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Abstract

The area of secure compilation aims to design compilers which pro-
duce hardened code that can withstand attacks from low-level co-linked
components. So far, there is no formal correctness criterion for secure
compilers that comes with a clear understanding of what security prop-
erties the criterion actually provides. Ideally, we would like a criterion
that, if fulfilled by a compiler, guarantees that large classes of security
properties of source language programs continue to hold in the compiled
program, even as the compiled program is run against adversaries with
low-level attack capabilities. This paper provides such a novel correctness
criterion for secure compilers, called trace-preserving compilation (TPC).
We show that TPC preserves a large class of security properties, namely
all safety hyperproperties. Further, we show that TPC preserves more
properties than full abstraction, the de-facto criterion used for secure com-
pilation. Then, we show that several fully abstract compilers described
in literature satisfy an additional, common property, which implies that
they also satisfy TPC. As an illustration, we prove that a fully abstract
compiler from a typed source language to an untyped target language
satisfies TPC.

This paper uses colours to distinguish elements of different languages. For a good
experience, please print/view it in colour.

1 Introduction

Many high-level languages offer security features to programmers in the form
of type systems, encapsulation primitives and so forth. Programs written in
these high-level languages are ultimately translated into executable code in a
low-level, target language by a compiler. Unfortunately, most target languages
do not offer the same security features as high-level source languages, so target-
level programs are subject to attacks such as control flow hijacking as well as
reading/writing of private data or even code. One way to prevent these attacks



is to use a compiler that produces target-level programs that are as secure as
their source-level counterparts. Such compilers are called secure compilers.

Researchers have investigated secure compilation predominantly in the form
of fully abstract compilation (or analogous notions) [1, 40, 7, 8, 17, 25, 5, 28, 21,
20, 42, 33, 2, 3, 4, 32, 38, 30|, which means that source-level program equivalence
is preserved and reflected by compilation or, in other words, two source-level
programs are equivalent iff their compilations are equivalent. Fully abstract
compilation is a useful extensional soundness criterion for secure compilers, as
it ensures the absence of target-level attacks like control flow hijacks a priori.
However the specific security properties preserved by a fully abstract compiler
depend on the definition of program equivalence in the source and target lan-
guages. In particular, to preserve different security properties, the definitions
of equivalence must be changed appropriately. This variable definition of full
abstraction does not yield a criterion for compiler security. As a result, many
existing work on secure compilation [40, 5, 25, 7, 8, 21, 28, 42] uses a single,
standard notion of full abstraction obtained by defining program equivalence
as contextual equivalence in all possible contexts. However, it is unclear what
security properties are preserved by this criterion and, as we show later, obvious
security properties are not preserved by it (Section 2).

Motivated by this, we ask whether we can find a different criterion for sound-
ness of secure compilers that is guaranteed to preserve a large class of security
properties. As a first step in this direction, we present trace preserving compi-
lation (TPC), an intensional criterion for compiler correctness that we show
preserves an entire class of security properties, namely all hypersafety proper-
ties [19]. TPC is based on the notion of trace semantics. Intuitively, a trace-
preserving compiler generates code modules that (i) preserve the behaviour of
their source-level counterparts when the low-level environment provides valid
inputs and (ii) correctly identify and recover from invalid inputs. Invalid inputs
are those that have no source-level counterpart (e.g., if booleans are encoded as
the integers 0 and 1 by a compiler, then 2 would be an invalid boolean input in
the target). Condition (i) implies what is often called correct compilation—that
the target preserves source behaviour when all interacting components have been
compiled using the same (or an equivalent) compiler. Condition (ii) ensures that
compiled code detects and responds appropriately to target-level attacks. (We
provide a more detailed overview of these notions in Section 2).

Technically, we identify two different strategies for responding to invalid in-
puts, thus obtaining two slightly different characterizations of TPC (Section 3).
After defining TPC, we prove that it preserves all hypersafety properties (Sec-
tion 4). In prior work, hypersafety properties have been shown to capture many
security-relevant properties including all safety properties as well as information
flow properties like noninterference [19]. Hence, showing that TPC preserves
all hypersafety properties implies that it also preserves these specific properties.

Next, we study the relationship between TPC and fully abstract compila-
tion. We show that TPC is stronger than the standard notion of fully abstract
compilation (Section 5) under injectivity, a specific condition on translation of
input and output symbols that full abstraction necessarily requires. We fur-



ther show that under another assumption, which we call fail-safe behaviour or
FSB (compiled code modules immediately terminate on invalid inputs), cor-
rect compilation is equivalent to (a form of) TPC (Section 6). As all existing
fully-abstract compilers are also correct, we use FSB as a means to show that
existing fully abstract compilers really achieve TPC.

The formal setting in which we study TPC is deterministic reactive pro-
grams. This is the minimal interesting setting in which one can examine trace-
based notions such as hyperproperties. Our formal model of reactive programs
abstracts over the code of modules, retaining only their I/O behavior. This
suffices for defining TPC. However, in writing a compiler, one must be con-
cerned with the code. To bridge this gap, we show by example in Section 6 how
our definition applies to a concrete language (a typed lambda-calculus) and a
concrete compiler for it. Specifically, we state F\SB in terms of contextual equiv-
alence and show that the fully abstract compiler of Devriese et al. [21] satisfies
FSB and is, therefore, TPC. This implies that the compiler preserves all hy-
persafety properties. We believe this observation also applies to other existing
secure compilers [7, 8, 28, 5, 40, 30, 25, 42].

To summarize, the contributions of this paper are:

e a new intensional soundness criterion for secure compilation (TPC);
e a proof that TPC preserves all hypersafety properties;

e the relation between TPC and fully abstract compilation, the current
standard for secure compiler correctness, and a proof that TPC is stronger;

e a characterization of a property that existing fully abstract compilers sat-
isfy, which implies that they also satisfy TPC, hence showing that TPC
already exists in current secure compilers.

For space constraints, full proofs and additional discussion can be found in
the appendix.

2 Informal Overview

This section provides an overview of the programming model and compilers
we consider (Section 2.1 and Section 2.2 respectively). Then it defines com-
piler properties (Section 2.3) such as correctness and full abstraction. We then
present shortcomings of compiler full abstraction to motivate the need for a new
compiler soundness criterion (Section 2.4). Finally, we discuss the contributions
of this paper—the new soundness criterion for secure compilation (Section 2.5).
Colour conventions: We use a blue, bold font for source elements, red, sans-serif
one for target elements and black for elements common to both languages to
avoid repeating the same definition twice. Thus, C is a source-level program,
C is a target-level one and C' is generic notation for either a source-level or a
target-level program.



2.1 Reactive Programs

We study the secure compilation of deterministic reactive programs. A reactive
program contains some internal state, which is not directly observable and reacts
to a stream of inputs from the environment by producing a stream of observable
outputs. After each input, the program may update its internal state, allowing
all past inputs to influence an output. By definition, a reactive program is
really a component of a larger program that provides it inputs, i.e., it is a
partial program (we use the terms components and programs to refer to the
same notion).

Definition 1 (Reactive language). A reactive language is a quintuple (I, O, P, p).
I, O are sets of input and output actions. P is a set of components (all sets
we consider are finite or countably infinite). p: I x P — O x P is a transition
function that represents the language semantics. We overload the notation and
use P for program states too. Elements of I, O and P are written a?, o! and
C, respectively. When component C' is given input «?, it produces the output
a! and advances internally to the state C' if p(a?,C) = (a!,C’). Termination
(as well as divergence) are special outputs after which the component keeps
responding only with the same action, so it stutters.

A reactive program includes mutable, unobservable internal state as well as
code. The code is left abstract but we often use concrete syntax in examples
and explanations. Implicitly, the considered programs are input total, i.e., they
react to all possible inputs. We use the adjective “initial” with a program to
indicate the situation prior to any interaction with the environment.

Definition 2 (Traces). A trace, written @, is an infinite sequence of alternating
input-output actions, so @ = a17,a1!, as?, as!,... where = denotes syntactic
equivalence. All actions are taken from the alphabet A% = I UQO. Whenever we
write a, we implicitly mean oo € A®.

A trace a;?aq!--- is in the behaviours of an initial program C° when there
is a sequence of states C1,...,Cp,... such that for each j > 1, p(a;?,Cj_1) =

(a;!,C;). The set of all traces of CY is written TR(C?).

In general, two programs are said to be conteztually equivalent when they
cannot be distinguished by any context. In our reactive setting, contextual
equivalence coincides with trace equivalence.

Definition 3 (Trace equivalence). Two programs are trace equivalent, written
C1 T C,, if their trace semantics coincide. C; L Cy & TR(C;) = TR(Cq).

We now present an example of a trivial reactive language that we use later.

Example 1 (A reactive language for booleans). Consider a source language
S that only includes terminating programs that compute the boolean identity
function. Internally, these programs can do arbitrary computation, but they
take a boolean as input and produce the same boolean as output. We omit



the full syntax and semantics of internal reductions, which can be though of
as a typed lambda calculus. Intuitively, input actions i;g can be thought of as
function calls, while output ones 0;q can be seen as returns.

inputs ija = { id(true)?, id(false)?}
outputs 0iq = { ret(true)!, ret(false)!}
programs id % AX.X, idpot &f \x.not (not x),---

Any infinite concatenation of the two trace fragments below describe the possible
behaviour of any program in S.

oy def id(true)? - ret(true)!

ap = id(false)? - ret(false)!
Since the traces of all programs in S are the same, any two programs in S are
trace-equivalent. o

2.2 Compilers

A compiler is a tool that (among other things) transforms initial programs of a
source language to initial programs of a target language, relative to a coding of
source inputs and outputs in the target. Let S = (I, 0, P, p)and 7 = (I,0, P, p)
be a source and a target language, respectively.

Definition 4 (Compiler). A compiler from S to 7 is a triple (~;,~0,[-]3),
where ~; and = are relations on I x | and O x O that represent coding of
inputs and outputs respectively, and [[]]?— : P — P is a function that translates
source initial components to target initial ones. We assume that ~; and ~¢
satisfy the following two conditions (stated here only for = for brevity):
(Totality) For every o € I, there exists o? € | such that a? =~y a?.
(Functionality) a1?~j a? and aa? =y o? imply o117 = aa?

Relations =; and =~ specify how inputs and outputs are coded by the
compiler. For instance, if a compiler maps the input true to the input 1, then
we would have true=; 1. Totality is essential since a compiler should consider
all source behaviour. Functionality is not necessary for compilers in general, but
in the context of preserving security properties, it is essential to avoid conflating
(through compilation) distinct source symbols that a property of interest treats
differently. For example, in information flow security, relating a public and a
private source action to the same target action would make it impossible to talk
about the preservation of a property like noninterference.

Throughout this paper, we write ~ in place of both =; and =¢ and often
refer to a compiler as just the function [[]]‘;5-7 assuming implicitly that = is given.
2 is lifted to traces point-wise (Rule Relate-trace).

(Relate-trace)
alz(}rl a27...za2’...
1,002,  "~RQAp,0,"




2.3 Compiler Properties

This section presents two compiler properties, correctness and full abstraction,
that are often used together as a criteria for the soundness of a secure compiler.
Correctness (Definition 5) states that the translation of programs agrees with
the translation of inputs and outputs, i.e., the compilation preserves and reflects
source program behaviour. Define the set of all correct compilers as CC'.

Definition 5 (Compiler correctness). A compiler [ - |5 is correct, denoted
[-15 € CC,ifVC,&,a. & € TR(C) and &~ a imply & € TR([C]3).

Compiler full abstraction is the most-widely used soundness criterion for
secure compilation. It states that the compiler preserves and reflects some
notion of program equivalence. The general idea behind full abstraction is that
the abilities of the context (the attacker) often differ between the source and
the target. For instance, in a target language that is assembly, the context
may be able to access private fields of an object directly through load/store
instructions, but this access may be prohibited to source-level contexts by the
source semantics. A fully abstract compiler can rule out such attacks by ensuring
(often through dynamic checks) that the power of an attacker interacting with
the compiled program in the target language is limited to attacks that could
also be performed by some source language attacker interacting with the source
program.

Nonetheless, the specific security properties preserved by a secure compiler
depend on the chosen notion of program equivalence. In the secure compilation
literature, the most commonly chosen notion of program equivalence is contex-
tual equivalence (indistinguishability by any context in the language), which, as
noted before, coincides with trace equivalence in our setting. This corresponds
to the following definition of full abstraction. We re-emphasize that this is just
one possible definition of full abstraction (the most commonly used), based on
the most commonly used notion of program equivalence.

Definition 6 (Full abstraction). A compiler [ -] is fully abstract, denoted as
[-15 € FA, if VC, C’. we have that C L C’ if and only if [C]F L [C']5.

2.4 Shortcomings of Full Abstraction for Security

Most existing work on secure compilation proves (or assumes) compiler cor-
rectness and proves compiler full abstraction in the sense defined above. We
now show that, in fact, some intuitive and interesting security properties are
not necessarily preserved by such a compiler. This justifies the need for a new
soundness criterion for secure compilation. The need for new soundness criteria
has also pointed out by other recent work [42, 30, 43].

Example 2 (Safety violation). Consider a source language whose only data
type is booleans that only admits the constant function that always returns
true. Consider a target language 7 (called A" in the remainder of the paper)
whose programs perform operations on natural numbers, so they input numbers



and output numbers. Consider a trivial compiler [ - ]}‘73— from S to 7 that maps
any source program to the target program Ax. if x < 2 then 1 else 0.

Under the coding true~1 and false = 0, this compiler is both correct and
fully abstract (trivially). However, this compiler does not preserve even trivial
properties like “never output false”. In the source, this property cannot be
violated (since the only allowed functions always output true). In the target,
the property would naturally translate to “never output 0” but on input 2,
compiled programs output 0 and violate the property. O

One may argue that there is, in fact, a gap in this argument since we have
not formally specified how to translate a source property to the target language
and have relied on an intuitive translation. Indeed, there is no single canonical
translation of properties in literature, and this problem has been identified by
Abadi over a decade ago [1]. However, for a safety property like the one above,
where the goal is for the program to not reach an unsafe state (or produce an
unsafe output), a natural translation would rule out the translations of outputs
that the source property rules out.

To summarize, this example identifies two problems:

1. Tt is unclear what it means to preserve a source-language property in
the target language as the two languages can be different (this subject is
further developed in Section 4.2);

2. Standard full abstraction and compiler correctness do not preserve all
safety properties under an intuitive translation of properties.

The novel secure compilation criterion we propose preserves all safety properties
under a translation that we prove to preserve the intuitive meaning of safety
properties (as described in Section 4.2.3).

Example 3 (Confidentiality violation). Consider the source language of Ex-
ample 2 but with a simple addition: these programs now store a boolean secret
in their internal state. All programs of this language always returns true ex-
cept on the 10th input, where they output the boolean secret. Their traces can
therefore be as in Figure 1 (the indices ¢ and f indicate the internally stored
secret).

Consider the following declassification property: “Do not output the secret
until the 10th input”. All source programs satisfy this property.

Consider A", the target language of Example 2 that inputs and outputs
natural numbers, and the same coding ~. Consider a compiler that translates
source programs to behave exactly as in the source if the input is 1 or 0 (the
encodings of true and false), but to output the secret immediately if the input
is any number greater than 1. A subset of the semantics of compiled components
is also presented in Figure 1.

This compiler is correct, because correctness is concerned only with target
traces that are translated from the source, and compiled components have traces
ar and o (as well as elided ones) that derive from o and a¢. The compiler
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Figure 1: Source and target traces for Example 3.

is also fully abstract: source programs with the same trace semantics have the
same trace semantics at the target as well.

However, again, the compiled programs do not satisfy the intended declassi-
fication property: they can be caused to leak the secret at any time, even before
the 10th input, as in «, and «/, by providing 2 as the input. D

A bit of analysis shows the precise shortcoming of compiler correctness and
full abstraction as a joint soundness criteria in these examples and for secure
compilation in general. Call a target input o invalid if it does not code a source
input, i.e., if there is no «? such that a?=~«?. Compiler correctness does not
handle these inputs since it states that a compiled program should behave ex-
actly like the source program while the (target) inputs are valid. However, once
an invalid input is received by a compiled program, compiler correctness does
not constrain the behaviour of the program further. It is this lack of constraint
that Example 2 exploits. Furthermore, for a pair of distinguishable source pro-
grams, full abstraction says nothing if the compiler is correct. Consequently,
two distinguishable source programs are allowed to differ in an arbitrary manner
after an invalid input is received in the target, while the property of interest
may care how the programs differ. Example 3 exploits this freedom.

(Some readers may argue that we should not call a compiler correct if we do
not consider all possible inputs that the compiled code can receive. We argue
otherwise: compiler correctness is always defined for programs that interact
with target-level programs that also have source-level counterparts—often they
are obtained via the same compiler—because that is what is expected in the
absence of an adversary.)



It should be clear that the problem here is the freedom of behaviour on invalid
inputs. The novel compiler security criterion we propose (TPC) curtails this
freedom by defining precisely how the program should behave on invalid inputs.

Remark A viable criticism of our analysis of Examples 2 and 3 is that one
could change the notion of the source and target program equivalence in the
definition of full abstraction to capture the required properties precisely. In
fact, early work on full abstraction for secure compilation [4] kept the choice of
the program equivalence relation open. However, note that a flexible definition
of full abstraction does not lend itself to a viable criterion for compiler design.
When the compiler is written, one may not know what properties would be
of interest for programs that will be compiled later, so what notion of full
abstraction should the compiler adhere to? In contrast, what we propose is a
fized criterion for compiler security that preserves classes of security properties.

2.5 Trace-Preserving Compilation (TPC), Informally

Informally, a compiler [ - ]$ from S to 7 is trace-preserving (Definition 1) if it
produces components [C]$ whose traces are either source-level traces (TR (C))
or invalid traces (Bc).

Informal definition 1 (Trace-preserving compiler, informally). VC € S. TR([C]$) =
TR(C) U Be.

The first part of the union in Definition 1 states that traces of a compiled
component C must include all the source-level traces of C (i.e., the “valid
traces”). This ensures that a TPC compiler is correct. The second part of the
union, B¢, contains only traces that contain at least one invalid input (inputs
that are not related to anything in the source) and specifies how the compiled
code must react to such inputs. Specifically, we require that the output in re-
sponse to an invalid input be fresh and opaque. Fresh means that the output
must not be related to a source symbol (to prevent outputting of symbols that
are forbidden by a source safety property of interest, as in Example 2), while
opaque means that the output must not depend on any hidden internal state
(to prevent information leaks, as in Example 3). We denote such a fresh and
opaque output with a /.

Example 4 (Invalid traces). Consider the following trace for the source lan-
guage of Example 1, the target language A from Example 2 and the same
coding ~ of Example 2. Let \/ be any output in the target that is not related
under ~ to any source symbol.

Qyalia = id(false)? ret false! - --
Qlinvalida = 1d(3)7 ret false! - --
ek = id (3)7 y/ +--

Qyalia 18 a valid source trace, while ajnvalia 1S a trace that cannot exist in the
source. Due to the definition of =, ik is a good example of an invalid target



trace (as we mean them), as no trace in the source relates to it and it reveals
no information about the program’s internal state. Dl

The idea to respond in a fresh and opaque way to ill-formed inputs is not
novel. Existing fully abstract secure compilers already react to invalid inputs in
such a way [40, 42, 25, 5, 28, 32]. Our contribution, instead, is in formalizing this
idea and in establishing formally what it means in terms of preservation of classes
of hyperproperties. All the above-mentioned compilers generally have a single
way of reacting to an invalid input: they halt the machine (e.g., they reduce
to a stuck term wrong in the target’s semantics). However, one can envisage
different implementation strategies for such a response. For example, the invalid
input can be disregarded and the program can continue as if nothing happened.
Understanding the security relevance (in terms of the preservation of properties)
of the possible alternative implementations of \/ is another contribution of this
paper.

Concretely, we identify two different ways to respond to invalid inputs:

1. halting the component forever;
2. disregarding the invalid input.

Item 1 is the strategy used by prior work; it does not return control to the
attacker. This strategy also encompasses the case of diverging when an invalid
input is detected.

Item 2 covers a different scenario, where the availability of the component is
crucial and therefore it must not stop responding in the future. A number of real
world applications fall in this scenario, most predominantly servers, which need
to continue running even if malformed (possibly malicious) input is received. A
possible implementation of this scenario could be that a trusted kernel is notified
on invalid input and the kernel resets the compiled component to a known good
state. These two ways of responding to invalid inputs yield two different variants
of TPC, which we call the “halting” and “disregarding” variants.

Some readers may then wonder about specific ways to implement TPC. As
all inputs need to be checked to understand their validity or not, a way to ob-
tain TPC is to correctly compile code and then wrap it with dynamic checks
that enforce TPC. This strategy, albeit costly, is also how many fully-abstract
compilers operate, introducing performance overhead in exchange for security.
Means to reduce the overhead come in the form of security architectures such as
protected modules architectures [36], the pump machine [22] or capability ma-
chines [48]. We leave the investigation of TPC compilers for these architectures
for future work.

Having defined the formal setting and the intuition behind the contribution
of this work, we now define TPC formally.

10



3 Trace-Preserving Compilation

This section defines TPC in both its halting and disregarding variants (Defini-
tion 7 and Definition 8, respectively).
We introduce some notation used in the remainder of this paper.

Notation 1 (Notation for traces and other formal details).

given a trace & = 1?7, a1l as?, !, ..., define functions @|; and alp to
project its inputs and outputs as follows: @|; = @17, a0?,... and @|p =
0[1!, 042!, e

denote a set of elements of type t as ¢ or {t}.
denote the cardinality of a set ¢ as [Z].

denote a set of traces as a.

denote a set of sets of traces as T (so it should be /t_\)

indicate finite traces prefixes (sometimes called just traces or finite traces
with some abuse of terminology) using the metavariable m.

m < &' means that m is a prefix of @, so @ = ma’ for some a”.

lift the prefix notion to sets of traces as follows: m <o/ if Vin € m, 3@’ €
o m<a.

define the set of odd-length prefixes of a set of traces as follows: op(a) =
{ma? | ma? <a}.

define the observables of a trace as all the even-length, finite prefixes of
that trace: obs(@) = {m'a?a! | M a?al <a} U {e}

lift relation ~ to sets, denoted as & & &, as: Yo € a.3& € &.a~a and Va €
adoeaaxa.

The first definition of TPC this section formalises is TP, the halting vari-
ant of TPC.

Definition 7 (TPC, halting). [-]5 € TP7 £ vC

TR([C]$) = {a | 3& € TR(C).a=a}u
{ma?,/a&" | 3m € obs(TR(C)).m~m
and Vo' € &/|p.0/ =/
and #ma? € op(TR(C)).ma? ~ma?}

11



The first component of the union is the set of valid traces, i.e., those that
have a source-level counterpart. We often refer to this set as G, so Gog =
{a@ | 3& € TR(C).a~a}. The second component of the union, which we refer
to as B, is the set of invalid traces, which contain a prefix of a valid trace (m)
followed by an invalid action («?) which is responded to with /. From there on
(@), all outputs must be /, i.e., the trace stutters on /, which is a terminating
symbol. From the formal language perspective, we have that / € O.

To define the “disregarding” version of TPC, which we write TP, we need
additional machinery. Two prefixes are up-to-tick equivalent, written m A m’, if
they are the same once they are stripped of all their /s and of the input actions
immediately preceding them. Let \7 C O be a set of target output actions
that have no source counterparts and let /1, /2, ... be any ordered sequence of

actions from Q whose elements need not be distinct.
Definition 8 (TPC, disregarding). [-]5 € TP % vC
TR([C]S) = {a | obs(a) = U int,(C)}  where
neN
m | 3m € obs(TR(C)),m~m}
m | m= rﬁla?\/n+1rﬁ2 and m;m», € intn(C)
and Ym' A my, fma? € op(TR(C)).

into(C)
intn+1(C)

- {
- {

ma?~ma? and Va! € mylo.ol € /)

To contemplate all possible interleavings of all possible bad actions, we con-
sider all observables of all actions that a compiled components must have. These
observables are defined inductively. The base case identifies the same set G¢
as in Definition 7. The inductive case adds one more invalid action with a /
response in response to the last invalid input on the trace. Intuitively, into( -)
yields all traces with a source-level counterpart, while int,( - ) yields all traces
that contain exactly n invalid inputs, to which the compiled program responds
with /1,...,/n respectively. /s must be used monotonically based on the
ordering of the sequence because they should convey only information that is
already available to the environment after an interaction, i.e., the number of
past interactions.

By definition, the halting version of TPC implies the diszegarding one. To
see this, given a / in the halting version, one can choose \/ = {\/} and the
sequence [v/,+/,...] in the disregarding version.

Theorem 1 (Halting implies disregarding). [-]5 € TP” = [-]§ € TP.

Next, we relate TPC to refinement: If a compiler is TP, then the behaviours
of a source program are contained in the behaviours of the compiled program
(up to =). Let < denote C o=.

Theorem 2 (Source programs refine their compiled counterparts). V[ -]5 €
TP,VC.TR(C) S TR([C]F).

12



The next theorem states that equivalent programs have the same set of
invalid traces.

Theorem 3 (Equivalent programs have the same invalid traces). VCq, Cs.
01202 = BC1 = BCZ-

4 Trace-Preserving Compilation and Hyperprop-
erty Preservation

This section describes hyperproperties and their subclasses (Section 4.1). Then
it proves what two security-relevant subclasses of hyperproperties, namely safety
and hypersafety, are preserved by TPC (Section 4.2). Finally, it describes some
classes of hyperproperties that are not preserved by TPC (Section 4.3).

4.1 Hyperproperties

Hyperproperties [19] are a formal representation of predicates on programs,
i.e., they are predicates on sets of traces. They capture many security-relevant
properties including not just conventional safety and liveness (i.e., predicates
on traces), but also properties like non-interference (i.e., predicates on sets of
traces).

Denote the set of hyperproperties as HP. An element of this set is de-
noted P € HP. So, P = {m;};c; where I is countable. A program C has a
hyperproperty P if TR(C) € P.

The following formalisation is taken from the work of Clarkson and Schnei-
der [19] and adapted to our notion of traces. Denote a sequence of infinite
observables with @ and of finite observables with @" (for some natural number
n). The set of infinite traces is denoted with ®;,, while that of finite traces is
denoted with ®5,. We lift these concepts to the hyperproperty level by intro-
ducing Prop and Obs. Let P denote the powerset function and P/ the set of
all finite subsets.

Definition 9 (®;,¢,P i, Prop and Obs).

a*={a|meNa=a, - ,a,}
a"={ala=a1, - ,anp An €N}
o {alaca’} @ % {alaca’}

P (®g,)

def

Prop f P(Piny) Obs =

Two core classes of hyperproperties exist: safety hyperproperties (also called

hypersafety) and liveness hyperproperties (also called hyperliveness), which are
described below.

Given a property p its equivalent hyperproperty, called its lift, is denoted
[p]. By definition, [p] = P(p).
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4.1.1 Hypersafety

A hyperproperty is hypersafety if it does not allow bad things to happen. Let
SHP denote the set of all safety hyperproperties.

Definition 10 (Hypersafety). P € SHP “va e Prop. a ¢ P = (3m <
Obs.m <a and (Yo/ € Prop.m <o’ = o ¢ P)).

Intuitively, for a hyperproperty to be hypersafe, all the sets of traces in it
must not contain all prefixes in any of the m’s that specify “bad things”. The set

of all the m’s characterizes the hypersafety property. The lift of safety properties
is a subset of SHP and it is denoted as [S].

Example 5 (SHP examples). Examples of SHP include termination-insensitive
non-interference, observational determinism and all safety properties [19]. @

4.1.2 Hyperliveness
A hyperproperty is hyperlive if it always allows for a good thing to happen
(Definition 11). Let LHP denote the set of all safety hyperproperties.

def

Definition 11 (Hyperliveness). L € LHP =
o €L).

Vi € Obs. (Hoi’ c Pmpﬁlgoi’ A

Every hyperproperty is the intersection of a safety hyperproperty and a
liveness hyperproperty.

Theorem 4 (HP composition [19]). VP € HP. 3S € SHP,LL ¢ LHP. P =
SnL.

4.2 Preserving hypersafety via TP

The question that we want to address next is: how can one translate a prop-
erty from a source language to a target language and preserve it (up to the
translation) via compilation? “Meaning preservation” is the trickier part of
the question, because the two languages are often so different that this is
unclear. In fact, we do not believe that there is a general way to translate
arbitrary (hyper)properties. Here, we restrict attention to two subclasses of
hyperproperties—safety and hypersafety—which are (a) relevant for many secu-
rity applications, and (b) easy to treat formally since they can be characterized
uniformly: a safety (hypersafety) property can be expressed as a set of bad pre-
fixes (set of set of bad prefixes). For each of the two subclasses, we describe how
to translate source properties to the target and show that any TPC compiler
preserves the properties under this translation. Note that our technical develop-
ment for hypersafety subsumes that for safety; we present the latter separately
only for exposition purposes.
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4.2.1 Safety Preservation

We now present our result about safety properties. Informally, a safety property
prevents bad things from happening [9]. Formally a safety property S (a set of
traces) is characterized as follows:

Va. if a ¢ S then (Im <a and V&'. if m<a’ then & ¢ 9)

A trace (@) is not valid if it has a “bad” prefix T that no valid trace has.

Since the m is quantified for all @&, we can redefine a safety property by
relying on a set of bad prefixes m that is the set obtained by taking all the
existentially-quantified . A safety property S is thus redefined as follows. Let
m :: S denote that m is the set of all bad prefixes that characterises the safety
property S.

if m :: S then a ¢ S iff Im e mm<a

In this way we can define a safety property by the set of all possible bad
prefixes that a good trace must not have.

Next, we need to translate a safety property from a source to a target lan-
guage. To do so, we translate the set of bad prefixes from the source to the
target language and obtain a set of bad prefixes expressed in the target lan-
guage. However, there is still a concern: the target language can have more
actions that are not expressible in the source—the invalid input actions—and
outputs produced in response to them. Ideally, we would like to be conservative
with respect to these invalid actions and add any prefix with an invalid input
to the set of bad prefixes in the target. This ensures that all good traces in the
target safety property relate good traces in the source safety property. This is
a safe choice.

However, this ideal translation is unrealisable since the adversarial environ-
ment, not the compiled program, provides invalid inputs. Thus, if we call all
traces with invalid inputs “bad”, then we cannot ever hope to preserve safety
properties. To still achieve this, we create a small exception: we admit traces
with invalid inputs, if the invalid inputs are immediately succeeded by ./ out-
puts. This is a reasonable compromise since / outputs have no source counter-
parts (so the source property could not possibly be talking about them), and
they reveal no information by definition. This can be generalized to allow the ith
invalid input to be followed by /; for some pre-determined sequence /1,+/2, . ..
of possibly different /s.

This idea of translating safety properties is formalised in Definition 12.

Definition 12 (Safety relation). Two sets of prefixes define the same safety
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property, denoted as m 5L m if:
m= {m | Im € m.m~m}
U{ma?a! | 3m e m,m . m~m’ A m

and Ama? € op(m).ma? ~m
and «o! 7& \/i+1
where [m|o N /] = i}

Theorem 5 states that a trace-preserving compiler preserves safety properties
in the sense of Definition 12.

Theorem 5 (Safety preservation). Let [ - 15 € TP.ALetAS,r?l be such that
m :: S. Take m and S such that m :: S and such that mSEm. Then, for all C,
TR(C) C S implies TR([C]F) C S.

Proof Sketch. Suppose, for the sake of contradiction, that TR(C) C S but
TR([C]$) € S. Then TR([C]$) must have a trace with a prefix in m. We
consider two cases. If the prefix contains no invalid input, then by the definition
of TP, it must correspond to a source prefix in m. Moreover, TR(C) must
have a trace that extends m. It follows immediately that TR(C) ¢ S. A
contradiction. If the prefix has an invalid input, by [-]§ € TP, the ith such

input must be followed by the ith tick from / (for every 7). Hence, the prefix
cannot be in m by m’s definition. Again, a contradiction. m]

4.2.2 Hypersafety Preservation

Next, we turn to the preservation of hypersafety properties. Unlike safety, which
is concerned with single traces, hypersafety is concerned with multiple traces,
which lets it capture properties like non-interference. The intuition behind
hypersafety is that a set of traces is bad if it has a set of bad prefixes that no
good set of traces has. As we can see, the intuition is just like safety, with just
one more “level” of sets. Formally, a safety hyperproperty S (a set of sets of
traces) is defined as follows:

then (3m.7 <& and (Vo if < o then o/ ¢ S))

We can characterize every hypersafety property based on the set of set of
bad prefixes. We write M :: S to mean that M is the set of all sets of bad prefixes
that characterises the safety hyperproperty S.

if M ::'S then & ¢ S iff 3m € Mm <&

We define the translation of the set of sets of source bad prefixes by trans-
lating all of them under =. The key technical difference with respect to safety
preservation is that we treat as bad singleton sets of all traces in which the ith
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invalid input is not immediately succeeded by +/i. The addition of singleton sets
is the minimum addition we can make to the set of invalid prefixes to ensure
that any (translated) program that contains even one trace wherein a response
to an invalid input is not from Q is considered bad.

This idea of translating hypersafety is formalised in Definition 13.

Definition 13 (Hypersafety relation). Two sets of sets prefixes define the same
safety hyperproperty, denoted as M SHP M if:

M= {m | 3m € M.m ¥ m}U
{{ma?a!} | IMm € M.Im € m, " .m~m A m

and 3m’ € M.Im’'a? € m'.m'a? ~m'a?
and ol # \/i11
where [m|o N /] = i}

Any trace-preserving compiler preserves all hypersafety properties, as The-
orem 6 captures.

Theorem 6 (Hypersafety preservation). Let [[]]%5- € TP. Let S,M be such
that M :: S. Let M and S such that M :: S and such that M SUE M. Then, for
all C, TR(C) € S implies TR([C]3) € S.

The proof follows the same intuition as that of Theorem 5. There is no new
fundamental difficulty in proving the theorem.

Remark It is trivial to prove that all safety hyperproperties are preserved un-
der refinement. An intuitive way to understand Theorem 6 is as a generalization
of this result to the case where we may have extra actions (invalid inputs) in
the target. Basically, Definition 13 strengthens the source property by allowing
for some extra behaviour in the target, namely responding to invalid inputs by
V/s. TP can be seen as a slight weakening of refinement from source to target,
that also allows similar extra behaviour in the target. Theorem 6 then says that
this weakened form of refinement preserves the strengthened source properties.

4.2.3 Non-Interference Preservation

Theorem 6 states that a TP compiler preserves hypersafety properties under
a specific translation. An obvious question is whether that translation itself is
meaningful, in the sense that it preserves the intents of the source hypersafety
properties. While a generic answer to this question is impossible to provide
(since intent is property-specific), we show here that for a widely considered
hypersafety property, namely, non-interference, this is the case under a specific
condition on /. Non-interference is a security policy for information flow control
which says that the public (low) outputs of a program must be independent of
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secret (high) inputs. In other words, in any two traces that agree on all low
inputs, all high outputs must also be the same.

To formalize the property, assume that in both the source and the target,
inputs and outputs are classified into low and high. Define an equivalence of
actions =, as follows:

(Low-equiv. on low actions) (Low-equiv. on high actions)
o, arelow  a=d a, o’ are high
a=rao a=rao

Then, NI can be defined as follows by overloading the =, notation to lift point-
wise to sets of actions.!

Definition 14 (NI as a hyperproperty). Recall that a|; and @|o extract inputs
and outputs of a.
NI = {@ | Vay,as € a.

if a1|; =1 de|r then ai|lo =1 azlo}

NI is a safety hyperproperty. A pair of trace prefixes is bad if the prefixes
agree on low inputs but disagree on low outputs. The following theorem shows
that a source’s NI when translated as described in Theorem 6 yields a hyper-
property that is contained in the target’s NI, if ~ satisfies a specific injectivity
condition. This immediately implies that if a source program satisfies NI then
compiling it through a TP compiler yields a program that satisfies NI. The
injectivity condition means that every source symbol is related to a unique tar-
get symbol. This is required to prevent the compiler from encoding secrets in
clifferent representations of the same low output. Additionally, all elements of
\/ are considered to be observable, i.e., tagged as low.

Definition 15 (Injectivity). We say that =2 is injective if @~ and a~ap
imply oy = ap.

Theorem 7 (Non-interference is preserved). Let M :: NI and a2 be injective.
Let M SHP Ml and let S be a hyperproperty such that M :: S. Then, Va € S,a €
NI

4.3 Limitations of TPC and Secure Compilation

This section discusses how TPC can preserve liveness and why it cannot pre-
serve hyperliveness and arbitrary hyperproperties in general.

IThis is just one possible definition of NI in a reactive setting. See the work of Bohannon
et al. [16] for a detailed discussion of definitions of NI in a reactive setting.

18



4.3.1 Preserving Liveness

Liveness properties specify (good) events that should eventually occur. For-
mally, a liveness property L (a set of traces) is defined as follows.

V. da. m<aand a € L

In general, existing secure compilers do not aim to provide any liveness proper-
ties since an adversary can always prevent the compiled program from achieving
its intended goal by continuously providing it bad inputs. And of course, as-
suming that the attacker will not provide invalid inputs would make the work
security-irrelevant.

Trace-preserving compilation as presented does not aim to preserve liveness
properties. For example, consider a trivial source program that always produces
a 0 in response to any input. Consider the source liveness property L:*produce
an infinite number of 0s”. The source program satisfies L. Suppose the program
is compiled to a target language where 0 is mapped to 0, and where there is
at least one invalid input. The source liveness property L would intuitively
translate to the target liveness property L:“produce an infinite number of 0s”.
However, no trace-preserving compiler can enforce this target property since the
environment can always starve the program by continuously providing invalid
i/I\lputS to which the compiled program must respond by producing elements of
v/ and never a 0.

Trace-preserving compilation, in its disregarding variant, can attain a form of
liveness if we assume that the attacker is fair, i.e., that eventually he will provide
a valid input. As for safety, we would need to change the notion of liveness, to
allow the interleaving of invalid actions followed by a /. However, this would
alter the meaning of the target level liveness property much more than what
happens with safety. Let us consider the liveness property L above. Under this
translation, it would be translated into L’: “produce an infinite number of 0
interleaved with any number of \/”. The insertion of /s is necessary, as after
any 0 output the attacker can provide invalid inputs, to which the compiled
component must respond with a /. This would change the meaning slightly,
but in certain cases it would be acceptable. Concerning preservation of liveness,
the fairness assumption would ensure that eventually the attacker will supply a
valid action. By definition of TPC, the compiled code will respond respond to
it with a 0, as meant by the source property L.

This idea of translating liveness is formalised in Definition 17, though it
relies on fairness of attackers which is defined below.

Definition 16 (Fair attacker). A trace a is fair, denoted as fairy (@), if any /
in it is eventually followed by a valid input according to relation ~.

R -
fairg (@) = if @ = ma?,/d’ then Ja € d'|;.Ja=a

Definition 17 (Liveness relation). Two sets traces define the same liveness
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property, denoted as LI [ if:
L= {a | faire(@) and Va' A a. Ja € L. a~a'}

A trace-preserving compiler that implements the disregarding variant pre-
serves liveness properties, as Theorem 8 captures.

Theorem 8 (Liveness preservation). Let [[]]‘73 € TP. Let f,f be such that

~

L L. Then, for all C, TR(C) C L implies TR([C]$) C L.

4.3.2 Preserving Hyperliveness and Arbitrary Hyperproperties

While the fairness assumption seems sufficient to achieve (a form of) liveness
preservation for TP, it does not seem to suffice for general hyperliveness preser-
vation. Moreover, there does not seem to be a property that would help preserv-
ing hyperliveness. In fact, hyperliveness includes properties such as “the average
response time is below 1 second” or “the average response time is above 4 sec-
onds”. Finding a uniform, general way to enforce all these properties without
relying on their specific statements does not seem feasible.

As hyperliveness are a subclass of all hyperproperties, secure compilers (and
trace-preserving compilers) cannot preserve arbitrary hyperproperties. Investi-
gating the preservation of specific hyperproperties, e.g., by letting the compiler
take the hyperproperty as input, seems feasible and it is left for future work.

5 Trace-Preserving and
Fully Abstract Compilation

This section proves that trace preservation and full abstraction are not equiv-
alent: a TP compiler is FA but not vice-versa (Section 5.1). Then, it defines
same-fail behaviour (FSB), an additional property that, if satisfied by a correct
compiler, implies that the compiler also has TP, the halting variant of TPC
(Section 5.2).

5.1 Relation between TP and FA

In order to relate the two notions, for the rest of this section assume that =
is injective as in Definition 15. This is not an unrealistic assumption, since all
existing fully abstract compilers based on contextual equivalence satisfy and,
in fact, it seems that writing a fully abstract meaningful compiler without this
assumption may be impossible, as illustrated in the following example.

Example 6 (FA requires injectivity). Consider the source language of Ex-
ample 3 and exactly two programs Ax.true and Ax.(true V false) that imple-
ment the constant function that returns true. These two programs are (triv-
ially) trace-equivalent. Suppose this language is compiled to A" and that, for
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the sake of argument, the relation ~ is not injective: it relates false ~0 and
true=1,2,.... Consider a compiler that maps the two source functions to Ax.1
and A\x.2, respectively. By having multiple mappings for true the target equiv-
alence is broken and this compiler is trivially not FA: the two target programs
are not trace equivalent, even though the two source programs are. o

With injectivity, trace-preserving compilation implies fully abstract compi-
lation (Theorem 9).

Theorem 9 (TP implies FA). V[-]5,[-]5 € TP = [-]§ € FA.

The converse of Theorem 9 is false because there are fully abstract compilers
that are not trace-preserving.

Theorem 10 (FA does not imply TP). 3[-]5 € FA. [-]5 ¢ TP.

Proof. There are many compilers that are in FA but not in TP. The compiler of
Example 2 is one such example. Here, we present a second, non trivial example.
Consider a source language A\”, which is a generalisation of the language of
Example 1 that allows arbitrary operations on booleans and the target language
A" from Example 3, which now includes min and max operations on natural
numbers. While both languages are A-calculi with higher-order functions, we
restrict top-level programs in A” to input and output booleans, i.e., to the type
Bool — Bool. Similarly, top-level A" programs input and output numbers, i.e.,
they have the type N — N. The top-level programs of the two languages are
denoted C and C, respectively. The type system of both languages is omitted
for brevity, but the syntax is shown below.

Cu=f(x)=t Cu= f(x)=e
tu=true|false |x|tt|Ax:7t|tAt|tVE|f
ex=neN|x|eel| Ax.e|min(e,e) | max(e,e) | f

Both languages follow a call-by-value reduction which is straightforward but
for the evaluation of min() and max(). The former follows Rule A'-eval-min as
presented below, while the latter is analogous.

(A'-eval-min)
if vi € N then v; = vy else v; = 1
if vo € N then vg = v, else vg = 1
if v1 > vo then v = vy else v = vy

min(vy,vp) < v

The relation between the languages is that of Example 3: it includes true ~ 1
and false~ 0 and is defined inductively on other terms based on their type.

Consider the two-step compiler [[]]ﬁn from A? to A'' shown in Figure 2. The
compiler maps Bool to N. At the top-level, in the translation of f(x) =t, it
modifies the input x to min(x, 1) before passing it to the translation of t. So,
the translation of t only receives valid inputs (0 or 1).
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[£(x) = t]} = (F(x) = [t]} [min(x. 1)/x])

ﬂtrue]]if =1 [[x]]if =X
[[false]]if =0 [[f]]irp =f
x s ]2 = At [t 1) = [t [

B B B
[t1 A t2]3 = min([ta]}, [E2]30)

B B B
[t1 V t2]: = max([ta]3: . [t2130)

Figure 2: Example of a fully abstract compiler.

It is straightforward to prove that [[]]ﬁﬁ is correct and that it is fully abstract
(as proven in the appendix). However, the compiler is not trace-preserving. On
an invalid input like 2 a compiled program still produces either 0 or 1, both of
which correspond to source values and, hence, are not /s.

In fact, this compiler does not preserve all safety properties in the sense
of Theorem 5. Consider the source program f(x) = x. This program satisfies
the safety property “Output true only in response to true.” Its translation
f(x) = min(x, 1) does not satisfy the translation of this safety property. In fact,
it outputs 1 (the translation of true) in response to input 4. The translation of
the safety property implied in Theorem 5 will require that the program produce
\/ in response to the input 4. O

5.2 FA Can Imply TPC

Unlike the fully abstract compiler of Example 2, existing fully abstract com-
pilers respond to invalid inputs in a way that is completely distinct from out-
puts produced in response to valid inputs. These compilers either prevent in-
valid inputs by using a target-level type system [8, 7, 17, 25] or with runtime
checks [40, 5, 28, 21] that halt the program completely.

We use the term “fail-safe behaviour” (FSB) to mean that the program halts
(stutters with non-source outputs forever) after an invalid input.

def

Definition 18 (Fail-safe-behaviour compiler). [ - ][5 € FSB = VC. Va €
TR([C]S). if da € TR(C).@~a, then a = m1a?./d, and Im; € obs(TR(C)).
and Ja?~a? and B,/ € m; and as|o = /.

FSB is very similar to the halting version of TPC. Other definitions of
invalid traces can be used as well. We formalise F'SB this way since it is the one
most similar to what existing secure compilers do. We rely on this definition to
prove that a compiler that is both FSB and CC is TP (Theorem 11).

As existing fully abstract compilers are generally also correct, we claim that
what existing fully abstract compilers really achieve is TP, Specifically, com-
piler full abstraction forces anyway the code to perform checks on all inputs.
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The FSB condition really only ensures that the checks deal with invalid input
in a uniform way to prevent the problems of Example 3.

Theorem 11 (Correctness and fail-safe behaviour imply trace-preservation).
V[-15.if [-]5 € CC and [-]$ € FSB then [-]$ € TPH.

Again, readers familiar with existing literature on fully abstract compilation
may argue that this property is hardly applicable to existing work on fully
abstract compilation. Here, we have defined this property in terms of traces
simply to be able to describe its implications in our formal setting. Section 6.3
describes a non-trace-based definition of F'SB that is amenable to existing work
on fully abstract compilation.

6 Beyond Reactive Programs

This section sets up the formal background (Section 6.1) and discusses how
to scale the presented results to non-reactive settings, i.e., to settings that are
more commonly found in existing secure compilation work (Section 6.2). Then
it rephrases F'SB without using traces and proves that an existing fully abstract
compiler also has F'SB, so it attains the halting variant of TPC (Section 6.3).

6.1 Formal Tools for Non-Reactive Languages

Many existing work on secure compilation is in the sequential programs set-
ting [7, 8, 17, 5, 28, 30, 25, 40, 42, 32|. In these cases, program are related via
a notion of contextual equivalence (Section 6.1.1) or well-behaved contextual
equivalence (Section 6.1.2). The behaviour of programs can also be described
via traces (Section 6.1.3), but additional properties need to be proven in order
for this reasoning to be meaningful.

6.1.1 Contextual Equivalence

Contextual equivalence is the coarsest program equivalence that the operational
semantics of a language yield [44]. It is used to reason about programs of the
same language.

As the name suggests, contextual equivalence relies upon the notion of con-
text. A (program) context is a partial program with a hole ([-]), so it follows the

same syntax and typing (if any) of programs. Formally, C =Ne] []. The hole in
the context can be filled by another program; this results in a whole program
that can be executed according to the language semantics.

Informally, two partial programs C are contextually equivalent if they have
the same behaviour for any possible context C that they are plugged to. Having
“the same behaviour” means: “according to the operational semantics of the
language, the two programs cannot be distinguished just by looking at the results”.
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def

Definition 19 (Contextual equivalence [44]). Cy >~ Co = VC,C[C4]t —
C[C3]1r, where 1 indicates divergence, i.e., the execution of an unbounded num-
ber of reduction steps. Divergence can be replaced by termination (i.e., |, as
necessary for strictly-terminating calculi); the two formulations are equivalent.

6.1.2 Well-Behaved Contexts

Reasoning about programs written in different languages is often done by means
of a cross-language relation ~. Unlike relations ~; and =¢ (from Section 2.2),
relation ~ is not only defined on inputs and outputs, but on all language-related
elements (values, terms, contexts etc). Often such a relation is instantiated with
a cross-language logical relation |27, 13, 14, 6, 35, 37].

~ lets us define the set of well-behaved target contexts w.r.t. the source
language, i.e., target-level contexts that have a source-level counterpart (Defi-
nition 20).

Definition 20 (Well-behaved 7 contexts w.r.t. ). WBetz5 = {C|3C.C~C}

Example 7 (Well-behaved contexts). Consider the source language of Exam-
ple 2 and the target language to be A. Assume ~ contains the following:
true~1 and false~ 0.

Consider context [-] 1, whose hole expects a function; this is well-behaved,
since it is related to the source-level context [-] true. On the other hand, context
[-] 3 is not well behaved. No source-level context relates to it, as no source-level
context ever applies a value related to 3 to a function. O

6.1.3 Trace Semantics

Trace equivalence is another tool to reason about partial programs written in
the same language, and it is simpler than contextual equivalence [41, 40, 5,
28, 29]. Trace equivalence relates two components that exhibit the same trace
semantics, i.e., whose behaviour can be described with the same set of traces
(as in Definition 2).

Formally, in the sequential setting, a trace semantics is a triple: TR of
{¥;a;==%}. ¥ is the set of states of the trace semantics. ¥ must include two
kinds of states: operational semantics states and “unknown” ones. The former
models that the execution is within the component while the latter models that
the execution is outside of it. « are the actions that can be generated by the
semantics, they follow the same formalisation of actions and traces presented
in Definition 2. == C ¥ x @ x X is a relation that specifies how actions are
concatenated into traces &.

The trace semantics of a program C, indicated as TR(C), is the set of traces
it can generate from its starting state X°(C).

Definition 21 (Trace semantics). TR(C) % {a | I=.2°(C) = ¥}
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Two programs are trace equivalent if their trace semantics coincide, as al-
ready formalised in Definition 3.

When a language is defined, its operational semantics yields contextual
equivalence. When a language is also given a trace semantics, the resulting
notion of trace equivalence must be shown to coincide with contextual equiva-
lence, otherwise any reasoning based on traces can be meaningless. Formally,
this is called full abstraction of the trace semantics (Definition 22).> Let FAT
be the set of all fully abstract trace semantics.

Definition 22 (Fully abstract trace semantics). TR € FAT dé‘VC’l, Cs. Cl ~ iy Oy =

Ci1L1C

The simplest way to develop a fully abstract trace semantics is by construc-
tion, i.e., it can be devised semi-mechanically from the operational semantics.
However this is not always possible nor simple, so devising a fully abstract trace
semantics for complex systems is an active research topic [29, 41, 31, 47].

6.2 Non-Reactive Trace-Preserving Compilation

To make TPC meaningful in a non-reactive setting, both the source and the
target languages must have fully abstract trace semantics, with which their
hyperproperties are expressed. This can be expressed through two assumptions.

Assumption 1 (The source-level trace semantics TR is fully abstract). TR €
FAT.

Assumption 2 (The target-level trace semantics TR is fully abstract). TR €
FAT.

Assumption 2 does not need to hold in general but just for compiled com-
ponents, i.e., for a subset of the programs of 7, the target language.

No existing work on secure compilation satisfies both these assumptions as no
existing work was interested in understanding the connection to hyperproperties.
Some existing work, however, satisfies Assumption 2, as they equip the target
language with fully abstract trace semantics for simplifying the proof of full
abstraction [28, 40, 42, 41, 32].

6.2.1 Non-Reactive Fail-Safe Behaviour

Definition 23 redefines F'SB from Definition 18 without traces. Let C ™ C indi-
cate that C and C are compatible, so C can fill the hole of C.

Definition 23 (Fail-safe-behaviour compiler (without traces)). [-]3 € FSB =

VC ¢ WBetz5, VC. if C ™ [C]3, then C[[C]F] —* t and Ftauek: t~er teruck
and V. C'[touer] 4

2Standard terminology may be confusing since full abstraction is used for both compilers
and semantics. When the qualifier ‘compiler’ or ‘semantics’ is omitted, it should be clear from
the context which notion is meant.
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The intuition for Definition 23 is that for any invalid interaction (i.e., an
interaction with a context C that is not well-behaved) a compiled component
reduces to a term t that is equivalent to a term tg,cx that cannot reduce any
further. te,ck, and its equivalent terms, are what correspond to /. This models
what existing fully abstract compilers do, i.e., they halt when some invalid
interaction is detected. Instead of enforcing that t is stuck, we require it to be
equivalent to a stuck term to model, for example, reduction to a function that
will get stuck when it is applied.

6.3 TPC for an Existing Fully Abstract Compiler

We believe that TPC is actually what all existing fully abstract compilers
achieve. This section argues in favour of this belief by proving that at least
one fully abstract compiler of Devriese et al. [21] is FSB according to Defini-
tion 23. Thus, if fully abstract trace semantics were given to the languages (to
reason about hyperproperties), it would be TP. We take this compiler since it
is simple enough to prove Definition 23 easily.

We believe that this property holds for most existing fully abstract compilers
because those works can be split in two main sets. The first ones are those that
rely on typed target languages [7, 8, 17, 38|, which trivially satisfy F.SB because
the typed target contexts that would violate compiled components cannot be
composed with it (so they do not satisfy C ™ [C]$). The second ones are those
that rely on untyped target languages [25, 40, 5, 28, 30|, which mostly follow
the same general principle of the compiler we examine: they perform some form
of runtime checking and behave uniformly when they fail by terminating. All
of the existing fully abstract compilers are also correct.

For the compiler of this section, the source language A" is a simply-typed A-
calculus with booleans and unit, and a fix operator while the target language A"
is an untyped A-calculus with booleans and unit. The operational semantics of
both languages is mostly unsurprising and, as the syntax, in large part omitted.
The only interesting cases are the reduction of fix in A” and how A" treats non
well-formed arguments, which are presented below (the latter is presented only
in the case of sequencing and if-then-else).

(A7 -Eval-fix)

fiXr —ry (AX:7T1 = T2.t) &
t{(Ay 71 fixe sy (AX 71 — T2.1) ¥)/X]

(A“-Eval-if-v)
(A\"-Eval-seg-next) v=true=t =1t
vEunit=t =t v=false=t' =t
v Z unit = t' = wrong (v 2 true A v £ false)
vit et/ =t = wrong

if v then t; else tp < t’

[- ]]j\\T is the fully abstract compiler from A\™ and A\"; it is defined as follows:

if t: 7 then [t]}. = protect,erase(t)
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where erase() is a type-erasing function and protect is a dynamic typechecker on
arguments received from the context whose definition is moved to the appendix
for space reasons. Any argument that does not respect the expected structure
will cause protect to reduce to wrong, without executing the securely-compiled
code. Intuitively, wrong is the \/ (or the term t from Definition 23).

The compiler is correct (Theorem 12) and FSB (Theorem 13), so it is trace-
preserving (Theorem 14).

Theorem 12 ([ -]}, is correct). [-]3. € CC.
Proof. See [21]. O
Theorem 13 ([ -] has fail-safe behaviour). [- ]} € FSB.

Proof Sketch. Intuitively, all ill-behaved interactions either reduce to wrong
immediately or reduce to functions whose body will reduce to wrong once an
argument is supplied. Consider the term true; its compilation is (Ax.x) true.
Consider the following non-well-behaving context for the term above which tries
to use it as a function instead of as a Boolean: C = [-] true. Once the compiled
term is plugged into C, the resulting term performs the following reductions:

((Ax.x) true) true < true true < wrong

Theorem 14 ([- 3! is trace-preserving). [ -] € TP,

7 Related Work

Secure compilation has been mostly formalized in the forms of compiler full
abstraction and non-interference preservation.

Compiler full abstraction was introduced by Abadi [1], to argue against the
compilation of inner classes in an early version of the JVM and for a way to
compile the 7 calculus into the SPI-calculus. Papers that prove full abstraction
achieve this by relying on different target-language features: type systems [8, 7,
17], cryptographic primitives [18, 20, 2], memory protection techniques [5, 28, 40,
42] and dynamic checks [21, 25]. Two main approaches exist to proving compiler
full abstraction: cross-language logical relations [8, 17, 7, 21] and target-level
trace semantics [28, 40, 29]. Concerning the properties of full abstraction, the
conditions that make fully abstract compilation between two languages possible
have been identified by Parrow [39]. Gorla and Nestmann [26] concluded that
full abstraction is meaningful only when it entails properties such as security,
thus supporting the motivation for our work. No existing work relates full
abstraction (or secure compilation) with hyperproperties in general. The closest
pieces of related to hyperproperty preservation are those whose proof is based
on trace semantics, as they already fulfil some of the requirements of TPC.

Some prior work [10, 11, 12] provides secure compilers that preserve specific
hyperproperties, notably non-interference. In all cases, the target language is
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assumed to be well-typed. Since both the source and target type systems imply
non-interference, compiler type preservation implies non-interference preserva-
tion. Tse and Zdancewic present a non-interference-preserving secure compiler
from the dependency core calculus (DCC) to System F [46].

Recently, secure compartmentalizing compilation (SCC) has also been pro-
posed as a criterion for secure compilation, as it addresses some limitations of
“vanilla” compiler full abstraction related to modularity [30]. The main dif-
ferences between TPC and SCC are that (i) SCC considers non-deterministic
source languages, and (ii) SCC enforces a fixed structure on the components
that encompasses the whole source program. SCC also considers modular com-
pilers, but TPC can scale to modular compilers (see Appendix C). In the SCC
work, the authors suggest a way to turn compiler full abstraction into SCC
by addressing the aforementioned issues (plus one about modularity). We be-
lieve that the same approach can be taken with TPC to ensure that it also
implies SCC. Concerning (i), the non-determinism in source languages for SCC
compilers is restricted to affect just the component where the non-determinism
happens. Concerning (ii), the notion of plugging programs and contexts is made
to adhere to a given shape (or interface), which specifies how the rest of the pro-
gram is compartimentalised. We believe that by adding the same restriction to
the source languages, TPC can scale to non-deterministic languages and to
programs that have a stipulated structure.

TPC (and more generally secure compilation) also bears a close connection
with security policies enforcement by means of runtime monitors The literature
on enforcing security properties has a number of suggestion for automata that
enforce safety properties. The seminal work of Schneider [45] defined truncation
automata, which terminate a program when an undesired action is encountered.
Then, Ligatti et al. [34] defined suppression automata, which prevent a certain
program behaviour but does not alter program behaviour otherwise. The latter
kind of automata were further studied by Bielova and Massacci [15] in the con-
text of suppressing behaviour but resuming from a good program state. The
halting variant of TP C can be seen as a truncating automaton wrapped around
compiled code while the disregarding one can be seen as a suppression automa-
ton wrapped around compiled code. However, none of these work discusses
automata in a cross-language setting, nor did they need a special action such as
\/ to relate cross-language (hyper)properties and their meaning as TPC does.
Additionally, Ligatti et al. [34] also defined insertion automata, which silently
replace invalid behaviour with valid ones with a sort of sanitisation pass. Albeit
the definition of TPC does not directly consider input sanitisation, if the rela-
tion &~ were adapted to relate source inputs to target inputs after sanitization,
then it could be seen as an insertion automata. We leave the formal details to
future work.

Trace semantics have been used to reason about the security properties of
many reactive systems [49, 24]. We believe that such work can be a good
starting point for understanding how to expand the results of this paper to
nondeterministic systems.

In this work, as in many others on fully abstract compilation, we consider
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possible optimisations to be a part of [[]]‘%5- Thus, these results can be made to
scale to optimizing compilers as long as the optimisations respect the assump-
tions needed by TPC. The work of D’Silva et al. [23] studies the problem of
securing compiler optimisation as a separate phase, clearly identifying which
compiler optimisations would violate such assumptions.

8 Conclusion

This paper presented a correctness criterion for secure compilation. We show
that this criterion preserves safety and hypersafety properties under suitable
source-to-target translations of the the properties. We show that the criterion,
TPC, is stronger than full abstraction for compilers, but can be attained with
little more effort beyond that needed to attain full abstraction. At least one
existing fully abstract compiler already attains TPC.

We believe that this paper clarifies what secure compilation means in terms
of preservation of security-relevant (hyper)properties. Additionally, it clarifies
the limitations and relevance of fully abstract compilation in the context of
security.

Acknowledgements: we would like to thank Amal Ahmed, William Bowman,
Dominique Devriese, Catilin Hritcu, Max Nex, Frank Piessens and Tamara Rezk for
interesting discussions on the subject of this paper as well as the anonymous reviewers
for useful feedback that has improved on the paper.
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A Proofs of Theorems Presented in the Paper

This section presents the proofs of all theorems and possible helper lemmas.

A.1 Proofs of Section 3 (Trace-Preserving Compilation)

Proof of Theorem 1 (Halting implies disregarding).

Proof. Take \7 =/ and only traces that stutter on /. O
Proof of Theorem 2 (Source programs refine their compiled counterparts).

Proof. By definition. O
Proof of Theorem 3 (Equivalent programs have the same invalid traces).

Proof. This is proven by induction over n.

e base if n is 0 then B¢ is (), so this case is a trivial contradiction.

e inductive This is proven by contradiction.
Suppose wlog 3@ such that @ € B¢, but @ ¢ Be,.

By @ € B, we have that @ = mia?\/,, 14, and Vm’' A my, fma? €
op(TR(C)).ma?=m’'a?

By & ¢ B, we have that @ = mja?ald) and 3ma? € op(TR(C)).ma? = mja’.

We also know that m) = m’ because neither have |/ s and they have a
source-level counterpart.

By definition we have that TR(C;) = TR(Cs).

This leads to the contradiction because we have both Ima? € op(TR.(C)).ma?~m
and pma? € op(TR(C)).ma?~m'a?.

O
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A.2 Proofs of Section 4 (Trace-Preserving Compilation
and Hyperproperty Preservation)
Proof of Theorem 5 (Safety preservation).

This proof is completely implied by the next one, but it clarifies the reasoning
principle.

Proof. This proof proceeds by contradiction.

Suppose TR([C]F) # S, so J& such that: & € TR([C]$) and & ¢ S. This
second point implies that dm € m.m < a.

By definition, there are two cases for & it’s either a trace with a source-level
counterpart or an invalid trace:

1. ae{a|3daecTR(C).a~a}
Because @ ¢ S, we have that Im € m.m<a.

By definition, m can be of two kinds:

)

(a) Im € m,m~m.
Because m < @ and &~ @, we have that m < a.
Since & € TR(C), by functionality of Definition 4 we have that
memm<a.
So the absurdum is reached: 3 and #m € m.m < a.

(b) m=m’a’a! Im~m and Pa?~a? and o! # /
This cannot be, since m<a and a~da and a?=a? contradicts
Rule Relate-trace.

2. ae{a|obs(@) =,eyinta(C)}
The following cases arise:
(a) m=m; and 3,/; € m1.
This case is just like Item 1la.
(b) ™ = mya?/; for some i and B/, € M.
Again, since m ~ m, we have that m can be of two kinds:
i. 3m e m, m~m.
This is an absurdum because flac~ /.
ii. m=m’a?a! Im~m and fa?~a? and a! # /
The absurdum here is that o! # /.
(¢) m=mia?y/ias.
In this case we can restrict ourselves to the prefix m = m;a?./; and
use the same reasoning as in Item 2b.

O

Proof of Theorem 6 (Hypersafety preservation).
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Proof. This proof proceeds by contradiction.
Suppose TR([C]$) ¢ S, so 3a such that: & € TR([C]$) and & € S.a € a.
By definition, there are two cases for & it’s either a trace with a source-level
counterpart or an invalid trace:

1. ae{a|da e TR(C).a=a}
Because 393 eS.ae 3, we have that Im € M.3m € m.m < ¢

o]

By definition, m can be of two kinds:

(a) 3m € M, m A m, so Im € m. m~m.
Since m < & and &= @, we have that m <&
Since @ € TR(C), by functionality of Definition 4 we have that
#m e M.I3m € mm< a.
So the absurdum is reached: 3 and #m € m.m < &.
(b) {{Ga?a!}|3& € M.3G € &.a~a and Fa’ € M.IGa? € o .&a? ~Ga? and al #

v} )

This contradicts the assumption 3@ € TR(C).a= a.

2. a € {a|obs(a) = U,y inta(C)}

The following cases arise:

(a) m=m; and B./; € my.
This case is just like Item 1a.
(b) m = mya?/; for some i and #\/; € m;.
By definition we have that 3m € M. 3m € m and m can be of two
kinds:
i. 3m e M.3m € m, m~m.
This is an absurdum because Ao~ Vi
~m and fa’?~a? and a! #

~

ii. m =m'a?! Im € M.9m € m.m

v
The absurdum here is that o! # /.

(C) m= ﬁ]l(,}’?\/i(_)zz.
In this case we can restrict ourselves to the prefix m = m;a?./; and

use the same reasoning as in Item 2b.

O
Proof of Theorem 7 (Non-interference is preserved).

Proof. This proof proceeds by contradiction.
Suppose (1) @ € S and (2) @ ¢ NI.
By (2) we know that 3a1,d» € @ such that a:|; L, sl and ai|o L | @slo.
By (1) we know that #m € M such that (3) m<a.
There are two cases based on m:
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e m e A where A= {m |3a e M,aNa}
By Definition 15, A = {m | Vi, m; € m.mi|; L, ma|r and milo ¥ |, Malo}
By (3) we conclude that Vaq, @, € &, the following holds &1 |; L, a|; and
ailo L, azlo-
This contradicts (2).

o M € B where B = {{ma%a!} | 3& € M.3m € &m~m and Ja’ €
M.3m' a? € o'.ima? ~ma? and al # \/i41} where |flo N V] = i
Assume wlog that a; = mja;7aq!a) and a, = mhas?as!af.

By hypothesis we get mja;? L mbas? and (4) ai! 7 | asl.

By (3) we have that ay! = /; where [m}]o N /| = i.
Analogously, by (3) we have that a,! = /; where |m}|o N Q|| =i
So, ay! = /; = !, which contradicts (4).

Proof of Theorem 8 (Liveness preservation).

Proof. This proof proceeds by contradiction.
Suppose there is a trace @ at that is in TR([C]$) but not in L
By L g’f we know that any trace in L
e is fair(). By contradiction, no input o in & after a / should be related
to a source input a?.
We proceed by induction on a.

In the base case we know that d&.&~ &, so @ has an input a? such that
da? € &. a? ~«a? and the contradiction is reached.

The inductive case follows by IH.

e once stripped of ticks, has a related trace in L.

By Definition 8 we know that once we strip @ of ticks, da € TR(C).a = a.

By TR(C) C f, we have that & € f, so the contradiction is reached. [

A.3 Proofs (and Examples) of Section 5 (Trace-Preserving
and
Fully Abstract Compilation)

Definition 24 (Compiler full abstraction [1]). [[]]isr € FA d:dVCL Cs. Cq~ppy Co <=

[[Clﬂg“ etx IICZII‘;"
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Definition 24 and Definition 6 are equivalent as long as Assumption 2 and
Assumption 1 hold.
Proof of Theorem 9 (TP implies FA).
Proof. = C1LCy = [Cq]F L[C2]F
By Definition 3 TR (C;) = TR(C»)
By Theorem 3 B¢, = Bc,.
By Definition 15 G¢, & TR(Cq) and G, 8 TR(C.).
So G¢, + Bc, = Ge, + Be,.
By Definition 1, TR([C1]5) = TR([C2]5).
By Definition 3 [C1]5 L [C2]5.
< [Ci]F L[Ce]F = Ci1Co
By Definition 3 TR([C1]$) = TR([C2]3).
By Definition 1, G¢, + Be, = Ge, + Be,.-
By totality of Definition 4, B¢, = Bc,.
So Gg, = Ge,.
By Definition 15 Go, & TR(C;) and Gc, 8 TR(Cy,).
So TR(C,) = TR(C2).
By Definition 3 C; £ C, O

Theorem 15 (Modular TPC implies modular FAC). [-]$ € MTP = [-]5 €
MFA.

Proof. The proof is completely analogous to the single-module case. O
Assumption 3 ([[]R? is correct). [Mﬁ e CC
Theorem 16 ([ - ]]ﬁﬁ is fully abstract). [[]]iﬂ € FA

Proof. ¥C1,C2,C1 L C; «— [[Cl]]ﬁrp L [[Cz]]ﬁf
Let C; = f(x) = t1 and Cy = f(x) = ta.
By definition we know that [C1]27 = f(x) = Ax.([t1]} ) min(x, 1).
Analogously [Ca]} = f(x) = Ax.([t2]}) min(x, 1).
So any trace of the compiled components has inputs of the form callf(v)? for
veN.

CiICy=> [[Cl]]AB T [[C2]]§l?
We state the contrapositive: [[Cl]]ilf ¥ [[Czﬂiﬁ =C1 2 C,

By definition, wlog, 3@ = d’a’a! such that a € TR([[Cl]]iﬁ) and a ¢
TR([C2]}") and &' € TR([C1]}") and &’ € TR([C2]}" ).
By input totality we can say that 3a/!. @'a?a’/! € TR([[C2]]§£).
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We proceed by induction on @ and then case analysis on o/
By IH we get &’ ~a’.
a? = callf(0)?
By definition we get a? = callf(false)? such that a? = a?.
By Assumption 3 we get a!~a! and o/! ~a/! and a! # o'l.
So we have & = @’ a?a! such that @ € TR(Cq) but & ¢ TR(Cs).
So Cl 2 Cz.
a? = callf(1)?
Analogous as the case above.
a? = callf(n)? where n > 1

The additional min( - ) turns the n into a 1, so this follows from the
case above.

Ci1IC, <« [[Cl]]:\\B T [[Cz]]ilf
This direction is implied by Assumption 3.

O

A.3.1 Proof of Theorem 11 (Correctness and fail-safe behaviour im-
ply trace-preservation)

Proof. This proof proceeds by contradiction.

Assume [-]5 € FA, [-]§ € CC and [-]5 € FSB but [-]5 ¢ TP".

By Definition 8: VC. fa € TR(C). a~af and af ¢ {ma?\/d’ | Im €
obs(TR(C)).m~m and fima? € op(TR(C)).ma?~ma? and Yo' € &|p,a’ =

e The first conjunct cannot be possible since [ -] € CC.

e By definition of FSB, the second conjunct is also not possible. In fact
af = mia?\/a, and Im; € obs(TR(C)). m; ~m; and Aa?~a? and
B,/ € m; and as|p = / but this contradicts the second conjunct. O

A.4 Proofs of Section 6.3 (TPC for an Existing Fully Ab-
stract Compiler)

Additional examples for Theorem 13 ([ -]}, has fail-safe behaviour).

Example 8 (Reduction to A-term that will reduce to wrong). Consider the term
f = Ax : Unit. unit that is compiled to f = Ay. Ax. Az.z (y (Aw. (w; unit) x)) Ax. unit.
Consider the following non-well-behaving context for f: C¢ = [-] true. Once f is
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plugged into C¢, the resulting term performs the following reductions:

(Ay. Ax. Az. z (y (Aw. (w;unit) x)) Ax. unit) true <
(Ax. Az.z (Ax. unit (Aw. (w; unit) x))) true <

Az.z (Ax.unit (Aw. (w; unit) true)) <

Ax. unit (Aw. (w; unit) true) <

Ax. unit (true; unit) <

Ax. unit (wrong) < wrong

]

Example 9 (Reduction to A-term that will reduce to wrong). Consider the term
f = A\x:Unit — Unit. Ao : Unit. unit of type (Unit — Unit) — (Unit — Unit)
that is compiled to the following (where f is Ax. \o.unit for space reasons):
f = A\y. Ax.protectypit—unit (y (confineyyiz—unis X)) f. Consider the following
non-well-behaving context for f: C¢ = [-] true. Once f is plugged into Ct, the
resulting term performs the following reductions:

Ay. AX. protectypit—unit (Y (confineypis—unis X)) f true <
AX. protectynis—unie (f (confineynit—unit X)) true —
proteCtynit—unit (f (confineynit it true)) —
(Ay. Ax.Az.z (y (confineyit X)))

(f (confineynit—unit true)) <

(Ax.Az.z ((f (confineynit—unit true)) (confinegis x)))

However, if we were to supply an argument (called a) to this A, the reduction
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would proceed as follows.

Mx.Az.z ((f (confineypit—unit true)) (confineyiy x))) a <
z ((f (confineypit—unit true)) (confineyyit a))) —
(confineypit—unit true)) (confineyyiy a))) <
(confineynit—sunit true)) (confineyyis a))) <
(confineynit—unit true)) (--+))) —
(Ay. Ax. confineyyiy (y (protectynis X
(

(

(

true)) (---))) =
) =

confineypis a))) <
Ay. (y; unit) a))) —
a; unit))) <

)
Ax. confineyiy (true (protectypit x)))) (- -
Ax. confineyiy (true (protectyit x)))) (
Ax. confineyiy (true (protectypit x)))) (
(Ax. confineyyit, (true (protectyqit x)))) (a;
if a is not unit then < wrong, otherwise

((f (Ax.confineypsy (true (protectynit x)))) (unit))) <
confineyiy (true (protectyyiy unit)))) <

Ay. (y; unit) (true (Az.z unit)))) <

Ay. (y; unit) (true unit))) <

Ay. (y; unit) (wrong))) < wrong

(
(
(
(

If Cr were [ Ax. true, it would still be non-well-behaving and the reduction would
reach the following point (this can be verified by replacing true with Ax. true in
the reduction above):
Ay. (y; unit) (Ax. true unit))) <

t

Ay. (y; unit) true)) <
(true; unit))) —

wrong)) < wrong

Proof of Theorem 13 ([ -]}, has fail-safe behaviour)

Proof. Intuition: all ill behaved interactions either reduce to wrong immediately
or reduce to lambdas with some term that will reduce to wrong inside that, if
unravelled, reduce to wrong.

In this case At ~t means: t is wrong or 3C.Ct < *wrong.

Induction on the structure of C.

1. Base Case

e C = This cannot arise because - € WBct:L’is
e C = unit This cannot arise because unit € WBctxﬁZ

e C = true This cannot arise because true € WBct:cﬁuT
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o C = false This cannot arise because false € WBctxﬁz

e C = wrong The case holds.

2. Inductive case The IHis: C' ¢ WBctz5, VC, if C'[C]§, then C'[C]5 — *t
and Bt.t ~t.

The IH is always applicable because if C[C]$, then C'[C]5.

e C = \x.C’ This holds by IH.
e C =1t C Analysis on t:

— t < *v Analysis on v

% v = unit, true, false, (v,v), inl v, inr v, the term reduces to
wrong, so this case holds.

x v = M.t Carry a second general induction on t'.

-t/ = unit, true, false: these cases cannot arise because they
are not in WBctz?3. .
For example, Ax. unit C' ~ \x. unit unit.

-t/ = x This holds by IH because Ax.x C" — C’.

-t/ = wrong This holds trivially because
Ax.wrong C' < wrong.

- All other inductive cases: They hold by the second IH.
— t4*v The term reduces to wrong, so this case holds.
— tf) The term is related to omega unit so this case does not arise.

e C =’ t This holds by IH.

e C = (.1 This holds by IH.

e C = (C'.2 This is analogous to the previous case.
e C =inl C’ This holds by TH.

inr €’ This is analogous to the previous case.
(C’,t) This holds by IH.
(t,C") Analysis on t:

C
o C
C

— t < *v This holds by IH.
— t*v The term reduces to wrong, so this case holds.
— tfp The term is related to (omega, unit) so this case does not
arise.
e C =t;C’ Analysis on t:
— t <> *v Analysis on v

*x v = Ax.t/, true, false, (v,v), inl v, inr v, the term reduces to
wrong, so this case holds.

* unit This holds by IH.
— t&*v The term reduces to wrong, so this case holds.
— tf) The term is related to omega; unit so this case does not arise.
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e C = C';t This holds by IH.
o C =case €' of inl x; + t; | inr xp > t, This holds by TH.
e C=casetof inl xy — C' | inr xo — to Analysis on t:

— t < *v Analysis on v

* v = .t/ true, false, (v,v), unit, the term reduces to wrong,
so this case holds.

* inl v This holds by TH.
* inr v Carry on another general induction in t,.
- unit The term is related to
case inr v of inl x; — unit | inr x2 > unit.
- false The term is related to
case inr v of inl x; — unit | inr x > false.
- true The term is related to
case inr v of inl xq — unit | inr x2 — true.
- Ax.t’ This holds by IH on t’.
- Inductive case: all cases hold by the second IH.
— t*v The term reduces to wrong, so this case holds.
— tf) The term is related to
case omega of inl x; > unit | inr x5 +— unit so this case does
not arise.
e C = casetof inl xg — ty | inr xo — €’ This is analogous to the pre-
vious case.
e C=if T’ then t; else t, This holds by ITH.
e C=if t then C’ else t, Analysis on t:
— t < *v Analysis on v
* v= A t/,inl v, inr v, (v,v), unit, the term reduces to wrong,
so this case holds.
x true This holds by TH.
x false This case is analogous to the inr v case 3 steps before.
— t&*v The term reduces to wrong, so this case holds.

— tff The term is related to if omega then unit else unit so this
case does not arise.

e C=if t then t; else C’ This is analogous to the previous case. O

Proof of Theorem 14 ([ -]}, is trace-preserving)

Proof. By Theorem 12 and Theorem 13 and Theorem 11. O
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B Additional Material for [ -]}

B.1 Syntax of the Languages of [ -]}

t = unit | true |false | Ax: 7. t | x|t t|t.1]t.2](t,t)
| inl t|inrt|caset of inl x4 — t|inr xg+—t | t;t
| if t then t else t | fix,, t

v = unit | true | false | \x : 7. t | (v, V) | inl v | inr v

Tu=Unit |Bool |7 = 7|7 XT|TWT

t = unit | true | false | Ax.t | x| tt]|tl|t2]{tt)
| inlt]inrt]casetof inl x; — t|inr xp — t]t;t
| if t then t else t | wrong

v ii=unit | true | false | Ax.t | {v,v) | inl v | inr v

B.2 The protect(-) Function
See Figure 3.

def def
protectymis = AX. X protectgeor = AX. X

protect , xr, «f Ay. (protect,, y.1, protect,, y.2)

et inl x — inl (protect,, x)

protect,, wr, = Ay.case y of

inr x — inr (protect,, x)

protect,, —r, =y Ax.protect,, (y (confine,, x))

confineyp;t oef Ay. (y; unit)

confineggol oot Ay.if y then true else false

def

confine,, x, = Ay. (confine,, y.1, confine,, y.2)

def inl x — inl (confine,, x)

confine , wr, = Ay.case y of

inr x — inr (confine,, x)

def

confine , -, = Ay. Ax. confine,, (y (protect,, x))

Figure 3: The protect() function for [-]3. .
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C TPC and Modular Compilation
C.1 Modular TPC

Inspired by the recent developments in secure compilation for modular compil-
ers [42, 30|, this section presents Modular TPC or MTP. Then it compares
MTP with the modular version of compiler full abstraction (Appendix C.2).

First, we clarify what we mean by modular compiler. A modular compiler
is one that applies itself recursively to the sub-components of a component and
then links the compiled results to obtain a compiled component. This approach
to compilation is standard. When we have a program that relies on libraries and
something changes in the program, we do not recompile the libraries. Instead, we
recompile just the program and re-link the result against the already compiled
libraries.

Intuitively, a trace-preserving compiler must be secure when applied to pro-
grams that are composed of sets of components and not just a single com-
ponent. So, assume that a component is made of sub-components. To make
this explicit in the syntax, we write M for a sequence of linked components:
M = C1+Cy+---+C,,, where + is linking. We define MTP as follows.

Definition 25 (Modular TPC). [-] € MTP = VM, M/,
TR(IMIS+[M']3) = TR(IM+M']S) and [-]5 € TP

def

This definition requires the compiler to be TP as well as modular, i.e., linking
in the source and then compiling is equivalent to compiling and then linking
in the target. The intuition behind the definition is straightforward: When
compiling the two modules as a single unit M+M’, it prevents the compiler
from generating code that causes an interaction between the two components
that would not have existed had M and M been compiled separately.

Example 10 explains why it is not sufficient for just the compiler to be TP.

Example 10 (Need for Modular TPC). Consider a component M made of two

def
sub-parts: Ceounter and Ciog 50 M = Coounter +Clog-

Intuitively, Ccounter Stores a counter for every other component in the
system. Ccounter can be called by another component to increment the its
own counter (assume no other component can increment another component’s
counter) and any component can ask the status of the counter of another com-
ponent. Cjog logs accesses to resources. Any time the log is called, it calls for an
increment in the counter, receives the increment, and then returns to whoever
called it in the first place.

Traces of C.ounter include these traces:

aine = inc(Log)? - ret(Log,1)!- inc(Log)? - ret(Log, 2)! - --
aget = get(Log)? - ret(0)!- get(Log)? - ret(1)!---

Traces of Ciog include this trace:

Qajog = log(n)? - call inc(Log)! - ret(Log, 1)? - ret(unit)! - - -
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When cosidering M as a whole, however, interactions between Cioe and
Cecounter are hidden. The traces of M are obtained by joining those of Ccounter
and Ciog. Specifically, they no longer have aios above, but they include aiog
below:

aiog = log(n)? - ret(unit)!- -

A compiler could compile sec M so that Cjog calls to Ccounter €ven on invalid
actions. This would be problematic as the counter for Ci,, would be increased
for invalid interactions as well (one can imagine this is used for some billing
system where bills can thus be tampered with, making one pay for unreceived
services). If we just reason about Ciog 0r Ceounter individually, this compilation
is still TP. However, we want to prevent these compilers from being categorised
as secure.

When we force the compiler to be modular and we reason about Cjog+Cecounter,
that compiler is no longer TP. Thus the addition of the modularity requirement
in MTP.

Without the modularity requirement, the following would be a valid target-
level trace, where (.) identifies when the log would call and increment the
counter:

Qirick = log(true)? - (.)4/ get(Log)? - ret(1)!---

However, for this to be a “valid" invalid trace, it must be a trace that relates
to a source-level one interleaved with a possible combination of “invalid action -
/". Because in the semantics of M there is no action of the form get(Log)? -
ret(1)!--- (the counter starts as 0), trace auick is not a “valid” invalid trace that
a MTP compiler allows.

With MTP, this problem does not arise, so the counter is only incremented
on valid interactions and we can conclude that a MTP compiler preserves in-
variants shared between components. O

C.2 Modularity for FA and TPC

Recent developments in secure compilation highlight that for modular compilers
from a typed to an untyped language, full abstraction is not enough [42, 30]. If a
fully abstract compiler is used to compile sub-components individually and then
link them together, the resulting (whole) component can be subject to security
exploits such as non well-bracketed flow of execution. For a modular compiler
to be secure, it must be proven to be modular-fully abstract (Definition 26).
Let MFA be the set of compilers that are modular fully abstract.

Definition 26 (Modular full abstraction). [-]5 € MFA = VM;, My, Mg, My.
M1+M2 ~ ot M3+M4 < HM1H§+HM2H§— ™~ ot HM3H§—+[[M4]]‘?

Modular trace-preserving compilation and modular full abstraction are in
the same relationship that (non-modular) trace-preserving compilation and full
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abstraction are. MTP in fact implies MFA by much of the same argument that
TPC implies FAC. MFA, on the other side, does not imply MTP but, with
the addition of FSB implies the halting variant of MTP.

Theorem 17 (Relationship between MFA and MTP). V[-]5 [-]5 € MTP =
[-15 € MFA and [-]5 € MFA# [-]5 € MTP.
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