figure 2: Sorting rules

denoted Λ.e and e[ ] , respectively. To simplify programs that case ana-
lyze lists, index terms do not appear in expressions. Elimination forms
for constrained types C & τ and C ⊃ τ are written clet e1 as x in e2 and
celim⊃ e, respectively.

Before we explain RelCost’s typing rules, we describe its abstract eval-
uation semantics.

4.1 abstract cost model

We consider a big-step call-by-value operational cost semantics for Rel-
Cost. The evaluation judgment e ⇓c,r v states that expression e evalu-
ates to value v. The judgment is instrumented with two cost counters,
recording two independent costs: a) reduction steps c, which are an arti-
fact of the proof technique we use and interact only with the step-index
in our semantic model and b) execution cost r (tracking the resource
use), which interact only with the execution (relative) cost bounds in
the type system. The cost semantics is parametric in the execution costs:
symbolic costs for elimination forms described below can be set exter-
nally without affecting the analysis. Apart from the costs, the evalua-
tion rules are fairly standard and shown in Figure 4. We briefly discuss
the high-level design principles behind our abstract cost semantics.
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Expr. e ::= x | n | fix f(x).e | e1 e2 | ζ e | 〈e1, e2〉 | π1(e) | π2(e) |
inl e | inr e | case (e, x.e1,y.e2) | nil | cons(e1, e2) |
( case e of nil → e1 | h :: tl→ e2) | Λ.e | e[ ] |
pack e | unpack e1 as x in e2 | let x = e1 in e2 |
clet e1 as x in e2 | celim⊃ e | ()

Values v ::= n | fix f(x).v | 〈v1, v2〉 | inl v | inr | nil |

cons(v1, v2) | Λ.e | pack v | ()

Figure 3: Syntax of terms and values

The total execution cost of an expression is the sum of the costs of
its subexpressions, plus a distinct symbolic cost for the following elim-
ination constructs: projections, pattern matches on lists and sum types,
function applications, and let-bindings. The elimination forms for in-
dex variables and constraints do not incur any additional cost since
they are usually compiled away before program’s execution. All other
reduction rules, including the ones for values, are assigned zero addi-
tional cost. We use metavariables like capp to denote such construct-
dependent elimination costs. The analysis is sound for any values of
these cost metavariables as long as they are all real numbers. 11 Our cost11 Usually, the values

for metavariables
would be

non-negative,
accounting for how

much resource is
consumed by
executing the

corresponding
construct. However,

these values could be
also negative,
meaning that
executing the

corresponding
construct produces

some resources.

model could be generalized by operating on a pre-ordered monoidal
structure with an identity and a binary operation as well.

Like execution costs, the reduction steps follow a similar pattern with
the exception that instead of symbolic steps, each aforementioned elim-
ination incurs a unit step.

In principle, one could merge the reduction steps with the execution
costs and keep track of a single cost like in the original RelCost pa-
per [110]. However, due to the step-indexing that we use to deal with
recursive functions in our semantic model, this would require recursive
functions to consume some resource every time: i. e. the cost of applica-
tion (capp) would need to be at least 1.12 Even though this might seem

12 To see why, see the
soundness proof of

fixpoints
in Appendix A.2, in

which applications
take at least a step.

like a minor constraint, it has two drawbacks. First, such a restriction is
unnecessarily prohibitive. If we were to track different resources other
than execution costs (e. g., the number of network calls), we would still
be forced to always incur 1 cost for applications. Second, this restric-
tion is semantically unsatisfying: step-indexing is a technique to make
the proofs of non-well-founded definitions go through, and shouldn’t
be integral to the semantics of the language.
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e ⇓c,r v Expression e evaluates to value v with c steps and cost r.

n ⇓0,0 n
const

e ⇓c,r v
inl e ⇓c,r inl v

inl
e ⇓c,r v

inr e ⇓c,r inr v
inr

e ⇓c,r inl v e1[v/x] ⇓cr,rr vr
case (e, x.e1,y.e2) ⇓c+cr+1,r+rr+ccase vr

case-inl

e ⇓c,r inr v e2[v/y] ⇓cr,rr vr
case (e, x.e1,y.e2) ⇓c+cr+1,r+rr+ccase vr

case-inr

fix f(x).e ⇓0,0 fix f(x).e
fix

e1 ⇓c1,r1 fix f(x).e e2 ⇓c2,r2 v2 e[v2/x, (fix f(x).e)/f] ⇓cr,rr vr
e1 e2 ⇓c1+c2+cr+1,r1+r2+rr+capp vr

app

e ⇓c,r v ζ̂(v) = (cr, rr, vr)

ζ e ⇓c+cr+1,r+rr+cprimapp vr
primapp

Λ.e ⇓0,0 Λ.e
Lam

e ⇓c,r Λ.eb eb ⇓cr,rr vr
e[ ] ⇓c+cr,r+rr vr

iApp
e ⇓c,r v

pack e ⇓c,r pack v
pack

e1 ⇓c1,r1 pack v e2[v/x] ⇓c2,r2 vr

unpack e1 as x in e2 ⇓c1+c2,r1+r2 vr
unpack

nil ⇓0,0 nil
nil

e1 ⇓c1,r1 v1 e2 ⇓c2,r2 v2

cons(e1, e2) ⇓c1+c2,r1+r2 cons(v1, v2)
cons

e ⇓c,r nil e1 ⇓cr,rr vr
case e of nil → e1 | h :: tl→ e2 ⇓c+cr+1,r+rr+ccaseL vr

caseL-nil

e ⇓c,r cons(v1, v2) e2[v1/h, v2/tl] ⇓cr,rr vr
case e of nil → e1 | h :: tl→ e2 ⇓c+cr+1,r+rr+ccaseL vr

caseL-cons

e1 ⇓c1,r1 v1 e2 ⇓c2,r2 v2

〈e1, e2〉 ⇓c1+c2,r1+r2 〈v1, v2〉
prod

e ⇓c,r 〈v1, v2〉
π1(e) ⇓c+1,r+cproj v1

proj1

e ⇓c,r 〈v1, v2〉
π2(e) ⇓c+1,r+cproj v2

proj2
e1 ⇓c1,r1 v1 e2[v1/x] ⇓cr,rr vr

let x = e1 in e2 ⇓c1+cr+1,r1+rr+clet vr
let

e1 ⇓c1,r1 v1 e2[v1/x] ⇓cr,rr vr
clet e1 as x in e2 ⇓c1+cr,r1+rr vr

clet
e ⇓c,r v

celim⊃ e ⇓c,r v
celim

Figure 4: RelCost’s evaluation semantics
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The advantage of the abstract cost metric we presented here is twofold:
a) it is easy to understand and reason about and b) it nicely captures
asymptotic costs. RelCost’s effect system could be extended to more
fine-grained metrics, if needed. Alternatively, it can be easily simpli-
fied to more coarse-grained metrics by setting the values of some of
these metavariables to zero, as in some examples of Chapter 3.

4.2 typing judgments

RelCost’s type system contains two typing judgments. The unary judg-
ment

∆;Φa;Ω `tk e : A

states that the execution cost of e is lower bounded by k and upper
bounded by t, and the expression e has the unary typeA. The relational
judgment

∆;Φa; Γ ` e1 	 e2 . t : τ

states that the relative cost of e1 with respect to e2 is upper bounded
by t and the two expressions have the relational type τ. These typ-
ing judgments use two kinds of type environments: Ω and Γ are type
environments for the unary and relational typing, respectively. Besides
these, both typing judgments have two other environments: ∆ for index
variables and Φa for assumed constraints. There is also an additional
global environment Υ, containing types of primitive functions, but this
environment remains the same across the rules, so we don’t write it
explicitly. In the presentation of the typing rules, we omit premises
concerning well-formedness of types, which clutter the presentation
and do not provide any insights.

lower bounds on the relative cost RelCost’s unary judgment
tracks both a lower and an upper bound on the execution cost of a
program whereas RelCost’s relational judgment only tracks an upper
bound on the relative cost. The curious reader may wonder why we do
not also track a lower bound k on the relational judgment as follows

∆;Φa; Γ ` k . e1 	 e2 . t : τ .
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However, doing so is redundant because the following swap rule is
admissible.

∆;Φa; Γ ` k . e1 	 e2 . t : τ
∆;Φa;d(Γ) ` −t . e2 	 e1 . −k : d(τ)

swap

In essence, the rule states that if we can show that the relative cost of
e1 and e2 is lower bounded by k and upper bounded by t, then we
can also show that the relative cost of e2 and e1 is lower bounded by
−t and upper bounded by −k. Semantically, this rule follows trivially
from the fact that k 6 c1 − c2 6 t if and only if −t 6 c2 − c1 6 −k.
Note that for this to work, relational function types must must also

internalize the lower bounds on the relative cost, as in τ1
diff(k,t)−−−−→ τ2.

In addition, in the conclusion of the swap rule, the result type and the
environment are also dualized using the type level operation d(.). For

instance, d(τ1
diff(k,t)−−−−→ τ2) = d(τ1)

diff(−k,−t)−−−−−−→ d(τ2).
Since this rule is admissible, adding lower bounds to the relational

judgment is redundant: Whenever we are interested in a lower bound
on e1	 e2, we can instead derive an upper bound on e2	 e1 and flip the
sign of the bound. Hence, we do not consider the extended relational
judgment with the lower bound any further.

relcost’s typing principles and design choices Before ex-
plaining the details of RelCost’s type system, we review the general
design principles behind the unary and relational typing rules.

• The total cost of an expression is obtained by summing the costs
of its subexpressions. Moreover, for the unary typing, elimination
constructs mentioned in Section 4.1 incur an additional symbolic
cost. For relational typing, since we track the difference in the
execution costs, these costs cancel out in all the rules that relate
two structurally similar programs.

• In all the synchronous typing rules that relate two structurally sim-
ilar expressions, we only allow eliminating truly related expres-
sions that are not of type UA. For instance, case-elimination on
U (A1 + A2) cannot be typed relationally. All such cases are han-
dled uniformly: If the eliminated expressions are unrelated, i.e., of
type UA (or generally U (A1,A2)), the verification can be done
only by switching to non-relational typing for the whole expres-
sion. Another possibility would be to duplicate all typing rules
for elimination forms that have unrelated types so that continua-
tions would switch to non-relational reasoning. This approach is
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taken in refinement type systems such as FlowCaml [93] or the
published version of DuCostIt [35] but we believe our approach
is cleaner (it results in fewer typing rules).

• RelCost’s index refinements are a form of lightweight dependent
types that enable static reasoning about runtime properties of a
program. In RelCost, we choose to keep the complexity of depen-
dencies limited in comparison to full dependent types. Richer de-
pendencies, such as allowing index terms to be different in two
related expressions, would increase the number of programs that
can be relationally analyzed. However, this would also make the
metatheory more difficult.

The typing rules for the unary and relational typing judgments are
shown in Figures 5 and 6, and Figures 7 to 10, respectively. Below, we
explain selected rules for the two judgments separately.

4.2.1 Unary Typing

The unary typing rules treat lower and upper bounds similarly. Values
are assumed to evaluate with zero cost. So, variables (rule var), as well
as all introduction forms including functions and index abstractions
incur zero cost. For functions, the minimum and maximum costs of
the body, denoted k and t respectively, are internalized into the type

A1
exec(k,t)−−−−−→ A2 (rule fix). These internalized costs are technically called

latent costs, as they manifest themselves when the function is applied.
In the rule app, these internalized costs k and t are added to the total
minimum and maximum execution costs of the application along with
an additional symbolic cost capp for the function application.

Similar to functions, for universally quantified expressions Λ.e, the
minimum and maximum costs of the closure, denoted k and t respec-

tively, are internalized into the type ∀i
exec(k,t)

:: S.A (rule iLam). In the
rule iApp, these internalized costs k and t are first substituted with a
witness I and then added to the total minimum and maximum execu-
tion costs of the index term application.

Existentially quantified types are introduced using pack rule and
eliminated using unpack rule.

The rule v execv execv exec allows weakening of the result type as well as the
costs: An expression with minimum execution cost k and maximum
execution cost t can be typed with a lower cost k ′ 6 k and a higher
cost t ′ > t. As usual, weakening is needed when typing a case construct
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∆;Φa;Ω `tk e : A Execution cost of e is lower bounded by k and upper
bounded by t, and e has the unary type A.

∆;Φa;Ω `00 n : int
const

Ω(x) = A

∆;Φa;Ω `00 x : A
var

∆;Φa;Ω `00 () : unit
unit

∆;Φa;Ω `tk e : A1 ∆ `A A2 wf

∆;Φa;Ω `tk inl e : A1 +A2
inl

∆;Φa;Ω `tk e : A2 ∆ `A A1 wf

∆;Φa;Ω `tk inr e : A1 +A2
inr

∆;Φa;Ω `tk e : A1 +A2
∆;Φa; x : A1,Ω `t

′
k ′ e1 : A

∆;Φa;y : A2,Ω `t
′
k ′ e2 : A

∆;Φa;Ω `t+t ′+ccasek+k ′+ccase
case (e, x.e1,y.e2) : A

case

∆ `A A1
exec(k,t)−−−−−→ A2 wf ∆;Φa; x : A1, f : A1

exec(k,t)−−−−−→ A2,Ω `tk e : A2
∆;Φa;Ω `00 fix f(x).e : A1

exec(k,t)−−−−−→ A2

fix

∆;Φa;Ω `t1k1 e1 : A1
exec(k,t)−−−−−→ A2 ∆;Φa;Ω `t2k2 e2 : A1

∆;Φa;Ω `t1+t2+t+cappk1+k2+k+capp
e1 e2 : A2

app

∆;Φa;Ω `t1k1 e1 : A1 ∆;Φa;Ω `t2k2 e2 : A2
∆;Φa;Ω `t1+t2k1+k2

〈e1, e2〉 : A1 × A2
prod

∆;Φa;Ω `tk e : A1 × A2 i ∈ {1, 2}

∆;Φa;Ω `t+cprojk+cproj
πi(e) : Ai

proji

∆ `A A wf

∆;Φa;Ω `00 nil : list[0]A
nil

∆;Φa;Ω `t1k1 e1 : A ∆;Φa;Ω `t2k2 e2 : list[n]A

∆;Φa;Ω `t1+t2k1+k2
cons(e1, e2) : list[n+ 1]A

cons

∆;Φa;Ω `tk e : list[n]A
∆;Φa ∧n = 0;Ω `t ′k ′ e1 : A ′

i,∆;Φa ∧n = i+ 1;h : A, tl : list[i]A,Ω `t ′k ′ e2 : A ′

∆;Φa;Ω `t+t ′+ccaseLk+k ′+ccaseL
case e of nil → e1 | h :: tl→ e2 : A

′ caseL

i :: S,∆;Φa;Ω `tk e : A i 6∈ FIV(Φa;Ω)

∆;Φa;Ω `00 Λ.e : ∀i
exec(k,t)

:: S.A
iLam

∆;Φa;Ω `tk e : ∀i
exec(k ′,t ′)

:: S.A ∆ ` I : S
∆;Φa;Ω `t+t

′[I/i]
k+k ′[I/i] e[ ] : A{I/i}

iApp

Figure 5: RelCost unary typing rules (Part 1)
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∆;Φa;Ω `tk e : A Execution cost of e is lower bounded by k and
upper bounded by t, and e has the unary type A.

∆;Φa;Ω `tk e : A{I/i} ∆ ` I :: S
∆;Φa;Ω `tk pack e : ∃i::S.A

pack

∆;Φa;Ω `t1k1 e1 : ∃i::S.A1
i :: S,∆;Φa; x : A1,Ω `t2k2 e2 : A2 i 6∈ FV(Φa; Γ ,A2,k2, t2)

∆;Φa;Ω `t1+t2k1+k2
unpack e1 as x in e2 : A2

unpack

Υ(ζ) = A1
exec(k,t)−−−−−→ A2 ∆;Φa;Ω `t ′k ′ e : A1

∆;Φa;Ω `t+t
′+cprimapp

k+k ′+cprimapp
ζ e : A2

primapp

∆;Φa |= C ∆;Φa ∧C;Ω `tk e : A
∆;Φa;Ω `tk e : C & A

c-andI

∆;Φa;Ω `t1k1 e1 : C & A1 ∆;Φa ∧C; x : A1,Ω `t2k2 e2 : A2
∆;Φa;Ω `t1+t2k1+k2

clet e1 as x in e2 : A2
c-andE

∆;Φa ∧C;Ω `tk e : A ∆ ` C wf

∆;Φa;Ω `tk e : C ⊃ A
c-impI

∆;Φa;Ω `tk e : C ⊃ A ∆;Φa |= C

∆;Φa;Ω `tk celim⊃ e : A
c-implE

∆;Φa;Ω `t1k1 e1 : A1 ∆;Φa; x : A1,Ω `t2k2 e2 : A2
∆;Φa;Ω `t1+t2+cletk1+k2+clet

let x = e1 in e2 : A2
let

∆;Φa ∧C;Ω `tk e : A ∆;Φa ∧¬C;Ω `tk e : A ∆ ` C wf

∆;Φa;Ω `tk e : A
split

∆;Φa |= ⊥ ∆ `A A wf

∆;Φa;Ω `tk e : A
contra

∆;Φa;Ω `tk e : A ∆;Φa |= A v A ′
∆;Φa |= k ′ 6 k ∆;Φa |= t 6 t ′

∆;Φa;Ω `t ′k ′ e : A ′
vvv exec

Figure 6: RelCost unary typing rules (Part 2)
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whose branches have different static costs. Subtyping is described later
in Section 4.3.

4.2.2 Relational Typing

Relational typing establishes the relative cost of a pair of expressions
and gives the pair a relational type. Relational typing rules can be di-
vided into two categories: (a) synchronous rules that relate two struc-
turally similar expressions and (b) asynchronous rules that relate two
expressions with different structures but possibly similar subcomputa-
tions.

synchronous rules All synchronous rules (shown in Figures 7
to 9) relate two structurally similar expressions, e.g., a pair of cons con-
structs or a pair of functions. If the two expressions contain subexpres-
sions, the corresponding subexpressions are related component-wise.
The rule r-var relates a variable to itself with zero relative cost. Sim-
ilarly, all other axioms like r-const and r-nil relate an expression to
itself. The rules r-cons1 and r-cons2 type non-empty lists of size n+ 1.
If the tails have the relational type list[n]α τ, then the two cons’ed lists
can be typed at either list[n + 1]α+1 τ or list[n + 1]α τ depending on
whether the heads may differ or not. The corresponding elimination
rule r-caseL has four premises. The first premise establishes the type
list[n]α τ for the pair of lists being eliminated. The second premise
types the nil branches, which are taken only when the two lists are
empty and, hence, the constraint assumption n = 0 is added in this
premise. If the lists are not empty, then there are two cases correspond-
ing to the two cons rules. In the first case, the heads of the lists are
the same and the tails differ in at most α elements (third premise). In
this case, we assume that the heads have type � τ. In the second case,
the heads of the lists may differ (they have type τ, without a � ) and
the tails differ in at most α− 1 elements (fourth premise). The value
α− 1 is represented by a fresh variable β that satisfies the constraint
α = β+ 1.

Like all other values, recursive functions are relationally typed with
zero cost. The relative cost t of the two related bodies is internalized
into the function type τ1

diff(t)−−−→ τ2 (rule r-fix). In the rule r-app, this
internalized cost is added to the total cost of the application. The rule r-
inl introduces a sum type with tag inl on both expressions. The r-case
rule eliminates a sum type and assumes synchronous execution: The
same branch must be taken in the left and right expressions. This is en-
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∆;Φa; Γ ` e1 	 e2 . t : τ Relative cost of e1 with respect to e2 is upper
bounded by t and the two expressions have relational type τ.

∆;Φa; Γ ` n	 n . 0 : intr
r-const

Γ(x) = τ

∆;Φa; Γ ` x	 x . 0 : τ r-var

∆;Φa; Γ ` ()	 () . 0 : unitr
r-unit

∆;Φa; Γ ` e	 e ′ . t : τ1 ∆ ` τ2 wf
∆;Φa; Γ ` inl e	 inl e ′ . t : τ1 + τ2

r-inl

∆;Φa; Γ ` e	 e ′ . t : τ2 ∆ ` τ1 wf
∆;Φa; Γ ` inr e	 inr e ′ . t : τ1 + τ2

r-inr

∆;Φa; Γ ` e	 e ′ . t : τ1 + τ2
∆;Φa; x : τ1, Γ ` e1 	 e ′1 . t ′ : τ ∆;Φa;y : τ2, Γ ` e2 	 e ′2 . t ′ : τ
∆;Φa; Γ ` case (e, x.e1,y.e2)	 case (e ′, x.e ′1,y.e ′2) . t+ t ′ : τ

r-case

∆ ` τ1
diff(t)−−−→ τ2 wf

∆;Φa; x : τ1, f : τ1
diff(t)−−−→ τ2, Γ ` e1 	 e2 . t : τ2

∆;Φa; Γ ` fix f(x).e1 	 fix f(x).e2 . 0 : τ1
diff(t)−−−→ τ2

r-fix

∆;Φa ` τ1
diff(t)−−−→ τ2 wf

∆;Φa; x : τ1, f : � (τ1
diff(t)−−−→ τ2), Γ ` e	 e . t : τ2

∀x ∈ dom(Γ). ∆;Φa |= Γ(x) v � Γ(x)

∆;Φa; Γ ` fix f(x).e	 fix f(x).e . 0 : � (τ1
diff(t)−−−→ τ2)

r-fixNC

∆;Φa; Γ ` e1 	 e ′1 . t1 : τ1
diff(t)−−−→ τ2

∆;Φa; Γ ` e2 	 e ′2 . t2 : τ1
∆;Φa; Γ ` e1 e2 	 e ′1 e ′2 . t1 + t2 + t : τ2

r-app

∆;Φa; Γ ` e1 	 e ′1 . t1 : τ1 ∆;Φa; Γ ` e2 	 e ′2 . t2 : τ2
∆;Φa; Γ ` 〈e1, e2〉 	 〈e ′1, e ′2〉 . t1 + t2 : τ1 × τ2

r-prod

∆;Φa; Γ ` e	 e ′ . t : τ1 × τ2 i ∈ {1, 2}
∆;Φa; Γ ` πi(e)	 πi(e ′) . t : τi

r-proji

∆ ` τ wf ∆ ` α :: N

∆;Φa; Γ ` nil 	 nil . 0 : list[0]α τ
r-nil

∆;Φa; Γ ` e1 	 e ′1 . t1 : τ ∆;Φa; Γ ` e2 	 e ′2 . t2 : list[n]α τ

∆;Φa; Γ ` cons(e1, e2)	 cons(e ′1, e
′
2) . t1 + t2 : list[n+ 1]α+1 τ

r-cons1

∆;Φa; Γ ` e1 	 e ′1 . t1 : � τ ∆;Φa; Γ ` e2 	 e ′2 . t2 : list[n]α τ
∆;Φa; Γ ` cons(e1, e2)	 cons(e ′1, e

′
2) . t1 + t2 : list[n+ 1]α τ

r-cons2

Figure 7: RelCost relational typing rules (Part 1)
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∆;Φa; Γ ` e1 	 e2 . t : τ Relative cost of e1 with respect to e2 is upper
bounded by t and the two expressions have relational type τ.

∆;Φa; Γ ` e	 e ′ . t : list[n]α τ
∆;Φa ∧n = 0; Γ ` e1 	 e ′1 . t ′ : τ ′

i,∆;Φa ∧n = i+ 1;h : � τ, tl : list[i]α τ, Γ ` e2 	 e ′2 . t ′ : τ ′
i,β,∆;Φa ∧n = i+ 1∧α = β+ 1;h : τ, tl : list[i]β τ, Γ ` e2 	 e ′2 . t ′ : τ ′

∆;Φa; Γ ` case e of nil → e1
| h :: tl → e2

	 case e ′ of nil → e ′1
| h :: tl → e ′2

. t+ t ′ : τ ′
r-caseL

i :: S,∆;Φa; Γ ` e	 e ′ . t : τ i 6∈ FIV(Φa; Γ)

∆;Φa; Γ ` Λ.e	Λ.e ′ . 0 : ∀i
diff(t)
:: S. τ

r-iLam

∆;Φa; Γ ` e	 e ′ . t : ∀i
diff(t ′)
:: S. τ ∆ ` I : S

∆;Φa; Γ ` e[ ] 	 e ′[ ] . t+ t ′[I/i] : τ{I/i} r-iApp

∆;Φa; Γ ` e	 e ′ . t : τ{I/i} ∆ ` I :: S
∆;Φa; Γ ` pack e	 pack e ′ . t : ∃i::S. τ

r-pack

∆;Φa; Γ ` e1 	 e ′1 . t1 : ∃i::S. τ1
i :: S,∆;Φa; x : τ1, Γ ` e2 	 e ′2 . t2 : τ2 i 6∈ FV(Φa; Γ , τ2, t2)

∆;Φa; Γ ` unpack e1 as x in e2 	 unpack e ′1 as x in e ′2 . t1 + t2 : τ2
r-unpack

Υ(ζ) = τ1
diff(t)−−−→ τ2 ∆;Φa; Γ ` e	 e ′ . t ′ : τ1

∆;Φa; Γ ` ζ e	 ζ e ′ . t+ t ′ : τ2
r-primapp

∆;Φa |= C ∆;Φa ∧C; Γ ` e	 e ′ . t : τ
∆;Φa; Γ ` e	 e ′ . t : C & τ

r-c-andI

∆;Φa; Γ ` e1 	 e ′1 . t1 : C & τ1
∆;Φa ∧C; x : τ1, Γ ` e2 	 e ′2 . t2 : τ2

∆;Φa; Γ ` clet e1 as x in e2 	 clet e ′1 as x in e ′2 . t1 + t2 : τ2
r-c-andE

∆;Φa ∧C; Γ ` e	 e ′ . t : τ ∆ ` C wf

∆;Φa; Γ ` e	 e ′ . t : C ⊃ τ r-c-impI

∆;Φa; Γ ` e	 e ′ . t : C ⊃ τ ∆;Φa |= C

∆;Φa; Γ ` celim⊃ e	 celim⊃ e ′ . t : τ
r-c-implE

∆;Φa; Γ ` e1 	 e ′1 . t1 : τ1 ∆;Φa; x : τ1, Γ ` e2 	 e ′2 . t2 : τ2
∆;Φa; Γ ` let x = e1 in e2 	 let x = e ′1 in e ′2 . t1 + t2 : τ2

r-let

∆;Φa ∧C; Γ ` e1 	 e2 . t : τ
∆;Φa ∧¬C; Γ ` e1 	 e2 . t : τ ∆ ` C wf

∆;Φa; Γ ` e1 	 e2 . t : τ
r-split

Figure 8: RelCost relational typing rules (Part 2)
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∆;Φa; Γ ` e1 	 e2 . t : τ Relative cost of e1 with respect to e2 is upper
bounded by t and the two expressions have relational type τ.

∆;Φa |= ⊥ ∆ ` τ wf
∆;Φa; Γ ` e1 	 e2 . t : τ

r-contra

∆;Φa; Γ ` e1 	 e2 . t : τ ∆;Φa |= τ v τ ′ ∆;Φa |= t 6 t ′

∆;Φa; Γ ` e1 	 e2 . t ′ : τ ′
r-vvv

∆;Φa; Γ ` e	 e . t : τ
∀x ∈ dom(Γ). ∆;Φa |= Γ(x) v � Γ(x)

∆;Φa; Γ , Γ ′;Ω ` e	 e . 0 : � τ nochange

Figure 9: RelCost relational typing rules (Part 3)

sured by the interpretation of the type τ1 + τ2 that only contains pairs
of values with the same tag. If the case analyzed values have different
tags, i.e., they are related at type U (A1 + A2), then the analysis must
switch to unary reasoning via the switch rule that is explained below.

The rule nochange relates an expression to itself at the (diagonal)
type � τ and assigns a relative cost of 0, if the expression depends only
on variables that are also labeled � . The latter condition ensures that
at runtime, the two expressions being compared are syntactically equal.
Statically, the rule applies when for all variables x ∈ Γ , the assumed
type of x, i.e. Γ(x), is a subtype of the same type annotated with � ,
i.e. of � Γ(x). In addition, the rule r-fixNC allows inductively typing
a recursive function with � annotation. In typing the function’s body,
the function itself is assumed to be �-annotated. 13.13 This rule cannot

be derived using the
rules nochange and

r-fix.

The rule r-split permits a case analysis on the index domain, allow-
ing us to obtain more precise bounds. For example, when typing a
divide-and-conquer algorithm that operates on a pair of lists in RelCost,
one often needs to analyze the cases α = 0 (where the two lists may
not differ) and α > 0 (where the two lists may differ) separately. This
rule allows doing that. 1414 An example use of

r-split rule
illustrated in the
msort example
in Chapter 14.

Finally, the rule r-contra allows us to give a pair of programs any
well-typed term whenever we have inconsistent, i. e. contradictory, as-
sumptions in the constraint context Φa. For example, when case ana-
lyzing a non-empty list, we can use this rule to discharge the nil case.

asynchronous rules In addition to the synchronous rules that
require the two related expressions to have the same structure, Rel-
Cost has several asynchronous rules that allow typing two expressions
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∆;Φa; |Γ |1 `t1k1 e1 : A1 ∆;Φa; |Γ |2 `t2k2 e2 : A2
∆;Φa; Γ ` e1 	 e2 . t1 − k2 : U (A1,A2)

switch

∆;Φa; |Γ |1 `t1k1 e1 : A1 ∆;Φa; x : UA1, Γ ` e2 	 e . t2 : τ2
∆;Φa; Γ ` let x = e1 in e2 	 e . t1 + t2 + clet : τ2

r-let-e

∆;Φa; |Γ |2 `t1k1 e1 : A1 ∆;Φa; x : UA1, Γ ` e	 e2 . t2 : τ2
∆;Φa; Γ ` e	 let x = e1 in e2 . t2 − k1 − clet : τ2

r-e-let

∆;Φa; |Γ |2 `_
k ′ e

′ : A1 +A2
∆;Φa; x : UA1, Γ ` e	 e ′1 . t : τ ∆;Φa;y : UA2, Γ ` e	 e ′2 . t : τ

∆;Φa; Γ ` e	 case (e ′, x.e ′1,y.e ′2) . t− k ′ − ccase : τ
r-e-case

∆;Φa; |Γ |1 `t_ e : A1 +A2
∆;Φa; x : UA1, Γ ` e1 	 e ′ . t ′ : τ ∆;Φa;y : UA2, Γ ` e2 	 e ′ . t ′ : τ

∆;Φa; Γ ` case (e, x.e1,y.e2)	 e ′ . t ′ + t+ ccase : τ
r-case-e

∆;Φa; |Γ |2 `_
k ′ e

′ : list[n]A ∆;Φa ∧n = 0; Γ ` e	 e ′1 . t : τ
i,∆;Φa ∧n = i+ 1;h : UA, tl : U list[i]A, Γ ` e	 e ′2 . t : τ

∆;Φa; Γ ` e	 case e ′ of nil → e ′1
| h :: tl → e ′2

. t− k ′ − ccaseL : τ

r-e-caseL

∆;Φa; |Γ |1 `t_ e : list[n]A ∆;Φa ∧n = 0; Γ ` e1 	 e ′ . t : τ
i,∆;Φa ∧n = i+ 1;h : UA, tl : U list[i]A, Γ ` e2 	 e ′ . t : τ

∆;Φa; Γ ` case e of nil → e1
| h :: tl → e2

	 e ′ . t+ t ′ + ccaseL : τ

r-caseL-e

Figure 10: Asynchronous typing rules
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| · |j : Relational type→ Unary type

|intr|j = int
|unitr|j = unit
|τ1 × τ2|j = |τ1|j × |τ2|j

|τ1 + τ2|j = |τ1|j + |τ2|j

|list[n]α τ|j = list[n] |τ|j
|τ1

diff(t)−−−→ τ2|j = |τ1|j
exec(0,∞)−−−−−→ |τ2|j

|∀i
diff(t)
:: S. τ|j = ∀i

exec(0,∞)
:: S. |τ|j

|∃i::S. τ|j = ∃i::S. |τ|j
|C & τ|j = C & |τ|j

|C ⊃ τ|j = C ⊃ |τ|j

|U (A1,A2)|j = Aj

|� τ|j = |τ|j

Figure 11: RelCost refinement removal operation

that may be related partially or arbitrarily. These rules are shown in
Figure 10. Our appendix shows an example of an optimizing program
transformation–loop unswitching–that heavily relies on these asynchronous
rules (Appendix D.2.2).

The most generic asynchronous rule is the switch rule that allows
two arbitrary expressions e1 and e2 of types A1 and A2, respectively
to be related at the weakest relation with type U (A1,A2). When read
from bottom to top, this rule allows switching from relational reasoning
to unary reasoning where the two expressions are typed independently
in their respective erased environments |Γ |j where j ∈ {1, 2}. Then, the
relative cost is computed by taking the difference of the left expres-
sion’s maximum cost and the right expression’s minimum cost.

The type erasure operation |.|j is a function from relational types to
unary types and it simply forgets the relational refinements. Its defini-
tion is shown in Figure 11. Since unrelated types U (A1,A2) consist of
the unary types A1 and A2 of the left and the right expressions, respec-
tively, the erasure function is indexed by j ∈ {1, 2} to select one of these

expressions: |U (A1,A2)|j = Aj. For function types τ1
diff(t)−−−→ τ2, erasure

constructs the weakest non-relational type |τ1|j
exec(0,∞)−−−−−→ |τ2|j, providing

no meaningful guarantees on minimum and maximum cost. The defi-
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nition of |.|j extends pointwise to relational environments: |Γ , x : τ|j =

|Γ |j, x : |τ|j.
The remaining asynchronous rules apply when the left expression

is related to a subexpression of the right expression, or vice-versa.
These rules allow us to temporarily break the relational reasoning and
regain it again later. Every asynchronous rule has a corresponding
inverse/symmetric rule. For instance, the rule r-let-e relates let x =

e1 in e2 to an arbitrary expression e by relating e2 to e. The symmet-
ric rule r-e-let dually relates e to let x = e1 in e2. We explain only the
rule r-let-e here. In the first premise, we type the subexpression e1
non-relationally with maximum execution cost t1 and type A1. In the
second premise, we relate the left subexpression e2 to the right expres-
sion e with relative cost t2 under the assumption that the variable x is
unrelated in the two runs (x : UA1). Since x occurs only in e2, this is
sound. The total relative cost is the sum of the costs t1 and t2, plus an
additional cost clet for the extra let elimination performed on the left
side.15 15 In the symmetric

rule r-e-let, this cost
clet is subtracted
from the total relative
cost since the let
expression appears on
the right side.

4.3 subtyping

Subtyping is central to both unary and relational typing. There are
two subtyping judgments: ∆;Φa |=A A1 v A2 for unary types and
∆;Φa |= τ1 v τ2 for relational types. Unary and relational subtyping
rules are shown in Figure 12 and Figures 13 and 14, respectively.

Subtyping is constraint-dependent, because it must, for instance, be
able to show that list[n]α τ v list[m]α τ when m = n. In RelCost, � ’s
comonadic properties are manifest via subtyping. This results in inter-
actions between � and other connectives as, for instance, in the rules
r-→ �diff, r-l2 and r-l� . These interactions pose a nontrivial challenge
for algorithmization, which is tackled in Chapter 11. Similar interac-
tions exist between the modality U (A1,A2) and other connectives.

The rules u-→ exec and r-→ diff are subtyping rules for unary and
relational function types, respectively. Beyond the usual contravariance
for arguments and covariance for results, upper bounds on costs are co-
variant whereas lower bounds are contavariant. We have two additional
subtyping rules for function types. The rule r-→ execdiff allows convert-
ing two unrelated functions—with minimum and maximum execution
costs k ′ and t, respectively—to related functions with execution cost
t − k ′, but with unrelated arguments and results. The rule r-→ �diff

captures the idea that syntactically equal functions, when applied to
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∆;Φ |=A A1 v A2 Unary type A1 is a subtype of type A2

∆;Φ |=A A ′1 v A1 ∆;Φ |=A A2 v A ′2
∆;Φ |= k ′ 6 k ∆;Φ |= t 6 t ′

∆;Φ |=A A1
exec(k,t)−−−−−→ A2 v A ′1

exec(k ′,t ′)−−−−−−→ A ′2

u-→ exec

i :: S,∆;Φ |=A A v A ′
i :: S,∆;Φ |= k ′6k i :: S,∆;Φ |= t6 t ′ i 6∈ FV(Φ)

∆;Φ |=A ∀i
exec(k,t)

:: S.A v ∀i
exec(k ′,t ′)

:: S.A ′
u-∀exec

∆;Φ |=A A1 v A ′1 ∆;Φ |=A A2 v A ′2
∆;Φ |=A A1 ×A2 v A ′1 ×A ′2

u-×

∆;Φ |=A A1 v A ′1 ∆;Φ |=A A2 v A ′2
∆;Φ |=A A1 + A2 v A ′1 + A ′2

u-+

∆;Φ |= n
.
= n ′ ∆;Φ |=A A v A ′

∆;Φ |=A list[n]A v list[n ′]A ′
u-l

i :: S,∆;Φ |=A A v A ′ i 6∈ FV(Φ)

∆;Φ |=A ∃i::S.A v ∃i::S.A ′
u-∃

∆;Φ∧C |= C ′ ∆;Φ |=A A v A ′

∆;Φ |=A C & A v C ′ & A ′
u-c-and

∆;Φ∧C ′ |= C ∆;Φ |=A A v A ′

∆;Φ |=A C ⊃ A v C ′ ⊃ A ′
u-c-impl

∆;Φ |=A A v A
u-refl

∆;Φ |=A A1 v A2 ∆;Φ |=A A2 v A3
∆;Φ |=A A1 v A3

u-trans

Figure 12: RelCost unary subtyping rules
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∆;Φ |= τ1 v τ2 Relational type τ1 is a subtype of type τ2

∆;Φ |=A A1 v A2 Unary type A1 is a subtype of type A2

∆;Φ |= intr v � intr
r-int-�

∆;Φ |= �U (int, int) v intr
r-�U-int

∆;Φ |= unitr v �unitr
r-unit

∆;Φa |= τ ′1 v τ1 ∆;Φa |= τ2 v τ ′2 ∆;Φa |= t 6 t ′

∆;Φa |= τ1
diff(t)−−−→ τ2 v τ ′1

diff(t ′)−−−−→ τ ′2

r-→ diff

∆;Φ |= � (τ1
diff(t)−−−→ τ2) v � τ1

diff(0)−−−→ � τ2
r-→ �diff

∆;Φ |= U (A1
exec(k,t)−−−−−→ A2,A ′1

exec(k ′,t ′)−−−−−−→ A ′2) v U (A1,A ′1)
diff(t−k ′)−−−−−−→ U (A2,A ′2)

r-→ execdiff

i :: S,∆;Φa |= τ v τ ′ i :: S,∆;Φa |= t6 t ′ i 6∈ FV(Φa)

∆;Φa |= ∀i
diff(t)
:: S. τ v ∀i

diff(t ′)
:: S. τ ′

r-∀diff

∆;Φ |= � (∀i
diff(t)
:: S. τ) v ∀i

diff(0)
:: S.� τ

r-∀ �

∆;Φ |= U (∀i
exec(k,t)

:: S.A,∀i
exec(k ′,t ′)

:: S.A ′) v ∀i
diff(t−k ′)

:: S.U (A,A ′)
r-∀U

∆;Φa |= τ1 v τ ′1 ∆;Φa |= τ2 v τ ′2
∆;Φa |= τ1 × τ2 v τ ′1 × τ ′2

r-×

∆;Φ |= � τ1 ×� τ2 ≡ � (τ1 × τ2)
r-×�

∆;Φ |= U (A1 ×A2,A ′1 ×A ′2) v U (A1,A ′1)×U (A2,A ′2)
r-×U

∆;Φ |= τ1 v τ ′1 ∆;Φ |= τ2 v τ ′2
∆;Φ |= τ1 + τ2 v τ ′1 + τ ′2

r-+

∆;Φ |= � τ1 +� τ2 v � (τ1 + τ2)
r-+�

∆;Φa |= n
.
= n ′ ∆;Φa |= α6α ′ ∆;Φa |= τ v τ ′

∆;Φa |= list[n]α τ v list[n ′]α
′
τ ′

r-l1

∆;Φ |= α
.
= 0

∆;Φ |= list[n]α τ v list[n]α� τ r-l2

∆;Φ |= list[n]α� τ v � (list[n]α τ)
r-l�

Figure 13: RelCost relational subtyping rules (Part 1)
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∆;Φ |= τ1 v τ2 Binary type τ1 is a subtype of type τ2

i :: S,∆;Φa |= τ v τ ′ i 6∈ FV(Φa)
∆;Φa |= ∃i::S. τ v ∃i::S. τ ′

r-∃

∆;Φ |= ∃i::S.� τ v � (∃i::S. τ)
r-∃�

∆;Φa ∧C |= C ′ ∆;Φa |= τ v τ ′
∆;Φa |= C & τ v C ′ & τ ′

r-c-and

∆;Φ |= C & � τ v � (C & τ)
r-c-and-�

∆;Φa ∧C ′ |= C ∆;Φa |= τ v τ ′
∆;Φa |= C ⊃ τ v C ′ ⊃ τ ′ r-c-impl

∆;Φ |= � (C ⊃ τ) v C ⊃ � τ r-c-impl-�
∆;Φ |= � τ v τ T

∆;Φ |= � τ v �� τ D
∆;Φa |= τ1 v τ2

∆;Φa |= � τ1 v � τ2
B-�

∆;Φ |= τ v U (|τ|1, |τ|2)
W

∆;Φ |=A A1 v A ′1 ∆;Φ |=A A2 v A ′2
∆;Φ |= U (A1,A2) v U (A ′1,A

′
2)

U
∆;Φ |= τ v τr-refl

∆;Φa |= τ1 v τ2 ∆;Φa |= τ2 v τ3
∆;Φa |= τ1 v τ3

r-trans

Figure 14: RelCost relational subtyping rules (Part 2)
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equal arguments, produce equal results and have relative cost 0. Simi-
lar additional rules exist for universally quantified relational types.

The rule r-l1 allows the number of elements that differ in a list to be
weakened covariantly. The rule r-l2 allows two related lists with zero
differences to be retyped as two related lists whose elements are in the
diagonal relation. The rule r-l� allows two related lists whose elements
are equal to be retyped as two equal lists, represented by the outer �.

The rule B-� allows stripping the box annotations if the inner types
are subtypes of one another. The rule W allows weakening the type τ
to its weakest form U (|τ|1, |τ|2) where |τ|j is the j-th unary projection
for j ∈ {1, 2} described earlier. The rule U allows lifting subtyping from
unary types to relational types at the weakest relation U ·. As usual,
subtyping is reflexive (rules u-refl and r-refl) and transitive (rules u-
trans and r-trans).

We note that the type � τ follows the standard co-monadic rules:

� τ v τ, � (τ1
diff(t)−−−→ τ2) v � τ1

diff(0)−−−→ � τ2 and � (τ1 × τ2) ≡ � τ1 ×
� τ2.





5
M E TAT H E O RY A N D S O U N D N E S S O F RELCOST

I synopsis In this chapter, we first discuss logical relations, a proof
technique that is particularly well-suited for proving RelCost’s type sys-
tem sound. Based on this technique, we then present a logical relations
model for RelCost and use it to prove RelCost sound relative to the ab-
stract cost semantics presented in Section 4.1.

logical relations as a proof technique Logical relations [92]
are a powerful proof technique for proving many important program
properties such as strong normalization, program equivalence, para-
metricity, and type-safety. The technique has wide applicability not
only to unary properties such as strong normalization but also to rela-
tional properties such as program equivalence. Moreover, as we demon-
strate shortly, logical relations can be naturally extended with unary
and relational effects. This makes logical relations an attractive tool for
proving the soundness of RelCost’s type and effect system.

Logical relations are defined by induction on types and the relations
are crafted so that they capture the property of interest. However, in
the presence of recursion (or recursive types in general), types them-
selves as induction measure do not suffice. To deal with this, Ahmed et
al. have developed step-indexed logical relations where the relation is in-
dexed with a step, capturing the number of future evaluation steps [7,
11]. With the help of step-indices, one can show the well-foundedness
of recursive definitions.

In the rest of this chapter, we build two cost-annotated models of Rel-
Cost’s types: a non-relational (unary) one for unary types and unary exe-
cution and a relational (binary) one for relational types and relational ex-
ecution. Both models are step-indexed to handle recursive functions [7,
11]. The binary model depends on the unary one and a key novelty is
how unary and relational step indices interact. Below, we discuss the
models in detail.

5.1 unary interpretation of relcost types

For each unary type A, the value interpretation JAKv is a set, contain-
ing pairs (m , v) of step indices and values. Intuitively, the pair (m , v)

47
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is in the interpretation of JAKv, if the value v behaves like a value of
type A in a larger term for at least m steps. Hence, JAKv can be consid-
ered as an approximation of the set of values in A. Below, we briefly
comment on the value interpretation JAKv, shown in Figure 15.

The base types int and unit are completely characterized by the set

of their values for any step index m. Function types A1
exec(k,t)−−−−−→ A2 are

characterized by the set of functions that, given an argument of type A1,
produce a computation of type A2 with k and t minimum and maxi-
mum execution costs, respectively (in the expression relation JA2K

k,t
ε

discussed below). Note that the resulting computation is interpreted
at strictly smaller step-indices than the function’s step-index, essentially
counting an additional cost for function application.

Universally quantified types ∀i
exec(k,t)

:: S.A are interpreted so that for
any well-sorted index term I, the resulting expression is in the interpre-
tation of A{I/i} with k[I/i] and t[I/i] minimum and maximum execu-
tion costs, respectively. Note that since index term applications are not
counted as computation steps, the step index does not decrease. Dually,
existentially quantified types ∃i::S.A are interpreted so that there exists
a well-sorted witness I so that the packed value v is in the interpreta-
tion of type A{I/i}.

Based on the interpretation of values, we can also define the inter-
pretation of closed expressions JAKk,t

ε . Intuitively, the pair (m, e) is in
the expression interpretation JAKk,t

ε , if the expression e behaves like an
expression of type A with k and t minimum and maximum execution
costs, respectively for at least m steps. Its definition is shown below.

JAKk,t
ε =



(m, e)

∣∣∣∣∣∣
(e ⇓c,r v∧ c < m) =⇒

1. k 6 r 6 t

2. (m− c, v) ∈ JAKv





The interpretation of JAKk,t
ε states that if e evaluates to a value with

c < m steps, then k and t are lower and upper bounds on the execution
cost r, respectively, and the resulting value is in the value interpretation
with step-index m− c. Note that the step indices only interact with the
reduction steps c, but not with the actual execution costs r.

As usual, we interpret open expressions under some semantic envi-
ronment interpretation δ. We write (m, δ) ∈ GJΩK to mean that δ maps
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JAKv ⊆ Step index×Value
JAKk,t

ε ⊆ Step index× Expression

JintKv = {(m, n)}

JunitKv = {(m, ())}

JA1 × A2Kv = {(m, 〈v1, v2〉) | (m, v1) ∈ JA1Kv ∧ (m, v2) ∈ JA2Kv}

JA1 +A2Kv = {(m, inl v) | (m, v) ∈ JA1Kv} ∪
{(m, inr v) | (m, v) ∈ JA2Kv}

JA1 ∧ A2Kv = {(m, v) | (m, v) ∈ JA1Kv ∧ (m, v) ∈ JA2Kv}

Jlist[0]AKv = {(m, nil )}

Jlist[n+1]AKv = {(m, cons(e1, e2)) | (m, e1) ∈ JAKv ∧ (m, e2) ∈ Jlist[n]AKv}

JA1
exec(k,t)−−−−−→ A2Kv = {(m, fix f(x).e) | ∀j < m. ∀v. (j, v) ∈ JA1Kv

=⇒ (j, e[v/x, fix f(x).e/f]) ∈ JA2K
k,t
ε }

J∀i
exec(k,t)

:: S.AKv = {(m,Λ.e) | ∀I. ` I :: S. (m, e) ∈ JA{I/i}Kk[I/i],t[I/i]ε }

J∃i::S.AKv = {(m, pack v) | ∃I. ` I :: S ∧ (m, v) ∈ JA{I/i}Kv}

JC ⊃ AKv = {(m, v) | 6|= C ∨ (m, v) ∈ JAKv}

JC & AKv = {(m, v) | |= C ∧ (m, v) ∈ JAKv}

JAKk,t
ε = {(m, e) | (e ⇓c,r v ∧ c < m) =⇒ 1. k 6 r 6 t

2. (m− c, v) ∈ JAKv
}

Figure 15: Non-relational interpretation of types
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all variables in the domain of the environment Ω to appropriately-
typed semantic values for m steps.

GJ·K = {(m, ∅)}
GJΩ, x : AK = {(m, δ[x 7→ v]) | (m, δ) ∈ GJΩK∧ (m, v) ∈ JAKv}

We write σ ∈ DJ∆K to mean that σ is a valid (well-sorted) substitution
for the index environment ∆.

5.2 relcost’s soundness (unary)

We prove the following fundamental theorem for unary typing. Roughly,
the theorem says that the expression e, if typed in RelCost at unary type
A with k and t minimum and maximum execution costs, respectively,
lies in the unary expression interpretation of A (with the given costs
k and t) for any step-index and value substitution that respects the
environment’s types.

Theorem 1 (Fundamental Theorem for Unary Typing). Assume that
∆;Φa;Ω `tk e : A and σ ∈ DJ∆K and |= σΦ and there existsΩ ′ s.t. FV(e) ⊆
dom(Ω ′), Ω ′ ⊆ Ω and (m,γ) ∈ GJσΩ ′K. Then, (m,γe) ∈ JσAKσk,σt

ε . 1

Proof. By induction on the typing derivation. (shown in Appendix A.2)

An immediate corollary of the theorem is that the minimum and
maximum execution costs established in the type system are lower and
upper bounds on the actual execution cost of the program, respectively.
For readability, we only state the theorem with a single input x, but
generalized versions with any number of inputs hold as well.

Corollary 2 (Soundness for unary costs). Suppose that

• x : A `tk e : A ′

• `_
_ v : A

• e[v/x] ⇓c,r v ′

Then k 6 r 6 t.

1 The existence of Ω ′ that contains all the free variables of e is needed for proving
asynchronous typing rules sound.
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5.3 relational interpretation of relcost types

The value interpretation LτMv is a set, containing triples (m, v1, v2) con-
sisting of a step index m and two related values v1 and v2. Intuitively,
the triple (m, v1, v2) is in the interpretation of LτMv, if the values v1 and
v2 behave like related values of type τ in a larger term for at least m
steps. Hence, LτMv can be considered as an approximation of the set of
related values in τ. We briefly comment on some salient points about
LτMv, shown in Figure 16.

The base relational types intr and unitr are completely characterized
by the set of pairs of identical values for any step index m. The in-

terpretation of τ1
diff(t)−−−→ τ2 relates a pair of functions that, given re-

lated arguments at j < m steps, return related computations (in the
expression relation LτMtε discussed below) at step-index j. In addition,

the two functions are in the unary interpretation of |τ1|1
exec(0,∞)−−−−−→ |τ2|1

and |τ1|2
exec(0,∞)−−−−−→ |τ2|2, respectively for any step-index j. The latter al-

lows any pair of related functions to be used in a unary context with
the weakest cost bounds, 0 and ∞. In essence, we can semantically show
that the relational judgment ∆;Φ; Γ ` e1 	 e2 . t : τ entails the unary
judgment ∆;Φ; |Γ |i `∞0 ei : |τ|i for i ∈ {1, 2}.

The interpretation of � τ forces the two related values to be identical.
Semantically, the type� is used in the interpretation of non-empty lists
to make sure that α changes are distributed appropriately: if the two
heads are identical (of type � τ), the tails have α changes, otherwise
the tails have α− 1 changes.

The interpretation of U (A1,A2) contains unrelated pairs of values
(v1, v2) in which the individual values v1 and v2 are in the unary inter-
pretation JA1Kv and JA2Kv, respectively at any step index j, i.e., (j, v1) ∈
JA1Kv and (j, v2) ∈ JA1Kv for any j. Essentially, this means that when we
switch from relational to unary reasoning, we can call out to any unary
step index j. This works because the unary relation does not refer back
to the binary relation.

Based on the relational interpretation of pairs of values, the expres-
sion interpretation LτMtε defines when two expressions are logically re-
lated. Intuitively, (m, e1, e2) ∈ LτMtε, if the expressions e1 and e2 behave
like related expressions of type τwith t relative cost for at leastm steps.
Its definition is shown below.

LτMtε = {(m, e1, e2) | (e1 ⇓c1,r1 v1 ∧ e2 ⇓c2,r2 v2 ∧ c1 < m)

=⇒ 1. r1 − r2 6 t
2. (m− c1, v1, v2) ∈ LτMv

}
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LτMv ⊆ Step index×Value×Value
LτMtε ⊆ Step index× Expression× Expression

L� τMv = {(m, v, v) | (m, v, v) ∈ LτMv}

LU (A1,A2)Mv = {(m, v1, v2) | ∀j. (j, v1) ∈ JA1Kv ∧ (j, v2) ∈ JA2Kv}

LintrMv = {(m, n, n)}

LunitrMv = {(m, (), ())}

Lτ1 × τ2Mv = {(m, 〈v1, v2〉, 〈v ′1, v ′2〉) | (m, v1, v ′1) ∈ Lτ1Mv ∧ (m, v2, v ′2) ∈ Lτ2Mv}

Lτ1 + τ2Mv = {(m, inl v, inl v ′) | (m, v, v ′) ∈ Lτ1Mv} ∪
{(m, inr v, inr v ′) | (m, v, v ′) ∈ Lτ2Mv}

Lτ1 ∧ τ2Mv = {(m, v, v ′) | (m, v, v ′) ∈ Lτ1Mv ∧ (m, v, v ′) ∈ Lτ2Mv}

Llist[0]α τMv = {(m, nil , nil )}

Llist[n+1]α τMv = {(m, cons(v1, v2), cons(v ′1, v
′
2)) |

((m, v1, v ′1) ∈ L� τMv ∧ (m, v2, v ′2) ∈ Llist[n]α τMv) ∨

((m, v1, v ′1) ∈ LτMv ∧ (m, v2, v ′2) ∈ Llist[n]α−1 τMv ∧α > 0)}

Lτ1
diff(t)−−−→ τ2Mv = {(m, fix f(x).e1, fix f(x).e2) | (∀j < m. ∀v1, v2. (j, v1, v2) ∈ Lτ1Mv.

=⇒ (j, e1[v1/x, fix f(x).e1/f], e2[v2/x, fix f(x).e2/f]) ∈ Lτ2Mtε) ∧

(∀j.(j, fix f(x).e1) ∈ J|τ1|1
exec(0,∞)−−−−−→ |τ2|1Kv ∧

(j, fix f(x).e2) ∈ J|τ1|2
exec(0,∞)−−−−−→ |τ2|2Kv)}

L∀i
diff(t)
:: S. τMv = {(m,Λ.e,Λ.e ′) | ∀I. ` I :: S. ((m, e, e ′) ∈ Lτ{I/i}Mt[I/i]ε ) ∧

(∀j.(j, e) ∈ J|τ{I/i}|1K
0,∞
ε ∧ (j, e ′) ∈ J|τ{I/i}|2K

0,∞
ε )}

L∃i::S. τMv = {(m, pack v, pack v ′) | ∃I. ` I :: S ∧ (m, v, v ′) ∈ Lτ{I/i}Mv}

LC ⊃ τMv = {(m, v1, v2) | 6|= C ∨ (m, v1, v2) ∈ LτMv}

LC & τMv = {(m, v1, v2) | |= C ∧ (m, v1, v2) ∈ LτMv}

LτMtε = {(m, e1, e2) | (e1 ⇓c1,r1 v1 ∧ e2 ⇓c2,r2 v2 ∧ c1 < m) =⇒
1. r1 − r2 6 t
2. (m− c1, v1, v2) ∈ LτMv

}

Figure 16: Relational interpretation of types
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The definition states that if expressions e1 and e2 evaluate to values
in c1 and c2 steps, respectively, and c1 < m, then t is an upper bound
on the relative cost of e1 with respect to e2, i.e., r1 − r2 6 t and the
resulting values are related at step-index m − c1. The relational step-
index m counts steps of the left expression but it could be set up to
count steps of the right expression or both. Moreover, like in the unary
expression relation JAK·,·ε , step-indices only interact with the reduction
steps, but not with the actual execution costs r1 and r2.

We interpret pairs of open expressions under a related pair of substi-
tutions, (δ1, δ2). We write (m, δ1, δ2) ∈ GLΓM to mean that δ1 and δ2 map
all the variables in the domain of the environment Γ to appropriately-
typed semantic relational values for m steps.

GL·M = {(m, ∅, ∅)}
GLΓ , x : τM = {(m, δ1[x 7→ v1], δ2[x 7→ v2]) | (m, δ1, δ2) ∈ GLΓM ∧

(m, v1, v2) ∈ LτMv}

5.4 relcost’s soundness (relational)

We prove the following fundamental theorem for our relational typing
judgment. Roughly, the theorem says that the expressions e1 and e2,
if typed in RelCost at relational type τ with relative cost t, lie in the
relational expression interpretation of τ (with the given relative cost t)
for any step-index and relational value substitution that respects the
environment’s types.

Theorem 3 (Fundamental Theorem for Relational Typing). Assume that
∆;Φa; Γ ` e1 	 e2 . t : τ and σ ∈ DJ∆K and |= σΦ and (m, δ1, δ2) ∈ GLσΓM.
Then, (m, δ1e1, δ2e2) ∈ LστMσtε .

Proof. Proof is by induction on the typing derivation. (shown in Ap-
pendix A.2)

An immediate corollary of the theorem is that relative costs estab-
lished in the type system are upper bounds on the actual execution
cost differences. For readability, we only state the theorem with a sin-
gle input x, but generalized versions with any number of inputs hold
as well.

Corollary 4 (Soundness for relational costs). Suppose that

• x : τ ` e1 	 e2 . t : τ ′

• ` v1 	 v2 . _ : τ
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• e1[v1/x] ⇓c1,r1 v ′1
• e2[v2/x] ⇓c2,r2 v ′2

Then r1 − r2 6 t.

Finally, we prove that, semantically, relational typing is a refinement
of unary typing with the weakest bounds—0 and ∞—on minimum
and maximum costs, respectively.

Theorem 5 (Fundamental Theorem for Weak Relational Typing). As-
sume that ∆;Φa; Γ ` e1 	 e2 . t : τ and σ ∈ DJ∆K and |= σΦ. Then for i ∈
{1, 2}, if there exists Γ ′i s.t. FV(ei) ⊆ dom(Γ ′i ), Γ

′
i ⊆ Γ and (m,γi) ∈ GJ|σΓ ′i |iK,

then (m,γiei) ∈ J|στ|iK
0,∞
ε .

Proof. Proof is by induction on the typing derivation. (shown in Ap-
pendix A.2)
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R E L AT E D W O R K : R E L AT I O N A L C O S T A N A LY S I S

I know nothing except the fact of my
own ignorance.

Socrates

The work presented in Part I represents a convergence of two main
bodies of research: static execution cost analysis and relational analysis.
We discuss related work in each of these areas in order.

6.1 static execution cost analysis

There are many static techniques for analyzing the execution cost/-
complexity of programs ranging from semantic interpretation [21, 54]
to type-based techniques such as linear dependent types [39, 41], amor-
tized resource analysis [60, 61, 63], type and effect systems [81, 96],
and type-based embedding via cost-counting monads [42]. However,
all these techniques differ from our work in a fundamental way: They
all reason about a single execution of a program, whereas relational
cost analysis requires reasoning about a pair of programs.

In theory, one can simply combine best- and worst-case execution
cost analysis computed using one of these techniques to reason about
the relative costs of two programs. However, as we have demonstrated
in Section 1.1, such combinations ignore the relations between pro-
grams and inputs, leading to imprecision. RelCost (as well as DuCostIt
presented in Chapter 8) distinguishes itself from prior work in its rela-
tional reasoning principles, which provide the ability to establish precise
bounds on relative cost by making use of similarities between inputs
and programs in a much more local way. To achieve this, we build on
type and effect systems [81, 96] and extend them to a relational setting.

Below, we survey some unary type-theoretic approaches to verifying
and inferring resource usage bounds in functional programs.

type and effect systems for unary cost analysis Type and
effect systems are a static program analysis technique that refines a
usual type system with additional annotations, called effects, i.e. ab-
stract descriptions of side-effects occurring during the program execu-
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tion such as I/O events and exceptions. The execution cost of a pro-
gram can be also considered as an effect. In fact, several type and ef-
fect systems have been designed for execution cost analysis. One such
system is designed by Reistad and Gifford [96] for estimating the cost
analysis of Lisp expressions and is partially based on the “time system”
by Dornic et al. [45]. A second such system is designed by Crary and
Weirich that extend type and effect systems with dependent types [38]
to certify resource usage of programs.

sized types and linear dependent types Sized types were
introduced by Hughes et al. for proving some functional properties of
stream-manipulating reactive programs such as termination and pro-
ductivity. The technique has been adapted to reason about resource
usage of functional programs by combining it with various other tech-
niques such as abstract interpretation [103], linear dependent types [41,
67] and type-and-effect systems [38].

Dal Lago and Petit present a complete time complexity analysis for
PCF [41]. They use linear types to statically limit the number of times
a function may be applied by the context in a call-by-name setting.
This allows reasoning about the time complexity of recursive functions
precisely. Recently, they carried out a similar development for a call-by-
value language [40]. Extending their approach with relational reason-
ing would be an interesting direction.

automatic amortized cost analysis The potential method de-
rives amortized bounds on the worst-case execution cost of a program
by assigning non-negative potentials to the input data of a program. The
amortized cost of an operation is the sum of the actual execution cost of
the operation plus the change in the potential between before and after
the operation. Then, if the initial potential is non-zero and the potential
is always non-negative, one can show that the accumulated amortized
costs are an upper bound on the accumulated actual costs [83].

Based on such amortized cost analysis, Hoffmann et al. [60, 61] in-
fer polynomial-shaped worst-case bounds on resource usage of RAML
(Resource Aware ML) programs. Recently, the technique has been ex-
tended with support for lower bounds on the resource usage [80], mak-
ing it possible to obtain naive relative cost bounds by simply establish-
ing the difference on the upper and lower bounds. A significant advan-
tage of their technique is automation. A similar analysis for relational
cost—with support for tracking similarities—may be possible although
the compatibility of logarithmic functions (which are necessary to state
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the relational costs of interesting programs) with Hoffmann et al.’s ap-
proach remains an open problem.

automatic recurrence extraction and solution A classic
approach to reason about resource usage of programs is to automati-
cally extract (and then solve) recurrence relations from programs using
a variety of techniques such as program transformations [71], abstract
interpretation [98], refinement types [53] and cost transformations [43].

For example, [96] develop a type and effect system for functional
programs without general recursion but with a set of restricted com-
binators like map and fold. [53] has proposed a technique based on
DML [105] that uses size information contained in dependent types
to automatically extract recurrence relations from first-order DML pro-
grams. Danner et al. instrument programs with a clock and extract re-
currence relations [43].

A common denominator of these type-theoretic techniques is that
they are unary. Some of the techniques operate on a restricted set of
constructs or cost terms. Applicability of these techniques to the re-
lational setting is unclear: In a relational setting, recurrence relations
(and their solutions) might get much more complicated: e. g. for recur-
rence relation of mergesort’s relative cost (shown in Appendix D.2) is
parametrized by not only the input size but also the number of changes
between the two lists. Moreover, the resulting closed-form expression
for the recurrence involves iterated sums over exponentials and loga-
rithms which is difficult to automate.

6.2 relational analysis and verification

There is a large body of work on verifying relational properties of pro-
grams. Many of the techniques for relational reasoning have been se-
mantic, but recently, there is an increasing focus on developing practi-
cal approaches based on assertion checking [70], symbolic execution [87],
static analysis [68], model checking [107], program logics [18, 109],
and refinement types [14, 16]. In the past, researchers have developed
specialized approaches for many relational properties, e.g., informa-
tion flow [10, 78, 93], continuity [30], determinism [25], differential pri-
vacy [51, 95], or quantitative reliability [27, 28]. Other important appli-
cations of relational verification include regression verification [49, 52],
semantical differences [69, 86] and cross or relative verification [57, 76,
88].
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In the rest of this section, we focus on the more closely related ap-
proaches based on type systems and program logics. The former sup-
ports automatic typechecking and inference while the latter often is
more expressive and contains a wider variety of connectives at the price
of requiring the programmer to complete the proofs. One advantage of
our work over many of these approaches is that we can freely switch
from the relational world to the non-relational world when program
executions diverge.

information flow analysis Information flow analysis is a prime
example of relational analysis where the aim is to determine whether
secret inputs of a program influence its non-secret outputs. Several type
systems for information flow analysis has been proposed: SLAM [58],
FlowCaml [93], DCC [2]. These type systems use security-annotated
types to ensure the noninterference property, i. e. a property that com-
pares two executions of a single program differing only in its secret
inputs and requires the non-secret outputs to be equal. RelCost differs
from these works in two ways. First, unlike these systems which use
security-annotated types, in RelCost we have a two-layered type gram-
mar which makes the design of the type system cleaner. Second, these
systems are designed to reason about non-interference, which is a rela-
tional functional property whereas RelCost can also handle cost, which
is a relational quantitative property.

parametricity One of the most fundamental relational properties
of functional programs is parametricity: an abstract uniformity prop-
erty which states that all instances of a polymorphic function act the
same way [97]. Ramifications of relational parametricity are quite pow-
erful: Researchers have developed deep connections of parametricity
with representation independence and program transformations. In
particular, parametricity demonstrates that one cannot distinguish be-
tween a pair of polymorphic programs that differ in their underlying
data representation. This notion of representation independence yields
“free” theorems about programs based on their types. Relational mod-
els like logical relations have been extensively used in the proofs of
parametricity. Our work on relational cost analysis builds on the foun-
dations of parametricity and extends it to the quantitative setting.

relational functional verification Relational Hoare Logic [17]
and Relational Separation Logic [108] are two program logics that ex-
tend their corresponding unary counterparts—Hoare and Separation
Logic, respectively—to the relational setting to reason about relational
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properties of imperative programs. These logics and their successors
have been used to reason about not only program equivalence but
also other relational properties such as probabilistic differential pri-
vacy [13], access control [79], and information flow [79]. Recently, Re-
lational Hoare Logic has been extended to higher-order logic [8] for a
pure fragment only. In general, these logics are quite powerful (power-
ful enough to embed RelCost into RHOL [8]) and they lie on the end
of the spectrum of relational verification where the programmers must
provide detailed proofs using proof assistants. Our work lies on the op-
posite end of the spectrum since we are interested in more lightweight
methods with minimal burden on the programmers.

In [99], Sands introduces improvements, a semantic notion which nat-
urally embeds relational cost reasoning, and uses them as artefacts for
proving equivalence between functional programs. However, improve-
ments only offer a qualitative guarantee that one program is faster than
another (in all contexts). In contrast, RelCost can establish quantitative
bounds.
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7
DUCOST IT B Y E X A M P L E S

I synopsis This chapter demonstrates how the relational cost anal-
ysis technique presented in Part I can be used to reason about the
update costs of incremental programs. We first recap dynamic stabil-
ity and then explain how a type and effect system similar to RelCost,
which we call DuCostIt, can be used to establish dynamic stability. We
first give a mini overview of DuCostIt’s type system and then present
some of DuCostIt’s features through examples.

7.1 dynamic stability as an instance of relational cost
analysis

incremental computations Programs are often optimized un-
der the implicit assumption that they will execute only once. However,
in practice, many programs are executed again and again on slightly
different inputs: spreadsheets compute the same formulas with modifi-
cations to some of their cells, search engines periodically crawl the web,
and software build processes respond to small source code changes. In
such settings, it is not enough to design a program that is efficient for
the first (from-scratch) execution; the program must also be efficient
for the subsequent incremental executions (ideally much more efficient
than the from-scratch execution).

Incremental computation is a promising approach to this problem that
aims to design software that can automatically and efficiently respond
to changing inputs. The potential for efficient incremental updates comes
from the fact that, in practice, large parts of the computation repeat be-
tween the first and the incremental run. As shown by prior work on
self-adjusting computation [5, 6], by storing intermediate results in a
trace in the first run, it is possible to re-execute only those parts that
depend on the input changes during the incremental run, and to reuse
the parts that didn’t change (free of cost).

Existing work on incremental computation has been applied to dif-
ferent settings such as imperative [4, 55], demand-driven [56] and fully
functional [6, 29]. In all of these settings, the approach has been very
successful at improving the efficiency of incremental runs of a program.
In addition, there has been also language based techniques that can au-
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tomatically convert conventional programs to their incremental coun-
terparts [32], helping ease the burden on the programmer. However,
previous work does not consider the equally important question of how
programmers can reason about and establish the computational com-
plexity of incremental executions—a property which we call dynamic
stability.

dynamic stability Assume that a program e is initially executed
with input v and then the program is re-run with a slightly different
input v ′. Dynamic stability is the amount of time it takes to re-run
the program with the modified input v ′ using incremental computation.
However, unlike relational cost analysis where the two programs are
executed using the same strategy, dynamic stability analysis requires
a more complex evaluation semantics. Instead of reasoning about two
programs, dynamic stability analysis requires reasoning about two ex-
ecutions of a program: a) The initial run in which all the intermediate
results and input-output dependencies of the program are stored in a
dynamic dependence graph, which is often called a trace and b) The
incremental run in which the input changes are automatically propa-
gated through the trace of the computation.

The former phase is called from-scratch execution and memoizes all
the intermediate results. The latter phase is called change propagation
and is implemented by storing all values in reference cells, represent-
ing the trace as a dynamic dependence graph over those references, and
updating the references by traversing the graph starting from changed
leaves (inputs) and re-computing all references that depend on the
changed references. This is a bottom-up procedure, which incurs cost
only for the parts of the trace that have changed. The graph can be
traversed using many different strategies [3].1616 A previous version

of DuCostIt was
shown sound with
respect to one such

strategy as explained
in [35].

In this thesis, we argue that even though the underlying evaluation
technique of incremental computations is complex, dynamic stability
analysis is a special instance of relational cost analysis. In the rest of
this chapter, we demonstrate that relational cost analysis can be ad-
justed to track dynamic stability by using an enhanced operational and
semantic model that is capable of modeling traces and incremental eval-
uation. In particular, we retrofit RelCost’s design to a refinement type
and effect system called DuCostIt that can establish dynamic stability of
incremental programs.17 Doing so allows us to not only statically ver-17 As in RelCost,

DuCostIt operates
over the higher-order

functional
programming

language CostML.

ify when incremental computation is worthwhile—which was not pos-
sible using previous techniques—but also demonstrate that relational
cost analysis is a powerful method that has applications in seemingly
unrelated domains.
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Remark. DuCostIt’s type and effect system presented here differs substan-
tially from the prior homonymous version of the author’s work in [35]. Chap-
ter 10 makes a detailed comparison to this prior version, which we call DuCostIt0,
to distinguish it from DuCostIt.

7.2 relational cost analysis for dynamic stability

Before we explain the details of DuCostIt, we highlight how dynamic
stability analysis in DuCostIt can be considered a specific instance of
relational cost analysis in RelCost. In doing so, we also describe how
dynamic stability analysis differs from the relational cost analysis tech-
nique introduced in Chapter 4.

• Relational reasoning: Like relational cost analysis, dynamic stability
is also inherently a relational property of two runs of a program: the
initial run and the subsequent, incremental run.

• Different cost model: Since DuCostIt aims at establishing dynamic
stability of programs, its cost model is geared towards incremen-
tal evaluation. Given an initial execution that stores intermedi-
ate results in a trace, a change propagation mechanism accounts
for the cost of incremental update when the input changes. For
cases where an input change requires executing a part of the pro-
gram that has not been executed before (i. e. has no trace), the
cost model must also account for from-scratch execution costs of
programs. In contrast, RelCost only works with from-scratch exe-
cutions of two programs.

• Only single programs: DuCostIt’s type system and semantic model
are inherently limited to two runs of the same program with pos-
sibly different inputs. In particular, asynchronous typing rules of
RelCost, which are often necessary to obtain precision when pro-
grams differ structurally, are not present in DuCostIt.

• Only upper bounds: In general, change propagation may have to
recompute an intermediate value if either (a) that value was ob-
tained as the result of a primitive function whose inputs have
changed, or (b) that value was obtained from a closure, but the
closure has now changed, either due to a change in control flow or
due to a non-trivial change to an input function.18 In both of these 18 [6, 33] has shown

that by storing values
in modifiable reference
cells and updating
them in-place during
change propagation,
the cost for structural
operations like
pairing, projection
and list consing can
be avoided during
change propagation.

cases, like in RelCost, we switch to the naive non-relational anal-
ysis. However, as opposed to RelCost’s switch rule that requires
obtaining upper and lower bounds on the two related programs,
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DuCostIt’s unary analysis only requires obtaining upper bounds
on the execution costs of programs. This is justified since we are
interested in the upper bound on the amount of work that must
be done to execute parts of the program from scratch.

• Relational refinement types: Dynamic stability is a function of changes
to a program’s inputs and, hence, a precise analysis of dynamic
stability requires knowing which of its free variables and, more
generally, which of its subexpressions’ result values may change
after an update. To differentiate changeable and unchangeable
values statically, like in RelCost, we rely on relational refinement
types and also adopt a two-layered type grammar. � τ ascribes
values of type τ which cannot change whereas UA ascribes pairs
of values of type A that may change arbitrarily.19.19 Values of type τ

may admit indirect
changes in nested

sub-values. This is
explained

in Chapter 8.

• Biexpressions: Unlike RelCost, DuCostIt’s semantic model operates
over “biexpressions”—pairs of expressions that are structurally
identical (but may have different, related substitutions). Biexpres-
sions capture how parts of the program change from initial to
incremental run and they are instrumental for directing our ab-
stract change-propagation semantics.20.20 Details are

explained in
Section 8.1 example 1 (warm-up) Consider the boolean expression “x 6 5”

with one input x of type int. Assuming that computing 6 from-scratch
costs 1 unit of time, what is the the dynamic stability of this expression?
Like in RelCost, the precise answer depends on whether x may change
in the incremental run or not: If xmay change, i.e. x : U int, then change
propagation may recompute6, so the dynamic stability would be 1. If x
cannot change, i.e. x : intr, then change propagation will simply bypass
this expression, and the cost will be 0. Hence, the program can be typed
in two different ways: x : U int ` x 6 5 : U bool | 1 and x : intr ` x 6 5 :
boolr | 0, where the incremental run’s cost is written on the right-hand
side.

Note that this cost is relational: It is relative to the first run of the
program, but the relation between the costs is not just a difference; it is
determined by the change propagation semantics.

dual-mode typing The typing judgment described above suffices
for typing programs where only primitive functions are re-executed
during change propagation. However, in general, change propagation
may execute fresh closures from-scratch. To count the costs of these
closures, we need a second “mode” of typing, that upper-bounds the
from-scratch execution cost of an expression. Accordingly, we use two
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typing judgments: a unary judgment `FS e : A | t, which means that the
cost of evaluating e from-scratch is at most t and a relational judgment
`CP e : τ | t, which means that the cost of change propagating through e
is at most t.21. The latter is relational in the sense that we consider a 21 For now this

intuition suffices. `FS

has a double meaning,
which is explained
later.

relational substitution for its free variables in the semantics. Just like
in RelCost, the types are also two-layered: unary types A represent
sets of values, whereas relational types τ represent pairs of initial and
modified values. As a rule, the from-scratch cost always dominates the
change propagation cost.

Going back to the program x 6 5 from Example 1, it can be given
a from-scratch execution cost 1 using the FS-mode typing judgment:
x : int `FS x 6 5 : bool | 1, where 1 accounts for the cost of the com-
parison function. As shown earlier, the same program can be given
two different update costs using the CP-mode typing judgments: x :

U int `CP x 6 5 : U bool | 1 and x : intr `CP x 6 5 : boolr | 0.

example 2 (mode-switching) Like in RelCost, the two modes
of typing interact with each other at elimination points. Consider the
change propagation cost of the following program “if x then e1 else e2”.
If x : boolr, we know that x will not change. So, the incremental run
will execute the same branch (e1 or e2) as the initial run. This means
that change propagation can be continued in the branch. Consequently,
in this case, like in RelCost, we only need to establish change propa-
gation costs of the two branches ei, not their from-scratch evaluation
costs. In the type system, this means that the branches can be typed in
CP mode, as in the following derivation.

x : boolr `CP x : boolr | 0
x : boolr `CP e1 : τ | t x : boolr `CP e2 : τ | t

x : boolr `CP if x then e1 else e2 : τ | t
if

If x : U bool, then x may change. Consequently, the initial and incre-
mental runs may execute different branches. If the branches end up
being different, change propagation must execute the new branch from-
scratch. Hence, to deal with this, like in RelCost, DuCostIt uses the fol-
lowing switch rule.22: 22 Notice that switch

rule in RelCost is
slightly different,
since it has to account
for the difference in
the worst- and
best-case executions
of the two related
programs.

|Γ | `FS e : A | t

Γ `CP e : UA | t
switch

where e is typed independently in the FS-mode with maximum exe-
cution cost t. Note that like in RelCost, the premise is unary, while the
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conclusion is relational. Then, the update time of e is upper bounded
by its worst case execution cost t.23. Since the from-scratch execution23 If the branch

doesn’t actually
change, change

propagation will not
evaluate from-scratch,

but in that case the
cost will only be

lower, so our
established cost would

be conservative.

cost of e is independent of changeability of its inputs, we can type it
with a non-relational environment |Γ | obtained from Γ (as in RelCost).

Using this switch rule and assuming that conditionals incur 1 cost
and the executions costs of the branches are at most t ′, we can type
“if x then e1 else e2” independently with maximum execution cost
t ′ + 1 and obtain the below typing:

x : bool `FS if x then e1 else e2 : A | t ′ + 1

x : U bool `CP if x then e1 else e2 : UA | t ′ + 1
switch

Note that because x might change in the incremental run, any com-
putation that depends on it may change as well. Hence, the result type
is also unrelated, i.e., UA.

The attentive reader might wonder why we have switched to the
unary typing for the whole statement, rather than establishing only
the from-scratch costs of the two branches as follows:

x : U bool `CP x : U bool | 0
x : U bool `FS e1 : τ | t

′ x : U bool `FS e2 : τ | t
′

x : U bool `CP if x then e1 else e2 : τ | t
′ + 1

if-2

In this formulation, the branches are typed in the FS mode (not CP

mode as in if rule above), hence t ′ is not the cost for change-propagation,
but from-scratch execution.

Although this would work, we chose to have one generic rule like
in RelCost that switches to the unary typing. The motivation is twofold.
First, rather than duplicating all elimination rules for cases where the
eliminated expression is of type UA, we only have a single relational
typing rule for all elimination forms, hence a simpler type system.24.24 See [35] for a

version with
duplicated rules in

CP mode.

Second, this formulation corresponds closely to RelCost’s type system
and hence highlights our point that relational cost analysis can be used
for dynamic stability.

example 3 (map) Branch points are not the only reason why change
propagation may end up executing a completely fresh expression. A
second reason is that a function provided as input to another function
may change non-trivially. To illustrate this, we type the standard list
function map, introduced in Chapter 1.

Before we explain how map can be typed in DuCostIt, we briefly dis-
cuss the types necessary to express its dynamic stability. Like in Rel-
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Cost, list types in DuCostIt are also refined to the form list[n]A and
list[n]α τ, respectively for unary and relational lists. Relational function

type τ1 → τ2 is refined to τ1
CP(t)−−−→ τ2 which says that the cost of change

propagating through the body of the function is at most t whereas the

unary function type A1 → A2 is refined to A1
FS(t)−−−→ A2 which says

that the cost of from-scratch execution of the function body is at most
t. For instance, based on Example 1, the function λx. (x 6 5) can be

given the relational types intr
CP(0)−−−→ boolr, U int

CP(1)−−−→ U bool, and

U (int
FS(1)−−−→ bool).

Next, let us consider the standard map function that applies an input
function f to every element of an input list l.

fix map(f). λl. case l of nil → nil

| h :: tl → cons(f h, map f tl)

Assume that f has type � (τ
CP(t)−−−→ τ ′), i.e., f does not depend on any-

thing that may change and its body change-propagates with cost at
most t. In this case, to change propagate map’s body, we must only
change propagate through f on changed elements of l, of which there
are at most α. Hence, the cost is O(α · t) and, indeed, map can be given
the following type in DuCostIt for a suitable linear function P. We ex-
plain how map’s type is derived as it highlights our co-monadic reason-
ing principle.

`CP map : � (τ
CP(t)−−−→ τ ′)

CP(0)−−−→ ∀n,α::N.

list[n]α τ
CP(P(α·t))−−−−−−→ list[n]α τ ′ | 0.

The interesting part of the typing is establishing the change propaga-
tion cost of the h :: tl branch in the definition of map. We are trying
to bound this cost by P(α · t). We know from l’s type that at most
α elements in h :: tl will change in the second run. However, we do
not know whether h is one of those elements. So, like in RelCost, our
case analysis rule (Section 8.3.2, Figure 31) has two premises for the cons
branch (a total of three premises, including the premise for nil). In the
first of these two premises, we assume that h may change, so h : τ and
tl : list[n− 1]α−1 τ. In the second premise, we assume that h cannot
change, so h : � τ and tl : list[n− 1]α τ.

Analysis of the first premise is straightforward: (f h) incurs cost t

(from f’s type � (τ
CP(t)−−−→ τ ′)) and, inductively, (map f tl) incurs cost
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P((α− 1) · t), for a total cost t+ P((α− 1) · t) = P(α · t). Analysis of the
second premise requires nonstandard reasoning. Here, tl : list[n− 1]α τ,
so the inductive cost of (map f tl) is already P(α · t). Hence, we must
show that (f h) has 0 change propagation cost. For this, we rely on our
co-monadic reasoning principle: If all of an expression’s free variables
have types of the form � · (i.e., their substitutions will not change),
then the expression’s change propagation cost is 0 (using the rule cp-

nochange in Figure 31). Since we know that f : � (τ
CP(t)−−−→ τ ′) and h :

� τ, we can immediately conclude that (f h) has 0 change propagation
cost. 2525 An alternative way

of typing is to subtype

� (τ
CP(t)−−−−→ τ ′) to

� τ CP(0)−−−−→ � τ ′
using the comonadic

subtyping rule
→ �cp in Figure 34.

The more interesting question is what happens if we allow f to

change, i.e., f has type U (A
FS(t)−−−→ A ′). In this case, change propagation

may have to re-execute the function on all list elements from scratch,
so the cost of map is O(n · t). This yields the following second type for
map for a suitable linear function Q.

`CP map : (U (A
FS(t)−−−→ A ′))

CP(0)−−−→ ∀n,α::N.

list[n]αUA
CP(Q(n·t))−−−−−−−→ list[n]nUA ′ | 0.

example 4 (balanced list fold) Standard list fold operations
(foldl and foldr) can be typed easily in DuCostIt but are uninterest-
ing for incremental computation because they have linear traces (linear
dependency chains) and, hence, have O(n) dynamic stability even for
single element changes to an input list of length n. A more interesting
operation is what we call the balanced fold. Given an associative and
commutative binary function f of simple type (τ × τ) → τ, a list of
simple type (list τ) can be folded by splitting it into two nearly equal
sized lists, folding the sublists recursively and then applying f to the
two results. This results in a balanced tree-like trace, whose depth is
dlog2(n)e. A single change to the list causes dlog2(n)e recomputations
of f. So, if f has dynamic stability t, the dynamic stability with one
change to the list is O(t · log2(n)). More generally, it can be shown
that if α changes are allowed to the list, then the dynamic stability is
O(t · (α+α · log2(n/α))). This simplifies to O(t ·n) when α = n (entire
list may change) and O(t · log2(n)) when α = 1. In the following we im-
plement such a balanced fold operation, bfold, and derive its dynamic
stability in DuCostIt.

Our first ingredient is the function bsplit, which splits a list of
length n into two lists of lengths

⌈
n
2

⌉
and

⌊
n
2

⌋
.
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fix bsplit(_).Λ.Λ.λl.case l of
nil → 〈nil , nil 〉

| h1 :: tl1 → case tl1 of

nil → 〈cons(h1, nil ), nil 〉
| h2 :: tl2 → let r = bsplit ()[ ] [ ] tl2 in

unpack r as r ′ in
clet r ′ as x in
pack 〈cons(h1,π1x), cons(h2,π2x)〉

This function is completely standard. Its DuCostIt type, although eas-
ily established, is somewhat interesting because it uses an existential
quantifier to split the allowed number of changes α into the two split
lists. The dynamic stability of bsplit is 0 because bsplit uses no prim-
itive functions (cf. discussion earlier in this section).

bsplit : � (unitr
CP(0)−−−→ ∀n,α::N. list[n]α τ

CP(0)−−−→
∃β::N.β 6 α & (list[

⌈n
2

⌉
]β τ × list[

⌊n
2

⌋
]α−β τ))

Using bsplit we define the balanced fold function, bfold. The func-
tion applies only to non-empty lists (reflected in its type later), so the
nil case is omitted.

fix bfold(_).Λ.Λ.λl.case l of
nil → · · ·

| h1 :: tl1 → case tl1 of

nil → cons(h1, nil )
| _ :: _ → let r = bsplit ()[ ] [ ] l in

unpack r as r ′ in
clet r ′ as x in
f (bfold ()[ ] [ ] π1x, bfold ()[ ] [ ] π2x)

We first derive a type for bfold informally, and then show how the
type is established in DuCostIt. Assume that the argument l has type
list[n]α τ. We count how many times change propagation may have to
reapply f in updating bfold’s trace, which is a nearly balanced tree of
height H = dlog2(n)e. Counting levels from the deepest leaves upward
(leaves have level 0), the number of applications of f at level i in the
trace is at most 2H−i. If α leaves change, at most α of these applications
must be recomputed. Consequently, the maximum number of recompu-
tations of f at level i is min(α, 2H−i). If the dynamic stability of f is t, the



72 ducostit by examples

dynamic stability of bfold is P(n,α, t) =
dlog2(n)e∑
k=0

t · min(α, 2dlog2(n)e−k).

So, in principle, we should be able to give bfold the following type.

bfold : unitr
CP(0)−−−→ ∀n,α::N. list[n]α (U int)

CP(P(n,α,t))−−−−−−−−→ U int

The expression P(n,α, t) may look complex, but it is in O(t · (α+ α ·
log2(n/α))).26 Although the type above is correct, we will see soon26 To prove this, split

the summation in
P(n,α, t) into two:

one for
k 6 dlog2(n)e−
dlog2(α)e and the

other for
k > dlog2(n)e−
dlog2(α)e. The

appendix has the
details.

that in typing the recursive calls in bfold, we need to know that bfold’s
type is annotated with �. Hence, the actual type we assign to bfold is
stronger.

bfold : � (unitr
CP(0)−−−→ ∀n,α::N. list[n]α (U int)

CP(P(n,α,t))−−−−−−−−→ U int) (3)

We explain how bfold’s type is established in DuCostIt. The interest-
ing case starts where bsplit is invoked. From the type of bsplit, we
know that π1x and π2x in the body of bfold have types list[

⌈
n
2

⌉
]β τ and

list[
⌊
n
2

⌋
]α−β τ, respectively for some β. Inductively, the change prop-

agation costs of (bfold f π1x) and (bfold f π2x) are P(
⌈
n
2

⌉
,β, t) and

P(
⌊
n
2

⌋
,α − β, t), respectively. Hence, the change propagation cost of

the whole body of bfold is t+ P(
⌈
n
2

⌉
,β, t) + P(

⌊
n
2

⌋
,α− β, t). The ad-

ditional t accounts for the only application of f in the body of bfold

(non-primitive operations have zero cost and bsplit also has zero cost).
Hence, to complete the typing, we must establish the following inequal-
ity.

t+ P(
⌈n
2

⌉
,β, t) + P(

⌊n
2

⌋
,α−β, t) 6 P(n,α, t) (4)

This is an easily established arithmetic tautology (the proof is shown
in Appendix D.1), except when α

.
= 0. When α

.
= 0, the right side

of the inequality is 0 but we don’t necessarily have t6 0. So, in order
to proceed, we consider the cases α .

= 0 and α>0 separately. This
requires a typing rule for case analysis on the index domain, which
poses no theoretical difficult.27. The α>0 case succeeds as described27 A similar rule,

called r-split, exists
in RelCost as well.

above. For α .
= 0, we use our co-monadic reasoning principle. With

α
.
= 0, the types of π1x and π2x are equivalent (formally, via sub-

typing) to list[
⌈
n
2

⌉
]0 τ and list[

⌊
n
2

⌋
]0 τ, respectively. Since, no elements

in these lists can change, we use l-� subtyping rule (in Figure 34)
to promote the types to � list[

⌈
n
2

⌉
]0 τ and � list[

⌊
n
2

⌋
]0 τ, respectively.

At this point, the type of every variable occurring in the expression
f (〈bfold f π1x, bfold f π2x〉), including the variable bfold, has anno-
tation � ·. By our co-monadic reasoning principle, the change propaga-
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tion cost of this expression and, hence, the body of bfold, must be �,
which is trivially no more than P(n,α, t). This completes our argument.

Observe that the inference of the annotation � · on the types of π1x
and π2x is conditional on the constraint α .

= 0. Subtyping, which is
aware of constraints, plays an essential role in determining these anno-
tations and in making our co-monadic reasoning principle useful. Also,
the fact that we have to consider the cases α .

= 0 and α>0 separately
is not as surprising as it may seem. The case α .

= 0 corresponds to a
sub-trace whose leaves have not changed. Since change propagation is
a bottom-up procedure, it will bypass this sub-trace completely, incur-
ring no cost. This is exactly what our analysis for α .

= 0 establishes.

Using the type (3) of bfold, we can show that for f : � ((τ × τ) CP(t)−−−→
τ) and l : list[n]α τ, the dynamic stability of (bfold f l) is in O(log2(n))
when α ∈ O(1) and in O(n) when α ∈ O(n), assuming that t is con-
stant. This dynamic stability is asymptotically tight.





8
DUCOST IT ’ S T Y P E S Y S T E M

I synopsis In this chapter, we present the technical ideas behind
DuCostIt, making comparisons to RelCost’s type system as we go along.
The underlying programming language for DuCostIt is the language
CostML—same as RelCost’s, introduced in Chapter 4. The design of
DuCostIt’s type system reflects the underlying semantic model, pre-
sented in Chapter 9, which differs from RelCost’s.

types We briefly describe how DuCostIt’s type syntax (shown in Fig-
ure 17) differs from RelCost’s (shown in Figure 1). The only difference is
in types that capture closures. For unary types, unlike RelCost’s unary

function type A1
exec(k ,t)−−−−→ A2, that tracks both upper and lower bounds

on the execution cost of the function body, DuCostIt’s unary function

type A1
FS(t)−−−→ A2 only tracks upper bounds t on the from-scratch

execution cost of the function body (hence the FS annotation on the ar-

row). For relational types, unlike RelCost’s relational type τ1
diff(t)−−−→ τ2,

that tracks upper bounds t on the relative costs of the two function

bodies, DuCostIt’s relational type τ1
CP(t)−−−→ τ2 tracks upper bounds

on the change propagation cost of the function body (hence the CP

annotation on the arrow). Similar annotations appear on universally
quantified types as well as typing judgments.

The unrelated type U A specifies values of type A that may change
arbitrarily between the initial and incremental run. 28 Types other than 28 UA can be

generalized to
U (A1,A2) as in
RelCost, but
simplified versions
suffice for all the
examples we
considered.

Unary types A : := int | A1 × A2 | A1 + A2 | list[n] A |

A1
FS(t)−−−→ A2 | ∀i

FS(t)
: : S . A |

∃i : :S . A | C & A | C ⊃ A | unit

Relational types τ : := intr | τ1 × τ2 | τ1 + τ2 | list[n]α τ |

τ1
CP(t)−−−→ τ2 | ∀i

CP(t)
: : S . τ | ∃i : :S . τ |

C & τ | C ⊃ τ | unitr | U A | � τ

Figure 17: Syntax of DuCostIt’s types
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UA specify values that cannot change structurally. The stronger type
� τ represents values of τ that cannot even depend on changeable vari-
ables from outer contexts and, hence, cannot change at all. Thus, if

y : U int, then λx.y+ x does not have type � (U int
CP(t)−−−→ U int), but

λx.x does. As in RelCost, � τ is a co-monadic type.
DuCostIt’s underlying programming language, index term and con-

straint grammar are identical to RelCost’s; hence we don’t relist them
here.

Before we explain DuCostIt’s typing rules, we describe DuCostIt’s ab-
stract evaluation and change propagation semantics.

8.1 abstract evaluation and change propagation seman-
tics

In this section, we define two abstract cost-counting semantics: one for
from-scratch execution and one for change propagation.

evaluation semantics and traces DuCostIt’s big-step call-by-
value evaluation judgment e ⇓f T states that expression e evaluates to
a trace T with evaluation cost f. In DuCostIt’s semantic model, the cost
f also interacts with the step-index. 29 The trace T is a representation29 Like in RelCost, we

could have tracked
two costs: one to
interact with the

actual execution cost
bounds and one to

interact with the
step-index. However,

unlike RelCost, we
are interested in

accounting for the
domain-specific cost,

i. e. the cost of change
propagation, so we see
no harm in letting the
execution cost bound

interact with the
step-index for

simplicity of the
proofs.

of the entire big-step derivation and explicitly includes the final and
all intermediate values. It is a pair 〈v,D〉, where v is the result of the
evaluation and D is a derivation, which recursively contains subtraces.
Its syntax is shown in Figure 18. For every big-step evaluation rule,
there is a corresponding derivation constructor. Evaluation rules are
shown in Figures 19 and 20.

Traces T ::= 〈v,D〉
Derivations D ::= n | 〈T1, T2〉 | π1 T | π2 T | inl T | inr T |

caseinl(T , Tr) | caseinr(T , Tr) | nil |

cons(T1, T2) | casenil(T , Tr) | casecons(T , Tr) |

fixf(x).e | app(T1, T2, Tr) | primapp(T , ζ) |

Λ.e | iApp(T , Tr) | pack T | unpack(T , x, Tr) |

let(x, T1, T2) | cletas(x, T , Tr) | ()

Figure 18: Traces
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Derivation constructors for case analysis record which branch was
taken using subscripts like inl or inr. The derivation construct for
function applications records the final value in the trace, along with
all the intermediate traces of the function, argument, and body expres-
sions. Similar to RelCost’s evaluation semantics, the cost model is para-
metric over construct-dependent meta-symbols like capp that the type
system also uses. The helper meta function V(·) returns the final value
contained in a trace: V(〈v,D〉) = v.

e ⇓f T Expression e evaluates with cost f to trace T = 〈v,D〉, contain-
ing the final value v and the derivation D.

n ⇓cn 〈n, n〉
e-const

e1 ⇓f1 T1 e1 ⇓f2 T2 vi = V(Ti)

〈e1, e2〉 ⇓f1+f2 〈〈v1, v2〉, 〈T1, T2〉〉
e-pair

e ⇓f T 〈v1, v2〉 = V(T)

π1e ⇓f+cproj 〈v1,π1 T〉
e-proj1

e ⇓f T 〈v1, v2〉 = V(T)

π2e ⇓f+cproj 〈v2,π2 T〉
e-proj2

e ⇓f T v = V(T)

inl e ⇓f 〈inl v, inl T〉
e-inl

e ⇓f T v = V(T)

inr e ⇓f 〈inr v, inr T〉
r-inr

e ⇓f T inl v = V(T) e1[v/x] ⇓fr Tr vr = V(Tr)

case (e, x.e1,y.e2) ⇓f+fr+ccase 〈vr, caseinl(T , Tr)〉
ev-case-l

e ⇓f T inr v = V(T) e2[v/y] ⇓fr Tr vr = V(Tr)

case (e, x.e1,y.e2) ⇓f+fr+ccase 〈vr, caseinr(T , Tr)〉
ev-case-r

nil ⇓0 〈nil , nil〉
ev-nil

e1 ⇓f1 T1 e2 ⇓f2 T2 vi = V(Ti)

cons(e1, e2) ⇓f1+f2 〈cons(v1, v2), cons(T1, T2)〉
ev-cons

e ⇓f T e1 ⇓fr T1 nil = V(T) vr = V(Tr)

case e of nil → e1 | h :: tl→ e2 ⇓f+fr+ccaseL 〈vr, casenil(T , Tr)〉
ev-case-nil

e ⇓f T
cons(vh, vtl) = V(T) e2[vh/h, vtl/tl] ⇓fr Tr vr = V(Tr)

case e of nil → e1 | h :: tl→ e2 ⇓f+fr+ccaseL 〈vr, casecons(T , Tr)〉
ev-case-cons

fix f(x).e ⇓0 〈fix f(x).e, fixf(x).e〉
ev-fix

Figure 19: From-scratch evaluation semantics (Part 1)
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e ⇓f 〈v,D〉 Expression e evaluates with cost f to trace T = 〈v,D〉,
containing the final value v and the derivation D.

e1 ⇓f1 T1 e2 ⇓f2 T2 fix f(x).e = V(T1) v2 = V(T2)

e[v2/x, (fix f(x).e)/f] ⇓fr Tr vr = V(Tr)

e1 e2 ⇓f1+f2+fr+capp 〈vr, app(T1, T2, Tr)〉
ev-app

e ⇓f T v = V(T) ζ(v) = (fr, vr)

ζ e ⇓f+fr+cprimapp 〈vr, primapp(T , ζ)〉
ev-primapp

Λ.e ⇓0 〈Λ.e,Λ.e〉
ev-Lam

e ⇓f T Λ.e ′ = V(T) e ′ ⇓fr Tr vr = V(Tr)

e[ ] ⇓f+fr 〈vr, iApp(T , Tr)〉
ev-iApp

e ⇓f T v = V(T)

pack e ⇓f 〈pack v, pack T〉
ev-pack

e1 ⇓f1 T1 pack v = V(T1) e2[v/x] ⇓fr Tr vr = V(Tr)

unpack e1 as x in e2 ⇓f1+fr 〈vr, unpack(T1, x, Tr)〉
ev-unpack

e1 ⇓f1 T1 v1 = V(T1) e2[v1/x] ⇓fr Tr vr = V(Tr)

let x = e1 in e2 ⇓f1+fr+clet 〈vr, let(x, T1, Tr)〉
ev-let

e1 ⇓f1 T1 v1 = V(T1) e2[v1/x] ⇓fr Tr vr = V(Tr)

clet e1 as x in e2 ⇓f1+fr 〈vr, cletas(x, T1, Tr)〉
ev-clet

e ⇓f T
celim⊃ e ⇓f T

ev-celim
() ⇓0 〈(), ()〉

ev-unit

Figure 20: From-scratch evaluation semantics (Part 2)

changes and biexpressions In order to formalize change prop-
agation, we first need notation to specify where an expression has
changed in the actual incremental run.30 For this we define bivalues30 RelCost does not

need special
constructs for

specifying where the
values for the two

programs differ since
the two related

programs have the
same semantics,

whereas in DuCostIt,
biexpressions are
needed to trigger

change propagation
semantics to switch

from propagating
updates to

re-execution
(explained in
Section 8.2).

and biexpressions. A biexpression (bivalue), denoted ee (vv), represents
in a single syntax two expressions (values)—the original one and the
updated one—that share most structure, but may differ at some leaves.
To represent differing leaves, we use the bivalue constructor new(v1, v2),
which represents the initial value v1 in the first run and the updated
value v2 in the second run. v1 and v2 do not have to be related to each
other. For integer leaves that stay the same, we use the biexpression
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Bi-values vv ::= keep(n) | new(v, v ′) | 〈vv1, vv2〉 | inl vv | inr vv |

nil | cons(vv1, vv2) | fix f(x).ee | Λ.ee | pack vv | ()

Bi-expressions ee ::= x | keep(n) | new(v, v ′) | 〈ee1, ee2〉 | π1 ee | π2 ee |

inl ee | inr ee | (case(ee, x.ee1,y, ee2)) |
nil | cons(ee1, ee2) | fix f(x).ee | ee1 ee2 |

(caseL ee of nil → ee1 | h :: tl → ee2) |

ζ ee | Λ.ee | ee[] | pack ee | unpack ee as x in ee ′ |

let x = ee1 in ee2 | clet ee1 as x in ee2 | ()

stable(vv) , new(v, v ′) 6∈ vv and stable(ee) , new(v, v ′) 6∈ ee

Figure 21: Syntax of bi-values and bi-expression

construct keep(n), all other constructs of CostML can be lifted to the
corresponding biexpression syntax as shown in Figure 21.

For instance, fix f(x).(x+ new(1, 2)) represents fix f(x). x+ 1 in the
first run and fix f(x). x+ 2 in the second run. More generally, we de-
fine the functions L(ee) and R(ee) that project the first-run (“left”) and
second-run (“right”) expressions from ee as the homomorphic liftings
of the following rules: L(keep(r)) = R(keep(r)) = r, L(new(v1, v2)) = v1
and R(new(v1, v2)) = v2.

Both bivalues and biexpressions are typed to prevent modifying a
stable input (of type � τ) or to prevent ill-typed changes such as mod-
ifying 1 to true. For instance, changing two elements of a list that only
allows a single change would not be permitted since the biexpression
cons(new(1, 2), cons(new(0, 5), vv)) cannot be given a type list[n]1U int.

The typing rules for bivalues and biexpressions are shown in Fig-
ure 23. The bivalue typing judgment

∆;Φ; Γ ` vv� τ

states that the bivalue vv represents a valid change from an initial value
L(vv) of type τ to the modified value R(vv) of type τ. The typing rules
for bivalues mirror those for values. The construct keep(n) is typed at
intr since it represents an integer that did not change. The construct
new(v1, v2) can be typed at UA if the values v1 and v2 can be typed in
unary mode at type A.

There is only one rule, bi-expr, for typing biexpressions. This rule
uses explicit substitutions for technical convenience. We could also
have written equivalent syntax-directed rules for typing biexpressions.
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∆;Φ; Γ ` vv� τ Bi-value typing

∆;Φ; Γ ` ee� τ | t Bi-expression typing

∆;Φ; Γ ` keep(n)� intr
bi-keep

∆;Φ; · `FS v : A | t ∆;Φ; · `FS v
′ : A | t ′

∆;Φ; Γ ` new(v, v ′)� UA
bi-new

∆;Φ; Γ ` ()� unitr
bi-unit

∆;Φ; Γ ` vv� τ1

∆;Φ; Γ ` inl vv� τ1 + τ2
bi-inl

∆;Φ; Γ ` vv� τ2

∆;Φ; Γ ` inr vv� τ1 + τ2
bi-inr

∆;Φ; x : τ1, f : τ1
CP(t)−−−→ τ2, Γ ` ee� τ2 | t

∆;Φ; Γ ` fix f(x). ee� τ1
CP(t)−−−→ τ2

bi-fix

∆;Φ; x : τ1, f : � (τ1
CP(t)−−−→ τ2), Γ ` ee� τ2 | t

∀x ∈ Γ . ∆;Φ |= Γ(x) v � Γ(x) stable(ee)

∆;Φ; Γ , Γ ′ ` fix f(x).ee� � (τ1
CP(t)−−−→ τ2)

bi-fix-NC

∆;Φ; Γ ` vv1 � τ1 ∆;Φ; Γ ` vv2 � τ2

∆;Φ; Γ ` 〈vv1, vv2〉 � τ1 × τ2
bi-prod

∆;Φ; Γ ` nil� list[0]α τ
bi-nil

∆;Φ; Γ ` vv1 � τ ∆;Φ; Γ ` vv2 � list[n]α τ

∆;Φ; Γ ` cons(vv1, vv2)� list[n+ 1]α+1 τ
bi-cons

∆;Φ; Γ ` vv1 � � τ ∆;Φ; Γ ` vv2 � list[n]α τ
∆;Φ; Γ ` cons(vv1, vv2)� list[n+ 1]α τ

bi-cons-�

Ψ; i :: S,∆;Φ; Γ ` ee� τ | t i 6∈ FV(Φ; Γ)

∆;Φ; Γ ` Λ.ee� ∀i
CP(t)
:: S. τ

bi-Lam

∆;Φ; Γ ` vv� τ{I/t} ∆I :: S

∆;Φ; Γ ` pack vv� ∃t::S. τ
bi-pack

Figure 22: DuCostIt bi-expression typing rules (Part 1)
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∆;Φ; Γ ` vv� τ and ∆;Φ; Γ ` ee� τ | t Bi-value and bi-expression
typing

∆;Φ∧C; Γ ` vv� τ

∆;Φ; Γ ` vv� C ⊃ τ bi-c-imp

∆;Φ |= C ∆;Φ∧C; Γ ` vv� τ

∆;Φ; Γ ` vv� C & τ
bi-c-prod

∆;Φ; Γ ` vv� τ ∀x ∈ Γ . ∆;Φ |= Γ(x) v � Γ(x) stable(vv)

∆;Φ; Γ , Γ ′ ` vv� � τ bi-nochange

∆;Φ; Γ ` vv� τ ∆;Φ |= τ v τ ′
∆;Φ; Γ ` vv� τ ′

bi-v

∆;Φ; Γ ` vvi � τi ∆;Φ; xi : τi, Γ `CP e : τ | t

∆;Φ; Γ ` peq[vvi/xi]� τ | t
bi-expr

Figure 23: DuCostIt bivalue and biexpression typing rules (Part 2)

pxq = x

pnq = keep(n)

p()q = ()

p〈e1, e2〉q = 〈pe1q, pe2q〉
pnil q = nil

pcons(e1, e2)q = cons(pe1q, pe2q)
ppack eq = pack peq
pfix f(x).eq = fix f(x)peq

...

Figure 24: Lift a value (expression) into a bivalue (biexpression)
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The notation peq denotes the biexpression that represents e in both
the first and second runs. It is obtained by replacing every primitive
constant like n in e with keep(n) (definition shown in Figure 24).

8.2 change propagation

Change propagation is formalized abstractly by the judgment

〈T , ee〉 y vv ′, T ′, c ′.

It takes as inputs the trace T and the biexpression ee and it returns vv ′,
T ′ and c ′. The input T must be the trace that is obtained from execut-
ing the original expression L(ee). The bivalue vv ′ resulting from change
propagation represents two values, L(vv ′) and R(vv ′), which are the re-
sults of evaluating the original and modified expressions, respectively.
vv ′ is crucial for directing change-propagation on when to switch to
from-scratch execution.31 The output T ′ is the trace of the modified ex-31 Actual

implementations of
change propagation

never would
construct bivalues

(biexpressions) and,
hence, we do not

count any cost for
constructing or

analyzing it during
change propagation.

pression R(ee). The non-negative number c ′ represents the total cost
incurred in change propagation.

Before we explain individual change propagation rules, we review
key ideas behind our abstract change propagation semantics.

• The total change propagation cost of a biexpression is obtained
by summing the costs of its sub-biexpressions.

• During change propagation, whenever the resulting bi-value of
an eliminated biexpression has changed, i. e., it is new(v, v ′), since
there is no corresponding computation recorded in the trace, the
continuation switches from change propagation to from-scratch
execution (e. g. rules cp-app-new, cp-case-inll, cp-unpack-new).

• The change propagation rules case analyze the syntax of ee and
they are deterministic, i. e., for a given biexpression and a trace,
there is only one way to propagate the changes.

• In all the rules except cp-nochange, we assume that the input ee
satisfies ¬stable(ee), i. e. it has a change in its subparts.

The change propagation rules are shown in Figures 25 to 27. Below,
we explain selected rules.

The most important rule is cp-nochange that captures re-use of non-
changing subcomputations for free. Its premise, stable(ee) holds when
ee does not contain new(·, ·) anywhere, i.e., when ee represents an ex-
pression that has not changed. In this case, the value v stored in the
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〈T , ee〉 y vv ′, T ′, c ′ Change propagation with cost-counting

In all the remaining rules except cp-nochange, we assume that
the input ee satisfies ¬stable(ee).

stable(ee)

〈〈v,D〉, ee〉 y pvq, 〈v,D〉, 0 cp-nochange

〈〈v,D〉, new(_, v ′)〉 y new(v, v ′), 〈v ′, v ′〉, 0 cp-new

〈T1, ee1〉 y vv ′1, T
′
1, c
′
1 〈T2, ee2〉 y vv ′2, T

′
2, c
′
2 v ′i = V(T ′i )

〈〈_, 〈T1, T2〉〉, (ee1, ee2)〉 y (vv ′1, vv
′
2), 〈〈v ′1, v ′2〉, 〈T ′1, T ′2〉〉, c ′1 + c ′2

cp-pair

〈T , ee〉 y (vv1, vv2), T ′, c ′ 〈v ′1, v ′2〉 = V(T ′)

〈π1 T ,π1ee〉 y vv1, 〈v ′1,π1 T ′〉, c ′
cp-proj1

〈〈fix f(x).e ′, T〉, fix f(x).ee〉 y
fix f(x).ee, 〈R(fix f(x).ee), R(fix f(x).ee)〉, 0

cp-fix

〈T1, ee1〉 y fix f(x).ee, T ′1, c
′
1 〈T2, ee2〉 y vv ′2, T

′
2, c
′
2

〈Tr, ee[vv ′2/x, (fix f(x).ee)/f]〉 y vv ′r, T
′
r , c
′
r v ′r = V(T ′r )

〈〈_, app(T1, T2, Tr)〉, ee1 ee2〉 y
vv ′r, 〈v ′r, app(T ′1, T ′2, T ′r )〉, c ′1 + c ′2 + c ′r

cp-app

〈T1, ee1〉 y new(fix f(x).e, fix f(x).e ′), T ′1, c
′
1 〈T2, ee2〉 y vv ′2, T

′
2, c
′
2

e ′[R(vv ′2)/x, (fix f(x).e ′)/f] ⇓f ′r T ′r v ′r = V(T ′r )

〈〈vr, app(T1, T2, Tr)〉, ee1 ee2〉 y
new(vr, v ′r), 〈v ′r, app(T ′1, T ′2, T ′r )〉, c ′1 + c ′2 + f ′r + capp

cp-app-new

〈T , ee〉 y vv ′, T ′, c ′ v ′ = V(T ′)

〈〈_, inl T〉, inl ee〉 y inl vv ′, 〈inl v ′, inl T ′〉, c ′ cp-inl

〈T , ee〉 y vv, T ′, c ′ v ′ = V(T ′)

〈〈_, inr T〉, inr ee〉 y inr vv, 〈inr v ′, inr T ′〉, c ′ cp-inr

〈T , ee〉 y inl vv, T ′, c ′ 〈Tr, ee1[vv/x]〉 y vv ′r, T
′
r , c
′
r v ′r = V(T ′r )

〈〈_, caseinl(T , Tr)〉, case(ee, x.ee1,y, ee2)〉 y
vv ′r, 〈v ′r, caseinl(T ′, T ′r )〉, c ′ + c ′r

cp-case-inl

〈T , ee〉 y inr vv, T ′, c ′ 〈Tr, ee2[vv/y]〉 y vv ′r, T
′
r , c
′
r v ′r = V(T ′r )

〈〈_, caseinr(T , Tr)〉, case(ee, x.ee1,y, ee2)〉
y vv ′r, 〈v ′r, caseinr(T ′, T ′r )〉, c ′ + c ′r

cp-case-inr

Figure 25: Change propagation rules, part 1
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〈T , ee〉 y vv ′, T ′, c ′ Change propagation with cost-counting

In all the remaining rules except cp-nochange, we assume that
the input ee satisfies ¬stable(ee).

〈T , ee〉 y new(_, inl v ′), T ′, c ′ R(ee1)[v ′/x] ⇓f
′
r T ′r v ′r = V(T ′r )

〈〈vr, caseinl(T , Tr)〉, case(ee, x.ee1,y, ee2)〉 y
new(vr, v ′r), 〈v ′r, caseinl(T ′, T ′r )〉, c ′ + f ′r + ccase

cp-case-inll

〈T , ee〉 y new(_, inr v ′), T ′, c ′ R(ee2)[v ′/x] ⇓f
′
r T ′r v ′r = V(T ′r )

〈〈vr, caseinl(T , Tr)〉, case(ee, x.ee1,y, ee2)〉 y
new(vr, v ′r), 〈v ′r, caseinr(T ′, T ′r )〉, c ′ + f ′r + ccase

cp-case-inlr

〈T , ee〉 y new(_, inl v ′), T ′, c ′ R(ee1)[v ′/x] ⇓f
′
r T ′r v ′r = V(T ′r )

〈〈vr, caseinr(T , Tr)〉, case(ee, x.ee1,y.ee2)〉 y
new(vr, v ′r), 〈v ′r, caseinl(T ′, T ′r )〉, c ′ + f ′r + ccase

cp-case-inrl

〈T , ee〉 y new(_, inr v ′), T ′, c ′ R(ee2)[v ′/y] ⇓f
′
r T ′r v ′r = V(T ′r )

〈〈vr, caseinr(T , Tr)〉, case(ee, x.ee1,y.ee2)〉 y
new(vr, v ′r), 〈v ′r, caseinr(T ′, T ′r )〉, c ′ + f ′r + ccase

cp-case-inrr

〈T1, ee1〉 y vv ′1, T
′
1, c
′
1 〈T2, ee2〉 y vv ′2, T

′
2, c
′
2 v ′i = V(T ′i )

〈〈_, cons(T1, T2)〉, cons(ee1, ee2)〉 y
cons(vv ′1, vv

′
2), 〈cons(v ′1, v ′2), cons(T ′1, T ′2)〉, c ′1 + c ′2

cp-cons

〈T , ee〉 y nil, T ′, c ′ 〈Tr, ee1〉 y vv ′r, T
′
r , c
′
r v ′r = V(T ′r )

〈〈_, casenil(T , Tr)〉, caseLee of nil→ ee1
| h :: tl→ ee2

〉 y vv ′r, 〈v ′r, casenil(T ′, T ′r )〉, c ′ + c ′r
cp-caseL-nil

〈T , ee〉 y cons(vvh, vvtl), T ′, c ′ 〈Tr, ee2[vvh/h, vvtl/tl]〉 y
vv ′r, T

′
r , c
′
r v ′r = V(T ′r )

〈〈_, casecons(T , Tr)〉, caseLee of nil→ ee1
| h :: tl→ ee2

〉 y
vv ′r, 〈v ′r, casecons(T ′, T ′r )〉, c ′ + c ′r

cp-caseL-cons

〈T , ee〉 y new(_, nil ), T ′, c ′ R(ee1) ⇓f
′
r T ′r v ′r = V(T ′r )

〈〈vr, casenil(T , _)〉, caseLee of nil→ ee1
| h :: tl→ ee2

〉 y
new(vr, v ′r), 〈v ′r, casenil(T ′, T ′r )〉, c ′ + f ′r

cp-caseL-nilnil

〈T , ee〉 y new(_, cons(v ′h, v ′tl)), T
′, c ′

R(ee2)[v ′h/h, v ′tl/tl] ⇓f
′
r T ′r v ′r = V(T ′r )

〈〈vr, casenil(T , _)〉, caseLee of nil→ ee1
| h :: tl→ ee2

〉 y
new(vr, v ′r), 〈v ′r, casecons(T ′, T ′r )〉, c ′ + f ′r

cp-caseL-nilcons

Figure 26: Change propagation rules, part 2
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〈T , ee〉 y vv ′, T ′, c ′ Change propagation with cost-counting

In all the remaining rules except cp-nochange, we assume that the
input ee satisfies ¬stable(ee).

〈T , ee〉 y new(_, nil ), T ′, c ′ R(ee1) ⇓f
′
r T ′r v ′r = V(T ′r )

〈〈vr, casecons(T , _)〉, caseLee of nil→ ee1
| h :: tl→ ee2

〉 y
new(vr, v ′r), 〈v ′r, casenil(T ′, T ′r )〉, c ′ + f ′r

cp-caseL-consnil

〈T , ee〉 y new(_, cons(v ′h, v ′tl)), T
′, c ′

R(ee2)[v ′h/h, v ′tl/tl] ⇓f
′
r T ′r v ′r = V(T ′r )

〈〈vr, casecons(T , _)〉, caseLee of nil→ ee1
| h :: tl→ ee2

〉 y
new(vr, v ′r), 〈v ′r, casecons(T ′, T ′r )〉, c ′ + f ′r

cp-caseL-conscons

〈〈_,Λ.e ′〉,Λ.ee〉 y Λ.ee, 〈Λ. R(ee),Λ.R(ee)〉, 0 cp-Lam

〈T , ee〉 y Λ.ee ′, T ′, c ′ 〈Tr, ee ′〉 y vv ′r, T
′
r , c
′
r v ′r = V(T ′r )

〈〈_, iApp(T , Tr)〉, ee[]〉 y vv ′r, 〈v ′r, iApp(T ′, T ′r )〉, c ′ + c ′r
cp-iApp

〈T , ee〉 y new(_,Λ.e ′), T ′, c ′ e ′ ⇓f ′r T ′r v ′r = V(T ′r )

〈〈vr, iApp(T , Tr)〉, ee[ ] 〉 y new(vr, v ′r), 〈v ′r, iApp(T ′, T ′r )〉, c ′ + f ′r
cp-iApp-new

〈T , ee〉 y vv ′, T ′, c ′ v ′r = V(T ′)

〈〈_, pack T〉, pack ee〉 y pack vv ′, 〈pack v ′r, pack T ′〉, c ′
cp-pack

〈T , ee1〉 y pack vv ′, T ′1, c
′
1 〈Tr, ee2[vv ′/x]〉 y vv ′r, T

′
r , c
′
r v ′r = V(T ′r )

〈〈_, unpack(T , x, Tr)〉, unpack ee1 as x in ee2〉 y
vv ′r, 〈v ′r, unpack(T ′, x, T ′r )〉, c ′1 + c ′r

cp-unpack

〈T , ee1〉 y new(_, pack v), T ′1, c
′
1

R(ee2)[v/x] ⇓f
′
r T ′r v ′r = V(T ′r )

〈〈vr, unpack(T , x, Tr)〉, unpack ee1 as x in ee2〉 y
new(vr, v ′r), 〈v ′r, unpack(T ′, x, T ′r )〉, c ′1 + f ′r

cp-unpack-new

〈T , ee〉 y vv ′, T ′, c ′ v ′ = V(T ′) (f ′r, v
′
r) = ζ(v

′)

〈〈vr, primapp(T , ζ)〉, ζ ee〉 y
merge(vr, v ′r), 〈v ′r, primapp(T ′, ζ)〉, c ′ + f ′r

cp-prim

〈T1, ee1〉 y vv ′1, T
′
1, c
′
1 〈Tr, ee2[vv ′1/x]〉 y vv ′r, T

′
r , c
′
r

〈let(x, T1, Tr), let x = ee1 in ee2〉 y vv ′r, let(x, T ′1, T
′
r ), c

′
1 + c

′
r

cp-let

〈T , ee〉 y vv ′, T ′, c ′

〈celim T , celim⊃ ee〉 y vv ′, celim T ′, c ′
cp-celim

〈T1, ee1〉 y vv ′1, T
′
1, c
′
1 〈Tr, ee2[vv ′1/x]〉 y vv ′r, T

′
r , c
′
r

〈cletas(x, T1, Tr), clet ee1 as x in ee2〉 y vv ′r, cletas(x, T ′1, T
′
r ), c

′
1 + c

′
r

cp-clet

Figure 27: Change propagation rules, part 3
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original trace is output immediately (technically, it must be cast into
the bivalue pvq) and the cost of change propagation is 0.

Functions are change propagated trivially with zero cost by just re-
turning the same function bivalue and updating the trace with the
modified function (rule cp-fix). To change propagate a function ap-
plication ee1 ee2, we first change propagate through the function ee1.
If the resulting function does not differ from the original one struc-
turally, i.e., the resulting bivalue has the form fix f(x).ee, then we keep
change propagating through the body (rule cp-app). However, if the
resulting function is structurally different from the original one (bi-
value new(_, fix f(x). e ′)), then we switch to from-scratch execution for
the body of the modified function (rule cp-app-new). This pattern of
switching to from-scratch evaluation repeats in all rules that apply clo-
sures.

To change propagate case(ee, x.ee1,y, ee2), we first change propagate
through the scrutinee ee. If the initial and incremental runs both took
the same branch, i. e., the bivalue resulting from ee is either inl vv or
inr vv, we keep change propagating through that branch (rules cp-case-
inl and cp-case-inr). Otherwise, e. g. ee’s result has changed from inl _
to inr _ (detected by a bivalue of the form new(_, inr v ′)), then we exe-
cute the right branch from-scratch, as in rule cp-case-inlr. In addition,
we incur an extra cost, ccase, for switching to from-scratch mode.

implementation The relation y formalizes change propagation
and its cost abstractly. An obvious question is whether change propa-
gation can be implemented with the asymptotic costs stipulated by the
y relation. The answer is affirmative. Prior work on libraries and com-
pilers for self-adjusting computation already shows how to implement
change propagation with these costs using imperative traces, leaf-to-
root traversals and in-place update of values [5, 32]. Since values are
updated in-place, no cost is incurred for structural operations like pair-
ing, projection, consing, etc; cost is incurred only for re-evaluating
primitive functions on paths starting in updated leaves, exactly as in
the judgment y. To double-check, we implemented most of our ex-
amples on an existing library, AFL [5], and observed (empirically) ex-
actly the asymptotic costs stipulated by y. However, these observa-
tions are experimental. A more thorough study is conducted by Zoe
Paraskevopoulou where as part of her masters thesis, she showed how
the abstract change propagation semantics can be realized by trans-
lation to an ML-like language with runtime support for incremental
evaluation with an actual low-level cost semantics [35, 85].
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8.3 ducostit’s typing judgments

Like RelCost, DuCostIt relies on two typing judgments: a unary and a
relational one. The relational judgment

∆;Φ; Γ `CP e : τ | t

states that that t is an upper bound on the cost of change propagating
through e. The unary judgment

∆;Φ;Ω `FS e : A | t

states that t is an upper bound on the cost of evaluating e from-scratch.
As in RelCost, these typing judgments use two kinds of type environ-
ments: Ω for unary typing and Γ relational typing. Beside these, both
typing judgments have two other environments: ∆ for index variables
and Φ for assumed constraints. The judgments also include a fourth
context that specifies the types of primitive functions ζ, but this context
does not change in the rules, so we exclude it from the presentation.

Note that, the cost of change propagation is no more than the cost of
evaluating from-scratch, so the second judgment ∆;Φ;Ω `FS e : A | t

implies the relational judgment ∆;Φ;UΩ `CP e : UA | t semantically
at the weakest environment and type, hence, it is perfectly sound to
change propagate through expressions typed with either judgment. We
rely on this property heavily in our semantics of types.

lower bounds on the dynamic stability In Chapter 4, we
discussed why tracking lower bounds on RelCost’s relational judgment
was redundant. In essence, since the two programs in RelCost have the
same evaluation semantics, relative costs are symmetric (hence the in-
equality k 6 cost(e1) − cost(e2) 6 t can be flipped). However, we
cannot make the same claim in DuCostIt because unlike relative costs,
dynamic stability is not symmetric: the two executions of the program
do not have the same semantics. Hence, if one is interested in lower
bounds on the dynamic stability, then DuCostIt’s relational judgment
as well as its unary judgment must be extended to track lower bounds.
We do not proceed with this path since in the case of incremental com-
putations, programmers are often interested in worst-case bounds on
the dynamic stability.
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ducostit’s typing principles and design choices Before
we explain the details of DuCostIt’s type system, we review the general
design principles behind the unary and relational typing rules.

• As in RelCost, the total cost of an expression is obtained by sum-
ming the costs of its subexpressions. Moreover, for the unary typ-
ing, elimination constructs described in Section 8.1 incur addi-
tional costs.

• As in RelCost, DuCostIt only allows eliminating truly related ex-
pressions that are not of type UA. For instance, case-elimination
on U (A1 + A2) cannot be typed relationally in CP-mode. All
such cases are handled uniformly: If the eliminated expressions
are unrelated, i.e., of type UA, the verification can be done only
by switching from CP-mode to non-relational FS-mode for the
whole expression.

• RelCost has several asynchronous typing rules that combine rela-
tional and unary typing rules since the two programs may struc-
turally differ. In contrast, DuCostIt only has a single typing rule
that allows switching from relational CP-mode typing to unary
FS-mode typing since we have the same program in the initial
and the incremental run.

The typing rules for the unary and relational typing judgments are
shown in Figures 28 and 29 and Figures 30 and 31, respectively. Below,
we explain selected rules for the two judgments separately. Since most
of DuCostIt’s unary and relational typing mimics RelCost’s, we only ex-
plain rules that differ from RelCost’s.

8.3.1 Unary Typing

As mentioned before, we only track upper bounds on DuCostIt’s unary
typing, so its typing can be thought of as a simplification of RelCost’s
unary typing. We briefly discuss a few typing rules.

Like in RelCost, values have no effect—they are assumed to evaluate
with zero cost. So, variables (rule fs-var), as well as all introduction
forms including functions and index abstractions incur zero cost (rules
fs-fix and fs-iLam). For functions, the from-scratch execution cost of

the body, denoted t, is internalized into the type A1
FS(t)−−−→ A2 (rule

fs-fix). In the rule fs-app, this internalized latent cost t is added to the
total cost of the application along with an additional symbolic cost capp
for the function application.
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Since DuCostIt is geared towards estimating change propagation costs,
the symbolic costs for elimination forms are assumed to be non-zero.
As in RelCost, these costs can be adjusted if necessary.

8.3.2 Relational Typing

Relational typing establishes the dynamic stability of an expression and
assigns the expression a relational type under the given relational envi-
ronment that captures how the inputs of the program may change.

In a call-by-value language like CostML, variables are substituted by
values and the cost of updating (change propagating) the substitution
for a variable is paid by the context that provides the substitution. So a
variable incurs zero cost during change propagation (rule cp-var).

Rules cp-fix and cp-app type recursive functions and function appli-
cations, respectively. In rule cp-fix, the body of the function is typed in
the same mode as the function itself. The annotation on the function’s
type is CP (and the latent cost t bounds the change-propagation cost)
because the function is constructed within the program, so it will not
change syntactically across runs.32 In rule cp-app, the latent cost of the 32 This principle also

applies to all value
introduction forms
(for instance, the rules
cp-inl and cp-iLam).

function is added to the total change-propagation cost of the applica-
tion.

Like RelCost, DuCostIt has similar rules for introduction and elimina-
tion forms for lists: The � · type interacts in the same way with the
number of changes α depending on whether the head might change or
not (rules cp-cons1, cp-cons2 and cp-caseL).

The rule cp-nochange captures the intuition that if no dependencies
(substitutions for free variables) of an expression can change, then the
expression’s result cannot change and there is no need to change prop-
agate through its trace (i.e., its change propagation cost is zero). The
second premise of cp-nochange checks that the types of all variables
can be subtyped to the form � ·, which ensures that the dependencies
of the expression cannot change. The rule’s conclusion allows the type
to be annotated � · and, additionally, the cost to be 0. Notice that this
rule only makes sense in relational CP-mode typing, hence there is no
counterpart in unary FS-mode typing.

The rule cp-switch allows an expression of type A to be related at
the weakest relation with type UA. When read from bottom-to-top, it
switches from relational reasoning to unary reasoning that types the ex-
pression independently in an erased environment |Γ |. Then, the change
propagation cost is upper bounded by the expression’s from-scratch ex-
ecution cost. Like in RelCost, the type erasure operation |.| is a function



90 ducostit ’s type system

∆;Φa;Ω `FS e : A | t Execution cost of e is upper bounded by t, and
e has the unary type A.

∆;Φa;Ω `FS n : int | 0
fs-const

Ω(x) = A

∆;Φa;Ω `FS x : A | 0
fs-var

∆;Φa;Ω `FS () : unit | 0
fs-unit

∆;Φa;Ω `FS e : A1 | t ∆;Φ `A A2 wf

∆;Φa;Ω `FS inl e : A1 +A2 | t
fs-inl

∆;Φa;Ω `FS e : A2 | t ∆;Φ `A A1 wf

∆;Φa;Ω `FS inr e : A1 +A2 | t
fs-inr

∆;Φa;Ω `FS e : A1 +A2 | t
∆;Φ; x : A1,Ω `FS e1 : A | t ′ ∆;Φ;y : A2,Ω `FS e2 : A | t ′

∆;Φa;Ω `FS case (e, x.e1,y.e2) : A | t+ t ′ + ccase
fs-case

∆;Φ `A A1
FS(t)−−−→ A2 wf

∆;Φ; x : A1, f : A1
FS(t)−−−→ A2,Ω `FS e : A2 | t

∆;Φa;Ω `FS fix f(x).e : A1
FS(t)−−−→ A2 | 0

fs-fix

∆;Φa;Ω `FS e1 : A1
FS(t)−−−→ A2 | t1 ∆;Φa;Ω `FS e2 : A1 | t2

∆;Φa;Ω `FS e1 e2 : A2 | t1 + t2 + t+ capp
fs-app

∆;Φa;Ω `FS e1 : A1 | t1 ∆;Φa;Ω `FS e2 : A2 | t2

∆;Φa;Ω `FS 〈e1, e2〉 : A1 × A2 | t1 + t2
fs-prod

∆;Φa;Ω `FS e : A1 × A2 | t
∆;Φa;Ω `FS π1(e) : A1 | t+ cproj

fs-proj1

∆;Φ `A A wf

∆;Φa;Ω `FS nil : list[0]A | 0
fs-nil

∆;Φa;Ω `FS e1 : A | t1 ∆;Φa;Ω `FS e2 : list[n]A | t2

∆;Φa;Ω `FS cons(e1, e2) : list[n+ 1]A | t1 + t2
fs-cons

∆;Φa;Ω `FS e : list[n]A | t ∆;Φ∧n = 0;Ω `FS e1 : A
′ | t ′

i,∆;Φ∧n = i+ 1;h : A, tl : list[i]A,Ω `FS e2 : A
′ | t ′

∆;Φa;Ω `FS case e of nil → e1 | h :: tl→ e2 : A
′ | t+ t ′ + ccaseL

fs-caseL

i :: S,∆;Φa;Ω `FS e : A | t i 6∈ FIV(Φ;Ω)

∆;Φa;Ω `FS Λ.e : ∀i
FS(t)
:: S.A | 0

fs-iLam

∆;Φa;Ω `FS e : ∀i
FS(t ′)
:: S.A | t ∆ ` I : S

∆;Φa;Ω `FS e[ ] : A{I/i} | t+ t
′[I/i]

fs-iApp

Figure 28: DuCostIt unary typing rules (Part 1)
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∆;Φa;Ω `FS e : A | t Execution cost of e is upper bounded by t, and
e has the unary type A.

∆;Φa;Ω `FS e : A{I/i} | t ∆ ` I :: S
∆;Φa;Ω `FS pack e : ∃i::S.A | t

fs-pack

∆;Φa;Ω `FS e1 : ∃i::S.A1 | t1
i :: S,∆;Φ; x : A1,Ω `FS e2 : A2 | t2 i 6∈ FV(Φ; Γ ,A2, t2)

∆;Φa;Ω `FS unpack e1 as x in e2 : A2 | t1 + t2
fs-unpack

Υ(ζ) = A1
FS(t)−−−→ A2 ∆;Φa;Ω `FS e : A1 | t

′

∆;Φa;Ω `FS ζ e : A2 | t+ t
′ + cprimapp

fs-primapp

∆;Φ |= C ∆;Φ∧C;Ω `FS e : A | t

∆;Φa;Ω `FS e : C & A | t
fs-c-andI

∆;Φa;Ω `FS e1 : C & A1 | t1
∆;Φ∧C; x : A1,Ω `FS e2 : A2 | t2

∆;Φa;Ω `FS clet e1 as x in e2 : A2 | t1 + t2
fs-c-andE

∆;Φ∧C;Ω `FS e : A | t

∆;Φa;Ω `FS e : C ⊃ A | t
fs-c-impI

∆;Φa;Ω `FS e : C ⊃ A | t ∆;Φ |= C

∆;Φa;Ω `FS celim⊃ e : A | t
fs-c-implE

∆;Φa;Ω `FS e : A | t ∆;Φ |= A v A ′ ∆;Φ |= t 6 t ′

∆;Φa;Ω `FS e : A
′ | t ′

vvv exec

Figure 29: DuCostIt unary typing rules (Part 2)
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∆;Φa; Γ `CP e : τ | t Dynamic stability of e is upper bounded by t
and e has relational type τ.

∆;Φa; Γ `CP n : intr | 0
cp-const

Γ(x) = τ

∆;Φa; Γ `CP x : τ | 0
cp-var

∆;Φa; Γ `CP () : unitr | 0
cp-unit

∆;Φa; Γ `CP e : τ1 | t ∆;Φ ` τ2 wf
∆;Φa; Γ `CP inl e : τ1 + τ2 | t

cp-inl

∆;Φa; Γ `CP e : τ2 | t ∆;Φ ` τ1 wf
∆;Φa; Γ `CP inr e : τ1 + τ2 | t

cp-inr

∆;Φa; Γ `CP e : τ1 + τ2 | t
∆;Φ; x : τ1, Γ `CP e1 : τ | t

′ ∆;Φ;y : τ2, Γ `CP e2 : τ | t
′

∆;Φa; Γ `CP case (e, x.e1,y.e2) : τ | t+ t ′
cp-case

∆;Φ ` τ1
CP(t)−−−→ τ2 wf ∆;Φ; x : τ1, f : τ1

CP(t)−−−→ τ2, Γ `CP e : τ2 | t

∆;Φa; Γ `CP fix f(x).e : τ1
CP(t)−−−→ τ2 | 0

cp-fix

∆;Φ ` τ1
CP(t)−−−→ τ2 wf

∆;Φ; x : τ1, f : � (τ1
CP(t)−−−→ τ2), Γ `CP e : τ2 | t

∀x ∈ dom(Γ). ∆;Φ |= Γ(x) v � Γ(x)

∆;Φ; Γ , Γ ′ `CP fix f(x).e : � (τ1
CP(t)−−−→ τ2) | 0

cp-fixNC

∆;Φa; Γ `CP e1 : τ1
CP(t)−−−→ τ2 | t1 ∆;Φa; Γ `CP e2 : τ1 | t2

∆;Φa; Γ `CP e1 e2 : τ2 | t1 + t2 + t
cp-app

∆;Φa; Γ `CP e1 : τ1 | t1 ∆;Φa; Γ `CP e2 : τ2 | t2

∆;Φa; Γ `CP 〈e1, e2〉 : τ1 × τ2 | t1 + t2
cp-prod

∆;Φa; Γ `CP e : τ1 × τ2 | t
∆;Φa; Γ `CP π1(e) : τ1 | t

cp-proj1

∆;Φ ` τ wf
∆;Φa; Γ `CP nil : list[0]α τ | 0

cp-nil

∆;Φa; Γ `CP e1 : τ | t1 ∆;Φa; Γ `CP e2 : list[n]α τ | t2
∆;Φa; Γ `CP cons(e1, e2) : list[n+ 1]α+1 τ | t1 + t2

cp-cons1

∆;Φa; Γ `CP e1 : � τ | t1 ∆;Φa; Γ `CP e2 : list[n]α τ | t2
∆;Φa; Γ `CP cons(e1, e2) : list[n+ 1]α τ | t1 + t2

cp-cons2

Figure 30: DuCostIt relational typing rules (Part 1)
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∆;Φa; Γ `CP e : τ | t Dynamic stability of e is upper bounded by t
and e has relational type τ.

∆;Φa; Γ `CP e : list[n]α τ | t ∆;Φ∧n = 0; Γ `CP e1 : τ
′ | t ′

i,∆;Φ∧n = i+ 1;h : � τ, tl : list[i]α τ, Γ `CP e2 : τ
′ | t ′

i,β,∆;Φ∧n = i+ 1∧α = β+ 1;h : τ, tl : list[i]β τ, Γ `CP e2 : τ
′ | t ′

∆;Φa; Γ `CP case e of nil → e1 | h :: tl→ e2 : τ
′ | t+ t ′

cp-caseL

i :: S,∆;Φa; Γ `CP e : τ | t i 6∈ FIV(Φ; Γ)

∆;Φa; Γ `CP Λ.e : ∀i
CP(t)
:: S. τ | 0

cp-iLam

∆;Φa; Γ `CP e : ∀i
CP(t ′)
:: S. τ | t ∆ ` I : S

∆;Φa; Γ `CP e[ ] : τ{I/i} | t+ t
′[I/i]

cp-iApp

∆;Φa; Γ `CP e : τ{I/i} | t ∆ ` I :: S
∆;Φa; Γ `CP pack e : ∃i::S. τ | t

cp-pack

∆;Φa; Γ `CP e1 : ∃i::S. τ1 | t1
i :: S,∆;Φ; x : τ1, Γ `CP e2 : τ2 | t2 i 6∈ FV(Φ; Γ , τ2, t2)

∆;Φa; Γ `CP unpack e1 as x in e2 : τ2 | t1 + t2
cp-unpack

Υ(ζ) = τ1
CP(t)−−−→ τ2 ∆;Φa; Γ `CP e : τ1 | t

′

∆;Φa; Γ `CP ζ e : τ2 | t+ t
′ cp-primapp

∆;Φ |= C ∆;Φ∧C; Γ `CP e : τ | t

∆;Φa; Γ `CP e : C & τ | t
cp-c-andI

∆;Φa; Γ `CP e1 : e
′
1 | t1 C & τ1 ∆;Φ∧C; x : τ1, Γ `CP e2 : e

′
2 | t2 τ2

∆;Φa; Γ `CP clet e1 as x in e2 : τ2 | t1 + t2
cp-c-andE

∆;Φ∧C; Γ `CP e : τ | t

∆;Φa; Γ `CP e : C ⊃ τ | t
cp-c-impI

∆;Φa; Γ `CP e : C ⊃ τ | t ∆;Φ |= C

∆;Φa; Γ `CP celim⊃ e : τ | t
cp-c-implE

∆;Φ∧C; Γ `CP e1 : τ | t ∆;Φ∧¬C; Γ `CP e1 : τ | t ∆ ` C wf

∆;Φa; Γ `CP e1 : τ | t
cp-split

∆;Φa; Γ `CP e : τ | t ∆;Φ |= τ v τ ′ ∆;Φ |= t 6 t ′

∆;Φa; Γ `CP e : τ
′ | t ′

cp-vvv

∆;Φ; Γ `CP e : τ | t
∀x ∈ dom(Γ). ∆;Φ |= Γ(x) v � Γ(x)

∆;Φ; Γ , Γ ′ `CP e : � τ | 0
cp-nochange

∆;Φ; |Γ | `FS e : A | t

∆;Φ; Γ `CP e : UA | t
cp-switch

Figure 31: DuCostIt relational typing rules (Part 2)
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| · | : Relational type→ Unary type

|intr| = int
|unitr| = unit
|τ1 × τ2| = |τ1| × |τ2|

|τ1 + τ2| = |τ1| + |τ2|

|list[n]α τ| = list[n] |τ|

|τ1
CP(t)−−−→ τ2| = |τ1|

FS(∞)−−−−→ |τ2|

|∀i
CP(t)
:: S. τ| = ∀i

FS(∞)
:: S. |τ|

|∃i::S. τ| = ∃i::S. |τ|
|C & τ| = C & |τ|

|C ⊃ τ| = C ⊃ |τ|

|UA| = A

|� τ| = |τ|

Figure 32: DuCostIt refinement removal operation

from relational types to unary types that forgets the relational refine-
ments. Its definition is shown in Figure 32.

Additionally, similar to RelCost, DuCostIt also has generic rules like
cp-split.

8.4 subtyping

Just like in RelCost, subtyping plays a crucial role in DuCostIt. Due to the
use of bivalues in DuCostIt’s semantic and operational model, DuCostIt’s
subtyping is slightly different from RelCost’s. Still, subtyping follows
the same core ideas: e.g. list types interact similarly with the � annota-
tion and subtyping is constraint dependent. We show DuCostIt’s unary
and relational subtyping rules in Figure 33 and Figures 34 and 35, re-
spectively.

The main difference in the subtyping rules of DuCostIt and RelCost is
the way unary types are lifted to relational types at the weakest relation
U ·. This difference stems from the fact that DuCostIt cares about where
and how a value is changed whereas RelCost doesn’t. For instance, in
RelCost, since relational types are interpreted as pairs of values, the val-
ues 〈2, 3〉 and 〈20, 30〉 can be given two different types: U (int × int) and
U int × U int. Hence RelCost allows subtyping U (A1 × A2) to UA1 ×
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UA2. However, this would be unsound in DuCostIt since DuCostIt cares
about how a value is changed, and according to which change propaga-
tion might either switch to from-scratch execution or keep change prop-
agating. Therefore, relational types are interpreted as bivalues which
pose some restrictions on truly relational types, i. e. types that are
not of form U ·. In particular, in DuCostIt, the type UA1 × UA2 can
admit no direct changes to itself but only to its sub-parts whereas
the type U (A1 × A2) may admit changes to itself. In other words,
new(〈2, 3〉, 〈20, 30〉) cannot be given a type U int × U int. The only way
a type of the form U (A1 × A2) can be lifted to UA1 × UA2 is if it
is not a new(v, v ′) itself. Therefore, in DuCostIt, we can only subtype
�U (A1 × A2) to �UA1 × �UA2 (rule ×�U in Figure 34). Similar

subtyping rules apply for types A1
FS(t)−−−→ A2 and ∀i

FS(t)
:: S.A.

Like in RelCost, the type � τ follows the standard co-monadic rules:

� τ v τ, � (τ1
CP(t)−−−→ τ2) v � τ1

CP(0)−−−→ � τ2 and � (τ1 × τ2) ≡ � τ1 ×
� τ2.
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∆;Φ |=A A1 v A2 Type A1 is a subtype of type A2

∆;Φ |=A A ′1 v A1 ∆;Φ |=A A2 v A ′2 ∆;Φ |= t 6 t ′

∆;Φ |=A A1
FS(t)−−−→ A2 v A ′1

FS(t ′)−−−−→ A ′2

→ exec

i :: S,∆;Φ |=A A v A ′ i :: S,∆;Φ |= t6 t ′ i 6∈ FV(Φ)

∆;Φ |=A ∀i
FS(t)
:: S.A v ∀i

FS(t ′)
:: S.A

u-∀exec

∆;Φ |=A A1 v A ′1 ∆;Φ |=A A2 v A ′2
∆;Φ |=A A1 ×A2 v A ′1 ×A ′2

u-×

∆;Φ |=A A1 v A ′1 ∆;Φ |=A A2 v A ′2
∆;Φ |=A A1 + A2 v A ′1 + A ′2

u-+

∆;Φ |= n
.
= n ′ ∆;Φ |=A A v A ′

∆;Φ |=A list[n]A v list[n ′]A ′
u-l

i :: S,∆;Φ |=A A v A ′ i 6∈ FV(Φ)

∆;Φ |=A ∃i::S.A v ∃i::S.A ′
u-∃

∆;Φ∧C |= C ′ ∆;Φ |=A A v A ′

∆;Φ |=A C & A v C ′ & A ′
u-c-and

∆;Φ∧C ′ |= C ∆;Φ |=A A v A ′

∆;Φ |=A C ⊃ A v C ′ ⊃ A ′
u-c-impl

∆;Φ |=A A v A
u-refl

∆;Φ |=A A1 v A2 ∆;Φ |=A A2 v A3
∆;Φ |=A A1 v A3

u-tran

Figure 33: DuCostIt’s unary subtyping rules
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∆;Φ |= τ1 v τ2 Relational type τ1 is a subtype of relational type τ2

∆;Φ |=A A1 v A2 Type A1 is a subtype of type A2

∆;Φ |= intr v � intr
int-�

∆;Φ |= �U int v intr
�U-int

∆;Φ |= unitr v �unitr
unit

∆;Φ |= τ ′1 v τ1 ∆;Φ |= τ2 v τ ′2 ∆;Φ |= t 6 t ′

∆;Φ |= τ1
CP(t)−−−→ τ2 v τ ′1

CP(t ′)−−−−→ τ ′2

→ cp

∆;Φ |= � (τ1
CP(t)−−−→ τ2) v � τ1

CP(0)−−−→ � τ2
→ �cp

∆;Φ |= � (U (A1
FS(t)−−−→ A2)) v �UA1

CP(0)−−−→ �UA2
→ �Ucp

i :: S,∆;Φ |= τ v τ ′ i :: S,∆;Φ |= t6 t ′ i 6∈ FV(Φ)

∆;Φ |= ∀i
CP(t)
:: S. τ v ∀i

CP(t ′)
:: S. τ ′

∀cp

∆;Φ |= � (∀i
CP(t)
:: S. τ) v ∀i

CP(0)
:: S.� τ

∀ �

∆;Φ |= � (U (∀i
FS(t)
:: S.A)) v ∀i

CP(0)
:: S.�UA

∀ � U

∆;Φ |= τ1 v τ ′1 ∆;Φ |= τ2 v τ ′2
∆;Φ |= τ1 × τ2 v τ ′1 × τ ′2

×

∆;Φ |= � τ1 ×� τ2 ≡ � (τ1 × τ2)
×�

∆;Φ |= � (U (A1 ×A2)) v �UA1 ×�UA2
×�U

∆;Φ |= τ1 v τ ′1 ∆;Φ |= τ2 v τ ′2
∆;Φ |= τ1 + τ2 v τ ′1 + τ ′2

+

∆;Φ |= � τ1 +� τ2 v � (τ1 + τ2)
+�

∆;Φ |= n
.
= n ′ ∆;Φ |= α6α ′ ∆;Φ |= τ v τ ′

∆;Φ |= list[n]α τ v list[n ′]α
′
τ ′

l1

∆;Φ |= α
.
= 0

∆;Φ |= list[n]α τ v list[n]α� τ l2

∆;Φ |= list[n]α� τ v � (list[n]α τ)
l�

Figure 34: DuCostIt’s relational subtyping rules (part 1)
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∆;Φ |= τ1 v τ2 Binary type τ1 is a subtype of type τ2

i :: S,∆;Φ |= τ v τ ′ i 6∈ FV(Φ)

∆;Φ |= ∃i::S. τ v ∃i::S. τ ′
∃

∆;Φ |= ∃i::S.� τ v � (∃i::S. τ)
∃�

∆;Φ∧C |= C ′ ∆;Φ |= τ v τ ′
∆;Φ |= C & τ v C ′ & τ ′

c-and

∆;Φ |= C & � τ v � (C & τ)
c-and-�

∆;Φ∧C ′ |= C ∆;Φ |= τ v τ ′
∆;Φ |= C ⊃ τ v C ′ ⊃ τ ′ c-impl

∆;Φ |= � (C ⊃ τ) v C ⊃ � τ c-impl-�
∆;Φ |= � τ v τ T

∆;Φ |= � τ v �� τ D
∆;Φ |= τ1 v τ2

∆;Φ |= � τ1 v � τ2
B-�

∆;Φ |= τ v U |τ|
W

∆;Φ |=A A v A ′
∆;Φ |= UA v UA ′ U

∆;Φ |= τ v τrefl

∆;Φ |= τ1 v τ2 ∆;Φ |= τ2 v τ3
∆;Φ |= τ1 v τ3

tran

Figure 35: DuCostIt’s relational subtyping rules (Part 2)



9
DUCOST IT ’ S M E TAT H E O RY A N D S O U N D N E S S

I synopsis In this chapter, we present a logical relations model
for DuCostIt and use it to prove DuCostIt sound relative to the from-
scratch and abstract change propagation cost semantics presented in
Section 8.1.

Like in RelCost, we build two cost-annotated models of types: a non-
relational (unary) one for from-scratch execution and a relational (binary)
one for change propagation . However, in addition to these two models,
in DuCostIt, we need another relational model to handle bivalues of
type U A that can still be change propagated.

9.1 unary interpretation of ducostit types

DuCostIt’s unary model resembles RelCost’s unary model (modulo the
lower bounds in RelCost). For each unary type A, the value interpreta-
tion JAKv is a set, containing pairs (m , v) of step indices and values
(shown in Figure 36).

The expression interpretation JAKtε is shown below and contains
pairs (m , e) of step indices and expressions.

JAKtε = {(m , e) | (e ⇓f 〈v ,D〉 ∧ f < m) ⇒ 1. f 6 t
2. (m − f , v) ∈ JAKv

}

The interpretation of JAKtε states that if e evaluates to a value with
cost f < m, then t is an upper bound on the from-scratch execution
cost f, and the resulting value is in the value interpretation with step-
index m − f.

As in RelCost’s model, we interpret open expressions under some
semantic environment interpretation γ. We write (m , γ) ∈ GJΩK to
mean that γ maps all variables in the domain of the environment Ω to
appropriately-typed semantic values for m steps.

GJ·K = {(m , ∅)}
GJΩ , x : AK = {(m , γ[x 7→ v]) | (m , γ) ∈ GJΩK ∧ (m , v) ∈ JAKv }

We write σ ∈ DJ∆K to mean that σ is a valid (well-sorted) substitution
for the index environment ∆.

99
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JAKv ⊆ Step index × Value
JAKkε ⊆ Step index × Expression

JintKv = {(m , n)}

JunitKv = {(m , ())}

JA1 × A2Kv = {(m , 〈v1 , v2〉) | (m , v1) ∈ JA1Kv ∧

(m , v2) ∈ JA2Kv }

JA1 + A2Kv = {(m , inl v) | (m , v) ∈ JA1Kv } ∪
{(m , inr v) | (m , v) ∈ JA2Kv }

Jlist[0] AKv = {(m , nil )}

Jlist[n+1] AKv = {(m , cons(e1 , e2)) | (m , e1) ∈ JAKv ∧

(m , e2) ∈ Jlist[n] AKv }

JA1
FS(t)−−−→ A2Kv = {(m , fix f(x) .e) | ∀j < m . ∀v . (j , v) ∈ JA1Kv

=⇒ (j , e[v/x , fix f(x) .e/f]) ∈ JA2Ktε }

J∀i
FS(t)
: : S . AKv = {(m , Λ .e) | ∀I . ` I : : S . (m , e) ∈ JA{I/i}Kt[I/i]ε }

J∃i : :S . AKv = {(m , pack v) | ∃I . ` I : : S ∧ (m , v) ∈ JA{I/i}Kv }

JC ⊃ AKv = {(m , v) | 6 |= C ∨ (m , v) ∈ JAKv }

JC & AKv = {(m , v) | |= C ∧ (m , v) ∈ JAKv }

Figure 36: Non-relational interpretation of DuCostIt’s unary types

9.2 ducostit’s soundness (unary)

We prove the following fundamental theorem for unary typing. Roughly,
the theorem says that the expression e, if typed in DuCostIt at unary
type A, lies in the unary expression interpretation of A for any step-
index and value substitution that respects the environment’s types.

Theorem 6 (Fundamental Theorem for Unary Typing). Assume that
∆;Φa;Ω `FS e : A | t and σ ∈ DJ∆K and |= σΦ and (m,γ) ∈ GJσΩK. Then,
(m,γe) ∈ JσAKσtε .

Proof. Proof is by induction on the typing derivation (shown in Ap-
pendix B.2).
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An immediate corollary of the theorem is that execution costs estab-
lished in the type system are upper bounds on the actual from-scratch
execution costs of the program. For readability, we only state the theo-
rem with a single input x, but it generalizes to any number of inputs.

Corollary 7 (Soundness for from-scratch execution). Suppose that

• x : A `FS e : A
′ | t

• `FS v : A | 0

• e[v/x] ⇓f T

Then f 6 t.

9.3 relational interpretation of ducostit types

In contrast to RelCost, the relational model of DuCostIt is built based
on bivalues and biexpressions that direct change propagation. This has
significant ramifications on DuCostIt’s relational model, making it more
involved than RelCost’s.

In particular, there are two relational interpretations in DuCostIt: one
for unary types and one for relational types. The relational value inter-
pretation of a relational type, written LτMv, contains pairs (m, vv) of a
step-index and a bivalue (shown in Figure 37). The relational value in-
terpretation of unary types, written $A%v, contains also pairs (m, vv) of
a step-index and a bivalue but requires that vv is not equal to new(v, v ′).
The relation $A%v is needed to allow change propagating expressions
that have not changed at the top level but have type UA.33 Both LτMv 33 If they had

changed, i. e. were
equal to new(v, v ′),
then the values would
be in the unary
relation at type A.
But if they have not
changed, we need a
special relation that
allows them to be
change-propagated
through.

and $A%v relate the original value L(vv) to the updated value R(vv). We
discuss salient points of LτMv and $A%v.

9.3.1 Relational interpretation of relational types

First, the interpretation of � τ contains only those bivalues vv whose
two projections are identical and do not contain any new’s, i. e. stable(vv),
and are related at LτMv. Hence, we have L� τMv ⊆ LτMv.

Second, the interpretation ofUA contains bivalues of the form new(v, v ′)
only if (j, v) and (j, v ′) are in the unary relation JAKv for any step index
j 34. In addition, it also contains other bivalues in $A%v that can still 34 Like in RelCost,

this means that when
we switch from
relational to unary
reasoning, we can call
out to any unary step
index j. This works
because the unary
relation does not refer
back to the binary
relation.

be change-propagated even though they are typed at the weakest rela-
tion UA. Then, we can show that LτMv ⊆ LU |τ|Mv, where | · | is the type
erasure operation defined in Figure 32.
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LτMv ⊆ Step index× Bi-value
LτMtε ⊆ Step index× Bi-expression

L� τMv = {(m, vv) | stable(vv)∧ (m, vv) ∈ LτMv}

LUAMv = $A%v ∪ {(m, new(v, v ′)) | ∀j. (j, v) ∈ JAKv ∧

(j, v ′) ∈ JAKv}

LintrMv = {(m, keep(n))}

LunitrMv = {(m, ())}

Lτ1 × τ2Mv = {(m, 〈vv1, vv2〉) | (m, vv1) ∈ Lτ1Mv ∧ (m, vv2) ∈ Lτ2Mv}

Lτ1 + τ2Mv = {(m, inl vv) | (m, vv) ∈ Lτ1Mv} ∪
{(m, inr vv) | (m, vv) ∈ Lτ2Mv}

Llist[0]α τMv = {(m, nil)}

Llist[n+1]α τMv = {(m, cons(vv1, vv2)) | ((m, vv1) ∈ L� τMv ∧ (m, vv2) ∈ Llist[n]α τMv)

∨ ((m, vv1) ∈ LτMv ∧ (m, vv2) ∈ Llist[n]α−1 τMv ∧α > 0)}

Lτ1
CP(t)−−−→ τ2Mv = {(m, fix f(x).ee) | ((m, fix f(x).ee) ∈ $|τ1| FS(∞)−−−−→ |τ2|%v) ∧

(∀j < m.∀vv.(j, vv) ∈ Lτ1Mv =⇒ (j, ee[vv/x, fix f(x).ee/f]) ∈ Lτ2Mtε)}

L∀i
CP(t)
:: S. τMv = {(m,Λ.ee) | (∀I. ` I :: S. ((m, ee) ∈ Lτ{I/i}Mt[I/i]ε ) ∧

(m,Λ.ee) ∈ $∀i FS(∞)
:: S. |τ|%v}

L∃i::S. τMv = {(m, pack vv) | ∃I. ` I :: S ∧ (m, vv) ∈ Lτ{I/i}Mv}

LC ⊃ τMv = {(m, vv) | 6|= C ∨ (m, vv) ∈ LτMv}

LC & τMv = {(m, vv) | |= C ∧ (m, vv) ∈ LτMv}

Figure 37: Relational interpretation of relational types
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Third, the interpretation of τ1
CP(t)−−−→ τ2 relates a function bivalue

that, given related arguments at j < m steps, return related compu-
tations (in the expression relation LτMtε discussed below) at step-index
j. In addition, the function bivalue is in the relational unary interpre-

tation of |τ1|
FS(∞)−−−−→ |τ2|. The latter allows any function bivalue to be

used in a unary context with the weakest cost bound ∞. In essence, we
can semantically show that the relational judgment ∆;Φ; Γ `CP e : τ | t

entails the unary judgment ∆;Φ; |Γ | `FS e : |τ| | ∞.
We interpret open biexpressions under related substitutions, δ. We

write (m, δ) ∈ GLΓM to mean that δ maps all the variables in the do-
main of the environment Γ to appropriately-typed semantic relational
bivalues for m steps.

GL·M = {(m, ∅)}
GLΓ , x : τM = {(m, δ[x 7→ vv]) | (m, δ) ∈ GLΓM ∧ (m, vv) ∈ LτMv}

9.3.2 Relational interpretation of unary types

Next, we explain how $A%v is defined. Intuitively, $A%v contains bi-
values that have not changed at the top-level, i. e. are not new(v, v ′).
Hence, once eliminated, bivalues in $A%v don’t trigger a switch to
from-scratch execution, but may be change propagated further.

First, the interpretation of $A%v does not contain any new(v, v ′) bi-
values at the top level. However, inner parts of the bivalue may contain
new(v, v ′) bivalues. For instance, for pairs (vv1, vv2) that are in the rela-
tional interpretation of $A1 × A2%v, left and right projections must be
related at LUA1Mv and LUA2Mv, respectively. We need to wrap the inner
types A1 and A2 with unrelated types and call out to the relational
interpretation since the projections vvi themselves might be new(v, v ′).

In other words, the relational interpretation of unary types $A%v
may refer to the relational interpretation of relational types LUA ′Mv
for some smaller A ′. Still, by unrolling the definitions of LUA ′Mv in
the definition of $A%v, it can be shown that $A%v is well-founded.

Second, the interpretation of A1
FS(t)−−−→ A2 relates a function bivalue

that, given possibly unrelated arguments related at LUA1Mv at j < m

steps, returns possibly unrelated computations (in the expression re-
lation LUA2Mtε discussed below) at step-index j.35 This is needed be- 35 Notice that there is

no expression relation
corresponding to the
value relation $A%v.
Instead, it refers to
the expression
relation LUAM·ε

cause we may change propagate through the body of a function even
if that body was typed in FS-mode. It also allows us to show that
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$A%v ⊆ Step index× Bi-value

$int%v = {(m, keep(n))}

$unit%v = {(m, ())}

$A1 × A2%v = {(m, 〈vv1, vv2〉) | (m, vv1) ∈ LUA1Mv ∧

(m, vv2) ∈ LUA2Mv}

$A1 +A2%v = {(m, inl vv) | (m, vv) ∈ LUA1Mv} ∪
{(m, inr vv) | (m, vv) ∈ LUA2Mv}

$list[0]A%v = {(m, nil)}

$list[n+1]A%v = {(m, cons(vv1, vv2)) | ((m, vv1) ∈ LUAMv ∧

(m, vv2) ∈ LU (list[n]A)Mv)}

$A1 FS(t)−−−→ A2%v = {(m, fix f(x).ee) | (∀j < m. ∀vv. (j, vv) ∈ LUA1Mv

=⇒ (j, ee[vv/x, fix f(x).ee/f]) ∈ LUA2Mtε) ∧

(∀j. (j, L(fix f(x).ee)) ∈ JA1
FS(t)−−−→ A2Kv ∧

(j, R(fix f(x).ee)) ∈ JA1
FS(t)−−−→ A2Kv)}

$∀i FS(t)
:: S.A%v = {(m,Λ.ee) | ∀I. ` I :: S. ((m, ee) ∈ LU (A{I/i})Mt[I/i]ε ) ∧

(∀j.(j, L(ee)) ∈ JA{I/i}Ktε ∧ (j, R(ee)) ∈ JA{I/i}Ktε)}

$∃i::S.A%v = {(m, pack vv) | ∃I. ` I :: S ∧ (m, vv) ∈ LU (A{I/t})Mv}

$C ⊃ A%v = {(m, vv) | 6|= C ∨ (m, vv) ∈ LUAMv}

$C & A%v = {(m, vv) | |= C ∧ (m, vv) ∈ LUAMv}

Figure 38: Relational interpretation of DuCostIt’s unary types
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the unary judgment ∆;Φ;Ω `FS e : A | t entails the relational judgment
∆;Φ;UΩ `CP e : UA | t semantically.

In addition, the left and right projections of the function bivalue are

in the unary interpretation of A1
FS(t)−−−→ A2 for any step-index j.

Notice that in $A%v, we never refer to any expression relation at
type A ′, but only at type UA ′ (where A ′ is smaller than A). Hence,
there is no need to define a corresponding relational expression relation.
Instead, based on the relational interpretation of relational types, we
have the expression interpretation LτMtε , defining when a biexpression
(the initial expression and the updated one) is logically related at type
τ with change-propagation cost t. It consists of a set of pairs of the
form (m, ee) and ensures that change propagating ee (using the rules
of y) cost no more than t.

LτMtε = {(m, ee) | ∀v, v ′,D,D ′, f, f ′.

L(ee) ⇓f 〈v,D〉 ∧ R(ee) ⇓f ′ 〈v ′,D ′〉 ∧ f < m

⇒ ∃ vv ′, c ′ such that
1. 〈〈v,D〉, ee〉yvv ′, 〈v ′,D ′〉, c ′
2. v ′ = R(vv ′) ∧ v = L(vv ′)
3. c ′ 6 t
4. (m− f, vv ′) ∈ LτMv}

The definition states that if the left and right projections of the biexpres-
sion ee evaluate to values v and v ′ with derivations D and D ′ and in
f and f ′ steps, respectively, and f < m, then we can change propagate
ee with cost c ′ and obtain an updated bivalue vv ′ specifying how the
initial output v is modified to v ′. More importantly, we know that t is
an upper bound on the change propagation cost of ee, i.e., c ′ 6 t and
the resulting bivalue vv ′ is related at step-index m− f.

9.4 ducostit’s soundness (relational)

We prove DuCostIt’s type system sound with respect to the abstract
evaluation and change propagation semantics. We show that the costs
t estimated by expression typing for relational judgment are upper
bounds on the costs of change propagation, respectively.

Theorem 8 (Fundamental Theorem for DuCostIt’s Relational Typing).
Assume that ∆;Φa; Γ `CP e : τ | t and σ ∈ DJ∆K and |= σΦ and (m, δ) ∈
GLσΓM. Then, (m, δe) ∈ LστMσtε .
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Proof. Proof is by induction on the typing derivation (shown in Ap-
pendix B.2)

An immediate corollary of the theorem is that update costs estab-
lished in the type system are upper bounds on the cost of change prop-
agation. For readability, we only state the theorem with a single input
x, but generalized versions with any number of inputs hold as well.

Corollary 9 (Soundness for change propagation). Suppose that

• x : τ `CP e : τ
′ | t

• ` vv� τ

• e[L(vv)/x] ⇓f T
• e[R(vv)/x] ⇓f ′ T ′

Then the following hold for some vv ′ and c ′:

1. 〈T , peq[vv/x]〉 y vv ′, T ′, c ′

2. c ′ 6 t.

Finally, we prove that, semantically, a) relational typing is a refine-
ment of unary typing with the weakest bound ∞ on the from-scratch
execution cost and b) the unary judgment entails the relational judg-
ment at the weakest relation.

Theorem 10 (Fundamental Theorem for DuCostIt’s Weak Relational
Typing). Assume that ∆;Φa; Γ `CP e : τ | t and σ ∈ DJ∆K and |= σΦ and
(m,γ) ∈ GJ|σΓ |K, then (m,γe) ∈ J|στ|K∞ε .

Proof. Proof is by induction on the typing derivation (shown in Ap-
pendix B.2).

Theorem 11 (Fundamental Theorem for DuCostIt’s Weak Entailment).
Assume that ∆;Φa;Ω `FS e : A | t and σ ∈ DJ∆K and |= σΦ and (m, δ) ∈
GJUσΩK, then (m, δe) ∈ LUσAMσtε .

Proof. Proof is by induction on the typing derivation (shown in Ap-
pendix B.2).
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R E L AT E D W O R K : D Y N A M I C S TA B I L I T Y

In this chapter, we review related work on incremental computation
and provide a detailed comparison to our work on the first version
of DuCostIt, a homonymous system [35] which we refer to as DuCostIt0.
Then, we discuss related work in the context of program (input-output)
sensitivity.

10.1 incremental computation

There is a vast amount of literature on incremental computation, rang-
ing from algorithmic techniques like memoization [59, 75], and language-
based approaches using dynamic dependence graphs [5, 29, 32], to
static techniques like finite differencing [26, 66, 84].

language-based techniques To speed up incremental runs, ap-
proaches based on dynamic dependency graphs store intermediate re-
sults from the initial run. A prominent language-based technique that
uses this approach is self-adjusting computations (AFL) [5], which has
been subsequently expanded to Standard ML [6] and a dialect of C [55].
Our change propagation semantics is mainly inspired by AFL.

Previous work by Chen et al. [32, 33] automatically translates purely
functional programs to their incremental counterparts. However, Chen
et al. only show that the initial run of the translated program is no
slower (asymptotically) than the source program. They do not analyze
costs for incremental runs. In contrast, we show that both incremental
and from-scratch costs of translated programs are bounded by those es-
timated by our type system. (Chen et al.’s type system does not provide
cost bounds.)

In general, in all prior work on incremental computation the effi-
ciency of incremental updates is established either by empirical analy-
sis of benchmark programs, algorithmic analysis or direct analysis of
cost semantics [73]. My prior work CostIt [34] was the first proposal for
statically analyzing dynamic stability. DuCostIt directly builds on CostIt,
as well as DuCostIt0, but our type system is richer: CostIt cannot type
programs in which fresh closures may execute in the incremental runs.
DuCostIt does away with this restriction by introducing a second typ-
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ing mode that analyzes from-scratch execution costs. This requires a re-
design of the type system and substantially complicates the metatheory.
(DuCostIt uses both a binary and a unary logical relation, while CostIt
needs only the former, and it allows the analysis of many programs
that CostIt cannot handle.)

finite differencing Approaches based on static transformations
extract program derivatives, which can be executed in place of the orig-
inal programs with only the updated inputs to produce updated re-
sults [26, 84]. Such techniques make use of the algebraic properties of a
set of primitives and restrict the programmer to only those primitives.
In contrast to these approaches, our change propagation semantics is
based on dynamic dependence graphs and our static analysis only es-
tablishes the cost of incremental runs.

10.2 comparison to ducostit0

DuCostIt presented in this thesis is partly based on my homonymous
system DuCostIt0 [35]. However, both the design of DuCostIt’s type sys-
tem as well as its semantic model differ significantly from DuCostIt0.

Unary types A : := int | A1 × A2 | A1 + A2

| list[n] A | A1
FS(t)−−−→ A2 | · · ·

Relational types τ : := intr | τ1 × τ2 | τ1 + τ2

| list[n]α τ | τ1
CP(t)−−−→ τ2 | · · ·

Unannot. types A : := int | τ1 × τ2 | τ1 + τ2 | list[n]α τ |

τ1
S(t)−−→ τ2 | τ1

C(t)−−→ τ2 | · · ·
Types τ : := (A)S | (A)C | � τ

Figure 39: Types of DuCostIt and DuCostIt0

The main source of the discrepancy between DuCostIt and DuCostIt0

is their type grammar. While DuCostIt’s type grammar is designed to
be two layered, where types are syntactically separated into unary and
relational types based on the typing mode CP/FS, DuCostIt0’s type
grammar is not. Instead, DuCostIt0’s type grammar is uniform and is
based on annotated types. Annotated types are often used in type sys-
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tems for dependency analysis. For instance, in information-flow control
analysis, by annotating types with high (changeable) and low (stable)
labels, information flow from high to low values can be tracked and
forbidden. Motivated by such annotations, DuCostIt0 has two kinds of
annotated types: (A)S specifies those values of type A that will not
change in the second execution (S is read “stable”) whereas (A)C speci-
fies all values of type A (C is read “potentially changeable”). Although
the type grammars might not seem like a big change, its ramifications
are significant in the design of DuCostIt’s type system as well as the
semantic model.

Compared to annotated types of DuCostIt0, the two-layered type gram-
mar of DuCostIt has two advantages. First, two-layered types simplify
the rules of the type system considerably. In DuCostIt0, every type con-
structor has three elimination rules, one for use in unary reasoning and
two for use in relational reasoning. In contrast, our type system has
only two elimination rules for every type constructor, one for unary
reasoning and the other for relational reasoning. Second, the separa-
tion reflects the unary and relational semantic interpretations syntacti-
cally. In contrast, in DuCostIt0, the separation exists only in the model,
with the unpleasant consequence that relational refinements like α in
(list[n]α τ) as well as all changeability annotations that are meaningless
in unary reasoning must nonetheless be carried through unary typing
derivations.

10.3 continuity and program sensitivity

Program sensitivity/continuity analysis aims to establish how changes
to inputs of a program affect the changes to its outputs. Such an anal-
ysis can be used to verify robustness properties in the context of em-
bedded systems or continuity properties in the context of differential
privacy. Although closely related to our work in concept, the end-goal
in such analysis is more restricted compared to dynamic stability analy-
sis. (Program continuity does not account for dynamic stability) DuCos-
tIt also proves a limited form of program continuity, as an intermediate
step in establishing dynamic stability. We discuss two lines of work that
are related to our work.

Reed and Pierce present a linear type system called Fuzz for proving
continuity [94], as an intermediate step in verifying differential privacy
properties. Gaboardi et al. extend Fuzz with lightweight dependent
types in a type system called DFuzz [51]. DFuzz’s syntax and use of
lightweight dependent types influenced our work significantly. A tech-
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nical difference from DFuzz (and Fuzz) is that our types capture where
two values differ whereas in DFuzz, the “distance” between related val-
ues is not explicit in the type, but only in the relational model. As a re-
sult, DuCostIt’s type system does not need linearity, which DFuzz does.
Unlike DuCostIt and DFuzz, Chaudhuri et al.’s static analysis can prove
program continuity even with control flow changes as long as pertur-
bations to the input result in branches that are close to each other [31].
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B I D I R E C T I O N A L R E L AT I O N A L C O S T A N A LY S I S

I synopsis The goal of this chapter is to investigate issues in im-
plementing a type and effect system for relational cost analysis. Specifi-
cally, we present the theory and implementation of a bidirectional type
system for RelCost. At the end of Chapter 13, we explain how a similar
development can be carried out for DuCostIt as well.

The key insight behind RelCost is that while the relative cost of two
programs can be established naively by establishing the worst-case cost
of one program, the best-case cost of the other program and taking their
difference, this kind of a unary analysis is often imprecise and unnec-
essarily difficult, since it exploits neither the similarities between the
two programs, nor the relation between their inputs. Accordingly, Rel-
Cost is a relational type system wherein programs are analyzed in syn-
chrony and one falls back to the unary worst-case, best-case analysis
only when the programs differ substantially in structure. Importantly,
during the relational phase of the analysis, the cost established is also
relative, which simplifies recurrence relations for cost in many cases
and improves precision. Since costs usually depend on sizes of inputs,
RelCost supports type refinements to track the sizes of data structures
such as lists. To improve precision further, RelCost allows exploiting
relations between corresponding values in the two programs. To this
end, RelCost includes two modal refinement types (� τ and U A) that
represent different relations (the diagonal relation and the trivial rela-
tion) on values as well as a relational list refinement that describes the
number of places at which two related lists may differ. The subtyping
rules corresponding to these relational refinements are nontrivial; in
particular, subtyping is dependent on refinement constraints.

At first glance, it is unclear how such an expressive combination of
relational effects, refinement types (including relational refinements),
constraint-dependent subtyping, and the simultaneous combination of
unary and relational typing judgments can be implemented. In this
chapter, we show that, despite its rich set of features, RelCost can be
implemented algorithmically and, more specifically, it can be imple-
mented in a bidirectional style.

First, we introduce bidirectional typechecking and then discuss the
challenges in designing a bidirectional type system for RelCost.

113



114 bidirectional relational cost analysis

11.1 bidirectional typechecking

Bidirectional type checking is a well-established method for implement-
ing type systems, wherein for every sub-expression, either a type is
synthesized (inferred) or a given type is checked [91]. The advantage
of bidirectional type checking is that it minimizes typing annotations;
in most cases, type annotations are needed only on recursive functions
and at explicit β-redexes. Our motivation for choosing this style is
three-fold. First, bidirectional type systems can be formally described
using rules that resemble standard typing rules; this simplifies proofs
of soundness and completeness of the algorithmic implementation rel-
ative to the declarative type system. Second, it is known from prior
work that bidirectional type checking is compatible with refinement
types [44, 47, 106] and with subtyping [91], which are central to RelCost.
Third, bidirectional typechecking has never been applied to relational
typing and only rarely to type and effect systems [101], so a key mo-
tivation behind our development of the bidirectional type system for
RelCost was to understand the interaction between bidirectionality and
relational type effects.

bidirectional typechecking for relcost In designing and
implementing the bidirectional type system, which we call BiRelCost,
we discovered and addressed three main challenges.

1. Non-syntax-directed typing rules: As mentioned above, RelCost,
like some other relational type systems, allows the relational rea-
soning to fall back to unary reasoning when the two programs
being analyzed are dissimilar. However, the rule for switching to
unary reasoning (switch rule in Figure 10) is not syntax-directed,
since the optimal place to switch to unary reasoning depends
on the specific programs being analyzed. Another example of
a non-syntax-directed rule is one that allows splitting cases on
the constraints (r-split rule in Figure 8). An implementation must
manage this nondeterminism in the rules.

2. Relational subtyping rules: Central to the relational analysis are
the relational refinements mentioned above. The subtyping rules
for these refinements are not directed by the syntax of types and,
in particular, transitivity of subtyping in inadmissible. Again, an
implementation must somehow handle the subtyping rules.

3. Polarity of effects: As mentioned above, the type of every subex-
pression is either synthesized or checked in a bidirectional type
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system. It is not clear upfront how this would generalize to the
synthesis and checking of effects. As it turns out, the polarity
of the type and the effect align with each other: we synthesize
(check) the effect when we synthesize (check) the type. However,
it is also possible to infer the effect in the checking mode with
some additional constraints. We comment on this alternative de-
sign in Section 13.3.

To overcome these challenges, we follow a two-pronged approach.
On the implementation-side, we use several example-guided heuristics

to resolve the nondeterminism in applying the typing and subtyping
rules. We explain these heuristics and their effectiveness on examples.
As expected, our heuristics are sound but incomplete. Nonetheless,
they are sufficient for checking a variety of examples we considered,
and we believe that the heuristics are quite effective. We support this
claim by a case study and experimental evaluation in Section 14.4.

On the theory-side, our approach is more nuanced. We show that,
modulo the nondeterminism, the bidirectional type checking loses no
expressiveness, meaning that every program that can be typed in Rel-
Cost could also have been sufficiently annotated to resolve only the
nondeterminism and then checked bidirectionally at the same type. To
establish this, we follow an unusual approach. We first show that every
well-typed RelCost program can be translated to a well-typed program
in a core language, RelCost Core. This translation is type derivation-
directed; it introduces annotations to resolve the nondeterminism in
applying the typing rules and does away with relational subtyping, by
replacing all instances of relational subtyping with explicit coercions
(specifically, we prove that if τ is a subtype of τ ′ in RelCost, then there
is a function of type τ→ τ ′ in RelCost Core). Next, we develop the bidi-
rectional type system, BiRelCost, for RelCost Core and prove it sound
and complete w.r.t. RelCost Core’s type system. It follows that every ty-
peable RelCost program can be annotated to remove nondeterminism,
and then bidirectionally type-checked.

Our implementation handles the two steps from RelCost to RelCost
Core and from RelCost Core to BiRelCost simultaneously. It uses the
aforementioned heuristics to implement the first step, and the bidi-
rectional rules for the second. During both type checking and type
synthesis, constraints are generated. As in prior work on DML [105,
106], these constraints capture arithmetic relationships between refine-
ments (e.g., list sizes) of various subterms but, additionally, they also
capture relational refinements and relationships between their unary
and relative costs. We use SMT solvers to discharge these constraints.
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However, this cannot be done immediately since the constraints contain
existentially quantified variables over integers and reals, which cannot
be eliminated by existing SMT solvers. Therefore, we design our own
algorithm to eliminate existential variables by finding substitutions for
them.
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E M B E D D I N G RELCOST I N T O RELCOST CORE

12.1 the need for an embedding

Before we delve into details of the embedding of RelCost into RelCost
Core, we revisit which aspects of RelCost’s type system make it hard to
algorithmize. We highlight some of these aspects below.

Non-syntax-directed rules: The typing rules switch, r-split, r-contra and
nochange in RelCost are not syntax-directed. Hence, these rules
introduce nondeterminism in an implementation.

Two ways to type “cons” construct: There are two typing rules for con-
structing non-empty lists in RelCost: the rule r-cons1 applies when
the heads of the two related lists may differ and the rule r-cons2
applies when the heads may not differ. Hence, the typing of the
cons construct is context-specific.

List-case branch is typed twice: In the list case analysis rule, r-caseL, the
cons case branch is typed twice in the premises, to account for the
aforementioned two introduction rules. Hence, the branch must
be typed in a non-syntax-directed manner. A consequence of this
double-typing of the branch is that, in RelCost, index terms cannot
appear in expressions (since the two typings of a cons-branch
may instantiate universally quantified index variables differently).
This makes typechecking harder.

Subtyping with � τ and (UA): It is unclear how to implement the
trans rule of the relational subtyping rules of RelCost (Figures 13
and 14). The usual solution would be to prove that transitivity
is admissible among the remaining rules. However, it is unclear
how to prove the admissibility of transitivity in the presence of
the comonadic type � τ and the modality UA, whose subtyping
rules interact with the other connectives in nontrivial ways.

All these difficulties, with the exception of those due to the rules
r-split and r-contra, are a consequence of the presence of either rela-
tional refinements or relational effects. Consequently, they do not arise
in other unary type and effect systems. In particular, the difficulty with
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transitivity is specific to the relational subtyping; in unary subtyping,
transitivity is admissible and poses no difficulty.

To address these difficulties, we give an embedding of RelCost into an
intermediate language we call RelCost Core that has only type-directed
rules and no relational subtyping. The goal of this embedding is to
show that there is a language (RelCost Core) that is as expressive as
RelCost and that is also amenable to a complete bidirectional typing
procedure. RelCost Core has explicit syntactic markers to indicate which
typing rules to apply where, thus resolving the nondeterminism in the
first two points above. Additionally, RelCost Core’s list case construct
has two separate branches for the two typings of the cons case, thus al-
lowing RelCost Core to include instantiations of universally quantified
parameters explicitly in expressions. This resolves the difficulty men-
tioned in the third point above. Finally, we address the fourth point
by replacing all occurrences of relational subtyping with explicit coer-
cion functions (that we show to exist) in the embedding. Elimination
of subtyping is a common technique for simplifying typechecking [24,
37]. However, as explained below, RelCost’s subtyping is constraint-
dependent, so extra care is needed when dealing with index terms
appearing in the types.

We prove that our embedding is complete, in the sense that every
well-typed RelCost program can be embedded into a well-typed RelCost
Core program (Theorem 57).

12.2 relcost core type system

syntax of relcost core The expression syntax of RelCost Core
is an extension of RelCost’s syntax with several additional syntactic con-
structs. Each syntactic construct is a specific marker specifying how the
nondeterminism in RelCost’s typing rules is resolved.

The construct “switch e” marks the use of switch rule that switches
to the unary reasoning whereas the construct “NC e” marks the use
of the nochange rule. The construct “split (e1, e2) with C” records
the constraint C that is used to case analyze the index domain (rule
r-split). The construct “contra e” is used to make contradiction in the
constraint domain explicit (rule r-contra). In addition, we add index
terms to expressions. For instance, the elimination form for universally
quantified types in RelCost Core is “e[I]” as opposed to RelCost’s “e[ ] ”.
The list constructor “cons” in RelCost is duplicated in RelCost Core as
“consC” and “consNC” corresponding to the two rules r-cons1 and r-
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cons2. The list case construct has two separate branches for these two
cons cases.

Expression e ::= · · · | switch e | NC e | split (e1, e2) with C |

contra e | der e | Λ.i.e | e[I] | pack e with I |

unpack e1 as (x, i) in e2 | consNC(e1, e2) |

consC(e1, e2) |
(

case e of nil → e1
| h ::NC tl → e2 | h ::C tl → e3

)

relcost core typing rules Like RelCost, there are two typing
judgments in RelCost Core: ∆;Φa;Ω `tk e :ccc A for unary typing and
∆;Φa; Γ ` e1 	 e2 . t :ccc τ for relational typing. These two judgments
are distinguished from their RelCost counterparts by the superscript c
in :c. RelCost Core’s typing rules are shown in Figures 40 to 42. Most of
RelCost Core’s unary and relational typing rules mimic RelCost’s. How-
ever, there are two key differences.

First, the RelCost rules nochange, switch, r-contra, r-split, r-cons1
and r-cons2 are not syntax-directed. The corresponding RelCost Core
rules c-nochange, c-switch, c-r-contra, c-r-split, c-r-cons1 and c-r-cons2
are distinguished from the their respective counterparts in RelCost by
the syntactic markers NC ·, switch ·, contra , split · with C, consC and
consNC.

Second, there is no relational subtyping in RelCost Core (RelCost’s
unary subtyping is retained in RelCost Core, since it poses no difficulty
for algorithmization). Instead, there is equivalence checking for rela-
tional types, written ≡≡≡ (rule c-r-≡≡≡). Equivalence is a very simple re-
lation. It only lifts equality modulo constraints to types (e.g., list[1 +
2]α τ ≡≡≡ list[3]α τ) and it can be easily implemented algorithmically
(modulo constraint solving). Type equivalence rules are shown in Fig-
ure 43. In particular, equivalence at � - and U-annotated types is very
straightforward (rules eq-B-� and eq-U for � - and U-annotated types,
respectively in Figure 43).

simulating relational subtyping with coercions In the
embedding of RelCost into RelCost Core, we replace all occurrences of
relational subtyping with explicit coercion functions in RelCost Core. To
do this, we have to show that if τ v τ ′ in RelCost, then there is a coer-
cion function of type τ→ τ ′ in RelCost Core. To handle cases with � , we
add one additional syntactic construct, der e, and a corresponding typ-
ing rule, c-der, to RelCost Core (shown in Figure 40). This typing rule
corresponds to the coercion � τ → τ. Using this rule and the simple
type equivalence ≡≡≡, we show that all subtyping rules of RelCost can be



120 embedding relcost into relcost core

∆;Φa; Γ ` e1 	 e2 . t :ccc τ Relative cost of e1 with respect to e2 is up-
per bounded by t and the two RelCost Core expressions have relational
type τ.

∆;Φa; Γ ` e1 	 e2 . t :ccc � τ
∆;Φa; Γ ` der e1 	 der e2 . t :ccc τ

c-der

∆;Φa;� Γ ` e	 e . t :ccc τ
∆;Φa;� Γ , Γ ′ ` NC e	 NC e . 0 :ccc � τ c-nochange

∆;Φa; |Γ |1 `t1k1 e1 :
ccc A1 ∆;Φa; |Γ |2 `t2k2 e2 :

ccc A2

∆;Φa; Γ ` switch e1 	 switch e2 . t1 − k2 :ccc U (A1,A2)
c-switch

∆;Φa ∧C; Γ ` e1 	 e2 . t :ccc τ ∆;Φa ∧¬C; Γ ` e ′1 	 e ′2 . t :ccc τ
∆;Φa; Γ ` split (e1, e ′1) with C	 split (e2, e ′2) with C . t :ccc τ c-r-split

∆;Φa |= ⊥ ∆;Φa ` Γ wf

∆;Φa; Γ ` contra e1 	 contra e2 . t :ccc τ
c-r-contra

∆;Φa; Γ ` e	 e ′ . t :ccc τ ∆;Φa |= τ ≡ τ ′
∆;Φa |= t6 t ′

∆;Φa; Γ ` e	 e ′ . t ′ :ccc τ ′ c-r-≡≡≡

∆;Φa; Γ ` n	 n . 0 :ccc intr
c-r-const

Γ(x) = τ

∆;Φa; Γ ` x	 x . 0 :ccc τ c-r-var

∆;Φa; Γ ` ()	 () . 0 :ccc unitr
c-r-unit

∆;Φa; Γ ` e	 e ′ . t :ccc τ1 ∆;Φa ` τ2 wf
∆;Φa; Γ ` inl e	 inl e ′ . t :ccc τ1 + τ2

c-r-inl

∆;Φa; Γ ` e	 e ′ . t :ccc τ2 ∆;Φa ` τ1 wf
∆;Φa; Γ ` inr e	 inr e ′ . t :ccc τ1 + τ2

c-r-inr

∆;Φa; Γ ` e	 e ′ . t :ccc τ1 + τ2
∆;Φa; x : τ1, Γ ` e1 	 e ′1 . t ′ :ccc τ ∆;Φa;y : τ2, Γ ` e2 	 e ′2 . t ′ :ccc τ
∆;Φa; Γ ` case (e, x.e1,y.e2)	 case (e ′, x.e ′1,y.e ′2) . t+ t ′ :ccc τ

c-r-case

∆;Φa ` τ1
diff(t)−−−→ τ2 wf

∆;Φa; x : τ1, f : τ1
diff(t)−−−→ τ2, Γ ` e1 	 e2 . t :ccc τ2

∆;Φa; Γ ` fix f(x).e1 	 fix f(x).e2 . 0 :ccc τ1
diff(t)−−−→ τ2

c-r-fix

Figure 40: RelCost Core relational typing rules (Part 1)
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∆;Φa; Γ ` e1 	 e2 . t : τ Relative cost of e1 with respect to e2 is
upper bounded by t and the two expressions have relational type τ.

∆;Φa ` τ1
diff(t)−−−→ τ2 wf

∆;Φa; x : τ1, f : � (τ1
diff(t)−−−→ τ2),� Γ ` e	 e . t :ccc τ2

∆;Φa;� Γ ` fixNC f(x).e	 fixNC f(x).e . 0 :ccc � (τ1
diff(t)−−−→ τ2)

c-r-fixNC

∆;Φa; Γ ` e1 	 e ′1 . t1 :ccc τ1
diff(t)−−−→ τ2

∆;Φa; Γ ` e2 	 e ′2 . t2 :ccc τ1
∆;Φa; Γ ` e1 e2 	 e ′1 e ′2 . t1 + t2 + t :ccc τ2

c-r-app

∆;Φa; Γ ` e1 	 e ′1 . t1 :ccc τ1 ∆;Φa; Γ ` e2 	 e ′2 . t2 :ccc τ2
∆;Φa; Γ ` 〈e1, e2〉 	 〈e ′1, e ′2〉 . t1 + t2 :ccc τ1 × τ2

c-r-prod

∆;Φa; Γ ` e	 e ′ . t :ccc τ1 × τ2 i ∈ {1, 2}
∆;Φa; Γ ` πi(e)	 πi(e ′) . t :ccc τi

c-r-proji

∆;Φa ` τ wf
∆;Φa; Γ ` nil 	 nil . 0 :ccc list[0]α τ

c-r-nil

∆;Φa; Γ ` e1 	 e ′1 . t1 :ccc τ ∆;Φa; Γ ` e2 	 e ′2 . t2 :ccc list[n]α τ

∆;Φa; Γ ` consC(e1, e2)	 consC(e ′1, e
′
2) . t1 + t2 :ccc list[n+ 1]α+1 τ

c-r-cons1

∆;Φa; Γ ` e1 	 e ′1 . t1 :ccc � τ ∆;Φa; Γ ` e2 	 e ′2 . t2 :ccc list[n]α τ
∆;Φa; Γ ` consNC(e1, e2)	 consNC(e ′1, e

′
2) . t1 + t2 :ccc list[n+ 1]α τ

c-r-cons2

∆;Φa; Γ ` e	 e ′ . t :ccc list[n]α τ
∆;Φa ∧n = 0; Γ ` e1 	 e ′1 . t ′ :ccc τ ′

i,∆;Φa ∧n = i+ 1;h : � τ, tl : list[i]α τ, Γ ` e2 	 e ′2 . t ′ :ccc τ ′
i,β,∆;Φa ∧n = i+ 1∧α = β+ 1;h ′ : τ, tl : list[i]β τ, Γ ` e3 	 e ′3 . t ′ :ccc τ ′

∆;Φa; Γ `
case e of nil → e1

| h ::N tl → e2
| h ′ ::C tl

′ → e3

	
case e of nil → e ′1

| h ::N tl → e ′2
| h ′ ::C tl

′ → e ′3

. t+ t ′ :ccc τ ′
c-r-caseL

i :: S,∆;Φa; Γ ` e	 e ′ . t :ccc τ i 6∈ FIV(Φa; Γ)

∆;Φa; Γ ` Λi.e	Λi.e ′ . 0 :ccc ∀i
diff(t)
:: S. τ

c-r-iLam

∆;Φa; Γ ` e	 e ′ . t :ccc ∀i
diff(t ′)
:: S. τ ∆ ` I : S

∆;Φa; Γ ` e[I]	 e ′[I] . t+ t ′[I/i] :ccc τ{I/i} c-r-iApp

∆;Φa; Γ ` e	 e ′ . t :ccc τ{I/i} ∆ ` I :: S
∆;Φa; Γ ` pack e with I	 pack e ′ with I . t :ccc ∃i::S. τ

c-r-pack

∆;Φa; Γ ` e1 	 e ′1 . t1 :ccc ∃i::S. τ1
i :: S,∆;Φa; x : τ1, Γ ` e2 	 e ′2 . t2 :ccc τ2 i 6∈ FV(Φa; Γ , τ2, t2)

∆;Φa; Γ ` unpack e1 as (x, i) in e2 	 unpack e ′1 as (x, i) in e ′2 . t1 + t2 :ccc τ2
c-r-unpack

Υ(ζ) = τ1
diff(t)−−−→ τ2 ∆;Φa; Γ ` e	 e ′ . t ′ :ccc τ1

∆;Φa; Γ ` ζ e	 ζ e ′ . t+ t ′ :ccc τ2
c-r-primapp

Figure 41: RelCost Core relational typing rules (Part 2)
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∆;Φa; Γ ` e1 	 e2 . t :ccc τ Relative cost of e1 with respect to e2 is
upper bounded by t and the two expressions have relational type τ.

∆;Φa |= C ∆;Φa ∧C; Γ ` e	 e ′ . t :ccc τ
∆;Φa; Γ ` e	 e ′ . t :ccc C & τ

c-r-candI

∆;Φa; Γ ` e1 	 e ′1 . t1 :ccc C & τ1
∆;Φa ∧C; x : τ1, Γ ` e2 	 e ′2 . t2 :ccc τ2

∆;Φa; Γ ` clet e1 as x in e2 	 clet e ′1 as x in e ′2 . t1 + t2 :ccc τ2
c-r-candE

∆;Φa ∧C; Γ ` e	 e ′ . t :ccc τ
∆;Φa; Γ ` e	 e ′ . t :ccc C ⊃ τ c-r-cimpI

∆;Φa; Γ ` e	 e ′ . t :ccc C ⊃ τ ∆;Φa |= C

∆;Φa; Γ ` celim⊃ e	 celim⊃ e ′ . t :ccc τ
c-r-cimplE

∆;Φa; Γ ` e1 	 e ′1 . t1 :ccc τ1 ∆;Φa; x : τ1, Γ ` e2 	 e ′2 . t2 :ccc τ2
∆;Φa; Γ ` let x = e1 in e2 	 let x = e ′1 in e ′2 . t1 + t2 :ccc τ2

c-r-let

∆;Φa; |Γ |1 `t1k1 e1 :
ccc A1

∆;Φa; x : UA1, Γ ` e2 	 e . t2 :ccc τ2
∆;Φa; Γ ` let x = e1 in e2 	 e . t1 + t2 + clet :ccc τ2

c-r-let-e

∆;Φa; |Γ |2 `t1k1 e1 :
ccc A1

∆;Φa; x : UA1, Γ ` e	 e2 . t2 :ccc τ2
∆;Φa; Γ ` e	 let x = e1 in e2 . t2 − k1 − clet :ccc τ2

c-r-e-let

∆;Φa; |Γ |1 `t_ e :ccc A1 +A2
∆;Φa; x : UA1, Γ ` e1 	 e ′ . t ′ :ccc τ
∆;Φa;y : UA2, Γ ` e2 	 e ′ . t ′ :ccc τ

∆;Φa; Γ ` case (e, x.e1,y.e2)	 e ′ . t ′ + t+ ccase :ccc τ
c-r-case-e

∆;Φa; |Γ |2 `_
k ′ e

′ :ccc A1 +A2
∆;Φa; x : UA1, Γ ` e	 e ′1 . t :ccc τ
∆;Φa;y : UA2, Γ ` e	 e ′2 . t :ccc τ

∆;Φa; Γ ` e	 case (e ′, x.e ′1,y.e ′2) . t− k ′ − ccase :ccc τ
c-r-e-case

Figure 42: RelCost Core relational typing rules (Part 3)
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realized as coercion functions in RelCost Core. Importantly, the coercion
functions have zero relative cost, so applying the coercions (in place of
the subtyping) does not change the relative costs of the expressions.

Lemma 12 (Existence of coercions for relational subtyping). If ∆;Φa |=

τ v τ ′ then there exists coerceτ,τ ′ ∈ RelCost Core such that

∆;Φ; · ` coerceτ,τ ′ 	 coerceτ,τ ′ . 0 :ccc τ
diff(0)−−−→ τ ′.

We show the coercions for some of the subtyping rules of Figures 13
and 14 below.36 36 Lemma 48

in Appendix C
presents coercions for
all of the subtyping
rules.

• (Rule→ �diff) For τ = � (τ1
diff(t)−−−→ τ2) and τ ′ = � τ1

diff(0)−−−→ � τ2,
coerceτ,τ ′ = λx.λy.NC ((der x) (der y)).

• (Rule T) For τ = � τ ′, coerceτ,τ ′ = λx.der x.

• (Rule D) For τ = � τ1 and τ ′ = �� τ1, coerceτ,τ ′ = λx.NC x.

• (Rule r-l�) For τ = list[n]α� τ and τ ′ = � (list[n]α τ),
coerceτ,τ ′ = λx.fList () [n][α] x where fList is

fix fList(_).Λ.n.Λ.α.λx.
case e of nil → NC (nil)

| h ::N tl →let r = fList () [n− 1] [α] tl in
NC (consNC(der h, der r))

| h ::C tl →let r = fList () [n− 1] [α− 1] tl in
NC (consC(der h, der r)).

• (Rule r-→ execdiff) For τ = U (A1
exec(k,t)−−−−−→ A2,A ′1

exec(k ′,t ′)−−−−−−→ A ′2) and

τ ′ = U (A1,A ′1)
diff(t−k ′)−−−−−−→ U (A2,A ′2),

coerceτ,τ ′ = λx.λy.switch (x y).

• (Rule trans) For τ = τ1 and τ ′ = τ3,
Transitivity of subtyping corresponds to the composition of coer-
cion functions.
coerceτ1,τ3 = coerceτ2,τ3 ◦ coerceτ1,τ2

embedding Our embedding transforms a well-typed RelCost pro-
gram to a well-typed RelCost Core program and it is defined by induc-
tion on RelCost’s typing derivations.

The unary embedding judgment

∆;Φa;Ω `tk e e∗ : A
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∆;Φa |= τ1 ≡ τ2 checks whether τ1 is equivalent to τ2

∆;Φa |= intr ≡ intr
eq-int

∆;Φa |= unitr ≡ unitr
eq-unit

∆;Φa |= τ1 ≡ τ ′1 ∆;Φa |= τ2 ≡ τ ′2
∆;Φa |= t

.
= t ′

∆;Φa |= τ1
diff(t)−−−→ τ2 ≡ τ ′1

diff(t ′)−−−−→ τ ′2

eq-fun

∆;Φa |= τ1 ≡ τ ′1 ∆;Φa |= τ2 ≡ τ ′2
∆;Φa |= τ1 × τ2 ≡ τ ′1 × τ ′2

eq-prod

∆;Φa |= τ1 ≡ τ ′1 ∆;Φa |= τ2 ≡ τ ′2
∆;Φa |= τ1 + τ2 ≡ τ ′1 + τ ′2

eq-sum

∆;Φa |= n
.
= n ′ ∆;Φa |= α

.
= α ′

∆;Φa |= τ ≡ τ ′

∆;Φa |= list[n]α τ ≡ list[n ′]α
′
τ ′

eq-list

i,∆;Φa |= τ ≡ τ ′ i,∆;Φa |= t
.
= t ′

∆;Φa |= ∀i
diff(t)
:: S. τ ≡ ∀i

diff(t ′)
:: S. τ ′

eq-∀

i,∆;Φa |= τ ≡ τ ′ i 6∈ FV(Φa)
∆;Φa |= ∃i::S. τ ≡ ∃i::S. τ ′

eq-∃ ∆;Φa |= τ ≡ τ ′
∆;Φa |= � τ ≡ � τ ′eq-B-�

∆;Φa |=A A1 v A ′1
∆;Φa |=A A ′1 v A1 ∆;Φa |=A A2 v A ′2 ∆;Φa |=A A ′2 v A2

∆;Φa |= U (A1,A2) ≡ U (A ′1,A
′
2)

eq-U

∆;C∧Φa |= C ′ ∆;C ′ ∧Φa |= C ∆;Φa |= τ ≡ τ ′
∆;Φa |= C ⊃ τ ≡ C ′ ⊃ τ ′ eq-c-impl

∆;C ′ ∧Φa |= C ∆;C∧Φa |= C ′ ∆;Φa |= τ ≡ τ ′
∆;Φa |= C & τ ≡ C ′ & τ ′

eq-c-prod

Figure 43: RelCost Core binary type equivalence rules
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means that the RelCost expression e of type A with minimum and max-
imum costs k and t, respectively, translates to the RelCost Core expres-
sion e∗ of the same type and with the same minimum and maximum
costs. In essence, the unary embedding is trivial since most of the non-
determinism lies in the relational typing. Nonetheless, to have a uni-
form syntax for RelCost Core, a unary embedding is necessary to deal
with the syntactic markers introduced by the surrounding relational
expressions (e.g. the two cons branches in list case analysis). The rules
of the unary embedding are shown in Figures 44 and 45. 37 37 In e-u-cons rule,

there is a choice in
picking either the
consC or consNC
construct.

The relational embedding judgment

∆;Φa; Γ ` e1 	 e2  e∗1 	 e∗2 . t : τ

transforms a pair of (related) programs and means that the RelCost ex-
pressions e1 and e2 of relational type τ with relative costs t respectively
translate to the RelCost Core expressions e∗1 and e∗2 of the same rela-
tional type and with the same relative cost. The relational embedding
resolves the nondeterminism inherent in RelCost’s non-syntax directed
rules. The relational embedding rules are shown in Figures 46 to 49.

The rule e-switch adds the RelCost Core expression construct switch to
the transformed left and right expressions. The rule e-nochange coerces
all the free variables in the context Γ to their � -ed forms and then adds
the RelCost Core construct NC . The rule e-r-split adds the RelCost Core
construct split to the transformed left and right expressions with the
case-analyzed constraint C. The rule e-r-contra adds the RelCost Core
construct contra to the left and right expressions whenever there is a
contradiction in the constraint domain.

The rule e-r-caseL duplicates the cons case branch in the list-case
construct (with possibly different instantiations of universally quanti-
fied variables). The rules e-r-iLam and e-r-iApp add the index variable
and the index term, respectively to the corresponding introduction and
elimination forms of the universally quantified types. Conversely, the
rules e-r-pack and e-r-unpack add the index term and the index vari-
able, respectively to the corresponding introduction and elimination
forms of the existentially quantified types. The rule e-r-v transforms
uses of relational subtyping to the application of coercion functions.
The rest of the embedding rules is straightforward.

Our embedding preserves well-typedness and is complete, as formal-
ized in the following theorems.
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Theorem 13 (Types are preserved by embedding).

1. If ∆;Φa;Ω `tk e e∗ : A, then ∆;Φa;Ω `tk e∗ :ccc A and
∆;Φa;Ω `tk e : A.

2. If∆;Φa; Γ ` e1 	 e2  e∗1 	 e∗2 . t : τ, then∆;Φa; Γ ` e∗1 	 e∗2 . t :ccc τ
and
∆;Φa; Γ ` e1 	 e2 . t : τ.

Proof. By simultaneous induction on the given derivations (shown in
Appendix C.1).

Theorem 14 (Completeness of embedding).

1. If ∆;Φa;Ω `tk e : A, then there exists an e∗ such that
∆;Φa;Ω `tk e e∗ : A.

2. If ∆;Φa; Γ ` e1 	 e2 . t : τ, then there exist e∗1, e
∗
2 such that

∆;Φa; Γ ` e1 	 e2  e∗1 	 e∗2 . t : τ.

Proof. By simultaneous induction on the given RelCost derivations (shown
in Appendix C.1).
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∆;Φa;Ω `tk e e∗ : A Expression e is embedded into e∗ with the
unary type A and the minimum and maximum execution costs k and

t, respectively.

∆;Φa;Ω `00 n n : int
e-u-const

Ω(x) = A

∆;Φa;Ω `00 x x : A
e-u-var

∆;Φa;Ω `00 () () : unit
e-u-unit

∆;Φa;Ω `tk e e∗ : A1 ∆;Φa ` A2 wf
∆;Φa;Ω `tk inl e inl e∗ : A1 +A2

e-u-inl

∆;Φa;Ω `tk e e∗ : A2 ∆;Φa ` A1 wf
∆;Φa;Ω `tk inr e inr e∗ : A1 +A2

e-u-inr

∆;Φa;Ω `tk e e∗ : A1 +A2
∆;Φa; x : A1,Ω `t

′
k ′ e1  e1

∗ : A
∆;Φa;y : A2,Ω `t

′
k ′ e2  e2

∗ : A

∆;Φa;Ω `t+t ′+ccasek+k ′+ccase
case (e, x.e1,y.e2) case (e∗, x.e∗1,y.e∗2) : A

e-u-case

∆;Φa `A A1
exec(k,t)−−−−−→ A2 wf

∆;Φa; x : A1, f : A1
exec(k,t)−−−−−→ A2,Ω `tk e e∗ : A2

∆;Φa;Ω `00 fix f(x).e fix f(x).e∗ : A1
exec(k,t)−−−−−→ A2

e-u-fix

∆;Φa;Ω `t1k1 e1  e1
∗ : A1

exec(k,t)−−−−−→ A2

∆;Φa;Ω `t2k2 e2  e2
∗ : A1

∆;Φa;Ω `t1+t2+t+cappk1+k2+k+capp
e1 e2  e∗1 e

∗
2 : A2

e-u-app

∆;Φa;Ω `t1k1 e1  e1
∗ : A1 ∆;Φa;Ω `t2k2 e2  e2

∗ : A2

∆;Φa;Ω `t1+t2k1+k2
〈e1, e2〉 〈e∗1, e∗2〉 : A1 × A2

e-u-prod

∆;Φa;Ω ` t	 e t∗ 	 e∗ . k : A1 × A2 i ∈ {1, 2}
∆;Φa;Ω `tk πi(e) πi(e

∗) : Ai
e-u-proji

∆;Φa ` A wf

∆;Φa;Ω `00 nil  nil : list[0]A
e-u-nil

∆;Φa;Ω `k1t1 e1  e1
∗ : A ∆;Φa;Ω `k2t2 e2  e2

∗ : list[n]A

∆;Φa;Ω `t1+t2k1+k2
cons(e1, e2) consC(e∗1, e

∗
2) : list[n+ 1]A

e-u-cons

∆;Φa;Ω `tk e e∗ : list[n]A ∆;Φa ∧n = 0;Ω `t ′k ′ e1  e1
∗ : A ′

i,∆;Φa ∧n = i+ 1;h : A, tl : list[i]A,Ω `t ′k ′ e2  e2
∗ : A ′

∆;Φa;Ω `t+t ′+ccaseLk+k ′+ccaseL
case e of nil → e1
| h :: tl→ e2

 
case e∗ of nil → e∗1
| h ::NC tl → e∗2
| h ::C tl→ e∗2

: A ′
e-u-caseL

Figure 44: RelCost Core unary embedding rules (Part 1)
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∆;Φa;Ω `tk e e∗ : A Expression e is embedded into e∗ with the
unary type A and the minimum and maximum execution costs k and

t, respectively.

i :: S,∆;Φa;Ω `tk e e∗ : A i 6∈ FIV(Φa;Ω)

∆;Φa;Ω `00 Λ.e Λi.e∗ : ∀i
exec(k,t)

:: S.A
e-u-iLam

∆;Φa;Ω `tk e e∗ : ∀i
exec(k ′,t ′)

:: S.A ∆ ` I : S
∆;Φa;Ω `t+t

′[I/i]+ciApp
k+k ′[I/i]+ciApp

e[] e∗[I] : A{I/i}
e-u-iApp

∆;Φa;Ω `tk e e∗ : A{I/i} ∆ ` I :: S
∆;Φa;Ω `tk pack e pack e∗ with I : ∃i::S.A

e-u-pack

∆;Φa;Ω `t1k1 e1  e1
∗ : ∃i::S.A1

i :: S,∆;Φa; x : A1,Ω `t2k2 e2  e2
∗ : A2

i 6∈ FV(Φa;Ω,A2,k2, t2)

∆;Φa;Ω `t1+t2k1+k2+cunp
unpack e1 as x in e2  unpack e∗1 as (x, i) in e∗2 : A2

e-u-unpack

Υ(ζ) = A1
exec(k,t)−−−−−→ A2 ∆;Φa;Ω `t ′k ′ e e∗ : A1

∆;Φa;Ω `t+t
′+cprimapp

k+k ′+cprimapp
ζ e ζ e∗ : A2

e-u-primapp

∆;Φa |= C ∆;Φa ∧C;Ω `tk e e∗ : A

∆;Φa;Ω `tk e e∗ : C & A
e-u-andI

∆;Φa;Ω `t1k1 e1  e1
∗ : C & A1

∆;Φa ∧C; x : A1,Ω `t2ku e2  e2
∗ : A2

∆;Φa; Γ `t1+t2k1+k2
clet e1 as x in e2  clet e∗1 as x in e∗2 : A2

e-u-c-andE

∆;Φa ∧C;Ω `tk e e∗ : A

∆;Φa;Ω `tk e e∗ : C ⊃ A e-u-c-impI

∆;Φa;Ω `tk e e∗ : C ⊃ A ∆;Φa |= C

∆;Φa;Ω `tk celim⊃ e celim⊃ e∗ : A
e-u-c-implE

∆;Φa;Ω `t1k1 e1  e1
∗ : A1 ∆;Φa; x : A1,Ω `t2k2 e2  e2

∗ : A2

∆;Φa;Ω `t1+t2+cletk1+k2+clet
let x = e1 in e2  let x = e∗1 in e∗2 : A2

e-u-let

∆;C∧Φa;Ω `tk e e∗ : A
∆;¬C∧Φa;Ω `tk e e∗∗ : A ∆ ` C wf

∆;Φa;Ω `tk e split (e∗, e∗∗) with C : A
e-u-split

∆;Φa |= ⊥ ∆;Φa ` Ω wf

∆;Φa;Ω `tk e contra e : τ
e-u-contra

∆;Φa;Ω `tk e e∗ : A ∆;Φa |=A A v A ′
∆;Φa |= k ′6k ∆;Φa |= t6 t ′

∆;Φa;Ω `t ′k ′ e e∗ : A ′
e-u-v

Figure 45: RelCost Core unary embedding rules (Part 2)



12.2 relcost core type system 129

∆;Φa; Γ ` e1 	 e2  e∗1 	 e∗2 . t : τ Expressions e1	e2 are embedded
into e∗1 	 e∗1 with the relational type τ and the relational cost t.

∆;Φa; |Γ |1 `t1k1 e1  e∗1 : A1 ∆;Φa; |Γ |2 `t2k2 e2  e∗2 : A2
E = switch e∗1 E ′ = switch e∗2

∆;Φa; Γ ` e1 	 e2  E	 E ′ . t1 − k2 : U (A1,A2)
e-switch

∆;Φa; Γ ` e	 e e∗ 	 e∗ . t : τ
∀xi ∈ dom(Γ), ei = coerceΓ(xi),� Γ(xi)

e ′ = let yi = ei xi in NC e∗[yi/xi]

∆;Φa; Γ , Γ ′ ` e	 e e ′ 	 e ′ . 0 : � τ e-nochange

∆;C∧Φa; Γ ` e1 	 e2  e1
∗ 	 e2∗ . t : τ

∆;¬C∧Φa; Γ ` e1 	 e2  e∗∗1 	 e∗∗2 . t : τ ∆ ` C wf
E = split (e∗1, e

∗∗
1 ) with C E ′ = split (e∗2, e

∗∗
2 ) with C

∆;Φa; Γ ` e1 	 e2  E	 E ′ . t : τ e-r-split

∆;Φa |= ⊥ ∆;Φa ` Γ wf

∆;Φa; Γ ` e1 	 e2  contra e1 	 contra e2 . t : τ
e-r-contra

∆;Φa; Γ ` e1 	 e2  e1
∗ 	 e2∗ . t : τ

∆;Φa |= τ v τ ′ e ′ = coerceτ,τ ′ ∆;Φa |= t6 t ′

∆;Φa; Γ ` e1 	 e2  e ′ e∗1 	 e ′ e∗2 . t ′ : τ ′
e-r-v

∆;Φa; Γ ` n	 n n	 n . 0 : intr
e-r-const

Γ(x) = τ

∆;Φa; Γ ` x	 x x	 x . 0 : τ e-r-var

∆;Φa; Γ ` ()	 () ()	 () . 0 : unitr
e-r-unit

∆;Φa; Γ ` e1 	 e2  e1
∗ 	 e2∗ . t : τ1 ∆;Φa ` τ2 wf

∆;Φa; Γ ` inl e1 	 inl e2  inl e1∗ 	 inl e2∗ . t : τ1 + τ2
e-r-inl

∆;Φa; Γ ` e1 	 e2  e1
∗ 	 e2∗ . t : τ2 ∆;Φa ` τ1 wf

∆;Φa; Γ ` inr e1 	 inl e2  inr e1∗ 	 inl e2∗ . t : τ1 + τ2
e-r-inr

∆;Φa; Γ ` e	 e ′  e∗ 	 e ′∗ . t : τ1 + τ2
∆;Φa; x : τ1, Γ ` e1 	 e ′1  e1

∗ 	 e ′1
∗ . t ′ : τ

∆;Φa;y : τ2, Γ ` e2 	 e ′2  e2
∗ 	 e ′2

∗ . t ′ : τ
E = case (e∗, x.e∗1,y.e∗2) E ′ = case (e ′, x.e ′∗1 ,y.e ′∗2 )

∆;Φa; Γ ` case (e, x.e1,y.e2)	 case (e ′, x.e ′1,y.e ′2) E	 E ′ . t+ t ′ : τ e-r-case

∆;Φa ` τ1
diff(t)−−−→ τ2 wf

∆;Φa; x : τ1, f : τ1
diff(t)−−−→ τ2, Γ ` e1 	 e2  e1

∗ 	 e2∗ . t : τ2
∆;Φa; Γ ` fix f(x).e1 	 fix f(x).e2  fix f(x).e1

∗ 	 fix f(x).e2
∗ . 0 : τ1

diff(t)−−−→ τ2

e-r-fix

Figure 46: RelCost Core relational embedding rules (Part 1)
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∆;Φa; Γ ` e1 	 e2  e∗1 	 e∗2 . t : τ Expressions e1	e2 are embedded
into e∗1 	 e∗1 with the relational type τ and the relational cost t.

∆;Φa ` τ1
diff(t)−−−→ τ2 wf

∆;Φa; x : τ1, f : � (τ1
diff(t)−−−→ τ2), Γ ` e	 e e∗ 	 e∗ . t : τ2

∀xi ∈ dom(Γ), ei = coerceΓ(xi),� Γ(xi)
e∗∗ = let yi = ei xi in fixNC f(x).e∗[yi/xi]

∆;Φa; Γ ` fix f(x).e	 fix f(x).e e∗∗ 	 e∗∗ . 0 : � (τ1
diff(t)−−−→ τ2)

e-r-fixNC

∆;Φa; Γ ` e1 	 e ′1  e1
∗ 	 e ′1

∗ . t1 : τ1
diff(t)−−−→ τ2

∆;Φa; Γ ` e2 	 e ′2  e2
∗ 	 e ′2

∗ . t2 : τ1
∆;Φa; Γ ` e1 e2 	 e ′1 e ′2  e∗1 e

∗
2 	 e ′∗1 e ′∗2 . t1 + t2 + t : τ2

e-r-app

∆;Φa; Γ ` e1 	 e ′1  e1
∗ 	 e ′1

∗ . t1 : τ1
∆;Φa; Γ ` e2 	 e ′2  e2

∗ 	 e ′2
∗ . t2 : τ2

∆;Φa; Γ ` 〈e1, e2〉 	 〈e ′1, e ′2〉 〈e∗1, e∗2〉 	 〈e ′∗1 , e ′∗2 〉 . t1 + t2 : τ1 × τ2
e-r-prod

∆;Φa; Γ ` e	 e ′  e∗ 	 e ′∗ . t : τ1 × τ2
∆;Φa; Γ ` πi(e)	 πi(e ′) πi(e

∗)	 πi(e ′∗) . t : τi
e-r-proji

∆;Φa ` τ wf
∆;Φa; Γ ` nil 	 nil  nil 	 nil . 0 : list[0]α τ

e-r-nil

∆;Φa; Γ ` e1 	 e ′1  e1
∗ 	 e ′1

∗ . t1 : τ
∆;Φa; Γ ` e2 	 e ′2  e2

∗ 	 e ′2
∗ . t2 : list[n]α τ

E = consC(e∗1, e
∗
2) E ′ = consC(e ′∗1 , e ′∗2 )

∆;Φa; Γ ` cons(e1, e2)	 cons(e ′1, e
′
2) E	 E ′ . t1 + t2 : list[n+ 1]α+1 τ

e-r-cons1

∆;Φa; Γ ` e1 	 e ′1  e1
∗ 	 e ′1

∗ . t1 : � τ
∆;Φa; Γ ` e2 	 e ′2  e2

∗ 	 e ′2
∗ . t2 : list[n]α τ

E = consNC(e∗1, e
∗
2) E ′ = consNC(e ′∗1 , e ′∗2 )

∆;Φa; Γ ` cons(e1, e2)	 cons(e ′1, e
′
2) E	 E ′ . t1 + t2 : list[n+ 1]α τ

e-r-cons2

∆;Φa; Γ ` e	 e ′  e∗ 	 e ′∗ . t : list[n]α τ
∆;Φa ∧n = 0; Γ ` e1 	 e ′1  e1

∗ 	 e ′1
∗ . t ′ : τ ′

Φ ′a = Φa ∧n = i+ 1

i,∆;Φ ′a;h : � τ, tl : list[i]α τ, Γ ` e2 	 e ′2  e2
∗ 	 e ′2

∗ . t ′ : τ ′
Φ ′′a = Φa ∧n = i+ 1∧α = β+ 1

i,β,∆;Φ ′′a ;h : τ, tl : list[i]β τ, Γ ` e2 	 e ′2  e∗3 	 e ′∗3 . t ′ : τ ′

E =
case e∗ of nil → e∗1
| h ::NC tl → e∗2
| h ::C tl → e∗3

E ′ =
case e ′∗ of nil → e ′∗1
| h ::NC tl → e ′∗2
| h ::C tl → e ′∗3

∆;Φa; Γ ` case e of nil → e1
| h :: tl→ e2

	 case e of nil → e ′1
| h :: tl→ e ′2

 E	 E ′ . t+ t ′ : τ ′
e-r-caseL

Figure 47: RelCost Core relational embedding rules (Part 2)
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∆;Φa; Γ ` e1 	 e2  e∗1 	 e∗2 . t : τ Expressions e1	e2 are embedded
into e∗1 	 e∗1 with the relational type τ and the relational cost t.

i :: S,∆;Φa; Γ ` e	 e ′  e∗ 	 e ′∗ . t : τ i 6∈ FIV(Φa; Γ)

∆;Φa; Γ ` Λ.e	Λ.e ′  Λi.e∗ 	Λi.e ′∗ . 0 : ∀i
diff(t)
:: S. τ

e-r-iLam

∆;Φa; Γ ` e	 e ′  e∗ 	 e ′∗ . t : ∀i
diff(t ′)
:: S. τ ∆ ` I : S

∆;Φa; Γ ` e[]	 e ′[] e∗[I]	 e ′∗[I] . t+ t ′[I/i] : τ{I/i} e-r-iApp

∆;Φa; Γ ` e	 e ′  e∗ 	 e ′∗ . t : τ{I/i}
∆ ` I :: S E = pack e∗ with I E ′ = pack e ′∗ with I

∆;Φa; Γ ` pack e	 pack e ′  E	 E ′ . t : ∃i::S. τ
e-r-pack

∆;Φa; Γ ` e1 	 e ′1  e1
∗ 	 e ′1

∗ . t1 : ∃i::S. τ1
i :: S,∆;Φa; x : τ1, Γ ` e2 	 e ′2  e2

∗ 	 e ′2
∗ . t2 : τ2

i 6∈ FV(Φa; Γ , τ2, t2)
E = unpack e∗1 as (x, i) in e∗2 E ′ = unpack e ′∗1 as (x, i) in e ′∗2

∆;Φa; Γ ` unpack e1 as x in e2 	 unpack e ′1 as x in e ′2  E	 E ′ . t1 + t2 : τ2
e-r-unpack

∆;Φa; Γ ` e1 	 e ′1  e1
∗ 	 e ′1

∗ . t1 : τ1
∆;Φa; x : τ1, Γ ` e2 	 e ′2  e2

∗ 	 e ′2
∗ . t2 : τ2

E = let x = e∗1 in e∗2 E ′ = let x = e ′∗1 in e ′∗2
∆;Φa; Γ ` let x = e1 in e2 	 let x = e ′1 in e ′2  E	 E ′ . t1 + t2 : τ2

e-r-let

Υ(ζ) = τ1
diff(t)−−−→ τ2 ∆;Φa; Γ ` e	 e ′  e∗ 	 e ′∗ . t ′ : τ1

∆;Φa; Γ ` ζ e	 ζ e ′  ζ e∗ 	 ζ e ′∗ . t+ t ′ : τ2
e-r-primapp

∆;Φa |= C ∆;Φa ∧C; Γ ` e	 e ′  e∗ 	 e ′∗ . t : τ
∆;Φa; Γ ` e	 e ′  e∗ 	 e ′∗ . t : C & τ

e-r-andI

∆;Φa; Γ ` e1 	 e ′1  e1
∗ 	 e ′1

∗ . t1 : C & τ1
∆;Φa ∧C; x : τ1, Γ ` e2 	 e ′2  e2

∗ 	 e ′2
∗ . t2 : τ2

E = clet e∗1 as x in e∗2 E ′ = clet e ′∗1 as x in e ′∗2
∆;Φa; Γ ` clet e1 as x in e2 	 clet e ′1 as x in e ′2  E	 E ′ . t1 + t2 : τ2

e-r-c-andE

∆;Φa ∧C; Γ ` e	 e ′  e∗ 	 e ′∗ . t : τ
∆;Φa; Γ ` e	 e ′  e∗ 	 e ′∗ . t : C ⊃ τ e-r-c-impI

∆;Φa; Γ ` e	 e ′  e∗ 	 e ′∗ . t : C ⊃ τ ∆;Φa |= C

∆;Φa; Γ ` celim⊃ e	 celim⊃ e ′  celim⊃ e∗ 	 celim⊃ e ′
∗ . t : τ

e-r-c-implE

Figure 48: RelCost Core relational embedding rules (Part 3)
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∆;Φa; Γ ` e1 	 e2  e∗1 	 e∗2 . t : τ Expressions e1	e2 are embedded
into e∗1 	 e∗1 with the relational type τ and the relational cost t.

∆;Φa; |Γ |1 `t1k1 e1  e1
∗ : A1

∆;Φa; x : UA1, Γ ` e2 	 e e2
∗ 	 e∗ . t2 : τ2 E = let x = e∗1 in e∗2

∆;Φa; Γ ` let x = e1 in e2 	 e E	 e∗ . t1 + t2 + clet : τ2
e-r-let-e

∆;Φa; |Γ |2 `t1k1 e1  e1
∗ : A1

∆;Φa; x : UA1, Γ ` e	 e2  e∗ 	 e2∗ . t2 : τ2 E ′ = let x = e∗1 in e∗2
∆;Φa; Γ ` e	 let x = e1 in e2  e∗ 	 E ′ . t2 − k1 − clet : τ2

e-r-e-r-let

∆;Φa; |Γ |1 `t_ e e∗ : A1 +A2
∆;Φa; x : UA1, Γ ` e1 	 e ′  e1

∗ 	 e ′∗ . t ′ : τ
∆;Φa;y : UA2, Γ ` e2 	 e ′  e2

∗ 	 e ′∗ . t ′ : τ
E = case (e∗, x.e∗1,y.e∗2)

∆;Φa; Γ ` case (e, x.e1,y.e2)	 e ′  E	 e ′∗ . t ′ + t+ ccase : τ
e-r-case-r-e

∆;Φa; |Γ |2 `_
k ′ e

′  e ′∗ : A1 +A2
∆;Φa; x : UA1, Γ ` e	 e ′1  e∗ 	 e ′1

∗ . t : τ
∆;Φa;y : UA2, Γ ` e	 e ′2  e∗ 	 e ′2

∗ . t : τ
E ′ = case (e ′∗, x.e ′∗1 ,y.e ′∗2 )

∆;Φa; Γ ` case (e ′, x.e ′1,y.e ′2)	 e e∗ 	 E ′ . t− k ′ − ccase : τ
e-r-e-r-case

Figure 49: RelCost Core relational embedding rules (Part 4)
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A L G O R I T H M I C ( B I D I R E C T I O N A L ) T Y P E S Y S T E M

I synopsis This chapter presents an algorithmic type system for
RelCost Core.In Section 13.4, we also discuss how a similar system can
be designed for DuCostIt.

Our algorithmic type system relies on bidirectionality, which allows
us to type check with very few type annotations. The bidirectional sys-
tem is called BiRelCost. Like all other bidirectional systems [91, 105,
106], the goal of BiRelCost is to eliminate the nondeterminism inherent
in typing Curry-style unannotated terms (e.g., the term λx .x can be

given the type τ
diff(k)−−−→ τ for any τ and k) using minimal type an-

notations. This is done by typing every expression construct in one of
the two modes: synthesis/inference mode, where the type is inferred or
checking mode, where a provided type is checked.

The following three aspects of BiRelCost differ from existing bidirec-
tional typecheckers:

• Since BiRelCost is a type and effect system, it must infer (check)
not only a type, but also a cost (effect). In general, the cost fol-
lows the same mode as the type: If for an expression, the type is
inferred (checked), then so is the cost. Still, as an alternative de-
sign, we sketch a formalization in which the costs are inferred in
the checking mode with several additional constraints. We com-
ment on this in Section 13.3.

• Since BiRelCost is relational, it must check (infer) not only a single
expression, but also a pair of expressions in the relational typing.

• BiRelCost heavily relies on unary and relational type refinements.
To handle these, our type system generates arithmetic constraints
that stipulate relations between, e.g., sizes of various lists and the
costs of various subexpressions. This is similar to the treatment
of refinements in DML [105, 106], but we additionally handle re-
lational refinements and both unary and relational costs.

13.1 algorithmic typechecking as constraint satisfaction

To develop the bidirectional type system, we add some syntactic classes
and extend the existing ones.

133
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meta variables M : := i , n ,m , · · ·
index terms I , k , t : := · · · | M
meta contexts ψ : := ∅ | ψ ,M : S

meta substitutions θ : := [] | θ[M 7→ I]

constraints C : := · · · | ∀i : S .C | ∃i : S .C

expressions e : := · · · | (e : A , k , t) | (e : τ , t)

One class of note is the meta variables i,n,m, etc. Also known as ex-
istential variables, meta variables represent unknown index terms that
appear in types and costs. These meta variables are resolved by con-
straint solving.

Since RelCost Core has two typing judgments—a unary judgment and
a relational judgment—BiRelCost has four mutually recursive algorith-
mic typing judgments: one each to synthesize and check a unary type,
and one each to synthesize and check a relational type. The relational
checking judgment

∆;ψa;Φa; Γ ` e1 	 e2 ↓ τ, t⇒ Φ

means that, assuming that the constraint Φ holds, e1 and e2 check against
the relational input type τ and the relative cost t under the assumption
Φa. All index and meta variables must occur in ∆ and ψa. When the
judgment is read operationally or is implemented, the constraint Φ
is an output; all other components are inputs. As a convention, we
write all outputs in red and all inputs in black. The relational inference
judgment

∆;ψa;Φa; Γ ` e1 	 e2 ↑ τ⇒ [ψ], t,Φ

means that, if Φ holds, then it can be inferred that the relational type of
e1 and e2 is τ and their relative cost is t under the assumption ∃ψ.Φa.
Here, Φ, τ, ψ and t are all outputs. The meta variable context ψ tracks
newly generated cost variables that may appear in the inferred type or
cost. 38 Its significance will be explained below.38 τ, t,Φ can contain

variables from ψ as
well as ∆.

Intuitively, the checking mode is used when the surrounding outer
context determines the type of the expression. This happens at all intro-
duction forms and in case-like elimination forms. The inference mode
is used when there is no outer restriction on the type of an expression.
This happens for the principal term in all elimination forms.
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The unary checking and inference judgments, ∆;ψa;Φa;Ω ` e ↓A,k, t⇒
Φ and ∆;ψa;Φa;Ω ` e ↑ A ⇒ [ψ],k, t,Φ, respectively, are to be under-
stood similarly.

13.1.1 Algorithmic typing rules

We first explain the main principles behind the bidirectional typing
rules and then discuss selected relational rules. We focus our attention
on relational rules that are shown in Figures 50 to 52. Algorithmic rules
for unary typing are shown at the end of this chapter in Figures 56 to 58.
While some of these principles are standard, those related to cost are
new. We also highlight other BiRelCost-specific principles.

• Types and costs of variables and elimination forms are inferred
(e.g., rules alg-r-var-↑, alg-r-app-↑) whereas types and costs of
introduction forms are checked (e.g., rules alg-r-fix-↓, alg-r-consC-
↓). There are a few exceptions to this principle: the type of the
branches in case analyses or the continuation in let-bindings is
checked.

• (Specific to BiRelCost) If an expression consists of a subexpression
that must be checked against a type, we generate a fresh meta
variable for the subexpression’s cost. This is necessary since at
the point we reach the subexpression, we don’t know what cost
to check against. When we check the subexpression, constraints
that determine this meta variable are generated. If the whole ex-
pression is in checking mode, we existentially quantify over the
freshly generated variable in the constraint (e.g., rule alg-r-consC-
↓). If the whole expression is in inference mode, we simply add
the meta variable to the inferred cost and append it to ψ (e.g. rule
alg-r-app-↑).

• In checking mode, if no other checking rule matches the given
expression, then the rule alg-r-↑↓ allows switching to inference
mode in the premise. The requirement is that the inferred type
must be equivalent to the checked type and the inferred cost must
be no greater than the checked cost. In the algorithmic system,
we have an algorithmic type equivalence relation |= τ ≡ τ ′ ⇒ Φ

whose rules are shown in Figure 54. The meaning of the judg-
ment is that if Φ holds, then τ ≡≡≡ τ ′. Like other bidirectional sys-
tems, this is the only place where type equivalence (RelCost Core’s
reduct of subtyping) is used.
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• In inference mode, it is permissible to switch to checking mode
when an expression’s type and cost have been explicitly anno-
tated by the programmer (rule alg-r-anno-↑). It can be shown that
it suffices to annotate only at explicit β-redexes (although there is
no prohibition on annotating at other places).

• (Specific to BiRelCost) The algorithmic version of the rule c-nochange,
called alg-r-nochange-↓, applies in checking mode since it intro-
duces the type � τ. The algorithmic version of the rule c-der,
called alg-r-der-↑, applies in inference mode since it eliminates
the type � τ.

Switching to unary mode in BiRelCost is possible both in checking
(rule alg-r-switch-↓) and inference (rule alg-r-switch-↑) modes. This
is because often we switch to the unary mode for elimination forms
where the eliminated type is UA for some A. Hence, since elimina-
tion forms can be typed both in inference mode (e.g. rule alg-r-app-↑)
as well as checking mode (e.g. rule alg-r-caseL-↓), to eliminate unnec-
essary annotations, BiRelCost supports two modes for typing switch

expressions.
Variables are typed in inference mode (rule alg-r-var-↑) where the

output type is synthesized from the type environment Γ , which is given.
Functions are typed in checking mode (rule alg-r-fix-↓) by checking the
related function bodies in the checking mode against the relative cost of
the function bodies. Since functions are values, we add the additional
constraint that the total cost of the functions, t, is equal to zero.

Dually, function applications are typed in inference mode (rule alg-
r-app-↑). We first infer the type and the cost of the related functions
and then use the (inferred) argument type to switch to the checking
mode for the related argument expressions. Since we do not know the
cost with which to check the arguments, we also generate a fresh cost
variable t2 to check the arguments. Finally, the result type is the return
type of the inferred function type, and the total cost t1 + t2 + te, i. e.,
the sum of the inferred cost for the functions, the yet-unknown cost
of the arguments and the relative cost of the function bodies. Note
that since all the newly generated variables, i.e., ψ and t2, may occur
in the resulting type and the cost, inference mode passes them to the
surrounding context. In the alg-r-app-↑ rule, if e1 is a fixpoint, its type
(and cost) must be given by explicitly annotating it with the construct
(e : τ,k). The rule alg-r-anno-↑ allows us to take advantage of such
annotations by switching from inference to checking mode.

The list constructors are typed in checking mode. We explain only
the rule alg-r-consC-↓ for typing two non-empty lists with type list[n]α τ
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∆;ψa;Φa; Γ ` e1 	 e2 ↓ τ, t⇒ Φ e1 	 e2 checks against the input
type τ and the difference cost t. Finally, it generates the constraint Φ.

∆;ψa;Φa; Γ ` e1 	 e2 ↑ τ⇒ [ψ], t,Φ e1 	 e2 synthesizes the output
type τ and the relative cost t where all the newly generated existential
variables are defined in ψ. Finally, it generates the constraint Φ.

∆;ψa;Φa; Γ ` n	 n ↑ intr ⇒ [.], 0,> alg-r-n-↑

Γ(x) = τ

∆;ψa;Φa; Γ ` x	 x ↑ τ⇒ [.], 0,> alg-r-var-↑

∆;ψa;Φa; Γ ` ()	 () ↑ unitr ⇒ [.], 0,> alg-r-unit-↑

∆;ψa;Φa; Γ ` e1 	 e2 ↓ τ1, t⇒ Φ ∆,ψa;Φa ` τ2 wf
∆;ψa;Φa; Γ ` inl e1 	 inl e2 ↓ τ1 + τ2, t⇒ Φ

alg-r-inl-↓

∆;ψa;Φa; Γ ` e1 	 e2 ↓ τ2, t⇒ Φ ∆,ψa;Φa ` τ1 wf
∆;ψa;Φa; Γ ` inr e1 	 inr e2 ↓ τ1 + τ2, t⇒ Φ

alg-r-inr-↓

∆;ψa;Φa; Γ ` e	 e ′ ↑ τ1 + τ2 ⇒ [ψ], te,Φ1
t ′ ∈ fresh(R) ∆; t ′,ψ,ψa;Φa; Γ , x : τ1 ` e1 	 e ′1 ↓ τ, t ′ ⇒ Φ2

∆; t ′,ψ,ψa;Φa; Γ ,y : τ2 ` e2 	 e ′2 ↓ τ, t ′ ⇒ Φ3
Φ = ∃(ψ).Φ1 ∧ (∃t ′ :: R.Φ2 ∧Φ3 ∧ (t ′ + te

.
= t))

∆;ψa;Φa; Γ ` case (e, x.e1,y.e2)	 case (e ′, x.e ′1,y.e ′2) ↓ τ, t⇒ Φ
alg-r-case-↓

∆;ψa;Φa; f : τ1
diff(t ′)−−−−→ τ2, x : τ1, Γ ` e	 e ′ ↓ τ2, t ′ ⇒ Φ

∆;ψa;Φa; Γ ` fix f(x).e	 fix f(x).e ′ ↓ τ1
diff(t ′)−−−−→ τ2, t⇒ Φ∧ 0

.
= t

alg-r-fix-↓

∆;ψa;Φa; f : � (τ1
diff(t ′)−−−−→ τ2), x : τ1,� Γ ` e	 e ′ ↓ τ2, t ′ ⇒ Φ

Φ ′ = Φ∧ 0
.
= t

∆;ψa;Φa; Γ ′,� Γ ` fixNC f(x).e	 fixNC f(x).e ↓ � (τ1
diff(t ′)−−−−→ τ2), t⇒ Φ ′

alg-r-fix-↓ �

∆;ψa;Φa; Γ ` e1 	 e ′1 ↑ τ1
diff(te)−−−−→ τ2 ⇒ [ψ], t1,Φ1

t2 ∈ fresh(R) ∆; t2,ψ,ψa;Φa; Γ ` e2 	 e ′2 ↓ τ1, t2 ⇒ Φ2

∆;ψa;Φa; Γ ` e1 e2 	 e ′1 e ′2 ↑ τ2 ⇒ [t2,ψ], t1 + t2 + te,Φ1 ∧Φ2
alg-r-app-↑

t1, t2 ∈ fresh(R) ∆; t1,ψa;Φa; Γ ` e1 	 e ′1 ↓ τ1, t1 ⇒ Φ1
∆; t1,ψa;Φa; Γ ` e2 	 e ′2 ↓ τ1, t2 ⇒ Φ2

Φ = ∃t1 :: R.Φ1 ∧ ∃t1 :: R.Φ2 ∧ t1 + t2
.
= t

∆;ψa;Φa;Ω ` 〈e1, e2〉 	 〈e ′1, e ′2〉 ↓ τ1 × τ2, t⇒ Φ
alg-r-prod-↓

∆;ψa;Φa; Γ ` e	 e ′ ↑ τ1 × τ2 ⇒ [ψ], t,Φ i ∈ {1, 2}
∆;ψa;Φa; Γ ` πi(e)	 πi(e ′) ↑ τi ⇒ [ψ], t,Φ

alg-r-proji-↑

Figure 50: BiRelCost binary algorithmic typing rules (Part 1)
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∆,ψa;Φ ` τ wf
∆;ψa;Φa; Γ ` nil 	 nil ↓ list[n]α τ, t⇒ n

.
= 0∧ 0

.
= t

alg-r-nil-↓

t1, t2 ∈ fresh(R) i,β ∈ fresh(N)
∆; t1,ψa;Φa; Γ ` e1 	 e ′1 ↓ τ, t1 ⇒ Φ1

∆; i,β, t2,ψa;Φa; Γ ` e2 	 e ′2 ↓ list[i]β τ, t2 ⇒ Φ2
Φ ′2 = n

.
= (i+ 1)∧ ∃β :: N.Φ2 ∧α

.
= β+ 1∧ t1 + t2

.
= t

Φ = ∃t1 :: R.(Φ1 ∧ ∃t2 :: R.∃i :: N.Φ ′2)
∆;ψa;Φa; Γ ` consC(e1, e2)	 consC(e ′1, e

′
2) ↓ list[n]α τ, t⇒ Φ

alg-r-consC-↓

t1, t2 ∈ fresh(R) i ∈ fresh(N)
∆; t1,ψa;Φa; Γ ` e1 	 e ′1 ↓ � τ, t1 ⇒ Φ1

∆; i, t2,ψa;Φa; Γ ` e2 	 e ′2 ↓ list[i]α τ, t2 ⇒ Φ2
Φ ′2 = Φ2 ∧n

.
= (i+ 1)∧ t1 + t2

.
= t

Φ = ∃t1 :: R.(Φ1 ∧ ∃t2 :: R.∃i :: N.Φ ′2)
∆;ψa;Φa; Γ ` consNC(e1, e2)	 consNC(e ′1, e

′
2) ↓ list[n]α τ, t⇒ Φ

alg-r-consNC-↓

∆;ψa;Φa; Γ ` e	 e ′ ↑ list[n]α τ⇒ [ψ], t1,Φe
t2 ∈ fresh(R) ∆; t2,ψ,ψa;n .

= 0∧Φa; Γ ` e1 	 e ′1 ↓ τ ′, t2 ⇒ Φ1
Φ ′a = n

.
= i+ 1∧Φa

i,∆; t2,ψ,ψa;Φ ′a;h : � τ, tl : list[i]α τ, Γ ` e2 	 e ′2 ↓ τ ′, t2 ⇒ Φ2
Φ ′′a = n

.
= i+ 1∧α

.
= β+ 1∧Φa

i,β,∆; t2,ψ,ψa;Φ ′′a ;h : τ, tl : list[i]β τ, Γ ` e3 	 e ′3 ↓ τ ′, t2 ⇒ Φ3
Φcons = ∀i :: N.(n .

= i+ 1)→ (Φ2 ∧ ∀β :: N.(α .
= β+ 1)→ Φ3)

Φ = ∃(ψ).(Φe ∧ ∃t2 :: R.((n .
= 0→ Φ1)∧Φcons ∧ t1 + t2

.
= t))

∆;ψa;Φa; Γ `
case e of nil → e1
| h ::NC tl → e2
| h ::C tl → e3

	
case e ′ of nil → e ′1
| h ::NC tl → e ′2
| h ::C tl → e ′3

↓ τ ′, t⇒ Φ

alg-r-caseL-↓

i :: S,∆;ψa;Φa; Γ ` e	 e ′ ↓ τ, te ⇒ Φ

∆;ψa;Φa; Γ ` Λi.e	Λi.e ′ ↓ ∀i
diff(te)
:: S. τ, t⇒ (∀i :: S.Φ)∧ 0

.
= t

alg-r-iLam-↓

∆;ψa;Φa; Γ ` e	 e ′ ↑ ∀i
diff(te)
:: S. τ ′ ⇒ [ψ], t,Φ ∆ ` I :: S

∆;ψa;Φa; Γ ` e [I]	 e ′ [I] ↑ τ ′{I/i}⇒ [ψ], t+ te[I/i],Φ
alg-r-iApp-↑

∆;ψa;Φa; Γ ` e	 e ′ ↓ τ{I/i}, t⇒ Φ ∆ ` I :: S
∆;ψa;Φa; Γ ` pack e with I	 pack e ′ with I ↓ ∃i::S. τ, t⇒ Φ

alg-r-pack-↓

∆;ψa;Φa; Γ ` e1 	 e ′1 ↑ ∃i::S. τ1 ⇒ [ψ], t1,Φ1
t2 ∈ fresh(R)

i :: S,∆; t2,ψ,ψa;Φa; x : τ1, Γ ` e2 	 e ′2 ↓ τ2, t2 ⇒ Φ2
i 6∈ FV(Φa; Γ , τ2, t2)

Φ = ∃(ψ).(Φ1 ∧ ∃t2 :: R.∀i :: S.Φ2 ∧ t1 + t2
.
= t)

∆;ψa;Φa; Γ ` unpack e1 as (x, i) in e2 	 unpack e ′1 as (x, i) in e ′2 ↓ τ2, t⇒ Φ
alg-r-unpack-↓

Υ(ζ) : τ1
diff(te)−−−−→ τ2 t ∈ fresh(R)

∆; t,ψa;Φa; Γ ` e1 	 e2 ↓ τ1, t⇒ Φ

∆;ψa;Φa; Γ ` ζe1 	 ζ e2 ↑ τ2 ⇒ [t,ψ], t+ te,Φ
alg-r-primapp-↑

Figure 51: BiRelCost binary algorithmic typing rules (Part 2)
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∆;ψa;Φ∧C; Γ ` e1 	 e1 ↓ τ, t⇒ Φ

∆;ψa;Φa;Ω ` e1 	 e2 ↓ C & τ, t⇒ C∧ (C→ Φ)
alg-r-c-andI-↓

∆;ψa;Φa;Ω ` e1 	 e ′1 ↑ C & τ1 ⇒ [ψ], t1,Φ1
t2 ∈ fresh(R) ∆; t2,ψ,ψa;Φ∧C; x : τ1,Ω ` e2 	 e ′2 ↓ τ2, t2 ⇒ Φ2

Φ ′2 = C→ Φ2 ∧ (t1 + t2)
.
= t Φ = ∃(ψ).(Φ1 ∧ ∃t2 :: R.Φ ′2)

∆;ψa;Φa;Ω ` clet e1 as x in e2 	 clet e ′1 as x in e ′2 ↓ τ2, t⇒ Φ
alg-r-c-andE-↓

∆;Φ∧C; Γ ` e	 e ′ ↓ τ, t⇒ Φ

∆;ψa;Φa; Γ ` e	 e ′ ↓ C ⊃ τ, t⇒ C→ Φ
alg-r-c-impI-↓

∆;ψa;Φa; Γ ` e	 e ′ ↑ C ⊃ τ⇒ [ψ], t,Φ
∆;ψa;Φa; Γ ` celim⊃ e	 celim⊃ e ′ ↑ τ⇒ [ψ], t,C∧Φ

alg-r-c-implE-↑

∆;ψa;Φa; Γ ` e1 	 e ′1 ↑ τ1 ⇒ [ψ], t1,Φ1
t2 ∈ fresh(R) ∆; t2,ψ,ψa; x : τ1, Γ ` e2 	 e ′2 ↓ τ2, t2 ⇒ Φ2

Φ = ∃(ψ).Φ1 ∧ ∃t2 :: R.Φ2 ∧ t1 + t2
.
= t

∆;ψa;Φa; Γ ` let x = e1 in e2 	 let x = e ′1 in e ′2 ↓ τ2, t⇒ Φ
alg-r-let-↓

∆;ψa;C∧Φa; Γ ` e1 	 e ′1 ↓ τ, t⇒ Φ1
∆;ψa;¬C∧Φa; Γ ` e2 	 e ′2 ↓ τ, t⇒ Φ2
∆ ` C wf Φ = (C→ Φ1)∧ (¬C→ Φ2)

∆;ψa;Φa; Γ ` split (e1, e2) with C	 split (e ′1, e
′
2) with C ↓ τ, t⇒ Φ

alg-r-split-↓

∆;ψa;Φa |= ⊥
∆;ψa;Φa; Γ ` contra e	 contra e ′ ↓ τ, t⇒ > alg-r-contra-↓

∆;ψa;Φa; Γ ` e	 e ′ ↑ τ ′ ⇒ [ψ], t ′,Φ1
∆;ψ,ψa;Φa |= τ ′ ≡ τ⇒ Φ2

∆;ψa;Φa; Γ ` e	 e ′ ↓ τ, t⇒ ∃(ψ).Φ1 ∧Φ2 ∧ t ′6 t
alg-r-↑↓

∆;ψa;Φa; Γ ` e	 e ′ ↓ τ, t⇒ Φ

∆;Φa ` τ wf ∆ ` t :: R

∆;ψa;Φa; Γ ` (e : τ, t)	 (e ′ : τ, t) ↑ τ⇒ [·], t,Φ alg-r-anno-↑

t ′ ∈ fresh(R) ∆; t ′,ψa;Φa;� Γ ` e	 e ↓ τ, t ′ ⇒ Φ

∆;ψa;Φa; Γ ′,� Γ ` NC e	 NC e ↓ � τ, t⇒ 0
.
= t∧ (∃t ′ :: R.Φ)

alg-r-nochange-↓

∆;ψa;Φa; Γ ` e1 	 e2 ↑ � τ⇒ [ψ], t,Φ
∆;ψa;Φa; Γ ` der e1 	 der e2 ↑ τ⇒ [ψ], t,Φ

alg-r-der-↑

Figure 52: BiRelCost binary algorithmic typing rules (Part 3)
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∆;ψa;Φa; Γ ` e1 	 e2 ↓ τ, t⇒ Φ e1 	 e2 checks against the input
type τ and the difference cost t. Finally, it generates the constraint Φ.

∆;ψa;Φa; Γ ` e1 	 e2 ↑ τ⇒ [ψ], t,Φ e1 	 e2 synthesizes the output
type τ and the relative cost t where all the newly generated existential
variables are defined in ψ. Finally, it generates the constraint Φ.

k1, t1,k2, t2 ∈ fresh(R) ∆;k1, t1,ψa;Φ; |Γ |1 ` e1 ↓ A1,k1, t1 ⇒ Φ1
∆;k2, t2,ψa;Φ; |Γ |2 ` e2 ↓ A2,k2, t2 ⇒ Φ2

∃k1, t1 :: R.(Φ1 ∧ ∃k2, t2 :: R.Φ2 ∧ t1 − k2
.
= t)

∆;ψa;Φa; Γ ` switch e1 	 switch e2 ↓ t,U (A1,A2)⇒ Φ
alg-r-switch-↓

∆;ψa;Φ; |Γ |1 ` e1 ↑ A1 ⇒ [ψ1], _, t1,Φ1
∆;ψa;Φ; |Γ |2 ` e2 ↑ A2 ⇒ [ψ2],k2, _,Φ2 Φ = Φ1 ∧Φ2

∆;ψa;Φa; Γ ` switch e1 	 switch e2 ↑ U (A1,A2)⇒ [ψ1,ψ2], t1 − k2,Φ
alg-r-switch-↑

∆;ψa;Φa; |Γ |1 ` e1 ↑ A1 ⇒ [ψ],k1, t1,Φ1 t2 ∈ fresh(R)
∆; t2,ψ,ψa;Φa; x : UA1, Γ ` e2 	 e ↓ τ2, t2 ⇒ Φ2
Φ = ∃(ψ).(Φ1 ∧ ∃t2 :: R.Φ2 ∧ t1 + t2 + clet

.
= t)

∆;ψa;Φa; Γ ` let x = e1 in e2 	 e ↓ τ2, t⇒ Φ
alg-r-let-e-↓

∆;ψa;Φa; |Γ |2 ` e1 ↑ A1 ⇒ [ψ],k1, t1,Φ1 t2 ∈ fresh(R)
∆; t2,ψ,ψa;Φa; x : UA1, Γ ` e	 e2 ↓ τ2, t2 ⇒ Φ2
Φ = ∃(ψ).(Φ1 ∧ ∃t2 :: R.Φ2 ∧ t2 − k1 − clet

.
= t)

∆;ψa;Φa; Γ ` e	 let x = e1 in e2 ↓ τ2, t⇒ Φ
alg-r-e-let-↓

∆;ψa;Φa; |Γ |2 ` e ↑ A1 +A2 ⇒ [ψ],k1, t1,Φ1
t2 ∈ fresh(R) ∆;ψa;Φa; x : UA1, Γ ` e1 	 e ′ ↓ τ, t2 ⇒ Φ2

∆;ψa;Φa;y : UA2, Γ ` e2 	 e ′ ↓ τ, t2 ⇒ Φ3
Φ = ∃(φ).Φ1 ∧ (∃t2 :: R.Φ2 ∧ t1 + t2 + ccase

.
= t)

∆;ψa;Φa; Γ ` case (e, x.e1,y.e2)	 e ′ ↓ τ, t⇒ Φ
alg-r-case-e-↓

∆;ψa;Φa; |Γ |2 ` e ′ ↑ A1 +A2 ⇒ [ψ],k1, t1,Φ1
t2 ∈ fresh(R) ∆;ψa;Φa; x : UA1, Γ ` e	 e ′1 ↓ τ, t2 ⇒ Φ2

∆;ψa;Φa;y : UA2, Γ ` e	 e ′2 ↓ τ, t2 ⇒ Φ3
Φ = ∃(φ).Φ1 ∧ (∃t2 :: R.Φ2 ∧ t2 − k1 − ccase

.
= t)

∆;ψa;Φa; Γ ` e	 case (e ′, x.e ′1,y.e ′2) ↓ τ, t⇒ Φ
alg-r-e-case-↓

Figure 53: BiRelCost binary asynchronous algorithmic typing rules (Part 4)
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where the heads of the two lists may differ. The two related tails are
checked with type list[i]β τ, where i and β are newly generated meta
variables with the constraint that α = β+ 1 and n = i+ 1. Since we do
not know how the total cost t is distributed between the heads and the
tails, we generate two new cost variables t1 and t2 to check the heads
and the tails, respectively, and generate the constraint t = t1 + t2.

The list destructors (and also sum type destructors) are typed in
checking mode against some result type, since we cannot know the re-
sult type by just examining the conditionals. Hence, all branches must
be checked against the given result type τ (rule alg-r-caseL-↓). 39 To be 39 Inferring the types

of the branches as
well as the whole
caseL expression
would require us the
compute the least
upper bounds of the
inferred types of the
branches. Instead,
when checking, we
require that the
branches must be
checked separately
against the given type
τ.

able to type the branches, we infer that the type of the pattern matched
expression e is of form list[n]α τ. Then, we can type each branch in an
appropriate environment, following the RelCost Core c-r-caseL rule.

Similar to functions, pairs of universally quantified expressions Λi.e
and Λi.e ′ are typed in checking mode by checking the related closures
e and e ′ in checking mode against the the latent relative cost of the
closures (rule alg-r-iLam-↓). The resulting constraint contains t .

= 0 on
the total cost and also universally quantifies over the constraint of the
closure. Dually, in the rule alg-r-iApp-↑, the latent cost of the closure
is first substituted with the given index term I and then added to the
total relative cost of the index term application.

Constructors for existentially quantified types are typed in checking
mode by checking the enclosed expressions e and e ′ in checking mode
(rule alg-r-pack-↓). Similar to list or sum types, the destructors for ex-
istentially quantified types are also typed in checking mode by first
inferring the type of the unpacked expressions (rule alg-r-unpack-↓).
Then, we check the continuations in an extended sort environment that
includes i and also in an extended meta variable environment that in-
cludes all the meta variables ψ inferred in unpacking the expressions.
Due to the former, the final constraint universally quantifies over the
constraint of the continuation with i and, due to the latter, the whole
final constraint is existentially quantified with ψ.

Asynchronous typing rules of RelCost Core are typed in checking
mode with the same principle as the typing of let bindings.

Remark. A particularly interesting aspect of bidirectional typing in BiRelCost
is that the effects (costs), both unary and relational, are constraint-dependent.
For example, the relative cost of a function’s body might depend on the sizes of
its inputs. In this case, a constraint will relate the cost and the inputs’ sizes.
In existing bidirectional systems with refinement types, similar interactions
show up among the sizes of data structures like lists [105, 106].
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∆;ψa;Φa |=A A1 v A2 ⇒ Φ checks whether A1 is subtype of A2 and
generates constraints Φ
∆;ψa;Φa |= τ1 ≡ τ2 ⇒ Φ checks whether τ1 is equivalent to τ2 and

generates constraints Φ

∆;ψa;Φa |= intr ≡ intr ⇒ >
alg-r-int

∆;ψa;Φa |= unitr ≡ unitr ⇒ >
alg-r-unit

∆;ψa;Φa |= τ1 ≡ τ ′1 ⇒ Φ1 ∆;ψa;Φa |= τ2 ≡ τ ′2 ⇒ Φ2

∆;ψa;Φa |= τ1
diff(t)−−−→ τ2 ≡ τ ′1

diff(t ′)−−−−→ τ ′2 ⇒ Φ1 ∧Φ2 ∧ t
.
= t ′

alg-r-fun

∆;ψa;Φa |= τ1 ≡ τ ′1 ⇒ Φ1 ∆;ψa;Φa |= τ2 ≡ τ ′2 ⇒ Φ2

∆;ψa;Φa |= τ1 × τ2 ≡ τ ′1 × τ ′2 ⇒ Φ1 ∧Φ2
alg-r-prod

∆;ψa;Φa |= τ1 ≡ τ ′1 ⇒ Φ1 ∆;ψa;Φa |= τ2 ≡ τ ′2 ⇒ Φ2

∆;ψa;Φa |= τ1 + τ2 ≡ τ ′1 + τ ′2 ⇒ Φ1 ∧Φ2
alg-r-sum

∆;ψa;Φa |= τ ≡ τ ′ ⇒ Φ

∆;ψa;Φa |= list[n]α τ ≡ list[n ′]α
′
τ ′ ⇒ Φ∧n

.
= n ′ ∧α .

= α ′
alg-r-list

i,∆;ψa;Φa |= τ ≡ τ ′ ⇒ Φ

∆;ψa;Φa |= ∀i
diff(t)
:: S. τ ≡ ∀i

diff(t ′)
:: S. τ ′ ⇒ ∀i :: S.Φ∧ t

.
= t ′
∀

i,∆;ψa;Φa |= τ ≡ τ ′ ⇒ Φ i 6∈ FV(Φa)
∆;ψa;Φa |= ∃i::S. τ ≡ ∃i::S. τ ′ ⇒ ∀i :: S.Φ

alg-r-∃

∆;ψa;Φa |= τ1 ≡ τ2 ⇒ Φ

∆;ψa;Φa |= � τ1 ≡ � τ2 ⇒ Φ
B-�

∆;ψa;Φa |=A A1 v A ′1 ⇒ Φ1 ∆;ψa;Φa |=A A ′1 v A1 ⇒ Φ ′1
∆;ψa;Φa |=A A2 v A ′2 ⇒ Φ2 ∆;ψa;Φa |=A A ′2 v A2 ⇒ Φ ′2
∆;ψa;Φa |= U (A1,A2) ≡ U (A ′1,A

′
2)⇒ Φ1 ∧Φ

′
1 ∧Φ2 ∧Φ

′
2

U

∆;ψa;Φa |= τ ≡ τ ′ ⇒ Φ

∆;ψa;Φa |= C ⊃ τ ≡ C ′ ⊃ τ ′ ⇒ C↔ C ′ ∧Φ
c-impl

∆;ψa;Φa |= τ ≡ τ ′ ⇒ Φ

∆;ψa;Φa |= C & τ ≡ C ′ & τ ′ ⇒ C↔ C ′ ∧Φ
c-prod

Figure 54: Algortihmic type equivalence rules
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13.2 soundness and completeness of birelcost

We prove that the algorithmic type system of BiRelCost is sound and
complete w.r.t. the type system of RelCost Core. Specifically, soundness
says that any inference or checking judgment provable in the algorith-
mic type system can be simulated in RelCost Core if the output con-
straints Φ are satisfiable. Dually, completeness says that any typeable
RelCost Core program can be sufficiently annotated (with types) to make
its type checkable in BiRelCost, with satisfiable output constraints. We
define |e| to be the function that erases typing annotations from a
BiRelCost expression e to yield a RelCost Core expression. Several cases
of its definition is shown in Figure 55; it is a homomorphic function.

|.| : Expression→ Expression

|n| = n

|()| = ()

|x| = x

|fix f(x).e| = fix f(x).|e|
|fixNC f(x).e| = fixNC f(x).|e|
|e1 e2| = |e1| |e2|
...
|(e : A,k, t)| = |e|

|(e : τ, t)| = |e|

Figure 55: Annotation erasure

Theorem 15 (Soundness of algorithmic typechecking).

1. Assume that∆;ψa;Φa;Ω ` e ↓A,k, t⇒ Φ and FIV(Φa,Ω,A,k, t) ⊆
dom(∆,ψa) and θa is a valid substitution for ψa such that
∆;Φa[θa] |= Φ[θa] holds. Then, ∆;Φa[θa];Ω[θa] `t[θa]k[θa]

|e| :ccc A[θa].

2. Assume that ∆;ψa;Φa;Ω ` e ↑ A ⇒ [ψ],k, t,Φ and FIV(Φa,Ω) ⊆
dom(∆,ψa) and θ and θa are valid substitutions for ψ and ψa such
that∆;Φa[θa] |= Φ[θθa] holds. Then,∆;Φa[θa];Ω[θa] `t[θθa]k[θ θa]

|e| :ccc A[θθa].

3. Assume that ∆;ψa;Φa; Γ ` e	 e ′ ↓ τ, t ⇒ Φ and FIV(Φa, Γ , τ, t) ⊆
dom(∆,ψa) and θa is a valid substitution for ψa such that
∆;Φa[θa] |= Φ[θa] holds. Then,∆;Φa[θa]; Γ [θa] ` |e|	 |e ′| . t[θa] :ccc τ[θa].
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4. Assume that ∆;ψa;Φa; Γ ` e	 e ′ ↑ τ ⇒ [ψ], t,Φ and FIV(Φa, Γ) ⊆
dom(∆,ψa) and θ and θa are valid substitutions for ψ and ψa such
that ∆;Φa[θa] |= Φ[θ θa] holds.
Then, ∆;Φa[θa]; Γ [θa] ` |e|	 |e ′| . t[θθa] :ccc τ[θθa].

Proof. By simultaneous induction on the given algorithmic typing deriva-
tions (shown in Appendix C.2).4040 FIV stands for free

index variables.
Theorem 16 (Completeness of algorithmic typechecking).

1. Assume that ∆;Φa;Ω `tk e :ccc A. Then, there exists an annotated term
e ′ such that ∆; ·;Φa;Ω ` e ′ ↓ A,k, t ⇒ Φ and ∆;Φa |= Φ and
|e ′| = e.

2. Assume that ∆;Φa; Γ ` e1 	 e2 . t :ccc τ. Then, there exist two anno-
tated terms e ′1, e

′
2 such that ∆; ·;Φa; Γ ` e ′1 	 e ′2 ↓ τ, t ⇒ Φ and

∆;Φa |= Φ and |e ′1| = e1 and |e ′2| = e2.

Proof. By simultaneous induction on the given RelCost Core typing deriva-
tions (shown in Appendix C.2).

13.3 inference of costs in checking mode

In BiRelCost’s checking and inference judgments, the cost follows the
same polarity as the type: whenever we can check (infer) the type, we
can also check (infer) the cost. This design choice is mainly motivated
by the fact that the type provided in the checking mode imposes some
restrictions on the cost of the program, making it natural to check the
cost along with the type. For instance, in alg-r-fix-↓ rule, the relative

cost of the function bodies, t ′, is already given in the type τ1
diff(t ′)−−−−→ τ2,

which is provided by the surrounding context in the checking mode.
Hence, when checking the bodies with the return type τ2, we can also
check that their relative cost is the given cost t ′. Another way to in-
terpret this would be to consider the translation of the effects to the
monadic setting. For instance, in such a translation, the effect anno-

tated relational type τ1
diff(t ′)−−−−→ τ2 is translated to the monadic type

τ1 → Mt ′ τ2, where Mt ′ is a cost-indexed monad. Then, the function
bodies would be checked with the given monadic type Mt ′ τ2, justify-
ing the alignment of the polarities.

We believe this is a principled way of aligning the polarity of costs
with types. Hence, in the preceding chapters, the theoretical develop-
ment assumes that the cost follows the same polarity as the type.
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Still, we find it instructive to sketch a formalization of the algorithmic
typing rules where the cost could be partially inferred in the checking
mode. The inference is not fully possible, since additional constraints
are needed to deal with the restriction on the costs imposed by the
given type. This alternative design aims to highlight the importance of
constraint-dependency of costs and trade-offs in generating existential
variables in the design of refinement type and effect systems.

As a starting point, we modify BiRelCost’s checking judgment to the
following form

∆;Φa; Γ ` e1 	 e2 ↓ τ⇒ [ψ], t,Φ

where unlike the type τ, which is given, the cost t is inferred. The addi-
tional output, ψ, contains freshly generated existential meta variables
that occur in this inferred cost t (similarly, we infer such a context ψ in
the inference judgment). Below, we discuss a few rules.

First, alg-r-fix-↓ rule of BiRelCost must be adjusted to the following
version:

∆;φa; f : τ1
diff(t ′)−−−−→ τ2, x : τ1, Γ ` e	 e ′ ↓ τ2 ⇒ [ψ], t ′′,Φ ′

Φ = ∃(ψ).Φ ′ ∧ t ′′6 t ′

∆;Φa; Γ ` fix f(x).e	 fix f(x).e ′ ↓ τ1
diff(t ′)−−−−→ τ2 ⇒ [·], 0,Φ

alg-r-fix-↓

where the inferred relative cost t ′′ for the function bodies must be no
more than t ′, the relative latent cost provided on the arrow type. A sim-
ilar additional constraint is needed for checking universally quantified
types.

Second, rules that pattern match on list types must be adjusted. For
instance, let us consider the skeleton of BiRelCost’s alg-u-caseL-↓ rule: 1

∆;Φa; Γ ` e	 e ′ ↑ list[n]α τ⇒ [· · ·], t,Φe
∆;n .

= 0∧Φa; Γ ` e1 	 e ′1 ↓ τ ′ ⇒ [· · · ], t1,Φ1
i,∆;Φ ′a;h : � τ, tl : list[i]α τ, Γ ` e2 	 e ′2 ↓ τ ′ ⇒ [· · · ], t2,Φ2
i,β,∆;Φ ′′a ;h : τ, tl : list[i]β τ, Γ ` e3 	 e ′3 ↓ τ ′ ⇒ [· · · ], t3,Φ3

tf = t+max(t1, t2, t3)

∆;Φa; Γ `
case e of nil → e1
| h ::NC tl → e2
| h ::C tl → e3

	
case e ′ of nil → e ′1
| h ::NC tl → e ′2
| h ::C tl → e ′3

↓ τ ′ ⇒ [· · · ], tf, · · ·
alg-r-caseL-↓

where we infer a cost ti for each branch of the case construct (i ∈
{1, 2, 3}). Can we claim that the total cost is tf = t +max(t1, t2, t3)?

1 Here, we have Φ ′a = n
.
= i+ 1∧Φa and Φ ′′a = n

.
= i+ 1∧α

.
= β+ 1∧Φa.
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If yes, we would have an advantage over the original rule where we
have to generate a fresh variable for the costs of the branches. Unfortu-
nately, the answer is no. Doing so would be unsound because we have
a constraint-dependent system. That means, the cost of each branch is
only valid under the respective assumption: the cost t1 is only valid if
Φa∧n

.
= 0 holds. By taking the maximum of the costs of the branches,

we would be ignoring the conditions in which the bounds are valid,
hence obtaining an unsound bound.

Instead, we have no choice but to generate a fresh cost variable t ′ for
the relative costs of the branches and make sure that for each branch,
the inferred cost is no more than t ′. Then, the total cost is t+ t ′, i. e.,
the sum of the inferred cost of the scrutinee and the yet-unknown cost
of the branches:

∆;Φa; Γ ` e	 e ′ ↑ list[n]α τ⇒ [ψ], t,Φe t ′ ∈ fresh(R)

∆;n .
= 0∧Φa; Γ ` e1 	 e ′1 ↓ τ ′ ⇒ [ψ1], t1,Φ1

i,∆;Φ ′a;h : � τ, tl : list[i]α τ, Γ ` e2 	 e ′2 ↓ τ ′ ⇒ [ψ2], t2,Φ2
i,β,∆;Φ ′′a ;h : τ, tl : list[i]β τ, Γ ` e3 	 e ′3 ↓ τ ′ ⇒ [ψ3], t3,Φ3

ψ ′ = t ′,ψ1,ψ2,ψ3 t16 t ′ t26 t ′ t36 t ′

∆;Φa; Γ `
case e of nil → e1
| h ::NC tl → e2
| h ::C tl → e3

	
case e ′ of nil → e ′1
| h ::NC tl → e ′2
| h ::C tl → e ′3

↓ τ ′ ⇒ [ψ ′], t+ t ′, · · ·
alg-r-caseL-↓

Moreover, since the total cost t+ t ′ now contains a freshly generated
meta-variable t ′, which must be passed to the surrounding context
by tracking an environment ψ in the checking mode (we would have
to also pass ψ1,ψ2,ψ3, i. e., all the freshly generated variables of the
branches). Contrast this to the original alg-r-caseL-↓ rule, where we
immediately quantify over the cost meta-variable t ′. The advantage of
local quantification is twofold: a) constraints can be potentially solved
locally when possible and b) scope of the eliminated existential variable
is also localized. Instead, in this revised case, by passing t ′ to the sur-
rounding context, we end up pushing all the existential variables up-
wards (outer), consequently making the existential elimination much
harder and constraint-solving less local. This suggests that aligning the
polarity of types and costs is better.
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We discuss one more observation: the above rule also embeds subef-
fecting which was present in BiRelCost’s alg-r-↑↓ rule. In the revised
version of alg-r-↑↓, there is no need for subeffecting:

∆;Φa; Γ ` e	 e ′ ↑ τ ′ ⇒ [ψ], t,Φ1 ∆;ψ,ψa;Φa |= τ ′ ≡ τ⇒ Φ2

∆;Φa; Γ ` e	 e ′ ↓ τ⇒ [ψ], t,Φ1 ∧Φ2
alg-r-↑↓

since the inferred cost in the premise can be directly passed to the
checking mode. Instead, subeffecting switches polarities, and can be
embedded in the alg-r-anno-↑ rule:

∆;Φa; Γ ` e	 e ′ ↓ τ⇒ [ψ], t ′,Φ FIV(τ, t) ∈ ∆
∆;Φa; Γ ` (e : τ, t)	 (e ′ : τ, t) ↑ τ⇒ [ψ], t,Φ∧ t ′6 t

alg-r-anno-↑

where the inferred cost t ′ in the premise must be smaller than the cost
t given in the annotation.

13.4 bidirectional type system for ducostit

Since type and effect systems of DuCostIt and RelCost are very simi-
lar, the key ideas behind our algorithmic technique can be directly ap-
plied to DuCostIt. Hence, we will not reiterate a similar algorithmic sys-
tem for DuCostIt. Instead, we briefly describe what changes are needed
for transforming RelCost’s algorithmic system and implementation to
DuCostIt’s.

In essence, many of DuCostIt’s typing and subtyping rules are sim-
pler than RelCost’s:

• In DuCostIt, we do not need asynchronous rules that relate two
different expressions. Hence, the corresponding asynchronous al-
gorithmic rules in BiRelCost can be omitted for DuCostIt, hereby
simplifying the typechecker and the implementation.

• In DuCostIt’s unary typing, we do not track lower bounds. Hence,
in the corresponding algorithmic version, we can omit lower bounds
in BiRelCost’s unary typing, hence simplifying the system further.

• Type grammars of DuCostIt and RelCost are almost identical ex-
cept the types of unary and binary closures. DuCostIt’s function
(and universally quantified) types do not include a lower bound
on the execution cost.

• As mentioned in Section 8.4, DuCostIt’s subtyping rules are almost
identical except that the rules→ �Ucp and ∀�Ucp in DuCostIt are
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stronger. Correspondingly, type equality and heuristic algorith-
mic subtyping for these rules need to reflect this change.
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∆;ψa;Φa;Ω ` e ↓ A,k, t⇒ Φ e checks against the unary input type
A and the minimum execution cost k and maximum execution cost t.
Finally, it generates the constraint Φ.

∆;ψa;Φa;Ω ` e ↑ A⇒ [ψ],k, t,Φ e synthesizes the unary out-
put type A, the minimum cost k and maximum cost t, where all
the newly generated existential variables are defined in ψ. Finally, it
generates the constraint Φ.

∆;ψa;Φa;Ω ` n ↑ int⇒ [.], 0, 0,> alg-u-n-↑

Ω(x) = A

∆;ψa;Φa;Ω ` x ↑ A⇒ [.], 0, 0,> alg-u-var-↑

∆;ψa;Φa;Ω ` () ↑ unit⇒ [.], 0, 0,> alg-u-unit-↑

∆;ψa;Φa;Ω ` e ↓ A1,k, t⇒ Φ ∆,ψa;Φa `A A2 wf

∆;ψa;Φa;Ω ` inl e ↓ A1 + A2,k, t⇒ Φ
alg-u-inl-↓

∆;ψa;Φa;Ω ` e ↓ A2,k, t⇒ Φ ∆,ψa;Φa `A A1 wf

∆;ψa;Φa;Ω ` inr e ↓ A1 + A2,k, t⇒ Φ
alg-u-inr-↓

∆;ψa;Φa;Ω ` e ↑ A1 + A2 ⇒ [ψ],ke, te,Φ1 k ′, t ′ ∈ fresh(R)
∆;k ′, t ′,ψ,ψa;Φa;Ω, x : A1 ` e1 ↓ A,k ′, t ′ ⇒ Φ2
∆;k ′, t ′,ψ,ψa;Φa;Ω,y : A2 ` e2 ↓ A,k ′, t ′ ⇒ Φ3

Φ ′ = ∃k ′, t ′ :: R.Φ2 ∧Φ3 ∧ k
.
= k ′ + ke + ccase ∧ t ′ + te + ccase

.
= t

∆;ψa;Φa;Ω ` case (e, x.e1,y.e2) ↓ A,k, t⇒ ∃(ψ).Φ1 ∧Φ ′
alg-u-case-↓

∆;ψa;Φa; f : A1
exec(k ′,t ′)−−−−−−→ A2, x : A1,Ω ` e ↓ A2,k ′, t ′ ⇒ Φ

∆;ψa;Φa;Ω ` fix f(x).e ↓ A1
exec(k ′,t ′)−−−−−−→ A2,k, t⇒ Φ∧ k

.
= 0∧ 0

.
= t

alg-u-fix-↓

∆;ψa;Φa;Ω ` e1 ↑ A1
exec(ke,te)−−−−−−→ A2 ⇒ [ψ],k1, t1,Φ1

k2, t2 ∈ fresh(R) ∆;k2, t2,ψ,ψa;Φa;Ω ` e2 ↓ A1,k2, t2 ⇒ Φ2
k = k1 + k2 + ke + capp t = t1 + t2 + te + capp

∆;ψa;Φa;Ω ` e1 e2 ↑ A2 ⇒ [k2, t2,ψ],k, t,Φ1 ∧Φ2
alg-u-app-↑

k1, t1,k2, t2 ∈ fresh(R) ∆;k1, t1,ψa;Φa;Ω ` e1 ↓ A1,k1, t1 ⇒ Φ1
∆;k2, t2,ψa;Φa;Ω ` e2 ↓ A1,k2, t2 ⇒ Φ2

Φ = ∃k1, t1 :: R.Φ1 ∧ ∃k2, t2 :: R.Φ2 ∧ t1 + t2
.
= t∧ k

.
= k1 + k2

∆;ψa;Φa;Ω ` 〈e1, e2〉 ↓ A1 × A2,k, t⇒ Φ
alg-u-prod-↓

∆;ψa;Φa;Ω ` e ↑ A1 × A2 ⇒ [ψ],k, t,Φ i ∈ {1, 2}
∆;ψa;Φa;Ω ` πi(e) ↑ Ai ⇒ [ψ],k, t,Φ

alg-u-proji-↑

Figure 56: BiRelCost unary algorithmic typing rules (Part 1)
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∆,ψa;Φ `A A wf

∆;ψa;Φa;Ω ` nil ↓ list[n]A,k, t⇒ n
.
= 0∧ k

.
= 0∧ 0

.
= t

alg-u-nil-↓

k1, t1,k2, t2 ∈ fresh(R)
i ∈ fresh(N) ∆;k1, t1,ψa;Φa;Ω ` e1 ↓ A,k1, t1 ⇒ Φ1

∆; i,k2, t2,ψa;Φa;Ω ` e2 ↓ list[i]A,k2, t2 ⇒ Φ2
Φ ′2 = (Φ2 ∧n

.
= (i+ 1)∧ k

.
= k1 + k2 ∧ t1 + t2

.
= t)

Φ = ∃k1, t1 :: R.(Φ1 ∧ ∃k2, t2 :: R.∃i :: N.Φ ′2)
∆;ψa;Φa;Ω ` consC(e1, e2) ↓ list[n]A,k, t⇒ Φ

alg-u-cons-↓

∆;ψa;Φa;Ω ` e ↑ list[n]A⇒ [ψ],k1, t1,Φ1 k2, t2 ∈ fresh(R)
∆;k2, t2,ψ,ψa;n .

= 0∧Φa;Ω ` e1 ↓ A ′,k2, t2 ⇒ Φ2
i ∈ fresh(N) Φ ′a = n

.
= i+ 1∧Φa

i :: N,∆;k2, t2,ψ,ψa;Φ ′a;h : A, tl : list[i]A,Ω ` e2 ↓ A ′,k2, t2 ⇒ Φ3
Φc = k

.
= (k1 + k2 + ccaseL)∧ t

.
= (t1 + t2 + ccaseL)

Φ ′ = Φ1 ∧ ∃k2, t2 :: R.((n .
= 0→ Φ2)∧ (∀i :: N.(n .

= i+ 1)→ Φ3)∧Φc)

∆;ψa;Φa;Ω `
case e of nil → e1
| h ::NC tl → e2
| h ::C tl → e3

↓ A ′,k, t⇒ ∃(ψ).Φ ′
alg-u-caseL-↓

i :: S,∆;ψa;Φa;Ω ` e ↓ A,ke, te ⇒ Φ

Φ ′ = (∀i :: S.Φ)∧ k
.
= 0∧ 0

.
= t

∆;ψa;Φa;Ω ` Λi.e ↓ ∀i
exec(ke,te)

:: S.A,k, t⇒ Φ ′
alg-u-iLam-↓

∆;ψa;Φa;Ω ` e ↑ ∀i
exec(ke,te)

:: S.A ′ ⇒ [ψ],k, t,Φ ∆ ` I :: S
∆;ψa;Φa;Ω ` e [I] ↑ A ′{I/i}⇒ [ψ],k+ ke[I/i], t+ te[I/i],Φ

alg-u-iApp-↑

∆;ψa;Φa;Ω ` e ↓ A{I/i},k, t⇒ Φ ∆ ` I :: S
∆;ψa;Φa;Ω ` pack e with I ↓ ∃i::S.A,k, t⇒ Φ

alg-u-pack-↓

∆;ψa;Φa;Ω ` e1 ↑ ∃i::S.A1 ⇒ [ψ],k1, t1,Φ1
k2, t2 ∈ fresh(R)

i :: S,∆;k2, t2,ψ,ψa;Φa; x : A1,Ω ` e2 ↓ A2,k2, t2 ⇒ Φ2
i 6∈ FV(Φa;Ω,A2,k2, t2)

Φc = k
.
= k1 + k2 + cunp ∧ t1 + t2 + cunp

.
= t

Φ = Φ1 ∧ ∃k2, t2 :: R.∀i :: S.Φ2 ∧Φc
∆;ψa;Φa;Ω ` unpack e1 as (x, i) in e2 ↓ A2,k, t⇒ ∃(ψ).Φ alg-u-unpack-↓

Υ(ζ) : A1
exec(ke,te)−−−−−−→ A2 k, t ∈ fresh(R)

∆;k, t,ψa;Φa;Ω ` e ↓ A1,k, t⇒ Φ

∆;ψa;Φa;Ω ` ζ e ↑ A2 ⇒ [k, t,ψ],k+ ke + cprimapp, t+ te + cprimapp,Φ
alg-u-primapp-↑

∆;ψa;Φ∧C;Ω ` e ↓ A,k, t⇒ Φ

∆;ψa;Φa;Ω ` e ↓ k, t,C & A⇒ C∧ (C→ Φ)
alg-u-c-andI-↓

Figure 57: BiRelCost unary algorithmic typing rules (Part 2)
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∆;ψa;Φa;Ω ` e1 ↑ C & A1 ⇒ [ψ],k1, t1,Φ1 k2, t2 ∈ fresh(R)
∆;k2, t2,ψ,ψa;Φ∧C; x : A1,Ω ` e2 ↓ A2,k2, t2 ⇒ Φ2

Φc = k
.
= (k1 + k2)∧ (t1 + t2)

.
= t

Φ ′ = ∃k2, t2 :: R.C→ Φ2 ∧Φc

∆;ψa;Φa;Ω ` clet e1 as x in e2 ↓ A2,k, t⇒ ∃(ψ).(Φ1 ∧Φ ′)
alg-u-c-andE-↓

∆;Φ∧C;Ω ` e ↓ A,k, t⇒ Φ

∆;ψa;Φa;Ω ` e ↓ C ⊃ A,k, t⇒ C→ Φ
alg-u-c-impI-↓

∆;ψa;Φa;Ω ` e ↑ C ⊃ A⇒ [ψ],k, t,Φ
∆;ψa;Φa;Ω ` celim⊃ e ↑ A⇒ [ψ],k, t,C∧Φ

alg-u-c-implE-↑

∆;ψa;Φa;Ω ` e1 ↑ A1 ⇒ [ψ],k1, t1,Φ1
k2, t2 ∈ fresh(R) ∆;k2, t2,ψ,ψa; x : A1,Ω ` e2 ↓ A2,k2, t2 ⇒ Φ2

Φ ′2 = Φ2 ∧ k
.
= (k1 + k2 + clet)∧ (t1 + t2 + clet)

.
= t

∆;ψa;Φa;Ω ` let x = e1 in e2 ↓ A2,k, t⇒ ∃(ψ).Φ1 ∧ ∃k2, t2 :: R.Φ ′2
alg-u-let-↓

∆;ψa;C∧Φa;Ω ` e1 ↓ A,k, t⇒ Φ1
∆;ψa;¬C∧Φa;Ω ` e2 ↓ A,k, t⇒ Φ2 ∆ ` C wf

Φ = C→ Φ1 ∧¬C→ Φ2

∆;ψa;Φa;Ω ` split (e1, e2) with C ↓ A,k, t⇒ Φ
alg-u-split-↓

∆;ψa;Φa |= ⊥
∆;ψa;Φa; Γ ` contra e ↓ A,k, t⇒ > alg-u-contra-↓

∆;ψa;Φa;Ω ` e ↑ A ′ ⇒ [ψ],k ′, t ′,Φ1
∆;ψ,ψa;Φa |=A A ′ v A⇒ Φ2

∆;ψa;Φa;Ω ` e ↓ A,k, t⇒ ∃(ψ).Φ1 ∧Φ2 ∧ t ′6 t∧ k6k ′
alg-↑↓

∆;ψa;Φa;Ω ` e ↓ A,k, t⇒ Φ ∆;Φa `A A wf FIV(A,k, t) ∈ ∆
∆;ψa;Φa;Ω ` (e : A,k, t) ↑ A⇒ [·],k, t,Φ

alg-u-anno-↑

∆;ψa;Φa;Ω ` e ↑ A ′ ⇒ [ψ],k ′, t ′,Φ1
∆;ψ,ψa;Φa |=A A ′ v A⇒ Φ2

∆;ψa;Φa;Ω ` e ↓ A,k, t⇒ ∃(ψ).Φ1 ∧Φ2 ∧ t ′6 t∧ k6k ′
alg-↑↓

∆;ψa;Φa;Ω ` e ↓ A,k, t⇒ Φ ∆;Φa `A A wf FIV(A,k, t) ∈ ∆
∆;ψa;Φa;Ω ` (e : A,k, t) ↑ A⇒ [·],k, t,Φ

alg-u-anno-↑

Figure 58: BiRelCost unary algorithmic typing rules (Part 3)
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I M P L E M E N TAT I O N A N D C A S E S T U D I E S

You think you know when you learn,
are more sure when you can write, even
more when you can teach, but certain
when you can program.

–Alan J. Perlis, “Epigrams on
programming” #116

I synopsis This chapter presents an implementation of BiRelCost’s
typechecker and then presents a case study in which we use our proto-
type implementation to typecheck a wide variety of example programs.
Finally, an experimental evaluation of the typechecker is presented.

We have implemented the bidirectional type checker described in
Chapter 13 as a standalone tool in OCaml1. Our type checker accepts
programs not in the elaborate, annotated syntax of RelCost Core, which
is rather inconvenient to use, but instead in the syntax of RelCost. Inter-
nally, it performs the RelCost to RelCost Core embedding of Chapter 12
using sound but incomplete heuristics to decide when to apply the non-
syntax-directed typing rules of RelCost, and a sound but incomplete
procedure for RelCost’s relational subtyping. The bidirectional imple-
mentation is sound in the sense of Theorem 59, and also complete in
the sense of Theorem 60, modulo the incompleteness of our heuristics.

In the following, we describe our heuristics, give an overview of
our bidirectional implementation, and present the results of an exper-
imental evaluation along with a detailed description of two examples
demonstrating how some of the heuristics are useful for type checking.
All the prior examples presented in Chapter 4 along with many addi-
tional examples are typechecked in this implementation. Throughout
this chapter, we give explanations for some decisions we made in the
implementation of BiRelCost.

1 The implementation and the examples are online at: https://github.com/
ezgicicek/bi_relcost
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14.1 heuristics

The heuristics we use to treat nondeterminism in RelCost’s typing and
relational subtyping rules are sound but incomplete. We describe some
of the current heuristics here.

1. When typing a function that takes an argument of type list[n]α τ,
we immediately apply the rule alg-r-split-↓ from Figure 52 with
C = (α = 0) to split cases on whether α = 0 or not. For the case
α = 0, we first try to complete the typing by invoking the alg-r-
nochange-↓ rule (if the two functions being typed are identical),
then we try invoking the alg-r-fix-↓ rule. This is because many re-
cursive list programs require this analysis (e. g.. mergesort). More-
over, the rule alg-r-split is invertible: Applying the rule does not
reduce the possibility of finding the proof.

2. When typing a pair of cons-ed lists, we try the algorithmic ana-
logues of both the rules r-cons1 and r-cons2 (rules alg-r-consC-
↓ and alg-r-consNC-↓ in Figure 51). If neither of the rules fails,
i.e. we are able to generate constraints under which they might
typecheck, we proceed by combining the resulting constraints via
disjunction. Otherwise, there are two cases: a) either both fail,
whence we output a type error without needing to solve any con-
straints, or b) one of them fails, whence we return the constraints
of the successful rule.

3. Specific RelCost relational subtyping rules that mention � are ap-
plied lazily at specific elimination points. For instance, in typing
a function application, if the applied expression’s inferred type is

� (τ1
diff(k)−−−→ τ2), we try to complete the typing by subtyping to

� τ1
diff(0)−−−→ � τ2 and τ1

diff(k)−−−→ τ2, in that order. A similar heuristic

is applied for type � (UA1
exec(k,t)−−−−−→ A2) so that the typing is com-

pleted by subtyping to �UA1
diff(0)−−−→ �UA2 and UA1

exec(k,t)−−−−−→ A2,
in that order.

4. We implement a sound but incomplete algorithmic procedure for
relational subtyping, which generates necessary constraints. Algo-
rithmic subtyping is only invoked in two places: a) for switching
from checking to inference mode (rule alg-r-↑↓) and b) for the al-
gorithmic counterpart of the nochange rule (rule alg-r-nochange-
↓ in Figure 52) which needs to check that all the free variables in
the context can be supertyped to their �-ed counterparts. Below,
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we list some of these subtyping rules (it is fairly easy to check
that these rules are sound):

∆;Φa |= � τ1 v � τ2 ⇒ Φ

∆;Φa |= � τ1 v �� τ2 ⇒ Φ
alg-D-�

∆;Φa |= τ1 v � τ2 ⇒ Φ1 ∆;Φa |= τ1 v τ2 ⇒ Φ2

∆;Φa |= � τ1 v � τ2 ⇒ Φ1 ∨Φ2
alg-B-�

∆;Φa |= (τ1)
↓� v τ2 ⇒ Φ

∆;Φa |= � τ1 v τ2 ⇒ Φ
alg-�

∆;Φa |= τ v τ ′ ⇒ Φ

∆;Φa |= list[n]α τ v list[n ′]α
′
τ ′ ⇒ n

.
= n ′ ∧α6α ′ ∧Φ

alg-list

∆;Φa |= � τ v τ ′ ⇒ Φ

∆;Φa |= list[n]α τ v � (list[n ′]α
′
τ ′)⇒ n

.
= n ′ ∧α .

= 0∧Φ
alg-list-�

(τ)↓� in the rule alg-� pushes the � constructor one-level down
into τ, in accordance with RelCost’s subtyping rules. For instance,

(τ1
diff(t)−−−→ τ2)

↓� = � τ1
diff(0)−−−→ � τ2, (τ1 × τ2)

↓� = � τ1 × � τ2
and (U (A1 × A2))

↓� = � (UA1) × � (UA2). The rule alg-�
corresponds to the following sound, admissible subtyping: � τ v
(τ)↓�.

5. We switch to the unary reasoning (rules alg-r-switch-↓ and alg-r-
switch-↑) only when it is absolutely necessary: when (a) eliminat-
ing expressions of the type UA, (b) checking a pair of expressions
at type UA, and (c) inferring a type for two structurally dissimilar
expressions.

Since there is no standard library of examples for relational cost anal-
ysis so far, we designed our heuristics based on examples that cover a
breadth of applications. Appendix D.2 lists all our examples, and our
heuristics suffice for all of them. More heuristics can be added if neces-
sary.

14.2 implementation of bidirectional rules

In the implementation, corresponding to BiRelCost’s relational type equal-
ity judgment, we have a subtyping judgment |= τ1 v τ2 ⇒ Φ that
makes use of the subtyping heuristics listed in Section 14.1. This judg-
ment and its unary counterpart |=A A1 v A2 ⇒ Φ can be imple-
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mented as recursive functions, with the following specifications. Here,
ctx = ∆;Φa.

subtyper(ctx, τ1, τ2) =




Φ if ctx |= τ1 v τ2 ⇒ Φ

error otherwise

subtype(ctx,A1,A2) =




Φ if ctx |=A A1 v A2 ⇒ Φ

error otherwise

Function subtyper (subtype) is defined by case analysis on the types
τ1 and τ2 (A1 and A2). Both functions output a constraint Φ, which, if
satisfied, implies that a subtyping derivation exists in RelCost.

The four BiRelCost judgments can be implemented as mutually recur-
sive functions. For instance, the two relational inference and checking
judgments are implemented as two functions, inferr and checkr, with
the following specifications. Here, ctx = ∆;ψa;Φa; Γ .

inferr(ctx, e1, e2) =




τ, t,Φ,ψ if ctx ` e1 	 e2 ↑ τ⇒ [ψ], t,Φ

error otherwise

checkr(ctx, e1, e2, τ, t) =




Φ if ctx ` e1 	 e2 ↓ τ, t⇒ Φ

error otherwise

Function inferr is defined by case analysis on the expressions e1 and
e2 whereas checkr is defined by case analysis on both the expressions
e1, e2 and the type τ. Both functions output a constraint Φ, which, if
satisfied, implies that a typing derivation exists in RelCost. In the case
of the inference judgment, the constraint Φ is existentially quantified
by all the variables in ψ.

Next, we explain how we solve the output constraint Φ.

14.3 constraint solving

In principle, we could directly pass the output constraint Φ to an SMT
solver that understands the domain of integers (for sizes) and real
numbers (for costs). However, the constraint typically contains many
existentially quantified variables which cannot be fully eliminated by
current SMT solvers.
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14.3.1 Existential elimination

To solve this problem, we wrote our own pre-processing pass that tries
to find substitutions for existentially quantified variables. For a con-
straint of the form ∃n.Φ, we look inside Φ to find sub-constraints of
the form n = I or n 6 I. In either case, I is candidate substitution for n.
We have to be careful that I does not contain variables that are quanti-
fied within Φ (else the scope of those variables is not respected). The
rules for existential variable elimination are shown in Figure 59.

We use the judgment find(i,Φ) ↓ I,Φ ′ to mean that finding a sub-
stitution for the index variable i in Φ results in an index term I and
a constraint Φ ′. Then, we can lift this to constraints with arbitrarily
nested existential variables using the judgment elim∃(Φ) ↓ Φ ′ which
means that eliminating all the existential variables in Φ results in a
constraint Φ ′.

The rules for existential elimination are not deterministic. Hence,
our implementation uses several heuristics in combination with a lazy
search mechanism with backtracking to try all candidate substitutions:
The implementation traverses the constraint top-down from the root
towards the leaves, finding candidate substitutions for existential quan-
tifiers it encounters. The priority is given to the rightmost constraint c2
in constraints of the form c1 ∧ c2 and c1 ∨ c2 (since we always append
arithmetic cost and type constraints to the end). For constraints of the
form i6 I and i .

= I, the priority is given to equality. As soon as a substi-
tution for existential variables is found, it is applied and the resulting
existential-free formula is sent to an SMT solver (described next). If the
SMT solver proves the formula, we are done. If it fails or times out,
our search backtracks, looking for the next candidate substitution. This
process is potentially expensive, but it terminates very quickly (in less
than 1s) on all examples we have tried.

14.3.2 Solving the constraints

To prove individual existential-free constraints, we invoke an SMT solver.
Specifically, we use Why3 [50], a common front-end for many SMT
solvers. Empirically, we have observed that only one SMT solver, Alt-
Ergo [20], can handle our constraints and, so our implementation uses
this solver behind Why3. Why3 provides libraries of lemmas for ex-
ponentiation, logarithms and iterated sums, which we use in some of
the examples. For typing programs that use divide-and-conquer over
lists (e.g., merge sort), we have to provide as an axiom one additional
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∆ ` find(i;Φ) ↓ (I;Φ ′) solves Φ for the index variable i and returns
in an index term I and a constraint Φ ′.
∆ ` elim∃(Φ) ↓ Φ ′ eliminates all the existential variables in Φ and

returns the resulting constraint Φ ′.

i ′,∆ ` find(i;Φ) ↓ (I;Φ ′)
∆ ` find(i; ∃i ′ :: S.Φ) ↓ (I;∃i ′ :: S.Φ ′)

find-∃

∆ ` find(i;Φ2) ↓ (I;Φ ′2)
∆ ` find(i;Φ1 → Φ2) ↓ (I;Φ1 → Φ ′2)

find-→

i 6∈ ∆
∆ ` find(i; I6 i) ↓ (I;>) find-61

i 6∈ ∆
∆ ` find(i; i6 I) ↓ (I;>) find-62

i 6∈ ∆
∆ ` find(i; I .

= i) ↓ (I;>) find-=1
i 6∈ ∆

∆ ` find(i; i .
= I) ↓ (I;>) find-=2

∆ ` find(i;Φ2) ↓ (I;Φ ′2) ? ∈ {∧,∨}

∆ ` find(i;Φ1 ?Φ2) ↓ (I;Φ1 ?Φ ′2)
find-?1

∆ ` find(i;Φ1) ↓ (I;Φ ′1) ? ∈ {∧,∨}

∆ ` find(i;Φ1 ?Φ2) ↓ (I;Φ ′1 ?Φ2)
find-?2

i ′,∆ ` find(i;Φ) ↓ (I;Φ ′)
∆ ` find(i; ∀i ′ :: S.Φ) ↓ (I;∀i ′ :: S.Φ ′)

find-∀

i,∆ ` elim∃(Φ) ↓ Φ ′ ∆ ` find(i;Φ ′) ↓ (I;Φ ′′) FIV(I) ⊆ ∆
∆ ` elim∃(∃i :: S.Φ) ↓ Φ ′′[I/i] elim-∃

i,∆ ` elim∃(Φ) ↓ Φ ′
∆ ` elim∃(∀i :: S.Φ) ↓ ∀i :: S.Φ ′

elim-∀

∆ ` elim∃(Φ1) ↓ Φ ′1 ∆ ` elim∃(Φ2) ↓ Φ ′2 ? ∈ {∧,∨}

∆ ` elim∃(Φ1 ?Φ2) ↓ Φ ′1 ?Φ ′2
elim-?

∆ ` elim∃(Φ2) ↓ Φ ′2
∆ ` elim∃(Φ1 → Φ2) ↓ Φ1 → Φ ′2

elim-→

Figure 59: The rules for eliminating existential variables
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lemma that solves a general, relevant recurrence related to costs. This
lemma is proven in the appendix (Lemma 62 in Appendix D.1).

14.4 case studies

In this section, we evaluate applicability of our bidirectional typecheck-
ing technique on several example programs. Since relational cost anal-
ysis is a new verification problem, there are yet no real-world appli-
cations or set of benchmarks we can use. Furthermore, CostML is a
research language that lacks many useful features for realistic appli-
cations (e. g. input-output, exceptions, state, etc.). Therefore, we have
chosen to evaluate the analysis and the typechecker using a small but
representative set of benchmarks that we have developed ourselves.

In the rest of this section, we first describe how our bidirectional
typechecker can typecheck two example programs using the heuristics
described in Section 14.1. Then, we present a list of benchmark pro-
grams along with an experimental evaluation.

We first list some conventions.

• Because our rules for typing fixpoints (e. g. r-fix) apply at types

such as τ1
diff(t)−−−→ τ2, but not at more general types ∀i

diff(t ′)
:: S. τ1

diff(t)−−−→ τ2,

a recursive function whose type should have been ∀i
diff(t ′)
:: S. τ1

diff(t)−−−→ τ2

may have to be given the type unitr
diff(0)−−−→ ∀i

diff(t ′)
:: S. τ1

diff(t)−−−→ τ2.
Its first argument is a dummy. When this happens, we explicitly
write the unitr type. A similar adjustment is necessary for unary
fixpoints as well.

• We write λx.e for fix f(x).e when f does not appear in e.

• We use pattern matching syntax for pairs and let bindings, which
is easily encoded:
e.g., λ(x,y). e , (λz. let x = π1z in let y = π2z in e).

• When the annotation t is omitted from types τ1
diff(t)−−−→ τ2 and

∀i
diff(t)
:: S. τ, it defaults to 0 (similarly for unary costs).

14.4.1 Heuristics illustrated

We explain how we type two examples—the standard list map function,
and the merge sort function—using our implementation. The goal of
this exercise is primarily to illustrate some of our heuristics.
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example (map) We describe how the map example from Chapter 3
type checks in BiRelCost.

Λ.fix map(f).Λ.Λ.λl. case l of nil → nil
| h :: tl→ cons(f h, map f[ ] [ ] tl)

Our aim is to type this function relative to itself at the following type:

∀t.(� (τ1
diff(t)−−−→ τ2))→ ∀n,α.list[n]α τ1

diff(t·α)−−−−→ list[n]α τ2 (5)

We start in the checking mode with the above type. Using rule alg-r-
iLam-↓, we introduce the index variable t into the context. We continue
in the checking mode using rule alg-r-fix-↓. Next, we add the function
f and the input list l to the typing context and the index variables n
and α to the sort context. For typechecking the pattern match on the
list l, we use the rule alg-r-caseL-↓. BiRelCost first infers that the type of
l is list[n]α τ1 using the rule r-var-↑. The nil-branch is straightforwardly
typechecked with 0 cost. We focus here on cons-branch, considering
the two cases where the heads of the two lists may differ or may not
differ (third and fourth promises in rule alg-r-caseL-↓). In both cases,
we aim to check that cons(f h, map f[ ] [ ] tl) can be given type list[n]α τ2
using the heuristic (2) for cons-ed lists.

In the first case where the heads of the two lists may not differ, we
have h : � τ1 and tl : list[i]α τ1, where n = i + 1 for some freshly-
generated meta variable i. Following heuristic (2), we try to type “f h”
in checking mode first with type � τ2 and then with type τ2 (corre-
sponding to the rules alg-r-consNC-↓ and alg-r-consC-↓). For the sake
of brevity, we focus on the former, which succeeds and generates con-
straints that are satisfiable.41 Since function applications (like “f h”) are41 The latter case also

succeeds here, but it
generates constraints

that cannot be
satisfied.

typed in inference mode, we switch from checking to inference mode
using the rule alg-r-↑↓. Then, we proceed to type the function applica-

tion “f h” in inference mode where we can infer that f : � (τ1
diff(t)−−−→ τ2).

However, the function f cannot be directly applied since it has a �-ed

type. At this point, using the heuristic (3), we subtype � (τ1
diff(t)−−−→ τ2)

to � τ1
diff(0)−−−→ � τ2. Then, we can type the argument h in the checking

mode with type � τ1 successfully and conclude that “f h” can be given
the type � τ2 with relative cost 0. Next, we aim to show that the tail
of the cons, i.e. “map f[ ] [ ] tl”, can be typed in checking mode with
type list[i ′]α τ2 and cost α · t for some i ′ such that n = i ′ + 1. As in the
head case, we use the rule alg-r-↑↓ to switch from checking to inference
mode and generate the constraint i ′ = i (which can be proved easily
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since n = i ′ + 1 = i+ 1). The rest of the typing can be concluded by
invoking the function and index term application rules multiple times.

In the second case where the heads of the two lists may differ, we
have h : τ1 and tl : list[i]β τ1, where n = i + 1 and α = β + 1 for
some i and β. Similar to above, we try to typecheck “f h” first at type
� τ2 and then at type τ2. This time, only the latter case succeeds and
generates satisfiable constraints. In this case, like above, the function
application “f h” is typed in inference mode, where we can infer that

f : � (τ1
diff(t)−−−→ τ2). However, this time, we subtype � (τ1

diff(t)−−−→ τ2) to

τ1
diff(t)−−−→ τ2 (again using heuristic (3)) and type the argument h in the

checking mode at type τ1. The total cost of the application is t, not 0.
The recursive call to map follows a similar reasoning as in the previous
case, but with cost β · t. Hence, the total cost is t+ β · t = (β+ 1) · t =
α · t, as required.

example (merge sort) Next, to illustrate how we use heuristics (1)
and (4), we consider merge sort, a divide and conquer algorithm which
has a somewhat nontrivial relational cost. The merge sort function,
msort, splits a list into two nearly equal-sized sublists using the func-
tion bsplit, recursively sorts each sublist and then merges the two
sorted sublists using the function merge. The relative cost of two runs
of msort with two input lists of length n that differ in at most α posi-

tions is Q(n,α) =
H∑
i=0
h(
⌈
2i

2

⌉
) · min(α, 2H−i), where H = dlog2(n)e. This

open-form expression lies in O(n · (1+ log2(α))).42 Next, we explain at 42 The analysis of
msort is similar to
bfold’s analysis
in Chapter 7. It is
shown in Lemma 64.

a high-level how this relative cost bound is typechecked bidirectionally.

fix msort(_).Λ.Λ.λl.case l of
nil → nil

| h1 :: tl1 → case tl1 of

nil → cons(h1, nil )
| _ :: _ → let r = bsplit ()[ ] [ ] l in

unpack r as r ′ in
clet r ′ as (z1, z2) in
merge ()[ ] [ ] (msort ()[ ] [ ] z1, msort ()[ ] [ ] z2)

First, let us assume that we can typecheck the helper functions bsplit
and merge at the following types. This typechecking has been done
with our implementation, but we do not explain its details here.

bsplit : � (unitr → ∀n,α::N. list[n]α τ
diff(0)−−−→

∃β::N.β 6 α & (list[
⌈n
2

⌉
]β τ × list[

⌊n
2

⌋
]α−β τ))
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merge : � (U (unit→ ∀n,m::N. (list[n] int × list[m] int)
exec(h(min(n,m)),h(n+m))−−−−−−−−−−−−−−−−→ list[n+m] int))

(Note the � outside the types; their significance will be clear soon).
Our aim is to typecheck msort relative to itself at the following type:

� (unitr → ∀n,α::N. list[n]α (U int)
diff(Q(n,α))−−−−−−−→ U (list[n] int))

We focus on the most interesting part where we call merge on the
results of the two recursive calls to msort. At this point, we have z1 :

list[
⌈
n
2

⌉
]β (U int) and z2 : list[

⌊
n
2

⌋
]α−β (U int) (from the type of bsplit).

Considering that only the calls to merge and msort incur additional
costs (all the remaining operations occur synchronously on both sides
and the relative cost of bsplit is 0 from its type), if we were to naively
establish the bound Q(n,α), we would have to show the following
inequality:

h(
⌈n
2

⌉
) +Q(

⌈n
2

⌉
,β) +Q(

⌊n
2

⌋
,α−β) 6 Q(n,α) (6)

where the cost h(
⌈
n
2

⌉
) = h(n) − h(min(

⌈
n
2

⌉
,
⌊
n
2

⌋
)) comes from the rel-

ative cost of merge. However, this inequality holds only when α > 0.
When α = 0, the right hand side is 0 whereas the left hand side is
h(
⌈
n
2

⌉
). Nevertheless, when α = 0, the two input lists do not differ at

all, so the relative cost of merge can be trivially established as 0 using
the nochange rule.

Consequently, the verification of merge’s body differs based on whether
α = 0 or not. In our implementation, this case analysis is provided for
by heuristic (1). As soon as the list l is introduced into the context,
we apply the algorithmic rule alg-r-split↓, introducing the two cases
α = 0 and α > 0. For the case α = 0, we immediately invoke the
rule alg-r-nochange↓, which requires us to show that all the free vari-
ables in the context have �-ed types. Since we know that the functions
merge, bsplit and msort are all �-ed, what remains to be shown is
that list[n]α τ1 v � (list[n]α τ1). Using the algorithmic subtyping rule
alg-list-� in heuristic (4), this can be shown when α = 0. For the case
α > 0, we proceed with the usual typing of the function body, which
eventually generates the satisfiable constraint (6).
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14.5 experimental evaluation

We have used our implementation to typecheck a set of programs,
including all the examples shown so far and additional ones in Ap-
pendix D.2. Some of the examples, such as the relational analysis of
merge sort (msort), have rather complex paper proofs. However, in all
cases, the total typechecking time (including existential elimination and
SMT solving) is less than 1s, suggesting that the approach is practical.
Table 1 shows the experimental results over a subset of our example
programs (our appendix lists all our example programs, including their
code and experimental results). A “-” indicates a negligible value. Our
experiments were performed on a 3.20GHz 4-core Intel Core i5-6500
processor with 16 GB of RAM.

We briefly describe the example programs in Table 1. Appendix D.2
contains the code and the types for all of the example programs.

list operations The programs map and filter are the usual list
map and filter functions. The program append takes two lists and
returns the first list appended to the second list. The program rev

reverses a list using an accumulating parameter. The program
flatten takes a list of lists and flattens them. The program zip

takes two lists of the same length and returns a list of pairs where
the projections are taken from the two lists. The program shuffle

takes a list and shuffles its elements deterministically by reversing
its tail at each recursive call. The benchmark foldCmp compares
the relative costs of standard fold functions foldr and foldl.

examples from Chapter 4 The program comp is a constant-time (0
relative cost) comparison function that checks the equality of two
passwords, represented as lists of bits. The program sam (square-
and-multiply) computes the positive powers of a number, repre-
sented as a list of bits. The program find compares two functions
that find a given element by scanning a list from head to tail and
tail to head, respectively. The program 2Dcount counts the num-
ber of rows of a matrix, represented as a list of lists in row-major
form, that satisfy a predicate p and contain a key x. The program
bsplit splits a list into two nearly equal length lists. The pro-
gram merge merges two sorted lists and the program msort is the
standard merge sort function.

additional examples The program ssort is the standard selection
sort function. The program bfold is the balanced fold function
explained in Chapter 7. The program appSum is a program that
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compares two implementations of summing over a list: one exact
and the other approximate.

In all cases except find, foldCmp and appSum, the goal of the analysis
is to find an upper bound on the relative cost of the same function as
its input changes. In find, foldCmp and appSum, we compare slightly
similar programs using also the asynchronous rules. In all example
programs, the bounds we obtain via type-checking are asymptotically
tight.

Benchmark Total
time

Type-
checking

Existential
elimination

Constraint
solving

map 0.11 - - 0.11

filter 0.13 - - 0.13

append 0.14 - - 0.13

rev 0.15 - - 0.15

flatten 0.06 - - 0.05

zip 0.13 - - 0.13

shuffle 0.14 - - 0.13

foldCmp 0.13 - - 0.12

comp 0.08 - - 0.07

sam 0.09 0.01 - 0.08

find 0.05 - - 0.04

2Dcount 0.06 - - 0.06

bsplit 0.17 - - 0.17

merge 0.12 - - 0.12

msort 0.40 0.01 0.02 0.36

bfold 0.77 - 0.01 0.77

appSum 0.10 - - 0.09

ssort 0.07 - - 0.07

Table 1: BiRelCost runtime on benchmarks. All times are in seconds.

annotation effort and usability In a traditional bidirectional
type system, the programmer’s annotation effort is limited to provid-
ing the eliminated type at every explicit β-redex and the type of every
top-level function definition in the program. In our setting, the burden
is similar, except that type annotations on functions also include a cost



14.5 experimental evaluation 165

(on the arrow). In all but one of the examples we have tried, annotations
are only necessary at each top-level function. One example has an ex-
plicit beta-redex (in the form of a let-binding) and needs an additional
annotation.

To give an idea of the annotation effort needed in our benchmarks,
Table 2 presents total number of lines of code in each benchmark pro-
gram along with the number of lines of type and cost annotations.43 43 For all benchmark

programs, if the two
related programs are
identical, we only
count the line
numbers of one.

Benchmark Total # of
lines

# of lines of
annotations

map 5 2

filter 7 2

append 6 2

rev 6 2

flatten 13 4

zip 8 2

shuffle 10 3

foldCmp 8 2

comp 8 2

sam 10 2

find 8 2

2Dcount 14 3

bsplit 10 2

merge 10 2

msort 33 6

bfold 32 6

appSum 14 1

ssort 18 4

Table 2: BiRelCost number of lines of benchmarks.

In our experience, the typechecker is quite usable and error report-
ing is generally useful. The prototype tool points out the location of
parsing and typechecking errors for majority of the cases quite accu-
rately except when there is an error in the constraint solving. We leave
improving this aspect to the future work.





15
R E L AT E D W O R K : B I D I R E C T I O N A L R E L AT I O N A L
C O S T A N A LY S I S

There is a lot of literature on type checking various combinations of
lightweight dependent types, effect systems, comonadic types, and sub-
typing. However, a distinctive feature of BiRelCost is that it combines
all these aspects in a relational setting with support for real numbers.
This chapter briefly surveys the closely related work in the following
two areas: refinement types and bidirectional typechecking.

15.1 dependent/refinement types

There is enormous literature on dependent types, which is witnessed
by the ever increasing list of dependently typed languages such as
Cayenne [12], Epigram [77], Omega [100], DML [105], Coq [19], Agda [82]
and Idris [23]. We do not attempt to survey this vast field but instead
we focus on the most relevant precursors to our work, namely refine-
ment types.

Like DML, we use a bidirectional typechecking algorithm and gen-
erate arithmetic constraints that must be satisfied for program to be
typed [105, 106]. However, there are several differences that we would
like to note. First, the index domain considered by DML is integers
with linear inequalities, whereas in BiRelCost, due to the costs, we addi-
tionally consider reals with non-linear inequalities. Second, DML lacks
comonadic types, costs, and relational types. The challenges we face in
BiRelCost come mostly from these components.

typechecking linear dependent types The DML approach
has also been used by [39] in combination with linear types for asymp-
totic complexity analysis. A type checker for this approach is presented
by [41]. Similarly, [51]’s DFuzz use a combination of linear types and
lightweight dependent types for reasoning about differential privacy. A
type checker for DFuzz is presented by [9] in which a program is type-
checked in two steps: first by inferring a type (along with the sensitiv-
ities) and then checking whether the resulting type is a subtype of the
desired type. Besides lightweight dependent types, these papers also
consider the comonadic modality of linear logic. This modality’s struc-
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tural properties are quite different from those of RelCost’s � . Moreover,
none of these papers consider relational types.

typecheckers with support for relational reasoning Some
other type systems establish relational properties of programs. For in-
stance, [14] consider a relational variant of a fragment of F∗ for the
verification of cryptographic implementations, while [15] consider a re-
lational refinement type system for differential privacy. However, some
of the key technical challenges of BiRelCost, including those that arise
from the interaction between unary and relational typing, as well as
costs, do not show up in these settings. Moreover, these systems use
verification condition generation, not bidirectionality.

15.2 bidirectional typechecking

The idea of bidirectional type systems appeared in literature early on.
The idea was popularized only more recently by Pierce and Turner [91].
The technique has shown great applicability—it has been used for de-
pendent types [36], indexed and refinement types [105, 106], intersec-
tion and union types [44, 48], higher-rank polymorphism [46, 47, 89],
contextual modal types [90] and most recently for effect handlers [74].
The design of BiRelCost is inspired by many of these papers but departs
in the technical design of the algorithmic type system due to new chal-
lenges offered by relational and modal types, and unary and relational
costs. In particular, in all the previous work on bidirectional typecheck-
ing, the reasoning principle is unary, i.e. a single program is checked
(inferred) in isolation. Moreover, almost all the previous work on bidi-
rectional typechecking does not track effects explicitly: e. g. DML sup-
ports effects like exceptions, but there is no corresponding effect system
for statically tracking the effects. One exception is the bidirectional ef-
fect system of [101], which uses bidirectional typechecking for gradual
unary effects. However, their end goal is different since they infer mini-
mal effects at compile time and then check dynamic effects at runtime.

15.2.1 Elimination of subtyping

Prior work has also studied methods of eliminating subtyping as a
way of simplifying type checking, e.g. [24, 37]. While the approach
this thesis takes is similar in motivation, the technical challenges are
quite different. The main difficulties in simplifying subtyping in our



15.2 bidirectional typechecking 169

work arise from the interaction of the modalities � and U with other
connectives.
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16
C O N C L U S I O N

I synopsis In this chapter, we conclude the thesis by reviewing our
contributions and pointing out several directions for further research.

This thesis introduces the problem of relational cost analysis—establishing
relative costs of programs, relationally. In particular, we demonstrate
four claims:

• Relational cost analysis can be understood and enhanced through
reasoning about relational properties of programs, which enables
verification that is more precise and local compared to a naive
unary cost analysis.

• Relational costs can be formalized syntactically through a combi-
nation of unary and relational refinement type and effect systems,
and semantically through a combination of unary and relational
logical relations.

• Relational cost analysis can be applied not only to compare pro-
gram costs but also in the setting of incremental computations
in which the underlying evaluation semantics is much more com-
plex.

• Relational costs can be verified through bidirectional typechecking,
which can be implemented.

The thesis supports these claims with the following three distinct
research artifacts:

• RelCost: a type theory for reasoning about relational costs. The ap-
proach enables proofs of relative cost bounds via relational refine-
ment type and effect systems, and scales to high-level languages
(with higher-order functions and recursion).

• DuCostIt: a type theory for reasoning about update times of in-
cremental programs. The approach enables proofs of dynamic
stability via an abstract change propagation semantics, relational
refinement types and effect systems.
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• BiRelCost: an algorithmic typechecking mechanism and a proto-
type implementation for verifying upper bounds on relative costs
(as well as incremental update times). The approach demonstrates
that bidirectional typechecking scales to relational reasoning in
the existence of unary and relational effects. Using the bidirec-
tional typechecker, programmers can verify relative cost bounds
with minimal annotations.

Combined together, these contributions make a significant step for-
ward in our understanding of verification of quantitative execution cost
bounds not only for one program but also for a pair of related programs. Still,
as with any static analysis technique, our relational cost analysis has
many limitations. Some of the limitations result from the trade-offs we
made initially to ensure the practicality of typechecking, and some can
be eliminated through further research and development.

16.1 future work

In this section, we point out several possible research directions for
improving relational cost analysis.

16.1.1 Embedding functional equivalences

We designed RelCost to reason about the execution cost differences
of programs relationally. Although our relational analysis is power-
ful enough to analyze a wide variety of examples, there are programs
whose analysis requires more involved reasoning such as the ability to
benefit from functional equivalences or the ability to relationally reason
about index terms. As an example, consider the sieve of Eratosthenes, a
standard algorithm for finding all prime numbers up to a given integer
n. There are several variations of this algorithm, but the main idea is
to start with a list of all natural numbers that are less than or equal to
n and then repeatedly drop all the composites until all the remaining
numbers are the primes. Below, we only show the top level function
erat that takes as input the list l containing the values [2, 3, . . . ,n]. The
function drop drops all multiples of its numerical first argument from
its second argument, which is a list of natural numbers.

fix erat(drop).λl.case l of
nil → nil

| h :: tl → cons(h, erat drop (drop h tl))
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Suppose that drop is implemented in two functionally equivalent ways
but the execution costs of these two versions are different. To establish
a precise bound on the relative cost of erat with respect to these two
implementations of drop, we would need to show that two versions of
drop are functionally equivalent. Such reasoning is not possible in Rel-
Cost. This is not an inherent limitation, but a design choice we made
to simplify the type system. We believe our analysis can be extended
to more expressive relations, by building on previous work on rela-
tional refinement types [14, 16], which can be used for capturing the
necessary invariants. However, the more involved the relational invari-
ants, the more difficult it is for non-experts to use our analysis and
perhaps to automate the type-checking. In this thesis, we have chosen
a lightweight form of relational reasoning that still yields a powerful
analysis.

16.1.2 Allowing relational reasoning on index terms

In RelCost’s and DuCostIt’s relational typing, size and cost refinements
are assumed to be identical for the two related programs. For the exam-
ples we have considered such an assumption is sufficient, but allowing
relations on index terms could enable more fine-grained analysis and
increase the set of examples we can analyze.

For instance, in the map example in Chapter 7, we assume that the
two lists have the same length, whereas an analysis that allows the two
lists to have different lengths should be possible without disrupting the
relational reasoning. Indeed, in the context of incremental computation,
such an extended analysis could be used to show that the dynamic
stability of map with insertions and deletions is still linear in the number
of changes.

16.1.3 Support for algebraic datatypes

A natural extension to both RelCost and DuCostIt is adding support for
user-defined algebraic datatypes. The main theoretical challenge is in
describing general size functions and expressing costs with them. Cur-
rently, size and changeability refinements in DuCostIt’s and RelCost’s
types are data-structure specific. Ideally, there should be a more generic
framework in which the programmer can specify a particular size met-
ric along with each algebraic data type. For instance, our types can be
easily extended with trees that are refined with the number of nodes.
Depending on the application, there could be cases where the depth of
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a tree is a useful size metric. In the non-relational setting, existing work
by Danner et al. considers such generalizations [43].

In RelCost’s semantic model, we have anticipated generalization to
recursive types—our step-indexed logical relations are capable of mod-
eling recursive types. However, we have not yet worked out the gener-
alization to recursive types with user-defined size or difference metrics.

16.1.4 Reasoning about non-termination and co-inductive types

In our relational cost framework, the bounds on the relative costs (as
well as incremental costs) are valid for terminating programs—our se-
mantic model is set up as such. In addition, the data structures we
consider are finite. However, reasoning about the relative cost of two
non-terminating programs can also be useful for interactive or reactive
programs like web servers. Extending our analysis to reason about non-
terminating programs (e. g. that operate on streams) is non-trivial, but
it is an interesting future direction. For such an extension, we anticipate
the use of bisimulation-based proof techniques that can reason about
co-inductive data structures.

16.1.5 Support for effectful programs

Another future direction is to extend our language and type theory to
effectful programs. Possible kinds of effects include state, probability
and exceptions. One of the challenges in supporting effectful programs
is tracking multiple effects at the same time. Recent research on exten-
sible algebraic effects and their lifting to type and effect systems are
promising directions [65].

16.1.6 Support for polymorphism

Polymorphism allows abstracting expressions over types and is a use-
ful feature for increasing code reuse. A prior version of DuCostIt, CostIt,
had support for polymorphism but we have not specifically addressed
polymorphism in RelCost and DuCostIt. Although the development of
relational cost analysis is orthogonal to polymorphism and technically
straightforward, it would be nonetheless useful to add support for poly-
morphism for pragmatic reasons.
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16.1.7 Different kinds of resources and support for state

Our relational cost model can also be adapted to track different kinds of
resources. For instance, our model can be modified to track the span or
work of parallel programs [62, 102]. Alternatively, the resource model
can be adapted to track resources other than execution time such as
space, energy usage or trace size of incremental programs. We believe
that adding support for modifiable state would also be useful in this
regard.

16.1.8 Different reduction strategies

Execution cost of a program, or resource usage, depends on the un-
derlying reduction strategy. In our setting, the underlying language
CostML has a call-by-value evaluation semantics. Consequently, the ef-
fects in our type and effect systems, DuCostIt and RelCost, can be inter-
preted in the monadic setting where the monad of the computational
lambda calculus is graded with the cost (effect) as in [64]. On the other
hand, in call-by-name languages, costs are often represented as coef-
fects which can be interpreted as the logical dual of a monad—-the
comonad—in conjunction with a linear type system [67]. One possible
direction is to investigate relational cost analysis in the context of a
call-by-name language. Another potential direction in investigation of
reduction strategies is to consider call-by-push value which subsumes
both call-by-value and call-by-name [72].

16.2 future implementations

The current prototype implementation of BiRelCost could be improved
in many ways. For instance, currently we collect all the constraints
generated during typechecking before we pass them to a constraint
solver. However, it might be possible to intertwine constraint genera-
tion with constraint solving. The advantages of this alternative design
are twofold. First, failure in solving the constraints can be detected ear-
lier. Second, error reporting would improve since the provenance can
be tracked to the exact location of failing constraints, which is not pos-
sible at the moment.
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A
A P P E N D I X F O R RELCOST

In this chapter, we first describe the necessary definitions, lemmas and the-
orems for proving the soundness of the RelCost’s unary and binary (rela-
tional) typing with respect to the abstract cost semantics.

We use some abbreviations throughout. STS stands for “suffices to show",
TS stands for “to show", and RTS stands for “remains to show".

∆ ` τ wf Relational type τ is well-formed.

∆ `A A wf Type A is well-formed.

∆ ` unitr wf
wf-unit

∆ ` intr wf
wf-int

∆ ` τ1 wf ∆ ` τ2 wf
∆ ` τ1 × τ2 wf

wf-prod
∆ ` τ1 wf ∆ ` τ2 wf

∆ ` τ1 + τ2 wf
wf-sum

∆ ` τ1 wf ∆ ` τ2 wf ∆ ` t :: R

∆ ` τ1
diff(t)−−−→ τ2 wf

wf-fun

∆ ` n :: N ∆ ` α :: N ∆ ` τ wf
∆ ` list[n]α τ wf

wf-list

i :: S,∆ ` τ wf i :: S,∆ ` t :: R

∆ ` ∀i
diff(t)
:: S. τ wf

wf-∀ i :: S,∆ ` τ wf
∆ ` ∃i::S. τ wf

wf-∃

∆ `A A1 wf ∆ `A A2 wf

∆ ` U (A1,A2) wf
wf-U

∆;Φ ` τ wf
∆ ` � τ wf wf-box

∆ ` C wf ∆;C∧Φ ` τ wf
∆ ` C ⊃ τ wf wf-C⊃

∆ ` C wf ∆;C∧Φ ` τ wf
∆ ` C & τ wf

wf-C&

Figure 60: Well-formedness of relational types
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∆ `A A wf Type A is well-formed.

∆ `A unit wf
wf-u-unit

∆ `A int wf
wf-u-int

∆ `A A1 wf ∆ `A A2 wf

∆ `A A1 × A2 wf
wf-u-prod

∆ `A A1 wf ∆ `A A2 wf

∆ `A A1 + A2 wf
wf-u-sum

∆ `A A1 wf ∆ `A A2 wf ∆ ` k :: R ∆ ` t :: R

∆ `A A1
exec(k,t)−−−−−→ A2 wf

wf-u-fun

∆ ` n :: N ∆ `A A wf

∆ `A list[n]A wf
wf-u-list

i :: S,∆ `A A wf i :: S,∆ ` k :: R i :: S,∆ ` t :: R

∆ `A ∀i
exec(k,t)

:: S.A wf

wf-u-∀

i :: S,∆ `A A wf

∆ `A ∃i::S.A wf
wf-u-∃ ∆ ` C wf ∆;`A A wf

∆ `A C ⊃ A wf
wf-u-C⊃

∆ ` C wf ∆;`A A wf

∆ `A C & A wf
wf-u-C&

Figure 61: Well-formedness of types

∆ ` C wf

∆ ` I1 :: S ∆ ` I2 :: S
S ∈ {N, R}

∆ ` I1<I2 wf
wf-cs <

∆ ` I1 :: S ∆ ` I2 :: S
S ∈ {N, R}

∆ ` I1 .
= I2 wf

wf-cs .
=

∆ ` C wf

∆ ` ¬C wf
wf-cs ¬

Figure 62: Constraint well-formedness
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a.1 relcost lemmas

Lemma 17 (Value evaluation). v ⇓0,0 v

Proof. Proof is by induction on the value term v.

Lemma 18 (Value interpretation containment). The following hold.

1. (m, v1, v2) ∈ LτMv then (m, v1, v2) ∈ LτM0ε.

2. (m, v) ∈ JAKv then (m, v) ∈ JAK0,0ε .

Proof of (1). Assume that (m, v1, v2) ∈ LτMv (?).

TS: (m, v1, v2) ∈ LτM0ε.

Following the definition of LτM0ε, and assume that (v1 ⇓0,0 v1 ∧ 0 < m) (cost

and resulting value obtained by Lemma 17).

Then, we can immediately show

1. v2 ⇓0,0 v2 by Lemma 17

2. 0− 0 6 0 is trivially true.

3. (m− 0, v1, v2) ∈ LτMv follows from the main assumption (?).

Proof of (2). Assume that (m, v) ∈ JAKv (?).

TS: (m, v) ∈ JAK0,0ε .

Following the definition of JAK0,0ε ,assume that v ⇓0,0 v (cost and the result-

ing value obtained by Lemma 17) and 0 < m.

Then, we can immediately show

1. 0 6 0 6 0

2. (m− 0, v) ∈ JAKv which follows from the assumption (?).

Lemma 19 (Value Projection). The following holds.

1. If (m, v1, v2) ∈ LτMv then ∀j.(j, v1) ∈ J|τ|1Kv and (j, v2) ∈ J|τ|2Kv.



184 appendix for relcost

2. If (m, δ1, δ2) ∈ GLΓM then ∀j.(j, δ1) ∈ GJ|Γ |1K and (j, δ2) ∈ GJ|Γ |2K.

Proof. Proof of statement (1) is by induction on LτMv. Proof of statement (2)

follows by proof of (1).

Lemma 20 (Downward Closure). The following hold.

1. If (m, v1, v2) ∈ LτMv and m ′ 6 m, then (m ′, v1, v2) ∈ LτMv

2. If (m, v) ∈ JAKv and m ′ 6 m, then (m ′, v) ∈ JAKv

3. If (m, e1, e2) ∈ LτMtε and m ′ 6 m, then (m ′, e1, e2) ∈ LτMtε

4. If (m, e) ∈ JAKk,t
ε and m ′ 6 m, then (m ′, e) ∈ JAKk,t

ε

5. If (m, δ1, δ2) ∈ GLΓM and m ′ 6 m, then (m ′, δ1, δ2) ∈ GLΓM

6. If (m,γ) ∈ GJΩK and m ′ 6 m, then (m ′,γ) ∈ GJΩK

Proof. (1,3) and (2,4) are proved simultaneously by induction on τ. (5,6) fol-

lows from (1,2).

We just show the proofs of statement (3) and (4) below.

Proof of statement (3). Assume that (m, e1, e2) ∈ LτMtε and m ′ 6 m.

TS: (m ′, e1, e2) ∈ LτMtε.

By unrolling its definition, assume that e1 ⇓c1,r1 v1 (?) and e2 ⇓c2,r2 v2 (??)

and c < m ′ (�).
By (�) and m ′ 6 m, we can show that c < m (��).
Then, we can unroll the main assumption with (?), (??) and (��) to get

a) r1 − r2 6 t
b) (m− c, v1, v2) ∈ LτMv

Then, we can conclude as follows

1. By a)

2. By IH 2 on b) using m ′ 6 m, we get (m ′ − c, v1, v2) ∈ LτMv.
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Proof of statement (4). Assume that (m, e) ∈ JAKk,t
ε and m ′ 6 m.

TS: (m ′, e) ∈ JAKk,t
ε .

By unrolling its definition, assume that e ⇓c,r v (?) and c < m ′ (�).
By (�) and m ′ 6 m, we can show that c < m (��).
Then, we can unroll the main assumption with (?) and (��) to get

a) k 6 r 6 t
b) (m− c, v) ∈ JAKv

Then, we can conclude as follows

1. By a)

2. By IH 2 on b) using m ′ 6 m, we get (m ′ − c, v) ∈ JAKv.

Lemma 21 (Subtyping Soundness). The following hold.

1. If ∆;Φ |= τ v τ ′ and σ ∈ DJ∆K and (m, v, v ′) ∈ LστMv, then (m, v, v ′) ∈
Lστ ′Mv.

2. If ∆;Φ |=A A v A ′ and σ ∈ DJ∆K and (m, v) ∈ JσAKv, then (m, v) ∈
JσA ′Kv.

3. If ∆;Φ |= τ v τ ′ and σ ∈ DJ∆K and (m, e, e ′) ∈ LστMtε and t 6 t ′, then

(m, e, e ′) ∈ Lστ ′Mt
′
ε .

4. If ∆;Φ |=A A v A ′ and σ ∈ DJ∆K and (m, e) ∈ JσAKk,t
ε and k ′ 6 k and

t 6 t ′, then (m, e) ∈ JσA ′Kk
′,t ′
ε .

5. If ∆;Φ |= τ v τ ′ and σ ∈ DJ∆K and ∀i ∈ {1, 2}. (m, v) ∈ J|στ|iKv, then

(m, v) ∈ J|στ ′|iKv.

6. If ∆;Φ |= τ v τ ′ and σ ∈ DJ∆K and ∀i ∈ {1, 2}. (m, e) ∈ J|στ|iK
k,t
ε and

k ′ 6 k and t 6 t ′, then (m, e) ∈ J|στ ′|iK
k ′,t ′
ε .

Proof. Statements (1),(2) and (5) are proven simultaneously by induction on

the subtyping derivation. We first show the proof of statements (3), (4) and

(6) that pertain to expression relations.
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Proof of Item 3. Assume that ∆;Φ |= τ v τ ′ and σ ∈ DJ∆K and

(m, e, e ′) ∈ LστMtε and t 6 t ′.
TS: (m, e, e ′) ∈ Lστ ′Mt

′
ε

Assume that

a) e ⇓c,r v
b) e ′ ⇓c ′,r ′ v ′

c) c < m

By unfolding the assumption (m, e, e ′) ∈ LστMtε using (a-c), we obtain

d) r− r ′ 6 t
e) (m− c, v, v ′) ∈ LστMv

We can conclude as follows:

1. Since r − r ′ 6 t from d) and t 6 t ′ from the assumption, we get

r− r ′ 6 t ′.

2. By IH 1 on the main assumption using e), we get (m− c, v, v ′) ∈ Lστ ′Mv.

Proof of Item 4. Assume that ∆;Φ |= A v A ′ and σ ∈ DJ∆K and

(m, e) ∈ JσAKk,t
ε and k ′ 6 k and t 6 t ′.

TS: (m, e) ∈ JσA ′Kk
′,t ′
ε .

Assume that

a) e ⇓c,r v
b) c < m

By unfolding the main assumption (m, e) ∈ JσAKk,t
ε with (a-b), we get

c) k 6 r 6 t
d) (m− c, v) ∈ JσAKv

We can conclude as follows:

1. Since k ′ 6 k and t 6 t ′ (from the assumption) and k 6 r 6 t (from

(c)), we get k ′ 6 r 6 t ′.
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2. By IH 2 on the main assumption using d).

Proof of Item 6. Assume that ∆;Φ |= τ v τ ′ and σ ∈ DJ∆K and

(m, e) ∈ J|στ|iK
k,t
ε and k ′ 6 k and t 6 t ′.

TS: (m, e) ∈ J|στ ′|iK
k ′,t ′
ε

Assume that

a) e ⇓c,r v
b) c < m

By unfolding the main assumption (m, e) ∈ J|στ|iK
k,t
ε with (a-b), we get

c) k 6 r 6 t
d) (m− c, v) ∈ J|στ|iKv

We can conclude as follows:

1. Since k ′ 6 k and t 6 t ′ (from the assumption) and k 6 r 6 t (from

(a)), we get k ′ 6 r 6 t ′.

2. By IH 5 on the main assumption using d).

Proof of Item 1. Proof is by induction on the subtyping derivation.

Case:
∆;Φa |= τ ′1 v τ1 ∆;Φa |= τ2 v τ ′2 ∆;Φa |= t 6 t ′

∆;Φa |= τ1
diff(t)−−−→ τ2 v τ ′1

diff(t ′)−−−−→ τ ′2

r-→ diff

Assume that σ ∈ DJ∆K.

We have

(m, fix f(x).e, fix f(x).e ′) ∈ Lστ1
diff(σt)−−−−→ στ2Mv (1)

TS: (m, fix f(x).e, fix f(x).e ′) ∈ Lστ ′1
diff(σt ′)−−−−−→ στ ′2Mv.

There are two cases to show.



188 appendix for relcost

subcase 1: Assume that j < m and (j, v, v ′) ∈ Lστ ′1Mv.

STS: (j, e[v/x, (fix f(x).e)/f], e ′[v ′/x, (fix f(x).e ′)/f]) ∈ Lστ ′2M
σt ′
ε .

By IH 1 on (j, v, v ′) ∈ Lστ ′1Mv using the first premise, we get

(j, v, v ′) ∈ Lστ1Mv (2)

By unrolling (eq. (1)) with (eq. (2)) using j < m, we get

(j, e[v/x, (fix f(x).e)/f], e ′[v ′/x, (fix f(x).e ′)/f]) ∈ Lστ2Mσtε (3)

By Assumption 25 on the third premise, we get σt 6 σt ′.
We conclude by applying IH 3 to (eq. (3)) using the second premise

and σt 6 σt ′.

subcase 2: STS: ∀j.(j, fix f(x).e) ∈ J|στ ′1|1
exec(0,∞)−−−−−→ |στ ′2|1Kv ∧ (j, fix f(x).e ′) ∈

J|στ ′1|2
exec(0,∞)−−−−−→ |στ ′2|2Kv.

Pick j.

We just show the first part, the second one is similar.

Pick j ′ and assume that

j ′ < j (4)

(j ′, v) ∈ J|στ ′1|1Kv (5)

STS: (j ′, e[v/x, (fix f(x).e)/f]) ∈ J|στ ′2|1K
0,∞
ε .

By IH 5 on (eq. (5)) using the first premise, we get

(j ′, v) ∈ J|στ1|1Kv (6)

By unrolling the second part of the definition of (eq. (1)), we get

∀j.(j, fix f(x).e) ∈ J|στ1|1
exec(0,∞)−−−−−→ |στ2|1Kv (7)
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Instantiating eq. (7) with j ′ + 1, we get

(j ′ + 1, fix f(x).e) ∈ J|στ1|1
exec(0,∞)−−−−−→ |στ2|1Kv (8)

Then, by unrolling the definition of (eq. (8)) with (eq. (6)) and

(eq. (4)) using j ′ < j ′ + 1, we get

(j ′, e[v/x, (fix f(x).e)/f]) ∈ J|στ2|1K0,∞ε (9)

We can conclude by IH 6 on the second premise using (eq. (9)).

Case:
∆;Φ |= U (A1

exec(k,t)−−−−−→ A2,A ′1
exec(k ′,t ′)−−−−−−→ A ′2) v U (A1,A ′1)

diff(t−k ′)−−−−−−→ U (A2,A ′2)
r-

→ execdiff

Assume that σ ∈ DJ∆K.

We have

(m, fix f(x).e, fix f(x).e ′) ∈ LU (σA1
exec(σk,σt)−−−−−−→ σA2,σA ′1

exec(σk ′,σt ′)−−−−−−−→ σA ′2)Mv

(1)

TS: (m, fix f(x).e, fix f(x).e ′) ∈ LU (σA1,σA ′1)
diff(σt−σk ′)−−−−−−−→ U (σA2,σA ′2)Mv.

There are two cases to show.

subcase 1: Assume that

a) j < m

b) (j, v, v ′) ∈ LU (σA1,σA ′1)Mv

STS: (j, e[v/x, (fix f(x).e)/f], e ′[v ′/x, (fix f(x).e ′)/f]) ∈
LU (σA2,σA ′2)M

σt−σk ′
ε .

Assume that

c) e[v/x, (fix f(x).e)/f] ⇓cr,rr vr
d) e ′[v ′/x, (fix f(x).e ′)/f] ⇓c ′r,r ′r v ′r
e) cr < j
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STS 1: rr − r ′r 6 σt− σk ′

STS 2: (m− cr, vr, v ′r) ∈ LU (σA2,σA ′2)Mv.

We first show the second statement, the first one is shown later.

Then, it suffices to show ∀j.(j, vr) ∈ JσA2Kv ∧ (j, v ′r)JσA ′2Kv.

Pick j.

RTS1 : (j, vr) ∈ JσA2Kv
RTS2 : (j, v ′r)JσA ′2Kv
By (eq. (1)), we know that

∀j ′.(j ′, fix f(x).e) ∈ LA1
exec(k,t)−−−−−→ A2Mv ∧ (j ′, fix f(x).e ′) ∈ JA ′1

exec(k ′,t ′)−−−−−−→ A ′2Kv

(2)

By instantiating j ′ in (eq. (2)) with j+ cr + 2, we get

(j+ cr + 2, fix f(x).e) ∈ LσA1
exec(σk,σt)−−−−−−→ σA2Mv (3)

By unrolling the definition of b) and instantiating the universal

quantifier with j+ cr + 1, we get

(j+ cr + 1, v) ∈ JσA1Kv (4)

Then, unrolling the definition of (eq. (3)) with (eq. (4)) using j+

cr + 1 < j+ cr + 2, we get

(j+ cr + 1, e[v/x, fix f(x).e/f]) ∈ JσA2Kσk,σt
ε (5)

By unrolling the definition of (eq. (5)) using (c) and

cr < j+ cr + 1 (obtained by (e)), we get

f) σk 6 rr 6 st
g) (j+ 1, vr) ∈ JσA2Kv
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Next, we instantiate j ′ in the second part of (eq. (2)) with j+c ′r+2,

we get

(j+ c ′r + 2, fix f(x).e) ∈ LσA ′1
exec(σk ′,σt ′)−−−−−−−→ σA ′2Mv (6)

By unrolling the definition of b) and instantiating the universal

quantifier with j+ c ′r + 1, we get

(j+ c ′r + 1, v
′) ∈ JσA ′1Kv (7)

Then, unrolling the definition of (eq. (6)) with (eq. (7)) using j+

c ′r + 1 < j+ c
′
r + 2, we get

(j+ c ′r + 1, e
′[v ′/x, fix f(x).e ′/f]) ∈ JσA ′2K

σk ′,σt ′
ε (8)

By unrolling the definition of (eq. (8)) using (d), c ′r < j+ c ′r + 1,

we get

h) σk ′ 6 r ′r 6 σt ′

i) (j+ 1, v ′r) ∈ JσA ′2Kv

Now, we can conclude as follows

1. By f) and h), we get rr − r ′r 6 σt− σk ′

2. By downward closure (Lemma 20) on g) using

j 6 j+ 1

We get (j, v ′r) ∈ JσA2Kv
By downward closure (Lemma 20) on i) using

j 6 j+ 1

We get (j, v ′r) ∈ JσA ′2Kv These conclude this subcase.
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subcase 2: STS: ∀j.(j, fix f(x).e) ∈ JσA1
exec(0,∞)−−−−−→ σA2Kv ∧ (j, fix f(x).e ′) ∈

JσA ′1
exec(0,∞)−−−−−→ σA ′2Kv.

Pick j and assume that for some j ′

j ′ < j (9)

(j ′, v) ∈ JσA1Kv (10)

STS: (j ′, e[v/x, (fix f(x).e)/f]) ∈ JσA2K
0,∞
ε .

By unrolling second part of (eq. (1))’s definition and instantiating

it with j, we have

(j, fix f(x).e) ∈ LσA1
exec(σk,σt)−−−−−−→ σA2Mv (11)

Unrolling this with (eq. (9)) and (eq. (10)), we get

(j ′, e[v/x, (fix f(x).e)/f]) ∈ JσA2Kσk,σt
ε (12)

We can conclude by applying IH 4 to (eq. (12)) using 0 6 σk and

σt 6∞.

Case:
∆;Φ |= � (τ1

diff(t)−−−→ τ2) v � τ1
diff(0)−−−−→ � τ2

r-→ �diff

Assume that σ ∈ DJ∆K.

We have

(m, fix f(x).e, fix f(x).e) ∈ L� (στ1
diff(σt)−−−−→ στ2)Mv (1)

TS: (m, fix f(x).e, fix f(x).e) ∈ L�στ1
diff(0)−−−→ �στ2Mv.

There are two cases:

subcase 1: Assume that j < m and (j, v, v) ∈ L�στ1Mv (we have the same

values due to box).
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STS: (j, e[v/x, (fix f(x).e)/f], e[v/x, (fix f(x).e)/f]) ∈ L�στ2M0ε.
Assume that

a) e[v/x, (fix f(x).e)/f] ⇓cr,rr vr
b) e[v/x, (fix f(x).e)/f] ⇓cr,rr vr
c) cr < m

By unrolling first part of the definition of (eq. (1)) with j < m and

(j, v, v) ∈ Lστ1Mv , we get

(j, e[v/x, (fix f(x).e)/f], e[v/x, (fix f(x).e)/f]) ∈ Lστ2Mσtε (2)

Unrolling the definition of (eq. (2)) with (a-c), we get

d) rr − rr 6 σt
e) (m− cr, vr, vr) ∈ Lστ2Mv

We can conclude as follows

1. Trivially rr − rr 6 0

2. By e), we get (m− cr, vr, vr) ∈ L�στ2Mv

subcase 2: STS: ∀j.(j, fix f(x).e) ∈ J|�στ1
diff(0)−−−→ �στ2|1Kv ≡ J|στ1|1

exec(0,∞)−−−−−→
|στ2|1Kv.

Immediately follows by unrolling the second part of the defini-

tion of (eq. (1)) since we have |� (στ1
diff(0)−−−→ στ2)|1 = |�στ1

diff(0)−−−→
�στ2|1.

Case:
∆;Φ |= � τ v τ

T

Assume that σ ∈ DJ∆K.

We have

(m, v1, v2) ∈ L�στMv (1)

TS: (m, v1, v2) ∈ LστMv.

From eq. (1), we know that
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a) (m, v1, v2) ∈ LστMv
b) v1 = v2

We can immediately conclude by a).

Case:
∆;Φa |= τ1 v τ2

∆;Φa |= � τ1 v � τ2
B-�

Assume that σ ∈ DJ∆K.

We have

(m, v1, v2) ∈ L�στ1Mv (1)

TS: (m, v1, v2) ∈ L�στ2Mv.
From eq. (1), we know that

a) (m, v1, v2) ∈ Lστ1Mv
b) v1 = v2

By IH 1 on a), we get (m, v1, v2) ∈ Lστ2Mv (?).

Then, we can conclude by (?) and b).

Case:
∆;Φ |= τ v U (|τ|1, |τ|2)

W

Assume that σ ∈ DJ∆K.

We have

(m, v1, v2) ∈ LστMv (1)

TS: (m, v1, v2) ∈ LU (|στ|1, |στ|2)Mv.

Proof is by induction on τ.

We show a few representative cases below.

subcase 1: (m, v1, v2) ∈ LU (A1,A2)Mv (?)

Since στ = U (A1,A2) = U (|στ|1, |στ|2), we immediately conclude

by (?).

subcase 2: (m, inl v1, inl v2) ∈ Lστ1 + στ2Mv (?)

TS: (m, inl v1, inl v2) ∈ LU (|στ1 + στ2|1, |στ1 + στ2|2)Mv.
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STS: ∀j.(j, inl v1) ∈ J|στ1 + στ2|1Kv ∧ (j, inl v2) ∈ J|στ1 + στ2|2Kv.

By unrolling their definition and noting that |στ1 + στ2|i =

|στ1|i + |στ2|i ∀i ∈ {1, 2},

RTS:

∀j.(j, v1) ∈ J|στ1|1Kv ∧ (j, v2) ∈ J|στ1|2Kv (2)

By unrolling the definition of (?), we have (m, v1, v2) ∈ Lστ1Mv.

By IH 1, we get (m, v1, v2) ∈ LU (|στ1|1, |στ1|2)Mv which is equiva-

lent to (eq. (2)).

subcase 3: (m, fix f(x).e1, fix f(x).e2) ∈ Lστ1
diff(k)−−−→ στ2Mv (?)

TS: (m, fix f(x).e1, fix f(x).e2) ∈ LU (|στ1
diff(k)−−−→ στ2|1, |στ1

diff(k)−−−→
στ2|2)Mv
STS: ∀j.(j, fix f(x).e1) ∈ J|στ1|1

exec(0,∞)−−−−−→ |στ2|1Kv ∧ (j, fix f(x).e2) ∈
J|στ1|2

exec(0,∞)−−−−−→ |στ2|2Kv.

Follows by unrolling the second part of the definition of (?).

Case:
∆;Φa |= n

.
= n ′ ∆;Φa |= α6α ′ ∆;Φa |= τ v τ ′

∆;Φa |= list[n]α τ v list[n ′]α
′
τ ′

r-l1

Assume that σ ∈ DJ∆K and |= σΦ and (m, v, v ′) ∈ Llist[n]α τMv.

TS: (m, v, v ′) ∈ Llist[σn ′]σα
′
στ ′Mv

From Assumption 25 applied to the first premise, σn = σn ′. There-

fore,

STS: (m, v, v ′) ∈ Llist[σn]σα
′
στ ′Mv

From Assumption 25 applied to the second premise, σα 6 σα ′. There-

fore,

We prove the following more general statement (the proof follows by

instantiating this statement):

∀ m, v, v ′,n,α,α ′. if α 6 α ′ and (m, v, v ′) ∈ Llist[n]α τMv, then (m, v, v ′) ∈
Llist[n]α

′
τ ′Mv.

We establish this statement by subinduction on v and v ′.
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subcase 1: v = v ′ = nil

We can immediately conclude that (m, nil , nil ) ∈ Llist[0]α
′
τ ′Mv by

definition.

subcase 2: v = cons(v1, v2) and v ′ = cons(v ′1, v
′
2)

TS: (m, cons(v1, v2), cons(v ′1, v
′
2)) ∈ Llist[I+ 1]α

′
τ ′Mv for some I+

1 = n.

We have two possible cases:

• (m, v1, v ′1) ∈ L� τMv (†) and (m, v2, v ′2) ∈ Llist[I]α τMv (††).
By subIH on (††), we get

(m, v2, v ′2) ∈ Llist[I]α
′
τ ′Mv (1)

By IH on (†), we get

(m, v1, v ′1) ∈ L� τ ′Mv (2)

Combining (eq. (2)) with (eq. (1)), we get

(m, cons(v1, v2), cons(v ′1, v
′
2)) ∈ Llist[I+ 1]α

′
τ ′Mv.

• (m, v1, v ′1) ∈ LτMv (�) and (m, v2, v ′2) ∈ Llist[I]α−1 τMv (��).
By subIH on (��), we get

(m, v2, v ′2) ∈ Llist[I]α
′−1 στ ′Mv (3)

By IH on (�), we get

(m, v1, v ′1) ∈ Lτ ′Mv (4)

Combining (eq. (4)) with (eq. (3)), we get

(m, cons(v1, v2), cons(v ′1, v
′
2)) ∈ Llist[I+ 1]α

′
στ ′Mv.

subcase 3: v = nil and v ′ = cons(v ′1, v
′
2)

This case is impossible since v and v ′ can’t be related at the given

type.
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subcase 4: v = cons(v1, v2) and v ′ = nil

This case is impossible since v and v ′ can’t be related at the given

type.

Case:
∆;Φ |= α

.
= 0

∆;Φ |= list[n]α τ v list[n]α� τ
r-l2

Assume that σ ∈ DJ∆K and |= σΦ and (m, v, v ′) ∈ Llist[n]α τMv.

TS: (m, v, v ′) ∈ Llist[σn]σα�στMv
We prove the following more general statement by subinduction on

n.

subcase 1: n = 0

Then, we know that v = v ′ = nil

We can immediately conclude that (m, nil , nil ) ∈ Llist[0]0�στMv
by definition.

subcase 2: n = I+ 1

Then, we know that v = cons(v1, v2) and v ′ = cons(v ′1, v
′
2)

TS: (m, cons(v1, v2), cons(v ′1, v
′
2)) ∈ Llist[I+ 1]0�στMv.

We have two possible cases:

• (m, v1, v ′1) ∈ L�στMv (†) and (m, v2, v ′2) ∈ Llist[I]0 στMv (††).
By subIH on (††), we get (m, v2, v ′2) ∈ Llist[I]0�στMv.
Combining the (†) with the previous statement, we get

(m, cons(v1, v2), cons(v ′1, v
′
2)) ∈ Llist[I+ 1]0�στMv.

• (m, v1, v ′1) ∈ LστMv and (m, v2, v ′2) ∈ Llist[I]0−1 στMv.

This case is impossible since 0− 1 6> 0.

Case:
∆;Φ |= list[n]α� τ v � (list[n]α τ)

r-l�

Assume that σ ∈ DJ∆K and |= σΦ and (m, v, v ′) ∈ Llist[σn]σα�στMv.
TS: (m, v, v ′) ∈ L� (list[σn]σα στ)Mv
We prove the following more general statement

∀i,β, τ. if (m, v, v) ∈ Llist[i]β�στMv, then (m, v, v) ∈ L� (list[i]β στ)Mv
by subinduction on i.
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subcase 1: i = 0

Then, we know that v = v ′ = nil

We can immediately conclude that (m, nil , nil ) ∈ L� list[0]β στMv
by definition.

subcase 2: i = I+ 1

TS: (m, cons(v1, v2), cons(v ′1, v
′
2)) ∈ L� list[I+ 1]β στMv.

We have two possible cases:

• (m, v1, v ′1) ∈ L��στMv (†) and (m, v2, v2) ∈ Llist[I]β�στMv (††).
Instantiating subIH on (††), we get

(m, v2, v ′2) ∈ L� list[I]β στMv and v2 = v ′2 (1)

By (†), we also know that

(m, v1, v1) ∈ L�στMv (2)

Combining (eq. (2)) with (eq. (1)), we get (m, cons(v1, v2), cons(v1, v2)) ∈
L� list[I+ 1]β στMv.

• (m, v1, v1) ∈ L�στMv (�) and (m, v2, v2) ∈ Llist[I]β−1�στMv (��).
Instantiating subIH on (��), we get

(m, v2, v ′2) ∈ L� list[I]β−1 στMv and v2 = v ′2 (3)

Combining (�) with (eq. (3)), we get (m, cons(v1, v2), cons(v1, v2)) ∈
L� list[I+ 1]β στMv.

Then the proof follows by instantiating the generalized statement

with β = σα and i = σn.

Proof of Item 2. Proof is by induction on the subtyping derivation.
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Case:

∆;Φ |=A A ′1 v A1 ∆;Φ |=A A2 v A ′2
∆;Φ |= k ′ 6 k ∆;Φ |= t 6 t ′

∆;Φ |=A A1
exec(k,t)−−−−−→ A2 v A ′1

exec(k ′,t ′)−−−−−−→ A ′2

u-→ exec

Assume that σ ∈ DJ∆K.

We have

(m, fix f(x).e) ∈ JσA1
exec(σk,σt)−−−−−−→ σA2Kv (1)

TS: (m, fix f(x).e) ∈ JσA ′1
exec(σk ′,σt ′)−−−−−−−→ σA ′2Kv.

Pick j and assume that

j < m (2)

(j, v) ∈ JσA ′1Kv (3)

STS: (j, e[v/x, (fix f(x).e)/f]) ∈ JσA ′2K
σk ′,σt ′
ε .

By IH 2 on (eq. (3)) using the first premise, we get

(j, v) ∈ JσA1Kv (4)

By unrolling the definition of (eq. (1)) with (eq. (4)) and j < m, we get

(j, e[v/x, (fix f(x).e)/f]) ∈ JσA2Kσk,σt
ε (5)

By Assumption 25 on the third and fourth premises, we get σk ′ 6 σk
and σt 6 σt ′.
We conclude by applying IH 4 to (eq. (5)) using σ, i.e σt 6 σt ′ and

σk ′ 6 σk.
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Case:
i :: S,∆;Φ |=A A v A ′ i 6∈ FV(Φ)

∆;Φ |=A ∃i::S.A v ∃i::S.A ′
u-∃

Assume that σ ∈ DJ∆K.

We have

(m, pack v) ∈ J∃i::S.σAKv (1)

TS: (m, pack v) ∈ J∃i::S.σA ′Kv.

By unrolling its definition, assume that ` I :: S (?).

STS: (m, v) ∈ JσA ′{I/i}Kv.

By unrolling (eq. (1)) with ?, we get

(m, v) ∈ JσA{I/i}Kv (2)

Then, we can conclude by IH 2 on (eq. (2)).

Proof of Item 5. Proof is by induction on the subtyping derivation. We focus

on the left projection where i = 1. The case where i = 2 is similar.

Case:
∆;Φa |= τ ′1 v τ1 ∆;Φa |= τ2 v τ ′2 ∆;Φa |= t 6 t ′

∆;Φa |= τ1
diff(t)−−−→ τ2 v τ ′1

diff(t ′)−−−−→ τ ′2

r-→ diff

Assume that (m, fix f(x).e) ∈ J|στ1|1
exec(0,∞)−−−−−→ |στ2|1Kv (?).

TS: (m, fix f(x).e) ∈ J|στ ′1|1
exec(0,∞)−−−−−→ |στ ′2|1Kv.

Pick j and assume that

j < m (1)

(j, v) ∈ J|στ ′1|1Kv (2)
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STS: (j, e[v/x, (fix f(x).e)/f]) ∈ J|στ ′2|1K
0,∞
ε .

By IH 5 on the first premise using (eq. (2)), we get

(j, v) ∈ J|στ1|1Kv (3)

By unrolling the definition of (?) with (eq. (3)) and (eq. (1)), we get

(j, e[v/x, (fix f(x).e)/f]) ∈ J|στ2|1K0,∞ε (4)

We can conclude by IH 6 on the second premise using (eq. (4)).

Case:
∆;Φ |= U (A1

exec(k,t)−−−−−→ A2,A ′1
exec(k ′,t ′)−−−−−−→ A ′2) v U (A1,A ′1)

diff(t−k ′)−−−−−−→ U (A2,A ′2)
r-

→ execdiff

Assume that σ ∈ DJ∆K.

We immediately focus our attention to the left projections.

We have (j, fix f(x).e) ∈ JσA1
exec(σk,σt)−−−−−−→ σA2Kv (?).

STS: (j, fix f(x).e) ∈ JσA1
exec(0,∞)−−−−−→ σA2Kv.

Assume that for some j ′

j ′ < j (1)

(j ′, v) ∈ JσA1Kv (2)

STS: (j ′, e[v/x, (fix f(x).e)/f]) ∈ JσA2K
0,∞
ε .

By unrolling (?)’s definition with (eq. (1)) and (eq. (2)), we get

(j ′, e[v/x, (fix f(x).e)/f]) ∈ JσA2Kσk,σt
ε (3)

We can conclude by applying IH 4 to (eq. (3)) using 0 6 σk and σt 6
∞.
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Case:
∆;Φa |= n

.
= n ′ ∆;Φa |= α6α ′ ∆;Φa |= τ v τ ′

∆;Φa |= list[n]α τ v list[n ′]α
′
τ ′

r-l1

Assume that σ ∈ DJ∆K and |= σΦ and (m, v) ∈ Jlist[σn] |στ|1Kv.

TS: (m, v) ∈ Jlist[σn ′] |στ ′|1Kv
From Assumption 25 applied to the first premise, σn = σn ′. There-

fore,

STS: (m, v) ∈ Jlist[σn] |στ ′|1Kv
We prove the following more general statement

∀ m, v,n. if (m, v) ∈ Jlist[n] |στ|1Kv, then (m, v) ∈ Jlist[|στ ′|1] Kv.

We establish this statement by subinduction on v.

subcase 1: v = nil

We can immediately conclude that (m, nil ) ∈ Jlist[0] |στ ′|1Kv by

definition.

subcase 2: v = cons(v1, v2)

TS: (m, cons(v1, v2)) ∈ Jlist[I+ 1] |στ ′|1Kv for some I+ 1 = n.

By the main assumption, we have (m, v1) ∈ J|στ|1Kv (�) and

(m, v2) ∈ Jlist[I] |στ|1Kv (��).
By subIH on (��), we get

(m, v2) ∈ Jlist[I] |στ ′|1Kv (1)

By IH 5 on (�), we get

(m, v1) ∈ J|στ ′|1Kv (2)

Combining (eq. (2)) with (eq. (1)), we get (m, cons(v1, v2)) ∈ Jlist[I+

1] |στ ′|1Kv.
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Case:
i :: S,∆;Φa |= τ v τ ′ i 6∈ FV(Φa)

∆;Φa |= ∃i::S. τ v ∃i::S. τ ′
r-∃

Assume that σ ∈ DJ∆K.

We have

(m, pack v) ∈ J∃i::S. |στ|1Kv (1)

TS: (m, pack v) ∈ J∃i::S. |στ ′|1Kv.

By unrolling its definition, assume that ` I :: S (?).

STS: (m, v) ∈ J|στ ′|1{I/i}Kv.

By unrolling (eq. (1)) with (?), we get

(m, v) ∈ J|στ|1{I/i}Kv (2)

Then, we can conclude by IH 5 on (eq. (2)).

Case:
∆;Φ |= � τ v τ

T

Assume that σ ∈ DJ∆K.

We have (m, v) ∈ J|�στ|iKv.
TS: (m, v) ∈ J|στ|1Kv.

Immediately follows since by definition of | · |1, we know that |�στ|1 =
|στ|1.

Case:
∆;Φ |= τ v U (|τ|1, |τ|2)

W

Assume that σ ∈ DJ∆K.

We have (m, v) ∈ J|στ|1Kv.

TS: (m, v) ∈ J|U (|στ|1, |στ|2)|1Kv.

Immediately follows by the main assumption since by definition of

| · |i, we know that |στ|1 = |U (|στ|1, |στ|2)|1.

Lemma 22 (Sort Substitution). The following hold.

1. If ∆ ` I :: S and ∆, i :: S ` I ′ :: S ′, then ∆ ` I ′[I/i] :: S ′.
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2. If ∆ ` I :: S and ∆,` i :: S ` C wf, then ∆ ` C[I/i] wf.

3. If ∆ ` I :: S and σ ∈ DJ∆K, then ` σI :: S.

Proof. (1) and (2) are established by simultaneous induction on the second

given derivations. (3) follows from (1).

Both of our fundamental theorems rely on the assumption that the se-
mantic interpretation of every primitive function lies in the interpretation
of the function’s type. This is explained below.

Assumption 23 (Soundness of primitive functions (relational)). Suppose that

ζ : τ1
diff(t)−−−→ τ2 and (m, v, v ′) ∈ Lτ1Mv and ζ̂ v = (cr, rr, vr) and ζ̂ v ′ = (c ′r, r ′r, v ′r),

then

• (m− cr, vr, v ′r) ∈ Lτ2Mv

• rr − r ′r 6 t.

Assumption 24 (Soundness of primitive functions (non-relational)). Suppose

that ζ : A1
exec(k,t)−−−−→ A2 and (m, v) ∈ JA1Kv and ζ̂ v = (cr, rr, vr), then

• (m− cr, vr) ∈ JA2Kv

• k 6 rr 6 t.

We assume that the constraint judgment ∆;Φ |= C satisfies some standard
properties.

Assumption 25 (Constraint conditions). The following hold.

1. [Subst1] If ∆, i :: S;Φ |= C and ∆ ` I :: S, then ∆;Φ[I/i] |= C[I/i].

2. [Subst2] If ∆;Φ |= C and ∆;Φ∧C |= C ′, then ∆;Φ |= C ′.

3. [Neg] ∆;Φ |= ¬C iff ∆;Φ 6|= C.

4. [Corr1] If |= n1 6 n2, then n1 6 n2.

5. [Corr2] If |= I .
= I ′, then I = I ′.
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Assumption 26 (Constraint Well-formedness). If ∆;Φ |= C then ∆ ` C wf

Lemma 27 (Well-formedness). The following hold.

1. If ∆;Φa; Γ ` e	 e ′ . t : τ and ∆ ` Γ wf and FIV(Γ) ⊆ dom(∆), then

∆ ` τ wf and FIV(t, τ) ⊆ dom(∆).

2. If ∆;Φa;Ω `tk e : A and ∆ `A Ω wf and FIV(Ω) ⊆ dom(∆), then ∆ `A

A wf and FIV(k, t,A) ⊆ dom(∆).

3. If ∆;Φa; Γ ` e	 e ′ . t : τ, then FV(e) ⊆ dom(Γ) and FV(e ′) ⊆ dom(Γ).

4. If ∆;Φa;Ω `tk e : A, then FV(e) ⊆ dom(Ω).

Proof. The proof is by induction on the typing derivations.

Lemma 28 (Refinement Removal Well-formedness). The following hold.

• If ∆ ` τ wf, then ∆ `A |τ|i wf for i ∈ {1, 2}.

• If ∆ ` Γ wf, then ∆ `A |Γ |i wf for i ∈ {1, 2}.

Lemma 29 (Subtyping well-formedness). The following hold.

• If ∆;Φ |= τ v τ ′ and ∆ ` τ wf, then Φ ` τ ′ wf .

• If ∆;Φ |=A A v A ′ and ∆ `A A wf, then ∆ ` A ′ wf.

Proof. The proof is by induction on the subtyping derivations.
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a.2 relcost theorems

Theorem 30 (Fundamental theorem). The following holds.

1. Assume that ∆;Φa; Γ ` e1 	 e2 . t : τ and σ ∈ DJ∆K and |= σΦ and

(m, δ, δ ′) ∈ GLσΓM. Then, (m, δe1, δ ′e2) ∈ LστMσtε .

2. Assume that ∆;Φa;Ω `tk e : A and σ ∈ DJ∆K and |= σΦ and there ex-

ists Ω ′ s.t. FV(e) ⊆ dom(Ω ′) and Ω ′ ⊆ Ω and (m,γ) ∈ GJσΩ ′K. Then,

(m,γe) ∈ JσAKσk,σt
ε .

3. Assume that ∆;Φa; Γ ` e1 	 e2 . t : τ and σ ∈ DJ∆K and |= σΦ. Then

for i ∈ {1, 2}, if there exists Γ ′i s.t. FV(ei) ⊆ dom(Γ ′i ) and Γ ′i ⊆ Γ and

(m, δ) ∈ GJ|σΓ ′i |iK, then (m, δei) ∈ J|στ|iK
0,∞
ε .

Proof. Proofs are by induction on typing derivations. We show each state-

ment separately.

Proof of Statement (1). We proceed by induction on the typing derivation.

We show the most important cases below.

Case:
Γ(x) = τ

∆;Φa; Γ ` x	 x . 0 : τ
r-var

Assume that |= σΦ and (m, δ, δ ′) ∈ GLσΓM.
TS: (m, δ(x), δ ′(x)) ∈ LστM0ε.
By Value Lemma (Lemma 18), STS: (m, δ(x), δ ′(x)) ∈ LστMv.
This follows by the premise Γ(x) = τ and the assumption (m, δ, δ ′) ∈
GLσΓM.

Case:
∆;Φa; Γ ` e1 	 e ′1 . t1 : τ ∆;Φa; Γ ` e2 	 e ′2 . t2 : list[n]α τ

∆;Φa; Γ ` cons(e1, e2)	 cons(e ′1, e
′
2) . t1 + t2 : list[n+ 1]α+1 τ

r-cons1

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m, cons(δe1, δe2), cons(δ ′e ′1, δ
′e ′2)) ∈ Llist[σn+ 1]σα+1 στMσt1+σt2ε .

Following the definition of L·M·ε, assume that
δe1 ⇓c1,r1 v1 (?) δe2 ⇓c2,r2 v2 (�)
cons(δe1, δe2) ⇓c1+c2,r1+r2 cons(v1, v2)

cons and
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δ ′e ′1 ⇓c
′
1,r ′1 v ′1 (??) δ ′e ′2 ⇓c

′
2,r ′2 v ′2 (��)

cons(δ ′e ′1, δ
′e ′2) ⇓c

′
1+c

′
2,r ′1+r

′
2 cons(v ′1, v

′
2)

cons and

c1 + c2 < m.

By IH 1 on the first premise, we get (m, δe1, δ ′e ′1) ∈ LστMσt1ε .

Unrolling its definition with (?) and (??) and c1 < m, we get

a) r1 − r ′1 6 σt1
b) (m− c1, v1, v ′1) ∈ LστMv

By IH 1 on the second premise, we get

(m, δe2, δ ′e ′2) ∈ Llist[σn]σα στMσt2ε . Unrolling its definition with (�)
and (��), and c2 < m, we get

c) r2 − r ′2 6 σt2
d) (m− c2, v2, v ′2) ∈ Llist[σn]σα στMv

Now, we can conclude as follows:

1. Using a) and c), we get (r1 + r2) − (r ′1 + r
′
2) 6 σt1 + σt2

2. By downward closure (Lemma 20) on b) and d) using

m− (c1 + c2) 6 m− c1

m− (c1 + c2) 6 m− c2

we get (m− (c1 + c2), v1, v ′1) ∈ LστMv and (m− (c1 + c2), v2, v ′2) ∈
Llist[σn]σα στMv, when combined, gives us (m−(c1+c2), cons(v1, v2), cons(v ′1, v

′
2)) ∈

Llist[σn+ 1]σα+1 στMv

Case:
∆;Φa; Γ ` e1 	 e ′1 . t1 : � τ ∆;Φa; Γ ` e2 	 e ′2 . t2 : list[n]α τ

∆;Φa; Γ ` cons(e1, e2)	 cons(e ′1, e
′
2) . t1 + t2 : list[n+ 1]α τ

r-cons2

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m, cons(δe1, δe2), cons(δ ′e ′1, δ
′e ′2)) ∈ Llist[σn+ 1]σα στMσt1+σt2ε .

Following the definition of L·M·ε·, assume that
δe1 ⇓c1,r1 v1 (?) δe2 ⇓c2,r2 v2 (�)
cons(δe1, δe2) ⇓c1+c2,r1+r2 cons(v1, v2)

cons and
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δ ′e ′1 ⇓c
′
1,r ′1 v ′1 (??) δ ′e ′2 ⇓c

′
2,r ′2 v ′2 (��)

cons(δ ′e ′1, δ
′e ′2) ⇓c

′
1+c

′
2,r ′1+r

′
2 cons(v ′1, v

′
2)

cons and

c1 + c2 < m.

By IH 1 on the first premise, we get (m, δe1, δ ′e ′1) ∈ L�στMσt1ε .

Unrolling its definition with (?) and (??), and c1 < m, we get

a) r1 − r ′1 6 σt1
b) (m− c1, v1, v ′1) ∈ L�στMv

By IH 1 on the second premise, we get

(m, δe2, δ ′e ′2) ∈ Llist[σn]σα στMσt2ε . Unrolling its definition with (�)
and (��), and c2 < m, we get

c) r2 − r ′2 6 σt2
d) (m− c2, v2, v ′2) ∈ Llist[σn]σα στMv

Now, we can conclude as follows:

1. Using a) and c), we get (r1 + r2) − (r ′1 + r
′
2) 6 σt1 + σt2

2. By downward-closure (Lemma 20) on b) and d) using

m− (c1 + c2) 6 m− c1

m− (c1 + c2) 6 m− c2

we get (m−(c1+ c2), v1, v ′1) ∈ L�στMv and (m−(c1+ c2), v2, v ′2) ∈
Llist[σn]σα στMv, when combined, gives us

(m− (c1 + c2), cons(v1, v2), cons(v ′1, v
′
2)) ∈ Llist[σn+ 1]σα στMv

Case:

∆;Φa; Γ ` e	 e ′ . t : list[n]α τ

∆;Φa ∧n = 0; Γ ` e1 	 e ′1 . t ′ : τ ′

i,∆;Φa ∧n = i+ 1;h : � τ, tl : list[i]α τ, Γ ` e2 	 e ′2 . t ′ : τ ′

i,β,∆;Φa ∧n = i+ 1∧α = β+ 1;h : τ, tl : list[i]β τ, Γ ` e2 	 e ′2 . t ′ : τ ′

∆;Φa; Γ `
case e of nil → e1

| h :: tl → e2
	 case e ′ of nil → e ′1
| h :: tl → e ′2

. t+ t ′ : τ ′
r-

caseL

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.
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TS: (m, case δe of nil → δe1 | h :: tl→ δe2, case δ ′e ′ of nil → δ ′e ′1 | h ::

tl→ δ ′e ′2) ∈ Lστ ′Mσt+σt
′

ε .

Following the definition of L·M·ε, assume that

case δe of nil → δe1 | h :: tl→ δe2 ⇓C,R vr (1)

and

case δ ′e ′ of nil → δ ′e ′1 | h :: tl→ δ ′e ′2 ⇓C
′,R ′ v ′r (2)

and C < m.

Depending on what δe and δ ′e ′ evaluate to, there are four cases.

subcase 1:
δe ⇓c,r nil (?) δe1 ⇓cr,rr vr (�)

case δe of nil → δe1 | h :: tl→ δe2 ⇓c+cr+1,r+rr+ccaseL vr
caseL-nil

and
δ ′e ′ ⇓c ′,r ′ nil (??) δ ′e ′1 ⇓c

′
r,r ′r v ′r (��)

case δ ′e ′ of nil → δ ′e ′1 | h :: tl→ δ ′e ′2 ⇓c
′+c ′r+1,r ′+r ′r+ccaseL v ′r

caseL-nil

and C = c+ cr + 1 < m and R = r+ rr + ccaseL and

R ′ = r ′ + r ′r + ccaseL.

By IH 1 on the first premise, we get

(m, δe, δ ′e ′) ∈ Llist[σn]σα στMσtε . Unrolling its definition with (?),

(??) and c < m, we get

a) r− r ′ 6 σt
b) (m− c, nil , nil ) ∈ Llist[σn]σα στMv

By b), σn = 0.

Then, we can instantiate IH 1 on the second premise using

|= σΦ∧ σn
.
= 0, to obtain (m, δe1, δ ′e ′1) ∈ Lστ ′Mσt

′
ε .

Unrolling its definition using (�) and (��) and cr < m, we get

c) rr − r ′r 6 σt ′

d) (m− cr, vr, v ′r) ∈ Lστ ′Mv
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We conclude with

1. By a) and c), we get (r + rr + ccaseL) − (r ′ + r ′r + ccaseL) 6
σt+ σt ′

2. By downward closure (Lemma 20) on d) using

m− (c+ cr + 1) 6 m− cr

we get (m− (c+ cr + 1), vr, v ′r) ∈ Lστ ′Mv.

subcase 2:
δe ⇓c,r nil (?) δe1 ⇓cr,rr vr (�)

case δe of nil → δe1 | h :: tl→ δe2 ⇓c+cr+1,r+rr+ccaseL vr
caseL-nil

and
δ ′e ′ ⇓c ′,r ′ cons(v ′1, v

′
2) (??) δ ′e ′2[v

′
1/h, v ′2/tl] ⇓c

′
r,r ′r v ′r (��)

case δ ′e ′ of nil → δ ′e ′1 | h :: tl→ δ ′e ′2 ⇓c
′+c ′r+1,r ′+r ′r+ccaseL v ′r

caseL-cons

and C = c+ cr + 1 < m, R = r+ rr + ccaseL and

R ′ = r ′ + r ′r + ccaseL.

By IH 1 on the first premise, we get

(m, δe, δ ′e ′) ∈ Llist[σn]σα στMσtε . Unrolling its definition with (?),

(??) and c < m, we get

a) r− r ′ 6 σt
b) (m− c, nil , cons(v ′1, v

′
2)) ∈ Llist[σn]σα στMv

However, b) is false since two lists of different length are not

related at the given type, therefore this case is vacuously true.

subcase 3:
δe ⇓c,r cons(v1, v2) (?) δe2[v1/h, v2/tl] ⇓cr,rr vr (�)
case δe of nil → δe1 | h :: tl→ δe2 ⇓c+cr+1,r+rr+ccaseL vr

caseL-cons

and
δ ′e ′ ⇓c ′,r ′ cons(v ′1, v

′
2) (??) δ ′e ′2[v

′
1/h, v ′2/tl] ⇓c

′
r,r ′r v ′r (��)

case δ ′e ′ of nil → δ ′e ′1 | h :: tl→ δ ′e ′2 ⇓c
′+c ′r+1,r ′+r ′r+ccaseL v ′r

caseL-cons

and C = c+ cr + 1, R = r+ rr + ccaseL and C ′ = c ′ + c ′r + 1,

R ′ = r ′ + r ′r + ccaseL.
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By IH 1 on the first premise, we get

(m, δe, δ ′e ′) ∈ Llist[σn]σα στMσtε . Unrolling its definition with (?)

and (??) and c < m, we get

a) r− r ′ 6 σt
b) (m− c, cons(v1, v2), cons(v ′1, v

′
2)) ∈ Llist[σn]σα στMv

For b), there are two cases:

subsubcase 1: σn = I+ 1 such that we have

(m− c, v1, v ′1) ∈ L�στMv (3)

(m− c, v2, v ′2) ∈ Llist[I]σα στMv (4)

In addition, by downward closure (Lemma 20) on (m, δ, δ ′) ∈
GLΓM, we have

(m− c, δ, δ ′) ∈ GLσΓM (5)

Then, we can instantiate IH 1 on the third premise using

• σ[i 7→ I] ∈ DJi :: N,∆K

• |= σ[i 7→ I](Φ∧n
.
= i+ 1) obtained by

– |= σΦ by main assumption

– |= σn
.
= I+ 1 by sub-assumption

• (m− c, δ[h 7→ v1, tl 7→ v2], δ ′[h 7→ v ′1, tl 7→ v ′2]) ∈ GLσ[i 7→
I](Γ , x : � τ, tl : list[i]α τ)M using (3) and (4) and (3).

we get (m− c, δe2[v1/h, v2/tl], δ ′e ′2[v
′
1/h, v ′2/tl]) ∈ Lσ[i 7→

I]τ ′Mσ[i 7→I]t
′

ε .

Since, i 6∈ FV(t ′, τ, τ ′), we have

(m− c, δe2[v1/h, v2/tl], δ ′e ′2[v
′
1/h, v ′2/tl]) ∈ Lστ ′Mσt

′
ε .
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Unrolling its definition using (�), (��) and cr < m− c, we

get

c) rr − r ′r 6 σt ′

d) (m− (c+ cr), vr, v ′r) ∈ Lστ ′Mv

We conclude with

1. By a) and c), we get (r+ rr + ccaseL) − (r ′ + r ′r + ccaseL) 6
σt+ σt ′ + ccaseL

2. By downward closure (Lemma 20) on d) using

m− (c+ cr + 1) 6 m− (c+ cr)

we get (m− (c+ cr + 1), vr, v ′r) ∈ Lστ ′Mv.

subsubcase 2: σn = I+ 1 and σα = J+ 1 such that we have

(m− c, v1, v ′1) ∈ LστMv (6)

(m− c, v2, v ′2) ∈ Llist[I]J στMv (7)

In addition, by downward closure (Lemma 20) on (m, δ, δ ′) ∈
GLΓM, we have

(m− c, δ, δ ′) ∈ GLσΓM (8)

Then, we can instantiate IH 1 on the fourth premise using

• σ[i 7→ I,β 7→ J] ∈ DJi :: N,β :: N,∆K

• |= σ[i 7→ I,β 7→ J](Φ∧n
.
= i+ 1∧α

.
= β+ 1) obtained

– |= σΦ by main assumption

– |= σn
.
= I+ 1 by sub-assumption

– |= σα
.
= J+ 1 by sub-assumption
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• (m− c, δ[h 7→ v1, tl 7→ v2], δ ′[h 7→ v ′1, tl 7→ v ′2]) ∈ GLσ[i 7→
I,β 7→ J](Γ , x : τ, tl : list[i]β τ)M using (4) and (5) and (6)

we get (m− c, δe2[v1/h, v2/tl], δ ′e ′2[v
′
1/h, v ′2/tl]) ∈ Lσ[i 7→

I,β 7→ J]τ ′Mσ[i 7→I,β 7→J]t
′

ε .

Since, i,β 6∈ FV(t ′, τ, τ ′), we have

(m− c, δe2[v1/h, v2/tl], δ ′e ′2[v
′
1/h, v ′2/tl]) ∈ Lστ ′Mσt

′
ε .

Unrolling its definition using (�), (��) and cr < m− c, we

get

e) rr − r ′r 6 σt ′

f) (m− (c+ cr), vr, v ′r) ∈ Lστ ′Mv

We conclude with

1. By a) and e), we get (r+ rr + ccaseL) − (r ′ + r ′r + ccaseL) 6
σt+ σt ′ + ccaseL

2. By downward closure (Lemma 20) on f) using

m− (c+ cr + 1) 6 m− (c+ cr)

we get (m− (c+ cr + 1), vr, v ′r) ∈ Lστ ′Mv.

subcase 4:
δe ⇓c,r cons(v1, v2) (?) δe2[v1/h, v2/tl] ⇓cr,rr vr (�)
case δe of nil → δe1 | h :: tl→ δe2 ⇓c+cr+1,r+rr+ccaseL vr

caseL-cons

and
δ ′e ′ ⇓c ′,r ′ nil (??) δ ′e ′1 ⇓c

′
r,r ′r v ′r (��)

case δ ′e ′ of nil → δ ′e ′1 | h :: tl→ δ ′e ′2 ⇓c
′+c ′r+1,r ′+r ′r+ccaseL v ′r

caseL-nil.

By IH 1 on the first premise, we get

(m, δe, δ ′e ′) ∈ Llist[σn]σα στMσtε . Unrolling its definition with (?),

(??) and c < m, we get

a) r− r ′ 6 σt
b) (m− c, cons(v1, v2), nil ) ∈ Llist[σn]σα στMv
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However, b) is false since two lists of different length are not

related at the given type, therefore this case is vacuously true.

Case:

∆ ` τ1
diff(t)−−−→ τ2 wf

∆;Φa; x : τ1, f : τ1
diff(t)−−−→ τ2, Γ ` e1 	 e2 . t : τ2

∆;Φa; Γ ` fix f(x).e1 	 fix f(x).e2 . 0 : τ1
diff(t)−−−→ τ2

r-fix

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m, fix f(x).δe1, fix f(x).δ ′e2) ∈ Lστ1
diff(σt)−−−−→ στ2M0ε.

By Lemma 18, STS: (m, fix f(x).δe1, fix f(x).δ ′e2) ∈ Lστ1
diff(σt)−−−−→ στ2Mv.

Let F = fix f(x).δe1 and F ′ = fix f(x).δ ′e2.

We prove the more general statement

∀m ′ 6 m. (m ′, F, F ′) ∈ Lστ1
diff(σt)−−−−→ στ2Mv

by subinduction on m ′.

There are two parts to show:

subcase 1: m ′ = 0

By the definition of function types, there are two parts to show:

subsubcase 1: ∀j < m ′ = 0 · · ·
Since there is no non-negative j such that j < 0, the goal is

vacuously true.

subsubcase 2: STS: ∀j.(j, F) ∈ J|στ1|1
exec(0,∞)−−−−−→ |στ2|1Kv ∧ (j, F ′)J|στ1|2

exec(0,∞)−−−−−→
|στ2|2Kv.
Pick j.

• STS 1: (j, F) ∈ J|στ1|1
exec(0,∞)−−−−−→ |στ2|1Kv

We prove the more general statement

∀m ′ 6 j. (m ′, F) ∈ J|στ1|1
exec(0,∞)−−−−−→ |στ2|1Kv

by subinduction on m ′.

There are two cases:
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– m ′ = 0

Since there is no non-negative j such that j < 0, the

goal is vacuously true.

– m ′ = m ′′ + 1 6 m
By sub-IH

(m ′′, fix f(x).δe1) ∈ J|στ1|1
exec(0,∞)−−−−−→ |στ2|1Kv (1)

STS: (m ′′ + 1, fix f(x).δe1) ∈ J|στ1|1
exec(0,∞)−−−−−→ |στ2|1Kv.

Pick j ′′ < m ′′ + 1 and assume that (j ′′, v) ∈ J|στ1|1Kv.
STS: (j ′′, δe1[v/x, F/f]) ∈ J|στ2|1K

0,∞
ε .

This follows by IH 3 on the premise instantiated with

(j ′′, δ[x 7→ v, f 7→ F]) ∈ GJx : |στ1|1, f : |στ1|1
exec(0,∞)−−−−−→

|στ2|1, |σΓ |1K which holds because

* FV(e1) ⊆ dom(x : τ1, f : τ1
diff(t)−−−→ τ2, Γ) using Lemma 43

on the second premise

* (j ′′, δ) ∈ GJ|σΓ |1K using Lemma 19 on (m, δ, δ ′) ∈
GLσΓM

* (j ′′, v) ∈ J|στ1|1Kv, from the assumption above

* (j ′′, fix f(x).δe1) ∈ J|στ1|1
exec(0,∞)−−−−−→ |στ2|1Kv, obtained

by downward closure (Lemma 20) on (1) using j ′′ 6
m ′′

• STS 2: (j, F ′) ∈ J|στ1|2
exec(0,∞)−−−−−→ |στ2|2Kv

We prove the more general statement

∀m ′ 6 j. (m ′, F ′) ∈ J|στ1|2
exec(0,∞)−−−−−→ |στ2|2Kv

by subinduction on m ′.

There are two cases:

– m ′ = 0

Since there is no non-negative j such that j < 0, the

goal is vacuously true.
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– m ′ = m ′′ + 1 6 j
By sub-IH

(m ′′, F ′) ∈ J|στ1|2
exec(0,∞)−−−−−→ |στ2|2Kv (2)

STS: (m ′′ + 1, fix f(x).δ ′e2) ∈ J|στ1|2
exec(0,∞)−−−−−→ |στ2|2Kv.

Pick j ′′ < m ′′ + 1 and assume that (j ′′, v) ∈ J|στ1|2Kv.
STS: (j ′′, δ ′e2[v/x, F ′/f]) ∈ J|στ2|2K

0,∞
ε .

This follows by IH 3 on the premise instantiated with

(j ′′, δ[x 7→ v, f 7→ (fix f(x).δ ′e2)]) ∈ GJx : |στ1|2, f :

|στ1|2
exec(0,∞)−−−−−→ |στ2|2, |σΓ |2K which holds because

* FV(e2) ⊆ dom(x : τ1, f : τ1
diff(t)−−−→ τ2, Γ) using Lemma 43

on the second premise

* (j ′′, v) ∈ J|στ1|2Kv, from the assumption above

* (j ′′, δ) ∈ GJ|σΓ |2K using Lemma 19 on (m, δ, δ ′) ∈
GLσΓM

* (j ′′, F ′) ∈ J|στ1|2
exec(0,∞)−−−−−→ |στ2|2Kv, obtained by down-

ward closure (Lemma 20) on (2) using j ′′ 6 m ′′

subcase 2: m ′ = m ′′ + 1 6 m
By sub-IH

(m ′′, F, F ′) ∈ Lστ1
diff(σt)−−−−→ στ2Mv (3)

TS: (m ′′ + 1, fix f(x).δe1, fix f(x).δ ′e2) ∈ Lστ1
diff(σt)−−−−→ στ2Mv

Pick j < m ′′ + 1 and assume that (j, v1, v2) ∈ Lστ1Mv.
STS: (j, δe1[v1/x, F/f], δ ′e2[v2/x, F ′/f]) ∈ Lστ2Mσtε .

This follows by IH on the premise instantiated with

(j, δ[x 7→ v1, f 7→ F], δ ′[x 7→ v2, f 7→ F ′]) ∈ GLσΓ , x : στ1, f :

στ1
diff(σt)−−−−→ στ2M which holds because

• (j, δ, δ ′) ∈ GLσΓM obtained by downward closure (Lemma 20)

using (m, δ, δ ′) ∈ GLσΓM and j < m ′ 6 m.

• (j, v1, v2) ∈ Lστ1Mv, from the assumption above
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• (j, F, F ′) ∈ Lστ1
diff(σt)−−−−→ στ2Mv, obtained by downward closure

(Lemma 20) on (2) using j 6 m ′′

This completes the proof of this case.

Case:

∆;Φa ` τ1
diff(t)−−−→ τ2 wf

∆;Φa; x : τ1, f : � (τ1
diff(t)−−−→ τ2), Γ ` e	 e . t : τ2

∀x ∈ dom(Γ). ∆;Φa |= Γ(x) v � Γ(x)

∆;Φa; Γ ` fix f(x).e	 fix f(x).e . 0 : � (τ1
diff(t)−−−→ τ2)

r-fixNC

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m, fix f(x).δe, fix f(x).δ ′e) ∈ L� (στ1
diff(σt)−−−−→ στ2)M0ε.

By Lemma 18, STS: (m, fix f(x).δe, fix f(x).δ ′e) ∈ L� (στ1
diff(σt)−−−−→ στ2)Mv.

By Lemma 21 using (m, δ, δ ′) ∈ GLσΓM and the third premise, we get

(m, δ, δ ′) ∈ GL�σΓM, i.e. δ = δ ′.

Therefore, STS: (m, fix f(x).δe, fix f(x).δe) ∈ Lστ1
diff(σt)−−−−→ στ2Mv.

Let F = fix f(x).δe .

We prove the more general statement

∀m ′ 6 m. (m ′, F, F) ∈ Lστ1
diff(σt)−−−−→ στ2Mv

by subinduction on m ′.

There are two parts to show:

subcase 1: m ′ = 0

By the definition of function types, there are two parts to show:

subsubcase 1: ∀j < m ′ = 0 · · ·
Since there is no non-negative j such that j < 0, the goal is

vacuously true.

subsubcase 2: STS: ∀j.(j, F) ∈ J|στ1|1
exec(0,∞)−−−−−→ |στ2|1Kv.

Pick j. STS: (j, F) ∈ J|στ1|1
exec(0,∞)−−−−−→ |στ2|1Kv

We prove the more general statement

∀m ′ 6 j. (m ′, F) ∈ J|στ1|1
exec(0,∞)−−−−−→ |στ2|1Kv



218 appendix for relcost

by subinduction on m ′.

There are two cases:

• m ′ = 0

Since there is no non-negative j such that j < 0, the goal

is vacuously true.

• m ′ = m ′′ + 1 6 j
By sub-IH

(m ′′, fix f(x).δe1) ∈ J|στ1|1
exec(0,∞)−−−−−→ |στ2|1Kv (1)

STS: (m ′′ + 1, fix f(x).δe1) ∈ J|στ1|1
exec(0,t)−−−−−→ |στ2|1Kv.

Pick j ′′ < m ′′ + 1 and assume that (j ′′, v) ∈ J|στ1|1Kv.
STS: (j ′′, δe1[v/x, F/f]) ∈ J|στ2|1K

0,∞
ε .

This follows by IH 3 on the premise instantiated with

– FV(e) ⊆ dom(x : τ1, f : τ1
diff(t)−−−→ τ2, Γ) using Lemma 43

on the second premise

– (j ′′, δ[x 7→ v, f 7→ F]) ∈ GJx : |στ1|1, f : |στ1|1
exec(0,∞)−−−−−→

|στ2|1, |σΓ |1K which holds because

* (j ′′, δ) ∈ GJ|σΓ |1K using Lemma 19 on (m, δ, δ) ∈ GLσΓM

* (j ′′, v) ∈ J|στ1|1Kv, from the assumption above

* (j ′′, fix f(x).δe1) ∈ J|στ1|1
exec(0,∞)−−−−−→ |στ2|1Kv, obtained

by downward closure (Lemma 20) on (1) using j ′′ 6
m ′′

subcase 2: m ′ = m ′′ + 1 6 m
By sub-IH

(m ′′, F, F) ∈ Lστ1
diff(σt)−−−−→ στ2Mv (2)

TS: (m ′′ + 1, fix f(x).δe1, fix f(x).δe2) ∈ Lστ1
diff(σt)−−−−→ στ2Mv

Pick j < m ′′ + 1 and assume that (j, v1, v2) ∈ Lστ1Mv.
STS: (j, δe1[v1/x, F/f], δe2[v2/x, F/f]) ∈ Lστ2Mσtε .

This follows by IH on the premise instantiated with
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(j, δ[x 7→ v1, f 7→ F], δ[x 7→ v2, f 7→ F]) ∈ GLσΓ , x : στ1, f : � (στ1
diff(σt)−−−−→

στ2)M which holds because

• (j, δ, δ) ∈ GLσΓM obtained by downward closure (Lemma 20)

using (m, δ, δ) ∈ GLσΓM and j < m ′ 6 m.

• (j, v1, v2) ∈ Lστ1Mv, from the assumption above

• (j, F, F) ∈ L� (στ1
diff(σt)−−−−→ στ2)Mv, obtained by downward clo-

sure (Lemma 20) on (2) using j 6 m ′′

This completes the proof of this case.

Case:

∆;Φa; Γ ` e1 	 e ′1 . t1 : τ1
diff(t)−−−→ τ2

∆;Φa; Γ ` e2 	 e ′2 . t2 : τ1
∆;Φa; Γ ` e1 e2 	 e ′1 e ′2 . t1 + t2 + t : τ2

r-app

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m, δe1 δe2, δ ′e ′1 δ
′e ′2) ∈ Lστ2M

σt1+σt2+σt
ε .

Following the definition of L·M·ε, assume that
δe1 ⇓c1,r1 fix f(x).e (?)

δe2 ⇓c2,r2 v2 (�) e[v2/x, (fix f(x).e)/f] ⇓cr,rr vr (†)
δe1 δe2 ⇓c1+c2+cr+1,r1+r2+rr+capp vr

app and

δ ′e ′1 ⇓c
′
1,r ′1 fix f(x).e ′ (??)

δ ′e ′2 ⇓c
′
2,r ′2 v ′2 (��) e ′[v ′2/x, (fix f(x).e ′)/f] ⇓c ′r,r ′r v ′r (††)

δ ′e ′1 δ
′e ′2 ⇓c

′
1+c

′
2+c

′
r+1,r ′1+r

′
2+r

′
r+capp v ′r

app and

(c1 + c2 + cr + 1) < m.

By IH 1 on the first premise, we get

(m, δe1, δ ′e ′1) ∈ Lστ1
diff(σt)−−−−→ στ2M

σt1
ε . Unrolling its definition with (?)

and (??), and c1 < m, we get

a) r1 − r ′1 6 σt1
b) (m− c1, fix f(x).e, fix f(x).e ′) ∈ Lστ1

diff(σt)−−−−→ στ2Mv

By IH 1 on the second premise, we get (m, δe2, δ ′e ′2) ∈ Lστ1M
σt2
ε .

Unrolling its definition with (�) and (��), and c2 < m, we get

c) r2 − r ′2 6 σt2
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d) (m− c2, v2, v ′2) ∈ Lστ1Mv

Next, we apply downward-closure (Lemma 20) to d) using

m− (c1 + c2 + 1) 6 m− c2

and we get

(m− (c1 + c2 + 1), v2, v ′2) ∈ Lστ1Mv (1)

We unroll b) using (1) since

m− (c1 + c2 + 1) < m− c1

and get

(m− (c1+ c2+ 1), e[v2/x, fix f(x).e/f], e ′[v ′2/x, fix f(x).e ′/f]) ∈ Lστ2Mσtε
(2)

Next, we unroll (2) using (†) and (††) and cr < m− (c1 + c2 + 1)

to obtain

e) rr − r ′r 6 σt
f) (m− (c1 + c2 + cr + 1), vr, v ′r) ∈ Lστ2Mv

Now, we can conclude as follows:

1. Using a), c) and e), we get (r1 + r2 + rr + capp) − (r ′1 + r
′
2 + r

′
r +

capp) 6 σt1 + σt2 + σt
2. By f)

Case:
∆;Φa; Γ ` e1 	 e ′1 . t1 : τ1 ∆;Φa; Γ ` e2 	 e ′2 . t2 : τ2

∆;Φa; Γ ` 〈e1, e2〉 	 〈e ′1, e ′2〉 . t1 + t2 : τ1 × τ2
r-prod

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m, 〈δe1, δe2〉, 〈δe ′1, δ ′e ′2〉) ∈ Lστ1 × στ2Mσt1+σt2ε .

Following the definition of L·M·ε·, assume that
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δe1 ⇓c1,r1 v1 (?) δe2 ⇓c2,r2 v2 (�)
〈δe1, δe2〉 ⇓c1+c2,r1+r2 〈v1, v2〉

prod and

δ ′e1 ⇓c
′
1,r ′1 v ′1 (??) δ ′e2 ⇓c

′
2,r ′2 v ′2 (��)

〈δ ′e1, δ ′e2〉 ⇓c
′
1+c

′
2,r ′1+r

′
2 〈v ′1, v ′2〉

prod and c1 + c2 < m.

By IH 1 on the first premise, we get (m, δe1, δ ′e ′1) ∈ Lστ1M
σt1
ε .

Unrolling its definition with (?) and (??) and c1 < m, we get

a) r1 − r ′1 6 σt1
b) (m− c1, v1, v ′1) ∈ Lστ1Mv

By IH 1 on the second premise, we get (m, δe2, δ ′e ′2) ∈ Lστ2M
σt2
ε .

Unrolling its definition with (�) and (��) and c2 < m, we get

c) r2 − r ′2 6 σt2
d) (m− c2, v2, v ′2) ∈ Lστ2Mv

We can conclude as follows:

1. By a) and c), we get (r1 + r2) − (r ′1 + r
′
2) 6 σt1 + σt2

2. By downward closure (Lemma 20) on b) using

m− (c1 + c2) 6 m− c1

we get

(m− (c1 + c2), v1, v2) ∈ Lστ1Mv (1)

By downward closure (Lemma 20) on d) using

m− (c1 + c2) 6 m− c2

we get

(m− (c1 + c2), v ′1, v
′
2) ∈ Lστ2Mv (2)

By combining (1) and (2), we can show that (m−(c1+c2), 〈v1, v2〉, 〈v ′1, v ′2〉) ∈
Lστ1 × στ2Mv
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Case:
∆;Φa; Γ ` e	 e ′ . t : τ1 × τ2 i ∈ {1, 2}

∆;Φa; Γ ` πi(e)	 πi(e ′) . t : τi
r-proji

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m,πi(δe),πi(δ ′e ′)) ∈ LστiMσtε .

Following the definition of L·M·ε·, assume that
δe ⇓c,r 〈v1, v2〉 (?)

π1(δe) ⇓c+1,r+cproj v1
proj1 and

δ ′e ⇓c,r 〈v ′1, v ′2〉 (??)

π1(δ
′e) ⇓c ′+1,r ′+cproj v ′1

proj1 and

c+ 1 < m.

By IH 1 on the first premise, we get (m, δe, δ ′e ′) ∈ Lστ1 × στ2Mσtε .

Unrolling its definition with (?) and (??) and c < m, we get

a) r− r ′ 6 σt
b) (m− c, 〈v1, v2〉, 〈v ′1, v ′2〉) ∈ Lστ1 × στ2Mv

We can conclude as follows:

1. By a), (r+ cproj) − (r ′ + cproj) 6 σt
2. By unrolling the definition of b), we get (m− c, vi, v ′i) ∈ LστiMv.

Then, by invoking downward closure (Lemma 20) on this using

m− (c+ 1) 6 m− c

we get (m− (c+ 1), vi, v ′i) ∈ LστiMv.

Case:
∆;Φa; Γ ` e	 e ′ . t : τ1 ∆ ` τ2 wf
∆;Φa; Γ ` inl e	 inl e ′ . t : τ1 + τ2

r-inl

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m, inl (δe), inl (δ ′e ′)) ∈ Lστ1 + στ2Mσtε .

Following the definition of L·M·ε·, assume that
δe ⇓c,r v (?)

inl δe ⇓c,r inl v
inl and

δ ′e ′ ⇓c ′,r ′ v ′ (??)

inl δ ′e ′ ⇓c ′,r ′ inl v ′
inl and c < m.

By IH 1 on the first premise, we get (m, δe, δ ′e ′) ∈ Lστ1Mσtε . Unrolling

its definition with (?) and (??) and c < m, we get

a) r− r ′ 6 σt
b) (m− c, v, v ′) ∈ Lστ1Mv
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We can conclude as follows:

1. By a), r− r ′ 6 σt
2. Using b), we can show that (m− c, inl v, inl v ′) ∈ Lστ1 + στ2Mv

Case:

∆;Φa; Γ ` e	 e ′ . t : τ1 + τ2
∆;Φa; x : τ1, Γ ` e1 	 e ′1 . t ′ : τ ∆;Φa;y : τ2, Γ ` e2 	 e ′2 . t ′ : τ
∆;Φa; Γ ` case (e, x.e1,y.e2)	 case (e ′, x.e ′1,y.e ′2) . t+ t ′ : τ

r-case

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m, case (δe, δe1, δe2), case (δ ′e ′, δ ′e ′1, δ
′e ′2)) ∈ LστMσt+σt

′
ε .

Following the definition of L·M·ε, assume that

case (δe, δe1, δe2) ⇓C,R vr and case (δ ′e ′, δ ′e ′1, δ
′e ′2) ⇓C

′,R ′ v ′r and C <

m.

Depending on what δe and δ ′e ′ evaluate to, there are two cases:

subcase 1:
δe ⇓c,r inl v (?) δe1[v/x] ⇓cr,rr vr (�)
case (δe, x.δe1,y.δe2) ⇓c+cr+1,r+rr+ccase vr

case-inl and

δ ′e ′ ⇓c ′,r ′ inl v ′ (??) δ ′e ′1[v
′/x] ⇓c ′r,r ′r v ′r (��)

case (δ ′e, x.δ ′e1,y.δ ′e2) ⇓c
′+c ′r+1,r ′+r ′r+ccase v ′r

case-inl

Note that C = c+ cr + 1 < m .

By IH 1 on the first premise, we get (m, δe, δ ′e ′) ∈ Lστ1 + στ2Mσtε .

Unrolling its definition with (?) and (??) and c < m, we get

a) r− r ′ 6 σt
b) (m− c, inl v, inl v ′) ∈ Lστ1 + στ2Mv

By IH 1 on the second premise using (m − c, δ[x 7→ v], δ ′[x 7→
v ′]) ∈ GLσΓ , x : στ1M obtained by

• (m− c, δ, δ ′) ∈ GLσΓM by downward-closure (Lemma 20) on

(m, δ, δ ′) ∈ GLσΓM using m− c 6 m

• (m− c, v, v ′) ∈ Lστ1Mv by unfolding b)

we get (m− c, δe1[v/x], δ ′e ′1[v
′/x]) ∈ LστMσt

′
ε . Unrolling its

definition with (�) and (��), and cr < m− c, we get

c) rr − r ′r 6 σt ′
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d) (m− (c+ cr), vr, v ′r) ∈ LστMv

Now, we can conclude this subcase by

1. By a) and c) (r+ rr + ccase) − (r ′ + r ′r + ccase) 6 σt+ σt ′

2. By downward closure (Lemma 20) on d) using

m− (c+ cr + 1) 6 m− (c+ cr)

we get (m− (c+ cr + 1), vr, v ′r) ∈ LστMv.

subcase 2:
δe ⇓c,r inr v (?) δe2[v/y] ⇓cr,rr vr (�)
case (δe, x.δe1,y.δe2) ⇓c+cr+1,r+rr+ccase vr

case-inr and

δ ′e ′ ⇓c ′,r ′ inr v ′ (??) δ ′e ′2[v
′/y] ⇓c ′r,r ′r v ′r (��)

case (δ ′e, x.δ ′e1,y.δ ′e2) ⇓c
′+c ′r+1,r ′+r ′r+ccase v ′r

case-inr

This case is symmetric, hence we skip its proof.

Case:
i :: S,∆;Φa; Γ ` e	 e ′ . t : τ i 6∈ FIV(Φa; Γ)

∆;Φa; Γ ` Λ.e	Λ.e ′ . 0 : ∀i
diff(t)
:: S. τ

r-iLam

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m,Λ.δe,Λ.δ ′e ′) ∈ L∀i
diff(σt)
:: S.στM0ε.

By Lemma 18, STS: (m,Λ.δe,Λ.δ ′e ′) ∈ L∀i
diff(σt)
:: S.στMv.

By unrolling its definition, assume that ` I :: S.

There are two cases to show:

subcase 1: STS: (m, δe, δ ′e ′) ∈ Lστ{I/i}Mσt[I/i]ε .

This follows by IH 1 on the premise instantiated with the substi-

tution σ[i 7→ I] ∈ DJi :: S,∆K.

subcase 2: STS: ∀j.(j, δe) ∈ J|στ{I/i}|1K
0,∞
ε ∧ (j, δ ′e ′) ∈ J|στ{I/i}|2K

0,∞
ε .

Pick j.

subsubcase 1: STS1: (j, δe) ∈ J|στ{I/i}|1K
0,∞
ε

Follows by IH 3 on the premise using

• FV(e) ⊆ dom(Γ) using Lemma 43 on the first premise
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• σ[i 7→ I] ∈ DJi :: S,∆K

• (j, δ) ∈ GJ|σ[i 7→ I]Γ |1K ≡ GJ|σΓ |1K by Lemma 19 on the

main assumption (note that i 6∈ FV(Γ ;Φ))

subsubcase 2: STS2: (j, δ ′e ′) ∈ J|στ{I/i}|2K
0,∞
ε

Follows by IH 3 on the premise using

• FV(e ′) ⊆ dom(Γ) using Lemma 43 on the first premise

• σ[i 7→ I] ∈ DJi :: S,∆K

• (j, δ ′) ∈ GJ|σ[i 7→ I]Γ |2K ≡ GJ|σΓ |2K by Lemma 19 on the

main assumption (note that i 6∈ FV(Γ ;Φ))

Case:
∆;Φa; Γ ` e	 e ′ . t : ∀i

diff(t ′)
:: S. τ ∆ ` I : S

∆;Φa; Γ ` e[ ] 	 e ′[ ] . t+ t ′[I/i] : τ{I/i}
r-iApp

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m, δe[ ] , δ ′e ′[ ] ) ∈ Lστ{σI/i}Mσt+σt
′[σI/i]

ε .

Following the definition of L·M·ε, assume that
δe ⇓c,r Λ.eb (?) eb ⇓cr,rr vr (�)

δe[ ] ⇓c+cr,r+rr vr
iApp and

δ ′e ′ ⇓c ′,r ′ Λ.e ′b (??) e ′b ⇓c
′
r,r ′r v ′r (��)

δ ′e[ ] ⇓c ′+c ′r,r ′+r ′r v ′r
iApp and

(c+ cr) < m.

By IH on the first premise, we get (m, δe, δ ′e ′) ∈ L∀i
diff(σt ′)

:: S.στMσtε .

By unrolling its definition with (?), (??) and c < m, we get

a) r− r ′ 6 σt

b) (m− c,Λ.eb,Λ.e ′b) ∈ L∀i
diff(σt ′)

:: S.στMv

By Lemma 22 on the second premise using σ ∈ DJ∆K, we get

` σI :: S (1)

By unrolling the definition of b) with (1), we get

(m− c, eb, e ′b) ∈ Lστ{σI/i}Mσt
′[σI/i]

ε (2)
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By unrolling the definition of (2) with (�) and (��) and cr < m− c,

we get

c) rr − r ′r 6 σt ′[σI/i]
d) (m− (c+ cr), vr, v ′r) ∈ Lστ{σI/i}Mv

We conclude as follows

1. By a) and c), we get (r+ rr) − (r ′ + r ′r) 6 σt+ σt ′[σI/i]
2. By d)

Case:
∆;Φa; Γ ` e	 e ′ . t : τ{I/i} ∆ ` I :: S
∆;Φa; Γ ` pack e	 pack e ′ . t : ∃i::S. τ

r-pack

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m, pack δe, pack δ ′e ′) ∈ L∃i::S.στMσtε .

Following the definition of L·M·ε, assume that
δe ⇓c,r v (?)

pack δe ⇓c,r pack v
pack and

δ ′e ′ ⇓c ′,r ′ v ′ (??)

pack δ ′e ′ ⇓c ′,r ′ pack v ′
pack and

c < m.

By IH on the first premise, we get (m, δe, δ ′e ′) ∈ Lστ{σI/i}Mσtε .

By unrolling its definition with (?), (??) and c < m, we get

a) r− r ′ 6 σt
b) (m− c, v, v ′) ∈ Lστ{σI/i}Mv

By Lemma 22 on the second premise, we get

` σI :: S (1)

We can conclude as follows

1. By a)

2. TS: (m− c, pack e, pack v ′) ∈ L∃i::S.στMv
STS1: ` σI :: S follows directly by (1).

STS2: (m− c, v, v ′) ∈ Lστ{σI/i}Mv follows by b)
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Case:
∆;Φa; Γ ` e1 	 e ′1 . t1 : ∃i::S. τ1

i :: S,∆;Φa; x : τ1, Γ ` e2 	 e ′2 . t2 : τ2 i 6∈ FV(Φa; Γ , τ2, t2)

∆;Φa; Γ ` unpack e1 as x in e2 	 unpack e ′1 as x in e ′2 . t1 + t2 : τ2
r-

unpack

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS:

(m, unpack δe1 as x in δe2, unpack δ ′e ′1 as x in δ ′e ′2) ∈ Lστ2M
σt1+σt2
ε .

Following the definition of L·M·ε, assume that
δe1 ⇓c1,r1 pack v (?) δe2[v/x] ⇓c2,r2 vr (�)

unpack δe1 as x in δe2 ⇓c1+c2,r1+r2 vr
unpack and

δ ′e ′1 ⇓c
′
1,r ′1 pack v ′ (??) δ ′e ′2[v

′/x] ⇓c ′2,r ′2 v ′r (��)
unpack δ ′e ′1 as x in δ ′e ′2 ⇓c

′
1+c

′
2,r ′1+r

′
2 v ′r

unpack and

(c1 + c2) < m.

By IH 1 on the first premise, we get (m, δe1, δ ′e ′1) ∈ L∃i::S.στ1M
σt1
ε .

By unrolling its definition with (?), (??) and c1 < m, we get

a) r1 − r ′1 6 σt1
b) (m− c1, pack v, pack v ′) ∈ L∃i::S.στ1Mv

By unrolling the definition of b), we get

` I :: S (1)

(m− c1, v, v ′) ∈ Lστ1{I/i}Mv (2)

By downward closure (Lemma 20) on (m, δ, δ ′) ∈ GLΓM, we have

(m− c1, δ, δ ′) ∈ GLσΓM (3)

By IH 1 on the second premise using

• σ[i 7→ I] ∈ DJi :: S,∆K using (1)
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• (m− c1, δ[x 7→ v], δ ′[x 7→ v ′]) ∈ GLσ[i 7→ I](Γ , x : τ1)M using (2) and

(3)

we get

(m− c1, δe2[v/x], δ ′e ′2[v
′/x]) ∈ Lστ2Mσt2ε (4)

By unrolling (4)’s definition using (�), (��) and c2 < m− c1, we get

c) r2 − r ′2 6 σt2
d) (m− (c1 + c2), vr, v ′r) ∈ Lστ2Mv

We can conclude as follows

1. By a) and c), we get (r1 + r2) − (r ′1 + r
′
2) 6 σt1 + σt2

2. Follows by d)

Case:
∆;Φa; Γ ` e1 	 e ′1 . t1 : τ1 ∆;Φa; x : τ1, Γ ` e2 	 e ′2 . t2 : τ2
∆;Φa; Γ ` let x = e1 in e2 	 let x = e ′1 in e ′2 . t1 + t2 : τ2

r-let

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m, let x = δe1 in δe2, let x = δ ′e ′1 in δ ′e ′2) ∈ Lστ2M
σt1+σt2
ε .

Following the definition of L·M·ε, assume that
δe1 ⇓c1,r1 v1 (�) δe2[v1/x] ⇓cr,rr vr (†)

let x = δe1 in δe2 ⇓c1+cr+1,r1+rr+clet vr
let and

δ ′e ′1 ⇓c
′
1,r ′1 v ′1 (��) δ ′e ′2[v

′
1/x] ⇓c

′
r,r ′r v ′r (††)

let x = δ ′e1 in δ ′e2 ⇓c
′
1+c

′
r+1,r ′1+r

′
r+clet v ′r

let and

(c1 + cr + 1) < m.

By IH 1 on the first premise, we get (m, δe1, δ ′e ′1) ∈ Lστ1M
σt1
ε .

Unrolling its definition with (�) and (��) and c1 < m, we get

a) r1 − r ′1 6 σt1
b) (m− c1, v1, v ′1) ∈ Lστ1Mv

By IH 1 on the second premise using (m− c1, δ[x 7→ v1], δ ′[x 7→ v ′1]) ∈
GLσΓ , x : στ1M obtained by

• (m − c1, δ, δ ′) ∈ GLσΓM by downward closure (Lemma 20) on

(m, δ, δ ′) ∈ GLσΓM using m− c1 6 m



A.2 relcost theorems 229

• (m− c1, v, v ′) ∈ Lστ1Mv by b)

we get (m− c1, δe2[v1/x], δ ′e ′2[v
′
1/x]) ∈ Lστ2M

σt2
ε . Unrolling its

definition with (†) and (††), and cr < m− c1, we get

c) rr − r ′r 6 σt2
d) (m− (c1 + cr), vr, v ′r) ∈ Lστ2Mv

Now, we can conclude with

1. By a) and c) (r1 + rr + clet) − (r ′1 + r
′
r + clet) 6 σt1 + σt2

2. By downward closure (Lemma 20) on d) using

m− (c+ cr + 1) 6 m− (c+ cr)

we get (m− (c+ cr + 1), vr, v ′r) ∈ Lστ2Mv.

Case:
∆;Φa; |Γ |1 `t1k1 e1 : A1 ∆;Φa; |Γ |2 `t2k2 e2 : A2

∆;Φa; Γ ` e1 	 e2 . t1 − k2 : U (A1,A2)
switch

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m, δe1, δ ′e2) ∈ LU (σA1,σA2)M
σt1−σk2
ε .

Assume that

a) δe1 ⇓c1,r1 v1

b) δ ′e2 ⇓c2,r2 v2

c) c1 < m

TS 1: r1 − r2 6 σt1 − σk2
TS 2: (m− c1, v1, v2) ∈ LU (σA1,σA2)Mv
We first show the second statement, the first one will be shown later.

By unrolling LU (σA1,σA2)Mv’s definition,

STS: ∀m.(m, v1) ∈ JσA1Kv ∧ (m, v2) ∈ JσA2Kv.
Pick m.

By IH 2 on the first premise using

• FV(e1) ⊆ dom(|σΓ |1) using Lemma 43 on the first premise
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• |= σΦ

• ∀j.(j, δ) ∈ GJ|σΓ |1K obtained by Lemma 19 on (m, δ, δ ′) ∈ GLσΓM

we get

∀j.(j, δe1) ∈ JσA1Kσk1,σt1
ε (1)

By IH 2 on the second premise using

• FV(e2) ⊆ dom(|σΓ |2) using Lemma 43 on the second premise

• |= σΦ

• ∀j.(j, δ ′) ∈ GJ|σΓ |2K obtained by Lemma 19 on (m, δ, δ ′) ∈ GLσΓM

we get

∀j.(j, δ ′e2) ∈ JσA2Kσk2,σt2
ε (2)

We instantiate j with m+ c1 + 1 in (1) and we get

(m+ c1 + 1, δe1) ∈ JσA1Kσk1,σt1
ε (3)

We instantiate j with m+ c2 + 1 in (2) and we get

(m+ c2 + 1, δ ′e2) ∈ JσA2Kσk2,σt2
ε (4)

Next, unrolling (3) using (a) and c1 < m+ c1 + 1, we get

d) σk1 6 r1 6 σt1
e) (m+ 1, v1) ∈ JσA1Kv

Next, unrolling second part of (4) using (b) and c2 < m+ c2 + 1, we

get

f) σk2 6 c2 6 σt2
g) (m+ 1, v2) ∈ JσA2Kv

Now, we can conclude as follows:

1. By e) and g), we get r1 − r2 6 σt1 − σk2
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2. By downward closure (Lemma 20) on f) using

m 6 m+ 1

we get (m, v1) ∈ JσA1Kv.
By downward closure (Lemma 20) on h) using

m 6 m+ 1

we get (m, v2) ∈ JσA2Kv.

Case:
∆;Φa |= C ∆;Φa ∧C; Γ ` e	 e ′ . t : τ

∆;Φa; Γ ` e	 e ′ . t : C & τ
r-c-andI

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m, δe, δ ′e ′) ∈ LσC & στMσtε .

Following the definition of L·M·ε·, assume that

a) δe ⇓c,r v
b) δ ′e ′ ⇓c ′,r ′ v ′

c) c < m.

By IH 1 on the first premise using

• |= σ(C∧Φ) hold by the main assumption |= σΦ and |= σC (?)

obtained by Lemma 22 using the premise ∆;Φ |= C

we get (m, δe, δ ′e ′) ∈ LστMσtε . Unrolling its definition with (a-c), we get

d) r− r ′ 6 σt
e) (m− c, v, v ′) ∈ LστMv

We can conclude as follows:

1. By d), r− r ′ 6 σt
2. Using e) and (?), we can show that (m− c, v, v ′) ∈ LσC & στMv



232 appendix for relcost

Case:

∆;Φa; Γ ` e1 	 e ′1 . t1 : C & τ1

∆;Φa ∧C; x : τ1, Γ ` e2 	 e ′2 . t2 : τ2
∆;Φa; Γ ` clet e1 as x in e2 	 clet e ′1 as x in e ′2 . t1 + t2 : τ2

r-c-andE

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m, clet δe1 as x in δe2, clet δ ′e ′1 as x in δ ′e ′2) ∈ Lστ2M
σt1+σt2
ε .

Following the definition of L·M·ε, assume that
δe1 ⇓c1,r1 v1 (�) δe2[v1/x] ⇓cr,rr vr (†)

clet δe1 as x in δe2 ⇓c1+cr,r1+rr vr
clet and

δ ′e ′1 ⇓c
′
1,r ′1 v ′1 (��) δ ′e ′2[v

′
1/x] ⇓c

′
r,r ′r v ′r (††)

clet δ ′e1 as x in δ ′e2 ⇓c
′
1+c

′
r,r ′1+r

′
r v ′r

clet and (c1 + cr) < m.

By IH 1 on the first premise, we get (m, δe1, δ ′e ′1) ∈ LσC & στ1M
σt1
ε .

Unrolling its definition with (�) and (��) and c1 < m, we get

a) r1 − r ′1 6 σt1
b) (m− c1, v1, v ′1) ∈ LσC & στ1Mv

By IH 1 on the second premise using (m− c1, δ[x 7→ v1], δ ′[x 7→ v ′1]) ∈
GLσΓ , x : στ1M obtained by

• |= σ(C∧Φ) hold by the main assumption |= σΦ and |= σC ob-

tained by unrolling the definition of b)

• (m − c1, δ, δ ′) ∈ GLσΓM by downward closure (Lemma 20) on

(m, δ, δ ′) ∈ GLσΓM using m− c1 6 m

• (m− c1, v1, v ′1) ∈ Lστ1Mv by unrolling the definition of b)

we get (m− c1, δe2[v1/x], δ ′e ′2[v
′
1/x]) ∈ Lστ2M

σt2
ε . Unrolling its

definition with (†) and (††), and cr < m− c1, we get

c) rr − r ′r 6 σt2
d) (m− (c1 + cr), vr, v ′r) ∈ Lστ2Mv

Now, we can conclude with

1. By a) and c) (r1 + rr) − (r ′1 + r
′
r) 6 σt1 + σt2
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2. By downward closure (Lemma 20) on d) using

m− (c1 + cr) 6 m− (c1 + cr)

we obtain (m− (c1 + cr), vr, v ′r) ∈ Lστ2Mv.

Case:
∆;Φa ∧C; Γ ` e	 e ′ . t : τ ∆ ` C wf

∆;Φa; Γ ` e	 e ′ . t : C ⊃ τ
r-c-impI

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m, δe, δ ′e ′) ∈ LσC & στMσtε .

Following the definition of L·M·ε·, assume that

a) δe ⇓c,r v
b) δ ′e ′ ⇓c ′,r ′ v ′

c) c < m.

We first show the second statement.

TS2: (m− c, v, v ′) ∈ LσC ⊃ στMv
Assume that |= σC (?).

STS: (m− c, v, v ′) ∈ Lσ τMv
By IH 1 on the first premise using

• |= σ(C∧Φ) hold by the main assumption |= σΦ and |= σC (by ?)

we get (m, δe, δ ′e ′) ∈ LστMσtε . Unrolling its definition with (a-c), we get

d) r− r ′ 6 σt
e) (m− c, v, v ′) ∈ LστMv

We can conclude as follows:

1. By d), r− r ′ 6 σt
2. Using e) , we can show that (m− c, v, v ′) ∈ LσC ⊃ στMv

Case:
∆;Φa; Γ ` e	 e ′ . t : C ⊃ τ ∆;Φa |= C

∆;Φa; Γ ` celim⊃ e	 celim⊃ e ′ . t : τ
r-c-implE

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m, celim⊃ δe, celim⊃ δ ′e ′) ∈ LστMσtε .
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Following the definition of L·M·ε·, assume that
δe ⇓c,r v (�)

celim⊃ δe ⇓c,r v
celim

and
δ ′e ⇓c,r v (��)

celim⊃ δ ′e ⇓c,r v
celim and c < m (?).

By IH 1 on the first premise, we get (m, δe, δ ′e ′) ∈ LσC ⊃ στMσtε .

Unrolling its definition using (�), (��) and (?), we get

a) r− r ′ 6 σt
b) (m− c, v, v ′) ∈ LσC ⊃ στMv

We can conclude as follows:

1. By a), r− r ′ 6 σt
2. Using b) and |= σC (obtained by Lemma 22 on the second premise)

, we can show that (m− c, v, v ′) ∈ LστMv

Case:
Υ(ζ) = τ1

diff(t)−−−→ τ2 ∆;Φa; Γ ` e	 e ′ . t ′ : τ1
∆;Φa; Γ ` ζ e	 ζ e ′ . t+ t ′ : τ2

r-primapp

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m, ζ δe, ζ δ ′e ′) ∈ Lστ2Mσt+σt
′

ε .

Following the definition of L·M·ε, assume that
δe ⇓c,r v (?) ζ̂(v) = (cr, rr, vr) (�)

ζ δe ⇓c+cr+1,r+rr+cprimapp vr
primapp and

δ ′e ′ ⇓c ′,r ′ v ′ (??) ζ̂(v) ′ = (c ′r, r
′
r, v
′
r) (��)

ζ δ ′e ′ ⇓c ′+c ′r+1,r ′+r ′r+cprimapp v ′r
primapp and

(c+ cr + 1) < m.

By IH 1 on the second premise, we get (m, δe, δ ′e ′) ∈ Lστ1Mσt
′

ε .

Unrolling its definition with (?) and (??), and c < m, we get

a) r− r ′ 6 σt ′

b) (m− c, v, v ′) ∈ Lστ1Mv

Next, by Assumption (44) using ζ : στ1
diff(σt)−−−−→ στ2 (obtained by

substitution on the first premise), b), (?) and (??), we get

c) rr − r ′r 6 σt
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d) (m− c− cr, vr, v ′r) ∈ Lστ2Mv

Now, we can conclude as follows:

1. Using a) and c), we get (r+ rr + cprimapp) − (r ′ + r ′r + cprimapp) 6
σt+ σt ′

2. By downward closure (Lemma 20) on d) using

m− (c+ cr + 1) 6 m− (c+ cr)

we get (m− (c+ cr + 1), vr, v ′r) ∈ Lστ2Mv.

Case:

∆;Φa; Γ ` e	 e . t : τ
∀x ∈ dom(Γ). ∆;Φa |= Γ(x) v � Γ(x)

∆;Φa; Γ , Γ ′;Ω ` e	 e . 0 : � τ
nochange

Assume that (m, δ, δ ′) ∈ GLσΓ ,σΓ ′M and |= σΦ.

Then, δ = δ1 ∪ δ2 and δ ′ = δ ′1 ∪ δ ′2 such that (m, δ1, δ ′1) ∈ GLσΓM and

(m, δ2, δ ′2) ∈ GLσΓ ′M.
TS: (m, δe, δ ′e) ∈ L�στM0ε.
Since e doesn’t have any free variables from Γ ′ by the first premise,

STS: (m, δ1e, δ ′1e) ∈ L�στM0ε.
Assume that

a) δ1e ⇓c,r v
b) δ ′1e ⇓c

′,r ′ v ′

c) c < m

TS 1: r− r ′ 6 0
TS 2: (m− c, v, v ′) ∈ L�στMv
By IH 1 on the first premise using

• (m, δ1, δ ′1) ∈ GLσΓM

• |= σΦ

we get (m, δ1e, δ ′1e) ∈ LστMσtε .

Unfolding its definition with a), b) and c), we get

d) r− r ′ 6 σt
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e) (m− c, v, v ′) ∈ LστMv

We can conclude as follows

1. By Lemma 21 using (m, δ1, δ ′1) ∈ GLσΓM and the second premise,

we get (m, δ1, δ1) ∈ GL�σΓM. This means that δ1 = δ ′1.

Therefore, a) and b) are equal, that is c = c ′, r = r ′ and v = v ′.

Hence, trivially we get r− r ′ 6 0.
2. Since v = v ′ and c = c ′, by using e), we get(m− c, v, v) ∈ L�στMv.

Case:

∆;Φa ∧C; Γ ` e1 	 e2 . t : τ
∆;Φa ∧¬C; Γ ` e1 	 e2 . t : τ ∆ ` C wf

∆;Φa; Γ ` e1 	 e2 . t : τ
r-split

Assume that |= σΦ and (m, δ, δ ′) ∈ GLσΓM.
TS: (m, δe1, δ ′e2) ∈ LστMσkε .

There are two cases:

subcase 1: |= σΦ∧ σC

Follows immediately by IH on the first premise using the as-

sumption σC.

subcase 2: |= σΦ∧¬σC

Follows immediately by IH on the second premise using the as-

sumption ¬σC.

Case:
∆;Φa; Γ ` e1 	 e2 . t : τ ∆;Φa |= τ v τ ′ ∆;Φa |= t 6 t ′

∆;Φa; Γ ` e1 	 e2 . t ′ : τ ′
r-vvv

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m, δe, δ ′e ′) ∈ Lστ ′Mσt
′

ε .

Following the definition of L·M·ε·, assume that

a) δe ⇓c,r v
b) δ ′e ′ ⇓c ′,r ′ v ′

c) c < m.

By IH 1 on the first premise using (a-c), we get
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d) r− r ′ 6 σt
e) (m− c, v, v ′) ∈ LστMv

We can conclude as

1. By Assumption (25) on the third premise, we get σt 6 σt ′. Com-

bining this with d), we get r− r ′ 6 σt ′.
2. By Lemma 21 on the second premise using e), we get (m −

c, v, v ′) ∈ Lστ ′Mv

Case:
∆;Φa; |Γ |1 `t1k1 e1 : A1 ∆;Φa; x : UA1, Γ ` e2 	 e . t2 : τ2

∆;Φa; Γ ` let x = e1 in e2 	 e . t1 + t2 + clet : τ2
r-let-e

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m, let x = δe1 in δe2, δ ′e) ∈ Lστ2M
σt1+σt2+clet
ε .

Following the definition of L·M·ε, assume that
δe1 ⇓c1,r1 v1 (�) δe2[v1/x] ⇓cr,rr vr (†)

let x = δe1 in δe2 ⇓c1+cr+1,r1+rr+clet vr
let and δ ′e ⇓c ′,r ′ v ′ (?) and

(c1 + cr + 1) < m.

To be able to instantiate the IH 1 on the second premise, we first show

∀m.(m, v1) ∈ JσA1Kv (1)

Subproof. Pick m.

By IH 2 on the first premise using

• FV(e1) ⊆ dom(|σΓ |1) using Lemma 43 on the first premise

• (m+c1+1, δ) ∈ GJ|σΓ |1K obtained by Lemma 19 using (m, δ, δ ′) ∈
GLσΓM

we get

(m+ c1 + 1, δe1) ∈ JσA1Kσk1,σt1
ε (2)
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Unfolding the definition of (2) with (�) and c1 < m+ c1 + 1, we

get

a) σk1 6 r1 6 σt1
b) (m+ 1, v1) ∈ JσA1Kv

RTS: (m, v1) ∈ JσA1Kv.
This follows by downward closure (Lemma 20) on (b) using m 6
m+ 1. �

Next, we instantiate IH 1 on the second premise using

• (m, δ[x 7→ v1], δ ′[x 7→ v1]) ∈ GLσΓ , x : UσA1M using

– (m, δ, δ ′) ∈ GLσΓM

– (m, v1, v1) ∈ LUσA1Mv using (1)

and we get (m, δe2[v1/x], δ ′e[v1/x]) ∈ Lστ2M
σt2
ε .

Since x doesn’t occur free in e, we have

(m, δe2[v1/x], δ ′e) ∈ Lστ2M
σt2
ε .

Unrolling its definition with (†) and (?), and cr < m, we get

f) rr − r ′ 6 σt2
g) (m− cr, vr, v ′) ∈ Lστ2Mv

Now, we can conclude by

1. By a) and g) (r1 + rr + clet) − r ′ 6 σt1 + σt2 + clet
2. By downward closure (Lemma 20) on h) using

m− (c+ cr + 1) 6 m− (c+ cr)

we get (m− (c+ cr + 1), vr, v ′) ∈ Lστ2Mv.

Case:
∆;Φa; |Γ |2 `t1k1 e1 : A1 ∆;Φa; x : UA1, Γ ` e	 e2 . t2 : τ2

∆;Φa; Γ ` e	 let x = e1 in e2 . t2 − k1 − clet : τ2
r-e-let

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m, δe, let x = δ ′e1 in δ ′e2) ∈ Lστ2M
σt2−σk1−clet
ε .

Following the definition of L·M·ε, assume that
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δe ⇓c,r v (?) and
δ ′e1 ⇓c1,r1 v1 (�) δ ′e2[v1/x] ⇓cr,rr vr (†)

let x = δ ′e1 in δ ′e2 ⇓c1+cr+1,r1+rr+clet vr
let and

c < m.

To be able to instantiate the IH 1 on the second premise, we first show

∀m.(m, v1) ∈ JσA1Kv (1)

Subproof. Pick m.

By IH 2 on the first premise using

• FV(e1) ⊆ dom(|σΓ |2) using Lemma 43 on the first premise

• (m+c1+1, δ ′) ∈ GJ|σΓ |2K obtained by Lemma 19 using (m, δ, δ ′) ∈
GLσΓM

we get

(m+ c1 + 1, δ ′e1) ∈ JσA1Kσk1,σt1
ε (2)

Unfolding the definition of (2) with (�) and c1 < m+ c1 + 1, we

get

a) σk1 6 r1 6 σt1
b) (m+ 1, v1) ∈ JσA1Kv

RTS: (m, v1) ∈ JσA1Kv.
This follows by downward closure (Lemma 20) on (b) using m 6
m+ 1. �

Next, we instantiate IH 1 on the second premise using

• (m, δ[x 7→ v1], δ ′[x 7→ v1]) ∈ GLσΓ , x : UσA1M using

– (m, δ, δ ′) ∈ GLσΓM

– (m, v1, v1) ∈ LUσA1Mv using (1)

and we get (m, δe[v1/x], δ ′e2[v1/x]) ∈ Lστ2M
σt2
ε .

Since x doesn’t occur free in e, we have
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(m, δe, δ ′e2[v1/x]) ∈ Lστ2M
σt2
ε .

Unrolling its definition with (†) and (?), and c < m, we get

h) r− rr 6 σt2
i) (m− c, v, vr) ∈ Lστ2Mv

Now, we can conclude by

1. By a) and h) r− (r1 + rr + clet) − r 6 σt2 − σk1 − clet
2. By i), we have (m− c, v, vr) ∈ Lστ2Mv.

Case:

∆;Φa; |Γ |1 `t_ e : A1 +A2 ∆;Φa; x : UA1, Γ ` e1 	 e ′ . t ′ : τ
∆;Φa;y : UA2, Γ ` e2 	 e ′ . t ′ : τ

∆;Φa; Γ ` case (e, x.e1,y.e2)	 e ′ . t ′ + t+ ccase : τ
r-case-e

Assume that (m, δ, δ ′) ∈ GLσΓM and |= σΦ.

TS: (m, case (δe, δe1, δe2), δ ′e ′) ∈ LστMσt+σt
′

ε .

Following the definition of L·M·ε, assume that

case (δe, δe1, δe2) ⇓C,R vr and δ ′e ′ ⇓c ′,r ′ v ′ (†) and C < m.

Depending on what δe evaluates to, there are two cases:

subcase 1:
δe ⇓c,r inl v (?) δe1[v/x] ⇓cr,rr vr (�)
case (δe, x.δe1,y.δe2) ⇓c+cr+1,r+rr+ccase vr

case-inl

Note that C = c+ cr + 1 < m .

To be able to instantiate the IH 1 on the second premise, we first

show

∀m.(m, inl v) ∈ JσA1 + σA2Kv (1)

Subproof. Pick m.

By IH 2 on the first premise using

• FV(e) ⊆ dom(|σΓ |1) using Lemma 43 on the first premise

• (m + c + 1, δ) ∈ GJ|σΓ |1K obtained by Lemma 19 using

(m, δ, δ ′) ∈ GLσΓM
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we get

(m+ c+ 1, δe1) ∈ JσA1 + σA2Kσk,σt
ε (2)

Unfolding the definition of (2) with (?) and c < m+ c+ 1,

we get

a) c 6 σt
b) (m+ c+ 1− c, inl v) ∈ JσA1 + σA2Kv

RTS: (m, inl v) ∈ JσA1 + σA2Kv.
This follows by downward closure (Lemma 20) on b) using

m 6 m+ 1. �

Next, we instantiate IH 1 on the second premise using

• (m, δ[x 7→ v], δ ′[x 7→ v]) ∈ GLσΓ , x : UσA1M using

– (m, δ, δ ′) ∈ GLσΓM

– (m, v, v) ∈ LUσA1Mv by unrolling the definition of (1)

and we get (m, δe1[v/x], δ ′e ′[v/x]) ∈ LστMσt
′

ε .

Since x doesn’t occur free in e ′, we have

(m, δe1[v/x], δ ′e ′) ∈ LστMσt
′

ε .

Unrolling its definition with (�) and (†), and cr < m, we get

j) rr − r ′ 6 σt ′

k) (m− cr, vr, v ′) ∈ LστMv

Now, we can conclude by

1. By b) and i) (r+ rr + ccase) − r ′ 6 σt+ σt ′ + ccase
2. By downward closure (Lemma 20) on j), using

m− (c+ cr + 1) 6 m− cr

we obtain (m− (c+ cr + 1), vr, v ′) ∈ LστMv.
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subcase 2:
δe ⇓c,r inr v (?) δe2[v/y] ⇓cr,rr vr (�)
case (δe, x.δe1,y.δe2) ⇓c+cr+1,r+rr+ccase vr

case-inr

Note that C = c+ cr < m .

Like in the previous case, we have

∀m.(m, inr v) ∈ JσA1 + σA2Kv (3)

Next, we instantiate IH 1 on the third premise using

• (m, δ[y 7→ v], δ ′[y 7→ v]) ∈ GLσΓ ,y : UσA2M using

– (m, δ, δ ′) ∈ GLσΓM

– (m, v, v) ∈ LUσA2Mv by unrolling the definition of (3)

and we get (m, δe2[v/y], δ ′e ′[v/y]) ∈ LστMσt
′

ε .

Since y doesn’t occur free in e ′, we have

(m, δe2[v/y], δ ′e ′) ∈ LστMσt
′

ε .

Unrolling its definition with (�) and (†), and cr < m, we get

l) rr − r ′ 6 σt ′

m) (m− cr, vr, v ′) ∈ LστMv

Now, we can conclude by

1. By b) and k) (r+ rr + ccase) − r ′ 6 σt+ σt ′ + ccase
2. By downward closure (Lemma 20) on l), using

m− (c+ cr + 1) 6 m− cr

we obtain (m− (c+ cr + 1), vr, v ′) ∈ LστMv.

Proof of Statement (2). Remember the statement (2) of Theorem 30:

Assume that ∆;Φa;Ω `tk e : A and σ ∈ DJ∆K and |= σΦ and there ex-

ists Ω ′ s.t. FV(e) ⊆ dom(Ω ′) and Ω ′ ⊆ Ω and (m,γ) ∈ GJσΩ ′K. Then,

(m,γe) ∈ JσAKσk,σt
ε .
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Proof is by induction on the typing of e. We show a few selected cases.

Case:
Ω(x) = A

∆;Φa;Ω `00 x : A
var

Assume that |= σΦ and there exists Ω ′ s.t. FV(x) ⊆ dom(Ω ′)

and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K

TS: (m,γ(x)) ∈ JσAK0,0ε .

By Value Lemma (Lemma 18),

STS: (m,γ(x)) ∈ JσAKv.

Note that x ∈ dom(Ω ′) and Ω ′ ⊆ Ω, therefore Ω ′(x) = A,

RTS: (m,γ(x)) ∈ JσAKv.

This follows by the premise Ω(x) = A and the main assumption

(m,γ) ∈ GJσΩK

Case:
∆;Φa;Ω `t1k1 e1 : A ∆;Φa;Ω `t2k2 e2 : list[n]A

∆;Φa;Ω `t1+t2k1+k2
cons(e1, e2) : list[n+ 1]A

cons

Assume that |= σΦ and there exists Ω ′ s.t. FV(cons(e1, e2)) ⊆ dom(Ω ′)

and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K

TS: (m, cons(γe1,γe2)) ∈ Jlist[σn+ 1]σAKσk1+σk2,σt1+σt2
ε .

Following the definition of J·K·,·ε ,

Assume that
γe1 ⇓c1,r1 v1 (?) γe2 ⇓c2,r2 v2 (�)
cons(γe1,γe2) ⇓c1+c2,r1+r2 cons(v1, v2)

cons and c1+c2 <

m.

By IH 2 on the first premise using

FV(e1) ⊆ dom(Ω ′) and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K

we get (m,γe1) ∈ JσAKσk1,σt1
ε . Unrolling its definition with (?) and

c1 < m, we get

a) σk1 6 r1 6 σt1
b) (m− c1, v1) ∈ JσAKv
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By IH 2 on the second premise using

FV(e2) ⊆ dom(Ω ′) and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K

we get (m,γe2) ∈ Jlist[σn]σAKσk2,σt2
ε .

Unrolling its definition with (�) and c2 < m, we get

c) σk2 6 r2 6 σt2
d) (m− c2, v2) ∈ Jlist[σn]σAKv

Now, we can conclude as follows:

1. Using a) and c), we get σk1 + σk2 6 (r1 + r2) 6 σt1 + σt2
2. By downward closure (Lemma 20) on b) using

m− (c1 + c2) 6 m− c1

we get (m− (c1 + c2), v1) ∈ JσAKv.

By downward closure (Lemma 20) on d) using

m− (c1 + c2) 6 m− c2

we get (m− (c1 + c2), v2) ∈ Jlist[σn]σAKv.

By combining these two statements, we can conclude as (m −

(c1 + c2), cons(v1, v2)) ∈ Jlist[σn+ 1]σAKv

Case:

∆ `A A1
exec(k,t)−−−−−→ A2 wf

∆;Φa; x : A1, f : A1
exec(k,t)−−−−−→ A2,Ω `tk e : A2

∆;Φa;Ω `00 fix f(x).e : A1
exec(k,t)−−−−−→ A2

fix

Assume that |= σΦ and there exists Ω ′ s.t. FV(fix f(x)) ⊆ dom(Ω ′)

and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K

TS: (m, fix f(x).γe) ∈ JσA1
exec(σk,σt)−−−−−−→ σA2K

0,0
ε .
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By Lemma 18, STS: (m, fix f(x).γe) ∈ JσA1
exec(σk,σt)−−−−−−→ σA2Kv.

We prove the more general statement

∀m ′ 6 m. (m ′, fix f(x).γe) ∈ JσA1
exec(σk,σt)−−−−−−→ σA2Kv

by subinduction on m ′.

There are two cases:

subcase 1: m ′ = 0

Since there is no non-negative j such that j < 0, the goal is vacu-

ously true.

subcase 2: m ′ = m ′′ + 1 6 m
By sub-IH

(m ′′, fix f(x).γe) ∈ JσA1
exec(σk,σt)−−−−−−→ σA2Kv (1)

STS: (m ′′ + 1, fix f(x).γe) ∈ JσA1
exec(σk,t)−−−−−−→ σA2Kv.

Pick j < m ′′ + 1 and assume that (j, v) ∈ JσA1Kv.

STS: (j,γe[v/x, (fix f(x).γe)/f]) ∈ JσA2K
σk,σt
ε .

This follows by IH on the premise instantiated with

• FV(e) ⊆ dom(x : A1, f : A1
exec(k,t)−−−−−→ A2,Ω ′) and x : A1, f :

A1
exec(k,t)−−−−−→ A2,Ω ′ ⊆ x : A1, f : A1

exec(k,t)−−−−−→ A2,Ω

• (j,γ[x 7→ v, f 7→ (fix f(x).γe)]) ∈ GJσΩ ′, x : σA1, f : σA1
exec(σk,σt)−−−−−−→

σA2K which holds because

– (j,γ) ∈ GJσΩ ′K obtained by downward closure (Lemma 20)

on (m,γ) ∈ GJσΩ ′K using j < m ′′ + 1 6 m.

– (j, v) ∈ JσA1Kv, from the assumption above

– (j, fix f(x).γe) ∈ JσA1
exec(σk,σt)−−−−−−→ σA2Kv, obtained by down-

ward closure (Lemma 20) on (1) using j 6 m ′′

Case:
∆;Φa;Ω `t1k1 e1 : A1

exec(k,t)−−−−−→ A2 ∆;Φa;Ω `t2k2 e2 : A1
∆;Φa;Ω `t1+t2+t+cappk1+k2+k+capp

e1 e2 : A2
app

Assume that |= σΦ and there exists Ω ′ s.t. FV(e1 e2) ⊆ dom(Ω ′)
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and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K

TS: (m,γe1 γe2) ∈ JσA2K
σk1+σk2+σk+capp,σt1+σt2+σt+capp
ε .

Following the definition of J·K·,·ε , Assume that
γe1 ⇓c1,r1 fix f(x).e (?)

γe2 ⇓c2,r2 v2 (�) e[v2/x, (fix f(x).e)/f] ⇓cr,rr vr (†)
γe1 γe2 ⇓c1+c2+cr+1,r1+r2+rr+capp vr

app and c1+c2+

cr + 1 < m.

By IH 2 on the first premise using

FV(e1) ⊆ dom(Ω ′) and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K

we get (m,γe1) ∈ JσA1
exec(σk,σt)−−−−−−→ σA2K

σk1,σt1
ε .

Unrolling its definition with (?) and c1 < m, we get

a) σk1 6 r1 6 σt1
b) (m− c1, fix f(x).e) ∈ JσA1

exec(σk,σt)−−−−−−→ σA2Kv

By IH 2 on the second premise using

FV(e2) ⊆ dom(Ω ′) and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K

we get (m,γe2) ∈ JσA1K
σk2,σt2
ε . Unrolling its definition with (�) and

c2 < m, we get

c) σk2 6 r2 6 σt2
d) (m− c2, v2) ∈ JσA1Kv

By downward closure (Lemma 20) on d) using m− c1 − c2 − 1 6 m−

c2, we get

(m− (c1 + c2 + 1), v2) ∈ JσA1Kv (1)

Next, we unroll b) with (1) and m− (c1 + c2 + 1) < m− c1 to obtain

(m− (c1 + c2 + 1), e[v2/x, (fix f(x).e)]) ∈ JσA2Kσk,σt
ε (2)
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By unrolling (2)’s definition using (†) and cr < m− (c1 + c2 + 1), we

get

e) σk 6 rr 6 σt
f) (m− (c1 + c2 + cr + 1), vr) ∈ JσA2Kv

Now, we can conclude as follows:

1. Using a), c) and e), we get σk1+σk2+σk+ capp 6 (r1+ r2+ rr+

capp) 6 σt1 + σt2 + σt+ capp
2. By f)

Case:
∆;Φa;Ω `tk e : A1 ∆ `A A2 wf

∆;Φa;Ω `tk inl e : A1 +A2
inl

Assume that |= σΦ and there exists Ω ′ s.t. FV(inl e) ⊆ dom(Ω ′)

and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K

TS: (m, inl (γe)) ∈ JσA1 + σA2K
σk,σt
ε .

Following the definition of J·K·,·ε , assume that
γe ⇓c,r v (?)

inl γe ⇓c,r inl v
inl and c < m.

By IH 2 on the first premise using

FV(e) ⊆ dom(Ω ′) and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K

we get (m,γe) ∈ JσAKσk,σt
ε .

Unrolling its definition with (?) and c < m, we get

a) σk 6 r 6 σt
b) (m− c, v) ∈ JσAKv

We can conclude as follows:

1. By a), σk 6 r 6 σt

2. By b), we can show that (m− c, inl v) ∈ JσA1 + σA2Kv
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Case:

∆;Φa;Ω `tk e : A1 +A2
∆;Φa; x : A1,Ω `t

′
k ′ e1 : A

∆;Φa;y : A2,Ω `t
′
k ′ e2 : A

∆;Φa;Ω `t+t ′+ccasek+k ′+ccase
case (e, x.e1,y.e2) : A

case

Assume that |= σΦ and there exists Ω ′ s.t. FV( case (e, e1, e2)) ⊆ dom(Ω ′)

and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K

TS: (m, case (γe,γe1,γe2)) ∈ JσAKσk,σt+σt ′+ccase
ε .

Following the definition of J·K·,·ε , assume that
γe ⇓c,r inl v (?) γe1[v/x] ⇓cr,rr vr (�)
case (γe, x.γe1,y.γe2) ⇓c+cr+1,r+rr+ccase vr

case-inl and c + cr + 1 <

m.

By IH 2 on the first premise using

FV(e) ⊆ dom(Ω ′) and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K

we get (m,γe) ∈ JσA1 + σA2K
σk,σt
ε .

Unrolling second part of its definition with (?) and c < m, we get

a) σk 6 r 6 σt
b) (m− c, inl v) ∈ JσA1 + σA2Kv

By IH 2 on the second premise using (m− c,γ[x 7→ v]) ∈ GJσΩ ′, x :

σA1K obtained by

• FV(e1) ⊆ dom(x : A1,Ω ′) and x : A1,Ω ′ ⊆ x : A1,Ω

• (m−c),γ) ∈ GJσΩ ′K by downward-closure (Lemma 20) on (m,γ) ∈
GJσΩ ′K using m− c 6 m

• (m− c, v) ∈ JσA1Kv by downward closure (Lemma 20) on c), and

unfolding its definition

we get

(m− c,γe1[v/x]) ∈ JσAKσk
′,σt ′

ε (1)
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By unrolling second part of (1)’s definition using (�) and cr < m− c,

we get

c) σk ′ 6 rr 6 σt ′

d) (m− (c+ cr), vr) ∈ JσAKv

Now, we can conclude as follows

1. By a) and c) σk+ σk ′ + ccase 6 (r+ rr + ccase) 6 σt+ σt ′ + ccase
2. By downward closure (Lemma 20) on d) using

m− (c+ cr + 1) 6 m− (c+ cr)

we get (m− (c+ cr + 1), vr) ∈ JσAKv.

Case:

∆;Φa;Ω `tk e : list[n]A

∆;Φa ∧n = 0;Ω `t ′k ′ e1 : A ′

i,∆;Φa ∧n = i+ 1;h : A, tl : list[i]A,Ω `t ′k ′ e2 : A ′

∆;Φa;Ω `t+t ′+ccaseLk+k ′+ccaseL
case e of nil → e1 | h :: tl→ e2 : A

′
caseL

Assume that |= σΦ and there exists Ω ′ s.t. FV(E) ⊆ dom(Ω ′)

and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K where

E = case e of nil → e1 | h :: tl→ e2

TS: (m, case γe of nil → γe1 | h :: tl→ γe2) ∈ JσA ′Kσk+σk
′+ccaseL,σt+σt ′+ccaseL

ε .

Following the definition of J·K·,·ε , assume that

case γe of nil → γe1 | h :: tl→ γe2 ⇓C,R vr and C < m.

Depending on what γe evaluates to, there are two cases.

subcase 1:
γe ⇓c,r nil (?) γe1 ⇓cr,rr vr (�)

case γe of nil → γe1 | h :: tl→ γe2 ⇓c+cr+1,r+rr+ccaseL vr
caseL-nil

and C = c+ cr + 1

By IH 2 on the first premise using

FV(e) ⊆ dom(Ω ′) and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K

we get (m,γe) ∈ Jlist[σn]σAKσk,σt
ε . Unrolling its definition with

(?) and c < m, we get
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a) σk 6 r 6 σt
b) (m− c, nil ) ∈ Jlist[σn]σAKv

By b), σn = 0 since v = nil .

Then, we can instantiate IH 2 on the second premise using

• FV(e1) ⊆ dom(Ω ′) and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K

• |= σΦ∧ σn
.
= 0 obtained by combining |= σΦ with |= σn

.
= 0

we get (m,γe1) ∈ JσA ′Kσk
′,σt ′

ε .

Unrolling its definition using (�) and cr < m, we get

c) σk ′ 6 rr 6 σt ′

d) (m− cr, vr) ∈ JσA ′Kv

We conclude with

1. By a) and c), we get σk + σk ′ + ccaseL 6 r + rr + ccaseL 6
σt+ σt ′ + ccaseL

2. By downward closure (Lemma 20) on d) using

m− (c+ cr + 1) 6 m− (c+ cr)

we get (m− (c+ cr + 1), vr) ∈ JσA ′Kv.

subcase 2:
γe ⇓c,r cons(v1, v2) (?) γe2[v1/h, v2/tl] ⇓cr,rr vr (��)
case γe of nil → γe1 | h :: tl→ γe2 ⇓c+cr+1,r+rr+ccaseL vr

caseL-cons

By IH 2 on the first premise, we get (m,γe) ∈ Jlist[σn]σAKσk,σt
ε .

Unrolling its definition with (?) and c < m, we get

a) σk 6 r 6 σt
b) (m− c, cons(v1, v2)) ∈ Jlist[σn]σAKv

By b), σn = I+ 1 for some I and we have

(m− c, v1) ∈ JσAKv (1)
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(m− c, v2) ∈ Jlist[I]σAKv (2)

Then, we can instantiate IH 2 on the third premise using

• FV(e2) ⊆ dom(h : A, tl : list[i]A,Ω ′) and h : A, tl : list[i]A,Ω ′ ⊆
h : A, tl : list[i]A,Ω

• σ[i 7→ I] ∈ DJi :: N,∆K

• |= σ[i 7→ I](Φ∧n
.
= i+ 1) obtained by combining |= σΦ with

|= σn
.
= I+ 1,

• (m − c,γ[h 7→ v1, tl 7→ v2]) ∈ GJσ[i 7→ I](Ω ′, x : A, tl :

list[i]A)K using (1) and (2) and (m− c,γ) ∈ GJσΩ ′K (obtained

by downward closure (Lemma 20) ).

we get (m,γe2[v1/h, v2/tl]) ∈ Jσ[i 7→ I]AKσ[i 7→I]k
′,σ[i7→I]t ′

ε .

Since, i 6∈ FV(k ′, t ′,A,A ′), we have

(m,γe2[v1/h, v2/tl]) ∈ JσA ′Kσk
′,σt ′

ε .

Unrolling its definition using (��) and cr < m− c, we get

c) σk ′ 6 rr 6 σt ′

d) (m− c− cr, vr) ∈ JσA ′Kv

We conclude with

1. By a) and c), we get σk + σk ′ + ccaseL 6 r + rr + ccaseL 6
σt+ σt ′ + ccaseL

2. By downward closure (Lemma 20) on d) using

m− (c+ cr + 1) 6 m− (c+ cr)

we get (m− (c+ cr + 1), vr) ∈ LσA ′Mv.

Case:
∆;Φa;Ω `tk e : A{I/i} ∆ ` I :: S
∆;Φa;Ω `tk pack e : ∃i::S.A

pack

Assume that |= σΦ and there exists Ω ′ s.t. FV(pack e) ⊆ dom(Ω ′)
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and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K

TS: (m, pack γe) ∈ J∃i::S.AKσk,σt
ε .

Following the definition of J·K·,·ε , assume that
γe ⇓c,r v (?)

pack γe ⇓c,r pack v
pack and c < m.

By IH 2 on the first premise using

FV(e) ⊆ dom(Ω ′) and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K

we get (m,γe) ∈ JσA{σI/i}Kσk,σt
ε .

Unrolling its definition with (?) and c < m, we get

a) σk 6 r 6 σt
b) (m− c, v) ∈ JσA{σI/i}Kv

Then we can conclude as follows:

1. By a), σk 6 r 6 σt

2. TS: (m− c, pack v) ∈ J∃i::S.AKv.

By Lemma 22 on the second premise we know that ` σI :: S.

STS: (m− c, v) ∈ JσA{σI/i}Kv.

This follows by b).

Case:
∆;Φa;Ω `t1k1 e1 : A1 ∆;Φa; x : A1,Ω `t2k2 e2 : A2

∆;Φa;Ω `t1+t2+cletk1+k2+clet
let x = e1 in e2 : A2

let

Assume that |= σΦ and there exists Ω ′ s.t. FV(let x = e1 in e2) ⊆ dom(Ω ′)

and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K

TS: (m, let x = γe1 in γe2) ∈ JσA2K
σk1+σk2+clet,σt1+σt2+clet
ε .

Following the definition of J·K·,·ε , assume that
γe1 ⇓c1,r1 v1 (?) γe2[v1/x] ⇓cr,rr vr (�)

let x = γe1 in γe2 ⇓c1+cr+1,r1+rr+clet vr
let and c1 + cr + 1 < m.

By IH 2 on the first premise using

FV(e1) ⊆ dom(Ω ′) and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K
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we get (m,γe1) ∈ JσA1K
σk1,σt1
ε . Unrolling its definition with (?) and

c1 < m, we get

a) σk1 6 r1 6 σt1
b) (m− c1, v1) ∈ JσA1Kv

By IH 2 on the second premise using (m− c1,γ[x 7→ v]) ∈ GJσΩ ′, x :

σA1K obtained by

• FV(e2) ⊆ dom(x : A1,Ω ′) and x : A1,Ω ′ ⊆ x : A1,Ω

• (m−c1,γ) ∈ GJσΩ ′K by downward closure (Lemma 20) on (m,γ) ∈
GJσΩ ′K using m− c1 6 m

• (m− c1, v) ∈ JσA1Kv by downward closure (Lemma 20) on c)

we get

(m− c1,γe1[v/x]) ∈ JσA2Kσk2,σt2
ε (1)

Unrolling (1)’s definition using (�) and cr < m− c1, we get

c) σk2 6 rr 6 σt2
d) (m− (c1 + cr), vr) ∈ JσAKv

Now, we can conclude as follows

1. By a) and c) σk1 + σk2 + clet 6 (r1 + rr + clet) 6 σt1 + σt2 + clet
2. By downward closure (Lemma 20) on d) using

m− (c1 + cr + 1) 6 m− (c1 + cr)

we get (m− (c1 + cr + 1), vr) ∈ JσAKv.

Case:
Υ(ζ) = A1

exec(k,t)−−−−−→ A2 ∆;Φa;Ω `t ′k ′ e : A1
∆;Φa;Ω `t+t

′+cprimapp
k+k ′+cprimapp

ζ e : A2

primapp

Assume that |= σΦ and there exists Ω ′ s.t. FV(ζ e) ⊆ dom(Ω ′)

and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K

TS: (m, ζ γe) ∈ JσA2K
σk+σk ′+cprimapp,σt+σt ′+cprimapp
ε .
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Following the definition of J·K·,·ε , assume that
γe ⇓c,r v (?) ζ̂(v) = (cr, rr, vr) (�)

ζ γe ⇓c+cr+1,r+rr+cprimapp vr
primapp and c+ cr + 1 < m.

By IH 2 on the second premise using

FV(e) ⊆ dom(Ω ′) and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K

we get (m,γe) ∈ JσA1K
σk ′,σt ′
ε .

Unrolling its definition with c < m, we get

a) σk ′ 6 r 6 σt ′

b) (m− c, v) ∈ JσA1Kv

Next, by Assumption (45) using ζ : σA1
exec(σk,σt)−−−−−−→ σA2 (obtained by

substitution on the first premise), (�) and (b), we get

c) σk 6 rr 6 σt
d) (m− c− cr, vr) ∈ JσA2Kv

Now, we can conclude as follows:

1. Using a) and d), we get σk+σk ′+cprimapp 6 (c+cr+cprimapp) 6
σt+ σt ′ + cprimapp

2. By downward closure (Lemma 20) on d) using

m− (c+ cr + 1) 6 m− (c+ cr)

we get (m− (c+ cr + 1), vr) ∈ JσA2Kv.

Case:

∆;Φa;Ω `tk e : A ∆;Φa |= A v A ′

∆;Φa |= k ′ 6 k ∆;Φa |= t 6 t ′

∆;Φa;Ω `t ′k ′ e : A ′
vvv exec

Assume that |= σΦ and there exists Ω ′ s.t. FV(e) ⊆ dom(Ω ′)

and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K

TS: (m,γe) ∈ JσA ′Kσk
′,σt ′

ε .

Following the definition of J·K·,·ε , assume that
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a) γe ⇓c,r v
b) c < m.

By IH 2 on the first premise using

FV(e) ⊆ dom(Ω ′) and Ω ′ ⊆ Ω and (m, δ) ∈ GJσΩ ′K

we get (m,γe) ∈ JσAKσk
′,σt ′

ε .

Unrolling its definition with a) and c < m, we get

c) σk 6 r 6 σt
d) (m− c, v) ∈ JσAKv

We can conclude this subcase

1. By Assumption (25) on the third and forth premises, we get σk ′ 6
σk and σt ′ 6 σt ′. By c) we know σk 6 r 6 σt, therefore we get

σk ′ 6 r 6 σt ′

2. By Lemma 21 on the second premise using c), we get (m− c, v) ∈
JσA ′Kv

Proof of Statement (3). Remember the statement (3) of Theorem 30:

Assume that ∆;Φa; Γ ` e1 	 e2 . t : τ and σ ∈ DJ∆K and |= σΦ. Then

for i ∈ {1, 2}, if there exists Γ ′i s.t. FV(ei) ⊆ dom(Γ ′i ) and Γ ′i ⊆ Γ and

(m, δ) ∈ GJ|σΓ ′i |iK, then (m, δei) ∈ J|στ|iK
0,∞
ε .

For the structural rules, we will only show the left side since the right side

is similar. For asynchronous rules, we first show the left side and then the

right side in the same case.

Case:
Γ(x) = τ

∆;Φa; Γ ` x	 x . 0 : τ
r-var

Assume that |= σΦ and there exists Γ ′ s.t. FV(x) ⊆ dom(Γ ′)

and Γ ′ ⊆ Γ and (m, δ) ∈ GJ|σΓ ′|1K.
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TS: (m, δ(x)) ∈ J|στ|1K
0,∞
ε .

By Lemma 18, STS: (m, δ(x)) ∈ J|στ|1Kv.

By (m, δ) ∈ GJ|σΓ ′|1K and x ∈ dom(Γ ′), we can conclude that (m, δ(x)) ∈
J|στ|1Kv.

Case:

∆ ` τ1
diff(t)−−−→ τ2 wf

∆;Φa; x : τ1, f : τ1
diff(t)−−−→ τ2, Γ ` e1 	 e2 . t : τ2

∆;Φa; Γ ` fix f(x).e1 	 fix f(x).e2 . 0 : τ1
diff(t)−−−→ τ2

r-fix

Assume that |= σΦ and there exists Γ ′ s.t. FV(fix f(x).e) ⊆ dom(Γ ′)

and Γ ′ ⊆ Γ and (m, δ) ∈ GJ|σΓ ′|1K.

TS: (m, fix f(x).δe1) ∈ J|στ1|1
exec(0,∞)−−−−−→ |στ2|1K

0,∞
ε .

By Lemma 18, STS: (m, fix f(x).δe1) ∈ J|στ1|1
exec(0,∞)−−−−−→ |στ2|1Kv.

We prove the more general statement

∀m ′ 6 m. (m ′, fix f(x).δe1) ∈ J|στ1|1
exec(0,∞)−−−−−→ |στ2|1Kv

by subinduction on m ′.

There are two cases:

subcase 1: m ′ = 0

Since there is no non-negative j such that j < 0, the goal is vacu-

ously true.

subcase 2: m ′ = m ′′ + 1 6 m
By sub-IH

(m ′′, fix f(x).δe1) ∈ J|στ1|1
exec(0,∞)−−−−−→ |στ2|1Kv (1)

STS: (m ′′ + 1, fix f(x).δe1) ∈ J|στ1|1
exec(0,∞)−−−−−→ |στ2|1Kv.

Pick j < m ′′ + 1 and assume that (j, v) ∈ J|στ1|1Kv.

STS: (j, δe1[v/x, (fix f(x).δe1)/f]) ∈ J|στ2|1K
0,∞
ε .

This follows by IH 3 on the premise instantiated with

• (j, δ[x 7→ v, f 7→ (fix f(x).δe1)]) ∈ GJx : |στ1|1, f : |στ1|1
exec(0,∞)−−−−−→

|στ2|1, |σΓ |1K which holds because
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– FV(e1) ⊆ dom(x : τ1, f : τ1
diff(t)−−−→ τ2), Γ ′ and x : τ1, f :

τ1
diff(t)−−−→ τ2, Γ ′ ⊆ x : τ1, f : τ1

diff(t)−−−→ τ2, Γ

– (j, δ) ∈ GJ|σΓ |1K using downward closure (Lemma 20) on

(m, δ) ∈ GJ|σΓ |1K using j < m ′′ + 1 6 m.

– (j, v) ∈ J|στ1|1Kv, from the assumption above

– (j, fix f(x).δe1) ∈ J|στ1|1
exec(0,∞)−−−−−→ |στ2|1Kv, obtained by

downward closure (Lemma 20) on (1) using j 6 m ′′

Case:

∆;Φa; Γ ` e1 	 e ′1 . t1 : τ1
diff(t)−−−→ τ2

∆;Φa; Γ ` e2 	 e ′2 . t2 : τ1
∆;Φa; Γ ` e1 e2 	 e ′1 e ′2 . t1 + t2 + t : τ2

r-app

Assume that |= σΦ and there exists Γ ′ s.t. FV(e1 e2) ⊆ dom(Γ ′)

and Γ ′ ⊆ Γ and (m, δ) ∈ GJ|σΓ ′|1K.

TS: (m, δe1 δe2) ∈ J|στ2|1K
0,∞
ε .

Following the definition of J·K·,·ε , assume that
δe1 ⇓c1,r1 fix f(x).e (?)

δe2 ⇓c2,r2 v2 (�) e[v2/x, (fix f(x).e)/f] ⇓cr,rr vr (†)
δe1 δe2 ⇓c1+c2+cr+1,r1+r2+rr+capp vr

app and

c1 + c2 + cr + 1 < m.

By IH 3 on the first premise using

FV(e1) ⊆ dom(Γ ′) and Γ ′ ⊆ Γ and (m, δ) ∈ GJ|σΓ ′|1K

we get (m, δe1) ∈ J|στ1|1
exec(0,∞)−−−−−→ |στ2|1K

0,∞
ε .

Unrolling its definition with (?) and c1 < m, we get

a) 0 6 r1 6∞
b) (m− c1, fix f(x).e) ∈ J|στ1|1

exec(0,∞)−−−−−→ |στ2|1Kv

By IH 3 on the second premise using

FV(e2) ⊆ dom(Γ ′) and Γ ′ ⊆ Γ and (m, δ) ∈ GJ|σΓ ′|1K
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we get (m, δe2) ∈ J|στ1|1K
0,∞
ε . Unrolling its definition with (�) and

c2 < m, we get

c) 0 6 r2 6∞
d) (m− c2, v2) ∈ J|στ1|1Kv

By downward closure (Lemma 20) on d) using m− c1 − c2 − 1 6 m−

c2, we get

(m− (c1 + c2 + 1), v2) ∈ J|στ1|1Kv (1)

Next, we unroll b) with (1) and m− (c1 + c2 + 1) < m− c1 to obtain

(m− (c1 + c2 + 1), e[v2/x, (fix f(x).e)]) ∈ J|στ2|1K0,∞ε (2)

By unrolling (2)’s definition using (†) and cr < m− (c1 + c2 + 1), we

get

e) 0 6 rr 6∞
f) (m− (c1 + c2 + cr + 1), vr) ∈ J|στ2|1Kv

Now, we can conclude as follows:

1. We can trivially show 0 6 (r1 + r2 + rr + capp) 6∞
2. By f)

Case:
∆;Φa; Γ ` e1 	 e ′1 . t1 : τ ∆;Φa; Γ ` e2 	 e ′2 . t2 : list[n]α τ

∆;Φa; Γ ` cons(e1, e2)	 cons(e ′1, e
′
2) . t1 + t2 : list[n+ 1]α+1 τ

r-cons1

Assume that |= σΦ and there exists Γ ′ s.t. FV(cons(e1, e2)) ⊆ dom(Γ ′)

and Γ ′ ⊆ Γ and (m, δ) ∈ GJ|σΓ ′|1K.

TS: (m, cons(δe1, δe2)) ∈ J|list[σn+1]σα+1 στ|1K
0,∞
ε ≡ Jlist[σn+1] |στ|1K

0,∞
ε .

Following the definition of J·K·,·ε , assume that
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δe1 ⇓c1,r1 v1 (?) δe2 ⇓c2,r2 v2 (�)
cons(δe1, δe2) ⇓c1+c2,r1+r2 cons(v1, v2)

cons and c1 + c2 < m.

By IH 3 on the first premise using

FV(e1) ⊆ dom(Γ ′) and Γ ′ ⊆ Γ and (m, δ) ∈ GJ|σΓ ′|1K

we get (m, δe1) ∈ J|στ|1K
0,∞
ε . Unrolling its definition with (?) and

c1 < m, we get

a) 0 6 r1 6∞
b) (m− c1, v1) ∈ J|στ|1Kv

By IH 3 on the second premise using

FV(e2) ⊆ dom(Γ ′) and Γ ′ ⊆ Γ and (m, δ) ∈ GJ|σΓ ′|1K

we get (m, δe2) ∈ J|list[σn]σα στ|1K
0,∞
ε .

Unrolling its definition with (�) and c2 < m, we get

c) 0 6 r2 6∞
d) (m− c2, v2) ∈ Jlist[σn] |στ|1Kv

Now, we can conclude as follows:

1. We can trivially show that 0 6 (r1 + r2) 6∞
2. By downward closure (Lemma 20) on b) and d), we get (m −

(c1 + c2), v1) ∈ J|στ|1Kv and (m− (c1 + c2), v2) ∈ Jlist[σn] |στ|1Kv,

when combined, gives us (m−(c1+ c2), cons(v1, v2)) ∈ Jlist[σn+

1] |στ|1Kv ≡ J|list[σn]σα+1 στ|1Kv

Case:
∆;Φa; Γ ` e1 	 e ′1 . t1 : � τ ∆;Φa; Γ ` e2 	 e ′2 . t2 : list[n]α τ

∆;Φa; Γ ` cons(e1, e2)	 cons(e ′1, e
′
2) . t1 + t2 : list[n+ 1]α τ

r-cons2

Assume that |= σΦ and there exists Γ ′ s.t. FV(cons(e1, e2)) ⊆ dom(Γ ′)

and Γ ′ ⊆ Γ and (m, δ) ∈ GJ|σΓ ′|1K.

TS: (m, cons(δe1, δe2)) ∈ J|list[σn+1]σα στ|1K
0,∞
ε ≡ Jlist[σn+1] |στ|1K

0,∞
ε .

Following the definition of J·K·,·ε , assume that
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δe1 ⇓c1,r1 v1 (?) δe2 ⇓c2,r2 v2 (�)
cons(δe1, δe2) ⇓c1+c2,r1+r2 cons(v1, v2)

cons and c1 + c2 < m.

By IH 3 on the first premise using

FV(e1) ⊆ dom(Γ ′) and Γ ′ ⊆ Γ and (m, δ) ∈ GJ|σΓ ′|1K

we get (m, δe1) ∈ J|�στ|1K0,∞ε . Unrolling its definition with (?) and

c1 < m, we get

a) 0 6 r1 6∞
b) (m− c1, v1) ∈ J|�στ|1Kv ≡ J|στ|1Kv

By IH 3 on the second premise using

FV(e2) ⊆ dom(Γ ′) and Γ ′ ⊆ Γ and (m, δ) ∈ GJ|σΓ ′|1K

we get (m, δe2) ∈ J|list[σn]σα στ|1K
0,∞
ε .

Unrolling its definition with (�) and c2 < m, we get

c) 0 6 r2∞
d) (m− c2, v2) ∈ Jlist[σn] |στ|1Kv

Now, we can conclude as follows:

1. We can trivially show that 0 6 (r1 + r2) 6∞
2. By downward closure (Lemma 20) on b) and d), we get (m −

(c1 + c2), v1) ∈ J|στ|1Kv and (m− (c1 + c2), v2) ∈ Jlist[σn] |στ|1Kv,

when combined, gives us (m−(c1+ c2), cons(v1, v2)) ∈ Jlist[σn+

1] |στ|1Kv ≡ J|list[σn]σα στ|1Kv

Case:
∆;Φa; |Γ |1 `t1k1 e1 : A1 ∆;Φa; |Γ |2 `t2k2 e2 : A2

∆;Φa; Γ ` e1 	 e2 . t1 − k2 : U (A1,A2)
switch

The are two parts to show.

subcase 1: Assume that |= σΦ and there exists Γ ′ s.t. FV(e1) ⊆ dom(Γ ′)

and Γ ′ ⊆ Γ and (m, δ) ∈ GJ|σΓ ′|1K.
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TS: (m, δe1) ∈ J|U (σA1,σA2)|1K
0,∞
ε ≡ JσA1K

0,∞
ε .

Assume that

a) δe1 ⇓cr,rr vr
b) cr < m.

By IH 2 on the first premise using

FV(e1) ⊆ dom(|Γ ′|1) and |Γ ′|1 ⊆ |Γ |1 and (m, δ) ∈ GJ|σΓ ′|1K

we get (m, δe1) ∈ JσA1K
σk1,σt1
ε

By unrolling its definition with a) and b), we get

c) σk1 6 rr 6 σt1
d) (m− cr, vr) ∈ JσA1Kv

We can conclude as follows

1. Trivially, 0 6 rr 6∞
2. By d)

subcase 2: Assume that |= σΦ and there exists Γ ′ s.t. FV(e2) ⊆ dom(Γ ′)

and Γ ′ ⊆ Γ and (m, δ) ∈ GJ|σΓ ′|2K.

TS: (m, δe2) ∈ J|U (σA1,σA2)|2K
0,∞
ε ≡ JσA2K

0,∞
ε .

Assume that

a) δe2 ⇓cr,rr vr
b) cr < m.

By IH 2 on the second premise using

FV(e2) ⊆ dom(|Γ ′|2) and |Γ ′|2 ⊆ |Γ |2 and (m, δ) ∈ GJ|σΓ ′|2K

we get (m, δe2) ∈ JσA2K
σk2,σt2
ε

By unrolling its definition with a) and b), we get

c) σk2 6 rr 6 σt2
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d) (m− cr, vr) ∈ JσA2Kv

We can conclude as follows

1. Trivially, 0 6 rr 6∞
2. By d)

Case:
∆;Φa; |Γ |2 `t1k1 e1 : A1 ∆;Φa; x : UA1, Γ ` e	 e2 . t2 : τ2

∆;Φa; Γ ` e	 let x = e1 in e2 . t2 − k1 − clet : τ2
r-e-let

There are two parts to show.

subcase 1: Assume that |= σΦ and there exists Γ ′ s.t. FV(e) ⊆ dom(Γ ′)

and Γ ′ ⊆ Γ and (m, δ) ∈ GJ|σΓ ′|1K.

TS: (m, δe) ∈ J|στ2|1K
0,∞
ε

Follows by IH 3 on the second premise using (m, δ) ∈ GJ|σΓ ′|1K

since we know that FV(e) ⊆ dom(Γ ′) and Γ ′ ⊆ Γ , x : A1 since x

doesn’t occur free in e, we get immediately (m, δe) ∈ J|στ2|1K
0,∞
ε .

subcase 2:

Assume that |= σΦ and there exists Γ ′ s.t. FV(let x = e1 in e2) ⊆ dom(Γ ′)

and Γ ′ ⊆ Γ and (m, δ) ∈ GJ|σΓ ′|2K.

TS: (m, let x = δe1 in δe2) ∈ J|στ2|2K
0,∞
ε

Assume that

a)
δe1 ⇓c1,r1 v1 (?) δe2[v1/x] ⇓cr,rr vr (�)

let x = δe1 in δe2 ⇓c1+cr+1,r1+rr+clet vr
let

b) c1 + cr + 1 < m

By IH 2 on the first premise using

FV(e1) ⊆ dom(|Γ ′|2) and |Γ ′|2 ⊆ |Γ |2 and (m, δ) ∈ GJ|σΓ ′|2K

we get (m, δe1) ∈ JσA1K
σk1,σt1
ε .

Unrolling second part of its definition using (?) and c1 < m, we

get

c) σk1 6 r1 6 σt1
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d) (m− c1, v1) ∈ JσA1Kv

By IH 3 on the second premise using (m− c, δ[x 7→ v1]) ∈ GJx :

σA1, |σΓ ′|2K which hold since

• FV(e2) ⊆ dom(x : UA1, Γ ′) and x : UA1, Γ ′ ⊆ x : UA1, Γ

• (m− c, δ) ∈ GJ|σΓ ′|2K by downward closure (Lemma 20) on

(m, δ) ∈ GJ|σΓ |2K using m− c 6 m

• (m− c, v1) ∈ JσA1Kv

we get (m− c, δe2[v1/x]) ∈ J|στ2|2K
0,∞
ε .

Unfolding its definition using (�) and cr < m− c1, we get

e) 0 6 rr 6∞
f) (m− (c1 + cr), vr) ∈ J|στ2|2Kv

Then we can conclude as follows

1. Trivially, 0 6 r1 + rr + clet 6∞
2. By downward closure (Lemma 20) on f) using

m− (c+ cr + 1) 6 m− (c+ cr)

we get (m− (c+ cr + 1), vr) ∈ L|στ2|2Mv.

Case:

∆;Φa; |Γ |2 `_
k ′ e

′ : A1 +A2

∆;Φa; x : UA1, Γ ` e	 e ′1 . t : τ ∆;Φa;y : UA2, Γ ` e	 e ′2 . t : τ
∆;Φa; Γ ` e	 case (e ′, x.e ′1,y.e ′2) . t− k ′ − ccase : τ

r-e-case

There are two parts to show.

subcase 1: Assume that |= σΦ and there exists Γ ′ s.t. FV(e) ⊆ dom(Γ ′)

and Γ ′ ⊆ Γ and (m, δ) ∈ GJ|σΓ ′|1K.

TS: (m, δe) ∈ J|στ|1K
0,∞
ε

We conclude by IH 3 on the second premise using (m, δ) ∈ GJ|σΓ ′|1K

since we know that FV(e) ⊆ dom(Γ ′) and Γ ′ ⊆ Γ , x : A1 since x
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doesn’t occur free in e, we get immediately (m, δe) ∈ J|στ|1K
0,∞
ε .

subcase 2:

Assume that |= σΦ and there exists Γ ′ s.t. FV( case (e ′, e ′1, e
′
2)) ⊆ dom(Γ ′)

and Γ ′ ⊆ Γ and (m, δ) ∈ GJ|σΓ ′|2K.

TS: (m, case (δe ′, δe ′1, δe
′
2)) ∈ J|στ|2K

0,∞
ε

There are also two parts to show here depending on what δe

evaluates to. We only show one for brevity, the other one is

similar.

Assume that

a)
δe ′ ⇓c ′,r ′ inl v ′ (?) δe ′1[v

′/x] ⇓c ′r,r ′r v ′r (�)
case (δe, x.δe1,y.δe2) ⇓c

′+c ′r+1,r ′+r ′r+ccase v ′r
case-inl

b) c ′ + c ′r + 1 < m

By IH 2 on the first premise using

FV(e ′) ⊆ dom(|Γ ′|2) and |Γ ′|2 ⊆ |Γ |2 and (m, δ) ∈ GJ|σΓ ′|2K

we get (m, δe ′) ∈ JσA1 + σA2K
σk ′,_ ′
ε .

Unrolling second part of its definition using (?) and c < m, we

get

c) σk ′ 6 r ′ 6 σt ′

d) (m− c ′, inl v ′) ∈ JσA1 + σA2Kv

By IH 3 on the second premise using (m− c ′, δ[x 7→ v ′]) ∈ GJx :

σA1, |σΓ ′|2K which hold since

• FV(e ′1) ⊆ dom(x : UA1, Γ ′) and x : UA1, Γ ′ ⊆ x : UA1, Γ

• (m− c ′, δ) ∈ GJ|σΓ ′|2K by downward closure (Lemma 20) on

(m, δ) ∈ GJ|σΓ |2K using m− c 6 m

• (m− c ′, v ′) ∈ JσA1Kv

we get (m− c ′, δe ′2[v
′/x]) ∈ J|στ|2K

0,∞
ε .

Unfolding its definition using (�) and c ′r < m− c ′, we get

e) 0 6 r ′r 6∞
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f) (m− (c ′ + c ′r), v ′r) ∈ J|στ|2Kv

Then we can conclude as follows

1. Trivially, 0 6 r ′ + r ′r + clet 6∞
2. By downward closure (Lemma 20) on f) using

m− (c ′ + c ′r + 1) 6 m− (c ′ + c ′r)

we get (m− (c ′ + c ′r + 1), vr) ∈ L|στ|2Mv.





B
A P P E N D I X F O R DUCOST IT

In this chapter, we first describe the necessary definitions, lemmas and the-
orems for proving the soundness of the DuCostIt’s unary and binary (rela-
tional) typing with respect to the abstract change propagation and from-
scratch cost semantics.

We use some abbreviations throughout. STS stands for “suffices to show",
TS stands for “to show", and RTS stands for “remains to show".

b.1 ducostit lemmas

Lemma 31 (Value interpretation containment). The following hold.

1. (m, vv) ∈ LτMv then (m, vv) ∈ LτM0ε.

2. (m, v) ∈ JAKv then (m, v) ∈ JAK0ε.

Proof of (1). Assume that (m, vv) ∈ LτMv (?).

Following the definition of LτM0ε, assume that

a) L(vv) ⇓f 〈v,D〉
b) R(vv ′) ⇓f ′ 〈v ′,D ′〉
c) f < m.

We have to show that there exist vv ′ and c ′ such that:

1. 〈〈v,D〉, vv〉 y vv ′, 〈v ′,D ′〉, c ′

2. v = L(vv ′) ∧ v ′ = R(vv ′)

3. c ′ = 0

4. (m− f, vv ′) ∈ LτMv

Since vv is a bi-value, L(vv) and R(vv) are values and, hence, by value

evaluation rule combined with (a) & (b), we have

267
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∆ ` τ wf Relational type τ is well-formed.

∆ `A A wf Type A is well-formed.

∆ ` unitr wf
wf-unit

∆ ` intr wf
wf-int

∆ ` τ1 wf ∆ ` τ2 wf
∆ ` τ1 × τ2 wf

wf-prod
∆ ` τ1 wf ∆ ` τ2 wf

∆ ` τ1 + τ2 wf
wf-sum

∆ ` τ1 wf ∆ ` τ2 wf ∆ ` t :: R

∆ ` τ1
CP(t)−−−→ τ2 wf

wf-fun

∆ ` n :: N ∆ ` α :: N ∆ ` τ wf
∆ ` list[n]α τ wf

wf-list

i :: S,∆ ` τ wf i :: S,∆ ` t :: R

∆ ` ∀i
CP(t)
:: S. τ wf

wf-∀ i :: S,∆ ` τ wf
∆ ` ∃i::S. τ wf

wf-∃

∆ `A A wf

∆ ` UA wf
wf-U

∆ ` τ wf
∆ ` � τ wf wf-box

∆ ` C wf ∆ ` τ wf
∆ ` C ⊃ τ wf wf-C⊃

∆ ` C wf ∆ ` τ wf
∆ ` C & τ wf

wf-C&

Figure 63: Well-formedness of relational types
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∆ `A A wf Type A is well-formed.

∆ `A unit wf
wf-u-unit

∆ `A int wf
wf-u-int

∆ `A A1 wf ∆ `A A2 wf

∆ `A A1 × A2 wf
wf-u-prod

∆ `A A1 wf ∆ `A A2 wf

∆ `A A1 + A2 wf
wf-u-sum

∆ `A A1 wf ∆ `A A2 wf ∆ ` k :: R ∆ ` t :: R

∆ `A A1
FS(t)−−−→ A2 wf

wf-u-fun

∆ ` n :: N ∆ `A A wf

∆ `A list[n]A wf
wf-u-list

i :: S,∆ `A A wf i :: S,∆ ` k :: R i :: S,∆ ` t :: R

∆ `A ∀i
FS(t)
:: S.A wf

wf-u-∀

i :: S,∆ `A A wf

∆ `A ∃i::S.A wf
wf-u-∃ ∆ ` C wf ∆ `A A wf

∆ `A C ⊃ A wf
wf-u-C⊃

∆ ` C wf ∆ `A A wf

∆ `A C & A wf
wf-u-C&

Figure 64: Well-formedness of types
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d) L(vv) ⇓0 〈L(vv), L(vv)〉
e) R(vv) ⇓0 〈R(vv), R(vv)〉

Then, we can conclude as follows:

1. From lemma 34, 〈〈L(vv), L(vv)〉, vv〉 y vv, 〈R(vv), R(vv)〉, 0.
2. By (d) and (e), we have v = L(vv) and v ′ = R(vv)

3. As obtained in the first statement, c ′ = 0

4. Since we have vv ′ = vv as obtained in the first statement, we conclude

by the main assumption (?).

Proof of (2). Assume that (m, v) ∈ JAKv (?).

Following the definition of JAK0ε, assume that v ⇓f 〈v, v〉 and f < m. Then,

we can immediately show

1. By value evaluation rule, f = 0. Hence, f = 0 6 0

2. (m− 0, v) ∈ JAKv which follows from the assumption (?).

Lemma 32 (Bi-value projection). The following hold.

1. If (m, vv) ∈ LτMv then ∀j. (j, L(vv)) ∈ J|τ|Kv and (j, R(vv)) ∈ J|τ|Kv.

2. If (m, vv) ∈ $A%v then ∀j. (j, L(vv)) ∈ JAKv and (j, R(vv)) ∈ JAKv.

Proof. (1) and (2) are proven simultenously by induction on the type.

Proof of statement (1). Proof is by induction on the type.

Case: (m, keep(n)) ∈ LintrMA
Since L(keep(n)) = R(keep(n)) = n, by definition we have ∀j.(j,n) ∈
JintKA.

Case: (m, (vv1, vv2)) ∈ Lτ1 × τ2Mv (?)
TS: ∀j. (j, L((vv1, vv2))) ∈ J|τ1|× |τ2|Kv ∧ (j, R((vv1, vv2))) ∈ J|τ1|× |τ2|Kv.

Pick j.
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STS 1: (j, L(vv1)) ∈ J|τ1|Kv ∧ (j, R(vv1)) ∈ J|τ1|Kv (�).
STS 2: (j, L(vv2)) ∈ J|τ2|Kv ∧ (j, R(vv2)) ∈ J|τ2|Kv (��).
By unrolling the (?), we get (m, vv1) ∈ Lτ1Mv (†) and (m, vv2) ∈ Lτ2Mv (††).
By IH 1 on (†), we get (�), and by IH 1 on (††) we get (��).

Case: (m, vv) ∈ Lτ1 + τ2MA
TS:∀j. (j, L(vv)) ∈ J|τ1 + τ2|KA ∧ (j, R(vv)) ∈ J|τ1 + τ2|KA.

There are two cases. We only show the left projection:

We have (m, inl vv) ∈ Lτ1 + τ2Mv, that is (m, vv) ∈ Lτ1Mv (†).
TS: ∀j. (j, L(inl vv)) ∈ J|τ1 + τ2|Kv ∧ (j, R(inl vv)) ∈ J|τ1 + τ2|Kv (?).

Pick j.

STS: (j, L(vv)) ∈ J|τ1|Kv ∧ (j, R(vv)) ∈ J|τ1|Kv
By IH 1 on (†), we get ∀j. (j, L(vv)) ∈ J|τ1|Kv ∧ (j, R(vv)) ∈ J|τ1|Kv.

By instantiating with j, we conclude.

Case: (m, nil) ∈ Llist[0]α τMv
TS: ∀j. (j, R(nil)) ∈ J|list[0]α τ|Kv = Jlist[0] |τ|Kv
This follows immediately by definition.

Case: (m, cons(vv1, vv2)) ∈ Llist[I+ 1]α τMv (?)

TS: ∀j.(j, L(cons(vv1, vv2))) ∈ J|list[I+ 1]α τ|Kv ∧ (j, R(cons(vv1, vv2))) ∈
J|list[I+ 1]α τ|Kv = Jlist[I+ 1] |τ|Kv
Pick j.

There are two cases for unrolling the definition of (?).

subcase 1: We have (m, vv1) ∈ LτMv (†) and (m, vv2) ∈ Llist[I]α−1 τMv (††)
By IH 1 on (†), we get ∀j. (j, L(vv1)) ∈ J|τ|Kv ∧ (j, R(vv1)) ∈
J|τ|Kv (�)
By IH 1 on (††), we get ∀j. (j, L(vv2)) ∈ J|list[I]α−1 τ|Kv ∧ (j, R(vv2)) ∈
J|list[I]α−1 τ|Kv = Jlist[I] |τ|Kv (��).
By instantiating (�) and (��) with the j we picked above, we get

(j, L(cons(vv1, vv2))) ∈ Jlist[I + 1] |τ|Kv ∧ (j, R(cons(vv1, vv2))) ∈
Jlist[I+ 1] |τ|Kv.

subcase 2: We have (m, vv1) ∈ L� τMv (†) and (m, vv2) ∈ Llist[I]α τMv (††)
By IH 1 on (†), we get ∀j. (j, L(vv1)) ∈ J|τ|Kv ∧ (j, R(vv1)) ∈
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J|τ|Kv (�)
By IH 1 on (††), we get ∀j. (j, L(vv2)) ∈ J|list[I]α τ|Kv ∧ (j, R(vv2)) ∈
J|list[I]α τ|Kv = Jlist[I] |τ|Kv (��).
By instantiating (�) and (��) with the j we picked above, we get

(j, L(cons(vv1, vv2))) ∈ Jlist[I + 1] |τ|Kv ∧ (j, R(cons(vv1, vv2))) ∈
Jlist[I+ 1] |τ|Kv.

Case: (m, fix f(x).ee) ∈ Lτ1
CP(t)−−−→ τ2Mv (?)

TS: ∀j. (j, L(fix f(x).ee)) ∈ J|τ1
CP(t)−−−→ τ2|Kv ∧ (j, R(fix f(x).ee)) ∈

J|τ1
CP(t)−−−→ τ2|Kv = J|τ1|

FS(∞)−−−−→ |τ2|Kv.

By unrolling the definition of (?), we have

(m, fix f(x).ee) ∈ $|τ1| FS(∞)−−−−→ |τ2|%v (1)

By IH 2 on eq. (1), we get ∀j. (j, L(fix f(x).ee)) ∈ J|τ1|
FS(∞)−−−−→ |τ2|Kv ∧

(j, R(fix f(x).ee)) ∈ J|τ1|
FS(∞)−−−−→ |τ2|Kv.

Case: (m, vv) ∈ LUAMv(?)

TS: ∀j. (j, L(vv)) ∈ J|UA|Kv ∧

(j, R(vv)) ∈ J|UA|Kv = JAKv.

There are two cases for (?).

subcase 1: vv = new(v, v ′)

We can conclude by definition of (?).

subcase 2: vv 6= new(v, v ′), hence by (?), we have (m, vv) ∈ $A%v.
We can conclude by IH 2.

Case: (m, vv) ∈ L� τMv
By unrolling the definition we know that (m, vv) ∈ LτMv(♠).
TS: ∀j. (j, L(vv)) ∈ J|� τ|Kv ∧ (j, R(vv)) ∈ J|� τ|Kv = J|τ|Kv.

Follows immediately by IH 2 on (♠).

Proof of statement (2). Proof is by induction on the unary type.
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Case: (m, vv) ∈ LA1 + A2MA
There are two cases. We only show the left projection:

We have (m, inl vv) ∈ LA1 + A2Mv, that is (m, vv) ∈ LUA1Mv (†).
TS: ∀j. (j, L(inl vv)) ∈ JA1 + A2Kv ∧ (j, R(inl vv)) ∈ JA1 + A2Kv (?).

Pick j.

STS: (j, R(vv)) ∈ JA1Kv
By IH 1 on (†), we get ∀j. (j, L(vv)) ∈ JA1Kv ∧ (j, R(vv)) ∈ JA1Kv.

By instantiating with j, we conclude.

Case: (m, fix f(x).ee) ∈ $A1 FS(t)−−−→ A2%v (?)
TS: ∀j. (j, R(fix f(x).ee)) ∈ JA1

FS(t)−−−→ A2Kv.

This immediately follows by the definition of (?).

Lemma 33 (Downward closure). The following hold.

1. If (m, vv) ∈ LτMv and m ′ 6 m, then (m ′, vv) ∈ LτMv.

2. If (m, v) ∈ JτKv and m ′ 6 m, then (m ′, v) ∈ JτKv.

3. If (m, vv) ∈ $A%v and m ′ 6 m, then (m ′, vv) ∈ $A%v.

4. If (m, ee) ∈ LτMtε and m ′ 6 m, then (m ′, ee) ∈ LτMtε.

5. If (m, e) ∈ JτKtε and m ′ 6 m, then (m ′, e) ∈ JτKtε.

6. If (m, δ) ∈ GLΓM and m ′ 6 m, then (m ′, δ) ∈ GLΓM.

7. If (m,γ) ∈ GJΓK and m ′ 6 m, then (m ′,γ) ∈ GJΓK.

Proof. (1,3,4) and (2,5) are proved simultaneously by induction on τ. (6,7)

follows from (1,2).

We just show the proofs of statement (4) and (5) below.

Proof of statement (4). Assume that (m, ee) ∈ LστMtε and m ′ 6 m.

TS: (m ′, ee) ∈ LστMtε
Assume that
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a) L(ee) ⇓f 〈v,D〉
b) R(ee) ⇓f ′ 〈v ′,D ′〉
c) f < m ′

By unfolding the assumption (m, ee) ∈ LστMtε using (a-b) and f < m ′ 6 m
(using (c)), we obtain

d) 〈〈v,D〉, ee〉 y vv ′, 〈v ′,D ′〉, c ′

e) v = L(vv ′) ∧ v ′ = R(vv ′)

f) c ′ 6 t
g) (m− f, vv ′) ∈ LστMv

We can conclude as follows:

1. By (d)

2. By (e)

3. By (f)

4. By IH 1 on g) using m ′ − f 6 m− f, we get (m ′ − f, vv ′) ∈ LστMv.

Proof of statement (5). Assume that (m, e) ∈ JσAKtε and m ′ 6 m.

TS: (m ′, e) ∈ JσAKtε
Assume that

a) e ⇓f 〈v,D〉
b) f < m ′.

By unfolding the main assumption (m, e) ∈ JσAKtε with a) and f < m ′ 6 m
(by (b)), we get

c) f 6 t
d) (m− f, v) ∈ JσAKv

We can conclude as follows:

1. By d)

2. By IH 2 on d) using m ′ − f 6 m− f, we get (m ′ − f, v) ∈ JσAKv.
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Lemma 34 (Bi-value propagation). 〈〈L(vv), L(vv)〉, vv〉 y vv, 〈R(vv), R(vv)〉, 0.

Proof. By induction on vv. We show some representative cases.

Case: vv = keep(n)

L(keep(n)) = n. Immediate from rule cp-nochange.

Case: vv = new(v, v ′)

L(new(v, v ′)) = v and R(new(v, v ′)) = v ′. Immediate from rule cp-

new.

Case: vv = (vv1, vv2)

By IH on vv1, we get 〈〈L(vv1), L(vv1)〉, vv1〉 y vv1, 〈R(vv1), R(vv1)〉, 0 (?)
By IH on vv2, we get 〈〈L(vv2), L(vv2)〉, vv2〉 y vv2, 〈R(vv2), R(vv2)〉, 0 (†)
Therefore, by instantiating cp-pair rule using (?) and (†), we get

〈〈L((vv1, vv2)), L((vv1, vv2))〉, (vv1, vv2)〉 y (vv1, vv2), 〈R((vv1, vv2)), R((vv1, vv2))〉, 0.

Case: vv = nil

Follows immediately from the cp-nochange rule 〈nil, nil〉 y nil, nil, 0.

Case: vv = cons(vv1, vv2)

By IH on vv1, we get 〈〈L(vv1), L(vv1)〉, vv1〉 y vv1, 〈R(vv1), R(vv1)〉, 0 (?)
By IH on vv2, we get 〈〈L(vv2), L(vv2)〉, vv2〉 y vv2, 〈R(vv2), R(vv2)〉, 0 (†)
Therefore, by instantiating cp-cons rule using (?) and (†), we get

〈〈L(cons(vv1, vv2)), L(cons(vv1, vv2))〉, cons(vv1, vv2)〉 y
cons(vv1, vv2), 〈R(cons(vv1, vv2)), R(cons(vv1, vv2))〉, 0.

Case: vv = nil

Follows immediately from the cp-nochange rule 〈nil, nil〉 y nil, nil, 0.

Case: vv = fix f(x).ee

Immediate from rule cp-fix.

Lemma 35 (No input change). If L(ee) ⇓f T and 〈T , ee〉 y vv ′, T ′, c ′ and

stable(ee) then stable(vv ′) and c ′ = 0.
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Proof. Immediate from cp-nochange change-propagation rule where vv ′ =

pvq (hence, stable(pvq))and T ′ = 〈v,D〉 and c ′ = 0.

Lemma 36 (Stable context soundness). Suppose (∀x ∈ Γ ∆;Φ |= Γ(x) v
� Γ(x)) and σ ∈ DJ∆K and |= σΦ and (m, θ) ∈ GLσΓM. Then, the following hold.

1. If ∆;Φ; Γ `CP e : τ | t , then stable(θpeq).

2. If ∆;Φ; Γ ` vv� τ and stable(vv), then stable(θvv).

3. If ∆;Φ; Γ ` ee� τ | t and stable(ee), then stable(θee).

Proof. All three statements have similar proofs. We show the proof of (1).

Proof of Statement (1). By definition, peq does not have any occurrence of

new.

Therefore, it suffices to show that for any x ∈ Γ , stable(θ(x)).

Pick any x ∈ Γ .

From the definition of GLσΓM, (m, θ(x)) ∈ Lσ(Γ(x))Mv.

By lemma 39, (m, θ(x)) ∈ L�σ(Γ(x))Mv.
From the definition of L�σ(Γ(x))Mv, we get stable(θ(x)), as needed.

Lemma 37 (Stable type). The following hold.

1. If and only if (m, vv) ∈ LτMv and stable(vv), then (m, vv) ∈ L� τMv.

2. If (m, ee) ∈ LτMtε and 0 6 t and stable(ee), then (m, ee) ∈ L� τM0ε.

Proof. (1) follows immediately by definition. (2) is proved using statement

(1).

Proof of statement (2)

Assume that (m, ee) ∈ LτMtε (?) and 0 6 t and stable(ee) (??).

TS: (m, ee) ∈ L� τM0ε
Assume f < m such that L(ee) ⇓f 〈v,D〉 (†) and R(ee) ⇓f ′ 〈v ′,D ′〉 (♠).
By unrolling the (?) with (†) and (♠), we obtain
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a) 〈〈v,D〉, ee〉yvv ′, 〈v ′,D ′〉, c ′

b) v ′ = R(vv ′) ∧ v = L(vv ′)

c) c ′ 6 t
d) (m− f, vv ′) ∈ LτMv

Note that since stable(ee), we know that

e) L(ee) = R(ee), therefore v = v ′.

f) By lemma 35 using (†) and stable(ee), we know that c ′ = 0 and

vv ′ = pvq.

Hence, we can conclude as follows:

1. By (a)

2. By (b)

3. By (c), c ′ = 0 6 0
4. By (d) and (f), we know that stable(vv ′) = stable(pvq), hence (m−

f, vv ′) ∈ L� τMv

Lemma 38 (Bi-value inclusion). The following hold.

1. If (m, vv) ∈ LτMv, then (m, vv) ∈ LU |τ|Mv.

2. If (m, δ) ∈ GLΓM, then (m, δ) ∈ GLU |Γ |M.

Proof. (1) is proven by induction on τ and (2) follows from (1).

We show a few representative cases of (1) below.

Case: (m, keep(n)) ∈ LintrMv.

TS: (m, keep(n)) ∈ LU |intr|Mv = LU intMv.

Follows by definition since (m, keep(n)) ∈ $int%v ⊆ LU intMv.

Case: (m, vv) ∈ LUAMv (?)

TS: (m, vv) ∈ LU |UA|Mv = LUAMv.

We immediately conclude by (?).

Case: (m, inl vv) ∈ Lτ1 + τ2Mv (?)

TS: (m, inl vv) ∈ LU |τ1 + τ2|Mv.
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STS:(m, inl vv) ∈ $|τ1 + τ2|%v.
By unrolling its definition and noting that |τ1 + τ2| = |τ1| + |τ2|,

RTS: (m, vv) ∈ LU |τ1|Mv.

By unrolling the definition of (?), we have

(m, vv) ∈ Lτ1Mv (2)

By IH 1 on eq. (2), we conclude.

Case: (m, fix f(x).ee) ∈ Lτ1
CP(k)−−−−→ τ2Mv (?)

TS: (m, fix f(x).ee) ∈ LU |τ1
CP(k)−−−−→ τ2|Mv = LU (|τ1|

FS(∞)−−−−→ |τ2|)Mv.

STS: (m, fix f(x).ee) ∈ $|τ1| FS(∞)−−−−→ |τ2|%v.
Follows immediately by unrolling the second part of the definition of

(?).

Case: (m, nil) ∈ Llist[0]α τMv
TS: (m, nil) ∈ LU (list[0] |τ|)Mv
This follows immediately by definition since (m, nil) ∈ $list[0] |τ|%v ⊆
LU (list[0] |τ|)Mv

Case: (m, cons(vv1, vv2)) ∈ Llist[I+ 1]α τMv (?)

TS:(m, cons(vv1, vv2)) ∈ LU (|list[I+ 1]α τ|)Mv.

By unrolling its definition, STS: (m, cons(vv1, vv2)) ∈ $list[I+ 1] |τ|%v.
STS 1: (m, vv1) ∈ LU |τ|Mv (�)
STS 2: (m, vv2) ∈ LU (list[I] |τ|)Mv (��).
There are two cases for unrolling the definition of (?).

subcase 1: We have (m, vv1) ∈ LτMv (†) and (m, vv2) ∈ Llist[I]α−1 τMv (††)
By IH 1 on (†), we get (�)
By IH 1 on (††), we get (m, vv2) ∈ LU (|list[I]α−1 τ|)Mv = LU (list[I] |τ|)Mv.

subcase 2: We have (m, vv1) ∈ L� τMv (†) and (m, vv2) ∈ Llist[I]α τMv (††)
By IH 1 on (†), we get (�)
By IH 1 on (††), we get (m, vv2) ∈ LU (|list[I]α τ|)Mv = LU (list[I] |τ|)Mv.



B.1 ducostit lemmas 279

Lemma 39 (Bi-value subtyping soundness). The following hold.

1. If ∆;Φ |= τ v τ ′ and σ ∈ DJ∆K and |= σΦ and (m, vv) ∈ LστMv, then

(m, vv) ∈ Lστ ′Mv.

2. If ∆;Φ |=A A v A ′ and σ ∈ DJ∆K and |= σΦ and (m, v) ∈ JσAKv, then

(m, v) ∈ JσA ′Kv.

3. If ∆;Φ |= τ v τ ′ and σ ∈ DJ∆K and |= σΦ and (m, ee) ∈ LστMtε and t 6 t ′,
then (m, ee) ∈ Lστ ′Mt

′
ε .

4. If ∆;Φ |= A v A ′ and σ ∈ DJ∆K and |= σΦ and (m, e) ∈ JσAKtε and

t 6 t ′, then (m, e) ∈ JσA ′Kt
′
ε .

5. If ∆;Φ |= τ v τ ′ and σ ∈ DJ∆K and (m, v) ∈ J|στ|Kv, then (m, v) ∈
J|στ ′|Kv.

6. If ∆;Φ |= τ v τ ′ and σ ∈ DJ∆K and (m, e) ∈ J|στ|Ktε and t 6 t ′, then

(m, e) ∈ J|στ ′|Kt
′
ε .

7. If ∆;Φ |=A A v A ′ and σ ∈ DJ∆K and |= σΦ and (m, vv) ∈ $σA%v, then

(m, vv) ∈ $σA ′%v.

8. If ∆;Φ |=A A v A ′ and σ ∈ DJ∆K and |= σΦ and (m, vv) ∈ LUσAMv, then

(m, vv) ∈ LUσA ′Mv.

9. If ∆;Φ |=A A v A ′ and σ ∈ DJ∆K and |= σΦ and (m, ee) ∈ LUσAMtε and

t 6 t ′, then (m, ee) ∈ LUσA ′Mt
′
ε .

10. If ∆;Φ |= τ v τ ′ and σ ∈ DJ∆K and |= σΦ and (m, vv) ∈ $|στ|%v, then

(m, vv) ∈ $|στ ′|%v.

11. If ∆;Φ |= τ v τ ′ and σ ∈ DJ∆K and |= σΦ and (m, vv) ∈ LU |στ|Mv, then

(m, vv) ∈ LU |στ ′|Mv.

12. If ∆;Φ |= τ v τ ′ and σ ∈ DJ∆K and |= σΦ and (m, ee) ∈ LU |στ|Mσtε and

t 6 t ′, then (m, ee) ∈ LU |στ ′|Mσt
′

ε .
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Proof. Statements (1) and (2) are by proven simultaneously by induction on

the subtyping derivation. We first show the proof of statements (3), (4), (6),

((11) and (12).

Proof of statement (3). Assume that ∆;Φ |= τ v τ ′ and σ ∈ DJ∆K and

(m, ee) ∈ LστMtε and t 6 t ′.
TS: (m, ee) ∈ Lστ ′Mt

′
ε

Assume that

a) L(ee) ⇓f 〈v,D〉
b) R(ee) ⇓f ′ 〈v ′,D ′〉
c) f < m

By unfolding the assumption (m, ee) ∈ LστMtε using (a-c), we obtain

d) 〈〈v,D〉, ee〉 y vv ′, 〈v ′,D ′〉, c ′

e) v = L(vv ′) ∧ v ′ = R(vv ′)

f) c ′ 6 t
g) (m− f, vv ′) ∈ LστMv

We can conclude as follows:

1. By (d)

2. By (e)

3. Since c ′ 6 t from (f) and t 6 t ′ from the assumption, we get c ′ 6 t ′.

4. By IH 1 on g), we get (m− f, vv ′) ∈ Lστ ′Mv.

Proof of statement (4). Assume that ∆;Φ |= A v A ′ and σ ∈ DJ∆K and

(m, e) ∈ JσAKtε and t 6 t ′.
TS: (m, e) ∈ JσA ′Kt

′
ε

Assume that e ⇓f 〈v,D〉 and f < m.

By unfolding the main assumption (m, e) ∈ JσAKtε with e ⇓f 〈v,D〉 and

f < m, we get

a) f 6 t
b) (m− f, v) ∈ JσAKv
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We can conclude as follows:

1. Since t 6 t ′ (from the assumption) and f 6 t (from (a)), we get f 6 t ′.

2. By IH 2 on the main assumption using b).

Proof of statement (6). Assume that ∆;Φ |= τ v τ ′ and σ ∈ DJ∆K and

(m, e) ∈ J|στ|Ktε and t 6 t ′.
TS: (m, e) ∈ J|στ ′|Kt

′
ε

Assume that

a) e ⇓f v
b) f < m

By unfolding the main assumption (m, e) ∈ J|στ|Ktε with (a-b), we get

c) f 6 t
d) (m− f, v) ∈ J|στ|Kv

We can conclude as follows:

1. Since t 6 t ′ (from the assumption) and f 6 t (from (c)), we get f 6 t ′.

2. By IH 5 on the main assumption using d).

Proof of statement (11). Assume that ∆;Φ |= τ v τ ′ and σ ∈ DJ∆K and

(m, vv) ∈ LU |στ|Mv (?).

TS: (m, vv) ∈ LU |στ ′|Mv
There are two cases for the main assumption (?).

subcase 1: vv = new(v, v ′)

Then, we have ∀j.(j, v) ∈ J|στ|Kv ∧ (j, v) ∈ J|στ|Kv (??).

TS: ∀j.(j, v) ∈ J|στ ′|Kv ∧ (j, v) ∈ J|στ ′|Kv.

We conclude by instantiating IH 5 on ∆;Φ |= τ v τ ′ using (??).
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subcase 2: vv 6= new(v, v ′)

Then, we have (m, vv) ∈ $|στ|%v (??).
We conclude by instantiating IH 10 on ∆;Φ |= τ v τ ′ using (??).

Proof of statement (12). Assume that ∆;Φ |= τ v τ ′ and σ ∈ DJ∆K and

(m, ee) ∈ LU |στ|Mtε and t 6 t ′.
TS: (m, ee) ∈ LU |στ ′|Mt

′
ε

Assume that

a) L(ee) ⇓f 〈v,D〉
b) R(ee) ⇓f ′ 〈v ′,D ′〉
c) f < m

By unfolding the assumption (m, ee) ∈ LU |στ|Mtε using (a-c), we obtain

d) 〈〈v,D〉, ee〉 y vv ′, 〈v ′,D ′〉, c ′

e) v = L(vv ′) ∧ v ′ = R(vv ′)

f) c ′ 6 t
g) (m− f, vv ′) ∈ LU |στ|Mv

We can conclude as follows:

1. By (d)

2. By (e)

3. Since c ′ 6 t from (f) and t 6 t ′ from the assumption, we get c ′ 6 t ′.

4. By IH 11 on g), we get (m− f, vv ′) ∈ LU |στ ′|Mv.

Proof of statement (1). Proof is by induction on the subtyping derivation.

Case:
∆;Φ |= �U int v intr

�U-int

We have (m, vv) ∈ L�U intMv.

Unrolling its definition, we have vv = keep(n).

TS: (m, keep(n)) ∈ LintrMv.

Follows directly by definition.
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Case:
∆;Φ |= τ ′1 v τ1 ∆;Φ |= τ2 v τ ′2 ∆;Φ |= t 6 t ′

∆;Φ |= τ1
CP(t)−−−→ τ2 v τ ′1

CP(t ′)−−−−→ τ ′2

→ cp

Assume that σ ∈ DJ∆K.

We have

(m, fix f(x).ee) ∈ Lστ1
CP(σt)−−−−→ στ2Mv (1)

TS: (m, fix f(x).ee) ∈ Lστ ′1
CP(σt ′)−−−−−→ στ ′2Mv.

There are two cases to show.

subcase 1: Assume that j < m and (j, vv) ∈ Lστ ′1Mv.

STS: (j, e[vv/x, (fix f(x).ee)/f]) ∈ Lστ ′2M
σt ′
ε .

By IH 1 on (j, vv) ∈ Lστ ′1Mv using the first premise, we get

(j, vv) ∈ Lστ1Mv (2)

By unrolling eq. (1) with eq. (2) using j < m, we get

(j, e[vv/x, (fix f(x).ee)/f]) ∈ Lστ2Mσtε (3)

By Assumption assumption 25 on the third premise, we get σt 6
σt ′.

We conclude by applying IH 3 to eq. (3) using the second premise

and σt 6 σt ′.

subcase 2: TS: (m, fix f(x).ee) ∈ $|στ ′1
CP(σt ′)−−−−−→ στ ′2|%v = $|στ ′1|

FS(∞)−−−−→ |στ ′2|%v.
Assume that j < m and (j, vv) ∈ LU |στ ′1|Mv (?).

STS: (j, e[vv/x, (fix f(x).ee)/f]) ∈ LU |στ ′2|M
∞
ε .

By IH 11 on the first premise using (?), we get

(j, vv) ∈ LU |στ1|Mv (4)

By unrolling the second part of eq. (1)’s definition, we get

(m, fix f(x).ee) ∈ $|στ1| FS(∞)−−−−→ |στ2|%v (5)
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Next, we unroll eq. (5) with eq. (4) using j < m, we get

(j, e[vv/x, (fix f(x).ee)/f]) ∈ LU |στ2|M∞ε (6)

We conclude by applying IH 12 to eq. (6) using the second premise.

Case:
∆;Φ |= � (τ1

CP(t)−−−→ τ2) v � τ1
CP(0)−−−→ � τ2

→ �cp

Assume that σ ∈ DJ∆K.

We have

(m, fix f(x).ee) ∈ L� (στ1
CP(σt)−−−−→ στ2)Mv (1)

and

stable(fix f(x).ee) (2)

TS: (m, fix f(x).ee) ∈ L�στ1
CP(0)−−−→ �στ2Mv.

There are two cases:

subcase 1: Assume that

a) j < m

b) (j, vv) ∈ L�στ1Mv (note that stable(vv) (?)).

STS: (j, ee[vv/x, (fix f(x).ee)/f]) ∈ L�στ2M0ε.
Since we know by eq. (2) and (?) that stable(ee[vv/x, (fix f(x).ee)/f]),

by lemma 37,

RTS: (j, ee[vv/x, (fix f(x).ee)/f]) ∈ Lστ2Mσkε .

This can be shown by unrolling the definition of eq. (1) with (a)

and (b).

subcase 2: STS: (m, fix f(x).ee) ∈ $|�στ1 CP(0)−−−→ �στ2|%v = $|στ1| FS(∞)−−−−→
|στ2|%v.
Immediately follows by unrolling the second part of the defini-
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tion of eq. (1) since $|� (στ1
CP(σt)−−−−→ sτ2)|%v = $|στ1| FS(∞)−−−−→

|στ2|%v

Case:
∆;Φ |= � (U (A1

FS(t)−−−→ A2)) v �UA1
CP(0)−−−→ �UA2

→ �Ucp

Assume that σ ∈ DJ∆K.

We have

(m, fix f(x).ee) ∈ L�U (σA1
FS(σt)−−−−→ σA2)Mv (1)

and

stable(fix f(x).ee) (2)

TS: (m, fix f(x).ee) ∈ L�UσA1
CP(0)−−−→ �UσA2Mv.

There are two cases:

subcase 1: Assume that

a) j < m

b) (j, vv) ∈ L�UσA1Mv (note that stable(vv) (?)).

STS: (j, ee[vv/x, (fix f(x).ee)/f]) ∈ L�UσA2M0ε.
Unrolling its definition, assume that

c) L(ee[vv/x, (fix f(x).ee)/f]) ⇓fr 〈vr,Dr〉
d) R(ee[vv/x, (fix f(x).ee)/f]) ⇓f ′r 〈v ′r,D ′r〉.
e) fr < j

Now, we can conclude as follows:

1. By (?) and eq. (2), we have stable(ee[vv/x, (fix f(x).ee)/f]) (�).
Therefore, by cp-nochange rule, we get

stable(ee[vv/x, (fix f(x).ee)/f])

〈〈vr,Dr〉, ee[vv/x, (fix f(x).ee)/f]〉 y pvrq, 〈vr,Dr〉, 0
cp-nochange
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2. Since vr = v ′r (by (�)), trivially vr = L(pvrq) ∧ vr = R(pvrq).

3. c ′ = 0 6 0

4. TS: (j− fr, pvrq) ∈ L�UσA2Mv.
Since stable(pvrq),
TS: (m− fr, pvrq) ∈ LUσA2Mv.

Next, by unrolling the definition of eq. (1), we get

(m, fix f(x).ee) ∈ $|�U (σA1
FS(σt)−−−−→ σA2)|%v = $σA1 FS(σt)−−−−→ σA2%v

(3)

Unrolling the definition of eq. (3) with (a-b) we get

(j, ee[vv/x, (fix f(x).ee)/f]) ∈ LUσA2Mσtε (4)

Next, by unrolling the definition of eq. (4) with (c-e),we get

f) 〈Tr, ee[vv/x, (fix f(x).ee)/f]〉yvv ′r, T ′r , c ′r where we know

that vv ′r = pvrq
g) (j− fr, pvrq) ∈ LUσA2Mv

We conclude this subcase by g).

subcase 2: STS: (m, fix f(x).ee) ∈ $|�UσA1 CP(0)−−−→ �UσA2|%v =
$σA1 FS(∞)−−−−→ σA2%v.
Pick j and assume that

a) j < m

b) (j, vv) ∈ LUσA1Mv.

STS: (j, ee[vv/x, (fix f(x).ee)/f]) ∈ LUσA2M∞ε
Next, by unrolling the definition of eq. (1), we get

(m, fix f(x).ee) ∈ $|�U (σA1
FS(σt)−−−−→ σA2)|%v = $σA1 FS(σt)−−−−→ σA2%v

(5)
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By unrolling the definition of eq. (5) with (a-b), we get

(j, ee[vv/x, (fix f(x).ee)/f]) ∈ LUσA2Mσtε (6)

Then, we can conclude by IH 3 on eq. (6) using σt 6∞.

Case:
∆;Φ |= τ v U |τ|

W

By lemma 38.

Case:
∆;Φ |= n

.
= n ′ ∆;Φ |= α6α ′ ∆;Φ |= τ v τ ′

∆;Φ |= list[n]α τ v list[n ′]α
′
τ ′

l1

Assume that σ ∈ DJ∆K and |= σΦ and (m, vv) ∈ Llist[n]α τMv.

TS: (m, vv) ∈ Llist[σn ′]σα
′
στ ′Mv

From assumption 25 applied to the first premise, σn = σn ′. Therefore,

STS: (m, vv) ∈ Llist[σn]σα
′
στ ′Mv

From assumption 25 applied to the second premise, σα 6 σα ′. There-

fore,

We prove the following more general statement

∀ m, vv,n,α,α ′. if α 6 α ′ and (m, vv) ∈ Llist[σn]σα στMv, then (m, vv) ∈
Llist[σn]σα

′
στ ′Mv.

We establish this statement by subinduction on vv.

subcase 1: vv = nil

We can immediately conclude that (m, nil) ∈ Llist[0]σα
′
στ ′Mv by

definition.

subcase 2: v = cons(vv1, vv2) and v ′ = cons(v ′1, v
′
2)

TS: (m, cons(vv1, vv2)) ∈ Llist[I+ 1]σα
′
στ ′Mv for some I+ 1 = σn.

We have two possible cases:

• (m, v1, v ′1) ∈ L�στMv (†) and (m, v2, v ′2) ∈ Llist[I]σα στMv (††).
By subIH on (††), we get

(m, vv2) ∈ Llist[I]σα
′
στ ′Mv (1)
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By IH on (†), we get

(m, v1, v ′1) ∈ L�στ ′Mv (2)

Combining eq. (2) with eq. (1), we get (m, cons(vv1, vv2)) ∈
Llist[I+ 1]σα

′
στ ′Mv.

• (m, vv1) ∈ LστMv (�) and (m, vv2) ∈ Llist[I]σα−1 στMv (��).
By subIH on (��), we get

(m, vv2) ∈ Llist[I]σα
′−1 στ ′Mv (3)

By IH on (�), we get

(m, vv1) ∈ Lστ ′Mv (4)

Combining eq. (4) with eq. (3), we get (m, cons(vv1, vv2)) ∈
Llist[I+ 1]σα

′
στ ′Mv.

Case:
∆;Φ |= list[n]α� τ v � (list[n]α τ)

l�

Assume that σ ∈ DJ∆K and |= σΦ and (m, vv) ∈ Llist[σn]σα�στMv.
TS: (m, vv) ∈ L� (list[n]α τ)Mv
We prove the following more general statement

∀i,β, τ. if (m, vv) ∈ Llist[i]β� τMv, then (m, vv) ∈ L� (list[i]β τ)Mv by

subinduction on i.

subcase 1: n = 0

Then, we know that vv = nil

We can immediately conclude that (m, nil) ∈ L� list[0]σα στMv by

definition.

subcase 2: n = I+ 1

TS: (m, cons(vv1, vv2)) ∈ L� list[I+ 1]σα στMv.

For the sub-assumption, we have two possible cases:
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• (m, vv1) ∈ L��στMv (†) and (m, vv2) ∈ Llist[I]σα�στMv (††).
Instantiating subIH on (††), we get

(m, vv2) ∈ L� list[I]σα στMv i.e. stable(vv2) (1)

By (†), we also know that

(m, vv1) ∈ L�στMv i.e. stable(vv1) (2)

Combining eq. (2) with eq. (1), we get (m, cons(vv1, vv2)) ∈
L� list[I+ 1]σα στMv.

• (m, vv1) ∈ L�στMv (�) and (m, vv2) ∈ Llist[I]σα−1�στMv (��).
Instantiating subIH on (��), we get

(m, vv2) ∈ L� list[I]σα−1 στMv and stable(vv2) (3)

Combining (�) with eq. (3), we get (m, cons(vv1, vv2)) ∈ L� list[I+

1]σα στMv.

Proof of statement (2). Proof is by induction on the subtyping derivation.

Case:
∆;Φ |=A A ′1 v A1 ∆;Φ |=A A2 v A ′2 ∆;Φ |= t 6 t ′

∆;Φ |=A A1
FS(t)−−−→ A2 v A ′1

FS(t ′)−−−−→ A ′2

→ exec

Assume that σ ∈ DJ∆K.

We have

(m, fix f(x).e) ∈ JσA1
FS(σt)−−−−→ σA2Kv (1)

TS: (m, fix f(x).e) ∈ JσA ′1
FS(σt ′)−−−−→ σA ′2Kv.

STS: (m, fix f(x).e) ∈ JσA ′1
FS(σt ′)−−−−→ σA ′2Kv.

Pick j and assume that

j < m (2)
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(j, v) ∈ JσA ′1Kv (3)

STS: (j, e[v/x, (fix f(x).e)/f]) ∈ JσA ′2K
σt ′
ε .

By IH 2 on eq. (3) using the first premise, we get

(j, v) ∈ JσA1Kv (4)

By unrolling the definition of eq. (1) with eq. (4) and j < m, we get

(j, e[v/x, (fix f(x).e)/f]) ∈ JσA2Kσtε (5)

By Assumption 25 on the third and fourth premises, we get σt 6 σt ′.
We conclude by applying IH 4 to eq. (5) using σ, i.e σt 6 σt ′ .

Case:
i :: S,∆;Φ |=A A v A ′ i 6∈ FV(Φ)

∆;Φ |=A ∃i::S.A v ∃i::S.A ′
u-∃

Assume that σ ∈ DJ∆K.

We have

(m, pack v) ∈ J∃i::S.σAKv (1)

TS: (m, pack v) ∈ J∃i::S.σA ′Kv.

By unrolling its definition, assume that ` I :: S (?).

STS: (m, v) ∈ JσA ′{I/i}Kv.

By unrolling eq. (1) with ?, we get

(m, v) ∈ JσA{I/i}Kv (2)

Then, we can conclude by IH 2 on eq. (2).

Proof of statement (5). Proof is by induction on the subtyping derivation.
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Case:
∆;Φ |= τ ′1 v τ1 ∆;Φ |= τ2 v τ ′2 ∆;Φ |= t 6 t ′

∆;Φ |= τ1
CP(t)−−−→ τ2 v τ ′1

CP(t ′)−−−−→ τ ′2

→ cp

Assume that (m, fix f(x).e) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv (?).

TS: (m, fix f(x).e) ∈ J|στ ′1|
FS(∞)−−−−→ |στ ′2|Kv.

Pick j and assume that

j < m (1)

(j, v) ∈ J|στ ′1|Kv (2)

STS: (j, e[v/x, (fix f(x).e)/f]) ∈ J|στ ′2|K
∞
ε .

By IH 5 on eq. (2) using the first premise, we get

(j, v) ∈ J|στ1|Kv (3)

By unrolling the definition of (?) with eq. (3) and eq. (1), we get

(j, e[v/x, (fix f(x).e)/f]) ∈ J|στ2|K∞ε (4)

We can conclude by IH 6 on the second premise using eq. (4).

Case:
∆;Φ |= � (U (A1

FS(t)−−−→ A2)) v �UA1
CP(0)−−−→ �UA2

→ �Ucp

Assume that σ ∈ DJ∆K.

We have (m, fix f(x).e) ∈ JσA1
FS(σt)−−−−→ σA2Kv (?).

STS: (m, fix f(x).e) ∈ JσA1
FS(∞)−−−−→ σA2Kv.

Assume that for some j

j < m (1)
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(j, v) ∈ JσA1Kv (2)

STS: (j, e[v/x, (fix f(x).e)/f]) ∈ JσA2K∞ε .

By unrolling (?)’s definition with eq. (1) and eq. (2), we get

(j, e[v/x, (fix f(x).e)/f]) ∈ JσA2Kσtε (3)

We can conclude by applying IH 4 to eq. (3) using σt 6∞.

Case:
∆;Φ |= n

.
= n ′ ∆;Φ |= α6α ′ ∆;Φ |= τ v τ ′

∆;Φ |= list[n]α τ v list[n ′]α
′
τ ′

l1

Assume that σ ∈ DJ∆K and |= σΦ and (m, v) ∈ Jlist[σn] |στ|Kv.

TS: (m, v) ∈ Jlist[σn ′] |στ ′|Kv
From Assumption 25 applied to the first premise, σn = σn ′. There-

fore,

STS: (m, v) ∈ Llist[σn] |στ ′|Mv
We prove the following more general statement

∀ m, v,n. if (m, v) ∈ Jlist[σn] |στ|Kv, then (m, v) ∈ Llist[σn] |στ ′|Mv.

We establish this statement by subinduction on v.

subcase 1: v = nil

We can immediately conclude that (m, nil ) ∈ Llist[0] |στ ′|Mv by

definition.

subcase 2: v = cons(v1, v2)

TS: (m, cons(v1, v2)) ∈ Llist[I+ 1] |στ ′|Mv for some I+ 1 = σn.

By the main assumption, we have (m, v1) ∈ J|στ|Kv (�) and (m, v2) ∈
Jlist[|στ|] Kv (��).
By subIH on (��), we get

(m, v2) ∈ Jlist[|στ ′|]K v (1)
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By IH 5 on (�), we get

(m, v1) ∈ J|στ ′|Kv (2)

Combining eq. (2) with eq. (1), we get (m, cons(v1, v2)) ∈ Jlist[I+

1] |στ ′|Kv.

Case:
i :: S,∆;Φ |= τ v τ ′ i 6∈ FV(Φ)

∆;Φ |= ∃i::S. τ v ∃i::S. τ ′
∃

Assume that σ ∈ DJ∆K.

We have

(m, pack v) ∈ J∃|στ|::S. Kv (1)

TS: (m, pack v) ∈ J∃|στ ′|::S. Kv.

By unrolling its definition, assume that ` S :: (?).

STS: (m, v) ∈ J|στ ′|{I/i}Kv.

By unrolling eq. (1) with (?), we get

(m, v) ∈ J|στ|{I/i}Kv (2)

Then, we can conclude by IH 5 on eq. (2).

Case:
∆;Φ |= � τ v τ

T

Assume that σ ∈ DJ∆K.

We have (m, v) ∈ J|�στ|Kv.
TS: (m, v) ∈ J|στ|Kv.

Immediately follows since by definition of | · |, we know that |�στ| =
|στ|.

Case:
∆;Φ |= τ v U |τ|

W

Assume that σ ∈ DJ∆K.

We have (m, v) ∈ J|στ|Kv.

TS: (m, v) ∈ J|U |στ||Kv.
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Immediately follows since by definition of | · |, we know that |στ| =

|U |στ||.

Proof of statement (7). Remember that we are trying to prove:

If ∆;Φ |=A A v A ′ and σ ∈ DJ∆K and |= σΦ and (m, vv) ∈ $σA%v, then

(m, vv) ∈ $σA ′%v.

Proof is by induction on the subtyping derivation.

Case:
∆;Φ |=A A ′1 v A1 ∆;Φ |=A A2 v A ′2 ∆;Φ |= t 6 t ′

∆;Φ |=A A1
FS(t)−−−→ A2 v A ′1

FS(t ′)−−−−→ A ′2

→ exec

Assume that σ ∈ DJ∆K.

We have

(m, fix f(x).ee) ∈ $σA1 FS(σt)−−−−→ σA2%v (1)

TS: (m, fix f(x).ee) ∈ LσA ′1
FS(σt ′)−−−−→ σA ′2Mv.

There are two cases to show.

subcase 1: Assume that j < m and (j, vv) ∈ LUσA ′1Mv (?).

STS: (j, e[vv/x, (fix f(x).ee)/f]) ∈ LUσA ′2M
σt ′
ε .

By IH 8 on (?) using the first premise, we get

(j, vv) ∈ LUσA1Mv (2)

By unrolling eq. (1) with eq. (2) using j < m, we get

(j, e[vv/x, (fix f(x).ee)/f]) ∈ LUσA2Mσtε (3)

We conclude by applying IH 12 to eq. (3) using the second premise.

subcase 2: STS: ∀j.(j, fix f(x).L(ee)) ∈ JσA ′1
FS(σt ′)−−−−→ σA ′2Kv ∧ (j, fix f(x).R(ee)) ∈

JσA ′1
FS(σt)−−−−→ σA ′2Kv.

Pick j.
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We just show the left projection part, the right one is similar.

Pick j ′ and assume that

j ′ < j (4)

(j ′, v) ∈ J|σA ′1|Kv (5)

STS: (j ′, L(ee)[v/x, (fix f(x).L(ee))/f]) ∈ J|σA ′2|K
∞
ε .

By IH 5 on eq. (5) using the first premise, we get

(j ′, v) ∈ J|σA1|Kv (6)

By unrolling the second part of the definition of eq. (1), we get

∀j.(j, fix f(x).L(ee)) ∈ J|σA1|
FS(∞)−−−−→ |σA2|Kv (7)

Instantiating eq. (7) with j ′ + 1, we get

(j ′ + 1, fix f(x).L(ee)) ∈ J|σA1|
FS(∞)−−−−→ |σA2|Kv (8)

Then unrolling the definition of eq. (8) with eq. (6) using j ′ <

j ′ + 1, we get

(j ′, L(ee)[v/x, (fix f(x).L(ee))/f]) ∈ J|σA2|K∞ε (9)

We can conclude by IH 9 on the second premise using eq. (9).

Proof of statement (10). Remember that we are trying to prove:

If ∆;Φ |= τ v τ ′ and σ ∈ DJ∆K and |= σΦ and (m, vv) ∈ $|στ|%v, then

(m, vv) ∈ $|στ ′|%v.
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Proof is by induction on the subtyping derivation.

Case:
∆;Φ |= �U int v intr

�U-int

We have (m, vv) ∈ $|�U int|%v = $int%v.
Unrolling its definition, we have vv = keep(n).

TS: (m, keep(n)) ∈ $|intr|%v = $int%v.
Follows directly by definition.

Case:
∆;Φ |= τ ′1 v τ1 ∆;Φ |= τ2 v τ ′2 ∆;Φ |= t 6 t ′

∆;Φ |= τ1
CP(t)−−−→ τ2 v τ ′1

CP(t ′)−−−−→ τ ′2

→ cp

Assume that σ ∈ DJ∆K.

We have

(m, fix f(x).ee) ∈ $|στ1 CP(σt)−−−−→ στ2|%v = $|στ1| FS(∞)−−−−→ |στ2|%v (1)

TS: (m, fix f(x).ee) ∈ Lστ ′1
CP(σt ′)−−−−−→ στ ′2Mv = $|στ ′1|

FS(∞)−−−−→ |στ ′2|%v.
There are two cases to show.

subcase 1: Assume that j < m and (j, vv) ∈ LU |στ ′1|Mv (?).

STS: (j, e[vv/x, (fix f(x).ee)/f]) ∈ LU |στ ′2|M
σt ′
ε .

By IH 11 on (?) using the first premise, we get

(j, vv) ∈ LU |στ1|Mv (2)

By unrolling eq. (1) with eq. (2) using j < m, we get

(j, e[vv/x, (fix f(x).ee)/f]) ∈ LU |στ2|Mσtε (3)

We conclude by applying IH 12 to eq. (3) using the second premise.

subcase 2: STS: ∀j.(j, fix f(x).L(ee)) ∈ J|στ ′1|
FS(∞)−−−−→ |στ ′2|Kv ∧ (j, fix f(x).R(ee)) ∈

J|στ ′1|
FS(∞)−−−−→ |στ ′2|Kv.

Pick j.
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We just show the left projection part, the right one is similar.

Pick j ′ and assume that

j ′ < j (4)

(j ′, v) ∈ J|στ ′1|Kv (5)

STS: (j ′, L(ee)[v/x, (fix f(x).L(ee))/f]) ∈ J|στ ′2|K
∞
ε .

By IH 5 on eq. (5) using the first premise, we get

(j ′, v) ∈ J|στ1|Kv (6)

By unrolling the second part of the definition of eq. (1), we get

∀j.(j, fix f(x).L(ee)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv (7)

Instantiating eq. (7) with j ′ + 1, we get

(j ′ + 1, fix f(x).L(ee)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv (8)

Then unrolling the definition of eq. (8) with eq. (6) using j ′ <

j ′ + 1, we get

(j ′, L(ee)[v/x, (fix f(x).L(ee))/f]) ∈ J|στ2|K∞ε (9)

We can conclude by IH 6 on the second premise using eq. (9).

Case:
∆;Φ |= τ v U |τ|

W

We have (m, vv) ∈ $|στ|%v.
TS: (m, vv) ∈ $|U |στ||%v.
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Immediately follows since by definition of | · |, we know that |στ| =

|U |στ||.

Case:
∆;Φ |= � (U (A1

FS(t)−−−→ A2)) v �UA1
CP(0)−−−→ �UA2

→ �Ucp

We have (m, fix f(x).ee) ∈ $|�U (σA1
FS(σt)−−−−→ σA2)|%v = $σA1 FS(σt)−−−−→

σA2%v (?).

STS: (m, fix f(x).ee) ∈ $|�UσA1 CP(0)−−−→ �UσA2|%v = $σA1 FS(∞)−−−−→
σA2%v.
Assume that for some j

j < m (1)

(j, vv) ∈ LUσA1Mv (2)

STS: (j, ee[vv/x, (fix f(x).ee)/f]) ∈ LUσA2M∞ε .

By unrolling (?)’s definition with eq. (1) and eq. (2), we get

(j, e[v/x, (fix f(x).e)/f]) ∈ LUσA2Mσtε (3)

We can conclude by applying IH 3 to eq. (3) using σt 6∞.

Assumption 40 (Constraint Well-formedness). If ∆;Φ |= C then ∆ ` C wf

Lemma 41 (Refinement Removal Well-formedness). If Φ;∆ ` τ wf, then

Φ;∆ `A |τ| wf.

Lemma 42 (Subtyping well-formedness). The following hold.

• If ∆;Φ |= τ v τ ′ and ∆;Φ ` τ wf and FIV(τ) ⊆ ∆, then Φ;∆ ` τ ′ wf and

FIV(τ ′) ⊆ ∆.
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• If ∆;Φ |=A A v A ′ and ∆;Φ `A A wf and FIV(A) ⊆ ∆, thenΦ;∆ ` A ′ wf
and FIV(A ′) ⊆ ∆.

Proof. The proof is by induction on the subtyping derivations.

Lemma 43 (Well-formedness). The following hold.

1. If ∆;Φa; Γ `CP e : τ | t and ∆;Φ ` Γ wf and FIV(Γ) ⊆ dom(∆), then

Φ;∆ ` τ wf and FIV(t, τ) ⊆ dom(∆).

2. If ∆;Φa;Ω `FS e : A | t and ∆;Φ `A Ω wf and FIV(Ω) ⊆ dom(∆), then

Φ;∆ `A A wf and FIV(t,A) ⊆ dom(∆).

3. If ∆;Φa; Γ `CP e : τ | t, then FV(e) ⊆ dom(Γ).

4. If ∆;Φa;Ω `FS e : A | t, then FV(e) ⊆ dom(Ω).

Proof. The proof is by induction on the typing derivations.

Both of our fundamental theorems rely on the assumption that the se-
mantic interpretation of every primitive function lies in the interpretation
of the function’s type. This is explained below.

Assumption 44 (Soundness of primitive functions (relational)). Suppose that

ζ : τ1
CP(t)−−−→ τ2 and (m, vv) ∈ Lτ1Mv and ζ̂ L(vv) = (vr, fr) and ζ̂ R(vv) = (v ′r, f ′r),

then

• f ′r 6 t

• (m− fr, merge(vr, v ′r)) ∈ Lτ2Mv

Assumption 45 (Soundness of primitive functions (non-relational)). Suppose

that ζ : A1
FS(t)−−−→ A2 and (m, v) ∈ JA1Kv and ζ̂ v = (vr, fr), then

• fr 6 t

• (m− fr, vr) ∈ JA2Kv



300 appendix for ducostit

b.2 ducostit theorems

Theorem 46 (Fundamental theorem). The following holds.

1. Assume that ∆;Φa; Γ `CP e : τ | t and σ ∈ DJ∆K and |= σΦ and (m, δ) ∈
GLσΓM. Then, (m, δpeq) ∈ LστMσtε .

2. Assume that ∆;Φa;Ω `FS e : A | t and σ ∈ DJ∆K and |= σΦ and (m,γ) ∈
GJσΩK. Then, (m,γe) ∈ JσAKσtε .

3. Assume that ∆;Φa; Γ `CP e : τ | t and σ ∈ DJ∆K and |= σΦ and (m,γ) ∈
GJ|σΓ |K, then (m,γe) ∈ J|στ|K∞ε .

4. Assume that ∆;Φa;Ω `FS e : A | t and σ ∈ DJ∆K and |= σΦ and (m, δ) ∈
GLUσΩM, then (m, δpeq) ∈ LUσAMσtε .

5. Assume that ∆;Φa; Γ `CP e : τ | t and σ ∈ DJ∆K and |= σΦ and (m, δ) ∈
GLU |σΓ |M, then (m, δpeq) ∈ LU |στ|M∞ε .

Proof. Proofs are by induction on typing derivations with a sub-induction

on step-indices for recursive functions. We show select cases of each state-

ment separately.

Proof of Statement (1). We proceed by induction on the typing derivation.

We show the most important cases below.

Case:
Γ(x) = τ

∆;Φa; Γ `CP x : τ | 0
cp-var

Assume that |= σΦ and (m, δ) ∈ GLσΓM.
TS: (m, δ(pxq)) ∈ LστM0ε.
By Value Lemma (lemma 31), STS: (m, δ(x)) ∈ LστMv.
This follows by Γ(x) = τ and (m, δ) ∈ GLσΓM.

Case:
∆;Φa; Γ `CP e1 : τ | t1 ∆;Φa; Γ `CP e2 : list[n]α τ | t2

∆;Φa; Γ `CP cons(e1, e2) : list[n+ 1]α+1 τ | t1 + t2
cp-cons1

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, cons(δpe1q, δpe2q)) ∈ Llist[σn+ 1]σα+1 στMσt1+σt2ε .
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Following the definition of L·M·ε, assume that

L(δpe1q) ⇓f1 T1 (?) L(δpe2q) ⇓f2 T2 (�) vi = V(Ti)

cons(L(δpe1q), L(δpe2q)) ⇓f1+f2 〈cons(v1, v2), cons(T1, T2)〉
ev-cons

R(δpe1q) ⇓f
′
1 T ′1 (??) R(δpe2q) ⇓f

′
2 T ′2 (��) v ′i = V(T ′i )

cons(R(δpe1q), R(δpe2q)) ⇓f
′
1+f

′
2 〈cons(v ′1, v

′
2), cons(T

′
1, T

′
2)〉

ev-cons

and f1 + f2 < m.

By IH 1 on the first premise, we get (m, δpe1q) ∈ LστMσt1ε . Unrolling

its definition with (?) and f1 < m, we get

a) 〈T1, δpe1q〉yvv ′1, T
′
1, c
′
1

b) v1 = L(vv ′1) ∧ v ′1 = R(vv ′1)

c) c ′1 6 σt1
d) (m− f1, vv ′1) ∈ LστMv

By IH 1 on the second premise, we get (m, δpe2q) ∈ Llist[σn]σα στMσt2ε .

Unrolling its definition with (�) and f2 < m, we get

e) 〈T2, δpe2q〉yvv ′2, T
′
2, c
′
2

f) v2 = L(vv ′2) ∧ v ′2 = R(vv ′2)

g) c ′2 6 σt2
h) (m− f2, vv ′2) ∈ Llist[σn]σα στMv

Now, we can conclude as follows:

1. Using a) and e)
〈T1, R(δpe1q)〉 y vv ′1, T

′
1, c
′
1

〈T2, ee2〉 y vv ′2, T
′
2, c
′
2 v ′i = V(T ′i )

〈〈_, cons(T1, T2)〉, cons(R(δpe1q), R(δpe2q))〉 y
cons(vv ′1, vv

′
2), 〈cons(v ′1, v ′2), cons(T ′1, T ′2)〉, c ′1 + c ′2

cp-cons

2. Using b) and f),cons(v1, v2) = L(cons(vv ′1, vv
′
2)) ∧ cons(v ′1, v

′
2) =

R(cons(vv ′1, vv
′
2))

3. By using c) and g), we get c ′1 + c
′
2 6 σt1 + σt2
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4. By downward closure (Lemma 33) on d) and h) using

m− (f1 + f2) 6 m− f1

m− (f1 + f2) 6 m− f2

we get (m−(f1+ f2), vv ′1) ∈ LστMv and (m−(f1+ f2), vv ′2) ∈ Llist[σn]σα στMv,
when combined, gives us (m−(f1+ f2), cons(vv ′1, vv

′
2)) ∈ Llist[σn+

1]σα+1 στMv

Case:
∆;Φa; Γ `CP e1 : � τ | t1 ∆;Φa; Γ `CP e2 : list[n]α τ | t2

∆;Φa; Γ `CP cons(e1, e2) : list[n+ 1]α τ | t1 + t2
cp-cons2

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, cons(δpe1q, δpe2q)) ∈ Llist[σn+ 1]σα+1 στMσt1+σt2ε .

Following the definition of L·M·ε, assume that

L(δpe1q) ⇓f1 T1 (?) L(δpe2q) ⇓f2 T2 (�) vi = V(Ti)

cons(L(δpe1q), L(δpe2q)) ⇓f1+f2 〈cons(v1, v2), cons(T1, T2)〉
ev-cons

R(δpe1q) ⇓f
′
1 T ′1 (?) R(δpe2q) ⇓f

′
2 T ′2 (�) v ′i = V(T ′i )

cons(R(δpe1q), R(δpe2q)) ⇓f
′
1+f

′
2 〈cons(v ′1, v

′
2), cons(T

′
1, T

′
2)〉

ev-cons

and f1 + f2 < m.

By IH 1 on the first premise, we get (m, δpe1q) ∈ LστMσt1ε . Unrolling

its definition with (?) and f1 < m, we get

a) 〈T1, δpe1q〉yvv ′1, T
′
1, c
′
1

b) v1 = L(vv ′1) ∧ v ′1 = R(vv ′1)

c) c ′1 6 σt1
d) (m− f1, vv ′1) ∈ L�στMv

By IH 1 on the second premise, we get (m, δpe2q) ∈ Llist[σn]σα στMσt2ε .

Unrolling its definition with (�) and f2 < m, we get

e) 〈T2, δpe2q〉yvv ′2, T
′
2, c
′
2

f) v2 = L(vv ′2) ∧ v ′2 = R(vv ′2)

g) c ′2 6 σt2
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h) (m− f2, vv ′2) ∈ Llist[σn]σα στMv

Now, we can conclude as follows:

1. Using a) and e)
〈T1, R(δpe1q)〉 y vv ′1, T

′
1, c
′
1

〈T2, ee2〉 y vv ′2, T
′
2, c
′
2 v ′i = V(T ′i )

〈〈_, cons(T1, T2)〉, cons(R(δpe1q), R(δpe2q))〉 y
cons(vv ′1, vv

′
2), 〈cons(v ′1, v ′2), cons(T ′1, T ′2)〉, c ′1 + c ′2

cp-cons

2. Using b) and f),cons(v1, v2) = L(cons(vv ′1, vv
′
2)) ∧ cons(v ′1, v

′
2) =

R(cons(vv ′1, vv
′
2))

3. By using c) and g), we get c ′1 + c
′
2 6 σt1 + σt2

4. By downward closure (Lemma 33) on d) and h) using

m− (f1 + f2) 6 m− f1

m− (f1 + f2) 6 m− f2

we get (m − (f1 + f2), vv ′1) ∈ L�στMv and (m − (f1 + f2), vv ′2) ∈
Llist[σn]σα στMv, when combined, gives us (m−(f1+ f2), cons(vv ′1, vv

′
2)) ∈

Llist[σn+ 1]σα στMv

Case:

∆;Φa; Γ `CP e : list[n]α τ | t ∆;Φ∧n = 0; Γ `CP e1 : τ
′ | t ′

i,∆;Φ∧n = i+ 1;h : � τ, tl : list[i]α τ, Γ `CP e2 : τ
′ | t ′

i,β,∆;Φ∧n = i+ 1∧α = β+ 1;h : τ, tl : list[i]β τ, Γ `CP e2 : τ
′ | t ′

∆;Φa; Γ `CP case e of nil → e1 | h :: tl→ e2 : τ
′ | t+ t ′

cp-

caseL

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, case δpeq of nil → δpe1q | h :: tl→ δpe2q) ∈ Lστ ′Mσt+σt
′

ε .

Following the definition of L·M·ε, assume that

L( case δpeq of nil → δpe1q | h :: tl→ δpe2q) ⇓F T
R( case δpeq of nil → δpe1q | h :: tl→ δpe2q) ⇓F

′
T ′ and F < m.

Depending on what L(δpeq) and R(δpeq) evaluate to, there are four

cases.
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subcase 1:
L(δpeq) ⇓f T (?)

L(δpe1q) ⇓fr T1 (�) nil = V(T) vr = V(Tr)

case L(δpeq) of nil → L(δpe1q) | h :: tl→ L(δpe2q) ⇓f+fr+ccaseL 〈vr, casenil(T , Tr)〉
ev-case-nil

and
R(δpeq) ⇓f ′ T ′ (??)

R(δpe1q) ⇓f
′
r T ′1 (��) nil = V(T ′) v ′r = V(T ′r )

case R(δpeq) of nil → R(δpe1q) | h :: tl→ R(δpe2q) ⇓f
′+f ′r+ccaseL 〈v ′r, casenil(T ′, T ′r )〉

ev-case-nil

and F = f+ fr + ccaseL < m .

By IH 1 on the first premise, we get (m, δpeq) ∈ Llist[σn]σα στMσtε .

Unrolling its definition with (?), (??) and f < m, we get

a) 〈T, δpeq〉yvv ′, T ′, c ′

b) nil = L(vv ′) ∧ v ′ = R(vv ′)

c) c ′ 6 σt
d) (m− f, vv ′) ∈ Llist[σn]σα στMv

By (b) and (d), we know that vv ′ = nil and σn = 0.

Then, we can instantiate IH 1 on the second premise using

|= σΦ∧ σn
.
= 0, to obtain (m, δpe1q) ∈ Lστ ′Mσt

′
ε .

Unrolling its definition using (�) and fr < m, we get

e) 〈T1, δpe1q〉yvv ′r, T ′r , c ′r
f) vr = L(vv ′r) ∧ v ′r = R(vv ′r)

g) c ′r 6 σt ′

h) (m− fr, vv ′r) ∈ Lστ ′Mv

We conclude with

1. Using a) and e)
〈T , δpeq〉 y nil, T ′, c ′

〈Tr, δpe1q〉 y vv ′r, T
′
r , c
′
r v ′r = V(T ′r )

〈〈_, casenil(T , Tr)〉,
caseLδpeq of nil →
δpe1q
| h :: tl→ δpe2q

〉 y vv ′r, 〈v ′r, casenil(T ′, T ′r )〉, c ′ + c ′r

cp-caseL-nil

2. Using f)
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3. By using c) and g), we get c ′ + c ′r 6 σt+ σt ′

4. By downward closure (Lemma 33) on h) using

m− (f+ fr + ccaseL) 6 m− fr

we get (m− (f+ fr + ccaseL), vv ′r) ∈ Lστ ′Mv.

subcase 2:
L(δpeq) ⇓f T (?) cons(vh, vtl) = V(T)

L(δpe2q)[vh/h, vtl/tl] ⇓fr Tr (�) vr = V(Tr)

case L(δpeq) of nil → L(δpe1q) | h :: tl→ L(δpe2q) ⇓f+fr+ccaseL 〈vr, casecons(T , Tr)〉
ev-case-cons

and
R(δpeq) ⇓f ′ T ′ (??) cons(v ′h, v ′tl) = V(T ′)

R(δpe2q)[v ′h/h, v ′tl/tl] ⇓f
′
r T ′r (��) v ′r = V(T ′r )

case R(δpeq) of nil → R(δpe1q) | h :: tl→ R(δpe2q) ⇓f
′+f ′r+ccaseL 〈v ′r, casecons(T ′, T ′r )〉

ev-case-cons

and F = f+ fr + ccaseL < m.

By IH 1 on the first premise, we get (m, δpeq) ∈ Llist[σn]σα στMσtε .

Unrolling its definition with (?), (??) and f < m, we get

a) 〈T, δpeq〉yvv ′, T ′, c ′

b) cons(vh, vtl) = L(vv ′) ∧ cons(v ′h, v ′tl) = R(vv ′)

c) c ′ 6 σt
d) (m− f, vv ′) ∈ Llist[σn]σα στMv

By b) and d), we know that vv ′ = cons(vvh, vvtl)

For d), there are two cases:

subsubcase 1: σn = I+ 1 such that we have

(m− f, vvh) ∈ L�στMv (1)

(m− f, vvtl) ∈ Llist[I]σα στMv (2)



306 appendix for ducostit

In addition, by downward closure (Lemma 33) on (m, δ) ∈
GLΓM, we have

(m− f, δ) ∈ GLσΓM (3)

Then, we can instantiate IH 1 on the third premise using

• σ[i 7→ I] ∈ DJi :: N,∆K

• |= σ[i 7→ I](Φ∧n
.
= i+ 1) obtained by

– |= σΦ by main assumption

– |= σn
.
= I+ 1 by sub-assumption

• (m− f, δ[h 7→ vvh, tl 7→ vvtl]) ∈ GLσ[i 7→ I](Γ , x : � τ, tl :

list[i]α τ)M using (1) and (2) and (3).

we get (m− f, δpe2q[vvh/h, vvtl/tl]) ∈ Lσ[i 7→ I]τ ′Mσ[i 7→I]t
′

ε .

Since, i 6∈ FV(t ′, τ, τ ′), we have

(m− f, δpe2q[vvh/h, vvtl/tl]) ∈ Lστ ′Mσt
′

ε .

Unrolling its definition using (�), (��) and fr < m− f, we

get

e) 〈Tr, δpe2q[vvh/h, vvtl/tl]〉yvv ′r, T ′r , c ′r
f) vr = L(vv ′r) ∧ v ′r = R(vv ′r)

g) c ′r 6 σt ′

h) (m− f− fr, vv ′r) ∈ Lστ ′Mv

We conclude with

1. Using a) and e)
〈T , δpeq〉 y cons(vvh, vvtl), T ′, c ′

〈Tr, δpe2q[vvh/h, vvtl/tl]〉 y
vv ′r, T

′
r , c
′
r v ′r = V(T ′r )

〈〈_, casecons(T , Tr)〉,
caseLδpeq of nil →
δpe1q
| h :: tl→ δpe2q

〉 y

vv ′r, 〈v ′r, casecons(T ′, T ′r )〉, c ′ + c ′r

cp-caseL-cons

2. Using g)
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3. By using c) and f), we get c ′ + c ′r 6 σt+ σt ′

4. By downward closure (Lemma 33) on h) using

m− (f+ fr + ccaseL) 6 m− f− fr

we get (m− (f+ fr + ccaseL), vv ′r) ∈ Lστ ′Mv.

subsubcase 2: σn = I+ 1 and σα = J+ 1 such that we have

(m− f, vvh) ∈ LστMv (4)

(m− f, vvtl) ∈ Llist[I]J στMv (5)

In addition, by downward closure (Lemma 33) on (m, δ) ∈
GLΓM, we have

(m− f, δ) ∈ GLσΓM (6)

Then, we can instantiate IH 1 on the fourth premise using

• σ[i 7→ I,β 7→ J] ∈ DJi :: N,β :: N,∆K

• |= σ[i 7→ I,β 7→ J](Φ∧n
.
= i+ 1∧α

.
= β+ 1) obtained

– |= σΦ by main assumption

– |= σn
.
= I+ 1 by sub-assumption

– |= σα
.
= J+ 1 by sub-assumption

• (m − f, δ[h 7→ vvh, tl 7→ vvtl]) ∈ GLσ[i 7→ I,β 7→ J](Γ , x :

τ, tl : list[i]β τ)M using (4) and (5) and (6)

we get

(m− f, δpe2q[vvh/h, vvtl/tl]) ∈ Lσ[i 7→ I,β 7→ J]τ ′Mσ[i 7→I,β 7→J]t
′

ε .

Since, i,β 6∈ FV(t ′, τ, τ ′), we have

(m− f, δpe2q[vvh/h, vvtl/tl]) ∈ Lστ ′Mσt
′

ε .
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Unrolling its definition using (�), (��) and fr < m− f, we

get

i) 〈Tr, δpe2q[vvh/h, vvtl/tl]〉yvv ′r, T ′r , c ′r
j) vr = L(vv ′r) ∧ v ′r = R(vv ′r)

k) c ′r 6 σt ′

l) (m− f− fr, vv ′r) ∈ Lστ ′Mv

We conclude with

1. Using a) and e)
〈T , δpeq〉 y cons(vvh, vvtl), T ′, c ′

〈Tr, δpe2q[vvh/h, vvtl/tl]〉 y
vv ′r, T

′
r , c
′
r v ′r = V(T ′r )

〈〈_, casecons(T , Tr)〉,
caseLδpeq of nil →
δpe1q
| h :: tl→ δpe2q

〉 y

vv ′r, 〈v ′r, casecons(T ′, T ′r )〉, c ′ + c ′r

cp-caseL-cons

2. Using g)

3. By using d) and f), we get c ′ + c ′r 6 σt+ σt ′

4. By downward closure (Lemma 33) on h) using

m− (f+ fr + ccaseL) 6 m− f− fr

we get (m− (f+ fr + ccaseL), vv ′r) ∈ Lστ ′Mv.

subcase 3:
L(δpeq) ⇓f T (?) cons(vh, vtl) = V(T)

L(δpe2q)[vh/h, vtl/tl] ⇓fr Tr (�) vr = V(Tr)

case L(δpeq) of nil → L(δpe1q) | h :: tl→ L(δpe2q) ⇓f+fr+ccaseL 〈vr, casecons(T , Tr)〉
ev-case-cons

and
R(δpeq) ⇓f ′ T ′ (??)

R(δpe1q) ⇓f
′
r T ′1 (��) nil = V(T ′) v ′r = V(T ′r )

case R(δpeq) of nil → R(δpe1q) | h :: tl→ R(δpe2q) ⇓f
′+f ′r+ccaseL 〈v ′r, casenil(T ′, T ′r )〉

ev-case-nil.
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By IH 1 on the first premise, we get (m, δpeq) ∈ Llist[σn]σα στMσtε .

Unrolling its definition with (?), (??) and f < m, we get

a) 〈T, δpeq〉yvv ′, T ′, c ′

b) cons(vh, vtl) = L(vv ′) ∧ nil = R(vv ′)

c) c ′ 6 σt
d) (m− f, vv ′) ∈ Llist[σn]σα στMv

However, d) is false since two lists of different length are not

related, therefore this case is vacuously true.

subcase 4:
L(δpeq) ⇓f T (?)

L(δpe1q) ⇓fr T1 (�) nil = V(T) vr = V(Tr)

case L(δpeq) of nil → L(δpe1q) | h :: tl→ L(δpe2q) ⇓f+fr+ccaseL 〈vr, casenil(T , Tr)〉
ev-case-nil

and
R(δpeq) ⇓f ′ T ′ (??) cons(v ′h, v ′tl) = V(T ′)

R(δpe2q)[v ′h/h, v ′tl/tl] ⇓f
′
r T ′r (��) v ′r = V(T ′r )

case R(δpeq) of nil → R(δpe1q) | h :: tl→ R(δpe2q) ⇓f
′+f ′r+ccaseL 〈v ′r, casecons(T ′, T ′r )〉

ev-case-cons.

By IH 1 on the first premise, we get (m, δpeq) ∈ Llist[σn]σα στMσtε .

Unrolling its definition with (?), (??) and f < m, we get

a) 〈T, δpeq〉yvv ′, T ′, c ′

b) nil = L(vv ′) ∧ cons(v ′h, v ′tl) = R(vv ′)

c) c ′ 6 σt
d) (m− f, vv ′) ∈ Llist[σn]σα στMv

However, d) is false since two lists of different length are not

related, therefore this case is vacuously true.

Case:
∆;Φ ` τ1

CP(t)−−−→ τ2 wf ∆;Φ; x : τ1, f : τ1
CP(t)−−−→ τ2, Γ `CP e : τ2 | t

∆;Φa; Γ `CP fix f(x).e : τ1
CP(t)−−−→ τ2 | 0

cp-fix

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, fix f(x).δpeq) ∈ Lστ1
CP(σt)−−−−→ στ2M0ε.

By lemma 31, STS: (m, fix f(x).δpeq) ∈ Lστ1
CP(σt)−−−−→ στ2Mv.
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Let F = fix f(x).δpeq.
We prove the more general statement

∀m ′ 6 m. (m ′, F) ∈ Lστ1
CP(σt)−−−−→ στ2Mv

by subinduction on m ′.

There are two parts to show:

subcase 1: m ′ = 0

By the definition of the interpretation of function types, there are

two parts to show:

subsubcase 1: ∀j < m ′ = 0 · · ·
Since there is no non-negative j such that j < 0, the goal is

vacuously true.

subsubcase 2: TS: (0, F) ∈ $|στ1| FS(∞)−−−−→ |στ2|%v
As above, since there is no j < 0,

RTS: ∀j.(j, L(F)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv ∧ (j, R(F)) ∈ J|στ1|

FS(∞)−−−−→
|στ2|Kv.
Pick j.

We show the left projection only, the right one is similar.

• STS 1: (j, L(F)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv

We prove the more general statement

∀m ′ 6 j. (m ′, L(F)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv

by subinduction on m ′.

There are two cases:

– m ′ = 0

Since there is no non-negative j such that j < 0, the

goal is vacuously true.
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– m ′ = m ′′ + 1 6 m
By sub-IH

(m ′′, fix f(x).L(δpeq)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv (1)

STS: (m ′′ + 1, fix f(x).L(δpeq)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv.

Pick j ′′ < m ′′ + 1 and assume that (j ′′, v) ∈ J|στ1|Kv.
STS: (j ′′, L(δpeq)[v/x, L(F)/f]) ∈ J|στ2|K∞ε .

This follows by IH 3 on the premise instantiated with

(j ′′, δ[x 7→ v, f 7→ L(F)]) ∈ GJx : |στ1|, f : |στ1|
FS(∞)−−−−→

|στ2|, |σΓ |K which holds because

* (j ′′, δ) ∈ GJ|σΓ |K using lemma 32 on (m, δ) ∈ GLσΓM

* (j ′′, v) ∈ J|στ1|Kv, from the assumption above

* (j ′′, fix f(x).L(δpeq)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv, obtained

by downward closure (Lemma 33) on (1) using j ′′ 6
m ′′

subcase 2: m ′ = m ′′ + 1 6 m
By sub-IH

(m ′′, F) ∈ Lστ1
CP(σt)−−−−→ στ2Mv (2)

TS: (m ′′ + 1, fix f(x).δpeq) ∈ Lστ1
CP(σt)−−−−→ στ2Mv

There are two cases to show:

subsubcase 1: Pick j < m ′′ + 1 and assume that (j, vv) ∈ Lστ1Mv.
STS: (j, δpeq[vv/x, F/f]) ∈ Lστ2Mσtε .

This follows by IH 1 on the second premise instantiated with

(j, δ[x 7→ vv, f 7→ F]) ∈ GLσΓ , x : στ1, f : στ1
CP(σt)−−−−→ στ2M which

holds because

• (j, δ) ∈ GLσΓM obtained by downward closure (lemma 33)

using (m, δ) ∈ GLσΓM and j < m ′ 6 m.

• (j, vv) ∈ Lστ1Mv, from the assumption above
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• (j, F) ∈ Lστ1
CP(σt)−−−−→ στ2Mv, obtained by downward closure

(Lemma 33) on (2) using j 6 m ′′

subsubcase 2: STS: (m ′′ + 1, fix f(x).δpeq) ∈ $|στ1| FS(∞)−−−−→ |στ2|%v
There are also two cases to show here.

• Pick j < m ′′ + 1 and assume that (j, vv) ∈ LU |στ1|Mv.
STS: (j, δpeq[vv/x, F/f]) ∈ L|Uστ2|M∞ε .

This follows by IH 5 on the second premise instantiated

with

(j, δ[x 7→ vv, f 7→ F]) ∈ GLU |σΓ |, x : U |στ1|, f : U (|στ1
CP(σt)−−−−→

στ2|)M which holds because

– (j, δ) ∈ GLU |σΓ |M obtained by downward closure (Lemma 33)

on (m, δ) ∈ GLU |σΓ |M (obtained by inclusion lemma on

(m, δ) ∈ GLσΓM) and j < m ′ 6 m.

– (j, vv) ∈ LU |στ1|Mv, from the assumption above

– (j, F) ∈ LU (|στ1|
FS(∞)−−−−→ |στ2|)Mv, obtained by downward

closure (Lemma 33) on (2) using j 6 m ′′

• STS: ∀j.(j, L(F)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv ∧ (j, R(F)) ∈

J|στ1|
FS(∞)−−−−→ |στ2|Kv.

The proof is same as above subcase where m ′ = 0.

This completes the proof of this case.

Case:

∆;Φ ` τ1
CP(t)−−−→ τ2 wf

∆;Φ; x : τ1, f : � (τ1
CP(t)−−−→ τ2), Γ `CP e : τ2 | t

∀x ∈ dom(Γ). ∆;Φ |= Γ(x) v � Γ(x)

∆;Φ; Γ , Γ ′ `CP fix f(x).e : � (τ1
CP(t)−−−→ τ2) | 0

cp-fixNC

Assume that (m, δ) ∈ GLσΓ ,σΓ ′M and |= σΦ.

Then, δ = δ1 ∪ δ2 such that (m, δ1) ∈ GLσΓM and (m, δ2) ∈ GLσΓ ′M.

TS: (m, fix f(x).δpeq) ∈ L� (στ1
CP(σt)−−−−→ στ2)M0ε.

Since e doesn’t have any free variables from Γ ′ by the second premise,

TS: (m, fix f(x).δ1peq) ∈ L� (στ1
CP(σt)−−−−→ στ2)M0ε.

By lemma 31, STS: (m, fix f(x).δ1peq) ∈ L� (στ1
CP(σt)−−−−→ στ2)Mv.
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By lemma 39 using (m, δ1) ∈ GLσΓM and the third premise, we get

(m, δ1) ∈ GL�σΓM, i.e. ∀x ∈ dom(Γ).stable(δ1(x)).

We also know that by definition, stable(peq).
Hence, stable(fix f(x).δ1peq).
Therefore, STS: (m, fix f(x).δ1peq) ∈ Lστ1

CP(σt)−−−−→ στ2Mv.
Let F = fix f(x).δ1e .

We prove the more general statement

∀m ′ 6 m. (m ′, F) ∈ Lστ1
CP(σt)−−−−→ στ2Mv

by subinduction on m ′.

There are two parts to show:

subcase 1: m ′ = 0

By the definition of the interpretation of function types, there are

two parts to show:

subsubcase 1: ∀j < m ′ = 0
Since there is no non-negative j such that j < 0, the goal is

vacuously true.

subsubcase 2: TS: (0, F) ∈ $|στ1| FS(∞)−−−−→ |στ2|%v
As above, since there is no j < 0,

RTS: ∀j.(j, L(F)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv ∧ (j, R(F)) ∈ J|στ1|

FS(∞)−−−−→
|στ2|Kv.
Pick j.

We show the left projection only, the right one is similar.

• STS 1: (j, L(F)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv

We prove the more general statement

∀m ′ 6 j. (m ′, L(F)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv

by subinduction on m ′.

There are two cases:
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– m ′ = 0

Since there is no non-negative j such that j < 0, the

goal is vacuously true.

– m ′ = m ′′ + 1 6 m
By sub-IH

(m ′′, fix f(x).L(δ1peq)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv (1)

STS: (m ′′ + 1, fix f(x).L(δ1peq)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv.

Pick j ′′ < m ′′ + 1 and assume that (j ′′, v) ∈ J|στ1|Kv.
STS: (j ′′, L(δ1peq)[v/x, L(F)/f]) ∈ J|στ2|K∞ε .

This follows by IH 3 on the premise instantiated with

(j ′′, δ1[x 7→ v, f 7→ L(F)]) ∈ GJx : |στ1|, f : |στ1|
FS(∞)−−−−→

|στ2|, |σΓ |K which holds because

* (j ′′, δ1) ∈ GJ|σΓ |K using lemma 32 on (m, δ1) ∈ GLσΓM

* (j ′′, v) ∈ J|στ1|Kv, from the assumption above

* (j ′′, fix f(x).L(δ1peq)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv, obtained

by downward closure (Lemma 33) on (1) using j ′′ 6
m ′′

subcase 2: m ′ = m ′′ + 1 6 m
By sub-IH

(m ′′, F) ∈ Lστ1
CP(σt)−−−−→ στ2Mv (2)

TS: (m ′′ + 1, fix f(x).δ1peq) ∈ Lστ1
CP(σt)−−−−→ στ2Mv

There are two cases to show:

subsubcase 1: Pick j < m ′′ + 1 and assume that (j, vv) ∈ Lστ1Mv.
STS: (j, δ1peq[vv/x, F/f]) ∈ Lστ2Mσtε .

This follows by IH 1 on the second premise instantiated with

(j, δ1[x 7→ vv, f 7→ F]) ∈ GLσΓ , x : στ1, f : � (στ1
CP(σt)−−−−→ στ2)M

which holds because
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• (j, δ1) ∈ GLσΓM obtained by downward closure (lemma 33)

using (m, δ1) ∈ GLσΓM and j < m ′ 6 m.

• (j, vv) ∈ Lστ1Mv, from the assumption above

• (j, F) ∈ L� (στ1
CP(σt)−−−−→ στ2)Mv, obtained by downward

closure (Lemma 33) on (2) using j 6 m ′′ and also by

stable(F)

subsubcase 2: STS: (m ′′ + 1, fix f(x).δ1peq) ∈ $|στ1| FS(∞)−−−−→ |στ2|%v
There are also two cases to show here.

• Pick j < m ′′ + 1 and assume that (j, vv) ∈ LU |στ1|Mv.
STS: (j, δ1peq[vv/x, F/f]) ∈ L|Uστ2|M∞ε .

This follows by IH 5 on the second premise instantiated

with

(j, δ1[x 7→ vv, f 7→ F]) ∈ GLU |σΓ |, x : U |στ1|, f : U (|στ1
CP(σt)−−−−→

στ2|)M which holds because

– (j, δ1) ∈ GLU |σΓ |M obtained by downward closure (Lemma 33)

on (m, δ1) ∈ GLU |σΓ |M (obtained by inclusion lemma on

(m, δ1) ∈ GLσΓM) and j < m ′ 6 m.

– (j, vv) ∈ LU |στ1|Mv, from the assumption above

– (j, F) ∈ LU (|στ1|
FS(∞)−−−−→ |στ2|)Mv, obtained by downward

closure (Lemma 33) on (2) using j 6 m ′′

• STS: ∀j.(j, L(F)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv ∧ (j, R(F)) ∈

J|στ1|
FS(∞)−−−−→ |στ2|Kv.

The proof is same as above subcase where m ′ = 0.

This completes the proof of this case.

Case:
∆;Φa; Γ `CP e1 : τ1

CP(t)−−−→ τ2 | t1 ∆;Φa; Γ `CP e2 : τ1 | t2

∆;Φa; Γ `CP e1 e2 : τ2 | t1 + t2 + t
cp-app

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, δpe1 e2q) ∈ Lστ2M
σt1+σt2+σt
ε .

Following the definition of L·M·ε, assume that



316 appendix for ducostit

L(δpe1q) ⇓f1 T1 (?)

L(δpe2q) ⇓f2 T2 (�) fix f(x).e = V(T1) v2 = V(T2)

e[v2/x, (fix f(x).e)/f] ⇓fr Tr (†) vr = V(Tr)

L(δpe1q) L(δpe2q) ⇓f1+f2+fr+capp 〈vr, app(T1, T2, Tr)〉
ev-app and

R(δpe1q) ⇓f
′
1 T ′1 (??)

R(δpe2q) ⇓f
′
2 T ′2 (��) fix f(x).e ′ = V(T ′1) v ′2 = V(T ′2)

e[v ′2/x, (fix f(x).e ′)/f] ⇓f ′r T ′r (††) v ′r = V(T ′r )

R(δpe1q) R(δpe2q) ⇓f
′
1+f

′
2+f

′
r+capp 〈v ′r, app(T ′1, T ′2, T ′r )〉

ev-app and

(f1 + f2 + fr + capp) < m.

By IH 1 on the first premise, we get (m, δpe1q) ∈ Lστ1
CP(σt)−−−−→ στ2M

σt1
ε .

Unrolling its definition with (?), (??) and f1 < m, we get

a) 〈T1, δpe1q〉yvv ′1, T
′
1, c
′
1 where vv ′1 = fix f(x).ee

b) fix f(x).e = L(fix f(x).ee) ∧ fix f(x).e ′ = R(fix f(x).ee)

c) c ′1 6 σt1
d) (m− f1, fix f(x).ee) ∈ Lστ1

CP(σt)−−−−→ στ2Mv

By IH 1 on the second premise, we get (m, δpe2q) ∈ Lστ1M
σt2
ε .

Unrolling its definition with (�) and (��) and f2 < m, we get

e) 〈T2, δpe2q〉yvv ′2, T
′
2, c
′
2

f) v2 = L(vv ′2) ∧ v ′2 = R(vv ′2)

g) c ′2 6 σt2
h) (m− f2, vv ′2) ∈ Lστ1Mv

Next, we apply downward-closure (lemma 33) to h) using

m− (f1 + f2 + capp) 6 m− f2

and we get

(m− (f1 + f2 + capp), vv ′2) ∈ Lστ1Mv (1)

We unroll d) using (1) since

m− (f1+ f2+ capp) < m− f1 Note that here we have capp > 1
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and get

(m− (f1 + f2 + capp), ee[vv ′2/x, fix f(x).ee/f]) ∈ Lστ2Mσtε (2)

Next, we unroll (2) using (†), (††) and fr < m− (f1 + f2 + capp)

to obtain

i) 〈Tr, ee[vv ′2/x, fix f(x).ee/f]〉yvv ′r, T ′r , c ′r
j) vr = L(vv ′r) ∧ v ′r = R(vv ′r)

k) c ′r 6 σt
l) (m− (f1 + f2 + fr + capp), vv ′r) ∈ Lστ2Mv

Now, we can conclude as follows:

1. Using a), e) and i)
〈T1, R(δpe1q)〉 y fix f(x).ee, T ′1, c

′
1

〈T2, R(δpe2q)〉 y vv ′2, T
′
2, c
′
2

〈Tr, ee[vv ′2/x, (fix f(x).ee)/f]〉 y vv ′r, T
′
r , c
′
r v ′r = V(T ′r )

〈〈_, app(T1, T2, Tr)〉, R(δpe1q) R(δpe2q)〉 y
vv ′r, 〈v ′r, app(T ′1, T ′2, T ′r )〉, c ′1 + c ′2 + c ′r

cp-app

2. By j)

3. Using c), g) and k), we get (c ′1 + c
′
2 + c

′
r) 6 σt1 + σt2 + σt

4. By l)

Case:
∆;Φa; Γ `CP e1 : τ1 | t1 ∆;Φa; Γ `CP e2 : τ2 | t2

∆;Φa; Γ `CP 〈e1, e2〉 : τ1 × τ2 | t1 + t2
cp-prod

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, 〈δpe1q, δpe2q〉) ∈ Lστ1 × στ2Mσt1+σt2ε .

Following the definition of L·M·ε·, assume that
L(δpe1q) ⇓f1 T1 (?) L(δpe1q) ⇓f2 T2 (�) vi = V(Ti)

〈L(δpe1q), L(δpe2q)〉 ⇓f1+f2 〈〈v1, v2〉, 〈T1, T2〉〉
e-pair and

R(δpe1q) ⇓f
′
1 T1 (??) R(δpe1q) ⇓f

′
2 T2 (��) v ′i = V(T ′i )

〈R(δpe1q), R(δpe2q)〉 ⇓f
′
1+f

′
2 〈〈v ′1, v ′2〉, 〈T ′1, T ′2〉〉

e-pair

and

f1 + f2 < m.
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By IH 1 on the first premise, we get (m, δpe1q) ∈ Lστ1M
σt1
ε . Unrolling

its definition with (?), (??) and f1 < m, we get

a) 〈T1, δpe1q〉yvv ′1, T
′
1, c
′
1

b) v1 = L(vv ′1) ∧ v ′1 = R(vv ′1)

c) c ′1 6 σt1
d) (m− f1, vv ′1) ∈ Lστ1Mv

By IH 1 on the second premise, we get (m, δpe2q) ∈ Lστ2M
σt2
ε .

Unrolling its definition with (�), (��) and f2 < m, we get

e) 〈T2, δpe2q〉yvv ′2, T
′
2, c
′
2

f) v2 = L(vv ′2) ∧ v ′2 = R(vv ′2)

g) c ′2 6 σt2
h) (m− f2, vv ′2) ∈ Lστ2Mv

We can conclude as follows:

1. Using a) and e)
〈T1, δpe1q〉 y vv ′1, T

′
1, c
′
1

〈T2, δpe2q〉 y vv ′2, T
′
2, c
′
2 v ′i = V(T ′i )

〈〈_, 〈T1, T2〉〉, (δpe1q, δpe2q)〉 y (vv ′1, vv
′
2), 〈〈v ′1, v ′2〉, 〈T ′1, T ′2〉〉, c ′1 + c ′2

cp-pair

2. Using b) and f),〈v1, v2〉 = L((vv ′1, vv
′
2)) ∧ 〈v ′1, v ′2〉 = R((vv ′1, vv

′
2))

3. By using c) and g), we get c ′1 + c
′
2 6 σt1 + σt2

4. By downward closure (Lemma 33) on d) and h) using

m− (f1 + f2) 6 m− f1

m− (f1 + f2) 6 m− f2

we get (m−(f1+ f2), vv ′1) ∈ Lστ1Mv and (m−(f1+ f2), vv ′2) ∈ Lστ2Mv,
when combined, gives us (m− (f1 + f2), (vv ′1, vv

′
2)) ∈ Lστ2Mv

Case:
∆;Φa; Γ `CP e : τ1 × τ2 | t
∆;Φa; Γ `CP π1(e) : τ1 | t

cp-proj1

Assume that (m, δ) ∈ GLσΓM and |= σΦ.
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TS: (m,π1δpeq) ∈ Lστ1Mσtε .

Following the definition of L·M·ε·, assume that
L(δpeq) ⇓f T (?) 〈v1, v2〉 = V(T)

π1L(δpeq) ⇓f+cproj 〈v1,π1 T〉
e-proj1 and

R(δpeq) ⇓f ′ T ′ (??) 〈v ′1, v ′2〉 = V(T ′)

π1R(δpeq) ⇓f
′+cproj 〈v ′1,π1 T ′〉

e-proj1 and

f+ cproj < m.

By IH 1 on the first premise, we get (m, δpeq) ∈ Lστ1 × στ2Mσtε .

Unrolling its definition with (?), (??) and f < m, we get

a) 〈T, δpeq〉yvv ′, T ′, c ′ where vv ′ = (vv1, vv2)

b) 〈v1, v2〉 = L((vv1, vv2)) ∧ 〈v ′1, v ′2〉 = R((vv1, vv2))

c) c ′1 6 σt1
d) (m− f1, (vv1, vv2)) ∈ Lστ1 × στ2Mv

We can conclude as follows:

1. Using a)
〈T , δpe1q〉 y (vv1, vv2), T ′, c ′ 〈v ′1, v ′2〉 = V(T ′)

〈π1 T ,π1δpe1q〉 y vv1, 〈v ′1,π1 T ′〉, c ′
cp-proj1

2. Using c), v1 = L(vv1) ∧ v ′1 = R(vv1)

3. By using c)

4. By downward closure (Lemma 33) on d) using

m− (f+ cproj) 6 m− f

we get (m− (f+ cproj), vv1) ∈ Lστ1Mv.

Case:
∆;Φa; Γ `CP e : τ1 | t ∆;Φ ` τ2 wf

∆;Φa; Γ `CP inl e : τ1 + τ2 | t
cp-inl

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, inl (δpeq)) ∈ Lστ1 + στ2Mσtε .

Following the definition of L·M·ε·, assume that
L(δpeq) ⇓f T (?) v = V(T)

inl L(δpeq) ⇓f 〈inl v, inl T〉
e-inl and
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R(δpeq) ⇓f ′ T ′ (??) v ′ = V(T ′)

inl R(δpeq) ⇓f ′ 〈inl v ′, inl T ′〉
e-inl and f < m.

By IH 1 on the first premise, we get (m, δpeq) ∈ Lστ1Mσtε . Unrolling its

definition with (?), (??) and f < m, we get

a) 〈T, δpeq〉yvv ′, T ′, c ′

b) v = L(vv ′) ∧ v ′ = R(vv ′)

c) c ′ 6 σt
d) (m− f, vv ′) ∈ LστMv

We can conclude as follows:

1. Using a)
〈T , δpeq〉 y vv ′, T ′, c ′ v ′ = V(T ′)

〈〈_, inl T〉, inl δpeq〉 y inl vv ′, 〈inl v ′, inl T ′〉, c ′
cp-inl

2. Using b), inl v = L(inl vv) ∧ inl v ′ = R(inl vv)

3. By using c)

4. Using d), we can show that (m− f, inl vv) ∈ Lστ1 + στ2Mv

Case:

∆;Φa; Γ `CP e : τ1 + τ2 | t

∆;Φ; x : τ1, Γ `CP e1 : τ | t
′ ∆;Φ;y : τ2, Γ `CP e2 : τ | t

′

∆;Φa; Γ `CP case (e, x.e1,y.e2) : τ | t+ t ′
cp-case

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, case (δpeq, δpe1q, δpe2q)) ∈ LστMσt+σt
′

ε .

Following the definition of L·M·ε, assume that

L( case (δpeq, δpe1q, δpe2q)) ⇓F vr and

R( case (δpeq, δpe1q, δpe2q)) ⇓F
′
v ′r and

F < m.

Depending on what L(δpeq) and R(δpeq) evaluate to, there are four

cases:

subcase 1:
L(δpeq) ⇓f T (?)

inl v = V(T) L(δpe1q)[v/x] ⇓fr Tr (�) vr = V(Tr)

case (L(δpeq), x.L(δpe1q),y.L(δpe2q)) ⇓f+fr+ccase 〈vr, caseinl(T , Tr)〉
ev-case-l

and



B.2 ducostit theorems 321

R(δpeq) ⇓f ′ T ′ (??)

inl v ′ = V(T ′) R(δpe1q)[v ′/x] ⇓f
′
r T ′r (��) v ′r = V(T ′r )

case (R(δpeq), x.R(δpe1q),y.R(δpe2q)) ⇓f
′+f ′r+ccase 〈v ′r, caseinl(T ′, T ′r )〉

ev-case-l

and

F = f+ fr + ccase < m .

By IH 1 on the first premise, we get (m, δpeq) ∈ Lστ1 + στ2Mσtε .

Unrolling its definition with (?), (??) and f < m, we get

a) 〈T, δpeq〉yvv ′, T ′, c ′ where vv ′ = inl vv

b) inl v = L(inl vv) ∧ inl v ′ = R(inl vv)

c) c ′ 6 σt
d) (m− f, inl vv) ∈ Lστ1 + στ2Mv

By IH 1 on the second premise using (m− f, δ[x 7→ vv]) ∈ GLσΓ , x :

στ1M obtained by

• (m− f, δ) ∈ GLσΓM by downward-closure (lemma 33) on (m, δ) ∈
GLσΓM using m− f 6 m

• (m− f, vv) ∈ Lστ1Mv by unfolding e)

we get (m− f, δpe1q[vv/x]) ∈ LστMσt
′

ε . Unrolling its definition

with (�), (��) and fr < m− f, we get

e) 〈Tr, δpe1q[vv/x]〉yvv ′r, T ′r , c ′r
f) vr = L(vv ′r) ∧ v ′r = R(vv ′r)

g) c ′r 6 σt ′

h) (m− f− fr, vv ′r) ∈ Lστ ′Mv

We conclude with

1. Using a) and e)
〈T , δpeq〉 y inl vv, T ′, c ′

〈Tr, δpe1q[vv/x]〉 y vv ′r, T
′
r , c
′
r v ′r = V(T ′r )

〈〈_, caseinl(T , Tr)〉, case(δpeq, x.δpe1q,y, δpe2q)〉 y
vv ′r, 〈v ′r, caseinl(T ′, T ′r )〉, c ′ + c ′r

cp-case-inl

2. Using f)

3. By using c) and g), we get c ′ + c ′r 6 σt+ σt ′
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4. By downward closure (Lemma 33) on h) using

m− (f+ fr + ccase) 6 m− f− fr

we get (m− (f+ fr + ccase), vv ′r) ∈ Lστ ′Mv.

subcase 2:
e ⇓f T inr v = V(T) e2[v/y] ⇓fr Tr vr = V(Tr)

case (e, x.e1,y.e2) ⇓f+fr+ccase 〈vr, caseinr(T , Tr)〉
ev-case-r

This case is symmetric, hence we skip its proof.

subcase 3:
L(δpeq) ⇓f T (?)

inl v = V(T) L(δpe1q)[v/x] ⇓fr Tr (�) vr = V(Tr)

case (L(δpeq), x.L(δpe1q),y.L(δpe2q)) ⇓f+fr+ccase 〈vr, caseinl(T , Tr)〉
ev-case-l

and
R(δpeq) ⇓f ′ T ′ (??)

inr v ′ = V(T ′) R(δpe2q)[v ′/y] ⇓f
′
r T ′r (��) v ′r = V(T ′r )

case (R(δpeq), x.R(δpe1q),y.R(δpe2q)) ⇓f
′+f ′r+ccase 〈v ′r, caseinr(T ′, T ′r )〉

ev-case-r

and

F = f+ fr + ccase < m .

By IH 1 on the first premise, we get (m, δpeq) ∈ Lστ1 + στ2Mσtε .

Unrolling its definition with (?), (??) and f < m, we get

a) 〈T, δpeq〉yvv ′, T ′, c ′

b) inl v = L(inl vv) ∧ inr v ′ = R(inl vv)

c) c ′ 6 σt
d) (m− f, vv ′) ∈ Lστ1 + στ2Mv

However, d) is false since a bi-value with different tags are not

related at type στ1 + στ2.

subcase 4:
L(δpeq) ⇓f T (?)

inr v = V(T) L(δpe2q)[v/y] ⇓fr Tr (�) vr = V(Tr)

case (L(δpeq), x.L(δpe1q),y.L(δpe2q)) ⇓f+fr+ccase 〈vr, caseinr(T , Tr)〉
ev-case-r

and
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R(δpeq) ⇓f ′ T ′ (??)

inl v ′ = V(T ′) R(δpe1q)[v ′/x] ⇓f
′
r T ′r (��) v ′r = V(T ′r )

case (R(δpeq), x.R(δpe1q),y.R(δpe2q)) ⇓f
′+f ′r+ccase 〈v ′r, caseinl(T ′, T ′r )〉

ev-case-l

and

F = f+ fr + ccase < m .

By IH 1 on the first premise, we get (m, δpeq) ∈ Lστ1 + στ2Mσtε .

Unrolling its definition with (?), (??) and f < m, we get

a) 〈T, δpeq〉yvv ′, T ′, c ′

b) inr v = L(inl vv) ∧ inl v ′ = R(inl vv)

c) c ′ 6 σt
d) (m− f, vv ′) ∈ Lστ1 + στ2Mv

However, d) is false since a bi-value with different tags are not

related at type στ1 + στ2.

Case:
i :: S,∆;Φa; Γ `CP e : τ | t i 6∈ FIV(Φ; Γ)

∆;Φa; Γ `CP Λ.e : ∀i
CP(t)
:: S. τ | 0

cp-iLam

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m,Λ.δpeq) ∈ L∀i
CP(σt)

:: S.στM0ε.

By lemma 31, STS: (m,Λ.δpeq) ∈ L∀i
CP(σt)

:: S.στMv (?).
There are two cases to show:

subcase 1: By unrolling (?)’s definition, assume that ` I :: S.

STS: (m, δpeq) ∈ Lστ{I/i}Mσt[I/i]ε .

This follows by IH 1 on the premise instantiated with the substi-

tution σ[i 7→ I] ∈ DJi :: S,∆K.

subcase 2: STS: (m,Λ.δpeq) ∈ $∀i FS(σt)
:: S. |στ|%v (??).

By unrolling (??)’s definition, assume that ` I :: S.

STS: (m, δpeq) ∈ LU (|στ{I/i}|)M∞ε .

This follows by IH 5 on the premise instantiated with the substi-

tution σ[i 7→ I] ∈ DJi :: S,∆K.
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Case:
∆;Φa; Γ `CP e : ∀i

CP(t ′)
:: S. τ | t ∆ ` I : S

∆;Φa; Γ `CP e[ ] : τ{I/i} | t+ t
′[I/i]

cp-iApp

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, δpeq[ ] ) ∈ Lστ{σI/i}Mσt+σt
′[σI/i]

ε .

Following the definition of L·M·ε, assume that
L(δpeq) ⇓f T (?) Λ.e ′ = V(T) e ′ ⇓fr Tr (�) vr = V(Tr)

L(δpeq)[ ] ⇓f+fr 〈vr, iApp(T , Tr)〉
ev-iApp

and
R(δpeq) ⇓f ′ T ′ (??)

Λ.e ′′ = V(T ′) e ′′ ⇓f ′r T ′r (��) v ′r = V(T ′r )

R(δpeq)[ ] ⇓f ′+f ′r 〈v ′r, iApp(T ′, T ′r )〉
ev-iApp and

(f+ fr) < m.

By IH on the first premise, we get (m, δpeq) ∈ L∀i
CP(σt ′)

:: S.στMσtε .

By unrolling its definition with (?), (??) and f < m, we get

a) 〈T, δpeq〉yvv ′, T ′, c ′ where vv ′ = Λ.ee ′

b) Λ.e ′ = L(vv ′) ∧ Λ.e ′′ = R(vv ′)

c) c ′ 6 σt

d) (m− c,Λ.ee ′) ∈ L∀i
CP(σt ′)

:: S.στMv

By lemma 22 on the second premise using σ ∈ DJ∆K, we get

` σI :: S (1)

By unrolling the definition of e) with (1), we get

(m− f, ee ′) ∈ Lστ{σI/i}Mσt
′[σI/i]

ε (2)

By unrolling the definition of (2) with (�), (��) and fr < m− f, we get

e) 〈Tr, ee ′〉yvv ′r, T ′r , c ′r
f) vr = L(vv ′r) ∧ v ′r = R(vv ′r)

g) c ′r 6 σt ′

h) (m− (f+ fr), vv ′r) ∈ Lστ{σI/i}Mv

We conclude as follows
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1. Using a) and e)
〈T , δpeq〉 y Λ.ee ′, T ′, c ′ 〈Tr, ee ′〉 y vv ′r, T

′
r , c
′
r v ′r = V(T ′r )

〈〈_, iApp(T , Tr)〉, δpeq[]〉 y vv ′r, 〈v ′r, iApp(T ′, T ′r )〉, c ′ + c ′r
cp-iApp

2. Using f)

3. By using c) and g), we get c ′ + c ′r 6 σt+ σt ′

4. By h)

Case:
∆;Φa; Γ `CP e : τ{I/i} | t ∆ ` I :: S
∆;Φa; Γ `CP pack e : ∃i::S. τ | t

cp-pack

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, pack δpeq) ∈ L∃i::S.στMσtε .

Following the definition of L·M·ε, assume that
L(δpeq) ⇓f T (?) v = V(T)

pack L(δpeq) ⇓f 〈pack v, pack T〉
ev-pack and

R(δpeq) ⇓f ′ T ′ (??) v ′ = V(T ′)

pack R(δpeq) ⇓f ′ 〈pack v ′, pack T ′〉
ev-pack and

f < m.

By IH on the first premise, we get (m, δpeq) ∈ Lστ{σI/i}Mσtε .

By unrolling its definition with (?), (??) and f < m, we get

a) 〈T, δpeq〉yvv ′, T ′, c ′

b) v = L(vv ′) ∧ v ′ = R(vv ′)

c) c ′ 6 σt
d) (m− f, vv) ∈ Lστ{σI/i}Mv

By lemma 22 on the second premise, we get

` σI :: S (1)

We can conclude as follows

1. Using a)
〈T , δpeq〉 y vv ′, T ′, c ′ v ′r = V(T ′)

〈〈_, pack T〉, pack δpeq〉 y pack vv ′, 〈pack v ′r, pack T ′〉, c ′
cp-pack

2. Using b), pack v = L(pack vv) ∧ pack v ′ = R(pack vv)
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3. By using c)

4. TS: (m− f, pack vv) ∈ L∃i::S.στMv
STS1: ` σI :: S follows directly by (1).

STS2: (m− f, vv) ∈ Lστ{σI/i}Mv follows by d)

Case:

∆;Φa; Γ `CP e1 : ∃i::S. τ1 | t1
i :: S,∆;Φ; x : τ1, Γ `CP e2 : τ2 | t2 i 6∈ FV(Φ; Γ , τ2, t2)

∆;Φa; Γ `CP unpack e1 as x in e2 : τ2 | t1 + t2
cp-unpack

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, unpack δpe1q as x in δpe2q) ∈ Lστ2M
σt1+σt2
ε .

Following the definition of L·M·ε, assume that
L(δpe1q) ⇓f1 T1 (?)

pack v = V(T1) L(δpe2q)[v/x] ⇓fr Tr (�) vr = V(Tr)

unpack L(δpe1q) as x in L(δpe2q) ⇓f1+fr 〈vr, unpack(T1, x, Tr)〉
ev-unpack

and
R(δpe1q) ⇓f

′
1 T ′1 (??)

pack v ′ = V(T ′1) R(δpe2q)[v ′/x] ⇓f
′
r T ′r (��) v ′r = V(T ′r )

unpack R(δpe1q) as x in R(δpe2q) ⇓f
′
1+f

′
r 〈v ′r, unpack(T ′1, x, T ′r )〉

ev-unpack

and

(f1 + f2) < m.

By IH 1 on the first premise, we get (m, δpe1q) ∈ L∃i::S.στ1M
σt1
ε .

By unrolling its definition with (?),(??) and f1 < m, we get

a) 〈T1, δpe1q〉yvv ′1, T
′
1, c
′
1 where vv ′1 = pack vv

b) pack v = L(pack vv) ∧ pack v ′ = R(pack vv)

c) c ′ 6 σt1
d) (m− f1, pack vv) ∈ L∃i::S.στ1Mv

By unrolling the definition of e), we get

` I :: S (1)

(m− f1, vv) ∈ Lστ1{I/i}Mv (2)
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By downward closure (Lemma 33) on (m, δ) ∈ GLΓM, we have

(m− f1, δ) ∈ GLσΓM (3)

By IH 1 on the second premise using

• σ[i 7→ I] ∈ DJi :: S,∆K using (1)

• (m− f1, δ[x 7→ vv]) ∈ GLσ[i 7→ I](Γ , x : τ1)M using (2) and (3)

we get

(m− f1, δpe2q[vv/x]) ∈ Lστ2Mσt2ε (4)

By unrolling (4)’s definition using (�), (��) and f2 < m− f1, we get

e) 〈Tr, δpe2q[vv/x]〉yvv ′r, T ′r , c ′r
f) vr = L(vv ′r) ∧ v ′r = R(vv ′r)

g) c ′r 6 σt2
h) (m− f1 − fr, vv ′r) ∈ Lστ2Mv

We can conclude as follows

1. Using a) and e)
〈T , δpe1q〉 y pack vv ′, T ′1, c

′
1

〈Tr, δpe2q[vv ′/x]〉 y vv ′r, T
′
r , c
′
r v ′r = V(T ′r )

〈〈_, unpack(T , x, Tr)〉, unpack δpe1q as x in δpe2q〉 y
vv ′r, 〈v ′r, unpack(T ′, x, T ′r )〉, c ′1 + c ′r

cp-unpack

2. Using f)

3. By using c) and g), we get c ′ + c ′r 6 σt1 + σt2
4. By h)

Case:
∆;Φa; Γ `CP e1 : τ1 | t1 ∆;Φ; x : τ1, Γ `CP e2 : τ2 | t2

∆;Φa; Γ `CP let x = e1 in e2 : τ2 | t1 + t2
cp-let

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, let x = δpe1q in δpe2q) ∈ Lστ2M
σt1+σt2
ε .

Following the definition of L·M·ε, assume that
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L(δpe1q) ⇓f1 T1 (�)
v1 = V(T1) L(δpe2q)[v1/x] ⇓fr Tr (†) vr = V(Tr)

let x = L(δpe1q) in L(δpe2q) ⇓f1+fr+clet 〈vr, let(x, T1, Tr)〉
ev-let and

R(δpe1q) ⇓f
′
1 T ′1 (��)

v ′1 = V(T ′1) R(δpe2q)[v ′1/x] ⇓f
′
r T ′r (††) v ′r = V(T ′r )

let x = R(δpe1q) in R(δpe2q) ⇓f
′
1+f

′
r+clet 〈v ′r, let(x, T ′1, T

′
r )〉

ev-let and

(f1 + fr + clet) < m.

By IH 1 on the first premise, we get (m, δpe1q) ∈ Lστ1M
σt1
ε . Unrolling

its definition with (�), (��) and f1 < m, we get

a) 〈T1, δpe1q〉yvv ′1, T
′
1, c
′
1

b) v1 = L(vv ′1) ∧ v ′1 = R(vv ′1)

c) c ′ 6 σt1
d) (m− f1, vv ′1) ∈ Lστ1Mv

By IH 1 on the second premise using (m− f1, δ[x 7→ vv ′1]) ∈ GLσΓ , x :

στ1M obtained by

• (m− f1, δ) ∈ GLσΓM by downward closure (Lemma 33) on (m, δ) ∈
GLσΓM using m− f1 6 m

• (m− f1, vv ′1) ∈ Lστ1Mv by e)

we get (m− f1, δpe2q[vv ′1/x]) ∈ Lστ2M
σt2
ε . Unrolling its definition with

(†), (††) and fr < m− f1, we get

e) 〈Tr, δpe2q[vv ′1/x]〉yvv ′r, T ′r , c ′r
f) vr = L(vv ′r) ∧ v ′r = R(vv ′r)

g) c ′r 6 σt2
h) (m− f1 − fr, vv ′r) ∈ Lστ2Mv

Now, we can conclude with

1. Using a) and e)
〈T1, δpe1q〉 y vv ′1, T

′
1, c
′
1 〈Tr, δpe2q[vv ′1/x]〉 y vv ′r, T

′
r , c
′
r

〈let(x, T1, Tr), let x = δpe1q in δpe2q〉 y vv ′r, let(x, T ′1, T
′
r ), c

′
1 + c

′
r

cp-let

2. Using f)
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3. By using c) and g), we get c ′ + c ′r 6 σt1 + σt2
4. By downward closure (Lemma 33) on h) usingm− f1− fr−clet 6
m− f1 − fr, we get (m− (f1 + fr + clet), vv ′r) ∈ Lστ2Mv

Case:
∆;Φ; |Γ | `FS e : A | t

∆;Φ; Γ `CP e : UA | t
cp-switch

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, δpeq) ∈ LUσAMσtε .

By lemma 38 on (m, δ) ∈ GLσΓM, we get

(m, δ) ∈ GLU |σΓ |M (1)

Then, we can conclude by IH 4 on the premise using eq. (1).

Case:
∆;Φ |= C ∆;Φ∧C; Γ `CP e : τ | t

∆;Φa; Γ `CP e : C & τ | t
cp-c-andI

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, δpeq) ∈ LσC & στMσtε .

Following the definition of L·M·ε·, assume that

a) L(δpeq) ⇓f T
b) R(δpeq) ⇓f ′ T ′

c) f < m

By IH 1 on the first premise using

• |= σ(C∧Φ) hold by the main assumption |= σΦ and |= σC (?)

obtained by lemma 22 using the premise ∆;Φ |= C

we get (m, δpeq) ∈ LστMσtε . Unrolling its definition with (a-c), we get

a) 〈T, δpeq〉yvv ′, T ′, c ′

b) v = L(vv ′1) ∧ v ′ = R(vv ′1)

c) c ′ 6 σt
d) (m− f, vv ′1) ∈ LστMv

We can conclude as follows:
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1. By a)

2. By b)

3. By c)

4. Using d) and (?), we can show that (m− f, vv ′1) ∈ LσC & στMv

Case:

∆;Φa; Γ `CP e1 : e
′
1 | t1 C & τ1

∆;Φ∧C; x : τ1, Γ `CP e2 : e
′
2 | t2 τ2

∆;Φa; Γ `CP clet e1 as x in e2 : τ2 | t1 + t2
cp-c-andE

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, clet δpe1q as x in δpe2q) ∈ Lστ2M
σt1+σt2
ε .

Following the definition of L·M·ε, assume that
L(δpe1q) ⇓f1 T1 (�)

v1 = V(T1) L(δpe2q)[v1/x] ⇓fr Tr (†) vr = V(Tr)

clet L(δpe1q) as x in L(δpe2q) ⇓f1+fr 〈vr, cletas(x, T1, Tr)〉
ev-clet and

R(δpe1q) ⇓f
′
1 T ′1 (��)

v ′1 = V(T ′1) R(δpe2q)[v ′1/x] ⇓f
′
r T ′r (††) v ′r = V(T ′r )

clet R(δpe1q) as x in R(δpe2q) ⇓f
′
1+f

′
r 〈v ′r, cletas(x, T ′1, T

′
r )〉

ev-clet and

(f1 + fr) < m.

By IH 1 on the first premise, we get (m, δpeq) ∈ LσC & στ1M
σt1
ε .

Unrolling its definition with (�), (��) and f1 < m, we get

a) 〈T1, δpe1q〉yvv ′1, T
′
1, c
′
1

b) v1 = L(vv ′1) ∧ v ′1 = R(vv ′1)

c) c ′ 6 σt1
d) (m− f1, vv ′1) ∈ LσC & στ1Mv

By IH 1 on the second premise using (m− f1, δ[x 7→ vv ′1]) ∈ GLσΓ , x :

στ1M obtained by

• |= σ(C∧Φ) hold by the main assumption |= σΦ and |= σC ob-

tained by unrolling the definition of b)

• (m− f1, δ) ∈ GLσΓM by downward closure (Lemma 33) on (m, δ) ∈
GLσΓM using m− f1 6 m

• (m− f1, vv ′1) ∈ Lστ1Mv by unrolling the definition of e)
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we get (m− f1, δpe2q[vv ′1/x]) ∈ Lστ2M
σt2
ε . Unrolling its definition with

(†), (††) and fr < m− f1, we get

e) 〈Tr, δpe2q[vv ′1/x]〉yvv ′r, T ′r , c ′r
f) vr = L(vv ′r) ∧ v ′r = R(vv ′r)

g) c ′r 6 σt2
h) (m− f1 − fr, vv ′r) ∈ Lστ2Mv

Now, we can conclude with

1. Using a) and e)
〈T1, δpe1q〉 y vv ′1, T

′
1, c
′
1 〈Tr, δpe2q[vv ′1/x]〉 y vv ′r, T

′
r , c
′
r

〈cletas(x, T1, Tr), clet δpe1q as x in δpe2q〉 y vv ′r, cletas(x, T ′1, T
′
r ), c

′
1 + c

′
r

cp-clet

2. Using f)

3. By using c) and g), we get c ′ + c ′r 6 σt1 + σt2
4. By h)

Case:
∆;Φ∧C; Γ `CP e : τ | t

∆;Φa; Γ `CP e : C ⊃ τ | t
cp-c-impI

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, δpeq) ∈ LσC & στMσtε .

Following the definition of L·M·ε·, assume that

a) L(δpeq) ⇓f T where T = 〈v,D〉
b) R(δpeq) ⇓f ′ T ′ where T ′ = 〈v ′,D ′〉
c) f < m

TS1: 〈〈v,D〉, ee〉yvv ′, T ′, c ′

TS2: v ′ = R(vv ′) ∧ v = L(vv ′)

TS3: c ′ 6 σt
TS4: (m− f, vv ′) ∈ LUσAMv
We first show the last statement, the previous ones will be shown later.

TS2: (m− c, vv ′) ∈ LσC ⊃ στMv
Assume that |= σC (?).

STS: (m− c, vv ′) ∈ Lσ τMv
By IH 1 on the first premise using
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• |= σ(C∧Φ) hold by the main assumption |= σΦ and |= σC (by ?)

we get (m, δpeq) ∈ LστMσtε . Unrolling its definition with (a-c), we get

a) 〈T, δpeq〉yvv ′, T ′, c ′

b) v = L(vv ′) ∧ v ′ = R(vv ′)

c) c ′ 6 σt
d) (m− f, vv ′) ∈ LστMv

We can conclude as follows:

1. By a)

2. By b)

3. By c)

4. Using d) and (?), we can show that (m− f, vv ′) ∈ LσC ⊃ στMv

Case:
∆;Φa; Γ `CP e : C ⊃ τ | t ∆;Φ |= C

∆;Φa; Γ `CP celim⊃ e : τ | t
cp-c-implE

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, celim⊃ δpeq) ∈ LστMσtε .

Following the definition of L·M·ε·, assume that
L(δpeq) ⇓f T (�)

celim⊃ L(δpeq) ⇓f T
ev-celim and

R(δpeq) ⇓f ′ T ′ (��)
celim⊃ R(δpeq) ⇓f ′ T ′

ev-celim

and f < m (?).

By IH 1 on the first premise, we get (m, δpeq) ∈ LσC ⊃ στMσtε .

Unrolling its definition using (�), (��) and (?), we get

a) 〈T, δpeq〉yvv ′, T ′, c ′

b) v = L(vv ′) ∧ v ′ = R(vv ′)

c) c ′ 6 σt
d) (m− c, vv ′) ∈ LσC ⊃ στMv

We can conclude as follows:

1. By a)

2. By b)
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3. By c)

4. Using d) and |= σC (obtained by lemma 22 on the second premise),

we can show that (m− f, vv ′) ∈ LστMv

Case:
Υ(ζ) = τ1

CP(t)−−−→ τ2 ∆;Φa; Γ `CP e : τ1 | t
′

∆;Φa; Γ `CP ζ e : τ2 | t+ t
′ cp-primapp

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, ζ δpeq) ∈ Lστ2Mσt+σt
′

ε .

Following the definition of L·M·ε, assume that
L(δpeq) ⇓f T (?) v = V(T) ζ(v) = (fr, vr) (�)

ζ L(δpeq) ⇓f+fr+cprimapp 〈vr, primapp(T , ζ)〉
ev-primapp and

R(δpeq) ⇓f ′ T ′ (??) v ′ = V(T ′) ζ(v ′) = (f ′r, v
′
r) (��)

ζ R(δpeq) ⇓f ′+f ′r+c ′primapp 〈v ′r, primapp(T ′, ζ)〉
ev-primapp

and

(f+ fr + cprimapp) < m.

By IH 1 on the second premise, we get (m, δpeq) ∈ Lστ1Mσt
′

ε .

Unrolling its definition with (?), (??) and f < m, we get

a) 〈T, δpeq〉yvv ′, T ′, c ′

b) v = L(vv ′) ∧ v ′ = R(vv ′)

c) c ′ 6 σt
d) (m− f, vv ′) ∈ Lστ1Mv

Next, by Assumption (assumption 44) using ζ : στ1
CP(σt)−−−−→ στ2

(obtained by substitution on the first premise), d) and (�), (��), we

get

e) f ′r 6 σt ′

f) (m− f− fr, merge(vr, v ′r)) ∈ Lστ2Mv

Now, we can conclude as follows:

1. Using a) and e)
〈T , δpeq〉 y vv ′, T ′, c ′ v ′ = V(T ′) (f ′r, v

′
r) = ζ(v

′)

〈〈vr, primapp(T , ζ)〉, ζ δpeq〉 y
merge(vr, v ′r), 〈v ′r, primapp(T ′, ζ)〉, c ′ + f ′r

cp-prim
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2. By definition vr = L(merge(vr, v ′r)) ∧ v ′r = R(merge(vr, v ′r))

3. By using c) and e), we get c ′ + f ′r 6 σt+ σt ′

4. By downward closure (Lemma 33) on f) using

m− (f+ fr + cprimapp) 6 m− (f+ fr)

we get (m− (f+ fr + cprimapp), merge(vr, v ′r)) ∈ Lστ2Mv.

Case:

∆;Φ; Γ `CP e : τ | t

∀x ∈ dom(Γ). ∆;Φ |= Γ(x) v � Γ(x)
∆;Φ; Γ , Γ ′ `CP e : � τ | 0

cp-nochange

Assume that (m, δ) ∈ GLσΓ ,σΓ ′M and |= σΦ.

Then, δ = δ1 ∪ δ2 such that (m, δ1) ∈ GLσΓM and (m, δ2) ∈ GLσΓ ′M.
TS: (m, δpeq) ∈ L�στM0ε.
Since e doesn’t have any free variables from Γ ′ by the first premise,

STS: (m, δ1peq) ∈ L�στM0ε.
Assume that

a) L(δpeq) ⇓f T
b) R(δpeq) ⇓f ′ T ′

c) f < m.

By IH 1 on the first premise using

• (m, δ1) ∈ GLσΓM

• |= σΦ

we get (m, δ1peq) ∈ LστMσtε .

Unfolding its definition with (a-c), we get

a) 〈T, δpeq〉yvv ′, T ′, c ′

b) v = L(vv ′) ∧ v ′ = R(vv ′)

c) c ′ 6 σt
d) (m− f, vv ′) ∈ LστMv

We can conclude as follows:
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1. By a)

2. By b)

3. By lemma 39 using (m, δ1) ∈ GLσΓM and the second premise, we

get (m, δ1) ∈ GL�σΓM. This means that ∀x ∈ dom(Γ). stable(δ(x)).

Therefore, stable(δpeq). Hence, by lemma 35, we have c ′ = 0 and

stable(vv ′) (?).

4. By d) and (?) obtained above, we get(m− c, vv ′) ∈ L�στMv.

Case:
∆;Φ∧C; Γ `CP e1 : τ | t ∆;Φ∧¬C; Γ `CP e1 : τ | t ∆ ` C wf

∆;Φa; Γ `CP e1 : τ | t
cp-

split

Assume that |= σΦ and (m, δ) ∈ GLσΓM.
TS: (m, δpeq) ∈ LστMσkε .

There are two cases:

subcase 1: |= σΦ∧C

Follows immediately by IH on the first premise.

subcase 2: |= σΦ∧¬C

Follows immediately by IH on the second premise.

Case:
∆;Φa; Γ `CP e : τ | t ∆;Φ |= τ v τ ′ ∆;Φ |= t 6 t ′

∆;Φa; Γ `CP e : τ
′ | t ′

cp-vvv

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, δpeq) ∈ Lστ ′Mσt
′

ε .

Following the definition of L·M·ε, assume that

a) L(δpeq) ⇓f T
b) R(δpeq) ⇓f ′ T ′

c) f < m

By IH 1 on the first premise using we get (m, δpeq) ∈ LστMσtε .

Unrolling its definition with (a-c), we get

d) 〈T, δpeq〉yvv ′, T ′, c ′

e) v = L(vv ′) ∧ v ′ = R(vv ′)

f) c ′ 6 σt
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g) (m− f, vv ′) ∈ LστMv

We can conclude as follows:

1. By d)

2. By e)

3. By Assumption (assumption 25) on the third premise, we get

σt 6 σt ′. Combining this with f), we get c ′ 6 σt ′.
4. By lemma 39 on the second premise with g), we get (m− c, vv ′) ∈

Lστ ′Mv

Proof of Statement (2). Remember the statement (2) of Theorem 46:

Assume that ∆;Φa;Ω `FS e : A | t and σ ∈ DJ∆K and |= σΦ and (m,γ) ∈
GJσΩK. Then, (m,γe) ∈ JσAKσtε .

Proof is by induction on the typing of e. We show a few selected cases.

Case:
Ω(x) = A

∆;Φa;Ω `FS x : A | 0
fs-var

Assume that |= σΦ and (m,γ) ∈ GJσΩK.

TS: (m,γ(x)) ∈ JσAK0ε.

By Value Lemma (lemma 31),

STS: (m,γ(x)) ∈ JσAKv.

This follows by Ω(x) = A and (m,γ) ∈ GLσΩM

Case:
∆;Φa;Ω `FS e1 : A | t1 ∆;Φa;Ω `FS e2 : list[n]A | t2

∆;Φa;Ω `FS cons(e1, e2) : list[n+ 1]A | t1 + t2
fs-cons

Assume that |= σΦ and (m,γ) ∈ GJσΩK.

TS: (m, cons(γe1,γe2)) ∈ Jlist[σn+ 1]σAKσt1+σt2ε .

Following the definition of J·K·ε,
Assume that

γe1 ⇓f1 T1 (?) γe2 ⇓f2 T2 (�) vi = V(Ti)

cons(γe1,γe2) ⇓f1+f2 〈cons(v1, v2), cons(T1, T2)〉
ev-cons
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and f1 + f2 < m.

By IH 2 on the first premise, we get (m,γe1) ∈ JσAKσt1ε .

Unrolling its definition with (?) and f1 < m, we get

a) f1 6 σt1
b) (m− f1, v1) ∈ JσAKv

By IH 2 on the second premise,we get (m,γe2) ∈ Jlist[σn]σAKσt2ε .

Unrolling its definition with (�) and f2 < m, we get

c) f2 6 σt2
d) (m− f2, v2) ∈ Jlist[σn]σAKv

Now, we can conclude as follows:

1. Using a) and c), we get (f1 + f2) 6 σt1 + σt2
2. By downward closure (Lemma 33) on b) using

m− (f1 + f2) 6 m− f1

we get (m− (f1 + f2), v1) ∈ JσAKv.

By downward closure (Lemma 33) on d) using

m− (f1 + f2) 6 m− f2

we get (m− (f1 + f2), v2) ∈ Jlist[σn]σAKv.

By combining these two statements, we can conclude as (m −

(f1 + f2), cons(v1, v2)) ∈ Jlist[σn+ 1]σAKv

Case:

∆;Φ `A A1
FS(t)−−−→ A2 wf

∆;Φ; x : A1, f : A1
FS(t)−−−→ A2,Ω `FS e : A2 | t

∆;Φa;Ω `FS fix f(x).e : A1
FS(t)−−−→ A2 | 0

fs-fix

Assume that |= σΦ and (m,γ) ∈ GJσΩK.

TS: (m, fix f(x).γe) ∈ JσA1
FS(σt)−−−−→ σA2K0ε.
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By lemma 31, STS: (m, fix f(x).γe) ∈ JσA1
FS(σt)−−−−→ σA2Kv.

We prove the more general statement

∀m ′ 6 m. (m ′, fix f(x).γe) ∈ JσA1
FS(σt)−−−−→ σA2Kv

by subinduction on m ′.

There are two cases:

subcase 1: m ′ = 0

Since there is no non-negative j such that j < 0, the goal is vacu-

ously true.

subcase 2: m ′ = m ′′ + 1 6 m
By sub-IH

(m ′′, fix f(x).γe) ∈ JσA1
FS(σt)−−−−→ σA2Kv (1)

STS: (m ′′ + 1, fix f(x).γe) ∈ JσA1
FS(t)−−−→ σA2Kv.

Pick j < m ′′ + 1 and assume that (j, v) ∈ JσA1Kv.

STS: (j,γe[v/x, (fix f(x).γe)/f]) ∈ JσA2Kσtε .

This follows by IH on the premise instantiated with

• (j,γ[x 7→ v, f 7→ (fix f(x).γe)]) ∈ GJσΩ ′, x : σA1, f : σA1
FS(σt)−−−−→

σA2K which holds because

– (j,γ) ∈ GJσΩ ′K obtained by downward closure (Lemma 33)

on (m,γ) ∈ GJσΩ ′K using j < m ′′ + 1 6 m.

– (j, v) ∈ JσA1Kv, from the assumption above

– (j, fix f(x).γe) ∈ JσA1
FS(σt)−−−−→ σA2Kv, obtained by down-

ward closure (Lemma 33) on (1) using j 6 m ′′

Case:
∆;Φa;Ω `FS e1 : A1

FS(t)−−−→ A2 | t1 ∆;Φa;Ω `FS e2 : A1 | t2

∆;Φa;Ω `FS e1 e2 : A2 | t1 + t2 + t+ capp
fs-app

Assume that |= σΦ and (m,γ) ∈ GJσΩK.

TS: (m,γe1 γe2) ∈ JσA2K
σt1+σt2+σt+capp
ε .

Following the definition of J·K·ε, there are two cases: Assume that
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γe1 ⇓f1 T1 (?) γe2 ⇓f2 T2 (�) fix f(x).e = V(T1) v2 = V(T2)

e[v2/x, (fix f(x).e)/f] ⇓fr Tr (†) vr = V(Tr)

γe1 γe2 ⇓f1+f2+fr+capp 〈vr, app(T1, T2, Tr)〉
ev-app

and f1 + f2 + fr + capp < m.

By IH 2 on the first premise, we get (m,γe1) ∈ JσA1
FS(σt)−−−−→ σA2K

σt1
ε .

Unrolling its definition with (?) and f1 < m, we get

a) f1 6 σt1
b) (m− f1, fix f(x).e) ∈ JσA1

FS(σt)−−−−→ σA2Kv

By IH 2 on the second premise, we get (m,γe2) ∈ JσA1K
σt2
ε . Unrolling

its definition with (�) and f2 < m, we get

c) f2 6 σt2
d) (m− f2, v2) ∈ JσA1Kv

By downward closure (Lemma 33) on d) using m− f1 − f2 − capp 6
m− f2, we get

(m− (f1 + f2 + capp), v2) ∈ JσA1Kv (1)

Next, we unroll b) with (1) and m− (f1 + f2 + capp) < m− f1 (note

that 0 < capp) to obtain

(m− (f1 + f2 + capp), e[v2/x, (fix f(x).e)]) ∈ JσA2Kσtε (2)

By unrolling (2)’s definition using (†) and fr < m− (f1 + f2 + capp)

(note that 0 < capp), we get

e) fr 6 σt
f) (m− (f1 + f2 + fr + capp), vr) ∈ JσA2Kv

Now, we can conclude as follows:

1. Using a), c) and e), we get (f1+ f2+ fr+ capp) 6 σt1+ σt2+ σt+
capp
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2. By f)

Case:
∆;Φa;Ω `FS e : A1 | t ∆;Φ `A A2 wf

∆;Φa;Ω `FS inl e : A1 +A2 | t
fs-inl

Assume that |= σΦ and (m,γ) ∈ GJσΩK.

TS: (m, inl (γe)) ∈ JσA1 + σA2Kσtε .

Following the definition of J·K·ε, assume that
γe ⇓f T (?) v = V(T)

inl γe ⇓f 〈inl v, inl T〉
e-inl and f < m.

By IH 2 on the first premise, we get (m,γe) ∈ JσAKσtε .

Unrolling its definition with (?) and f < m, we get

a) f 6 σt
b) (m− f, v) ∈ JσAKv

We can conclude as follows:

1. By a), f 6 σt

2. By b), we can show that (m− f, inl v) ∈ JσA1 + σA2Kv

Case:

∆;Φa;Ω `FS e : A1 +A2 | t

∆;Φ; x : A1,Ω `FS e1 : A | t ′ ∆;Φ;y : A2,Ω `FS e2 : A | t ′

∆;Φa;Ω `FS case (e, x.e1,y.e2) : A | t+ t ′ + ccase
fs-case

Assume that |= σΦ and (m,γ) ∈ GJσΩK.

TS: (m, case (γe,γe1,γe2)) ∈ JσAKσt+σt
′+ccase

ε .

Following the definition of J·K·ε, assume that
γe ⇓f T (?) inl v = V(T) γe1[v/x] ⇓fr Tr (�) vr = V(Tr)

case (γe, x.γe1,y.γe2) ⇓f+fr+ccase 〈vr, caseinl(T , Tr)〉
ev-case-l

and

f+ fr + ccase < m.

By IH 2 on the first premise, we get (m,γe) ∈ JσA1 + σA2Kσtε .

Unrolling second part of its definition with (?) and f < m, we get

a) f 6 σr
b) (m− f, inl v) ∈ JσA1 + σA2Kv
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By IH 2 on the second premise using (m− f,γ[x 7→ v]) ∈ GJσΩ ′, x :

σA1K obtained by

• (m− f),γ) ∈ GJσΩ ′K by downward-closure (lemma 33) on (m,γ) ∈
GJσΩ ′K using m− f 6 m

• (m− f, v) ∈ JσA1Kv by downward closure (lemma 33) on c), and

unfolding its definition

we get

(m− f,γe1[v/x]) ∈ JσAKσt
′

ε (1)

By unrolling (1)’s definition using (�) and fr < m− f, we get

c) fr 6 σt ′

d) (m− (f+ fr), vr) ∈ JσAKv

Now, we can conclude as follows

1. By a) and c) (f+ fr + ccase) 6 σt+ σt ′ + ccase
2. By downward closure (Lemma 33) on d) using

m− (f+ fr + ccase) 6 m− (f+ fr)

we get (m− (f+ fr + ccase), vr) ∈ JσAKv.

Case:

∆;Φa;Ω `FS e : list[n]A | t ∆;Φ∧n = 0;Ω `FS e1 : A
′ | t ′

i,∆;Φ∧n = i+ 1;h : A, tl : list[i]A,Ω `FS e2 : A
′ | t ′

∆;Φa;Ω `FS case e of nil → e1 | h :: tl→ e2 : A
′ | t+ t ′ + ccaseL

fs-caseL

Assume that |= σΦ and (m,γ) ∈ GJσΩK.

TS: (m, case γe of nil → γe1 | h :: tl→ γe2) ∈ JσA ′Kσt+σt
′+ccaseL

ε .

Following the definition of J·K·ε, assume that

case γe of nil → γe1 | h :: tl→ γe2 ⇓vr F and F < m.

Depending on what γe evaluates to, there are two cases.
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subcase 1:
γe ⇓f T (?) γe1 ⇓fr T1 (�) nil = V(T) vr = V(Tr)

case γe of nil → γe1 | h :: tl→ γe2 ⇓f+fr+ccaseL 〈vr, casenil(T , Tr)〉
ev-case-nil

and F = f+ fr + ccaseL < m.

By IH 2 on the first premise, we get (m,γe) ∈ Jlist[σn]σAKσtε .

Unrolling its definition with (?) and f < m, we get

a) f 6 σt
b) (m− f, nil ) ∈ Jlist[σn]σAKv

By b), σn = 0 since v = nil .

Then, we can instantiate IH 2 on the second premise using

|= σΦ∧ σn
.
= 0 obtained by combining |= σΦ with |= σn

.
= 0, we

get (m,γe1) ∈ JσA ′Kσt
′

ε .

Unrolling its definition using (�) and fr < m, we get

c) fr 6 σt ′

d) (m− fr, vr) ∈ JσA ′Kv

We conclude with

1. By a) and c), we get f+ fr + ccaseL 6 σt+ σt ′ + ccaseL
2. By downward closure (Lemma 33) on d) using

m− (f+ fr + ccaseL) 6 m− (f+ fr)

we get (m− (f+ fr + ccaseL), vr) ∈ JσA ′Kv.

subcase 2:
γe ⇓f T (?) cons(vh, vtl) = V(T)

γe2[vh/h, vtl/tl] ⇓fr Tr (��) vr = V(Tr)

case γe of nil → γe1 | h :: tl→ γe2 ⇓f+fr+ccaseL 〈vr, casecons(T , Tr)〉
ev-case-cons

By IH 2 on the first premise, we get (m,γe) ∈ Jlist[σn]σAKσtε .

Unrolling its definition with (?) and f < m, we get

a) f 6 σt
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b) (m− f, cons(v1, v2)) ∈ Jlist[σn]σAKv

By b), σn = I+ 1 for some I and we have

(m− f, v1) ∈ JσAKv (1)

(m− f, v2) ∈ Jlist[I]σAKv (2)

Then, we can instantiate IH 2 on the third premise using

• σ[i 7→ I] ∈ DJi :: N,∆K

• |= σ[i 7→ I](Φ∧n
.
= i+ 1) obtained by combining |= σΦ with

|= σn
.
= I+ 1,

• (m − f,γ[h 7→ v1, tl 7→ v2]) ∈ GJσ[i 7→ I](Ω ′, x : A, tl :

list[i]A)K using (1) and (2) and (m− f,γ) ∈ GJσΩ ′K (obtained

by downward closure (Lemma 33) ).

we get (m,γe2[v1/h, v2/tl]) ∈ Jσ[i 7→ I]AKσ[i 7→I]k
′

ε σ[i 7→ I]t ′.

Since, i 6∈ FV(k ′, t ′,A,A ′), we have

(m,γe2[v1/h, v2/tl]) ∈ JσA ′Kσt
′

ε .

Unrolling its definition using (��) and fr < m− f, we get

c) fr 6 σt ′

d) (m− f− fr, vr) ∈ JσA ′Kv

We conclude with

1. By a) and c), we get f+ fr + ccaseL 6 σt+ σt ′ + ccaseL
2. By downward closure (Lemma 33) on d) using

m− (f+ fr + ccaseL) 6 m− (f+ fr)

we get (m− (f+ fr + ccaseL), vr) ∈ LσA ′Mv.
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Case:
∆;Φa;Ω `FS e1 : A1 | t1 ∆;Φ; x : A1,Ω `FS e2 : A2 | t2

∆;Φa;Ω `FS let x = e1 in e2 : A2 | t1 + t2 + clet
fs-let

Assume that |= σΦ and (m,γ) ∈ GJσΩK.

TS: (m, let x = γe1 in γe2) ∈ JσA2K
σt1+σt2+clet
ε .

Following the definition of J·K·ε, assume that
γe1 ⇓f1 T1 (?) v1 = V(T1) γe2[v1/x] ⇓fr Tr (�) vr = V(Tr)

let x = γe1 in γe2 ⇓f1+fr+clet 〈vr, let(x, T1, Tr)〉
ev-let

and f1 + fr + clet < m.

By IH 2 on the first premise, we get (m,γe1) ∈ JσA1K
σt1
ε .

Unrolling its definition with (?) and f1 < m, we get

a) f1 6 σt1
b) (m− f1, v1) ∈ JσA1Kv

By IH 2 on the second premise using (m− f1,γ[x 7→ v]) ∈ GJσΩ ′, x :

σA1K obtained by

• (m− f1,γ) ∈ GJσΩ ′K by downward closure (Lemma 33) on (m,γ) ∈
GJσΩ ′K using m− f1 6 m

• (m− f1, v) ∈ JσA1Kv by downward closure (Lemma 33) on c)

we get

(m− f1,γe1[v/x]) ∈ JσA2Kσt2ε (1)

Unrolling (1)’s definition using (�) and fr < m− f1, we get

c) fr 6 σt2
d) (m− (f1 + fr), vr) ∈ JσAKv

Now, we can conclude as follows

1. By a) and c) (f1 + fr + clet) 6 σt1 + σt2 + clet
2. By downward closure (Lemma 33) on d) using

m− (f1 + fr + clet) 6 m− (f1 + fr)
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we get (m− (f1 + fr + clet), vr) ∈ LσAMv.

Case:
∆;Φa;Ω `FS e : A{I/i} | t ∆ ` I :: S
∆;Φa;Ω `FS pack e : ∃i::S.A | t

fs-pack

Assume that |= σΦ and (m,γ) ∈ GJσΩK.

TS: (m, pack γe) ∈ J∃i::S.AKσtε .

Following the definition of J·K·ε, assume that
γe ⇓f T (?) v = V(T)

pack γe ⇓f 〈pack v, pack T〉
ev-pack and f < m.

By IH 2 on the first premise, we get (m,γe) ∈ JσA{σI/i}Kσtε .

Unrolling its definition with (?) and f < m, we get

a) f 6 σt
b) (m− f, v) ∈ JσA{σI/i}Kv

Then we can conclude as follows:

1. By a), f 6 σt

2. TS: (m− f, pack v) ∈ J∃i::S.AKv.

By lemma 22 on the second premise we know that ` σI :: S.

STS: (m− f, v) ∈ JσA{σI/i}Kv.

This follows by b).

Case:
Υ(ζ) = A1

FS(t)−−−→ A2 ∆;Φa;Ω `FS e : A1 | t
′

∆;Φa;Ω `FS ζ e : A2 | t+ t
′ + cprimapp

fs-primapp

Assume that |= σΦ and (m,γ) ∈ GJσΩK.

TS: (m, ζ γe) ∈ JσA2K
σt+σt ′+cprimapp
ε .

Following the definition of J·K·ε, assume that
γe ⇓f T (?) v = V(T) ζ(v) = (fr, vr) (�)

ζ γe ⇓f+fr+cprimapp 〈vr, primapp(T , ζ)〉
ev-primapp

f+ fr + cprimapp < m.

By IH 2 on the second premise, we get (m,γe) ∈ JσA1Kσt
′

ε .

Unrolling its definition with f < m, we get

a) f 6 σt ′
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b) (m− f, v) ∈ JσA1Kv

Next, by Assumption (assumption 45) using ζ : σA1
FS(σt)−−−−→ σA2

(obtained by substitution on the first premise), (�) and (b), we get

c) fr 6 σt
d) (m− f− fr, vr) ∈ JσA2Kv

Now, we can conclude as follows:

1. Using a) and d), we get (f+ fr + cprimapp) 6 σt+ σt ′ + cprimapp
2. By downward closure (Lemma 33) on d) using

m− (f+ fr + cprimapp) 6 m− (f+ fr)

we get (m− (f+ fr + cprimapp), vr) ∈ LσA2Mv.

Case:
∆;Φa;Ω `FS e : A | t ∆;Φ |= A v A ′ ∆;Φ |= t 6 t ′

∆;Φa;Ω `FS e : A
′ | t ′

vvv exec

Assume that |= σΦ and (m,γ) ∈ GJσΩK.

TS: (m,γe) ∈ JσA ′Kσt
′

ε .

Following the definition of J·K·ε, assume that

a) γe ⇓f v
b) f < m.

By IH 2 on the first premise, we get (m,γe) ∈ JσAKσt
′

ε .

Unrolling its definition with a) and b), we get

c) f 6 σt
d) (m− f, v) ∈ JσAKv

We can conclude this subcase

1. By Assumption (25) on the third premise, we get σt ′ 6 σt ′.
By c) we know f 6 σt, therefore we get f 6 σt ′
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2. By lemma 39 on the second premise using c), we get (m− f, v) ∈
JσA ′Kv

Proof of Statement (3). Remember the statement (3) of Theorem 46:

Assume that ∆;Φa; Γ `CP e : τ | t and σ ∈ DJ∆K and |= σΦ and (m,γ) ∈
GJ|σΓ |K, then (m,γe) ∈ J|στ|K∞ε .

Case:
Γ(x) = τ

∆;Φa; Γ `CP x : τ | 0
cp-var

Assume that |= σΦ and (m,γ) ∈ GJ|σΓ |K.

TS: (m,γ(x)) ∈ J|στ|K0,∞ε .

By lemma 31, STS: (m,γ(x)) ∈ J|στ|Kv.

By (m,γ) ∈ GJ|σΓ |K and Γ(x) = τ, we can conclude that (m,γ(x)) ∈
J|στ|Kv.

Case:
∆;Φ ` τ1

CP(t)−−−→ τ2 wf ∆;Φ; x : τ1, f : τ1
CP(t)−−−→ τ2, Γ `CP e : τ2 | t

∆;Φa; Γ `CP fix f(x).e : τ1
CP(t)−−−→ τ2 | 0

cp-

fix

Assume that |= σΦ and (m,γ) ∈ GJ|σΓ |K.

TS: (m, fix f(x).γe) ∈ J|στ1|
FS(∞)−−−−→ |στ2|K∞ε .

By lemma 31, STS: (m, fix f(x).γe) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv.

We prove the more general statement

∀m ′ 6 m. (m ′, fix f(x).γe) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv

by subinduction on m ′.

There are two cases:

subcase 1: m ′ = 0

Since there is no non-negative j such that j < 0, the goal is vacu-

ously true.
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subcase 2: m ′ = m ′′ + 1 6 m
By sub-IH

(m ′′, fix f(x).γe) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv (1)

STS: (m ′′ + 1, fix f(x).γe) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv.

Pick j < m ′′ + 1 and assume that (j, v) ∈ J|στ1|Kv.

STS: (j,γe[v/x, (fix f(x).γe)/f]) ∈ J|στ2|K∞ε .

This follows by IH 3 on the premise instantiated with

• (j,γ[x 7→ v, f 7→ (fix f(x).γe)]) ∈ GJx : |στ1|, f : |στ1|
FS(∞)−−−−→

|στ2|, |σΓ |K which holds because

– (j,γ) ∈ GJ|σΓ |K using downward closure (Lemma 33) on

(m,γ) ∈ GJ|σΓ |K using j < m ′′ + 1 6 m.

– (j, v) ∈ J|στ1|Kv, from the assumption above

– (j, fix f(x).γe) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv, obtained by down-

ward closure (Lemma 33) on (1) using j 6 m ′′

Case:
∆;Φa; Γ `CP e1 : τ1

CP(t)−−−→ τ2 | t1 ∆;Φa; Γ `CP e2 : τ1 | t2

∆;Φa; Γ `CP e1 e2 : τ2 | t1 + t2 + t
cp-app

Assume that |= σΦ and (m,γ) ∈ GJ|σΓ |K.

TS: (m,γe1 γe2) ∈ J|στ2|K∞ε .

Following the definition of J·K·ε, assume that
γe1 ⇓f1 T1 (?) γe2 ⇓f2 T2 (�) fix f(x).e = V(T1) v2 = V(T2)

e[v2/x, (fix f(x).e)/f] ⇓fr Tr (†) vr = V(Tr)

γe1 γe2 ⇓f1+f2+fr+capp 〈vr, app(T1, T2, Tr)〉
ev-app

and

f1 + f2 + fr + capp < m.

By IH 3 on the first premise, we get (m,γe1) ∈ J|στ1|
FS(∞)−−−−→ |στ2|K∞ε .

Unrolling its definition with (?) and f1 < m, we get

a) f1 6∞
b) (m− f1, fix f(x).e) ∈ J|στ1|

FS(∞)−−−−→ |στ2|Kv
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By IH 3 on the second premise, we get (m,γe2) ∈ J|στ1|K∞ε .

Unrolling its definition with (�) and f2 < m, we get

c) f2 6∞
d) (m− f2, v2) ∈ J|στ1|Kv

By downward closure (Lemma 33) on d) using m− f1 − f2 − capp 6
m− f2, we get

(m− (f1 + f2 + capp), v2) ∈ J|στ1|Kv (1)

Next, we unroll b) with (1) and m− (f1+ f2+ capp) < m− f1 to obtain

(m− (f1 + f2 + capp), e[v2/x, (fix f(x).e)]) ∈ J|στ2|K∞ε (2)

By unrolling (2)’s definition using (†) and fr < m− (f1 + f2 + capp),

we get

e) fr 6∞
f) (m− (f1 + f2 + fr + capp), vr) ∈ J|στ2|Kv

Now, we can conclude as follows:

1. We can trivially show (f1 + f2 + fr + capp) 6∞
2. By f)

Case:
∆;Φa; Γ `CP e1 : τ | t1 ∆;Φa; Γ `CP e2 : list[n]α τ | t2

∆;Φa; Γ `CP cons(e1, e2) : list[n+ 1]α+1 τ | t1 + t2
cp-cons1

Assume that |= σΦ and (m,γ) ∈ GJ|σΓ |K.

TS: (m, cons(γe1,γe2)) ∈ J|list[σn+1]σα+1 στ|K0,∞ε ≡ Jlist[σn+1] |στ|K0,∞ε .

Following the definition of J·K·ε, assume that

γe1 ⇓f1 T1 (?) γe2 ⇓f2 T2 (�) vi = V(Ti)

cons(γe1,γe2) ⇓f1+f2 〈cons(v1, v2), cons(T1, T2)〉
ev-cons
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and f1 + f2 < m.

By IH 3 on the first premise, we get (m,γe1) ∈ J|στ|K∞ε .

Unrolling its definition with (?) and f1 < m, we get

a) f1 6∞
b) (m− f1, v1) ∈ J|στ|Kv

By IH 3 on the second premise, we get (m,γe2) ∈ J|list[σn]σα στ|K∞ε .

Unrolling its definition with (�) and f2 < m, we get

c) f2 6∞
d) (m− f2, v2) ∈ Jlist[σn] |στ|Kv

Now, we can conclude as follows:

1. We can trivially show that (f1 + f2) 6∞
2. By downward closure (Lemma 33) on b) and d), we get (m−(f1+

f2), v1) ∈ J|στ|Kv and (m − (f1 + f2), v2) ∈ Jlist[σn] |στ|Kv, when

combined, gives us

(m−(f1+ f2), cons(v1, v2)) ∈ Jlist[σn+1] |στ|Kv ≡ J|list[σn+1]σα+1 στ|Kv

Case:
∆;Φa; Γ `CP e1 : � τ | t1 ∆;Φa; Γ `CP e2 : list[n]α τ | t2

∆;Φa; Γ `CP cons(e1, e2) : list[n+ 1]α τ | t1 + t2
cp-cons2

Assume that |= σΦ and (m,γ) ∈ GJ|σΓ |K..

TS: (m, cons(γe1,γe2)) ∈ J|list[σn+1]σα στ|K0,∞ε ≡ Jlist[σn+1] |στ|K0,∞ε .

Following the definition of J·K·ε·, assume that

γe1 ⇓f1 T1 (?) γe2 ⇓f2 T2 (�) vi = V(Ti)

cons(γe1,γe2) ⇓f1+f2 〈cons(v1, v2), cons(T1, T2)〉
ev-cons

and f1 + f2 < m.

By IH 3 on the first premise, we get (m,γe1) ∈ J|�στ|K∞ε . Unrolling

its definition with (?) and f1 < m, we get

a) f1 6∞
b) (m− f1, v1) ∈ J|�στ|Kv ≡ J|στ|Kv
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By IH 3 on the second premise, we get (m,γe2) ∈ J|list[σn]σα στ|K∞ε .

Unrolling its definition with (�) and f2 < m, we get

c) f2 6∞
d) (m− f2, v2) ∈ Jlist[σn] |στ|Kv

Now, we can conclude as follows:

1. We can trivially show that (f1 + f2) 6∞
2. By downward closure (Lemma 33) on b) and d), we get (m −

(f1 + f2), v1) ∈ J|στ|Kv and (m − (f1 + f2), v2) ∈ Jlist[σn] |στ|Kv,

when combined, gives us (m− (f1+ f2), cons(v1, v2)) ∈ Jlist[σn+

1] |στ|Kv ≡ J|list[σn+ 1]σα στ|Kv

Case:
∆;Φ; |Γ | `FS e : A | t

∆;Φ; Γ `CP e : UA | t
cp-switch

Assume that |= σΦ and (m,γ) ∈ GJ|σΓ |K.

TS: (m,γe1) ∈ J|UσA|K0,∞ε ≡ JσAK0,∞ε .

Assume that

a) γe1 ⇓fr vr
b) fr < m.

By IH 2 on the first premise, we get (m,γe1) ∈ JσAKσtε
By unrolling its definition with a) and b), we get

c) fr 6 σt
d) (m− fr, vr) ∈ JσAKv

We can conclude as follows

1. Trivially, fr 6∞
2. By d)

Proof of Statement (4). Remember the statement (4) of Theorem 46:

Assume that ∆;Φa;Ω `FS e : A | t and σ ∈ DJ∆K and |= σΦ and (m, δ) ∈
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GLUσΩM, then (m, δpeq) ∈ LUσAMσtε .

Case:
Ω(x) = A

∆;Φa;Ω `FS x : A | 0
fs-var

Assume that |= σΦ and (m, δ) ∈ GLUσΩM.

TS: (m, δ(x)) ∈ LUσAM0ε.

By lemma 31, STS: (m, δ(x)) ∈ LUσAMv.

This follows by Ω(x) = A and (m, δ) ∈ GLUσΩM.

Case:

∆;Φ `A A1
FS(t)−−−→ A2 wf

∆;Φ; x : A1, f : A1
FS(t)−−−→ A2,Ω `FS e : A2 | t

∆;Φa;Ω `FS fix f(x).e : A1
FS(t)−−−→ A2 | 0

fs-fix

Assume that |= σΦ and (m, δ) ∈ GLUσΩM.

TS: (m, fix f(x).δpeq) ∈ LU (σA1
FS(σt)−−−−→ σA2)M0ε.

By lemma 31, STS: (m, fix f(x).δpeq) ∈ LU (σA1
FS(σt)−−−−→ σA2)Mv.

By definition of LU ·Mv, since fix f(x).δpeq 6= new(·, ·),
STS: (m, fix f(x).δpeq) ∈ $σA1 FS(σt)−−−−→ σA2%v.
Let F = fix f(x).δpeq.
We prove the more general statement

∀m ′ 6 m. (m ′, F) ∈ $σA1 FS(σt)−−−−→ σA2%v

by subinduction on m ′.

There are three cases:

• STS: ∀j.(j, L(F)) ∈ JσA1
FS(σt)−−−−→ σA2Kv ∧ (j, R(F)) ∈ JσA1

FS(σt)−−−−→
σA2Kv.

Pick j.

We show the left projection only, the right one is similar.
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– STS 1: (j, L(F)) ∈ JσA1
FS(σt)−−−−→ σA2Kv

We prove the more general statement

∀m ′ 6 j. (m ′, L(F)) ∈ JσA1
FS(σt)−−−−→ σA2Kv

by subinduction on m ′.

There are two cases:

* m
′ = 0

Since there is no non-negative j such that j < 0, the goal

is vacuously true.

* m
′ = m ′′ + 1 6 j

By sub-IH

(m ′′, fix f(x).L(δpeq)) ∈ JσA1
FS(σt)−−−−→ σA2Kv (1)

STS: (m ′′ + 1, fix f(x).L(δpeq)) ∈ JσA1
FS(σt)−−−−→ σA2Kv.

Pick j ′′ < m ′′ + 1 and assume that (j ′′, v) ∈ JσA1Kv.

STS: (j ′′, L(δpeq)[v/x, L(F)/f]) ∈ JσA2Kσtε .

This follows by IH 2 on the premise instantiated with

(j ′′, δ[x 7→ v, f 7→ L(F)]) ∈ GJx : σA1, f : σA1
FS(σt)−−−−→

σA2,σΩK which holds because

· (j ′′, L(δ)) ∈ GJσΩK using lemma 32 on (m, δ) ∈ GLUσΩM

· (j ′′, v) ∈ JσA1Kv, from the assumption above

· (j ′′, fix f(x).L(δpeq)) ∈ JσA1
FS(σt)−−−−→ σA2Kv, obtained by

downward closure (Lemma 33) on (1) using j ′′ 6 m ′′

• m ′ = 0

Since there is no non-negative j such that j < 0, the goal is vacu-

ously true.
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• m ′ = m ′′ + 1 6 m
By sub-IH

(m ′′, fix f(x).δpeq) ∈ $σA1 FS(σt)−−−−→ σA2%v ⊆ LU (σA1
FS(σt)−−−−→ σA2)Mv

(2)

STS: (m ′′ + 1, fix f(x).δpeq) ∈ $σA1 FS(σt)−−−−→ σA2%v.
Pick j ′′ < m ′′ + 1 and assume that (j ′′, vv) ∈ LUσA1Mv.

STS: (j ′′, δpeq[vv/x, F/f]) ∈ LUσA2Mσtε .

This follows by IH 4 on the second premise instantiated with

(j ′′, δ[x 7→ vv, f 7→ F]) ∈ GLx : UσA1, f : U (σA1
FS(σt)−−−−→ σA2),UσΩM

which holds because

– (j ′′, δ) ∈ GLUσΩM by downward closure (Lemma 33) on (m, δ) ∈
GLUσΩM using j ′′ 6 m.

– (j ′′, vv) ∈ LUσA1Mv, from the assumption above

– (j ′′, fix f(x).δpeq) ∈ LU (σA1
FS(σt)−−−−→ σA2)Mv, obtained by down-

ward closure (Lemma 33) on (2) using j ′′ 6 m ′′

This completes the proof of this case.

Case:
∆;Φa;Ω `FS e1 : A1

FS(t)−−−→ A2 | t1 ∆;Φa;Ω `FS e2 : A1 | t2

∆;Φa;Ω `FS e1 e2 : A2 | t1 + t2 + t+ capp
fs-app

Assume that |= σΦ and (m, δ) ∈ GLUσΩM.

TS: (m, δpe1 e2q) ∈ LUσA2M
σt1+σt2+σt+capp
ε .

Following the definition of L·M·ε, assume that
L(δpe1q) ⇓f1 T1 (?)

L(δpe2q) ⇓f2 T2 (�) fix f(x).e = V(T1) v2 = V(T2)

e[v2/x, (fix f(x).e)/f] ⇓fr Tr (†) vr = V(Tr)

L(δpe1q) L(δpe2q) ⇓f1+f2+fr+capp 〈vr, app(T1, T2, Tr)〉
ev-app and

R(δpe1q) ⇓f
′
1 T ′1 (??)

R(δpe2q) ⇓f
′
2 T ′2 (��) fix f(x).e ′ = V(T ′1) v ′2 = V(T ′2)

e[v ′2/x, (fix f(x).e ′)/f] ⇓f ′r T ′r (††) v ′r = V(T ′r )

R(δpe1q) R(δpe2q) ⇓f
′
1+f

′
2+f

′
r+capp 〈v ′r, app(T ′1, T ′2, T ′r )〉

ev-app and
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(f1 + f2 + fr + capp) < m.

By IH 4 on the first premise, we get

(m, δpe1q) ∈ LU (σA1
FS(σt)−−−−→ σA2)M

σt1
ε . Unrolling its definition with

(?), (??) and f1 < m, we get

a) 〈T1, δpe1q〉yvv ′1, T
′
1, c
′
1

b) fix f(x).e = L(vv ′1) ∧ fix f(x).e ′ = R(vv ′1)

c) c ′1 6 σt1
d) (m− f1, vv ′1) ∈ LU (σA1

FS(σt)−−−−→ σA2)Mv

By IH 4 on the second premise, we get (m, δpe2q) ∈ LUσA1M
σt2
ε .

Unrolling its definition with (�) and (��) and f2 < m, we get

e) 〈T2, δpe2q〉yvv ′2, T
′
2, c
′
2

f) v2 = L(vv ′2) ∧ v ′2 = R(vv ′2)

g) c ′2 6 σt2
h) (m− f2, vv ′2) ∈ LUσA1Mv

There are two cases for d)

subcase 1: vv ′1 = new(fix f(x).e, fix f(x).e ′)

By d), we have (m− f1, new(fix f(x).e, fix f(x).e ′)) ∈ LU (σA1
FS(σt)−−−−→

σA2)Mv (?)

Now, we can conclude as follows:

1. Using a), e) and (††)
〈T1, R(δpe1q)〉 y new(fix f(x).e, fix f(x).e ′), T ′1, c

′
1

〈T2, R(δpe2q)〉 y vv ′2, T
′
2, c
′
2

e ′[R(vv ′2)/x, (fix f(x).e ′)/f] ⇓f ′r T ′r v ′r = V(T ′r )

〈〈vr, app(T1, T2, Tr)〉, R(δpe1q) R(δpe2q)〉 y
new(vr, v ′r), 〈v ′r, app(T ′1, T ′2, T ′r )〉, c ′1 + c ′2 + f ′r + capp

cp-app-new

2. Trivially, vr = L(new(vr, v ′r)) ∧ v ′r = R(new(vr, v ′r))

4. TS: (m− (f1 + f2 + fr + capp), new(vr, v ′r)) ∈ LUσA2Mv
STS: ∀j.(j, vr) ∈ JσA2Kv ∧ (j, v ′r) ∈ JσA2Kv
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Pick j.

TS1: (j, vr) ∈ JσA2Kv
By unrolling the definition of (?), we have

∀j.(j, fix f(x).e) ∈ JσA1
FS(σt)−−−−→ σA2Kv ∧ (j, fix f(x).e ′) ∈ JσA1

FS(σt)−−−−→ σA2Kv

(1)

By lemma 32 on h), we get

∀j.(j, L(vv ′2)) ∈ JσA1Kv ∧ (j, R(vv ′2)) ∈ JσA2Kv (2)

Next, we instantiate eq. (2) with j+ fr + 2 and get

(j+ fr + 2, fix f(x).e) ∈ JσA1
FS(σt)−−−−→ σA2Kv (3)

Then, we instantiate eq. (2) with j+ fr + 1 and get

(j+ fr + 1, L(vv ′2)) ∈ JσA1Kv (4)

Unrolling the definition of eq. (3) using eq. (4) and j+ fr+1 <

j+ fr + 2, we get

(j+ fr + 1, e[L(vv ′2)/x, (fix f(x).e)/f]) ∈ JσA2Kσtε (5)

Unrolling the definition of eq. (5) with (†) and fr < j+ fr + 1,

we get

i) fr 6 σt
j) (j+ 1, vr) ∈ JσA2Kv

Then, we obtain (j, vr) ∈ JσA2Kv by downward closure (Lemma 33)

on j) using j 6 j+ 1.
This concludes TS1.

Next, we follow similar steps for the right projection as fol-
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lows:

We next instantiate eq. (2) with j+ f ′r + 2 and get

(j+ f ′r + 2, fix f(x).e ′) ∈ JσA1
FS(σt)−−−−→ σA2Kv (6)

Then, we instantiate eq. (2) with j+ f ′r + 1 and get

(j+ f ′r + 1, R(vv ′2)) ∈ JσA1Kv (7)

Unrolling the definition of eq. (6) using eq. (7) and j+ f ′r+1 <

j+ f ′r + 2, we get

(j+ f ′r + 1, e[R(vv
′
2)/x, (fix f(x).e ′)/f]) ∈ JσA2Kσtε (8)

Unrolling the definition of eq. (8) with (††) and

f ′r < j+ f
′
r + 1, we get

k) f ′r 6 σt
l) (j+ 1, v ′r) ∈ JσA2Kv

Then, we obtain (j, v ′r) ∈ JσA2Kv by downward closure (Lemma 33)

on l) using j 6 j+ 1.
This concludes TS2.

3. Using c), g) and k), we get (c ′1 + c
′
2 + f

′
r + capp) 6 σt1 + σt2 +

σt+ capp

subcase 2: vv ′1 = fix f(x).ee

Then, by unrolling the definition of d), we have

(m− f1, fix f(x).ee) ∈ $σA1 FS(σt)−−−−→ σA2%v (9)

Next, we apply downward-closure (lemma 33) to h) using

m− (f1 + f2 + capp) 6 m− f2
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and we get

(m− (f1 + f2 + capp), vv ′2) ∈ LUσA1Mv (10)

We unroll eq. (9) using (10) since

m− (f1+ f2+ capp) < m− f1 Note that here we have capp > 1

and get

(m− (f1 + f2 + capp), ee[vv ′2/x, fix f(x).ee/f]) ∈ LUσA2Mσtε (11)

Next, we unroll (11) using (†), (††) and fr < m− (f1 + f2 + capp)

to obtain

i) 〈Tr, ee[vv ′2/x, fix f(x).ee/f]〉yvv ′r, T ′r , c ′r
j) vr = L(vv ′r) ∧ v ′r = R(vv ′r)

k) c ′r 6 σt
l) (m− (f1 + f2 + fr + capp), vv ′r) ∈ LUσA2Mv

Now, we can conclude as follows:

1. Using a), e) and i)
〈T1, R(δpe1q)〉 y fix f(x).ee, T ′1, c

′
1

〈T2, R(δpe2q)〉 y vv ′2, T
′
2, c
′
2

〈Tr, ee[vv ′2/x, (fix f(x).ee)/f]〉 y vv ′r, T
′
r , c
′
r v ′r = V(T ′r )

〈〈_, app(T1, T2, Tr)〉, R(δpe1q) R(δpe2q)〉 y
vv ′r, 〈v ′r, app(T ′1, T ′2, T ′r )〉, c ′1 + c ′2 + c ′r

cp-app

2. By j)

3. Using c), g) and k), we get

(c ′1 + c
′
2 + c

′
r) 6 σt1 + σt2 + σt 6 σt1 + σt2 + σt+ capp

4. By l)
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Case:

∆;Φa;Ω `FS e : A1 +A2 | t

∆;Φ; x : A1,Ω `FS e1 : A | t ′ ∆;Φ;y : A2,Ω `FS e2 : A | t ′

∆;Φa;Ω `FS case (e, x.e1,y.e2) : A | t+ t ′ + ccase
fs-case

Assume that |= σΦ and (m, δ) ∈ GLUσΩM.

TS: (m, case (δpeq, δpe1q, δpe2q)) ∈ LUσAMσt+σt
′+ccase

ε .

Following the definition of L·M·ε, assume that

L( case (δpeq, δpe1q, δpe2q)) ⇓F vr and

R( case (δpeq, δpe1q, δpe2q)) ⇓F
′
v ′r and

F < m.

Depending on what L(δpeq) and R(δpeq) evaluate to, there are four

cases:

subcase 1:
L(δpeq) ⇓f T (?)

inl v = V(T) L(δpe1q)[v/x] ⇓fr Tr (�) vr = V(Tr)

case (L(δpeq), x.L(δpe1q),y.L(δpe2q)) ⇓f+fr+ccase 〈vr, caseinl(T , Tr)〉
ev-case-l

and
R(δpeq) ⇓f ′ T ′ (??)

inl v ′ = V(T ′) R(δpe1q)[v ′/x] ⇓f
′
r T ′r (��) v ′r = V(T ′r )

case (R(δpeq), x.R(δpe1q),y.R(δpe2q)) ⇓f
′+f ′r+ccase 〈v ′r, caseinl(T ′, T ′r )〉

ev-case-l

and

F = f+ fr + ccase < m .

By IH 4 on the first premise, we get

(m, δpeq) ∈ LUσA1 + σA2Mσtε . Unrolling its definition with (?),

(??) and f < m, we get

a) 〈T, δpeq〉yvv ′, T ′, c ′

b) inl v = L(vv ′) ∧ inl v ′ = R(vv ′)

c) c ′ 6 σt
d) (m− f, vv ′) ∈ LUσA1 + σA2Mv

There are two cases for d):
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subsubcase 1: vv ′ = new(inl v, inl v ′)

By d), we have (m− f, new(inl v, inl v ′)) ∈ LU (σA1 + σA2)Mv.

By unrolling its definition, we have

∀j.(j, inl v) ∈ JσA1 + σA2Kv ∧ (j, inl v ′) ∈ JσA1 + σA2Kv (1)

Then, by using eq. (1), we can show that

∀j.(j, v) ∈ JA1Kv ∧ (j, v ′) ∈ JA1Kv (2)

We conclude as follows:

1. Using a) and (��)
〈T , δpeq〉 y new(_, inl v ′), T ′, c ′

R(δpe1q)[v ′/x] ⇓f
′
r T ′r v ′r = V(T ′r )

〈〈vr, caseinl(T , Tr)〉, case(δpeq, x.δpe1q,y, δpe2q)〉 y
new(vr, v ′r), 〈v ′r, caseinl(T ′, T ′r )〉, c ′ + f ′r + ccase

cp-case-inll

2. Trivially, vr = L(new(vr, v ′r)) ∧ v ′r = R(new(vr, v ′r))

4. TS: (m− (f+ fr + ccase), new(vr, v ′r)) ∈ LUσA ′2Mv
STS: ∀j.(j, vr) ∈ JσA ′Kv ∧ (j, v ′r) ∈ JσA ′Kv.

Pick j.

TS1: (j, vr) ∈ JσA ′Kv
By instantiating the definition of eq. (2) with j + fr + 1,

we have

(j+ fr + 1, v) ∈ JA1Kv (3)

By IH 2 on the second premise using (j+ fr+ 1, L(δ)[x 7→
v]) ∈ GJΩ, x : σA1K obtained by

• (j + fr + 1, L(δ)) ∈ GJσΩK by (lemma 32) on (m, δ) ∈
GLUσΩM

• (j+ fr + 1, v) ∈ JσA1Kv by eq. (3)
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we get (j+ fr + 1, L(δ)L(pe1q)[v/x]) ∈ JσA ′Kσt
′

ε .

Unrolling its definition with (�) and fr < j+ fr + 1, we

get

e) fr 6 σt ′

f) (j+ 1, vr) ∈ JσA ′Kv

Then, we obtain (j, vr) ∈ JσA ′Kv by downward closure

(Lemma 33) on j) using j 6 j+ 1.
Next, we follow similar steps for the right projection as

follows:

TS2: (j, v ′r) ∈ JσA ′Kv
By instantiating the definition of eq. (2) with j + f ′r + 1,

we have

(j+ f ′r + 1, v
′) ∈ JA1Kv (4)

By IH 2 on the second premise using (j+ f ′r+ 1, R(δ)[x 7→
v ′]) ∈ GJΩ, x : σA1K obtained by

• (j + f ′r + 1, R(δ)) ∈ GJσΩK by (lemma 32) on (m, δ) ∈
GLUσΩM

• (j+ f ′r + 1, v ′) ∈ JσA1Kv by eq. (4)

we get (j+ f ′r + 1, R(δ)R(pe1q)[v ′/x]) ∈ JσA ′Kσt
′

ε .

Unrolling its definition with (��) and f ′r < j+ f ′r + 1, we

get

g) f ′r 6 σt ′

h) (j+ 1, v ′r) ∈ JσA ′Kv

Then, we obtain (j, v ′r) ∈ JσA ′Kv by downward closure

(Lemma 33) on j) using j 6 j+ 1.

3. By using c) and g), we get c ′+ f ′r+ ccase 6 σt+σt ′+ ccase
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subsubcase 2: vv ′ = inl vv

By d), we have (m− f, inl vv) ∈ LU (σA1 + σA2)Mv.

By unrolling its definition, we have

(m− f, vv) ∈ LUσA1Mv (5)

By IH 4 on the second premise using (m − f, δ[x 7→ vv]) ∈
GLUσΩ, x : UσA1M obtained by

• (m − f, δ) ∈ GLUσΩM by downward-closure (lemma 33)

on (m, δ) ∈ GLUσΩM using m− f 6 m

• (m− f, vv) ∈ LUσA1Mv by eq. (5)

we get (m− f, δpe1q[vv/x]) ∈ LUσAMσt
′

ε .

Unrolling its definition with (�), (��) and fr < m− f, we get

e) 〈Tr, δpe1q[vv/x]〉yvv ′r, T ′r , c ′r
f) vr = L(vv ′r) ∧ v ′r = R(vv ′r)

g) c ′r 6 σt ′

h) (m− f− fr, vv ′r) ∈ LUσA ′Mv

We conclude with

1. Using a) and e)
〈T , δpeq〉 y inl vv, T ′, c ′

〈Tr, δpe1q[vv/x]〉 y vv ′r, T
′
r , c
′
r v ′r = V(T ′r )

〈〈_, caseinl(T , Tr)〉, case(δpeq, x.δpe1q,y, δpe2q)〉 y
vv ′r, 〈v ′r, caseinl(T ′, T ′r )〉, c ′ + c ′r

cp-case-inl

2. Using f)

3. By using c) and g), we get

c ′ + c ′r 6 σt+ σt ′ 6 σt+ σt ′ + ccase
4. By downward closure (Lemma 33) on h) using

m− (f+ fr + ccase) 6 m− f− fr
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we get (m− (f+ fr + ccase), vv ′r) ∈ LtchsσA ′Mv.

subcase 2:
e ⇓f T inr v = V(T) e2[v/y] ⇓fr Tr vr = V(Tr)

case (e, x.e1,y.e2) ⇓f+fr+ccase 〈vr, caseinr(T , Tr)〉
ev-case-r

This case is symmetric, hence we skip its proof.

subcase 3:
L(δpeq) ⇓f T (?)

inl v = V(T) L(δpe1q)[v/x] ⇓fr Tr (�) vr = V(Tr)

case (L(δpeq), x.L(δpe1q),y.L(δpe2q)) ⇓f+fr+ccase 〈vr, caseinl(T , Tr)〉
ev-case-l

and
R(δpeq) ⇓f ′ T ′ (??)

inr v ′ = V(T ′) R(δpe2q)[v ′/y] ⇓f
′
r T ′r (��) v ′r = V(T ′r )

case (R(δpeq), x.R(δpe1q),y.R(δpe2q)) ⇓f
′+f ′r+ccase 〈v ′r, caseinr(T ′, T ′r )〉

ev-case-r

and

F = f+ fr + ccase < m .

By IH 4 on the first premise, we get

(m, δpeq) ∈ LUσA1 + σA2Mσtε . Unrolling its definition with (?),

(??) and f < m, we get

a) 〈T, δpeq〉yvv ′, T ′, c ′

b) inl v = L(vv ′) ∧ inr v ′ = R(vv ′)

c) c ′ 6 σt
d) (m− f, vv ′) ∈ LUσA1 + σA2Mv

There are two cases for d):

subsubcase 1: vv ′ = new(inl v, inr v ′)

By d), we have (m− f, new(inl v, inr v ′)) ∈ LU (σA1 + σA2)Mv.

By unrolling its definition, we have

∀j.(j, inl v) ∈ JσA1 + σA2Kv ∧ (j, inr v ′) ∈ JσA1 + σA2Kv (6)

Then, by using eq. (6), we can show that

∀j.(j, v) ∈ JA1Kv ∧ (j, v ′) ∈ JA2Kv (7)
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We conclude as follows:

1. Using a) and (��)
〈T , δpeq〉 y new(_, inr v ′), T ′, c ′

R(δpe2q)[v ′/x] ⇓f
′
r T ′r v ′r = V(T ′r )

〈〈vr, caseinl(T , Tr)〉, case(δpeq, x.δpe1q,y, δpe2q)〉 y
new(vr, v ′r), 〈v ′r, caseinr(T ′, T ′r )〉, c ′ + f ′r + ccase

cp-case-inlr

2. Trivially, vr = L(new(vr, v ′r)) ∧ v ′r = R(new(vr, v ′r))

4. TS: (m− (f+ fr + ccase), new(vr, v ′r)) ∈ LUσA ′2Mv
STS: ∀j.(j, vr) ∈ JσA ′Kv ∧ (j, v ′r) ∈ JσA ′Kv.

Pick j.

TS1: (j, vr) ∈ JσA ′Kv
By instantiating the definition of eq. (7) with j + fr + 1,

we have

(j+ fr + 1, v) ∈ JA1Kv (8)

By IH 2 on the second premise using (j+ fr+ 1, L(δ)[x 7→
v]) ∈ GJΩ, x : σA1K obtained by

• (j + fr + 1, L(δ)) ∈ GJσΩK by (lemma 32) on (m, δ) ∈
GLUσΩM

• (j+ fr + 1, v) ∈ JσA1Kv by eq. (8)

we get (j+ fr + 1, L(δ)L(pe1q)[v/x]) ∈ JσA ′Kσt
′

ε .

Unrolling its definition with (�) and fr < j+ fr + 1, we

get

e) fr 6 σt ′

f) (j+ 1, vr) ∈ JσA ′Kv

Then, we obtain (j, vr) ∈ JσA ′Kv by downward closure

(Lemma 33) on j) using j 6 j+ 1.
Next, we follow similar steps for the right projection as

follows:

TS2: (j, v ′r) ∈ JσA ′Kv
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By instantiating the definition of eq. (7) with j + f ′r + 1,

we have

(j+ f ′r + 1, v
′) ∈ JA2Kv (9)

By IH 2 on the third premise using (j+ f ′r + 1, R(δ)[x 7→
v ′]) ∈ GJΩ, x : σA2K obtained by

• (j + f ′r + 1, R(δ)) ∈ GJσΩK by (lemma 32) on (m, δ) ∈
GLUσΩM

• (j+ f ′r + 1, v ′) ∈ JσA2Kv by eq. (9)

we get (j+ f ′r + 1, R(δ)R(pe2q)[v ′/x]) ∈ JσA ′Kσt
′

ε .

Unrolling its definition with (��) and f ′r < j+ f ′r + 1, we

get

g) f ′r 6 σt ′

h) (j+ 1, v ′r) ∈ JσA ′Kv

Then, we obtain (j, v ′r) ∈ JσA ′Kv by downward closure

(Lemma 33) on j) using j 6 j+ 1.

3. By using c) and g), we get c ′+ f ′r+ ccase 6 σt+σt ′+ ccase

subsubcase 2: vv ′ = inl vv∨ inr vv

This case is impossible due to inl v = L(vv ′) ∧ inr v ′ = R(vv ′)

(obtained in b))

subcase 4:

L(δpeq) ⇓f T (?)

inr v = V(T) L(δpe2q)[v/y] ⇓fr Tr (�) vr = V(Tr)

case (L(δpeq), x.L(δpe1q),y.L(δpe2q)) ⇓f+fr+ccase 〈vr, caseinr(T , Tr)〉
ev-case-r

and
R(δpeq) ⇓f ′ T ′ (??)

inl v ′ = V(T ′) R(δpe1q)[v ′/x] ⇓f
′
r T ′r (��) v ′r = V(T ′r )

case (R(δpeq), x.R(δpe1q),y.R(δpe2q)) ⇓f
′+f ′r+ccase 〈v ′r, caseinl(T ′, T ′r )〉

ev-case-l

and
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F = f+ fr + ccase < m .

This case is symmetric to above case, hence we skip its proof.

Case:
∆;Φa;Ω `FS e : A | t ∆;Φ |= A v A ′ ∆;Φ |= t 6 t ′

∆;Φa;Ω `FS e : A
′ | t ′

vvv exec

Assume that |= σΦ and (m, δ) ∈ GLUσΩM..

TS: (m, δpeq) ∈ LUσA ′Mσt
′

ε .

Following the definition of L·M·ε, assume that

a) L(δpeq) ⇓f T
b) R(δpeq) ⇓f ′ T ′

c) f < m

By IH 1 on the first premise using we get (m, δpeq) ∈ LUσAMσtε .

Unrolling its definition with (a-c), we get

d) 〈T, δpeq〉yvv ′, T ′, c ′

e) v = L(vv ′) ∧ v ′ = R(vv ′)

f) c ′ 6 σt
g) (m− f, vv ′) ∈ LUσAMv

We can conclude as follows:

1. By d)

2. By e)

3. By assumption 25 on the third premise, we get σt 6 σt ′. Com-

bining this with f), we get c ′ 6 σt ′.

4. By lemma 39 (clause 8) on the second premise with g), we get

(m− c, vv ′) ∈ LUσA ′Mv

Proof of Statement (5). Remember the statement (5) of Theorem 46:

Assume that ∆;Φa; Γ `CP e : τ | t and σ ∈ DJ∆K and |= σΦ and (m, δ) ∈
GLU |σΓ |M, then (m, δpeq) ∈ LU |στ|M∞ε .
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Case:
Γ(x) = τ

∆;Φa; Γ `CP x : τ | 0
cp-var

Assume that |= σΦ and (m, δ) ∈ GLU |σΓ |M.

TS: (m, δ(x)) ∈ LU |στ|M∞ε .

Instead, we first show

(m, δ(x)) ∈ LU |στ|M0ε (1)

By lemma 31, STS: (m, δ(x)) ∈ LU |στ|Mv.

By (m, δ) ∈ GLU |σΓ |M and Γ(x) = τ, we obtain (m, δ(x)) ∈ LU |στ|Mv.

We conclude by lemma 39 on eq. (1) using 0 6∞.

Case:
∆;Φ ` τ1

CP(t)−−−→ τ2 wf ∆;Φ; x : τ1, f : τ1
CP(t)−−−→ τ2, Γ `CP e : τ2 | t

∆;Φa; Γ `CP fix f(x).e : τ1
CP(t)−−−→ τ2 | 0

cp-

fix

Assume that |= σΦ and (m, δ) ∈ GLU |σΓ |M.

TS: (m, fix f(x).δpeq) ∈ LU |στ1
CP(σt)−−−−→ στ2|M∞ε .

By lemma 31 and lemma 39 using 0 6∞,

STS: (m, fix f(x).δpeq) ∈ LU |στ1
CP(σt)−−−−→ στ2|Mv = LU (|στ1|

FS(∞)−−−−→ |στ2|)Mv.

Let F = fix f(x).δpeq.
By definition of LU ·Mv, since fix f(x).δpeq 6= new(·, ·),
STS: (m, fix f(x).δpeq) ∈ $|στ1| FS(∞)−−−−→ |στ2|%v.
Let F = fix f(x).δpeq.
We prove the more general statement

∀m ′ 6 m. (m ′, F) ∈ $|στ1| FS(∞)−−−−→ |στ2|%v

by subinduction on m ′.

There are three cases:

• STS: ∀j.(j, L(F)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv ∧ (j, R(F)) ∈ J|στ1|

FS(∞)−−−−→
|στ2|Kv.
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Pick j.

We show the left projection only, the right one is similar.

– STS 1: (j, L(F)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv

We prove the more general statement

∀m ′ 6 j. (m ′, L(F)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv

by subinduction on m ′.

There are two cases:

* m
′ = 0

Since there is no non-negative j such that j < 0, the goal

is vacuously true.

* m
′ = m ′′ + 1 6 j

By sub-IH

(m ′′, fix f(x).L(δpeq)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv (1)

STS: (m ′′ + 1, fix f(x).L(δpeq)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv.

Pick j ′′ < m ′′ + 1 and assume that (j ′′, v) ∈ J|στ1|Kv.

STS: (j ′′, L(δpeq)[v/x, L(F)/f]) ∈ JσA2K∞ε .

This follows by IH 3 on the second premise instantiated

with (j ′′, δ[x 7→ v, f 7→ L(F)]) ∈ GJx : σA1, f : |στ1|
FS(∞)−−−−→

|στ2|, |σΓ |K which holds because

· (j ′′, L(δ)) ∈ GJ|σΓ |K using lemma 32 on (m, δ) ∈ GLU |σΓ |M

· (j ′′, v) ∈ J|στ1|Kv, from the assumption above

· (j ′′, fix f(x).L(δpeq)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv, obtained by

downward closure (Lemma 33) on (1) using j ′′ 6 m ′′

• m ′ = 0

Since there is no non-negative j such that j < 0, the goal is vacu-

ously true.
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• m ′ = m ′′ + 1 6 m
By sub-IH

(m ′′, fix f(x).δpeq) ∈ $|στ1| FS(∞)−−−−→ |στ2|%v ⊆ LU (|στ1|
FS(∞)−−−−→ |στ2|)Mv

(2)

STS: (m ′′ + 1, fix f(x).δpeq) ∈ $|στ1| FS(∞)−−−−→ |στ2|%v.
Pick j ′′ < m ′′ + 1 and assume that (j ′′, vv) ∈ LU |στ1|Mv.

STS: (j ′′, δpeq[vv/x, F/f]) ∈ LU |στ2|M∞ε .

This follows by IH 5 on the second premise instantiated with

(j ′′, δ[x 7→ vv, f 7→ F]) ∈ GLx : U |στ1|, f : U (|στ1|
FS(∞)−−−−→ |στ2|),U |σΓ |M

which holds because

– (j ′′, δ) ∈ GLU |σΓ |M by downward closure (Lemma 33) on (m, δ) ∈
GLU |σΓ |M using j ′′ 6 m.

– (j ′′, vv) ∈ LU |στ1|Mv, from the assumption above

– (j ′′, fix f(x).δpeq) ∈ LU (|στ1|
FS(∞)−−−−→ |στ2|)Mv, obtained by down-

ward closure (Lemma 33) on (2) using j ′′ 6 m ′′

This completes the proof of this case.

Case:
∆;Φa; Γ `CP e1 : τ1

CP(t)−−−→ τ2 | t1 ∆;Φa; Γ `CP e2 : τ1 | t2

∆;Φa; Γ `CP e1 e2 : τ2 | t1 + t2 + t
cp-app

Assume that |= σΦ and (m, δ) ∈ GLU |σΓ |M.

TS: (m, δpe1 e2q) ∈ LUστ2M∞ε .

Following the definition of L·M·ε, assume that
L(δpe1q) ⇓f1 T1 (?)

L(δpe2q) ⇓f2 T2 (�) fix f(x).e = V(T1) v2 = V(T2)

e[v2/x, (fix f(x).e)/f] ⇓fr Tr (†) vr = V(Tr)

L(δpe1q) L(δpe2q) ⇓f1+f2+fr+capp 〈vr, app(T1, T2, Tr)〉
ev-app and

R(δpe1q) ⇓f
′
1 T ′1 (??)

R(δpe2q) ⇓f
′
2 T ′2 (��) fix f(x).e ′ = V(T ′1) v ′2 = V(T ′2)

e[v ′2/x, (fix f(x).e ′)/f] ⇓f ′r T ′r (††) v ′r = V(T ′r )

R(δpe1q) R(δpe2q) ⇓f
′
1+f

′
2+f

′
r+capp 〈v ′r, app(T ′1, T ′2, T ′r )〉

ev-app and
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(f1 + f2 + fr + capp) < m.

By IH 5 on the first premise, we get

(m, δpe1q) ∈ LU |στ1
CP(σt)−−−−→ στ2|M

σt1
ε . Unrolling its definition with (?),

(??) and f1 < m, we get

a) 〈T1, δpe1q〉yvv ′1, T
′
1, c
′
1

b) vv ′1 = L(fix f(x).ee) ∧ fix f(x).e ′ = R(fix f(x).ee)

c) c ′1 6∞
d) (m− f1, vv ′1) ∈ LU |στ1

CP(σt)−−−−→ στ2|Mv

By IH 5 on the second premise, we get (m, δpe2q) ∈ LU |στ1|M
σt2
ε .

Unrolling its definition with (�) and (��) and f2 < m, we get

e) 〈T2, δpe2q〉yvv ′2, T
′
2, c
′
2

f) v2 = L(vv ′2) ∧ v ′2 = R(vv ′2)

g) c ′2 6∞
h) (m− f2, vv ′2) ∈ LU |στ1|Mv

There are two cases for d)

subcase 1: vv ′1 = new(fix f(x).e, fix f(x).e ′)

By d), we have (m− f1, new(fix f(x).e, fix f(x).e ′)) ∈ LU (|στ1|
FS(∞)−−−−→

|στ2|)Mv (?)

Now, we can conclude as follows:

1. Using a), e) and (††)
〈T1, R(δpe1q)〉 y new(fix f(x).e, fix f(x).e ′), T ′1, c

′
1

〈T2, R(δpe2q)〉 y vv ′2, T
′
2, c
′
2

e ′[R(vv ′2)/x, (fix f(x).e ′)/f] ⇓f ′r T ′r v ′r = V(T ′r )

〈〈vr, app(T1, T2, Tr)〉, R(δpe1q) R(δpe2q)〉 y
new(vr, v ′r), 〈v ′r, app(T ′1, T ′2, T ′r )〉, c ′1 + c ′2 + f ′r + capp

cp-app-new

2. Trivially, vr = L(new(vr, v ′r)) ∧ v ′r = R(new(vr, v ′r))

4. TS: (m− (f1 + f2 + fr + capp), new(vr, v ′r)) ∈ LUστ2Mv
STS: ∀j.(j, vr) ∈ Jστ2Kv ∧ (j, v ′r) ∈ Jστ2Kv Pick j.
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TS1: (j, vr) ∈ Jστ2Kv
By unrolling the definition of (?), we have

∀j.(j, fix f(x).e) ∈ J|στ1|
FS(∞)−−−−→ σ|τ2|Kv ∧ (j, fix f(x).e ′) ∈ J|στ1|

FS(∞)−−−−→ |στ2|Kv

(1)

By lemma 32 on h), we get

∀j.(j, L(vv ′2)) ∈ JU |στ1|Kv ∧ (j, R(vv ′2)) ∈ JU |στ2|Kv (2)

Next, we instantiate eq. (1) with j+ fr + 2 and get

(j+ fr + 2, fix f(x).e) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv (3)

Then, we instantiate eq. (2) with j+ fr + 1 and get

(j+ fr + 1, L(vv ′2)) ∈ JU |στ1|Kv (4)

Unrolling the definition of eq. (3) using eq. (4) and j+ fr+1 <

j+ fr + 2, we get

(j+ fr + 1, e[L(vv ′2)/x, (fix f(x).e)/f]) ∈ JU |στ2|K∞ε (5)

Unrolling the definition of eq. (5) with (†) and fr < j+ fr + 1,

we get

i) fr 6∞
j) (j+ 1, vr) ∈ JU |στ2|Kv

Then, we obtain (j, vr) ∈ JU |στ2|Kv by downward closure

(Lemma 33) on j) using j 6 j+ 1.
This concludes TS1.

Next, we follow similar steps for the right projection as fol-



372 appendix for ducostit

lows:

We next instantiate eq. (2) with j+ f ′r + 2 and get

(j+ f ′r + 2, fix f(x).e ′) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv (6)

Then, we instantiate eq. (2) with j+ f ′r + 1 and get

(j+ f ′r + 1, R(vv ′2)) ∈ JU |στ1|Kv (7)

Unrolling the definition of eq. (6) using eq. (7) and j+ f ′r+1 <

j+ f ′r + 2, we get

(j+ f ′r + 1, e[R(vv
′
2)/x, (fix f(x).e ′)/f]) ∈ JU |στ2|K∞ε (8)

Unrolling the definition of eq. (8) with (††) and

f ′r < j+ f
′
r + 1, we get

k) f ′r 6∞
l) (j+ 1, v ′r) ∈ JU |στ2|Kv

Then, we obtain (j, v ′r) ∈ JU |στ2|Kv by downward closure

(Lemma 33) on l) using j 6 j+ 1.
This concludes TS2.

3. Using c), g) and k), we get (c ′1 + c
′
2 + f

′
r + capp) 6∞

subcase 2: vv ′1 = fix f(x).ee

Then, by unrolling the definition of d), we have

(m− f1, fix f(x).ee) ∈ $|στ1| FS(∞)−−−−→ |στ2|%v (9)

Next, we apply downward-closure (lemma 33) to h) using

m− (f1 + f2 + capp) 6 m− f2
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and we get

(m− (f1 + f2 + capp), vv ′2) ∈ LU |στ1|Mv (10)

We unroll eq. (9) using (10) since

m− (f1+ f2+ capp) < m− f1 Note that here we have capp > 1

and get

(m− (f1+ f2+ capp), ee[vv ′2/x, fix f(x).ee/f]) ∈ LU |στ2|Mσtε (11)

Next, we unroll (11) using (†), (††) and fr < m− (f1 + f2 + capp)

to obtain

i) 〈Tr, ee[vv ′2/x, fix f(x).ee/f]〉yvv ′r, T ′r , c ′r
j) vr = L(vv ′r) ∧ v ′r = R(vv ′r)

k) c ′r 6∞
l) (m− (f1 + f2 + fr + capp), vv ′r) ∈ LU |στ2|Mv

Now, we can conclude as follows:

1. Using a), e) and i)
〈T1, R(δpe1q)〉 y fix f(x).ee, T ′1, c

′
1

〈T2, R(δpe2q)〉 y vv ′2, T
′
2, c
′
2

〈Tr, ee[vv ′2/x, (fix f(x).ee)/f]〉 y vv ′r, T
′
r , c
′
r v ′r = V(T ′r )

〈〈_, app(T1, T2, Tr)〉, R(δpe1q) R(δpe2q)〉 y
vv ′r, 〈v ′r, app(T ′1, T ′2, T ′r )〉, c ′1 + c ′2 + c ′r

cp-app

2. By j)

3. Using c), g) and k), we get (c ′1 + c
′
2 + c

′
r) 6∞

4. By l)

Case:
∆;Φa; Γ `CP e : τ | t ∆;Φ |= τ v τ ′ ∆;Φ |= t 6 t ′

∆;Φa; Γ `CP e : τ
′ | t ′

cp-vvv

Assume that |= σΦ and (m, δ) ∈ GLU |σΓ |M.
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TS: (m, δpeq) ∈ LU |στ ′|Mσt
′

ε .

Following the definition of L·M·ε, assume that

a) L(δpeq) ⇓f T
b) R(δpeq) ⇓f ′ T ′

c) f < m

By IH 1 on the first premise using we get (m, δpeq) ∈ LστMσtε .

Unrolling its definition with (a-c), we get

d) 〈T, δpeq〉yvv ′, T ′, c ′

e) v = L(vv ′) ∧ v ′ = R(vv ′)

f) c ′ 6 σt
g) (m− f, vv ′) ∈ LU |στ|Mv

We can conclude as follows:

1. By d)

2. By e)

3. By assumption 25 on the third premise, we get σt 6 σt ′. Com-

bining this with f), we get c ′ 6 σt ′.

4. By lemma 39(clause 11) on the second premise with g), we get

(m− c, vv ′) ∈ LU |στ ′|Mv



B.2 ducostit theorems 375

Theorem 47 (Fundamental theorem for bivalues/biexpressions). The follow-

ing holds.

1. Assume that ∆;Φa; Γ ` vv � τ and σ ∈ DJ∆K and |= σΦ and (m, δ) ∈
GLσΓM. Then, (m, δvv) ∈ LστMv.

2. Assume that ∆;Φa; Γ ` vv � τ and σ ∈ DJ∆K and |= σΦ and (m,γ) ∈
GJ|σΓ |K. Then, (m, L(δvv)) ∈ L|στ|Mv ∧ (m, R(δvv)) ∈ L|στ|Mv.

3. Assume that ∆;Φa; Γ ` vv � τ and σ ∈ DJ∆K and |= σΦ and (m, δ) ∈
GLU |σΓ |M. Then, (m, δvv) ∈ LU |στ|Mv.

4. Assume that ∆;Φa; Γ ` ee � τ | t and σ ∈ DJ∆K and |= σΦ and (m, δ) ∈
GLσΓM. Then, (m, δee) ∈ LστMσtε .

5. Assume that ∆;Φa; Γ ` ee� τ | t and σ ∈ DJ∆K and |= σΦ and (m,γ) ∈
GJ|σΓ |K. Then, (m, L(γee)) ∈ L|στ|M∞ε ∧ (m, R(γee)) ∈ L|στ|M∞ε .

6. Assume that ∆;Φa; Γ ` ee � τ | t and σ ∈ DJ∆K and |= σΦ and (m, δ) ∈
GLU |σΓ |M. Then, (m, δee) ∈ LU |στ|M∞ε .

Proof. Proofs are by induction on typing derivations with a sub-induction

on step-indices for recursive functions. We show select cases of each state-

ment separately.

Proof of Statement (1). We proceed by induction on the bi-value typing deriva-

tion. We show the most important cases below.

Case:
∆;Φ; Γ ` keep(n)� intr

bi-keep

Assume that |= σΦ and (m, δ) ∈ GLσΓM.
TS: (m, δ(keep(n))) ∈ LintrMv.
This immediately follows from the definition of LintrMv.

Case:
∆;Φ; · `FS v : A | t ∆;Φ; · `FS v

′ : A | t ′

∆;Φ; Γ ` new(v, v ′)� UA
bi-new

Assume that |= σΦ and (m, δ) ∈ GLσΓM.
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TS: (m, δ(new(v, v ′))) ∈ LUσAMv.
STS: ∀j.(j, v) ∈ JσAKv ∧ (j, v ′) ∈ JσAKv.
Pick j.

RTS1: (j, v) ∈ JσAKv
RTS2: (j, v ′) ∈ JσAKv.
Next, we will instantiate theorem 46 (second clause) on the first and

second premises.

For the first premise, we know that (j+ 1, ·) ∈ GL·M (by definition).

Hence, by instantiating theorem 46 (second clause) on the first

premise with (j+ 1, ·) ∈ GL·M, we get (j+ 1, v) ∈ JσAKσtε .

To unroll its definition we use

a) Since v is a value, by ev-value rule, we have v ⇓0 〈v, v〉.
b) 0 < j+ 1

Therefore, we get

(j+ 1, v) ∈ JσAKv (1)

Next, we obtain the first statement (j, v) ∈ JσAKv by downward

closure (Lemma 33) on Equation (1) using j 6 j+ 1.
Similarly, we instantiate theorem 46 (second clause) on the second

premises and we get (j+ 1, v ′) ∈ JσAKσt
′

ε .

To unroll its definition we use

a) Since v ′ is a value, by ev-value rule, we have v ′ ⇓0 〈v ′, v ′〉.
b) 0 < j+ 1

Therefore, we get

(j+ 1, v ′) ∈ JσAKv (2)

Hence, we obtain the second statement (j, v ′) ∈ JσAKv by downward

closure (Lemma 33) on Equation (2) using j 6 j+ 1.
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Case:
∆;Φ; Γ ` vv1 � τ ∆;Φ; Γ ` vv2 � list[n]α τ

∆;Φ; Γ ` cons(vv1, vv2)� list[n+ 1]α+1 τ
bi-cons

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, cons(δvv1, δvv2)) ∈ Llist[σn+ 1]σα+1 στMv.
By IH 1 on the first premise, we get (m, δvv1) ∈ LστMv (?).
By IH 1 on the second premise, we get (m, δvv2) ∈ Llist[σn]σα στMv (�).
By using (?) and (�), we can conclude as follows:

(m, cons(δvv1, δvv2)) ∈ Llist[σn+ 1]σα+1 στMv.

Case:
∆;Φ; Γ ` vv1 � � τ ∆;Φ; Γ ` vv2 � list[n]α τ

∆;Φ; Γ ` cons(vv1, vv2)� list[n+ 1]α τ
bi-cons-�

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, cons(δvv1, δvv2)) ∈ Llist[σn+ 1]σα στMv.
By IH 1 on the first premise, we get (m, δvv1) ∈ L�στMv (?).
By IH 1 on the second premise, we get (m, δvv2) ∈ Llist[σn]σα στMv (�).
By using (?) and (�), we can conclude as follows:

(m, cons(δvv1, δvv2)) ∈ Llist[σn+ 1]σα στMv.

Case:
∆;Φ; x : τ1, f : τ1

CP(t)−−−→ τ2, Γ ` ee� τ2 | t

∆;Φ; Γ ` fix f(x). ee� τ1
CP(t)−−−→ τ2

bi-fix

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, fix f(x).δee) ∈ Lστ1
CP(σt)−−−−→ στ2Mv.

Let F = fix f(x).δee.

We prove the more general statement

∀m ′ 6 m. (m ′, F) ∈ Lστ1
CP(σt)−−−−→ στ2Mv

by subinduction on m ′.

There are two parts to show:

subcase 1: m ′ = 0

By the definition of the interpretation of function types, there are

two parts to show:
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subsubcase 1: ∀j < m ′ = 0 · · ·
Since there is no non-negative j such that j < 0, the goal is

vacuously true.

subsubcase 2: TS: (0, F) ∈ $|στ1| FS(∞)−−−−→ |στ2|%v
As above, since there is no j < 0,

RTS: ∀j.(j, L(F)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv ∧ (j, R(F)) ∈ J|στ1|

FS(∞)−−−−→
|στ2|Kv.
Pick j.

We show the left projection only, the right one is similar.

• STS 1: (j, L(F)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv

We prove the more general statement

∀m ′ 6 j. (m ′, L(F)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv

by subinduction on m ′.

There are two cases:

– m ′ = 0

Since there is no non-negative j such that j < 0, the

goal is vacuously true.

– m ′ = m ′′ + 1 6 m
By sub-IH

(m ′′, fix f(x).L(δpeq)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv (1)

STS: (m ′′ + 1, fix f(x).L(δpeq)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv.

Pick j ′′ < m ′′ + 1 and assume that (j ′′, v) ∈ J|στ1|Kv.
STS: (j ′′, L(δpeq)[v/x, L(F)/f]) ∈ J|στ2|K∞ε .

This follows by IH 5 on the premise instantiated with

(j ′′, δ[x 7→ v, f 7→ L(F)]) ∈ GJx : |στ1|, f : |στ1|
FS(∞)−−−−→

|στ2|, |σΓ |K which holds because

* (j ′′, δ) ∈ GJ|σΓ |K using lemma 32 on (m, δ) ∈ GLσΓM

* (j ′′, v) ∈ J|στ1|Kv, from the assumption above



B.2 ducostit theorems 379

* (j ′′, fix f(x).L(δpeq)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv, obtained

by downward closure (Lemma 33) on (1) using j ′′ 6
m ′′

subcase 2: m ′ = m ′′ + 1 6 m
By sub-IH

(m ′′, F) ∈ Lστ1
CP(σt)−−−−→ στ2Mv (2)

TS: (m ′′ + 1, fix f(x).δee) ∈ Lστ1
CP(σt)−−−−→ στ2Mv

There are two cases to show:

subsubcase 1: Pick j < m ′′ + 1 and assume that (j, vv) ∈ Lστ1Mv.
STS: (j, δpeq[vv/x, F/f]) ∈ Lστ2Mσtε .

This follows by IH 4 on the second premise instantiated with

(j, δ[x 7→ vv, f 7→ F]) ∈ GLσΓ , x : στ1, f : στ1
CP(σt)−−−−→ στ2M which

holds because

• (j, δ) ∈ GLσΓM obtained by downward closure (lemma 33)

using (m, δ) ∈ GLσΓM and j < m ′ 6 m.

• (j, vv) ∈ Lστ1Mv, from the assumption above

• (j, F) ∈ Lστ1
CP(σt)−−−−→ στ2Mv, obtained by downward closure

(Lemma 33) on (2) using j 6 m ′′

subsubcase 2: STS: (m ′′ + 1, fix f(x).δpeq) ∈ $|στ1| FS(∞)−−−−→ |στ2|%v
There are also two cases to show here.

• Pick j < m ′′ + 1 and assume that (j, vv) ∈ LU |στ1|Mv.
STS: (j, δpeq[vv/x, F/f]) ∈ L|Uστ2|M∞ε .

This follows by IH 6 on the second premise instantiated

with

(j, δ[x 7→ vv, f 7→ F]) ∈ GLU |σΓ |, x : U |στ1|, f : U (|στ1
CP(σt)−−−−→

στ2|)M which holds because

– (j, δ) ∈ GLU |σΓ |M obtained by downward closure (Lemma 33)

on (m, δ) ∈ GLU |σΓ |M (obtained by inclusion lemma on

(m, δ) ∈ GLσΓM) and j < m ′ 6 m.
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– (j, vv) ∈ LU |στ1|Mv, from the assumption above

– (j, F) ∈ LU (|στ1|
FS(∞)−−−−→ |στ2|)Mv, obtained by downward

closure (Lemma 33) on (2) using j 6 m ′′

• STS: ∀j.(j, L(F)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv ∧ (j, R(F)) ∈

J|στ1|
FS(∞)−−−−→ |στ2|Kv.

The proof is same as above subcase where m ′ = 0.

This completes the proof of this case.

Case:

∆;Φ; x : τ1, f : � (τ1
CP(t)−−−→ τ2), Γ ` ee� τ2 | t

∀x ∈ Γ . ∆;Φ |= Γ(x) v � Γ(x) stable(ee)

∆;Φ; Γ , Γ ′ ` fix f(x).ee� � (τ1
CP(t)−−−→ τ2)

bi-fix-NC

Assume that (m, δ) ∈ GLσΓ ,σΓ ′M and |= σΦ.

Then, δ = δ1 ∪ δ2 such that (m, δ1) ∈ GLσΓM and (m, δ2) ∈ GLσΓ ′M.

TS: (m, fix f(x).δpeq) ∈ L� (στ1
CP(σt)−−−−→ στ2)M0ε.

Since e doesn’t have any free variables from Γ ′ by the second premise,

TS: (m, fix f(x).δ1peq) ∈ L� (στ1
CP(σt)−−−−→ στ2)M0ε.

By lemma 31, STS: (m, fix f(x).δ1peq) ∈ L� (στ1
CP(σt)−−−−→ στ2)Mv.

By lemma 39 using (m, δ1) ∈ GLσΓM and the third premise, we get

(m, δ1) ∈ GL�σΓM, i.e. ∀x ∈ dom(Γ).stable(δ1(x)).

We also know that by definition, stable(peq).
Hence, stable(fix f(x).δ1peq).
Therefore, STS: (m, fix f(x).δ1peq) ∈ Lστ1

CP(σt)−−−−→ στ2Mv.
Let F = fix f(x).δ1e .

We prove the more general statement

∀m ′ 6 m. (m ′, F) ∈ Lστ1
CP(σt)−−−−→ στ2Mv

by subinduction on m ′.

There are two parts to show:

subcase 1: m ′ = 0

By the definition of the interpretation of function types, there are

two parts to show:
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subsubcase 1: ∀j < m ′ = 0 · · ·
Since there is no non-negative j such that j < 0, the goal is

vacuously true.

subsubcase 2: TS: (0, F) ∈ $|στ1| FS(∞)−−−−→ |στ2|%v
As above, since there is no j < 0,

RTS: ∀j.(j, L(F)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv ∧ (j, R(F)) ∈ J|στ1|

FS(∞)−−−−→
|στ2|Kv.
Pick j.

We show the left projection only, the right one is similar.

• STS 1: (j, L(F)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv

We prove the more general statement

∀m ′ 6 j. (m ′, L(F)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv

by subinduction on m ′.

There are two cases:

– m ′ = 0

Since there is no non-negative j such that j < 0, the

goal is vacuously true.

– m ′ = m ′′ + 1 6 m
By sub-IH

(m ′′, fix f(x).L(δ1peq)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv (1)

STS: (m ′′ + 1, fix f(x).L(δ1peq)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv.

Pick j ′′ < m ′′ + 1 and assume that (j ′′, v) ∈ J|στ1|Kv.
STS: (j ′′, L(δ1peq)[v/x, L(F)/f]) ∈ J|στ2|K∞ε .

This follows by IH 5 on the premise instantiated with

(j ′′, δ1[x 7→ v, f 7→ L(F)]) ∈ GJx : |στ1|, f : |στ1|
FS(∞)−−−−→

|στ2|, |σΓ |K which holds because

* (j ′′, δ1) ∈ GJ|σΓ |K using lemma 32 on (m, δ1) ∈ GLσΓM

* (j ′′, v) ∈ J|στ1|Kv, from the assumption above
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* (j ′′, fix f(x).L(δ1peq)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv, obtained

by downward closure (Lemma 33) on (1) using j ′′ 6
m ′′

subcase 2: m ′ = m ′′ + 1 6 m
By sub-IH

(m ′′, F) ∈ Lστ1
CP(σt)−−−−→ στ2Mv (2)

TS: (m ′′ + 1, fix f(x).δ1peq) ∈ Lστ1
CP(σt)−−−−→ στ2Mv

There are two cases to show:

subsubcase 1: Pick j < m ′′ + 1 and assume that (j, vv) ∈ Lστ1Mv.
STS: (j, δ1peq[vv/x, F/f]) ∈ Lστ2Mσtε .

This follows by IH 4 on the second premise instantiated with

(j, δ1[x 7→ vv, f 7→ F]) ∈ GLσΓ , x : στ1, f : � (στ1
CP(σt)−−−−→ στ2)M

which holds because

• (j, δ1) ∈ GLσΓM obtained by downward closure (lemma 33)

using (m, δ1) ∈ GLσΓM and j < m ′ 6 m.

• (j, vv) ∈ Lστ1Mv, from the assumption above

• (j, F) ∈ L� (στ1
CP(σt)−−−−→ στ2)Mv, obtained by downward

closure (Lemma 33) on (2) using j 6 m ′′ and also by

stable(F)

subsubcase 2: STS: (m ′′ + 1, fix f(x).δ1peq) ∈ $|στ1| FS(∞)−−−−→ |στ2|%v
There are also two cases to show here.

• Pick j < m ′′ + 1 and assume that (j, vv) ∈ LU |στ1|Mv.
STS: (j, δ1peq[vv/x, F/f]) ∈ L|Uστ2|M∞ε .

This follows by IH 6 on the second premise instantiated

with

(j, δ1[x 7→ vv, f 7→ F]) ∈ GLU |σΓ |, x : U |στ1|, f : U (|στ1
CP(σt)−−−−→

στ2|)M which holds because

– (j, δ1) ∈ GLU |σΓ |M obtained by downward closure (Lemma 33)

on (m, δ1) ∈ GLU |σΓ |M (obtained by inclusion lemma on

(m, δ1) ∈ GLσΓM) and j < m ′ 6 m.
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– (j, vv) ∈ LU |στ1|Mv, from the assumption above

– (j, F) ∈ LU (|στ1|
FS(∞)−−−−→ |στ2|)Mv, obtained by downward

closure (Lemma 33) on (2) using j 6 m ′′

• STS: ∀j.(j, L(F)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv ∧ (j, R(F)) ∈

J|στ1|
FS(∞)−−−−→ |στ2|Kv.

The proof is same as above subcase where m ′ = 0.

This completes the proof of this case.

Case:
∆;Φ; Γ ` vv� τ ∀x ∈ Γ . ∆;Φ |= Γ(x) v � Γ(x) stable(vv)

∆;Φ; Γ , Γ ′ ` vv� � τ
bi-nochange

Assume that (m, δ) ∈ GLσΓ ,σΓ ′M and |= σΦ.

Then, δ = δ1 ∪ δ2 such that (m, δ1) ∈ GLσΓM and (m, δ2) ∈ GLσΓ ′M.
TS: (m, δvv) ∈ L�στMv.
Since vv doesn’t have any free variables from Γ ′ by the first premise,

STS: (m, δ1vv) ∈ L�στMv.
RTS1: (m, δ1vv) ∈ LστMv.
RTS2: stable(δ1vv).

The first part can be shown by By IH 1 on the first premise.

The second part can be shown by lemma 39 using (m, δ1) ∈ GLσΓM
and the second premise, i.e. (m, δ1) ∈ GL�σΓM. This means that ∀x ∈
dom(Γ). stable(δ1(x)).

Therefore, since stable(vv), we have stable(δ1vv).

Case:
∆;Φ; Γ ` vv� τ ∆;Φ |= τ v τ ′

∆;Φ; Γ ` vv� τ ′
bi-v

Assume that (m, δ) ∈ GLσΓM and |= σΦ.

TS: (m, δvv) ∈ Lστ ′Mv.
By IH 1 on the first premise, we have (m, δvv) ∈ LστMv (?).
By lemma 39 on the second premise with (?), we get (m, δvv) ∈ Lστ ′Mv.
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Proof of Statement (2). We proceed by induction on the bi-value typing deriva-

tion. For brevity, we show the most important cases of the left projection

below; the right one can be obtained similarly.

Case:
∆;Φ; Γ ` keep(n)� intr

bi-keep

Assume that |= σΦ and (m,γ) ∈ GJ|σΓ |K.

TS: (m, L((γkeep(n)))) ∈ LintMv.
This immediately follows from the definition of LintMv.

Case:
∆;Φ; · `FS v : A | t ∆;Φ; · `FS v

′ : A | t ′

∆;Φ; Γ ` new(v, v ′)� UA
bi-new

Assume that |= σΦ and (m,γ) ∈ GJ|σΓ |K.

TS: (m,γL(new(v, v ′))) ∈ J|UσA|Kv = JσAKv.
STS: (m, v) ∈ JσAKv.
Next, we will instantiate theorem 46 (second clause) on the first

premise.

For the first premise, we know that (m+ 1, ·) ∈ GL·M (by definition).

Hence, by instantiating theorem 46 (second clause) on the first

premise with (m+ 1, ·) ∈ GL·M, we get (m+ 1, v) ∈ JσAKσtε .

To unroll its definition we use

a) Since v is a value, by ev-value rule, we have v ⇓0 〈v, v〉.
b) 0 < m+ 1

Therefore, we get

(m+ 1, v) ∈ JσAKv (1)

Next, we obtain the first statement (m, v) ∈ JσAKv by downward clo-

sure (Lemma 33) on Equation (1) using m 6 m+ 1.

Case:
∆;Φ; Γ ` vv1 � τ ∆;Φ; Γ ` vv2 � list[n]α τ

∆;Φ; Γ ` cons(vv1, vv2)� list[n+ 1]α+1 τ
bi-cons

Assume that |= σΦ and (m,γ) ∈ GJ|σΓ |K.
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TS: (m, cons(L(γvv1), L(γvv2))) ∈ J|list[σn + 1]σα+1 στ|Kv ≡ Jlist[σn +

1] |στ|Kv.
By IH 2 on the first premise, we get (m, L(γvv1)) ∈ J|στ|Kv (?).
By IH 2 on the second premise, we get (m, L(γvv2)) ∈ J|list[σn]σα στ|Kv ≡
Jlist[σn] |στ|Kv (�).
By using (?) and (�), we can conclude as follows:

(m, cons(L(γvv1), L(γvv2))) ∈ Jlist[σn+1] |στ|Kv ≡ J|list[σn+1]σα+1 στ|Kv.

Case:
∆;Φ; Γ ` vv1 � � τ ∆;Φ; Γ ` vv2 � list[n]α τ

∆;Φ; Γ ` cons(vv1, vv2)� list[n+ 1]α τ
bi-cons-�

Assume that |= σΦ and (m,γ) ∈ GJ|σΓ |K.

TS: (m, cons(L(γvv1), L(γvv2))) ∈ J|list[σn+1]σα στ|Kv ≡ Jlist[σn+1] |στ|Kv.
By IH 2 on the first premise, we get (m, L(γvv1)) ∈ J|�στ|Kv (?).
By IH 2 on the second premise, we get (m, L(γvv2)) ∈ J|list[σn]σα στ|Kv ≡
Jlist[σn] |στ|Kv (�).
By using (?) and (�), we can conclude as follows:

(m, cons(L(γvv1), L(γvv2))) ∈ Jlist[σn+ 1] |στ|Kv ≡ J|list[σn+ 1]σα στ|Kv.

Case:
∆;Φ; x : τ1, f : τ1

CP(t)−−−→ τ2, Γ ` ee� τ2 | t

∆;Φ; Γ ` fix f(x). ee� τ1
CP(t)−−−→ τ2

bi-fix

Assume that |= σΦ and (m,γ) ∈ GJ|σΓ |K.

TS: (m, fix f(x).L(γee)) ∈ J|στ1
CP(σt)−−−−→ στ2|Kv = J|στ1|

FS(∞)−−−−→ |στ2|Kv.
We prove the more general statement

∀m ′ 6 m. (m ′, fix f(x).L(γee)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv

by subinduction on m ′.

There are two cases:

subcase 1: m ′ = 0

Since there is no non-negative j such that j < 0, the goal is vacu-

ously true.
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subcase 2: m ′ = m ′′ + 1 6 m
By sub-IH

(m ′′, fix f(x).L(γee)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv (1)

STS: (m ′′ + 1, fix f(x).L(γee)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv.

Pick j < m ′′ + 1 and assume that (j, v) ∈ J|στ1|Kv.
STS: (j, L(γee)[v/x, (fix f(x).L(γee))/f]) ∈ J|στ2|K∞ε .

This follows by IH 4 on the premise instantiated with

• (j,γ[x 7→ v, f 7→ (fix f(x).L(γee))]) ∈ GJx : |στ1|, f : |στ1|
FS(∞)−−−−→

|στ2|, |σΓ |K which holds because

– (j,γ) ∈ GJ|σΓ |K using downward closure (Lemma 33) on

(m,γ) ∈ GJ|σΓ |K using j < m ′′ + 1 6 m.

– (j, v) ∈ J|στ1|Kv, from the assumption above

– (j, fix f(x).L(γee)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv, obtained by down-

ward closure (Lemma 33) on (1) using j 6 m ′′

Case:
∆;Φ; Γ ` vv� τ ∀x ∈ Γ . ∆;Φ |= Γ(x) v � Γ(x) stable(vv)

∆;Φ; Γ , Γ ′ ` vv� � τ
bi-nochange

Assume that |= σΦ and (m,γ) ∈ GJ|σΓ |K.

Then, γ = γ1 ∪ γ2 such that (m,γ1) ∈ GJ|σΓ |K and (m,γ2) ∈ GJ|σΓ | ′K.

TS: (m, L(γvv)) ∈ J|�στ|Kv.
Since vv doesn’t have any free variables from Γ ′ by the first premise,

STS: (m,γ1vv) ∈ J|�στ|Kv = J|στ|Kv.
This follows by IH 2 on the first premise.

Proof of Statement (3). Remember that we are trying to prove:

Assume that ∆;Φa; Γ ` vv � τ and σ ∈ DJ∆K and |= σΦ and (m, δ) ∈
GLU |σΓ |M. Then, (m, δvv) ∈ LU |στ|Mv.

Proof is by induction on the bi-value typing.
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Case:
∆;Φ; x : τ1, f : τ1

CP(t)−−−→ τ2, Γ ` ee� τ2 | t

∆;Φ; Γ ` fix f(x). ee� τ1
CP(t)−−−→ τ2

bi-fix

Assume that |= σΦ and (m, δ) ∈ GLU |σΓ |M.

TS: (m, fix f(x).δee) ∈ LU |στ1
CP(σt)−−−−→ στ2|Mv = LU (|στ1|

FS(∞)−−−−→ |στ2|)Mv.
Let F = fix f(x).δee.

By definition of LU ·Mv, since fix f(x).δee 6= new(·, ·),
STS: (m, fix f(x).δee) ∈ $|στ1| FS(∞)−−−−→ |στ2|%v.
Let F = fix f(x).δee.

We prove the more general statement

∀m ′ 6 m. (m ′, F) ∈ $|στ1| FS(∞)−−−−→ |στ2|%v

by subinduction on m ′.

There are three cases:

• STS: ∀j.(j, L(F)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv ∧ (j, R(F)) ∈ J|στ1|

FS(∞)−−−−→
|στ2|Kv.
Pick j.

We show the left projection only, the right one is similar.

– STS 1: (j, L(F)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv

We prove the more general statement

∀m ′ 6 j. (m ′, L(F)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv

by subinduction on m ′.

There are two cases:

* m
′ = 0

Since there is no non-negative j such that j < 0, the goal

is vacuously true.

* m
′ = m ′′ + 1 6 j

By sub-IH

(m ′′, fix f(x).L(δee)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv (1)
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STS: (m ′′ + 1, fix f(x).L(δee)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv.

Pick j ′′ < m ′′ + 1 and assume that (j ′′, v) ∈ J|στ1|Kv.
STS: (j ′′, L(δee)[v/x, L(F)/f]) ∈ JσA2K∞ε .

This follows by IH 5 on the second premise instantiated

with (j ′′, δ[x 7→ v, f 7→ L(F)]) ∈ GJx : σA1, f : |στ1|
FS(∞)−−−−→

|στ2|, |σΓ |K which holds because

· (j ′′, L(δ)) ∈ GJ|σΓ |K using lemma 32 on (m, δ) ∈ GLU |σΓ |M

· (j ′′, v) ∈ J|στ1|Kv, from the assumption above

· (j ′′, fix f(x).L(δee)) ∈ J|στ1|
FS(∞)−−−−→ |στ2|Kv, obtained by

downward closure (Lemma 33) on (1) using j ′′ 6 m ′′

• m ′ = 0

Since there is no non-negative j such that j < 0, the goal is vacu-

ously true.

• m ′ = m ′′ + 1 6 m
By sub-IH

(m ′′, fix f(x).δee) ∈ $|στ1| FS(∞)−−−−→ |στ2|%v ⊆ LU (|στ1|
FS(∞)−−−−→ |στ2|)Mv

(2)

STS: (m ′′ + 1, fix f(x).δee) ∈ $|στ1| FS(∞)−−−−→ |στ2|%v.
Pick j ′′ < m ′′ + 1 and assume that (j ′′, vv) ∈ LU |στ1|Mv.
STS: (j ′′, δee[vv/x, F/f]) ∈ LU |στ2|M∞ε .

This follows by IH 6 on the second premise instantiated with

(j ′′, δ[x 7→ vv, f 7→ F]) ∈ GLx : U |στ1|, f : U (|στ1|
FS(∞)−−−−→ |στ2|),U |σΓ |M

which holds because

– (j ′′, δ) ∈ GLU |σΓ |M by downward closure (Lemma 33) on (m, δ) ∈
GLU |σΓ |M using j ′′ 6 m.

– (j ′′, vv) ∈ LU |στ1|Mv, from the assumption above

– (j ′′, fix f(x).δee) ∈ LU (|στ1|
FS(∞)−−−−→ |στ2|)Mv, obtained by down-

ward closure (Lemma 33) on (2) using j ′′ 6 m ′′

This completes the proof of this case.
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Proof of Statement (4). There is only one case.

Case:
∆;Φ; Γ ` vvi � τi ∆;Φ; xi : τi, Γ `CP e : τ | t

∆;Φ; Γ ` peq[vvi/xi]� τ | t
bi-expr

Assume that |= σΦ and (m,γ) ∈ GJσΓK.

TS: (m, δpeq[δ(vvi)/xi]) ∈ LστMσtε (∗).
By IH 1 on premise ∆;Φ; Γ ` vvi � τi, we get

(m, δ(vvi)) ∈ LστiMv (1)

By (Fundamental Theorem) Theorem 46 (first clause) on the second

premise using

• σ ∈ DJ∆K,

• (m, δ[xi 7→ δ(vvi)]) ∈ GLxi : στi,σΓM (by eq. (1) and (m, δ) ∈ GLσΓM)

• |= σΦ,

we get (m, δ[xi 7→ δ(vvi)]peq) ∈ LστMσtε which is the same as (∗).

Proof of Statement (5). There is only one case. We only show the left projec-

tion; the right one is similar.

Case:
∆;Φ; Γ ` vvi � τi ∆;Φ; xi : τi, Γ `CP e : τ | t

∆;Φ; Γ ` peq[vvi/xi]� τ | t
bi-expr

Assume that |= σΦ and (m,γ) ∈ GJ|σΓ |K.

TS: (m, L(δpeq[δ(vvi)/xi])) ∈ J|στ|K∞ε (∗).
By IH 2 on first premise ∆;Φ; Γ ` vvi � τi, we get

(m, L(δ(vvi))) ∈ J|στi|Kv (1)

By (Fundamental Theorem) Theorem 46 (third clause) on the second

premise using

• σ ∈ DJ∆K,
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• (m, δ[xi 7→ L(δ(vvi))]) ∈ GLxi : |στi|, |σΓ |M (by eq. (1) and (m, δ) ∈
GL|σΓ |M)

• |= σΦ,

we get (m, δ[xi 7→ L(δ(vvi))]L(peq)) ∈ L|στ|M∞ε which is the same as (∗).

Proof of Statement (6). There is only one case.

Case:
∆;Φ; Γ ` vvi � τi ∆;Φ; xi : τi, Γ `CP e : τ | t

∆;Φ; Γ ` peq[vvi/xi]� τ | t
bi-expr

Assume that |= σΦ and (m,γ) ∈ GLU |σΓ |M.
TS: (m, δpeq[δ(vvi)/xi]) ∈ LU |στ|M∞ε (∗).
By IH 3 on the first premise ∆;Φ; Γ ` vvi � τi, we get

(m, δ(vvi)) ∈ LU |στ|iMv (1)

By (Fundamental Theorem) Theorem 46 (fifth clause) on the second

premise using

• σ ∈ DJ∆K,

• (m, δ[xi 7→ δ(vvi)]) ∈ GLxi : U |στ|i,U |σΓ |M (by eq. (1) and (m, δ) ∈
GLU |σ|ΓM)

• |= σΦ,

we get (m, δ[xi 7→ δ(vvi)]peq) ∈ LU |στ|Mσtε which is the same as (∗).



C
A P P E N D I X F O R B IRELCOST

In this chapter, we first describe the necessary definitions, lemmas and the-
orems for proving the soundness and completeness of the BiRelCost’s unary
and binary (relational) typing with respect to the algorithmic system.

c.1 birelcost lemmas

Lemma 48 (Embedding of Binary Subtyping). If ∆;Φ |= τ v τ ′ then ∃e ∈
RelCost Core such that ∆;Φ; · ` e	 e . 0 :ccc τ diff(0)−−−→ τ ′.

Proof. Proof is by induction on the subtyping derivation. We denote the

witness e of type τ
diff(0)−−−→ τ ′ as coerceτ,τ ′ for clarity.

Case:
∆;Φa |= τ ′1 v τ1 (?) ∆;Φa |= τ2 v τ ′2 (�) ∆;Φa |= t 6 t ′

∆;Φa |= τ1
diff(t)−−−→ τ2 v τ ′1

diff(t ′)−−−−→ τ ′2

r-→

diff

By IH on (?), we get ∃coerceτ ′1,τ1 .

∆;Φ; · ` coerceτ ′1,τ1 	 coerceτ ′1,τ1 . 0 :
ccc τ ′1

diff(0)−−−→ τ1

By IH on (�), we get ∃coerceτ2,τ ′2
.

∆;Φ; · ` coerceτ2,τ ′2
	 coerceτ2,τ ′2

. 0 :ccc τ2
diff(0)−−−→ τ ′2

Then, using these two statements and ∆;Φ |= t 6 t ′ with binary subef-

fecting rule (rule c-r-≡ in Figure 40), we can construct the following

derivation where

e = λx.λy.coerceτ2,τ ′2
(x (coerceτ ′1,τ1 y))

∆;Φ; · ` e	 e . 0 :ccc (τ1
diff(t)−−−→ τ2)

diff(0)−−−→ τ ′1
diff(t ′)−−−−→ τ ′2

391
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Case:
∆;Φ |= unitr v �unitr

r-unit

Then, we can immediately construct the derivation using the rule c-

nochange in Figure 40.

∆;Φ; · ` λx.NC ()	 λx.NC () . 0 :ccc unitr
diff(0)−−−→ �unitr

Case:
∆;Φ |= intr v � intr

r-int-�

Then, we can construct the derivation using the primitive function

boxint : intr
diff(0)−−−→ � intr

∆;Φ; · ` λx.boxintx	 λx.boxintx . 0 :
ccc intr

diff(0)−−−→ � intr

Case:
∆;Φ |= �U (int, int) v intr

r-�U-int

Then, we can construct the derivation using the primitive function

boxU : �U (int, int)
diff(0)−−−→ intr

∆;Φ; · ` λx.boxUx	 λx.boxUx . 0 :ccc �U (int, int)
diff(0)−−−→ intr

Case:
∆;Φ |= � τ v τ

T

Then, we can immediately construct the derivation using the rule c-

der in Figure 40.

∆;Φ; · ` λx.der x	 λx.der x . 0 :ccc � τ diff(0)−−−→ τ
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Case:
∆;Φ |= � τ v �� τ

D

Then, we can immediately construct the derivation using the rule c-

nochange in Figure 40.

∆;Φ; · ` λx.NC x	 λx.NC x . 0 :ccc � τ diff(0)−−−→ �� τ

Case:
∆;Φa |= τ1 v τ2(?)
∆;Φa |= � τ1 v � τ2

B-�

By IH on (?), ∃coerceτ1,τ2 .

∆;Φ; · ` coerceτ1,τ2 	 coerceτ1,τ2 . 0 :ccc τ1
diff(0)−−−→ τ2

Then, using (?) and the rules c-der and c-nochange in Figure 40, we

can construct the derivation

∆;Φ; · ` e	 e . 0 :ccc � τ1
diff(0)−−−→ � τ2

where e = λx.NC (coerceτ1,τ2 (der x))

Case:
∆;Φ |= τ v U (|τ|1, |τ|2)

W

Then, we can immediately construct the derivation using the rule c-

switch in Figure 40.

∆;Φ; · ` λx.switch x	 λx.switch x . 0 :ccc τ diff(0)−−−→ U (|τ|1, |τ|2)

Case:
∆;Φ |= τ v τ

r-refl

Then, we can immediately construct the derivation

∆;Φ; · ` λx.x	 λx.x . 0 :ccc τ diff(0)−−−→ τ
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Case:
∆;Φa |= τ1 v τ2 (?) ∆;Φa |= τ2 v τ3 (�)

∆;Φa |= τ1 v τ3
r-trans

By IH on (?), ∃coerceτ1,τ2 .

i :: S,∆;Φ; · ` coerceτ1,τ2 	 coerceτ1,τ2 . 0 :ccc τ1
diff(0)−−−→ τ2

By IH on (�), ∃coerceτ2,τ3 .

i :: S,∆;Φ; · ` coerceτ2,τ3 	 coerceτ2,τ3 . 0 :ccc τ2
diff(0)−−−→ τ3

Then, using (?) and (�), we can construct the derivation simply by

function composition

∆;Φ; · ` e	 e . 0 :ccc τ1
diff(0)−−−→ τ3

where e = λx.coerceτ2,τ3 (coerceτ1,τ2 x)

Case:
∆;Φ |= � (τ1

diff(t)−−−→ τ2) v � τ1
diff(0)−−−−→ � τ2

r-→ �diff

Then, we can immediately construct the derivation where

e = λx.λy.NC (der x) (der y))

∆;Φ; · ` e	 e . 0 :ccc � (τ1
diff(k)−−−→ τ2)

diff(0)−−−→ � τ1
diff(0)−−−→ � τ2

Case:
∆;Φ |= U (A1

exec(k,t)−−−−−→ A2,A ′1
exec(k ′,t ′)−−−−−−→ A ′2) v U (A1,A ′1)

diff(t−k ′)−−−−−−→ U (A2,A ′2)
r-

→ execdiff

Then, we can immediately construct the following derivation where

e = λx.λy.switch (x y) using the c-switch and c-app rules.

∆;Φ; · ` e	 e . 0 :ccc τ
where τ = (U (A1

exec(k,t)−−−−−→ A2,A ′1
exec(k ′,t ′)−−−−−−→ A ′2))

diff(0)−−−→ U (A1,A ′1)
diff(t−k ′)−−−−−−→ U (A2,A ′2)

Case:
i :: S,∆;Φa |= τ v τ ′ (?) i :: S,∆;Φa |= t6 t ′ i 6∈ FV(Φa)

∆;Φa |= ∀i
diff(t)
:: S. τ v ∀i

diff(t ′)
:: S. τ ′

r-∀diff

By IH on (?), ∃coerceτ,τ ′ . i :: S,∆;Φ; · ` coerceτ,τ ′ 	 coerceτ,τ ′ . 0 :ccc τ
diff(0)−−−→ τ ′
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Then, using this, the second premise and the c-r-iLam and c-r-iApp

rules in RelCost Core, we can construct the following derivation:

∆;Φ; · ` λx.Λi.coerceτ,τ ′ (x [i])	 λx.Λi.coerceτ,τ ′ (x [i]) . 0 :ccc τ2
where τr = (∀i

diff(t)
:: S. τ)

diff(0)−−−→ ∀i
diff(t ′)
:: S. τ ′

Case:
∆;Φ |= � (∀i

diff(t)
:: S. τ) v ∀i

diff(0)
:: S.� τ

r-∀ �

Then, we can immediately construct the following derivation using

the c-der, c-nochange, c-r-iLam and c-r-iApp rules in Figures 40 and 42.

∆;Φ; · ` λx.Λi.NC ((der x) [i])	 λx.Λi.NC ((der x) [i]) . 0 :ccc τr
where τr = � (∀i

diff(t)
:: S. τ)

diff(0)−−−→ ∀i
diff(t ′)
:: S.� τ

Case:
∆;Φ |= U (∀i

exec(k,t)
:: S.A,∀i

exec(k ′,t ′)
:: S.A ′) v ∀i

diff(t−k ′)
:: S.U (A,A ′)

r-

∀U
Then, we can immediately construct the following derivation where

e = λx.Λi.switch (x [i]) using the c-switch and c-iApp rules in Fig-

ures 40 and 42.

∆;Φ; · ` e	 e . 0 :ccc (U (∀i
exec(k,t)

:: S.A, ∀i
exec(k ′,t ′)

:: S.A ′))
diff(0)−−−→ ∀i

diff(t−k ′)
:: S.U (A,A ′)

Case:
∆;Φa |= τ1 v τ ′1 (?) ∆;Φa |= τ2 v τ ′2 (�)

∆;Φa |= τ1 × τ2 v τ ′1 × τ ′2
r-×

By IH on (?), ∃coerceτ1,τ ′1
. ∆;Φ; · ` coerceτ1,τ ′1

	 coerceτ1,τ ′1
. 0 :ccc τ1

diff(0)−−−→ τ ′1

By IH on (�), ∃coerceτ2,τ ′2
. ∆;Φ; · ` coerceτ2,τ ′2

	 coerceτ2,τ ′2
. 0 :ccc τ2

diff(0)−−−→ τ ′2
Then, using these two statements and the rules c-prod and c-proji in

Figure 41, we can show the following derivation where

e = λx.〈coerceτ1,τ ′1
(π1x), coerceτ2,τ ′2

(π2x)〉

∆;Φ; · ` e	 e . 0 :ccc (τ1 × τ2)
diff(0)−−−→ τ ′1 × τ ′2
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Case:
∆;Φ |= � τ1 ×� τ2 ≡ � (τ1 × τ2)

r-×�

We show the direction from right-to-left using the rules c-der, c-nochange,

c-r-proji, c-r-let and c-r-prod in Figures 40 to 42 where the expression

e = λx.let a = π1x in

let b = π2x in NC (〈der a, der b〉).
∆;Φ; · ` e	 e . 0 :ccc � τ1 × � τ2

diff(0)−−−→ � (τ1 × τ2)

Case:
∆;Φ |= U (A1 ×A2,A ′1 ×A ′2) v U (A1,A ′1)×U (A2,A ′2)

r-×U

Then, we can immediately construct the following derivation where

e = λx.(〈switch π1x, switch π2x〉) using the c-switch, c-r-prod and c-

r-proji rules in Figures 40 and 41.

∆;Φ; · ` e	 e . 0 :ccc (U (A1 × A2,A ′1 × A ′2))
diff(0)−−−→ U (A1,A ′1) × U (A2,A ′2)

Case:
∆;Φ |= � τ1 +� τ2 v � (τ1 + τ2)

r-+�

We can construct the following derivation by using the rules c-der,

c-nochange, c-r-case, c-r-inl and c-r-inr in Figure 40 where the expres-

sion

e = λx. case (x,a.NC (inl der a),b.NC (inr der b)).

∆;Φ; · ` e	 e . 0 :ccc � τ1 + � τ2
diff(0)−−−→ � (τ1 + τ2)

Case:
∆;Φa |= n

.
= n ′ (?) ∆;Φa |= α6α ′ (�) ∆;Φa |= τ v τ ′ (†)

∆;Φa |= list[n]α τ v list[n ′]α
′
τ ′

r-

l1

By IH on (†), ∃coerceτ,τ ′ .

∆;Φ; · ` coerceτ,τ ′ 	 coerceτ,τ ′ . 0 :ccc τ
diff(0)−−−→ τ ′

We first construct the more generic term for type:

unitr
diff(0)−−−→ ∀n::N. ∀n ′::N.∀α::N. ∀α ′::N.

((n = n ′ ∧α 6 α ′) & list[n]α τ)
diff(0)−−−→ list[n ′]α

′
τ ′

(1)
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and then instantiate the term for eq. (1) later.

It can be shown that such a derivation can be constructed for expres-

sion

e ′ = fix fList(_).Λn.Λn ′.Λα.Λα ′.λx.clet x as e in

case e of

nil → nil

| h ::N tl → let r = fList () [n− 1] [n ′ − 1] [α] [α ′] tl in

consNC(NC (coerceτ,τ ′ der h), r)

| h ::C tl → let r = fList () [n− 1] [n ′ − 1] [α− 1] [α ′ − 1] tl in

consC(coerceτ,τ ′ h, r)

Then, we can instantiate fList using (?) and (�) as follows where

e ′′ = λx.fList () [n][n ′][α][α ′] x

∆;Φ; · ` e ′′ 	 e ′′ . 0 :ccc list[n]α τ
diff(0)−−−→ list[n ′]α

′
τ ′

Case:
∆;Φ |= list[n]α� τ v � (list[n]α τ)

r-l�

We first construct the more generic term for type

unitr
diff(0)−−−→ ∀n::N.∀α::N. list[n]α� τ diff(0)−−−→ � (list[n]α τ) (1)

and then instantiate the term for eq. (1) later. It can be shown that

such a derivation can be constructed for expression

e ′ = fix fList(_).Λn.Λα.λx.

case e of

nil → NC (nil )

| h ::N tl → let r = fList () [n− 1] [α] tl in NC (consNC(der h, der r))

| h ::C tl → let r = fList () [n− 1] [α− 1] tl in NC (consC(der h, der r))

Then, we can instantiate fList with a concrete n and α as follows

where e ′′ = λx.fList () [n][α] x

∆;Φ; · ` e ′′ 	 e ′′ . 0 :ccc list[n]α� τ diff(0)−−−→ � (list[n]α τ)
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Case:
∆;Φ |= α

.
= 0

∆;Φ |= list[n]α τ v list[n]α� τ
r-l2

We first construct the more generic term for type

unitr
diff(0)−−−→ ∀n::N.∀α::N. (α = 0 & list[n]α τ)

diff(0)−−−→ list[n]α� τ (1)

and then instantiate the term for eq. (1) later. It can be shown that

such a derivation can be constructed for expression

e ′ = fix fList(_).Λn.Λα.λx.clet x as e in

case e of

nil → nil

| h ::N tl → let r = fList () [n− 1][α] tl in consNC(NC h, r)

| h ::C tl → contra

Then, we can instantiate fList with a concrete n and α (note the

premise α = 0) as follows where e ′′ = λx.fList () [n][α] x

∆;Φ; · ` e ′′ 	 e ′′ . 0 :ccc list[n]0 τ
diff(0)−−−→ list[n]0� τ

Case:
i :: S,∆;Φa |= τ v τ ′ (?) i 6∈ FV(Φa)

∆;Φa |= ∃i::S. τ v ∃i::S. τ ′
r-∃

By IH on (?), ∃coerceτ,τ ′ .

i :: S,∆;Φ; · ` coerceτ,τ ′ 	 coerceτ,τ ′ . 0 :ccc τ
diff(0)−−−→ τ ′

Then, using this and the c-r-pack and c-r-unpack rules in RelCost Core

in Figure 42, we can construct the following derivation where

e = λx.unpack x as (y, i) in pack (coerceτ,τ ′ y) with i

∆;Φ; · ` e	 e . 0 :ccc (∃i::S. τ)
diff(0)−−−→ ∃i::S. τ ′

Case:
∆;Φ |= ∃i::S.� τ v � (∃i::S. τ)

r-∃�

Then, we can immediately construct the following derivation using

the c-der, c-nochange, c-r-pack and c-r-unpack rules in in Figures 40
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and 42 where e = λx.unpack x as (y, i) in NC (pack der y with i).

∆;Φ; · ` e	 e . 0 :ccc (∃i::S.� τ) diff(0)−−−→ � (∃i::S. τ)

Case:
∆;Φa ∧C ′ |= C (?) ∆;Φa |= τ v τ ′ (�)

∆;Φa |= C ⊃ τ v C ′ ⊃ τ ′
r-c-impl

By IH on (�), ∃coerceτ,τ ′ .

∆;Φ; · ` coerceτ,τ ′ 	 coerceτ,τ ′ . 0 :ccc τ
diff(0)−−−→ τ ′

Then, using this and the premise (?) along with the c-r-c-implI and

c-r-c-implE rules in Figure 42, we can construct the following deriva-

tion where

e = λx.coerceτ,τ ′ (celim⊃ x)

∆;Φ; · ` e	 e . 0 :ccc (C ⊃ τ) diff(0)−−−→ C ′ ⊃ τ ′

Case:
∆;Φ |= � (C ⊃ τ) v C ⊃ � τ

r-c-impl-�

Then, we can immediately construct the following derivation using

the c-der, c-nochange and c-r-c-implE rules in RelCost Core where

e = λx.NC (celim⊃ der x).

∆;Φ; · ` e	 e . 0 :ccc � (C ⊃ τ) diff(0)−−−→ (C ⊃ � τ)

Case:
∆;Φa ∧C |= C ′ (?) ∆;Φa |= τ v τ ′ (�)

∆;Φa |= C & τ v C ′ & τ ′
r-c-and

By IH on (�), ∃coerceτ,τ ′ .

∆;Φ; · ` coerceτ,τ ′ 	 coerceτ,τ ′ . 0 :ccc τ
diff(0)−−−→ τ ′

Then, using this and the premise (?) along with the c-r-c-prodI and

c-r-c-prodE rules in Figure 41, we can construct the following deriva-
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tion where

e = λx.clet x as y in coerceτ,τ ′ y

∆;Φ; · ` e	 e . 0 :ccc (C & τ)
diff(0)−−−→ C ′ & τ ′

Case:
∆;Φ |= C & � τ v � (C & τ)

r-c-and-�

Then, we can immediately construct the following derivation using

the c-der, c-nochange, c-r-c-prodI and c-r-c-prodE rules in Figures 40

to 42 where e = λx.clet x as y in NC (der y).

∆;Φ; · ` e	 e . 0 :ccc (C & � τ) diff(0)−−−→ � (C & τ)

Lemma 49 (Reflexivity of Algorithmic Binary Type Equivalence). ∆;ψa;Φa |=

τ ≡ τ⇒ Φ and ∆;ψa;Φa |= Φ.

Proof. By induction on the binary type.

Lemma 50 (Reflexivity of Unary Algorithmic Subtyping). ∆;Φa |=A A v
A⇒ Φ and ∆;Φa |= Φ.

Proof. By induction on the unary type.

Lemma 51 (Transitivity of Unary Algorithmic Subtyping). If ∆;Φa |=A A1 v
A2 ⇒ Φ1 and ∆;Φa |=A A2 v A3 ⇒ Φ2 and ∆;Φa |= Φ1 ∧Φ2, then ∆;Φa |=A

A1 v A3 ⇒ Φ3 for some Φ3 such that ∆;Φa |= Φ3.

Proof. By induction on the first subtyping derivation.

Theorem 52 (Soundness of the Algorithmic Unary Subtyping). Assume that

1. ∆;ψa;Φa |=A A ′ v A⇒ Φ

2. FIV(Φa,A,A ′) ⊆ ∆,ψa
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3. ∆;Φa[θa] |= Φ[θa] is provable s.t ∆ � θa : ψa is derivable.

Then ∆;Φa[θa] |=A A ′[θa] v A[θa].

Proof. By induction on the algorithmic unary subtyping derivation.

Theorem 53 (Completeness of the Unary Algorithmic Subtyping). Assume

that ∆;Φa |=A A ′ v A. Then ∃Φ. such that ∆;Φa |=A A ′ v A ⇒ Φ and

∆;Φa |= Φ.

Proof. By induction on the unary subtyping derivation.

Theorem 54 (Soundness of the Algorithmic Binary Type Equality). Assume

that

1. ∆;ψa;Φa |= τ ′ ≡ τ⇒ Φ

2. FIV(Φa, τ, τ ′) ⊆ ∆,ψa

3. ∆;Φa[θa] |= Φ[θa] is provable s.t ∆ � θa : ψa is derivable.

Then ∆;Φa[θa] |= τ ′[θa] ≡ τ[θa].

Proof. By induction on the algorithmic binary type equivalence derivation.

Theorem 55 (Completeness of the Binary Algorithmic Type Equivalence).

Assume that ∆;Φa |= τ ′ ≡ τ. Then ∃Φ. such that ∆;Φa |= τ ′ ≡ τ ⇒ Φ and

∆;Φa |= Φ.

Proof. By induction on the binary subtyping derivation.

Theorem 56 (Soundness of RelCost Core & Type Preservation of Embedding).

The following holds.

1. If∆;Φa;Ω `tk e e∗ : A, then∆;Φa;Ω `tk e∗ :ccc A and∆;Φa;Ω `tk e : A.

2. If ∆;Φa; Γ ` e1 	 e2  e∗1 	 e∗2 . t : τ, then ∆;Φa; Γ ` e∗1 	 e∗2 . t :ccc τ
and

∆;Φa; Γ ` e1 	 e2 . t : τ.
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Proof. Proof is by simultaneous induction on the embedding derivations.

The proof follows from the embedding rules presented in Figures 40 to 42.

We show a few representative cases.

Proof of Theorem 56.2:

Case:

∆;Φa; |Γ |1 `t1k1 e1  e∗1 : A1 (?) ∆;Φa; |Γ |2 `t2k2 e2  e∗2 : A2 (�)
E = switch e∗1 E ′ = switch e∗2

∆;Φa; Γ ` e1 	 e2  E	 E ′ . t1 − k2 : U (A1,A2)
e-switch

By Theorem 56.1 on (?), we get ∆;Φa;Ω `t1k1 e
∗
1 :
ccc A1 (??).

By Theorem 56.1 on (�), we get ∆;Φa;Ω `t2k2 e
∗
2 :
ccc A2 (��).

Then, we conclude as follows:
∆;Φa; |Γ |1 `t1k1 e1 :

ccc A1 ∆;Φa; |Γ |2 `t2k2 e2 :
ccc A2

∆;Φa; Γ ` switch e1 	 switch e2 . t1 − k2 :ccc U (A1,A2)
c-switch

Case:

∆;Φa; Γ ` e	 e e∗ 	 e∗ . t : τ (?)

∀xi ∈ dom(Γ), ei = coerceΓ(xi),� Γ(xi) (�)
e ′ = let yi = ei xi in NC e∗[yi/xi]

∆;Φa; Γ , Γ ′ ` e	 e e ′ 	 e ′ . 0 : � τ
e-nochange

By Theorem 56.2 on (?), we get ∆;Φa; Γ ` e∗ 	 e∗ . t :ccc τ (??).

By Lemma 48 using (�), we know that

∆;Φa; · ` ei 	 ei . 0 :ccc Γ(xi)
diff(0)−−−→ � Γ(xi) (��).

By applying c-r-var rule in Figure 40, we get

∆;Φa; Γ ` xi 	 xi . t :ccc Γ(xi) (♠).
By applying c-r-app rule in Figure 41 to (��) and (♠), we get

∆;Φa; Γ ` ei xi 	 ei xi . t :ccc � Γ(xi) (♠♠).
By substituting in (??), we get

∆;Φa;yi : � Γ(xi) ` e∗[yi/xi]	 e∗[yi/xi] . t :ccc τ (†).
By applying c-nochange rule in Figure 40 to (†), we get

∆;Φa;yi : � Γ(xi), Γ , Γ ′ ` NC e∗[yi/xi]	 NC e∗[yi/xi] . t :ccc � τ (††).
By applying c-r-let rule in Figure 42 to (♠♠) and (††), we can con-

clude as follows

∆;Φa; Γ , Γ ′ ` let yi = ei xi in NC e∗[yi/xi]	 let yi = ei xi in NC e∗[yi/xi] . t :ccc � τ.
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Case:

∆;Φa ` τ1
diff(t)−−−→ τ2 wf

∆;Φa; x : τ1, f : � (τ1
diff(t)−−−→ τ2), Γ ` e	 e e∗ 	 e∗ . t : τ2 (?)

∀xi ∈ dom(Γ), ei = coerceΓ(xi),� Γ(xi) (�)
e∗∗ = let yi = ei xi in fixNC f(x).e∗[yi/xi]

∆;Φa; Γ ` fix f(x).e	 fix f(x).e e∗∗ 	 e∗∗ . 0 : � (τ1
diff(t)−−−→ τ2)

e-r-fixNC

By Theorem 56.2 on (?), we get

∆;Φa; x : τ1, f : � (τ1
diff(t)−−−→ τ2), Γ ` e∗ 	 e∗ . t :ccc τ2 (??).

By Lemma 48 using (�), we know that

∆;Φa; · ` ei 	 ei . 0 :ccc Γ(xi)
diff(0)−−−→ � Γ(xi) (��).

By applying c-r-var rule in Figure 40, we get

∆;Φa; Γ ` xi 	 xi . t :ccc Γ(xi) (♠).
By applying c-r-app rule in Figure 41 to (��) and (♠), we get

∆;Φa; Γ ` ei xi 	 ei xi . t :ccc � Γ(xi) (♠♠).
By substituting in (??), we get

∆;Φa; x : τ1, f : � (τ1
diff(t)−−−→ τ2),yi : � Γ(xi) ` e∗[yi/xi]	 e∗[yi/xi] . t :ccc τ2 (†).

By applying c-r-fixNC rule in Figure 40 to (†), we get

∆;Φa;yi : � Γ(xi), Γ , Γ ′ ` fixNC f(x).e∗[yi/xi]	 fixNC f(x).e∗[yi/xi] . t :ccc � (τ1
diff(t)−−−→ τ2)

(††).
By applying c-r-let rule in Figure 42 to (♠♠) and (††), we can con-

clude as follows

∆;Φa; Γ , Γ ′ ` e∗∗ 	 e∗∗ . t :ccc � (τ1
diff(t)−−−→ τ2)

where e∗∗ = let yi = ei xi in fixNC f(x).e∗[yi/xi].

Case:

∆;Φa ` τ1
diff(t)−−−→ τ2 wf

∆;Φa; x : τ1, f : τ1
diff(t)−−−→ τ2, Γ ` e1 	 e2  e1

∗ 	 e2∗ . t : τ2 (?)

∆;Φa; Γ ` fix f(x).e1 	 fix f(x).e2  fix f(x).e1
∗ 	 fix f(x).e2

∗ . 0 : τ1
diff(t)−−−→ τ2

e-r-fix

By Theorem 56.2 on (?), we get

∆;Φa; x : τ1, f : τ1
diff(t)−−−→ τ2, Γ ` e∗1 	 e∗2 . t :ccc τ2 (??).

By applying c-r-fix rule in Figure 40 to (??), we conclude as follows

we get

∆;Φa; Γ ` fix f(x).e∗1 	 fix f(x).e∗2 . t :ccc τ1
diff(t)−−−→ τ2.
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Case:

∆;Φa; Γ ` e1 	 e2  e1
∗ 	 e2∗ . t : τ (?)

∆;Φa |= τ v τ ′ (�) e ′ = coerceτ,τ ′ (†) ∆;Φa |= t6 t ′

∆;Φa; Γ ` e1 	 e2  e ′ e∗1 	 e ′ e∗2 . t ′ : τ ′
e-r-v

By Theorem 56.2 on (?), we get ∆;Φa; Γ ` e∗1 	 e∗2 . t :ccc τ (??).

By Lemma 48 using (�), we know that ∆;Φa; · ` e ′ 	 e ′ . 0 :ccc τ diff(0)−−−→ τ ′ (��).
By applying c-r-app rule in Figure 41 to (??) and (��), we get

∆;Φa; Γ ` e ′ e∗1 	 e ′ e∗2 . t :ccc τ ′ (♠).
By reflexivity of binary type equivalence, we know ∆;Φa |= τ ′ ≡
τ ′ (♠♠).
Then, we conclude as follows:

∆;Φa; Γ ` e ′ e∗1 	 e ′ e∗2 . t :ccc τ ′ (♠) ∆;Φa |= τ ′ ≡ τ ′ (♠♠)
∆;Φa |= t6 t ′ (†)

∆;Φa; Γ ` e ′ e∗1 	 e ′ e∗2 . t ′ :ccc τ ′
c-r−vvv

Case:

∆;C∧Φa; Γ ` e1 	 e2  e1
∗ 	 e2∗ . t : τ (?)

∆;¬C∧Φa; Γ ` e1 	 e2  e∗∗1 	 e∗∗2 . t : τ (�) ∆ ` C wf

E = split (e∗1, e
∗∗
1 ) with C E ′ = split (e∗2, e

∗∗
2 ) with C

∆;Φa; Γ ` e1 	 e2  E	 E ′ . t : τ
e-r-split

By Theorem 56.2 on (?), we get ∆;C∧Φa; Γ ` e∗1 	 e∗2 . t :ccc τ (??).

By Theorem 56.2 on (�), we get ∆;¬C∧Φa; Γ ` e∗∗1 	 e∗∗2 . t :ccc τ (��).
By applying c-r-split rule in Figure 40 to (??) and (��), we get

Then, we conclude as follows:

∆;Φa ∧C; Γ ` e∗1 	 e∗2 . t :ccc τ (??)

∆;Φa ∧¬C; Γ ` e∗∗1 	 e∗∗2 . t :ccc τ (��)
∆;Φa; Γ ` split (e∗1, e

∗∗
1 ) with C	 split (e∗2, e

∗∗
2 ) with C . t :ccc τ

c-r-split
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Case:
∆;Φa |= ⊥ (?) ∆;Φa ` Γ wf (�)

∆;Φa; Γ ` e1 	 e2  contra e1 	 contra e2 . t : τ
e-r-contra

By applying c-r-contra rule in Figure 40 to (?), we get

Then, we conclude as follows:

∆;Φa |= ⊥ (?) (�)
∆;Φa; Γ ` contra e1 	 contra e2 . t :ccc τ

c-r-contra

Case:

∆;Φa; Γ ` e	 e ′  e∗ 	 e ′∗ . t : list[n]α τ (?)

∆;Φa ∧n = 0; Γ ` e1 	 e ′1  e1
∗ 	 e ′1

∗ . t ′ : τ ′ (�)
Φ ′a = Φa ∧n = i+ 1

i,∆;Φ ′a;h : � τ, tl : list[i]α τ, Γ ` e2 	 e ′2  e2
∗ 	 e ′2

∗ . t ′ : τ ′ (†)
Φ ′′a = Φa ∧n = i+ 1∧α = β+ 1

i,β,∆;Φ ′′a ;h : τ, tl : list[i]β τ, Γ ` e2 	 e ′2  e∗3 	 e ′∗3 . t ′ : τ ′ (♠)

E =

case e∗ of nil → e∗1
| h ::NC tl → e∗2
| h ::C tl → e∗3

E ′ =

case e ′∗ of nil → e ′∗1
| h ::NC tl → e ′∗2
| h ::C tl → e ′∗3

∆;Φa; Γ `
case e of nil → e1

| h :: tl→ e2
	 case e of nil → e ′1
| h :: tl→ e ′2

 E	 E ′ . t+ t ′ : τ ′
e-r-caseL

By Theorem 56.2 on (?), we get ∆;Φa; Γ ` e∗ 	 e ′∗ . t :ccc list[n]α τ (??).

By Theorem 56.2 on (�), we get ∆;Φa∧n = 0; Γ ` e∗1 	 e ′∗1  e∗1
∗ 	 e ′∗1

∗ . t ′ : τ ′ (��)
By Theorem 56.2 on (†), we get

i,∆;Φ ′a;h : � τ, tl : list[i]α τ, Γ ` e∗2 	 e ′∗2  e∗2
∗ 	 e ′∗2

∗ . t ′ : τ ′ (††) By

Theorem 56.2 on (♠), we get

i,β,∆;Φ ′′a ;h : τ, tl : list[i]β τ, Γ ` e∗3 	 e ′∗3  e∗3
∗ 	 e ′∗3

∗ . t ′ : τ ′ (♠♠).
Then we conclude by applying c-r-caseL rule in Figure 40 to (??), (�, �), (††), (♠,♠)

∆;Φa; Γ ` e∗ 	 e ′∗ . t :ccc list[n]α τ

∆;Φa ∧n = 0; Γ ` e∗1 	 e ′∗1 . t ′ :ccc τ ′ Φ ′a = Φa ∧n = i+ 1

i,∆;Φ ′a;h : � τ, tl : list[i]α τ, Γ ` e∗2 	 e ′∗2 . t ′ :ccc τ ′

Φ ′′a = Φa ∧n = i+ 1∧α = β+ 1

i,β,∆;Φ ′′a ;h ′ : τ, tl : list[i]β τ, Γ ` e∗3 	 e ′∗3 . t ′ :ccc τ ′

∆;Φa; Γ `
case e of nil → e∗1

| h ::N tl → e∗2
| h ′ ::C tl

′ → e∗3

	
case e of nil → e ′∗1

| h ::N tl → e ′∗2
| h ′ ::C tl

′ → e ′∗3

. t+ t ′ :ccc τ ′

c-r-caseL
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Theorem 57 (Completeness of RelCost Core). The following holds.

1. If ∆;Φ;Ω `tk e : A then, ∃ e∗ such that ∆;Φ;Ω `tk e e∗ : A.

2. If ∆;Φ; Γ ` e1 	 e2 . t : τ then, ∃ e∗1 and ∃ e∗2 such that

∆;Φ; Γ ` e1 	 e2  e∗1 	 e∗2 . t : τ.

Proof. Proof is by simultaneous induction on the typing derivations. The

proof follows from the embedding rules presented in Figures Figures 46

to 49. We show a few representative cases.

Proof of Theorem 57.1:

Case:

∆;Φa;Ω `tk e : A (?) ∆;Φa |= A v A ′ (�)
∆;Φa |= k ′ 6 k (†) ∆;Φa |= t 6 t ′ ††

∆;Φa;Ω `t ′k ′ e : A ′
vvv exec

By Theorem 57.1 on (?), we get ∃ e∗ such that ∆;Φ;Ω `tk e e∗ : A (??).

By e-u-v rule using (??), (�), (†) and (††), we conclude as follows
∆;Φa;Ω `tk e e∗ : A ∆;Φa |=A A v A ′

∆;Φa |= k ′6k ∆;Φa |= t6 t ′

∆;Φa;Ω `t ′k ′ e e∗ : A ′
e-u-v

Proof of Theorem 57.2:

Case:
∆;Φa; |Γ |1 `t1k1 e1 : A1 (?) ∆;Φa; |Γ |2 `t2k2 e2 : A2 (�)

∆;Φa; Γ ` e1 	 e2 . t1 − k2 : U (A1,A2)
switch

By Theorem 57.1 on (?), we get ∃ e∗1 such that ∆;Φ;Ω `t1k1 e1  e1
∗ : A1 (??).

By Theorem 57.1 on (�), we get ∃ e∗2 such that ∆;Φ;Ω `t2k2 e2  e2
∗ : A2 (��).

By e-switch embedding rule using (??) and (��), we can conclude as

follows:
∆;Φa; |Γ |1 `t1k1 e1  e∗1 : A1 (??)

∆;Φa; |Γ |2 `t2k2 e2  e∗2 : A2 (��)
E = switch e∗1 E ′ = switch e∗2

∆;Φa; Γ ` e1 	 e2  E	 E ′ . t1 − k2 : U (A1,A2)
e-switch.
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Case:

∆;Φa; Γ ` e	 e . t : τ (?)

∀x ∈ dom(Γ). ∆;Φa |= Γ(x) v � Γ(x) (�)
∆;Φa; Γ , Γ ′;Ω ` e	 e . 0 : � τ

nochange

By Theorem 57.2 on (?), we get ∃ e∗ such that

∆;Φ; Γ ` e	 e e∗ 	 e∗ . t : τ (†).
By Lemma 48 on (�), we get

∃ei = coerceΓ(xi),� (Γ(xi) for all xi ∈ dom(Γ) (††).
By e-nochange embedding rule using (†) and (††), we can conclude

as follows:
∆;Φa; Γ ` e	 e e∗ 	 e∗ . t : τ (†)

∀xi ∈ dom(Γ), ei = coerceΓ(xi),� Γ(xi) (††)
e ′ = let yi = ei xi in NC e∗[yi/xi]

∆;Φa; Γ , Γ ′ ` e	 e e ′ 	 e ′ . 0 : � τ
e-nochange.

Case:

∆;Φa; Γ ` e	 e ′ . t : list[n]α τ (?)

∆;Φa ∧n = 0; Γ ` e1 	 e ′1 . t ′ : τ ′ (�)
i,∆;Φa ∧n = i+ 1;h : � τ, tl : list[i]α τ, Γ ` e2 	 e ′2 . t ′ : τ ′ (†)

i,β,∆;Φa ∧n = i+ 1∧α = β+ 1;h : τ, tl : list[i]β τ, Γ ` e2 	 e ′2 . t ′ : τ ′ (♠)

∆;Φa; Γ `
case e of nil → e1

| h :: tl → e2
	 case e ′ of nil → e ′1
| h :: tl → e ′2

. t+ t ′ : τ ′
r-

caseL

By Theorem 57.2 on (?), we get ∃ e∗ and ∃ e ′∗ s.t.

∆;Φ; Γ ` e	 e ′  e∗ 	 e ′∗ . t : list[n]α τ (??).

By Theorem 57.2 on (�), we get ∃ e∗1 and ∃ e ′∗1 s.t.

∆;n .
= 0∧Φ; Γ ` e1 	 e ′1  e∗1 	 e ′∗1 . t : τ ′ (��).

By Theorem 57.2 on (†), we get ∃ e∗2 and ∃ e ′∗2 s.t.

i :: S,∆;Φ ′a;h : � τ, tl : list[i]α τ, Γ ` e2 	 e ′2  e∗2 	 e ′∗2 . t : τ ′ (††)
where Φ ′a = Φa ∧n = i+ 1.

By Theorem 57.2 on (♠), we get ∃ e∗3 and ∃ e ′∗3 s.t.

i :: S,β :: S,∆;Φ ′′a ;h : τ, tl : list[i]β τ, Γ ` e2 	 e ′2  e∗3 	 e ′∗3 . t : τ ′ (♠♠).
where Φ ′′a = Φa ∧n = i+ 1∧α = β+ 1.

By e-caseL embedding rule using (??), (��), and (♠♠), we can con-

clude as follows
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∆;Φa; Γ ` e	 e ′  e∗ 	 e ′∗ . t : list[n]α τ

∆;Φa ∧n = 0; Γ ` e1 	 e ′1  e1
∗ 	 e ′1

∗ . t ′ : τ ′

Φ ′a = Φa ∧n = i+ 1

i,∆;Φ ′a;h : � τ, tl : list[i]α τ, Γ ` e2 	 e ′2  e2
∗ 	 e ′2

∗ . t ′ : τ ′

Φ ′′a = Φa ∧n = i+ 1∧α = β+ 1

i,β,∆;Φ ′′a ;h : τ, tl : list[i]β τ, Γ ` e2 	 e ′2  e∗3 	 e ′∗3 . t ′ : τ ′

E =

case e∗ of nil → e∗1
| h ::NC tl → e∗2
| h ::C tl → e∗3

E ′ =

case e ′∗ of nil → e ′∗1
| h ::NC tl → e ′∗2
| h ::C tl → e ′∗3

∆;Φa; Γ `
case e of nil → e1

| h :: tl→ e2
	 case e of nil → e ′1
| h :: tl→ e ′2

 E	 E ′ . t+ t ′ : τ ′
e-r-caseL

Case:

∆;Φa ` τ1
diff(t)−−−→ τ2 wf

∆;Φa; x : τ1, f : � (τ1
diff(t)−−−→ τ2), Γ ` e	 e . t : τ2 (?)

∀x ∈ dom(Γ). ∆;Φa |= Γ(x) v � Γ(x) (�)

∆;Φa; Γ ` fix f(x).e	 fix f(x).e . 0 : � (τ1
diff(t)−−−→ τ2)

r-fixNC

By Theorem 57.2 on (?), we get ∃ e∗ such that ∆;Φ; x : τ1, f : � (τ1
diff(t)−−−→

τ2), Γ ` e	 e e∗ 	 e∗ . t : τ2 (??).

By Lemma 48 on (�), we get ∃ei = coerceΓ(xi),� (Γ(xi) for all xi ∈
dom(Γ) (��).

By e-fixNC embedding rule using (??) and (��), we can conclude as

follows:
∆;Φa ` τ1

diff(t)−−−→ τ2 wf

∆;Φa; x : τ1, f : � (τ1
diff(t)−−−→ τ2), Γ ` e	 e e∗ 	 e∗ . t : τ2

∀xi ∈ dom(Γ), ei = coerceΓ(xi),� Γ(xi)
e∗∗ = let yi = ei xi in fixNC f(x).e∗[yi/xi]

∆;Φa; Γ ` fix f(x).e	 fix f(x).e e∗∗ 	 e∗∗ . 0 : � (τ1
diff(t)−−−→ τ2)

e-r-fixNC.

Case:
i :: S,∆;Φa; Γ ` e	 e ′ . t : τ (?) i 6∈ FIV(Φa; Γ)

∆;Φa; Γ ` Λ.e	Λ.e ′ . 0 : ∀i
diff(t)
:: S. τ

r-iLam

By Theorem 57.2 on (?), we get ∃ e∗ and ∃ e ′∗ such that

i :: S,∆;Φ; Γ ` e	 e ′  e∗ 	 e ′∗ . t : τ (??).
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By e-iLam embedding rule using (??) , we can conclude as follows:
i :: S,∆;Φa; Γ ` e	 e ′  e∗ 	 e ′∗ . t : τ i 6∈ FIV(Φa; Γ)

∆;Φa; Γ ` Λ.e	Λ.e ′  Λi.e∗ 	Λi.e ′∗ . 0 : ∀i
diff(t)
:: S. τ

e-r-iLam.

Case:
∆;Φa; Γ ` e	 e ′ . t : ∀i

diff(t ′)
:: S. τ (?) ∆ ` I : S (�)

∆;Φa; Γ ` e[ ] 	 e ′[ ] . t+ t ′[I/i] : τ{I/i}
r-iApp

By Theorem 57.2 on (?), we get ∃ e∗ such that

∆;Φ; Γ ` e	 e ′  e∗ 	 e ′∗ . t : ∀i
exec(t ′,τ)

:: S. (??).

By e-iApp embedding rule using (??) and (�), we can conclude as

follows:

∆;Φa; Γ ` e	 e ′  e∗ 	 e ′∗ . t : ∀i
diff(t ′)
:: S. τ ∆ ` I : S

∆;Φa; Γ ` e[]	 e ′[] e∗[I]	 e ′∗[I] . t+ t ′[I/i] : τ{I/i}
e-r-iApp.

Case:
∆;Φa; Γ ` e	 e ′ . t : τ{I/i} (?) ∆ ` I :: S (�)

∆;Φa; Γ ` pack e	 pack e ′ . t : ∃i::S. τ
r-pack

By Theorem 57.2 on (?), we get ∃ e∗ and ∃ e ′∗ such that

∆;Φ; Γ ` e	 e ′  e∗ 	 e ′∗ . t : τ{I/i} (??).

By e-pack embedding rule using (??) and (�) , we can conclude as

follows:
∆;Φa; Γ ` e	 e ′  e∗ 	 e ′∗ . t : τ{I/i}

∆ ` I :: S E = pack e∗ with I E ′ = pack e ′∗ with I

∆;Φa; Γ ` pack e	 pack e ′  E	 E ′ . t : ∃i::S. τ
e-r-pack.

Case:

∆;Φa; Γ ` e1 	 e ′1 . t1 : ∃i::S. τ1 (?)

i :: S,∆;Φa; x : τ1, Γ ` e2 	 e ′2 . t2 : τ2 (�)
i 6∈ FV(Φa; Γ , τ2, t2)

∆;Φa; Γ ` unpack e1 as x in e2 	 unpack e ′1 as x in e ′2 . t1 + t2 : τ2
r-

unpack

By Theorem 57.2 on (?), we get ∃ e∗1 and ∃ e ′∗1 such that

∆;Φ; Γ ` e1 	 e ′1  e∗1 	 e ′∗1 . t : ∃i::S. τ1 (??).

By Theorem 57.2 on (�), we get ∃ e∗2 and ∃ e ′∗2 such that

i :: S,∆;Φ; x : τ1, Γ ` e2 	 e ′2  e∗2 	 e ′∗2 . t : τ2 (��).
By e-unpack embedding rule using (??) and (��) , we can conclude
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as follows:
∆;Φa; Γ ` e1 	 e ′1  e1

∗ 	 e ′1
∗ . t1 : ∃i::S. τ1

i :: S,∆;Φa; x : τ1, Γ ` e2 	 e ′2  e2
∗ 	 e ′2

∗ . t2 : τ2
i 6∈ FV(Φa; Γ , τ2, t2)

E = unpack e∗1 as (x, i) in e∗2 E ′ = unpack e ′∗1 as (x, i) in e ′∗2

∆;Φa; Γ ` unpack e1 as x in e2 	 unpack e ′1 as x in e ′2  E	 E ′ . t1 + t2 : τ2
e-r-unpack.

Case:

∆;Φa; Γ ` e1 	 e2 . t : τ (?)

∆;Φa |= τ v τ ′ (�) ∆;Φa |= t 6 t ′ †
∆;Φa; Γ ` e1 	 e2 . t ′ : τ ′

r-vvv

By Theorem 57.2 on (?), we get ∃ e∗1, e∗2 such that

∆;Φ; Γ ` e1 	 e2  e1
∗ 	 e2∗ . t : τ (??).

By Lemma 48 on (�), we can show that ∃e ′ = coerceτ,τ ′ (��).
By e-r-v rule using (??), (��) and (†), we conclude as follows

∆;Φa; Γ ` e1 	 e2  e1
∗ 	 e2∗ . t : τ

∆;Φa |= τ v τ ′ e ′ = coerceτ,τ ′ ∆;Φa |= t6 t ′

∆;Φa; Γ ` e1 	 e2  e ′ e∗1 	 e ′ e∗2 . t ′ : τ ′
e-r-v

Theorem 58 (Invariant of the Algorithmic Typechecking). We have the follow-

ing.

1. Assume that ∆;ψa;Φa;Ω ` e ↓ A,k, t ⇒ Φ and FIV(Φa,Ω;A,k, t) ⊆
dom(∆,ψa). Then FIV(Φ) ⊆ dom(∆;ψa).

2. Assume that ∆;ψa;Φa;Ω ` e ↑ A ⇒ [ψ],k, t,Φ and FIV(Φa,Ω) ⊆
dom(∆,ψa). Then FIV(A,k, t,Φ) ⊆ dom(∆,ψ;ψa).

3. Assume that ∆;ψa;Φa; Γ ` e 	 e ′ ↓ τ, t ⇒ Φ and FIV(Φa, Γ , τ, t) ⊆
dom(∆,ψa).Then FIV(Φ) ⊆ dom(∆;ψa).

4. Assume that ∆;ψa;Φa; Γ ` e 	 e ′ ↑ τ ⇒ [ψ], t,Φ and FIV(Φa, Γ) ⊆
dom(∆,ψa).Then FIV(τ, t,Φ) ⊆ dom(∆;ψ;ψa).
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c.2 birelcost theorems

Theorem 59 (Soundness of the Algorithmic Typechecking). We have the fol-

lowing.

1. Assume that ∆;ψa;Φa;Ω ` e ↓ A,k, t⇒ Φ and

a) FIV(Φa,Ω,A,k, t) ⊆ dom(∆,ψa)

b) ∆;Φa[θa] |= Φ[θa] is provable for some θa such that ∆ � θa : ψa is

derivable

Then ∆;Φa[θa];Ω[θa] `t[θa]k[θa]
|e| :ccc A[θa].

2. Assume that ∆;ψa;Φa;Ω ` e ↑ A⇒ [ψ],k, t,Φ and

a) FIV(Φa,Ω) ⊆ dom(∆,ψa)

b) ∀θ ∀θa. ∆;Φa[θa] |= Φ[θθa] is provable s.t ∆ � θ : ψ and ∆ � θa :

ψa are derivable

Then ∆;Φa[θa];Ω[θa] `t[θθa]k[θθa]
|e| :ccc A[θθa] .

3. Assume that ∆;ψa;Φa; Γ ` e	 e ′ ↓ τ, t⇒ Φ and

a) FIV(Φa, Γ , τ, t) ⊆ dom(∆,ψa)

b) ∆;Φa[θa] |= Φ[θa] is provable for some θa such that ∆ � θa : ψa is

derivable

Then ∆;Φa[θa]; Γ [θa] ` |e|	 |e ′| . t[θa] :ccc τ[θa].

4. Assume that ∆;ψa;Φa; Γ ` e	 e ′ ↑ τ⇒ [ψ], t,Φ and

a) FIV(Φa, Γ) ⊆ dom(∆,ψa)

b) ∀θ ∀θa. ∆;Φa[θa] |= Φ[θ θa] is provable s.t ∆ � θ : ψ and ∆ � θa :

ψa are derivable

Then ∆;Φa[θa]; Γ [θa] ` |e|	 |e ′| . t[θθa] :ccc τ[θθa] .

Proof. Statements (1—4) follow from simultaneous structural induction on

the algorithmic typing derivations. We present several cases below.

Proof of Theorem 59.1:
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Case:
k1, t1,k2, t2 ∈ fresh(R) ∆;k1, t1,ψa;Φa;Ω ` e1 ↓ A1,k1, t1 ⇒ Φ1

∆;k2, t2,ψa;Φa;Ω ` e2 ↓ A1,k2, t2 ⇒ Φ2

Φ = ∃k1, t1 :: R.Φ1 ∧ ∃k2, t2 :: R.Φ2 ∧ t1 + t2
.
= t∧ k

.
= k1 + k2

∆;ψa;Φa;Ω ` 〈e1, e2〉 ↓ A1 × A2,k, t⇒ Φ
alg-

u-prod-↓
TS: ∆;Φa[θa];Ω[θa] `t[θa]k[θa]

〈|e1|, |e2|〉 :ccc A1[θa] × A2[θa].
By the main assumptions, we have

FIV(Φa,Ω,A,k, t) ⊆ dom(∆,ψa) (?)

∆;Φa[θa] |=

(∃k1, t1 :: R.Φ1 ∧ ∃k2, t2 :: R.Φ2 ∧ (t1 + t2)
.
= t∧ (k1 + k2)

.
= k)[θa] (??)

Using (?), (??)’s derivation must be in a form such that we have

a) ∆ ` K1 :: R and ∆ ` T1 :: R

b) ∆ ` K2 :: R and ∆ ` T2 :: R

c) ∆;Φa[θa] |= Φ1[θa,k1 7→ K1, t1 7→ T1]

d) ∆;Φa[θa] |= Φ2[θa,k2 7→ K2, t2 7→ T2]

e) ∆;Φa[θa] |= (T1 + T2)
.
= t[θa]∧ (K1 +K2)

.
= k[θa]

By Theorem 59.1 on the first premise using (?) and c), we can show

that

∆;Φa[θa];Ω[θa] `T1K1 |e1| :
ccc A1[θa] (1)

By Theorem 59.1 on the second premise using (?) and d), we can show

that

∆;Φa[θa];Ω[θa] `T2K2 |e2| :
ccc A2[θa] (2)

Combining eqs. (1) and (2) with c-prod rule, we get

∆;Φa[θa];Ω[θa] `T1+T2K1+K2
〈|e1|, |e2|〉 :ccc A1[θa] × A2[θa].

Then, by using e) with the c-vvv exec rule , we can conclude that

∆;Φa[θa];Ω[θa] `t[θa]k[θa]
〈|e1|, |e2|〉 :ccc A1[θa] × A2[θa].
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Case:

∆;ψa;Φa;Ω ` e ↑ A ′ ⇒ [ψ],k ′, t ′,Φ1
∆;ψ,ψa;Φa |=A A ′ v A⇒ Φ2

∆;ψa;Φa;Ω ` e ↓ A,k, t⇒ ∃(ψ).Φ1 ∧Φ2 ∧ t ′6 t∧ k6k ′
alg-↑↓

TS: ∆;Φa[θa];Ω[θa] `t[θa]k[θa]
|e| :ccc A[θa].

By the main assumptions, we have

FIV(Φa,Ω,A,k, t) ⊆ dom(∆,ψa) (?) and

∆;Φa[θa] |= (∃(ψ).Φ1 ∧Φ2 ∧ t ′6 t∧ k6k ′)[θa] (??)

By Theorem 58 using (?) and the first premise, we get

FIV(A ′,k ′, t ′,Φ1) ⊆ dom(∆,ψ;ψa) (�).
Using (?) and (�), (??)’s derivation must be in a form such that we

have

a) ∆ � θa : ψa

b) ∆;Φa[θa] |= Φ1[θa, θa]

c) ∆;Φa[θa] |= Φ2[θa, θa]

d) ∆;Φa[θa] |= t ′[θθa]6 t[θa]∧ k[θa]6k ′[θθa]

By Theorem 59.2 on the first premise using (?), a) and b), we can show

that

∆;Φa[θa];Ω[θa] `t
′[θθa]
k ′[θθa]

|e| :ccc A ′[θθa] (1)

By Theorem 52 using the second premise and c), we obtain

∆;Φa[θa] |=A A ′[θθa] v A[θθa] (2)

Note that due to (?), we have A[θθa] = A[θa].

Then we can conclude by the c-vvv exec rule using eqs. (1) and (2) and

(d) that ∆;Φa[θa];Ω[θa] `t[θa]k[θa]
|e| :ccc A[θa].

Case:
∆;ψa;Φa; f : A1

exec(k ′,t ′)−−−−−−→ A2, x : A1,Ω ` e ↓ A2,k ′, t ′ ⇒ Φ

∆;ψa;Φa;Ω ` fix f(x).e ↓ A1
exec(k ′,t ′)−−−−−−→ A2,k, t⇒ Φ∧ k

.
= 0∧ 0

.
= t

alg-u-fix-↓
TS: ∆;Φa[θa];Ω[θa] `t[θa]k[θa]

fix f(x).|e| :ccc A1[θa]
exec(k ′[θa],t ′[θa])−−−−−−−−−−−→ A2[θa].

By the main assumptions, we have
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FIV(Φa,Ω,A1
exec(k ′,t ′)−−−−−−→,k, t) ⊆ dom(∆,ψa) (?) and

∆;Φa[θa] |= Φ∧ 0
.
= k∧ 0

.
= t ′[θa] (??)

Using (?), we can show that

a) FIV(Φa,Ω,A1,A1
exec(k ′,t ′)−−−−−−→,A2,k ′, t ′) ⊆ dom(∆,ψa).

We also can show that (??)’s derivation must be in a form such that

we have

b) ∆;Φa[θa] |= Φ[θa]

c) ∆;Φa[θa] |= 0
.
= k[θa]

d) ∆;Φa[θa] |= 0
.
= t[θa]

By Theorem 59.1 on the first premise using a) and b), we can show

that

∆;Φa[θa]; x : A1[θa], f : A1[θa]
exec(k ′[θa],t ′[θa])−−−−−−−−−−−→ A2[θa],Ω[θa] `t

′[θa]
k ′[θa]

|e| :ccc A2[θa]

(1)

By the c-fix rule using eq. (1), we obtain

∆;Φa[θa];Ω[θa] `00 fix f(x).|e| :ccc A1[θa]
exec(k ′[θa],t ′[θa])−−−−−−−−−−−→ A2[θa].

By c-vvv exec rule using (c) and (d), we obtain

∆;Φa[θa];Ω[θa] `t[θa]k[θa]
fix f(x).|e| :ccc A1[θa]

exec(k ′[θa],t ′[θa])−−−−−−−−−−−→ A2[θa].

Case:

i :: S,∆;ψa;Φa;Ω ` e ↓ A,ke, te ⇒ Φ

Φ ′ = (∀i :: S.Φ)∧ k
.
= 0∧ 0

.
= t

∆;ψa;Φa;Ω ` Λi.e ↓ ∀i
exec(ke,te)

:: S.A,k, t⇒ Φ ′
alg-u-iLam-↓

TS: ∆;Φa[θa];Ω[θa] `t[θa]k[θa]
Λi.|e| :ccc ∀i

exec(ke[θa],te[θa])
:: S.A[θa].

By the main assumptions, we have

FIV(Φa,Ω,∀i
exec(ke,te)

:: S.A,k, t) ⊆ dom(∆,ψa) (?) and

∆;Φa[θa] |= ((∀i :: S.Φ)∧ 0
.
= k∧ 0

.
= t)[θa] (??)

Using (?), we can show that

a) FIV(Φa,Ω,A,ke, te) ⊆ i,dom(∆,ψa).
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We can also show that (??)’s derivation must be in a form such that

we have

b) i :: S,∆;Φa[θa] |= Φ[θa]

c) ∆;Φa[θa] |= 0
.
= k[θa]

d) ∆;Φa[θa] |= 0
.
= t[θa]

By Theorem 59.1 on the premise using a) and b), we can show that

i :: S,∆;Φa[θa];Ω[θa] `te[θa]ke[θa]
|e| :ccc A[θa] (1)

By the c-iLam rule using eq. (1), we obtain

∆;Φa[θa];Ω[θa] `00 Λi.|e| :ccc ∀i
exec(ke[θa],te[θa])

:: S.A[θa].

By c-vvv exec rule using (c) and (d), we obtain

∆;Φa[θa];Ω[θa] `t[θa]k[θa]
Λi.|e| :ccc ∀i

exec(ke[θa],te[θa])
:: S.A[θa].

Case:
∆;ψa;Φa;Ω ` e ↓ A{I/i},k, t⇒ Φ ∆ ` I :: S
∆;ψa;Φa;Ω ` pack e with I ↓ ∃i::S.A,k, t⇒ Φ

alg-u-pack-↓

TS: ∆;Φa[θa];Ω[θa] `t[θa]k[θa]
pack |e| with I :ccc ∃i::S.A[θa].

By the main assumptions, we have

FIV(Φa,Ω,∃i::S.A,k, t) ⊆ dom(∆,ψa) (?) and

∆;Φa[θa] |= Φ[θa] (??)

Using (?) and the second premise, we can show that

a) FIV(Φa,Ω,A{I/i},k, t) ⊆ dom(∆,ψa).

By Theorem 59.1 on the premise using a) and (??), we can show that

∆;Φa[θa];Ω[θa] `t[θa]k[θa]
|e| :ccc A[θa]{I/i} (1)

By the c-pack rule using eq. (1) and the second premise, we obtain

∆;Φa[θa];Ω[θa] `t[θa]k[θa]
pack |e| with I :ccc ∃i::S.A[θa].
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Case:

∆;ψa;Φa;Ω ` e1 ↑ ∃i::S.A1 ⇒ [ψ],k1, t1,Φ1
k2, t2 ∈ fresh(R)

i :: S,∆;k2, t2,ψ,ψa;Φa; x : A1,Ω ` e2 ↓ A2,k2, t2 ⇒ Φ2

i 6∈ FV(Φa;Ω,A2,k2, t2)

Φc = k
.
= k1 + k2 + cunp ∧ t1 + t2 + cunp

.
= t

Φ = Φ1 ∧ ∃k2, t2 :: R.∀i :: S.Φ2 ∧Φc

∆;ψa;Φa;Ω ` unpack e1 as (x, i) in e2 ↓ A2,k, t⇒ ∃(ψ).Φ
alg-u-

unpack-↓
TS: ∆;Φa[θa];Ω[θa] `t[θa]k[θa]

unpack |e1| with (x, i) in |e2| :
ccc A2[θa].

By the main assumptions, we have

FIV(Φa,Ω,A2,k, t) ⊆ dom(∆,ψa) (?) and

∆;Φa[θa] |= (∃(ψ).(Φ1 ∧ ∃k2, t2 :: R.∀i :: S.Φ2 ∧Φc))[θa] (??)

where Φc = (t1 + t2 + cunp)
.
= t∧ (k1 + k2 + cunp)

.
= k.

By Theorem 58 using the first premise and (?), we get

FIV(A1,k1, t1,Φ1) ⊆ dom(∆,ψ;ψa) (�).
Using (?), (�) and the 4th premise, (??)’s derivation must be in a

form such that we have

a) ∆ � θ : ψ

b) ∆;Φa[θa] |= Φ1[θθa]

c) i :: S,∆;Φa[θa] |= Φ2[θa, θ,k2 7→ K2, t2 7→ T2]

d) ∆;Φa[θa] |= t1[θθa] + T2 + cunp
.
= t[θa]

e) ∆;Φa[θa] |= k[θa]
.
= k1[θθa] +K2 + cunp

By Theorem 59.2 on the first premise using (?), a) and b), we can show

that

∆;Φa[θa];Ω[θa] `t1[θθa]k1[θ θa]
|e1| :

ccc ∃i::S.A1[θθa] (1)

From (?) and (�), we can show that

f) FIV(Φa,A1,Ω,A2,k2, t2) ⊆ i,k2, t2,dom(∆,ψ,ψa)
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By Theorem 59.1 on the second premise using c), f), (?) and (�), we

obtain

i :: S,∆;Φa[θa]; x : A1[θθa],Ω[θa] `T2K2 |e2| :
ccc A2[θθa] (2)

Note that due to (?), we have A2[θθa] = A2[θa]. Then by the c-unpack

rule using eqs. (1) and (2), we can show that

∆;Φa[θa];Ω[θa] `t1[θθa]+T2+cunpk1[θθa]+K1+cunp
unpack |e1| with (x, i) in |e2| :

ccc A2[θa].

By vvv exec rule using (d) and (e), we obtain

∆;Φa[θa];Ω[θa] `t[θa]k[θa]
unpack |e1| with (x, i) in |e2| :

ccc A2[θa].

Case:

∆;ψa;C∧Φa;Ω ` e1 ↓ A,k, t⇒ Φ1

∆;ψa;¬C∧Φa;Ω ` e2 ↓ A,k, t⇒ Φ2 ∆ ` C wf

Φ = C→ Φ1 ∧¬C→ Φ2

∆;ψa;Φa;Ω ` split (e1, e2) with C ↓ A,k, t⇒ Φ
alg-u-split-↓

TS: ∆;Φa[θa];Ω[θa] `t[θa]k[θa]
split (|e1|, |e2|) with C :ccc A[θa].

By the main assumptions, we have

FIV(Φa,Ω,A,k, t) ⊆ dom(∆,ψa) (?) and

∆;Φa[θa] |= (C→ Φ1 ∧¬C→ Φ2)[θa] (??)

Using (?) and the third premise, we can show that

a) FIV(C∧Φa,Ω,A,k, t) ⊆ dom(∆,ψa).

b) FIV(¬C∧Φa,Ω,A,k, t) ⊆ dom(∆,ψa).

Using (??) and the third premise, we can show that

c) ∆;C∧Φa[θa] |= Φ1[θa]

d) ∆;¬C∧Φa[θa] |= Φ2[θa]

By Theorem 59.1 on the first premise using (?) and c), we can show

that

∆;C∧Φa[θa];Ω[θa] `t[θa]k[θa]
|e1| :

ccc A[θa]{I[θa]/i} (1)
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By Theorem 59.1 on the second premise using (?) and d), we can show

that

∆;¬C∧Φa[θa];Ω[θa] `t[θa]k[θa]
|e2| :

ccc A[θa]{I[θa]/i} (2)

By the c-split rule using eqs. (1) and (2) and the third premise, we

obtain

∆;Φa[θa];Ω[θa] `t[θa]k[θa]
split (|e1|, |e2|) with C :ccc A[θa].

Case:
∆;Φ∧C;Ω ` e ↓ A,k, t⇒ Φ

∆;ψa;Φa;Ω ` e ↓ C ⊃ A,k, t⇒ C→ Φ
alg-u-c-impI-↓

TS: ∆;Φa[θa];Ω[θa] `t[θa]k[θa]
|e| :ccc C[θa] ⊃ A[θa].

By the main assumptions, we have

FIV(Φa,Ω,C ⊃ A,k, t) ⊆ dom(∆,ψa) (?) and

∆;Φa[θa] |= (C→ Φ)[θa] (??)

Using (?), we can show that

a) FIV(C∧Φa,Ω,A,k, t) ⊆ dom(∆,ψa).

By Theorem 59.1 on the premise using (?) and a), we can show that

∆;C[θa]∧Φa[θa];Ω[θa] `t[θa]k[θa]
|e| :ccc A[θa] (1)

By the c-cimpI rule using eq. (1), we obtain

∆;Φa[θa];Ω[θa] `t[θa]k[θa]
|e| :ccc C[θa] ⊃ A[θa].

Proof of Theorem 59.2:

Case:

∆;ψa;Φa;Ω ` e ↓ A,k, t⇒ Φ

∆;Φa `A A wf FIV(A,k, t) ∈ ∆
∆;ψa;Φa;Ω ` (e : A,k, t) ↑ A⇒ [·],k, t,Φ

alg-u-anno-↑

TS: ∆;Φa[θa];Ω[θa] `t[θa]k[θa]
|(e : A,k, t)| :ccc A[θa].

Since by definition, ∀e. |(e : _, _, _)| = |e|, STS:

∆;Φa[θa];Ω[θa] `t[θa]k[θa]
|e| :ccc A[θa].

By the main assumptions, we have FIV(Φa,Ω) ⊆ dom(∆,ψa) (?)
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and ∆;Φa[θa] |= Φ[θa] (??)

Using the third premise, we can show that

a) FIV(Φa,Ω,A,k, t) ⊆ dom(∆,ψa).

By Theorem 59.1 on the first premise using (??) and a), we can con-

clude that

∆;Φa[θa];Ω[θa] `t[θa]k[θa]
|e| :ccc A[θa] .

Case:

∆;ψa;Φa;Ω ` e1 ↑ A1
exec(ke,te)−−−−−−→ A2 ⇒ [ψ],k1, t1,Φ1

k2, t2 ∈ fresh(R) ∆;k2, t2,ψ,ψa;Φa;Ω ` e2 ↓ A1,k2, t2 ⇒ Φ2

k = k1 + k2 + ke + capp t = t1 + t2 + te + capp

∆;ψa;Φa;Ω ` e1 e2 ↑ A2 ⇒ [k2, t2,ψ],k, t,Φ1 ∧Φ2
alg-

u-app-↑
TS: ∆;Φa[θa];Ω[θa] `(t1+t2+te+capp)[θa,θ2]

(k1+k2+ke+capp)[θa,θ2]
|e1| |e2| :

ccc A2[θa, θ2].

By the main assumptions, we have FIV(Φa,Ω) ⊆ dom(∆,ψa) (?)

and

∆;Φa[θa] |= (Φ1 ∧Φ2)[θa, θ2] (??) such that ∆ � θ2 : k2, t2,ψ (�)
and ∆ � θa : ψa are derivable.

By (�), we can show that θ2 = k2, t2, θ such that

a) θ(k2) = K2 and θ(t2) = T2 for some K2 and T2.

b) ∆ � θ : ψ

By Theorem 59.2 on the first premise using (?) and (b), we obtain

∆;Φa[θa];Ω[θa] `t1[θθa]k1[θθa]
|e1| :

ccc A1[θθa]
exec(ke[θθa],te[θθa])−−−−−−−−−−−−−→ A2[θθa] (1)

By Theorem 58.2 on the first premise and (?), we get

c) FIV(A1
exec(ke,te)−−−−−−→ A2,k1, t1,Φ1) ⊆ dom(∆,ψ,ψa).

By (?) and c), we get

d) FIV(Φa,Ω,A2,k2, t2) ⊆ k2, t2,dom(∆,ψ,ψa).
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By Theorem 59.2 on the third premise using (c), (d) and (??), we ob-

tain

∆;Φa[θa];Ω[θa] `T2K2 |e2| :
ccc A1[θθa] (2)

Then, by using c-app rule using eqs. (1) and (2), we can show that

∆;Φa[θa];Ω[θa] `t1[θθa]+te[θθa]+T2k1[θθa]+ke[θθa]+K2
|e1| |e2| :

ccc A2[θa, θ2].

Note that we have k2[θa, θ2] = K2 and k2[θa, θ2] = K2.

Moreover, t1[θa, θ2] = t1[θθa] and k1[θa, θ2] = k1[θθa] (similarly for

ke and te) since k2, t2 are fresh variables.

Case:
∆;ψa;Φa;Ω ` e ↑ ∀i

exec(ke,te)
:: S.A ′ ⇒ [ψ],k, t,Φ ∆ ` I :: S

∆;ψa;Φa;Ω ` e [I] ↑ A ′{I/i}⇒ [ψ],k+ ke[I/i], t+ te[I/i],Φ
alg-u-

iApp-↑
TS: ∆;Φa[θa];Ω[θa] `(t+te[I/i])[θθa](k+ke[I/i])[θθa]

|e| [I] :ccc (A ′{I/i})[θθa].

By the main assumptions, we have

• FIV(Φa,Ω) ⊆ dom(∆,ψa) (?) and

• ∆;Φa[θa] |= Φ2[θθa] (??) such that the following are derivable

– ∆ � θ : ψ (�)

– ∆ � θa : ψa

By Theorem 59.2 on the first premise using (?) and (�), we obtain

∆;Φa[θa];Ω[θa] `t[θθa]k[θθa]
|e| :ccc ∀i

exec(ke[θθa],te[θθa])
:: S.A ′[θ θa] (1)

Then, by c-iApp rule using eq. (1) and the second premise, we can

conclude that

∆;Φa[θa];Ω[θa] `t[θθa]+te[θθa][I/i]k[θθa]+ke[θθa][I/i]
|e| [I] :ccc A ′[θθa]{I/i}.

Proof of Theorem 59.3:

Case:
t ′ ∈ fresh(R) ∆; t ′,ψa;Φa;� Γ ` e	 e ↓ τ, t ′ ⇒ Φ

∆;ψa;Φa; Γ ′,� Γ ` NC e	 NC e ↓ � τ, t⇒ 0
.
= t∧ (∃t ′ :: R.Φ)

alg-r-nochange-

↓
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TS: ∆;Φa[θa]; Γ ′[θa],� Γ [θa] ` NC e	 NC e . t[θa] : � τ[θa].
By the main assumptions, we have

• FIV(Φa, Γ ′,� Γ , τ, t) ⊆ dom(∆,ψa) (?)

• ∆;Φa[θa] |= (0
.
= t∧ ∃t ′ :: R.Φ)[θa] (??)

Using (?) and the first premise, we can show that

a) FIV(Φa, Γ , τ, t ′) ⊆ t ′,dom(∆,ψa).

Using (?), (??)’s derivation must be in a form such that we have

b) ∆;Φa[θa] |= 0
.
= t[θa]

c) ∆ ` T ′ :: R for some T ′

d) ∆;Φa[θa] |= Φ[θa, t ′ 7→ T ′]

By Theorem 59.3 on the premise using a), d) and (?), we can show

that

∆;Φa[θa];� Γ [θa] ` |e|	 |e| . T ′ : τ[θa] (1)

By the c-nochange rule using eq. (1), we obtain

∆;Φa[θa]; Γ ′[θa],� Γ [θa] ` NC |e|	 NC |e| . 0 : � τ[θa].
By the c-r-vvv rule using this and b), we obtain

∆;Φa[θa]; Γ ′[θa],� Γ [θa] ` NC e	 NC e . t[θa] : � τ[θa].
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Case:

∆;ψa;Φa; Γ ` e	 e ′ ↑ list[n]α τ⇒ [ψ], t1,Φe
t2 ∈ fresh(R) ∆; t2,ψ,ψa;n .

= 0∧Φa; Γ ` e1 	 e ′1 ↓ τ ′, t2 ⇒ Φ1

Φ ′a = n
.
= i+ 1∧Φa

i,∆; t2,ψ,ψa;Φ ′a;h : � τ, tl : list[i]α τ, Γ ` e2 	 e ′2 ↓ τ ′, t2 ⇒ Φ2

Φ ′′a = n
.
= i+ 1∧α

.
= β+ 1∧Φa

i,β,∆; t2,ψ,ψa;Φ ′′a ;h : τ, tl : list[i]β τ, Γ ` e3 	 e ′3 ↓ τ ′, t2 ⇒ Φ3

Φcons = ∀i :: N.(n .
= i+ 1)→ (Φ2 ∧ ∀β :: N.(α .

= β+ 1)→ Φ3)

Φ = ∃(ψ).(Φe ∧ ∃t2 :: R.((n .
= 0→ Φ1)∧Φcons ∧ t1 + t2

.
= t))

∆;ψa;Φa; Γ `
case e of nil → e1

| h ::NC tl → e2

| h ::C tl → e3

	
case e ′ of nil → e ′1
| h ::NC tl → e ′2
| h ::C tl → e ′3

↓ τ ′, t⇒ Φ

alg-

r-caseL-↓
TS:

∆;Φa[θa]; Γ [θa] `
case e of nil → |e1|

| h ::N tl → |e2|

| h ::C tl→ |e3|

	
case e ′ of nil → |e ′1|

| h ::N tl → |e ′2|

| h ::C tl→ |e ′3|

. t[θa] : τ ′[θa]

By the main assumptions, we have

• FIV(Φa, Γ , τ ′, t) ⊆ dom(∆,ψa) (?)

• ∆;Φa[θa] |= (∃(ψ).Φe ∧ ∃t2 :: R.Φbody)[θa] (??)

By Theorem 58 using the first premise and (?), we get

FIV(list[n]α τ, t1,Φe) ⊆ dom(∆,ψ;ψa) (�).
Using (?) and (�), (??)’s derivation must be in a form such that we

have

a) ∆ � θ : ψ

b) ∆;Φa[θa] |= Φe[θθa]

c) ∆ ` T2 :: R

d) ∆;n[θθa]
.
= 0∧Φa[θa] |= Φ1[θθa]

e) i :: S,∆;n[θθa]
.
= i+ 1∧Φa[θa] |= Φ2[θa, θ, t2 7→ T2]

f) i :: S,β :: S,∆;n[θθa]
.
= i+ 1∧α[θθa]

.
= β+ 1∧Φa[θa] |=

Φ3[θa, θ, t2 7→ T2]

g) ∆;Φa[θa] |= t1[θθa] + T2
.
= t[θa]
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By Theorem 59.4 on the first premise using b) and (?), we can show

that

∆;Φa[θa]; Γ [θa] ` |e|	 |e ′| . t1[θθa] : list[n[θθa]]α[θθa] τ[θθa] (1)

By Theorem 59.3 on the second premise using d) and (?), we can show

that

∆;n[θθa]
.
= 0∧Φa[θa]; Γ [θa] ` |e1|	 |e ′1| . T2 : τ ′[θθa] (2)

By Theorem 59.3 on the third premise using e) and (?), we can show

that

i :: S,∆;n[θθa]
.
= i+ 1∧Φa[θa]; Γ [θa] ` |e2|	 |e ′2| . T2 : τ ′[θθa] (3)

By Theorem 59.3 on the fourth premise using f) and (?), we can show

that

i :: S,β :: S,∆;Φ ′a; Γ [θa] ` |e3|	 |e ′3| . T2 : τ ′[θθa] (4)

where Φ ′a = n[θθa]
.
= i+ 1∧α[θθa]

.
= β+ 1∧Φa[θa].

Then by c-r-caseL rule using eqs. (1) to (4), we can show that

∆;Φa[θa]; Γ [θa] `
case e of nil → |e1|

| h ::N tl → |e2|

| h ::C tl→ |e3|

	
case e ′ of nil → |e ′1|

| h ::N tl → |e ′2|

| h ::C tl→ |e ′3|

. t1[θθa] + T2 : τ ′[θa]

We conclude by applying c-r-vvv rule to this using g).
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Case:

t1, t2 ∈ fresh(R) i ∈ fresh(N)

∆; t1,ψa;Φa; Γ ` e1 	 e ′1 ↓ � τ, t1 ⇒ Φ1

∆; i, t2,ψa;Φa; Γ ` e2 	 e ′2 ↓ list[i]α τ, t2 ⇒ Φ2

Φ ′2 = Φ2 ∧n
.
= (i+ 1)∧ t1 + t2

.
= t

Φ = ∃t1 :: R.(Φ1 ∧ ∃t2 :: R.∃i :: N.Φ ′2)

∆;ψa;Φa; Γ ` consNC(e1, e2)	 consNC(e ′1, e
′
2) ↓ list[n]α τ, t⇒ Φ

alg-

r-consNC-↓
TS:

∆;Φa[θa]; Γ [θa] ` consNC(|e1|, |e2|)	 consNC(|e ′1|, |e
′
2|) . t[θa] : list[n[θa]]α[θa] τ[θa].

By the main assumptions, we have

FIV(Φa, Γ , list[n]α τ, t) ⊆ dom(∆,ψa) (?) and

∆;Φa[θa] |= (∃t1 :: R.Φ1 ∧ ∃t2 :: R.∃i :: N.Φ ′2)[θa] (??)

Using (?), (??)’s derivation must be in a form such that we have

a) ∆ ` T1 :: R

b) ∆ ` T2 :: R

c) ∆;Φa[θa] |= Φ1[θa, t1 7→ T1]

d) ∆ ` I :: N

e) ∆;Φa[θa] |= Φ2[θa, t2 7→ T2, i 7→ I]

f) ∆;Φa[θa] |= (I+ 1)
.
= n[θa]

g) ∆;Φa[θa] |= (T1 + T2)
.
= t[θa]

By Theorem 59.3 on the third premise using (?) and c), we can show

that

∆;Φa[θa];Ω[θa] ` |e1|	 |e ′1| . T1 : � τ[θa] (1)

By Theorem 59.3 on the fourth premise using (?) and e), we can show

that

∆;Φa[θa];Ω[θa] ` |e2|	 |e ′2| . T2 : list[I]α[θa] τ[θa] (2)

By c-r-cons1 typing rule using eqs. (1) and (2), we obtain

∆;Φa[θa]; Γ [θa] ` consNC(|e1|, |e2|)	 consNC(|e ′1|, |e
′
2|) . T1 + T2 : list[I+ 1]α[θa] τ[θa].

We conclude by applying c-r-vvv rule to this using f) and g).
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Proof of Theorem 59.4:

Case:

∆;ψa;Φa; Γ ` e	 e ′ ↓ τ, t⇒ Φ

∆;Φa ` τ wf ∆ ` t :: R

∆;ψa;Φa; Γ ` (e : τ, t)	 (e ′ : τ, t) ↑ τ⇒ [·], t,Φ
alg-r-anno-↑

TS: ∆;Φa[θa];Ω[θa] ` |(e : τ, t)|	 |(e ′ : τ, t)| . t[θa] : τ[θa].
Since by definition, ∀e. |(e : _, _)| = |e|, STS:

∆;Φa[θa]; Γ [θa] ` |e|	 |e ′| . t[θa] : τ[θa].
By the main assumptions, we have FIV(Φa, Γ) ⊆ dom(∆,ψa) (?) and

∆;Φa[θa] |= Φ[θa] (??)

Using the third premise, we can show that

a) FIV(Φa, Γ , τ,k, t) ⊆ dom(∆,ψa).

By Theorem 59.4 on the first premise using (??) and a), we can con-

clude that

∆;Φa[θa]; Γ [θa] ` |e|	 |e ′| . t[θa] : τ[θa] .

Case:
∆;ψa;Φa; Γ ` e1 	 e2 ↑ � τ⇒ [ψ], t,Φ

∆;ψa;Φa; Γ ` der e1 	 der e2 ↑ τ⇒ [ψ], t,Φ
alg-r-der-↑

TS: ∆;Φa[θa];Ω[θa] `|e|t[θθa] |e
′| :ccc τ[θθa].

By the main assumptions, we have FIV(Φa, Γ) ⊆ dom(∆,ψa) (?) and

∆;Φa[θa] |= Φ[θθa] (??) such that ∆ � θ : ψ (�) and ∆ � θa : ψa are

derivable.

By Theorem 59.4 on the first premise using (?) and (�), we obtain

∆;Φa[θa]; Γ [θa] ` |e|	 |e ′| . t[θθa] : � τ[θθa] (1)

Then, by c-der rule using eq. (1) and the second premise, we can con-

clude that

∆;Φa[θa]; Γ [θa] ` |e|	 |e ′| . t[θθa] : τ[θθa].

Theorem 60 (Completeness of the Algorithmic Typechecking). We have the

following.
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1. Assume that ∆;Φa;Ω `tk e :ccc A. Then, ∃e ′ such that

a) ∆; ·;Φa;Ω ` e ′ ↓ A,k, t⇒ Φ

b) ∆;Φa |= Φ

c) |e ′| = e

2. Assume that ∆;Φa; Γ ` e1 	 e2 . t :ccc τ. Then, ∃e ′1, e ′2 such that

a) ∆; ·;Φa; Γ ` e ′1 	 e ′2 ↓ τ, t⇒ Φ

b) ∆;Φa |= Φ

c) |e ′1| = e1 and |e ′2| = e2

Proof. Proof is by simultaneous induction on the RelCost Core typing deriva-

tions.

Proof of Theorem 60.1:

Case:
Ω(x) = A

∆;Φa;Ω `00 x :ccc A
c-var

We can conclude as follows

Ω(x) = A

∆; ·;Φa;Ω ` x ↑ A⇒ [.], 0, 0,>
alg-u-var-↑

∆;Φa |=A A v A⇒ Φ by lemma 50

∆;ψa;Φa;Ω ` x ↓ A, 0, 0⇒ >
alg-r-↑↓

Case:
∆;Φa;Ω `t1k1 e1 :

ccc A ∆;Φa;Ω `t2k2 e2 :
ccc list[n]A

∆;Φa;Ω `t1+t2k1+k2
consC(e1, e2) :ccc list[n+ 1]A

c-cons

By Theorem 60.2 on the first premise, ∃e ′1 such that

a) ∆; ·;Φa;Ω ` e ′1 ↓ A,k1, t1 ⇒ Φ1

b) ∆;Φa |= Φ1

c) |e ′1| = e1
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By a), we can show that for k ′1, t
′
1 ∈ fresh(R) where

Φ ′1 = Φ1 ∧ k1
.
= k ′1 ∧ t1

.
= t ′1

∆;k ′1, t
′
1;Φa;Ω ` e ′1 ↓ A,k ′1, t

′
1 ⇒ Φ ′1 (1)

By Theorem 60.2 on the second premise, ∃e ′2 such that

d) ∆; ·;Φa;Ω ` e ′2 ↓ list[n]A,k2, t2 ⇒ Φ2

e) ∆;Φa |= Φ2

f) |e ′2| = e2

By a), we can show that for i,k ′2, t
′
2 ∈ fresh(R) where

Φ ′2 = Φ2 ∧ k2
.
= k ′2 ∧ t2

.
= t ′2 ∧ i

.
= n

∆; i,k ′2, t
′
2;Φa;Ω ` e ′2 ↓ list[i]A,k ′2, t

′
2 ⇒ Φ ′2 (2)

Then, we can conclude as follows

1.

k ′1, t
′
1,k
′
2, t
′
2 ∈ fresh(R) i ∈ fresh(N)

∆;k ′1, t
′
1,ψa;Φa;Ω ` e ′1 ↓ A,k ′1, t

′
1 ⇒ Φ ′1 eq. (1)

∆; i,k ′2, t
′
2,ψa;Φa;Ω ` e ′2 ↓ list[i]A,k ′2, t

′
2 ⇒ Φ ′2 eq. (2)

Φ ′′2 = (Φ ′2 ∧n+ 1
.
= (i+ 1)∧ k1 + k2

.
= k ′1 + k

′
2 ∧ t

′
1 + t

′
2

.
= t1 + t2)

Φ = ∃k ′1, t ′1 :: R.(Φ ′1 ∧ ∃k ′2, t ′2 :: R.∃i :: N.Φ ′′2 )

∆;ψa;Φa;Ω ` consC(e ′1, e
′
2) ↓ list[n+ 1]A,k1 + k2, t1 + t2 ⇒ Φ

alg-u-cons-↓

2. Using b) and e) for the substitutions k ′i = ki and t ′i = ti for the

fresh costs and i = n for the size of the tail.

3. Using c) and f), |consC(e ′1, e
′
2)| = consC(e1, e2)

Proof of Theorem 60.2:

Case:
∆;Φa; Γ ` e1 	 e2 . t :ccc � τ

∆;Φa; Γ ` der e1 	 der e2 . t :ccc τ
c-der

By Theorem 60.2 on the premise, ∃e ′1, e ′2 such that
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a) ∆; ·;Φa; Γ ` e ′1 	 e ′2 ↓ τ, t⇒ Φ

b) ∆;Φa |= Φ

c) |e ′1| = e1 and |e ′2| = e2

Then, we can conclude by using a), b) and c) as follows:
∆; ·;Φa; Γ ` e ′1 	 e ′2 ↓ � τ, t⇒ Φ

∆; ·;Φa; Γ ` der e ′1 	 der e ′2 ↓ τ, t⇒ Φ
alg-r-der-↓ and

1.

∆; ·;Φa; Γ ` e ′1 	 e ′2 ↓ � τ, t⇒ Φ

∆; ·;Φa; Γ ` der e ′1 	 der e ′2 ↓ τ, t⇒ Φ
alg-r-der-↓

∆; ·;Φa; Γ ` (der e ′1 : τ, t)	 (der e ′2 : τ, t) ↑ τ⇒ [·], t,Φ
alg-r-anno-↑

∆;Φa |= τ ≡ τ⇒ Φ ′ by Lemma 49

∆; ·;Φa; Γ ` (der e ′1 : τ, t)	 (der e ′2 : τ, t) ↓ τ, t⇒ Φ∧Φ ′ ∧ t6 t
alg-r-↑↓

2. By c), |(der e ′i : τ, t)| = der |e ′i|.

3. By b) and Lemma 49.

Case:
∆;Φa; |Γ |1 `t1k1 e1 :

ccc A1 ∆;Φa; |Γ |2 `t2k2 e2 :
ccc A2

∆;Φa; Γ ` switch e1 	 switch e2 . t1 − k2 :ccc U (A1,A2)
c-switch

By Theorem 60.1 on the first premise , ∃e ′1 such that

a) ∆; ·;Φa; |Γ |1 ` e ′1 ↓ A1,k1, t1 ⇒ Φ1

b) ∆;Φa |= Φ1

c) |e ′1| = e1

By a), we can show that for k ′1, t
′
1 ∈ fresh(R) where

Φ ′1 = Φ1 ∧ k1
.
= k ′1 ∧ t1

.
= t ′1

∆;k ′1, t
′
1;Φa; |Γ |1 ` e ′1 ↓ A1,k ′1, t ′1 ⇒ Φ ′1 (1)

By Theorem 60.1 on the second premise , ∃e ′2 such that

d) ∆; ·;Φa; |Γ |2 ` e ′2 ↓ A2,k2, t2 ⇒ Φ2

e) ∆;Φa |= Φ2
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f) |e ′2| = e2

By d), we can show that for k ′2, t
′
2 ∈ fresh(R) where

Φ ′2 = Φ2 ∧ k2
.
= k ′2 ∧ t2

.
= t ′2

∆;k ′2, t
′
2;Φa; |Γ |2 ` e ′2 ↓ A2,k ′2, t ′2 ⇒ Φ ′2 (2)

Then, we can conclude as follows

1. By using eqs. (1) and (2):
k ′1, t

′
1,k
′
2, t
′
2 ∈ fresh(R)

∆;k ′1, t
′
1,ψa;Φ; |Γ |1 ` e ′1 ↓ A1,k ′1, t ′1 ⇒ Φ ′1

∆;k ′2, t
′
2,ψa;Φ; |Γ |2 ` e ′2 ↓ A2,k ′2, t ′2 ⇒ Φ ′2

∃k1, t1 :: R.(Φ ′1 ∧ ∃k ′2, t ′2 :: R.Φ ′2 ∧ t
′
1 − k

′
2

.
= t)

∆;ψa;Φa; Γ ` switch e ′1 	 switch e ′2 ↓ t,U (A1,A2)⇒ Φ
alg-r-switch-↓.

2. By using b) and e) and the substitutions k ′i = ki and t ′i = ti for

the fresh costs where t = t1 − k2.

3. By c) and f), we get |switch e ′i| = switch |ei|

Case:

∆;Φa; Γ ` e	 e ′ . t :ccc τ ∆;Φa |= τ ≡ τ ′

∆;Φa |= t6 t ′

∆;Φa; Γ ` e	 e ′ . t ′ :ccc τ ′
c-r-≡≡≡

By Theorem 60.2 on the first premise, ∃e ′1, e ′2 such that

a) ∆; ·;Φa; Γ ` e ′1 	 e ′2 ↓ τ, t⇒ Φ1

b) ∆;Φa |= Φ1

c) |e ′1| = e and |e ′2| = e
′

By Theorem 55 on the second premise,

d) ∆;Φa |= τ ≡ τ ′ ⇒ Φ2

e) ∆;Φa |= Φ2.

Then, we can conclude as follows
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1. By using a) and d)

∆; ·;Φa; Γ ` e ′1 	 e ′2 ↓ τ, t⇒ Φ1

∆; ·;Φa; Γ ` (e ′1 : τ, t)	 (e ′2 : τ, t) ↑ τ⇒ [·], t,Φ1
alg-r-anno-↑

∆;Φa |= τ ≡ τ ′ ⇒ Φ2

∆; ·;Φa; Γ ` (e ′1 : τ, t)	 (e ′2 : τ, t) ↓ τ ′, t ′ ⇒ Φ1 ∧Φ2 ∧ t6 t ′
alg-r-↑↓

2. By using b), e) and the third premise, we can show that

∆;Φa |= Φ1 ∧Φ2 ∧ t6 t ′

3. By c), |(e ′1 : τ, t)| = e and (e ′2 : τ, t) = e ′

Case:

∆;Φa; Γ ` e1 	 e ′1 . t1 :ccc τ1
diff(t)−−−→ τ2

∆;Φa; Γ ` e2 	 e ′2 . t2 :ccc τ1
∆;Φa; Γ ` e1 e2 	 e ′1 e ′2 . t1 + t2 + t :ccc τ2

c-r-app

By Theorem 60.2 on the first premise, ∃e1, e ′1 such that

a) ∆; ·;Φa; Γ ` e1 	 e ′1 ↓ τ1
diff(t)−−−→ τ2, t1 ⇒ Φ1

b) ∆;Φa |= Φ1

c) |e1| = e1 and |e ′1| = e
′
1

By Theorem 60.2 on the second premise, ∃e2, e ′2 such that

d) ∆; ·;Φa; Γ ` e2 	 e ′2 ↓ τ1, t2 ⇒ Φ2

e) ∆;Φa |= Φ2

f) |e2| = e2 and |e ′2| = e
′
2

By d), we can show that for t ′2 ∈ fresh(R) where Φ ′2 = Φ2 ∧ t2
.
= t ′2

∆; t ′2;Φa; Γ ` e2 	 e ′2 ↓ τ1, t ′2 ⇒ Φ ′2 (1)

Then, we can conclude as follows
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1.

∆; ·;Φa; Γ ` e1 	 e ′1 ↓ τ1
diff(t)−−−→ τ2, t1 ⇒ Φ1

∆; ·;Φa; Γ ` E1 	 E ′1 ↑ τ1
diff(t)−−−→ τ2 ⇒ [·], t1,Φ1

alg-r-anno-↑

t ′2 ∈ fresh(R) ∆; t ′2;Φa; Γ ` e2 	 e ′2 ↓ τ1, t ′2 ⇒ Φ ′2

∆; ·;Φa; Γ ` E1,2 	 E ′1,2 ↑ τ2 ⇒ [t ′2], t1 + t+ t
′
2,Φ1 ∧Φ

′
2

c-r-app

Φ = ∃t ′2 :: R.Φ1 ∧Φ ′2 ∧ t1 + t+ t
′
26 t1 + t+ t2

∆; ·;Φa; Γ ` E1,2 	 E ′1,2 ↓ τ2, t1 + t+ t2 ⇒ Φ
alg-r-↑↓

where E1,2 = (e1 : τ1
diff(t)−−−→ τ2, t1) e2 and

E1 = (e1 : τ1
diff(t)−−−→ τ2, t1) and

E ′1 = (e ′1 : τ1
diff(t)−−−→ τ2, t1) and E ′1,2 = (e ′1 : τ1

diff(t)−−−→ τ2, t1) e ′2.

2. By using b) and e) and the substitution t ′2 = t2 for the fresh cost.

3. Using c) and f), we get

|(e1 : τ1
diff(t)−−−→ τ2, t1) e2| = e1 e2 and

|(e ′1 : τ1
diff(t)−−−→ τ2, t1) e ′2| = e

′
1 e
′
2.

Case:
∆;Φa; Γ ` e1 	 e ′1 . t1 :ccc ∃i::S. τ1

i :: S,∆;Φa; x : τ1, Γ ` e2 	 e ′2 . t2 :ccc τ2 i 6∈ FV(Φa; Γ , τ2, t2)

∆;Φa; Γ ` unpack e1 as (x, i) in e2 	 unpack e ′1 as (x, i) in e ′2 . t1 + t2 :ccc τ2
c-r-unpack

By Theorem 60.2 on the first premise, ∃e1, e ′1 such that

a) ∆; ·;Φa; Γ ` e1 	 e ′1 ↓ ∃i::S. τ1, t1 ⇒ Φ1

b) ∆;Φa |= Φ1

c) |e1| = e1 and |e ′1| = e
′
1

By Theorem 60.2 on the second premise, ∃e2, e ′2 such that

d) i :: S,∆; ·;Φa; x : τ1, Γ ` e2 	 e ′2 ↓ τ2, t2 ⇒ Φ2

e) i :: S,∆;Φa |= Φ2

f) |e2| = e2 and |e ′2| = e
′
2
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By d), we can show that for t ′2 ∈ fresh(R) where Φ ′2 = Φ2 ∧ t2
.
= t ′2

i :: S,∆; t ′2;Φa; x : τ1, Γ ` e2 	 e ′2 ↓ τ2, t ′2 ⇒ Φ ′2 (1)

Then, we can conclude as follows

1.

∆; ·;Φa; Γ ` e1 	 e ′1 ↓ ∃i::S. τ1, t1 ⇒ Φ1 (a)

∆; ·;Φa; Γ ` E1 	 E ′1 ↑ ∃i::S. τ1 ⇒ [·], t1,Φ1
alg-r-anno-↑

i :: S,∆; t ′2;Φa; x : τ1, Γ ` e2 	 e ′2 ↓ τ2, t ′2 ⇒ Φ ′2 (eq. (1))

Φ ′ = ∃t ′2 :: R.Φ1 ∧Φ ′2 ∧ t1 + t
′
2

.
= t1 + t2

∆; ·;Φa; Γ ` unpack E1 as (x, i) in e2 	 unpack E ′1 as (x, i) in e ′2 ↓ τ2, t1 + t2 ⇒ Φ ′
alg-r-unpack-↓

where E1 = (e1 : ∃i::S. τ1, t1,) and E2 = (e ′1 : ∃i::S. τ1, t1,)

2. By using b) and e) and the substitution t ′2 = t2 for the fresh cost.

3. Using c) and f), we get

|unpack (e1 : ∃i::S. τ1, t1) as (x, i) in e2| = unpack e1 as (x, i) in e2
and

|unpack (e ′1 : ∃i::S. τ1, t1) as (x, i) in e ′2| = unpack e ′1 as (x, i) in e ′2.



D
A P P E N D I X F O R C A S E S T U D I E S

In this chapter, we present additional material for our implementation and
case studies. Appendix D.1 presents the lemmas necessary to type two of
our examples: msort and bfold. Finally, Appendix D presents all the exam-
ples.

d.1 some arithmetic properties for divide and conquer pro-
grams

We prove some arithmetic properties of summations and the log function
that are needed to type divide and conquer examples.

Lemma 61. For n > 1, dlog2(n)e = 1+ dlog2(dn2 e)e.

Proof. We split cases on the parity of n.

Case: n even.

Let n = 2k. Then, k = dn2 e and

dlog2(n)e = dlog2(2k)e
= d1+ log2(k)e
= 1+ dlog2(k)e
= 1+ dlog2(d

n

2
e)e

Case: n odd.

Then, dn2 e = n+1
2 .

Let k > 1 be such that 2k−1 < n+1
2 6 2k (note that n > 3, so such a k exists).

Then, 2k − 1 < n 6 2k+1 − 1.
Since n is odd, this forces 2k + 1 6 n 6 2k+1 − 1.
Hence, k < log2(n) < k+ 1, so dlog2(n)e = k+ 1.
Clearly, dlog2(n+12 )e = k.

Hence, dlog2(n)e = k+ 1 = dlog2(n+12 )e+ 1 = dlog2(dn2 e)e+ 1.

433
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Lemma 62. Let f be a monotonic function and n > 1, α > 0 and α1 + α2 = α.

Then,



dlog2(dn2 e)e∑

i=0

f(2i) · min
(
α1, 2dlog2(d

n
2 e)e−i

)

+



dlog2(bn2 c)e∑

i=0

f(2i) · min
(
α2, 2dlog2(b

n
2 c)e−i

)

+ f(n)

6
dlog2(n)e∑

i=0

f(2i) · min
(
α, 2dlog2(n)e−i

)

Proof. We prove the inequality through a series of transformations. In each

step, we highlight the changed subexpressions in red.



dlog2(dn2 e)e∑

i=0

f(2i) · min
(
α1, 2dlog2(d

n
2 e)e−i

)

+



dlog2(bn2 c)e∑

i=0

f(2i) · min
(
α2, 2dlog2(b

n
2 c)e−i

)

+ f(n)

6



dlog2(dn2 e)e∑

i=0

f(2i) · min
(
α1, 2dlog2(d

n
2 e)e−i

)

+



dlog2(dn2 e)e∑

i=0

f(2i) · min
(
α2, 2dlog2(d

n
2 e)e−i

)

+ f(n)

=



dlog2(dn2 e)e∑

i=0

f(2i) ·
[
min

(
α1, 2dlog2(d

n
2 e)e−i

)
+ min

(
α2, 2dlog2(d

n
2 e)e−i

)]

+ f(n)

6



dlog2(dn2 e)e∑

i=0

f(2i) · min
(
α1 +α2, 2·2dlog2(d

n
2 e)e−i

)

+ f(n)
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(Using the inequality: min(a, c) + min(b, c) 6 min(a+ b, 2c))

=



dlog2(dn2 e)e∑

i=0

f(2i) · min
(
α, 21+dlog2(d

n
2 e)e−i

)

+ f(n)

=



dlog2(dn2 e)e∑

i=0

f(2i) · min
(
α, 2dlog2(n)e−i

)

+ f(n)

(by Lemma 61)

6



dlog2(dn2 e)e∑

i=0

f(2i) · min
(
α, 2dlog2(n)e−i

)

+ f(2dlog2(n)e)

(n 6 2dlog2(n)e and f is monotone)

=



dlog2(dn2 e)e∑

i=0

f(2i) · min
(
α, 2dlog2(n)e−i

)

+ f(2dlog2(n)e)·min(α, 1)

(because α > 0, min(α, 1) = 1)

=



dlog2(dn2 e)e∑

i=0

f(2i) · min
(
α, 2dlog2(n)e−i

)

+ f(2dlog2(n)e) · min

(
α, 2(dlog2(n)e−dlog2(n)e)

)

=

dlog2(n)e∑

i=0

f(2i) · min
(
α, 2dlog2(n)e−i

)

(by Lemma 61, dlog2(n)e = 1+ dlog2(dn2 e)e)

Lemma 63 (Balanced fold complexity). Let P(n,α) =
dlog2(n)e∑
i=0

h(2i) ·min(α, 2dlog2(n)e−i).

Then P(n,α) ∈ O(κ · (α+α · log2(n/α))).
Specifically, for constant κ, P(n,α, κ) ∈ O(α+α · log2(n/α)).
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Proof. We proceed by splitting cases on i in the summation in P(n,α).

Case: i > dlog2(n)e− dlog2(α)e

Then, dlog2(n)e− i < dlog2(α)e.
Hence, dlog2(n)e− i 6 blog2(α)c 6 log2(α).

So, 2dlog2(n)e−i 6 α.

Therefore, min(α, 2dlog2(n)e−i) = 2dlog2(n)e−i.

Case: i 6 dlog2(n)e− dlog2(α)e
Then dlog2(n)e− i > dlog2(α)e and 2dlog2(n)e−i > α.

Therefore, min(α, 2dlog2(n)e−i) = α.

It follows that

P(n,α) =

dlog2(n)e∑

i=0

κ · min(α, 2dlog2(n)e−i)

=

dlog2(n)e−dlog2(α)e∑

i=0

κ · min(α, 2dlog2(n)e−i) +

dlog2(n)e∑

i=dlog2(n)e−dlog2(α)e+1
κ · min(α, 2dlog2(n)e−i)

= κ ·α · (dlog2(n)e− dlog2(α)e+ 1) + κ · (2dlog2(α)e−1 + . . .+ 20)
= κ ·α · (dlog2(n)e− dlog2(α)e+ 1) + κ · (2dlog2(α)e − 1)
∈ O(κ ·α · log2(n/α)) +O(κ ·α)
= O(κ · (α+α · log2(n/α)))

Lemma 64 (Mergesort complexity). Assume that h is a linear, monotonic func-

tion.

Let Q(n,α) =
dlog2(n)e∑
i=0

h(2i) · min(α, 2dlog2(n)e−i)

Then, Q(n,α) ∈ O(n · (1+ log2(α))).

Proof. We proceed by splitting cases on “i” in the summation in Q(n,α).

Case: i > dlog2(n)e− dlog2(α)e
Then, dlog2(n)e− i < dlog2(α)e and, hence,
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dlog2(n)e− i 6 blog2(α)c 6 log2(α).

So, 2dlog2(n)e−i 6 α.

Therefore, min(α, 2dlog2(n)e−i) = 2dlog2(n)e−i.

Case: i 6 dlog2(n)e− dlog2(α)e
Then dlog2(n)e− i > dlog2(α)e and 2dlog2(n)e−i > α.

Therefore, min(α, 2dlog2(n)e−i) = α.

It follows that

Q(n,α) =

dlog2(n)e∑

i=0

h(2i) · min(α, 2dlog2(n)e−i)

=

dlog2(n)e−dlog2(α)e∑

i=0

h(2i) · min(α, 2dlog2(n)e−i) +
dlog2(n)e∑

i=dlog2(n)e−dlog2(α)e+1
h(2i) · min(α, 2dlog2(n)e−i)

=

dlog2(n)e−dlog2(α)e∑

i=0

h(2i) ·α +

dlog2(n)e∑

i=dlog2(n)e−dlog2(α)e+1
h(2i) · 2dlog2(n)e−i

(since h is linear, i. e. h(x) = a · x+ b)

=

dlog2(n)e−dlog2(α)e∑

i=0

(α · a · 2i +α · b) +

dlog2(n)e∑

i=dlog2(n)e−dlog2(α)e+1
a · 2i · 2dlog2(n)e−i + b · 2dlog2(n)e−i

(since h is linear, i. e. h(x) = a · x+ b)
= α · a · (20 + . . .+ 2dlog2(n)e−dlog2(α)e) +α · b · (dlog2(n)e− dlog2(α)e) +

a · 2dlog2(n)e · dlog2(α)e+ b · (2dlog2(α)e−1 + . . .+ 20)
= α · a · (2dlog2(n)e−dlog2(α)e+1 − 1) +α · b · (dlog2(n)e− dlog2(α)e) +

a · 2dlog2(n)e · dlog2(α)e+ b · (2dlog2(α)e − 1)
∈ O(n) +O(n · log2(α))
= O(n · (1+ log2(α)))

d.2 example programs

In this section, we present a list of example programs that we have type-
checked with BiRelCost.
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d.2.1 List operations

list append We describe how the standard list append program can be
typed in BiRelCost.
fix append(_).Λ.Λ.Λ.Λ.λl1.λl2.
case l1 of nil → l2

| h :: tl→ cons(h, append () [ ] [ ] [ ] [ ] tl l2)

` append	 append . 0 : unitr → ∀i, j,α,β.

list[i]α τ→ list[j]β τ
diff(0)−−−→ list[i+ j]α+β τ

list filter We describe how the standard filter program can be typed
in BiRelCost.

Λ.fix filter(f).Λ.Λ.λl.
case l of nil → pack nil

| h :: tl→let r = filter f[ ] [ ] tl in
let b = f h in
unpack r as r ′ in
if f then pack cons(h, r ′) else pack r ′

` filter	 filter . 0 : ∀t.(� (U int
diff(t)−−−→ U bool))→ ∀n,α.

list[n]αU int
diff(t·α)−−−−→ U (∃j.list[j] int)

list zip We describe how the standard list zip function can be typed in
BiRelCost.

fix zip(_).Λ.Λ.Λ.λl1.case l1 of
nil → nil

| h1 :: tl1 → case l2 of

nil → contra

| h2 :: tl2 → let r = zip ()[ ] [ ] [ ] tl1 tl2 in
cons(〈h1,h2〉, r)

` zip	 zip . 0 : unitr → ∀n,α,β.

list[n]α τ1 → list[n]β τ2
diff(0)−−−→ list[n]min(n,α+β) τ
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list rev We describe how the standard list reverse program can be
typed in BiRelCost.
fix rev(_).Λ.Λ.Λ.Λ.λl.λacc.
case l of nil → acc

| h :: tl→ rev () [ ] [ ] [ ] [ ] tl cons(h,acc)

` rev	 rev . 0 : unitr → ∀i, j,α,β.

list[i]α τ→ list[j]β τ
diff(0)−−−→ list[i+ j]αβ τ

list shuffle We describe how following program that shuffles the el-
ements of a list can be typed in BiRelCost. The program shuffles a list by
reversing its tail at each recursive call.

fix shuffle(_).Λ.Λ.λl.
case l of nil → nil

| h :: tl→cons(h, shuffle ()[ ] [ ] (rev ()[ ] [ ] [ ] tl nil ))

` shuffle	 shuffle . 0 : unitr → ∀n,α.

list[n]αU int
diff(0)−−−→ list[n]αU int

list fold (comparison) We describe how following program that
compares the relative cost of the standard foldr and foldl functions can
be typed in BiRelCost.

fix foldr(f).Λ.Λ.λl.λacc
case l of nil → acc

| h :: tl→let r = foldr f[ ] [ ] tl acc in f h r

fix foldl(f).Λ.Λ.λl.λacc
case l of nil → acc

| h :: tl→foldl f[ ] [ ] tl (f h acc)

` foldr	 foldl . 0 : ∀t.(U (int→ bool
exec(t,t)−−−−−→ bool))→ ∀n,α.

list[n]αU int
diff(0)−−−→ U bool
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list flatten We describe how the standard list flatten program can be
typed in BiRelCost. Assume that we know the type of the append function
as derived above.
fix flatten(_).Λ.Λ.Λ.Λ.λM.
case M of nil → nil

| l ::M ′ →let r = flatten () [ ] [ ] [ ] [ ] M ′ in
append [ ] [ ] [ ] [ ] l r

` flatten	 flatten . 0 : unitr → ∀i, j,α,β.

list[i]α τ→ list[j]β τ
diff(0)−−−→ list[i · j]α·β τ

d.2.2 Example programs from RelCost

We have already all but one example in the thesis.

loop unswitching Next, we consider a compiler optimization tech-
nique known as loop unswitching that moves a conditional inside a loop to
the outside. For simplicity, we consider a variant in which the else branch
just returns a unit. Consider the function loop that iterates over a list l.

fix loop(l).case l of
nil → ()

| h :: tl → if b then let _ = f h in loop tl else ().

This program can be transformed to a version that pulls out the condi-
tional from the loop body as follows:

loopOp = if b then
fix loop ′(l).case l of

nil → ()

| h :: tl → let _ = f h in loop ′ tl
else λl.()

Suppose that the list l has type list[n]0 intr, i.e. it is substituted by the same

list for two programs, and the function f has type intr
CP(0)−−−→ intr, i.e. given

related integers, it returns related integers with 0 execution cost difference.
Assuming that the boolean input b is equal between two runs, what can
we say about the relative cost of these two programs? Intuitively, loopOp
is an optimization: rather than checking b at each iteration, it only checks
it once outside of the function definition. Here, we do a more fine-grained
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cost counting and assume all elimination forms to have a unit cost. Then, in-
tuitively one would expect that the execution cost difference between these
two programs is n.

If we resort to the non-relational execution cost analysis, using the switch
rule we have introduced in Example 1 from the paper, we can establish the
following type

` λb.loop	 λb.loopOp . 0 : U ((bool→ ∀n::N.

list[n] int
exec(5·n+1,1)−−−−−−−−→ unit), .)

by typing the two programs independently. Then, via subtypingU (A1
exec(k,t)−−−−−→

A2) ⊆ UA1
CP(t−k)−−−−−→ UA2, we can establish a relative execution cost differ-

ence of 5 · n for these two functions. However, this bound is not precise
enough: it is 5 times more than what we expected, because it completely
ignores the fact that b doesn’t change between the two programs.

Instead, we can obtain a more precise bound using relational analysis.
To achieve this, we make use of asynchronous rules that allows us to com-
pare programs with different structure. For instance, we can compare an
arbitrary expression e to an if statement as follows:

|Γ |2 `tk e ′ : bool Γ ` e	 e ′1 . t ′ : τ Γ ` e	 e ′2 . t ′ : τ
Γ ` e	 (if e ′ then e ′1 else e ′2) . t ′ − k− 1 : τ

e-if

In this rule we relate e to the branches of the conditional and separately
establish lower and upper bounds on the execution cost of the guard of
the conditional. This rule allows us to compare loop to the inner recursive
function loop ′ in loopOp. Similarly, using a symmetric variant of e-if rule,
we can compare the inner conditional branch of loop to the body of loop ′

(shown in shaded boxes above). Note that, in the latter, we want to avoid
comparing the “else" branch () to let _ = f h in loop ′ tl. This can be taken
care of by refining the boolean type with its value as follows: boolr[B]. 1

Then, we can type these two programs with a more precise relative cost n

` λb.loop	 λb.loopOp . 0 : ∀B :: {true, false}.

bool[B]
CP(−1)−−−−→ ∀n::N. list[n]0 intr

CP(n)−−−−→ unitr.

1 Although we do not consider indexed booleans in this paper, they can be easily simulated
by lists.
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The negative cost 1 comes from the fact that the optimized version incurs a
unit cost for the outer “if" statement and the expected cost n comes from
the fact that the conditional elimination incurs a unit cost for each recursive
call.

d.2.3 Additional examples

selection sort Consider the standard selection sort algorithm that
finds the smallest element in a list and then sorts the remaining list recur-
sively. In RelCost, we can show that ssort is a constant time algorithm, i.e.
its relative cost is 0.

We briefly explain its typing. The first ingredient is the function select

that takes an element x and a list of size n and returns the minimum among
x :: l and the rest of the list.

fix select(x).λl.case l of
nil → 〈x, nil 〉

| h :: tl → let (small,big) = if x < h then 〈x,h〉 else 〈h, x〉
let (smaller, rest) = select small tl in
〈smaller, cons(big, rest)〉

It can be given the following relational type:

` select	 select . 0 : U int
CP(0)−−−→ ∀n,α::N.

list[n]αU int
CP(0)−−−→ ∃β::N. (U int × list[n]βU int)

The selection sort function ssort first finds the minimum element and the
rest of the list members and then returns the minimum element appended
to the rest of the sorted list.

fix ssort(l).case l of
nil → nil

| h :: tl → let (smallest, rest) = select h tl in
cons(smallest, ssort rest)

Then, we can relationally show that ssort has zero relative cost with respect
to two lists that differ by α elements.

` ssort	 ssort . 0 : unitr
CP(0)−−−→ ∀n,α::N.

list[n]αU int
CP(0)−−−→ ∃β::N. .list[n]βU int.
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We briefly explain how we derived this type. We focus on the part where the
list has at least one element. From the type above, we know that select’s
relative cost is 0 and “cons”’ing is constant time. In addition, we assumed
that recursively, ssort incurs 0 cost. Hence we can conclude that relative
cost of ssort is 0.

d.2.4 Approximate sum

The next example is from the approximate computing domain in which
one often runs an approximate version of the program to save resources.
For instance, consider two implementations of a calculation that computes
the mean of a list of numbers. The first function computes the sum of a list
of numbers and divides the sum by the length of the list whereas the sec-
ond function (its approximate version) only computes the sum of the half
of the elements, divides this sum by the total length of the list and then
doubles the result afterwards. The first version could be operating over pre-
cise numbers whereas the second–approximate–version could be operating
over approximate numbers. How can we type these two implementations
in RelCost?

We first show the two helper functions sum and sumAppr that correspond
to precise and approximate summation over a list of numbers.

fix sum(acc).λl.case l of
nil → acc

| h :: tl → case tl of

nil → h+ acc

| h ′ :: tl ′ → sum (h+ h’+ acc ) tl ′

fix sumAppr(acc).λl.case l of
nil → acc

| h :: tl → case tl of

nil → h+ acc

| h ′ :: tl ′ → sum ( h’+ acc ) tl ′

Assume that addition and division operations are constant time and the
helper function length can be given the following type

` length	 length . 0 : ∀n::N. list[n]αU int
diff(0)−−−→ intr
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Then, we can show that the two helper functions sum and sumAppr can be
given the following relational type with relative cost n.

` sum	 sumAppr . 0 : U int
diff(0)−−−→ ∀n::N. list[n]αU int

diff(n)−−−−→ U int .

Intuitively, these two functions only differ by an addition operation for each
recursive call, therefore we obtain n difference cost in their execution time:
for each recursive call (which goes down in size by 2), a unit cost for the
addition and a unit cost for the primitive application.

Then we can type these two functions as follows:

`
(
λl.

sum 0 l

length l

)
	
(
λl. 2 · sumAppr 0 l

length l

)
. 0 :

∀n::N. list[n]αU int
diff(n−2)−−−−−→ U int.

Since the approximate version performs an additional multiplication op-
eration, we use the symmetric version of the rule r-let-e and subtract two
unit costs: one for the cost of the multiplication and one for the cost of the
application of the primitive application.
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