
Technical Report MPI-SWS-2017-004 August 2017

iDeA: An Immersive Debugger for Actors
Aman Shankar Mathur

MPI-SWS

mathur@mpi-sws.org

Burcu Kulahcioglu Ozkan

MPI-SWS

burcu@mpi-sws.org

Rupak Majumdar

MPI-SWS

rupak@mpi-sws.org

ABSTRACT
We present iDeA, an immersive user interface for debugging con-

current actor programs communicating through asynchronous mes-

sage passing. iDeA is based on the hypothesis that debugging and

understanding such programs is a cognitive task which can be

greatly facilitated by the visualization and interaction capabilities

of modern immersive environments. The fundamental abstraction

for visualization in iDeA is a concurrent trace: a partially ordered

sequence of asynchronous messages exchanged by the actors. iDeA

provides a 3D interface in virtual reality for users to visualize and

manipulate program traces: users can set breakpoints, query ac-

tor state, step through traces forward and backward, and perform

causal history of messages in a trace. We have implemented iDeA

for actor programs written in Scala’s Akka framework on the HTC

Vive VR device. We demonstrate through an initial user study that

the abstractions exposed by iDeA can be used effectively for de-

bugging actor programs.

1 INTRODUCTION
Concurrent components interacting through asynchronous mes-

sage passsing are the basis for many modern applications— from

large-scale servers to responsive user apps on the web or mobile

platforms to networked embedded systems. The actor model of
programming [2, 21] is a popular way to structure such applica-

tions. This model provides a high-level concurrency abstraction

consisting of lightweight computation units called actors, which
operate on an isolated, encapsulated state and communicate with

each other by sending and receiving messages asynchronously. An

application-level scheduler co-ordinates the execution by picking

an actor which has an outstanding message waiting to be processed

and executing it serially. Executing the message receipt results in

an update of the actor’s local state as well as further messages sent

to the actors for future processing. The high-level concurrency

abstraction relieves the programmers from explicitly considering

low-level aspects of concurrency such as threading, locks, or shared

global state. The popularity of the model is shown by its widespread

availability, either as a language construct (e.g., Erlang, P, Scratch)

or as a library on top of an asynchronous programming interface

(e.g., Akka for Scala and Java, Asynchronous Agents in C#, and

many others).

In spite of the higher-level concurrency abstraction, program

comprehension and debugging for actor programs is not easy.While

each actor processes its messages serially, the delivery of messages

across different actors is concurrent. This leads to complex concur-

rent chains of asynchronous messages. The behavior of the system

depends on the specific processing order and a subtle change in the

ordering can lead to unexpected program behaviors. At the same

time, modern IDEs provide rudimentary support for understanding

and debugging concurrent programs at this level of abstraction.

Most debugging frameworks only provide functionality appropri-

ate for sequential or low-level concurrent code (step through code,

query state or variables or the call stack, set statement-level break-

points) or a thin layer on top (intercept messages or visualize mes-

sage sequences in 2D [9, 13, 14, 37]). Consequently, the main tool

for debugging today is programmer-inserted log messages and

understanding concurrency from a serial log of execution.

In this paper, we present iDeA, an immersive Debugger for Actor
programs. iDeA is an immersive environment for the HTC Vive

virtual reality device, and provides a simple, visual user interface

for debugging actor programs written in Akka, an actor frame-

work for the Scala language.
1
The architecture of iDeA has two

parts. The first part intercepts scheduling choices by replacing the

underlying scheduler and exports the event for visualization and

debugging. The second part performs trace visualization and direct

manipulation through debug actions.

The two key concepts underlying iDeA are debugging at the
message level and immersive visualization and animation.

Message-level Debugging. iDeA is intended for debugging situations

where the serial behavior of each actor (the response to a single

received request) is understood, but the global behavior of many

messages is not understood. This is the case for many concurrent

protocols where the programmer must explore and understand the

set of global traces of messages. Consequently, the visual interface

in iDeA presents actors as 3D visual entities arranged in 3D space,

messages as arrows between objects which fade over time, and

provides capabilities for playing and manipulating sequences of

messages.
2
The notion of an atomic step is not statement-level exe-

cution, but the atomic handling of a message by an actor. Similarly,

state of the system is defined only at schedule points; we do not

provide statement-level state changes for each actor.

Thus, iDeA enables a high-level interaction with the executing

program at the level of the concurrency model. Instead of stepping

over a single statement or watching the value of a local variable

between two statements in a message handler, users step over pro-

cessing a single message (whose execution is semantically atomic

in an actor program execution). Users can set breakpoints on cer-

tain actors so that execution breaks before these actors receive the

next message. At any point of execution, programmers can point

to an actor and query its state and the state of its message queue.

Analogous to watch variables in conventional debuggers, evolution

of actor state is animated along with the trace. Further, the user

can “time travel” along the trace to explore the timing behavior of

the execution.

While many debug actions replay the current execution deter-

ministically, leaving the scheduling actions arbitrary, iDeA users

1
Akka is available from http://akka.io.

2
For some actor programs, such as in air traffic control or IoT, there is a natural

mapping from program-level actors to 3D space.

http://akka.io


Technical Report MPI-SWS-2017-004 August 2017

can also influence the scheduling choice online by picking a spe-

cific actor to be scheduled in the next step. Events are executed in

“logical time”: we do not consider real-time behavior.

Working at the level of the concurrency model allows us to sup-

port domain-specific debugging aids backed by program analysis.

As an example of a domain-specific program analysis and its visual-

ization, we have implemented causality analysis as a built-in debug

feature in iDeA. In causality analysis, the user can annotate a set

of actors and then trace how other actors are causally related to

the source actors through the exchange of messages.

While we provide text logs for the current trace within the in-

terface, we do not provide a capability to directly manipulate the

code at the textual level within iDeA because current VR environ-

ments do not provide enough resolution or interaction modalities

for convenient text editing.

Immersive Visualization Environment. The visual metaphor in iDeA

represents actors as geometric entities in 3D space and messages as

dynamically constructed arrows between these entities. Thus, traces

are animations of arrow sequences with manipulation capabilities

to focus attention on various aspects of the execution.

The visual interface of iDeA is predicated on the assumption that

trace animation in an immersive environment can be more effective

for debugging and understanding large-scale concurrent actor sys-

tems than a traditional 2D-screen interface. A full user validation of

this assumption goes significantly beyond this paper (and requires

us to build iDeA in the first place!). We justify our assumption based

on recent research in visual perception experiments in immersive

environments as well as on previous research on non-immersive

trace visualization for program comprehension and demonstrate

the usability of iDeA through an initial case study.

Recent research in visual search [41] shows that visual search

can be performed in reasonable time in an immersive environment

with over a thousand distractors; comparable experiments in 2D

environments scale only to less than hundred distractors AM: Ref.
People quickly learn positions of objects in 3D space and spatial

memory can guide visual search in an immersive setting [26, 34].

The importance of peripheral vision in perceptual processing has

been studied extensively [51, 52]. In an immersive environment,

the transference of attention from a focus area to the periphery can

be seamless (and simply involves moving the eye/head/bearing),

whereas in a typical 2D environment requires an explicit interac-

tion.

iDeA assumes that evolution of state in a concurrent program

can be effectively explored through animation. While animation

may not be effective in every visualization situation, there is prior

evidence that it can be effective in concurrent program compre-

hension (see, e.g., [11, 54] and the references therein). Animation

has been used succesfully in understanding evolution of developer

workflows in the code_swarm tool [46]. Developer workflows have

features very similar to actor-based programs. In the field of high-

performance computing, (2D) animation has been used effectively

to understand message-passing behavior of large-scale parallel pro-

grams [19, 24, 25, 54]. In contrast to many of these systems, where

the focus was simply to visualize a trace, iDeA goes further in allow-

ing interactive exploration of the trace in the context of program

debugging.

The key to effective exploration of traces for large programs

is the ability to suppress information. In iDeA, we provide two

different mechanisms to focus attention. First, we provide an area
of focus where the user can drop selected actors. The area of focus

exploits the natural visual focus of the human perceptual system,

while keeping other actors in peripheral vision. Second, we provide

user interaction modes to suppress messages in untracked actors.

Together with time travel, this allows effective navigation of traces.

To objectively evaluate the usefulness of our tool, we conducted

a user study wherein participants were asked to analyze a buggy

program execution. Results from the study suggest that users are

able to comprehend concurrent traces using iDeA and correctly an-

swer questions about a problematic concurrent program execution

even with no prior knowledge about the program or iDeA.

Contributions.We summarize our contributions. iDeA is the first im-

mersive debugging system for actor-based, asynchronous message-

passing programs. It provides an integrated environment for post

mortem and online debugging of programs, and provides function-

ality for:

• Recording and deterministically reproducing execution traces

and visualizing them in an interactive 3D virtual environment.

• Time-travel debuggingwith focus of attention at the level of the

concurrency model, with animation of the state and message

sequences and visual (“point and click”) options for debugging

tasks such as breakpoints.

• Online control of the underlying message scheduler as well as

offline playback of a trace.

• Integration with dynamic program analyses such as causality

analysis on actors.

While we acknowledge that iDeA scratches the surface of immer-

sive environments for program comprehension and leaves many

questions relating to user perception of concurrent program exe-

cutions open, we believe it is a useful first step towards expressive

immersive program visualization and debugging environments. In
supplementary material along with this paper, we provide videos
showing the functionality and use of iDeA.

2 MOTIVATION
2.1 Programming Model
The actor model of programming is a high-level model that is con-

current and distributed by design. Actor programs consist of actors,
which are independent computation units with their own local

state. Actors do not share state and communicate with each other

by exchanging asynchronous messages. Each actor has a mailbox

that collects messages sent to it. An actor processes messages in

its mailbox serially. In response to processing a message, an ac-

tor can send further messages, create new actors, and update its

local state. An actor’s behavior —including which messages it is

prepared to handle— depends on its local state and may change

when it processes a message. An actor program is scheduled by an

application-level scheduler which picks which actor to run next.

While the scheduler may internally use a thread pool, the lack of

global state maintains the atomicity of each actor.

Due to the asynchrony and concurrency in actor programs, a

program can have several different executions. Messages sent to



Technical Report MPI-SWS-2017-004 August 2017

def waiting_for(chopstickToWaitFor: ActorRef, otherChopstick:
ActorRef): Receive = {

case Taken(`chopstickToWaitFor`) =>
context.become(eating)
self ! Think

case Busy(`chopstickToWaitFor`) =>
context.become(thinking)
// The programmer omits the following line:
// otherChopstick ! Put(self)
self ! Eat

}

Figure 1: Code excerpt from a buggy implementation of the
dining philosophers problem. It is missing a message ex-
change between Philosopher and Chopstick actors.

(a) A buggy execution (b) A correct execution

Figure 2: The sequence diagrams for two different execu-
tions. The bug occurs when the philosopher actor receives
the Taken message before the Busy message. The code for only
waiting_for behavior is presented due to space constraints.

an actor from other actors are concurrent to each other and can be

delivered to its mailbox in any order. Different implementations of

the actor model pose additional constraints on possible executions.

In this work, we use the Akka actor library [3]. While Akka runtime

has a message ordering guarantee per sender-receiver pair (i.e., for

a given pair of actors, messages sent directly from the first actor to

the second will be received in-order), it has no ordering guarantees

on messages sent by other actors. Thus, message exchanges should

be orchestrated in a way that the program behaves as expected in

all possible orderings of messages.

2.2 Motivating Example
We now present a sample buggy code to show that users need

to understand communication patterns in an execution to detect

problematic behavior in actor programs.

Figure 1 shows an excerpt from an implementation of the din-

ing philosophers problem [22] in Scala using the Akka actor li-

brary. The program consists of some Philosopher and Chopstick ac-

tors. Each Philosopher actor communicates with two Chopstick actors

and each Chopstick actor communicates with two Philosopher actors.

A Philosopher sends a message to a Chopstick either to take the re-

source or to put it back. Similarly, a Chopstick responds by sending

Figure 3: The thread call stack shows unrelevant informa-
tion for the message communication. It lists the method
calls in the framework but it does not show the sender and
the content of the received message.

a notification if the actor can take the resource or if it is busy (al-

ready taken by some other Philosopher). The program starts with

Philosophers sending messages to Chopsticks.

In the code sample, the Philosopher actor behavior waiting_for is

given.
3
A philosopher reaches this behavior when it acquires one

of the chopsticks (otherChopstick in the code). In this behavior, the

actor responds to either a Taken or Busy message received from the

second chopstick. The Taken message is sent by the chopstick if it

was available when it received the philosopher’s request and hence

can be taken by this Philosopher. If this is the case, the Philosopher

has both of the chopsticks and updates its behavior to eating. It also

sends a Think message to itself so that it can update its behavior

to thinking in the future, when it receives this message. The Busy

message is sent by a chopstick if it is already acquired by another

philosopher. In this case, the Philosopher updates its behavior to

thinking and sends an Eat message to itself to ask for the chopticks

again when it receives this message in the future.

The given code has a bug which leads to a deadlock where none

of the philosophers can acquire both chopsticks. This is because the

commented line, which sends a Put message to release the already

acquired chopstick if the second one cannot be retrieved, has been

omitted. Thus, one of the resources stays unavailable even though

no philosopher uses it. The sequence diagrams for a buggy and a

correct execution are given in Figure 2.

The buggy behavior in this example occurs only when the mes-

sage from the available resource is processed before the message

from the busy resource. Depending on different ordering of mes-

sages in the system, the bug may appear earlier or later in an

execution trace. To analyze a buggy trace, one needs to have an

understanding of the communication in the application.

In order to debug the problem, the user should be able to easily

visualize the trace (sequence of messages between actors) leading

to the problem, potentially moving back and forward in time, be

3
In Akka, an actor behavior is defined as a partial function of type Receive (i.e.,

PartialFunction[Any, Unit], which accepts anymessage type and does not return

a value). The application logic case splits on the kind of message and implements the

intended behavior.



Technical Report MPI-SWS-2017-004 August 2017

able to query the state of each actor, set breakpoints on an actor

of interest, and check which actors are transitively influenced by

a message (causal flow). Additionally, she should be able to play

around with different schedule choices at different points in the

trace.

2.3 Debugging with Conventional Tools
Conventional debugging tools in IDEs do not provide high-level

information to reason about communication patterns in actor pro-

grams. They mainly provide the user with the ability of setting

breakpoints at some statements, run program to these breakpoints,

step forward in the execution and watch the variable values of in-

terest. The main information provided by these tools (i.e., variable

values and method call stacks of threads), are not sufficient to debug

actor programs.

Watching values of the program variables does not reveal concur-

rent interactions between actors. Moreover, the current behavior of

an actor (e.g., the behavior function defining how the actor handles

a message) is not immediately visible from program variables. Actor

behavior is implemented in the actor library using a stack of mes-

sage handling methods. One has to analyze the relevant variables

in the actor library to infer about the change of actor behavior.

The thread call stack information is not relevant while debug-

ging an actor program, since the actor abstraction is not tied to

underlying threads. For a sequential program, the method call stack

provides the context that leads to the current point of execution.

However, in actor based programs, the call stack only roots back

to the message handler method invoked on a worker thread by

the scheduler. For example, Figure 3 provides a sample call stack

obtained from the IntelliJ IDE. This information gives no clue about

the program state prior to the currently processed message (e.g.,

which actor sent this message in response to which program action).

The limitation of conventional debuggers has led to specialized

debuggers for message passing programs [13, 14, 37]. iDeA shares

the philosophy of these tools, but integrates debugging with an

immersive visualization on the one hand and provides expressive

primitives such as time travel, online control of scheduling, and

dynamic analysis such as causality on the other hand. Table 1 sum-

marizes the actions available to iDeA. We describe the architecture

of iDeA and these features in the next two sections.

3 IDEA ARCHITECTURE
Figure 4 shows the architecture of iDeA. It consists of two main

parts: the programming infrastructure and the visualization infras-

tructure. These pieces are decoupled from each other by means

of a simple server application which forwards user actions from

the visualization interface (e.g., scheduler choices) to the running

program and program events (e.g., messages sent and received by

actors) to the visualization interface. We have developed a JSON-

based protocol to exchange messages between the two parts.

The programming infrastructure runs the application being de-

bugged using an instrumented message dispatcher. The instru-

mented dispatcher is the primary component implementing the

debugger logic on the programming side. It processes the user in-

puts for debugging, collects relevant program events, and sends

them to the visual environment for visualization. Additionally, the

Figure 4: The architecture of our tool. 1. The user provides
debugger inputs in the VR environment. 2-3. The user re-
quest is sent to program environment. 4. The dispatcher pro-
cesses the user request. 5. The dispatcher collects program
events. 6-7. The dispatcher sends the program response. 8.
Program events generated in response to the user request
are visualized.

programming infrastructure provides a set of debugging libraries to

integrate an actor program to iDeA; these include visual elements

for describing an actor or displaying its state.With the instrumented

message dispatcher, we can run Akka applications on the unmodi-

fied Akka runtime [3] with a configuration to use our dispatcher

instrumented with debugger functionality.

The visualization environment is a 3D virtual reality environ-

ment that visualizes program events online (as they occur in execu-

tion) and presents and handles user interface (UI) options. It enables

users to explore and understand message exchanges between actors

and state evolution. We use the HTC Vive Virtual Reality (VR) head

mounted display and hand controllers along with Unity3D Game

Engine [57] to implement the immersive visualization environment.

While we focus on Akka, the loose coupling between the two

parts of iDeA makes it easy to extend to other programming lan-

guages and libraries (provided that the message dispatcher in the

new programming environment communicates with the visualiza-

tion part with our protocol).

3.1 Instrumented Dispatcher
The core logic of our debugger is implemented in a custom Akka

message dispatcher which we have instrumented with the ability to

enforce a specific delivery order of messages and to collect program

events. The message dispatcher subclasses akka.dispatch.Dispatcher

from the Akka framework and is invoked by the Akka runtime

each time a message is sent to an actor to deliver the sent message

to the recipient actor’s mailbox. We have modifed the standard

dispatcher to intercept all messages to program actors and collect

them in buffers. The dispatcher delivers a message from the buffer

to its recipient actor only when there is a user request for this

dispatch. To serialize the processing of messages in the application,

the dispatcher is configured to use a single thread. However, since

actors do not share state, this does not rule out potential behaviors.
4

The dispatcher communicates with the DebuggingHelper actor to

handle user requests from the server. We define a message hierarchy

to refer to different functionality requests from the visualization

4
In principle, Akka actors can run arbitrary Scala code, including threads and shared

state between actors. Our current implementation ignores the additional source of

non-determinism arising out of low-level shared memory concurrency.



Technical Report MPI-SWS-2017-004 August 2017

Figure 5: The visualization environment. One of the actors
is highlighted suggesting it is involved in the current action.

infrastructure. Whenever the dispatcher receives such a message,

it handles the associated request.

Our dispatcher supports the following user requests:

• Dispatching the next message for delivery (either a mes-

sage selected at runtime or replaying the next message in

a recorded trace). The dispatcher delivers the message and

processes the mailbox of the recipient actor synchronously.

During the processing of the message, it collects program

events for created actors and messages sent. After message

processing is finished, it sends the collected list of program

events as the response back to the server.

• Querying the behavior and the local state of an actor: the

dispatcher retrieves the actor state using a programmer-

specified handler or by reflection.

• Setting a breakpoint on an actor: the dispatcher internally

maintains a list of actors with breakpoints and, in the exe-

cution of the recorded trace, the execution breaks before a

breakpointed actor receives its next message.

• Going back to a previous point in the execution: the dis-

patcher records a history of events at each point in the exe-

cution. When the user goes back in execution history, the

dispatcher repeats sending the same program events exe-

cuted until the current point in actual execution is reached.

Note that iDeA explores the non-determinism of an actor program

at the scheduling level. Thus, an atomic step in iDeA is the process-

ing of a single message, and not the execution of a single instruction.

A step forward in the execution results in handling of a message,

during which messages may be sent to some actors, new actors can

be constructed, and the recevier’s state is updated atomically.

3.2 Visualization Environment
Visualization Metaphors. In iDeA, actors are represented as 3D

visual entities in space. The shape of an actor is customizable, and

can range from simple geometric bodies such as a cube, sphere, or

cylinder) to specialized 3D meshes. By default, the shape is fixed

for a class, therefore instances of the same kind of actor have the

same shape and are easy to identify.

Messages between actors are represented as dynamic arrows

between the sender and the receiver. The arrows fade over time,

thus the current visual state maintains a short-term history of

messages in the system. Virtual time (scheduling steps) coincides

with actual animation time: at any point, the set of geometric bodies

represent the “current state” and evolution of the state is represented

as animation of message arrows.

The iconography uses shape, color, and visual boxes for visual

representation of state and to guide attention. For example, a small

box representing an actor’s mailbox comes up on top of actors that

have one or more pending messages and a screen displaying the

internal state opens up below an actor when its state is queried.

When an actor is involved in an action, as a sender or as a recipient,

it is highlighted so as to guide attention to it. Breakpoints are

visualized using arrows above the actor, and a transparent box

represents “source events” for causality.

3D Workspace. The virtual environment consists of a workspace

(7m x 6m) where all actors are instantiated. In addition, there is an

area marked red (1m x 1m) where system actors are instantiated

(see Figure 5). This demarcation is done to avoid system actors from

cluttering the primary workspace. A virtual console adjacent to the

workspace explicitly lists all events happening online in text form.

Users can freely move around the workspace by either walking or

by teleporting to a particular location. A portion of the workspace

is demarcated as a focus area by highlighting the ground. Actors

can be brought to the focus area through point-and-click.

Interaction Mechanism. Two tracked hand controllers are used for

interacting with the system. One of them has a laser pointer at-

tached to it and is used for functionality that requires a user to

point at something (teleporting to a point, querying a particular

actor, etc.). The other controller is used for functionality that does

not require pointing (next step in trace, increasing/decreasing sim-

ulation speed, etc.). The controllers can also be used for picking up

actors and reorganizing them in the workspace.

Programmer API for Visualization. The visualization library in iDeA

provides a user API that enables users to provide customized infor-

mation and visualization options for the debugging process. Briefly,

users can use API methods for:

• Specifying which information is to be displayed/visualized.

Developers usually have suspicions about certain actors,

variables, or messages being responsible for unexpected pro-

gram behavior. Users can use the API to customize which

information is visualized when an actor state or message

content is queried.

• Specifying how to display information. Users can specify

some 3D shapes to be used for visualizing certain actors.

They can also specify a topography of the actor system by

providing coordinates for actors to be displayed in.

• Specifying timer scheduled messages. Users must call the

specific scheduling methods in the API instead of default

timed scheduler methods provided by the Akka library to

enable our dispatcher to control the order of timed messages.

• Configuring options. Configuration parameters such aswhich

trace is to be replayed, granularity of virtual time advance-

ment, etc. can be provided by either using the API or the

debugging configuration file.

4 DEBUGGING IN IDEA

In this section, we explain the debugging functionality provided by

iDeA, summarized in Table 1.



Technical Report MPI-SWS-2017-004 August 2017

Goal Description Traditional Debugger (e.g., IntelliJ Debugger)

Basic debugging functionality

Query actor state Query the local variables, current behavior and the

mailbox of an actor

Watch specific program variables, including the variables for

actor behavior and the mailbox defined in the actor framework

Step forward Go forward in the execution until the next message

is received by an actor

Step to next statement/block in the execution until the next

message is received, or use additional breakpoints

Set/unset a breakpoint Mark an actor so that the execution suspends before

that actor receives a message

Add/remove statement-level breakpoints to message handlers

Continue until breakpoint Run the program until a breakpointed actor receives

a message

Continue until breakpoint (causes all instances of the actors

using the breakpointed statement to hit the breakpoint unless

additional checks are applied)

Trace manipulation

Display execution history Display the sequence of messages exchanged be-

tween the actors and created/destroyed actors

Explicitly add log statements

Backtrack to a previous step Go back to a previous step in the execution trace Not directly supported

Manipulating schedule Enforce a selected actor to receive its next message Not directly supported

Visualization helpers

Positioning Actors Prespecify a topography of actormetaphor positions

or move them on the runtime

-

Tracking Causality Track the messages caused by a certain actor/mes-

sage transitively

-

Suppressing actors Suppress the visualization of unrelevant actor mes-

sages

-

Focus Area Move a selected set of actors to a focus area -

Table 1: Goals in iDeA and the corresponding operations in traditional debuggers (e.g., IntelliJ commonly used for Scala)

4.1 Basic Debugging Functionality
Querying Actor State and Mailbox. An actor encapsulates its local

variables, behavior (i.e. how it handles the received messages) and

its mailbox (which keeps the messages delivered to it). To observe

the actor state using a traditional debugger, one needs to log or

watch the values of specific local variables, analyze the contents of

the behavior stack and the mailbox implemented in the actor frame-

work. iDeA provides quick access to this information by pointing at

an actor and querying its state (see Figure 6). Once queried, a black

console appears below the actor’s visual representation which lists

its local variable values. Also, the actor metaphor color is updated,

representing its behavior. As color is an easily identifiable feature

[15], it can be used as an abstraction to encode relevant informa-

tion (e.g. how active an actor is, what behavior it currently exhibits,

if it is busy or free, etc.). The mailbox information (i.e. number

of messages and the next message) is displayed above the actor’s

mailbox.

Stepping Forward. iDeA supports message-oriented stepping which

is shown to be effective for message passing programs [37, 38, 40,

55]. A step is defined by the atomic processing of a single actor

message and the user can progress forward in the execution by

stepping to the next message. After processing each step, iDeA

visualizes the program actions (i.e., creation/destroyal of actors and

sending/receiving or dropping of messages) executed in this step.

As an example, Figure 7 shows an actor Entity-E sending a message

to Resource-1 and Resource-5 during processing of its message.

Deterministic Record/Replay of Traces. The instrumented dispatcher

can deterministically record an execution trace since it processes

Figure 6: State of pongActor1 is queried.

and records only a single message at a time. Since an execution of an

actor program can be defined as a sequence of messages processed,

it suffices to record only the messages and the order in which they

are received and processed in the execution.

A recorded execution trace can be replayed deterministically by

(i) replaying the exact same order of message exchange as in the

recorded trace, (ii) determinizing the order of timed scheduler mes-

sages w.r.t. actor messages, and (iii) determinizing other sources of

nondeterminism (e.g., randomness using the same randomization

seed). In some applications, certain messages are sent to actors after

some time delay or periodically over time. Due to timing nondeter-

minism, the ordering of these messages with respect to other actor

messages is not deterministic. Hence for (ii), we introduce a virtual

timed scheduler. This scheduler uses a timer actor that always has

a message in its mailbox that advances time when received. As

messages to the timer actor are controlled as well as other actors,



Technical Report MPI-SWS-2017-004 August 2017

Figure 7: Looking at the arcs, it is easy to
identify that Entity-E sends a message to
Resource-1 and Resource-5.

Figure 8: A breakpoint is set on
pingActor2.

Figure 9: The white bullet correspond-
ing to an atomic step can be selected to
go back to that point in history.

the advancement of time (and hence when to send a timed message

to an actor’s mailbox) is determinized.

Setting/Unsetting Breakpoints. Similar to the stepping operation,

breakpoints are supported in message-oriented notion, which are

hit just before certain messages are received. iDeA allows its users

to set breakpoints on actors, so that it is hit before the selected actor

receives its next message. Breakpoints are visually represented as

an arrow on top of the breakpointed actor, as in Figure 8.

Continue until Breakpoints. By default, iDeA suspends the execution

after processing each message. The continue operation provides

running the program uninterruptedly until a breakpoint is hit. This

is useful for debugging long traces where only certain actor mes-

sages are of interest.

4.2 Trace Manipulation
Display Execution History. The sequence of executed program ac-

tions are listed in a console in the virtual environment (see Figure

9). The program actions executed as part of processing the same

message are grouped and labeled with bullets. This allows the pro-

grammer to see the atomically executed actions. Each time the

user steps forward in the execution, a new bullet with the recent

program actions is prepended to the console.

Enforce a Schedule. By default, iDeA runs an execution replaying a

recorded schedule (e.g., a schedule determined to be problematic).

However, iDeA also allows the user to deviate from the recorded

trace by selecting the next message to be delivered. The user can

point at an actor and click a certain button to enforce its next mes-

sage to be processed. This enables exploring the consequences of

different schedules to better understand the problem in an execu-

tion.

Backtrack to a Previous Step. Time travel debugging enables users to

go back a few steps and reexamine part of the execution of interest.

In iDeA, backtracking functionality is integrated onto the console-

like screen which lists steps that have occurred so far. This makes

a review of prior events easy and also offers an intuitive way to

backtrack to a particular step by simply selecting it.

4.3 Visualization Helpers
Positioning Actors. To prevent clutter in the virtual environment

as the number of actors increase, iDeA allows for the customized

organization of the workspace in the following ways:

• Specifying a general topography using the programmer API.

Figure 5 shows the ring topology for a system where an actor

interacts primarily with adjacent actors. This example also uses

programmer specified icons for visualization of the actors.

• Assigning a physical location to an actor while creating it. This

is useful for IoT applications where each actor has a known

geographic location.

• Picking up and placing actors individually inside the virtual

environment to logically organize actors online.

As locomotion inside VR is a known cause of fatigue and VR induced

nausea, iDeA provides shortcuts to avoid the need for movement

inside the virtual environment. Essentially, iDeA can also be used

to its full extent seated and with limited hand movement. Speed

of animation and playback can also be adjusted to avoid or reduce

simulation related sickness. Latency is almost negligible because of

the simplicity of geometric shapes and animations used.

Focus Area and Visualization Suppression. Quite frequently, for a
given execution of an asynchronous program, there are a few actors

that are of specific interest (while a general idea of what other actors

are doing is still required). Focusing on these relevant actors can be

quite easily achieved in the virtual environmentwith the abstraction

of a focus area. Users are allowed to snap certain actors into/out

of focus area– which provides a handy way to focus attention on

certain actors while still engaging the peripheral visual system to

maintain track of actors not in focus (see Figure 10).

Along similar lines, to aid in the debugging process, there is a

provision of suppressing unnecessary visualizations, for example

initialization messages, networking messages, internal protocol

messages and messages between actors that are known to be bug-

free. This can be done in code while programming or online inside

the virtual environment. Selective visualization makes the overall

debugging experience clearer by de-congesting the environment

and removing distractions due to unimportant events.

Tracking Causality. Tracking the causal relationship between mes-

sages helps in identifying problematic executions arising from asyn-

chronous communication. iDeA allows the user tomark some actors

with colors so that every message outgoing from these actors in

the future is marked with that color. As shown in Figure 11, this

allows to visually track messages caused transitively by a specific

actor.

This feature is useful for detecting atomicity violations, where
two messages are intended to be processed one after the other but



Technical Report MPI-SWS-2017-004 August 2017

Figure 10: Resource-4, Entity-C and
Resource-3 are placed in focus area
for specific attention.

Figure 11: When pingActor2 (marked red),
sends a message to pongActor2, it will
cause pongActor2 to be marked red as well.

Figure 12: Entity-C (marked blue) is send-
ing a message to Resource-5 (marked red)
(possibly problematic).

another concurrent message interleaves them. Such an interleaving

or violation will be explicit (see Figure 12) when actors are marked

with different colors.

5 EVALUATION
While an extensive experimental evaluation of efficacy and usability

of iDeA in comparison to standard debuggers is outside the scope

of this paper, we designed a simple user study to experimentally

test the following:

• T1: Can users make relevant queries about the system using

iDeA?

• T2: Can users comprehend program behavior using iDeA?

5.1 Task Design
Akin to the experiment in [11], we designed tasks to encompass

one or more of Pacione’s principal comprehension activities [47].

This was done to avoid bias and justify our choice of tasks. Pacione

et al. [47] aggregated the following principal activities for software

comprehension:

• A1: Investigating the functionality of (a part of) the system.

• A2: Adding to or changing the system’s functionality.

• A3: Investigating the internal structure of an artefact.

• A4: Investigating dependencies between artefacts.

• A5: Investigating runtime interactions in the system.

• A6: Investigating how much an artefact is used.

• A7: Investigating patterns in the system’s execution.

• A8: Assessing the quality of the system’s design.

• A9: Understanding the domain of the system.

Due to constraints of the study as well as subtle differences in the

overall goal of debugging vis-à-vis general software comprehension,

we excluded A2, A6, and A9 and included some activities more often

than others. The experimental tasks were to explore a trace of an

actor program and to answer questions relating to the activities

at particular instants of trace playback. The tasks as well as their

relationship to Pacione’s activities are listed in Table 2.

The trace was generated from a buggy implementation of the

dining philosophers problem (see Figure 1), but we used abstract

identifiers (entities and resources) and shapes to avoid pattern

matching. This ensured that participants were not aware of the

underlying issue they were expected to identify, but the problem

itself was simple enough to not require domain specific knowledge

or advanced actor programming skills. To ensure that each partici-

pant saw the same thing at the same pace, participants were not

allowed to time travel (go back to a previous step in history), change

simulation speed, manipulate the recorded trace, or get access to

source code.

Task Activity Question asked

Task 1

T1.1 A5 Which resources have been requested by

Entity-A?

T1.2 A3 Is Resource-2 currently available?

T1.3 A1, A3, A5 Which resources have been currently ac-

quired by Entity-C?

T1.4 A3 Which resources are currently available?

T1.5 A5 Did Entity-D’s request pass or fail?

Task 2

T2.1 A1, A7 Does an entity always release its resources

when going to ‘Idle’ state?

T2.2 A1, A4 Can Entity-A and Entity-B go into ‘Process-

ing’ state concurrently?

T2.3 A7, A8 Is it possible to reach a state where no entities

can go into ‘Processing’ state?

Table 2: List of all tasks.

5.2 Procedure
Sixteen attendees of a Computer Science conference volunteered for

the study. All participants had a background in Computer Science

(1 Bachelor’s, 3 Master’s, 7 PhD, 1 Post-doc and 4 Professors/aca-

demic positions higher than Post-doc). Three participants were

employed in the industry, whereas the rest were in academia. Par-

ticipants were not tested on their expertise with actor programming

as the task only required interaction with visual abstractions and

program code was hidden. All participants had normal or corrected-

to-normal vision and none of the participants was color blind.

The experiment was performed in a single session lasting about

30 minutes overall (including experiment set-up and form filling,

introduction to the debug environment and performance of tasks).

Participants were first given a short introduction to iDeA. They

were shown features of iDeA such as stepping forward in a trace,

querying state, following message flows, etc. Afterwards, they were

given the following description of the buggy program:



Technical Report MPI-SWS-2017-004 August 2017

Task Correct Incorrect Average Median

T1.1 16 0 100% Correct

T1.2 16 0 100% Correct

T1.3 16 0 100% Correct

T1.4 15 1 93.75% Correct

T1.5 16 0 100% Correct

T2.1 14 2 87.5% Correct

T2.2 10 6 62.5% Correct

T2.3 13 3 81.25% Correct

Table 3: Results on all tasks (16 participants)

This program consists of two kinds of actors– Entities and Resources.
An Entity needs two Resources to go into a Processing state. Otherwise,
it waits. A Resource can only be assigned to one Entity at a time.

Following this, participants inspected the program’s trace using

iDeA. The experimenter asked questions to the participants (see

Table 2) at pre-selected intervals in the trace and noted correctness

of their responses. Partially correct answers were also recorded as

incorrect.

Before the sessions with the participants, a pilot study was per-

formed to ensure that (1) the time allocated for the study was not

exceeded and (2) the tasks and questions were clear and unam-

biguous. Two participants from within our organization, who had

not used iDeA previously, participated in the pilot study. Minor

modifications were made to the questions based on observations

and feedback.

5.3 Results
The correctness of responses to individual tasks is given in Table 3.

Near perfect scores for Tasks T1.1 to T1.5 suggest that functionality

offered by iDeA is not only usable, but also effective in making

queries about the system. Though tasks T2.1 to T2.3 have slightly

lower accuracy, these tasks are also more difficult and require in-

ferences to be made. A vast majority of participants were able to

identify the issue and make prognoses about what could or couldn’t

happen.

5.4 Threats to Validity
We have identified several threats to validity of our evaluation.

A threat to internal validity is that themajority of our subjects are

employed in academia and we were unaware of their programming

and debugging skills. We are also unaware of their exposure to

concurrent systems and in particular to actor programming or

Akka programming. Since the participants attended a conference

with an emphasis on concurrent programming and verification, we

can assume sufficient familiarity.

Participation was voluntary thereby making it difficult to attract

a lot of subjects from industry. Voluntary experiments also typi-

cally assume that participants are motivated to perform the task

but there was no way for us to control for motivation. Though a

standardized test would have been ideal, we tried to counteract

bias due to difference in skill by incorporating participants with

varying years of experience and educational qualifications into our

study. To account for differences in familiarity with the underlying

programming language and libraries, we restricted access to the

source code and only provided access to the visual interface.

All participants saw the same trace at approximately the same

pace. This isn’t representative of real-world use, wherein users are

free to spend as much time as they would like and utilize full set of

features offered by iDeA, most importantly time travel and trace

manipulation. However, by providing the same trace at the same

speed, we can control for individual experience and expertise in

concurrent program debugging.

The buggy program and tasks used in the experiment may not

be representative of general issues and debug methodology. Our

task design relies on prior work by Pacione et al. [47] to counter

this threat. Finding a larger class of concurrent programs and debug

tasks would provide more generalizable results but at the cost of a

longer experiment.

We assert that our user study only demonstrates the ability of

users to use iDeA, and we do not generalize our findings to other
(immersive visualization) environments for program comprehen-

sion. We also assert that our study does not provide quantitative

evaluation against traditional debugging environments: that would

require an experiment with some subjects using iDeA and other

(control) subjects using a traditional debugger for the same de-

bugging task. We did not have access to sufficiently many Akka

programmers to carry out such an experiment, but it is an important

future study. In general, a more comprehensive study needs to be

done comparing iDeA to other debuggers. However, as iDeA offers

a plethora of debug functionality not found in other debuggers, de-

signing an experiment to fairly compare iDeA to other debuggers

is not straightforward.

6 RELATEDWORK
Debugging Message Passing Systems. Several tools have been pro-

posed for improving the debugging of message passing programs

[7, 16, 17, 23, 28, 36, 45]. Closer to our focus of debugging actor

programs, Scala debuggers for actor programs [5, 13] allow for

stepping over a message and present additional information useful

to extract the asynchronous communication history in the system.

Briefly, it saves the stack frames at some specific points of execution

(e.g., when a message is sent to an actor) and displays them at rele-

vant breakpoints. Erlang debugger [14] allows for displaying the

message queue contents and shows the sent/received messages by

processes. REME-D [9] is implemented for AmbientTalk distributed

applications running on mobile networks. It provides message level

breakpoints, allows for querying actor states and the history of mes-

sages. While these debuggers improve debugging of actor programs,

they do not provide execution visualization or trace manipulation

capabilities.

Postmortem debuggers analyze the recorded execution traces to

extract useful information for the identification of software errors.

Causeway [55], designed for communicating event loop programs,

extracts and displays the causal relation of messages in the sys-

tem. It presents a user interface with different views for displaying

the process order, message order, stack explorer, and source code.

However, being a postmortem debugger, it does not provide online

debugging functionality.



Technical Report MPI-SWS-2017-004 August 2017

The work by [37, 40] focuses on supporting proper debugger ab-

stractions for different models of concurrency. They design Kompos

protocol which customizes the debugger functionality (e.g., break-

pointing at messages, transactions or atomic blocks) depending

on the underlying concurrency model. Another work by the same

authors [38] studies the bugs in actor programs and identifies (but

does not implement) the main debugging techniques for analyz-

ing actor programs. Our iDeA tool implements the functionality

discussed in these papers.

Visualization for Software Debugging. The relationship between

program comprehension/debugging and visualization was explored

in, among others, [6, 10, 12, 18, 20, 27, 29, 35, 39, 43, 44, 48–50, 53, 56].

We focus on visualization for debugging of distributed and message-

passing programs.

Most existing visualization tools for message passing systems

visualize the executions in 2D environments. Poet [30] and Shiviz

[1, 8] focus on visualization of the message communication in dis-

tributed systems. Though these tools differ in implementation and

use, they basically instrument the distributed system with some

virtual clock information [31] and visualize the order of messages

as a 2D diagram. Viva [33] is a visualization tool for event-based

systems which displays the exchanged messages and the depen-

dencies between them extracted by a hybrid of dynamic and static

analysis. Akka-viz [4] is an experimental tool developed for Akka

programs. It provides different views including a 2D graph show-

ing the exchanged messages, state machine diagram for the state

transitions of actors, and allows inspecting the local states of the

actors. It allows for monitoring the execution at runtime but is not

integrated with debugging functionality for actor programs.

Although debugging and visualization of distributed systems has

been popular recently, to the best of our knowledge, iDeA is the first

tool designed for actor programs (i) to visualize the asynchronous

interactions and (ii) to provide debugging functionality interactively

in an immersive virtual reality environment.

7 DISCUSSION
We have presented iDeA, the first immersive debugging and visual-

ization environment for actor programs. iDeA exposes a rich set

of visualization and manipulation capabilities for inspecting and

navigating program traces in the debugger. It also provides a num-

ber of abstractions based on attention and perceptual organization

to effectively debug programs in an immersive environment. The

full user evaluation of an immersive programming environment is

a project which goes beyond the scope of a single paper. We have

focused on describing the underlying architecture, implementation,

and basic visualization and manipulation features in this paper. We

now discuss some limitations of our current implementation as well

as directions for future work.

First, while VR devices have made significant progress with

respect to capabilities, resolution of the HTC Vive VR headset is

not good enough to read detailed text, especially when objects are

far away. As a direct repercussion of this, raw variable values are

sometimes difficult to read. A provision to read relevant source code

has been therefore purposefully omitted in the virtual environment.

A related point is that because of limited UI options, it is not possible

to edit code inside the virtual environment. To make changes to the

code, the user is expected to take off the headset and use a standard

text editor or IDE. This limitation may however not exist when

using an augmented reality headset such as Microsoft Hololens

[42].

While this rules out certain forms of debugging, for example,

tricky sequential reasoning within an actor’s message handling

code, we believe that a large class of debugging problems fall into

the category where the sequential message handling is understood

and the debugging only involves visualizing and understanding

concurrent ordering of messages. We expect that in the coming

years, VR will mature as a medium and some of these current

hardware limitations shall be solved.

In terms of domain-specific visualization, we do not have expe-

rience on how the system would scale as number of actors increase

(over ~1000), especially in terms of perceptual understanding of

message provenance and actor states over time. There has been

some preliminary research into this [41], but more work remains

to be done in this direction so as to understand perceptual lim-

its to tracking visual objects efficiently in an artificial immersive

environment. A comprehensive treatment of large-scale message

visualization and compression goes beyond the scope of this paper,

but related work in 2D visualization interfaces [24] can be adapted

in our system.

Increasing the number of actors also increases challenges in

keeping and directing user attention. For example, in the presence

of a large number of actors, it becomes difficult to follow which

actor is active. This is partially dealt with by highlighting active

actors. However, when the active actor is not directly in field-of-

view of the user, we currently do not have ways to guide attention

to it unobtrusively. Automatically moving “hot” actors to the focus

area can lead to too much peripheral motion and induce VR sickness
[32]. Further, we do not yet provide automatic means of clustering

actors and messages. We leave these aspects to future work.

iDeA also leads to inter-disciplinary problems at the boundary

of software analysis, visualization, and perception. For example,

many fundamental questions about perceptual organization in arti-

ficial 3D immersive environments, such as search performance or

attentional mechanisms, are not understood. In companion work

in collaboration with cognitive psychologists, we are exploring

the perceptual models underlying debugging tasks, such as search

and attention in a 3D world. Finally, while we report on an initial

usability study, a thorough evaluation of our debugging environ-

ment (and a comparison to textual debugging interfaces) requires a

project of its own.

REFERENCES
[1] Jenny Abrahamson, Ivan Beschastnikh, Yuriy Brun, and Michael D Ernst. 2014.

Shedding light on distributed system executions. In Companion Proceedings of
the 36th International Conference on Software Engineering. ACM, 598–599.

[2] Gul A Agha. 1985. Actors: Amodel of concurrent computation in distributed systems.
Technical Report. Massachusetts Institute of Technology, Cambridge Artificial

Intelligence Lab.

[3] Akka. 2017. Akka. http://akka.io. (2017). Accessed: 2017-07-10.

[4] Akka-viz. 2017. A visual debugger for Akka actor systems. https://github.com/

blstream/akka-viz. (2017). Accessed: 2017-08-21.

[5] Asynchronous Debugger. 2017. Akka Asynchronous Debugger. http://scala-ide.

org/docs/current-user-doc/features/async-debugger/index.html. (2017). Ac-

cessed: 2017-08-22.

[6] Ron Baecker, Chris DiGiano, and Aaron Marcus. 1997. Software Visualization

for Debugging. Commun. ACM 40, 4 (April 1997), 44–54. https://doi.org/10.1145/

http://akka.io
https://github.com/blstream/akka-viz 
https://github.com/blstream/akka-viz 
http://scala-ide.org/docs/current-user-doc/features/async-debugger/index.html 
http://scala-ide.org/docs/current-user-doc/features/async-debugger/index.html 
https://doi.org/10.1145/248448.248458
https://doi.org/10.1145/248448.248458


Technical Report MPI-SWS-2017-004 August 2017

248448.248458

[7] Peter C Bates and Jack C Wileden. 1983. High-level debugging of distributed

systems: The behavioral abstraction approach. Journal of Systems and Software 3,
4 (1983), 255–264.

[8] Ivan Beschastnikh, Patty Wang, Yuriy Brun, and Michael D Ernst. 2016. Debug-

ging distributed systems. Queue 14, 2 (2016), 50.
[9] Elisa Gonzalez Boix, Carlos Noguera, Tom Van Cutsem, Wolfgang De Meuter, and

Theo D’Hondt. 2011. Reme-d: A reflective epidemic message-oriented debugger

for ambient-oriented applications. In Proceedings of the 2011 ACM Symposium on
Applied Computing. ACM, 1275–1281.

[10] Yung-Pin Cheng, Jih-Feng Chen, Ming-Chieh Chiu, Nien-Wei Lai, and Chien-

Chih Tseng. 2008. xDIVA: a debugging visualization system with composable

visualization metaphors. In Companion to the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and applications. ACM, 807–810.

[11] Bas Cornelissen, Andy Zaidman, and Arie van Deursen. 2011. A controlled exper-

iment for program comprehension through trace visualization. IEEE Transactions
on Software Engineering 37, 3 (2011), 341–355.

[12] WimDe Pauw, Erik Jensen, NickMitchell, Gary Sevitsky, John Vlissides, and Jeaha

Yang. 2002. Visualizing the execution of Java programs. Software Visualization
(2002), 647–650.

[13] Iulian Dragos. 2013. Stack retention in debuggers for concurrent programs. In

Proceedings of the 4th Workshop on Scala (SCALA ’13). ACM, New York, NY, USA.

[14] Erlang. 2017. Erlang Debugger. http://erlang.org/doc/apps/debugger/debugger_

chapter.html. (2017). Accessed: 2017-08-21.

[15] John M Findlay. 2004. Eye scanning and visual search. The interface of language,
vision, and action: Eye movements and the visual world 134 (2004).

[16] Elmer Garduno, Soila P. Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan.

2012. Theia: Visual Signatures for Problem Diagnosis in Large Hadoop Clusters.

In Proceedings of the 26th International Conference on Large Installation System
Administration: Strategies, Tools, and Techniques (lisa’12). USENIX Association,

Berkeley, CA, USA, 33–42. http://dl.acm.org/citation.cfm?id=2432523.2432526

[17] Dennis Michael Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. 2006.

Replay debugging for distributed applications. (2006).

[18] Paul Gestwicki and Bharat Jayaraman. 2005. Methodology and architecture of

JIVE. In Proceedings of the 2005 ACM symposium on Software visualization. ACM,

95–104.

[19] M. Heath and J. Etheridge. 1991. Visualizing the performance of parallel programs.

IEEE Software 8 (1991), 29–39.
[20] Juha Helminen and Lauri Malmi. 2010. Jype-a program visualization and program-

ming exercise tool for Python. In Proceedings of the 5th international symposium
on Software visualization. ACM, 153–162.

[21] Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A Universal Modular

ACTOR Formalism for Artificial Intelligence. In Advance Papers of the Conference,
Vol. 3. Stanford Research Institute, 235.

[22] C.A.R. Hoare. 1985. Communicating sequential processes. Prentice-Hall.
[23] UC Berkeley ICSI. 2016. Minimizing faulty executions of distributed systems. In

Symposium on Networked Systems Design and Implementation (NSDIâĂŹ16). 291.
[24] K.E. Isaacs. 2015. Analysis of parallel traces via logical structure. Ph.D. Dissertation.
[25] Katherine E. Isaacs, Peer-Timo Bremer, Ilir Jusufi, Todd Gamblin, Abhinav Bhatele,

Martin Schulz, and Bernd Hamann. 2014. Combing the Communication Hairball:

Visualizing Parallel Execution Traces using Logical Time. IEEE Trans. Visualiza-
tion and Computer Graphics 20(12) (2014).

[26] D. Kit, L. Katz, B. Sullivan, K. Snyder, D. Ballard, and M. Hayhoe. 2014. Eye Move-

ments, Visual Search and Scene Memory, in an Immersive Virtual Environment.

PLoS ONE 9(4) (2014).

[27] Andrew J Ko and Brad A Myers. 2004. Designing the whyline: a debugging

interface for asking questions about program behavior. In Proceedings of the
SIGCHI conference on Human factors in computing systems. ACM, 151–158.

[28] Ravi Konuru, Harini Srinivasan, and Jong-Deok Choi. 2000. Deterministic replay

of distributed java applications. In Parallel and Distributed Processing Symposium,
2000. IPDPS 2000. Proceedings. 14th International. IEEE, 219–227.

[29] Nikolaos Koutsopoulos, Mandy Northover, Timm Felden, and Martin Wittiger.

2015. Advancing data race investigation and classification through visualization.

In Software Visualization (VISSOFT), 2015 IEEE 3rd Working Conference on. IEEE,
200–204.

[30] Thomas Kunz, James P. Black, David J. Taylor, and Twan Basten. 1997. Poet:

Target-system independent visualizations of complex distributed-application

executions. Comput. J. 40, 8 (1997), 499–512.
[31] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed

system. Commun. ACM 21, 7 (1978), 558–565.

[32] Steven M Lavalle. 2016. Virtual Reality. (2016).

[33] Youn Kyu Lee, Jae young Bang, Joshua Garcia, and Nenad Medvidovic. 2014.

ViVA: A Visualization and Analysis Tool for Distributed Event-based Sys-

tems. In Companion Proceedings of the 36th International Conference on Soft-
ware Engineering (ICSE Companion 2014). ACM, New York, NY, USA, 580–583.

https://doi.org/10.1145/2591062.2591074

[34] C. Li, M.P. Aivar, D.M. Kit, M.H. Tong, and M.M. Hayhoe. 2016. Memory and

visual search in naturalistic 2D and 3D environments. Journal of Vision 16(8)

(2016).

[35] Xiangqi Li and Matthew Flatt. 2015. Medic: metaprogramming and trace-oriented

debugging. In Proceedings of the Workshop on Future Programming. ACM, 7–14.

[36] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen Lian, Jian Tang,

Ming Wu, M Frans Kaashoek, and Zheng Zhang. 2008. D3S: Debugging Deployed

Distributed Systems.. In NSDI, Vol. 8. 423–437.
[37] C Torres Lopez, Stefan Marr, Hanspeter Mössenböck, and E Gonzalez Boix. 2016.

Towards Advanced Debugging Support for Actor Languages: Studying Concur-

rency Bugs in Actor-based Programs, October 2016. Presentation, AGERE 16

(2016).

[38] Carmen Torres Lopez, Stefan Marr, Hanspeter Mössenböck, and Elisa Gonzalez

Boix. 2017. A Study of Concurrency Bugs and Advanced Development Support

for Actor-based Programs. arXiv preprint arXiv:1706.07372 (2017).
[39] Gowritharan Maheswara, Jeremy S Bradbury, and Christopher Collins. 2010. Tie:

An interactive visualization of thread interleavings. In Proceedings of the 5th
international symposium on Software visualization. ACM, 215–216.

[40] Stefan Marr, Carmen Torres Lopez, Dominik Aumayr, Elisa Gonzalez Boix, and

Hanspeter Mössenböck. 2017. A Concurrency-Agnostic Protocol for Multi-

Paradigm Concurrent Debugging Tools. arXiv preprint arXiv:1706.00363 (2017).
[41] Aman Shankar Mathur, Rupak Majumdar, and Tandra Ghose. 2017. Study of

Visual Search in 3D Space using Virtual Reality (VR). In European Conference on
Visual Perception (ECVP).

[42] Microsoft. 2017. Microsoft Hololens. https://www.microsoft.com/en-us/hololens.

(2017). Accessed: 2017-08-14.

[43] Thomas G. Moher. 1988. PROVIDE: A process visualization and debugging

environment. IEEE Transactions on Software Engineering 14, 6 (1988), 849–857.

[44] Sougata Mukherjea and John T Stasko. 1994. Toward visual debugging: inte-

grating algorithm animation capabilities within a source-level debugger. ACM
Transactions on Computer-Human Interaction (TOCHI) 1, 3 (1994), 215–244.

[45] Robert HB Netzer and Barton P Miller. 1995. Optimal tracing and replay for

debugging message-passing parallel programs. The Journal of Supercomputing 8,

4 (1995), 371–388.

[46] M. Ogawa and K.-L. Ma. 2009. code_swarm: A design study in organic software

visualization. IEEE Trans. on Visualization and Computer Graphics 15 (2009),

1097–1104.

[47] M.J. Pacione, M. Roper, and M. Wood. 2004. A novel software visualization

model to support software comprehension. In Proc. 11th Working Conf. Reverse
Engineering.

[48] Steven P Reiss. 2003. Visualizing Java in action. In Proceedings of the 2003 ACM
symposium on Software visualization. ACM, 57–ff.

[49] Steven P Reiss. 2009. Visualizing the java heap to detect memory problems. In

Visualizing Software for Understanding and Analysis, 2009. VISSOFT 2009. 5th IEEE
International Workshop on. IEEE, 73–80.

[50] Steven P Reiss and Manos Renieris. 2005. JOVE: Java as it happens. In Proceedings
of the 2005 ACM symposium on Software visualization. ACM, 115–124.

[51] R. Rosenholtz. 2011. What your visual system sees where you are not looking.

Proc. SPIE: Human Vision and Electronic Imaging, XVI (2011).
[52] R. Rosenholtz. 2016. Capabilities and limitations of peripheral vision. Annual

Review of Vision Science 2 (2016), 437–457.
[53] Daniel Rozenberg and Ivan Beschastnikh. 2014. Templated visualization of

object state with Vebugger. In Software Visualization (VISSOFT), 2014 Second IEEE
Working Conference on. IEEE, 107–111.

[54] C. Sigovan, C.W. Muelder, and K.-L. Ma. 2013. Visualizing large-scale parallel

communication traces using a particle animation technique. In Eurographics
Conference on Visualization, Vol. 32(3). Blackwell.

[55] Terry Stanley, Tyler Close, and Mark S Miller. 2009. Causeway: A message-

oriented distributed debugger. (2009).

[56] Jonas Trümper, Johannes Bohnet, and Jürgen Döllner. 2010. Understanding com-

plex multithreaded software systems by using trace visualization. In Proceedings
of the 5th international symposium on Software visualization. ACM, 133–142.

[57] Unity. 2017. Unity - Game Engine. http://unity3d.com/. (2017). Accessed:

2017-07-10.

https://doi.org/10.1145/248448.248458
http://erlang.org/doc/apps/debugger/debugger_chapter.html
http://erlang.org/doc/apps/debugger/debugger_chapter.html
http://dl.acm.org/citation.cfm?id=2432523.2432526
https://doi.org/10.1145/2591062.2591074
https://www.microsoft.com/en-us/hololens
http://unity3d.com/

	Abstract
	1 Introduction
	2 Motivation
	2.1 Programming Model
	2.2 Motivating Example
	2.3 Debugging with Conventional Tools

	3 iDeA Architecture
	3.1 Instrumented Dispatcher
	3.2 Visualization Environment

	4 Debugging in iDeA
	4.1 Basic Debugging Functionality
	4.2 Trace Manipulation
	4.3 Visualization Helpers

	5 Evaluation
	5.1 Task Design
	5.2 Procedure
	5.3 Results
	5.4 Threats to Validity

	6 Related Work
	7 Discussion
	References

