
University of Kaiserslautern

Department of Computer Science

Master’s Thesis

Reactive Controller Synthesis for
Mobile Robotics

Author:
Adrian Leva

Supervisors:
Ph.D. Rupak Majumdar
Prof. Dr. Karsten Berns

Technical Report MPI-SWS-2017-001

Abstract

Often linear temporal logic is used to describe the desired behaviour of a robot.
Once the specification or environment is complex enough, generating a con-
troller based on that specification can be time intensive. In order to approach
this problem, Schmuck and Majumdar have introduced a formalism and algo-
rithm to model and synthesize specifications in [23] by introducing a hierarchy
over local specifications. In this work we have adapted that algorithm, so it can
be run in a simple simulation as well as in a realistic 3D simulation to control a
robot. We could conclude that the time to generate the controller for the robot
can be cut down by using this approach. Running it in a realistic scenario with
unforeseen events such as obstacles that were not defined beforehand, we ran
into additional problems. Therefore we extended the algorithm to try to resolve
the problems in those situations.

Zusammenfassung

Oft wird lineare temporale Logik benutzt um das gewünschte Verhalten eines
Roboters zu beschreiben. Sofern diese Spezifikation oder die Umgebung aufwändig
wird, kann es sein, dass das Generieren eines Controllers für den Roboter sehr
lange dauert. Um dieses Problem zu lösen haben Schmuck und Majumdar
in [23] einen Formalismus und einen Algorithmus um eine Spezifikation zu
modellieren und synthetisieren, indem sie eine Hierarchie über lokale Spezifika-
tionen einführen. In dieser Arbeit haben wir diesen Algorithmus angepasst,
sodass er sowohl in einer einfachen Simulation als auch in einer realistischen 3D
simluation genutzt werden kann um einen Roboter zu steuern. Zudem konnten
wir feststellen, dass mit diesem Ansatz Zeit bei der Erstellung des Controllers
gespart werden kann. Beim Ausführen in einer realistischeren Umgebung mit
unvorhergesehen Ereignissen, wie etwa Hindernissen, die vorher nicht spezi-
fiziert waren, traten zusätzliche Probleme auf. Deshalb haben wir den Algorith-
mus erweitert um in solchen Situation die Probleme zu lösen.

i

Contents

1. Introduction 1

2. Related Work 3

3. Preliminaries 5
3.1. Game Solving and GR(1) . 5
3.2. Linear Temporal Logic MissiOn Planning 7
3.3. Robot Operating System . 9

3.3.1. Localization with AMCL . 9
3.3.2. Local Motion Planning with DWA 10

4. Hierarchical Approach 11
4.1. Implementation with LTLMoP . 13

4.1.1. Overview . 14
4.1.2. AbstractHandler . 15
4.1.3. LocalGame . 18
4.1.4. Memory propositions . 20
4.1.5. Changes to the Existing Code 20
4.1.6. Specifics to the Basic Simulation 22

4.2. Evaluation . 22
4.2.1. Live lock because of reordering 23
4.2.2. Resource usage . 25

5. Connecting it with the Real World 29
5.1. Connecting LTLMoP with ROS . 29

5.1.1. Gazebo world . 29
5.1.2. Launch file for ROS . 30
5.1.3. Handlers in LTLMoP . 31

5.2. Additional Problems . 33
5.3. Experiments and observations . 37

6. Conclusion and Outlook 41

Appendices 43

iii

A. Source Code 45
A.1. Conventions . 45
A.2. Messages . 46

B. Scenarios 47
B.1. Reorder . 47
B.2. Lock because of reordering . 48
B.3. Multiple doors example . 50
B.4. Buildings with ROS . 50

B.4.1. Level 2 . 50
B.4.2. Level 1 . 51
B.4.3. Level 0 . 52

iv

1. Introduction

Handling robots and giving them tasks can be very complex. As one approach,
specifications the robot has to satisfy can be given as linear temporal logic (LTL)
formulas, as tasks like reachability or sequences of goals can be naturally ex-
pressed in LTL.

However, once the specification is complex and the state space of the scenario
is getting big enough, synthesizing a controller from that specification can take a
long time — it does not scale well. This could render the synthesis impractical, if
these tasks change over time or are assigned on demand. Consider a warehouse,
where robots should fetch items when they are ordered. If getting the item takes
less time than generating the controller to actually execute that task, taking this
approach of controller synthesis is infeasible.

As one approach to solve the scalability issue, Schmuck and Majumdar sug-
gested a hierarchical approach in [23]. It leverages the fact that many scenarios
can be divided into smaller subareas, that are connected and introducing a hier-
archy that represents the game on different abstraction levels. We show this at
an example consisting of multiple buildings that are refined by the rooms inside.

Thus, over the course of this thesis, we present the approach and describe how
we have adapted this algorithm to be able to run it in a simple simulation on
top of the Linear Temporal Logic MissiOn Planning (LTLMoP) [8] toolkit, where
the robot is displayed as a dot and the environment is a 2D map.

LTLMoP’s architecture allows different robot configurations, so building the
algorithm around it enables us to run it on various robots in simulation. We
could also show, that depending on the situation, time can be saved by using
this approach of hierarchical synthesis, by using a smart partitioning.

On limited hardware resources, which can be the case if the synthesis is done
on the robot itself, it even enabled us to complete the synthesis, where without
our adaption the procedure would run out of memory, due to its size. We have
compared that time needed to generate the controller in the buildings example
of the hierarchical algorithm with the hierarchical one and could see a time
improvement in most cases.

To take it one step further we have integrated that with a framework to run
on real robots, namely the Robot Operating System (ROS) [10] and the realistic
3D simulator Gazebo [9]. A more realistic environment is more complex and
unforeseen situations can happen, like the robot is unable to move because of

1

an obstacle. We have addressed some of these additional problems, by further
changing the algorithm to be able to react in such cases. Because it allows us
to compute a strategy in relatively short time, we can change the specification
to add additional constraints while the robot is in operation without too much
downtime. By only adding additional constraints or changing the order of goals,
the rest of the original specification is still in place, so the robot will still stay
safe as much as it is possible with some inaccuracy or stop if it cannot complete
the specification.

If this kind of safety is too stringent, another motion planning algorithm can
be used, such as Dijkstra, to definitely find a way to a goal, even if it means the
robot moves through regions the synthesis did not consider. The robot is then
unlikely to fail due to obstacles, but this approach should not be used if the
specification defines regions the robot should avoid.

But not only in the case of unforeseen situations the specification can be
changed. Should some part of the specification change, the existing strategy
can be deleted and the robot will generate the new one the next time it will
need it, or it could be done manually, while the robot is still running. As an
example, the robot was cleaning only the hallways and the cafeteria, but now
it should clean the office as well. While it is still cleaning, the office could be
added to the specification without the need to restart the robot.

To conclude the work, we discuss our findings and give an outlook for im-
provements that still could be done, such as improving the usability of the
tools to incorporate the hierarchical approach or learning about permanent ob-
stacles and thus changing the specification automatically and permanently as
well, based on these observations.

2

2. Related Work

Synthesis of specifications in LTL are well-studied in general. For exampe
Fainekos et al. have shown how temporal logic motion planning of more higher
level specifications, such as visiting multiple goals while avoiding dangerous
regions or visiting goals in a specific order, can be used [7].

Hierarchies have been introduced in many areas, not only controller synthesis,
such as a bottom-up approach by Aminof, Mogavero and Murano in [1] to syn-
thesize a system by building components from already existing ones, to create
more complex systems.

Related to the integration of controller synthesis into the Robot Operating
System, Wong, Finucane and Kress-Gazit have shown that it is possible in [24].

In [19] Ramaithitima et al. have tried to overcome the drawback of exponen-
tial growth of the environment when represented as graph by introducing an
abstraction. In order to do so they divide the configuration space into partitions
of topological similar configurations. Instead of specifications based on tempo-
ral logic, they studied pursuit-evasion problems, where multipe pursuers have
to detect evaders.

Kloetzer, Ding and Belta [15] suggested an approach to several unicycles that
should fulfill a global specification. They split the problem into a hierarchy,
by first abstracting the motion of the robots, then composing these abstraction,
generating a motion for the team and finally transforming these abstractions
into controls for the individual robots.

Belkhouche and Belkhouche [2] introduced a hierarchy in their motion plan-
ner as well. To describe the system, they use differential equations for the con-
tinuous state and graphs for the discrete part. The hierarchy is reflected by four
modes for the planner, move-to-goal, move-to-inter-goal, obstacle-avoidance and
path smoothing. Given some goal the robot starts in the move-to-goal mode until
it detects some obstacle in its way. It switches to the move-to-inter-goal to move
close to the obstacle and then changes to the obstacle-avoidance mode. The path
smoothing is activated whenever the robot switches between other modes.

Saha et al. [22] have used an satisfiability modulo theories (SMT) solver to
solve the motion planning problem for multiple robots by first building a library
of motion primitives and then composing these to a complete trajectory.

However, at the time of writing we have not found an attempt to combine
such a hierarchical approach to controller synthesis with a realistic robotics sim-

3

ulation.

4

3. Preliminaries

3.1. Game Solving and GR(1)

In order to describe the behaviour of the robot and possibly the environment, a
notation has to be established, and one way to do so is by using Linear Temporal
Logic (LTL). Consider an example, where we have three regions, 1 and 2 repre-
senting buildings that are connected by some region 3, as seen in Figure 3.1.

Figure 3.1.: LTLMoP’s region editor with the example

The robot should patrol between those two buildings, so the specification
could be stated as go to 1; go to 2. This specification has to be expressed as LTL
formula, since we want to use an algorithm that works on LTL to solve it.

LTL formulas describe an infinite sequence of states. There is a finite number
of atomic propositions, basic logical operators like negation (¬) and or (∨) as
well as temporal operators like next (⃝) and until (U). Thus the basic syntax is

φ ::= π | ¬φ | φ ∨ φ | ⃝ φ | φU φ

5

where π is an atomic proposition. Intuitively ⃝ φ means that φ has to hold in
the next state and with φU ψ, φ has to hold in every state until a state is reached,
where ψ is true. From these basic operations other important ones like globally
□ φ and eventually ♢ φ, defined as ♢ φ = ⊤U φ and □ φ = ¬♢¬φ. Follow-
ing these definitions, eventually means the formula has to hold at some point,
whereas globally expresses that it has to hold in every state of the sequence.

Going back to our example of buildings the robot should patrol between, the
specification for the robot could be written as □♢ 1 ∧□♢ 2, meaning that the
robot should visit region 1 and region 2 infinitely often.

The realizability of LTL is 2-EXPTIME-complete [21], which makes it prac-
tically infeasible. For a subset of LTL formulas, namely Generalized Reactiv-
ity (GR(1)) [17] formulas, there is an algorithm that decides realizability in N3.
These formulas are of the form

φ = φe
i ∧ φe

t ∧ φe
g → φs

i ∧ φs
t ∧ φs

g , (3.1)

with φe describing the environment or sensor propositions and φs modeling the
system or robot. φe

i and φs
i are nontemporal Boolean formulas that represent

the initial state of the environment and system respectively. φe
t is of the form∧

i∈I □ Bi, where Bi are Boolean combinations of system and environment propo-
sition as well as the temporal next operator with some environment proposition,
to describe the behaviour of the environment. Similarly, φs

t describes the be-
haviour of the system, with the difference that it can rely on the current system
state as well as the current and next sensor outputs, since it first updates these
and then takes an action. Finally, φg describes the goals of the environment and
system, in the form of □♢ Bi, where Bi can be environment or system proposi-
tions. If we apply that to our example we get this:

(⊤∧□⊤∧□♢⊤) →
((1 ∨ 2 ∨ 3)

∧ (□(1 → ⃝3) ∧□(2 → ⃝3) ∧□(3 → ⃝(2 ∨ 1)))

∧ (□♢ 1 ∧□♢ 2))

(3.2)

The propositions are just the labels of the regions, 1, 2 and 3. Furthermore, the
assumptions of the environment are all true, since we have none. The behaviour
of the robot is stating that it starts in either region, captures the transitions
between the regions and finally describes the goals.

Synthesis of that specification can then be done with the help of GR(1) games [17].
The algorithm uses a µ-calculus formula to describe the set of winning regions
of the players.

In [14] the formula representing this winning set is described as a greatest

6

region = p2 (2)
[Goal #1]

region = p1 (3)
[Goal #0]

region = p3 (1)
[Goal #0] region = p1 (3)

[Goal #1]

region = p2 (2)
[Goal #0]

Figure 3.2.: Example automaton for a winning strategy

fixpoint that stands for the set of states in which the system is indefinitely vio-
lating the assumption of the implication or can get to a state in a finite number
of steps, from which the system can win. In addition to that fixpoint there are
some more constraints, like staying in states of which we do not know yet if they
are causing the system to lose.

With the help of artefacts created by applying the algorithm to check realiz-
ability, it is able to produce an automaton that represents a winning strategy for
the specification [3] and also an implementation in JTLV is given. For our simple
example such an automaton looks like in Figure 3.2. The states consist of the
current region in parentheses and the current goal it wants to reach in square
brackets.

3.2. Linear Temporal Logic MissiOn Planning

There are several tools and libraries that are related to controller synthesis, such
as slugs [6], LTLMoP [8], Demiurge1, Pessoa [16] and AbsSynthe [5]. We have
looked into these tools and based on the input and output language, documen-
tation status and set of features, we have chosen LTLMoP as a basis of our
implementation.

The Linear Temporal Logic MissiOn Planning (LTLMoP) [8] is a toolkit written
in Python that allows the user to create a map and to write a specification for
a robot in a known environment. To help the user with this task it offers a
graphical user interface for creating the map and writing the specification. That
specification can then be synthesized into an automaton, which represents the
controller for the robot, using potentially different back ends, but at the time of
writing only a framework for developing verification algorithms called Jtlv [18]
is supported. LTLMoP also allows the user to run a simulation with different
robot configurations and simulation software by having a plugin like structure.
Figure 3.3 shows the components of the toolkit and how they are connected. The
grey components have a graphical interface, while the white ones are internal.

1https://www.iaik.tugraz.at/content/research/opensource/demiurge/

7

https://www.iaik.tugraz.at/content/research/opensource/demiurge/

Parser

SpecEditor RegionEditor

Synthesizer

Analysis Tools

Executor Handlers

ConfigEditor

Execution Status
Monitor Robot

Specification RegionMap

LTLSpecification

Counter-Strategy

Feedback

Strategy

Configuration

Discrete commands

Status updates
Continuous
commands

Figure 3.3.: Overview of the interaction and information flow of LTLMoP.
Adapted from https://github.com/VerifiableRobotics/LTLMoP/

wiki/Overview

First the specification has to be defined in either LTL directly or a format called
Structured English which is a subset of English and defines keywords like visit
region or go to region that get translated to □♢ region, where region is a defined
region in the map. Then there is the keyword always with its LTL equivalent
□ φ which could be used for safety requirements, i.e. if the robot should never
go to the kitchen. This language also has a way of describing implications and
equivalence c =⇒ r and c ⇐⇒ r with if c then r and c if and only if r respectively.
Not only locations or regions can be described in the specification, but sensor or
other custom propositions as well, to enable the user to react to certain events
monitored by sensors or to have a memory of events happened. Because a robot
typically is not only able to move but also to perform actions, like picking up
an item or saying a sentence, there are action propositions as well. It is worth
noting that all propositions are binary though, so a sensor input is rather below
or above some threshold instead of some numerical value, and actions are either
active or not. The full grammar specification can be found online [13].

From that specification LTLMoP generates an automaton of a winning strategy
in case it is synthesizable or tells the user why it is unsynthesizable otherwise.
If it is unsynthesizable it also allows to visualize a counter-strategy where the
user can choose the actions step-wise [20].

Once the strategy is synthesized the simulation can be run with a specific
configuration. The configuration consists of handlers for different aspects of the
robot, like getting the pose, planning the movement from one region to another

8

https://github.com/VerifiableRobotics/LTLMoP/wiki/Overview
https://github.com/VerifiableRobotics/LTLMoP/wiki/Overview

or actually sending the motion primitives to the robot.
The most basic simulation is a dot that represents the robot which moves

around in the very same map that was defined beforehand.

3.3. Robot Operating System

The Robot Operating System (ROS) [10] is a framework for writing software
for robots. It has grown to have a variety of packages and tools ready to use
for many robots. Some notable ones are simulation in 3D with the Gazebo [9]
simulator as well as a functional localization and navigation stack.

When ROS is started a master node gets initialized. The master node is re-
sponsible for tracking which nodes are registered as well as setting up commu-
nication between nodes. Communication is done by subscribing and publishing
to topics, to move the robot there is typically a topic several nodes can publish
messages to and a node that subscribes to it and gives the movement commands
to the actual hardware. Since there can be a lot of nodes and topics involved in
a complex system the communication could be the bottleneck if everything had
to be sent over the master node. Instead, the master only keeps track of the
registered nodes and the related topics. If a node subscribes to a topic the direct
address is given to the node, so that communication is done directly between
nodes and does not involve the master. This architecture has the great advan-
tage that modules can be swapped as long as they adhere to the interface given
by the topic’s message type. So if a sensor is replaced by another one the driver
node simply has to publish the same message type and anything which used
the old sensor will still work.

Since our goal was to use the hierarchical approach on either real Turtlebots or
at least simulations of it, and ROS offers finished packages for those, it became
our main target. The Turtlebot is a robot that consists of a mobile base with a
differential drive, a 3D camera and a notebook that operates it.

We will look a bit into how localization of the robot is done when using
ROS by describing the basics of the Monte Carlo Localization and how the local
motion planning for collision avoidance that is based on the dynamic window
approach.

3.3.1. Localization with AMCL

The navigation stack of ROS uses an adaptive Monte Carlo Localization (AMCL),
which is based on the Monte Carlo localization [12]. There are two different
kinds of localization described, global localization and position tracking. As the
name suggests, global localization is the problem of finding out the position of

9

the robot in the map, whereas position tracking considers updating the robot’s
position when moving and sensing.

Initially, the robot’s belief is uniformly distributed over the map if it doesn’t
know its initial position, and at the center of the position otherwise.

Then, the general idea of the localization is to update the belief of the robot’s
position by random samples, which consist of a robot pose and some weighting
factor. For the position tracking there are two phases.

When the robot moves, the localization generates new samples that represent
possible positions after the movement, based on previous samples. This means
the samples get more diverse over time because of uncertainty of the robot’s
actual movement due to slipping or similar.

To regain some accuracy, the other phase is sensing, where the sensor input
gets processed and the weights of the sample distribution gets recalculated.

Adaptiveness plays a role in the size of the sample sets. When doing position
tracking, the sample sets can be relatively small and still provide useful posi-
tions, because the uncertainty is not as high. If the robot has no idea where it is,
more samples have to be considered, so a bigger size of the sample set is chosen.

3.3.2. Local Motion Planning with DWA

The Dynamic Window Approach (DWA) [11] is primarily used to avoid collisions
of the robot with unknown obstacles.

In order to move the robot and avoid the obstacles, the dynamics of the robot
have to be known, so they can be used in the algorithm to only search for trajec-
tories that are possible with respect to the dynamics.

As the number of possible trajectories is large, the velocities are reduced to
smaller numbers in several steps.

First, only the trajectories resulting from curvatures are considered. These are
induced by tuples of translational and rotational velocities.

The second step is to restrict these curvatures to those which are considered
safe, meaning the robot has to be able to stop before it hits some obstacle.

As a last step the remaining velocities are restricted to the dynamic window,
meaning the only velocities which are kept, are the ones that can be reached by
the robot’s dynamics in a short amount of time.

The implementation of DWA in ROS then scores each simulated trajectory
with respect to the proximity to the global path, goal, and obstacles and chooses
the one based on that to move robot according to it.

10

4. Hierarchical Approach

Although our work is focused on the implementation of the algorithm, we will
first describe the approach in [23] to introduce a hierarchy informally. That hier-
archy splits a specification into different layers and thus smaller games, which
can be solved faster, and chaining these together to satisfy a global specification.

The scenario has to be broken down into a hierarchy by the user manually.
We will continue to use the example that we had outlined in Section 3.1. As a
refinement for the example we have chosen the following: the buildings are the
highest, rooms in buildings the intermediate and individual rooms on the lowest
level. The intermediate level of the two buildings can be seen in Figure 4.1.

(a) Building 1, consisting of Room 1 (top),
Room 2 (bottom left) and Room 3 (bot-
tom right)

(b) Building 2, consisting of Room 2 (top
left), Room 1 (bottom left) and Room 3
(right)

Figure 4.1.: Buildings example on the intermediate layer in the LTLMoP region
editor

Every layer above the lowest one is considered abstract in the sense that these
layers do not have to know the precise position of the robot at every time step
and they do not move the robot directly. Instead, they pass their goal, if they
have one, down to the next lower level. On higher levels, only abstract positions
matter and thus less states are needed. On the lowest level the region of the
game is restricted to a small subarea, which is why the individual games are

11

smaller.
Games are faster to solve this way, but it also implies communication between

levels in a top-down manner. In our example: We want to move from building 1
to building 2, the highest layer in our abstraction would start a transition from
building 1 to region 3, because we have to go through that to reach building 2,
and pass that goal down to the intermediate level. This level would know the
robot is in room 1 and has to simply go to the exit leading to the next building,
and pass this goal down to the lowest level of games, which represent a room,
like in Figure 4.2.

Figure 4.2.: Room 1 in building 1 in the LTLMoP region editor

Finally, to move the robot from room 1 to the exit, the game on the lowest
level is started, with the exit_1_1_3 leading to the next region as its goal and
sends controls to the robot.

When a local game is finished, for example by reaching its destination in a
reachability specification, it triggers a state change at the next higher level and
this also means communication is done bottom-up as well. This communication
between layers is repeated until either the global goal is reached or some game
cannot be finished or instantiated, for example because the goal is blocked by
the environment or the goal contradicts the local specification.

12

A proof that the theoretical algorithm for dynamic hierarchical reactive con-
troller synthesis is sound can be found in [23]. Although the original hierarchical
algorithm uses assume-admissible synthesis [4] as preferred way of finding win-
ning strategies, we are not using these, mainly because the tools we have chosen
do not support it at the moment. However, the proof of soundness of the hierar-
chical games does not rely on this special class of strategies, as outlined in [23],
so we can choose GR(1) as subclass of LTL for our specifications.

Now that we have explained the general idea of the hierarchical approach,
we dive into the way we have implemented it and how we have mapped the
theoretical part to the implementation.

4.1. Implementation with LTLMoP

The theoretical work is not translated one-to-one into the implementation. In-
stead, some things are handled differently. For one, the paper describes the
system states as a grid where every cell is just as big as the robot itself, so it
can be in exactly one cell at a time. When modeling this in a tool, it is very
cumbersome and to some extent not necessary. We allow bigger regions and
let the controller move between them. This allows us to build scenarios faster,
because every region has to be created manually, but we could also be as precise
and make regions as big as the robot and thus have a grid as well.

Furthermore, obstacles are different too. Obstacles are treated as either static,
i.e. walls inside of a room, sensed and thus indicated by sensor inputs or dy-
namic, which are not mentioned in the specification at all. In [23], the obstacles
are represented as a set of grid cells, that can either be occupied or not at a spe-
cific point in time and can change according to the definition of the environment
transitions.

Those environment transitions cannot be specified in the implementation,
only assumptions can be stated. System transitions are another part being
treated in another way. Instead of describing which state the system can tran-
sition to, the map of regions includes information about adjacent regions, so
the system transitions are given implicitly, since the robot can move to every
adjacent region, and do not have to be dealt with manually.

As we focused on scenarios in buildings and our target robots typically can
not open doors, they are an important factor and should be handled in some
way or another. One approach to tackle them is to define the state doors as
sensor input, so something like if the door1 is not open, we cannot go there can
be written, together with the assumption, that the door is infinitely often open.
This would imply the need to have some way to sense if a door is open or not,
like a sensor inside of the door that is connected to the robot over network or

13

some central station the robot could ask. The benefit of this is that it is cleanly
integrated into the specification and can be reacted to, but it also assumes some
infrastructure for sensing it.

Another way is to treat doors as any other dynamic obstacle, which means
that if the robot recognizes it can not go to its goal, it has to either stop or to
find another way. So when setting the goal to go to door1 or door2, in the case
that door1 is blocked the goal door2 is still available.

The first approach is fine for the sole purpose of simulation or some very
specific testing environment, where these kinds of sensors can be deployed, but
for the majority of scenarios it would not be applicable. Therefore we decided
to treat doors the same as dynamic obstacles.

As far as the implementation is concerned, several parts are needed: the spec-
ification, something that represents the environment and its regions, game solv-
ing, and the interaction between layers. Because the specification and definition
of map or regions depends on the implementation of the game solving or con-
troller synthesis, we first looked at existing solutions for that.

In the end, we decided to use LTLMoP, because it had a graphical interface for
the most steps needed and its architecture seemed to enable us to leverage the
existing code and add our implementation to it. Also, compared to other tools,
it allows to write the specification in Structured English as well as LTL, which is
a nice addition.

4.1.1. Overview

To implement the algorithm mentioned we treat every local game as an instance
of LTLMoP, with its own defined regions, specification and configuration. On
top of that a component we have called LocalGame is used. The purpose of this
component is to handle a game, as the name suggests, which means it should be
able to change the goal of a game, synthesize the specification and communicate
with its parent or child layer if existent.

Since LTLMoP uses a remote procedure call (RPC) library to communicate
between processes, namely the executor and everything connected to it, and the
graphical user interface for the simulation, we decided to use that pattern for
our communication as well. This means the LocalGame needs to know the port
of the parent. Because the LocalGame is started by our implementation of an
AbstractHandler, we can pass this port to the constructor of the game.

To give an overview how the components are connected and which instances
exist in our example, Figure 4.3 shows the instances of the main components
and the communication directions of the individual components. Every row in
the figure represents one game, starting with the LocalGame that runs the game
and therefore starting the Executor, which in turn uses various handlers, with

14

LocalGame, Level 3 Executor, Level 3 AbstractHandler, Level 3

LocalGame, Level 2Executor, Level 2AbstractHandler, Level 2

LocalGame, Level 1 Executor, Level 1 MotionHandler, Level 1

Figure 4.3.: Communication between components in the three layer buildings
example

the AbstractHandler being the most important one for games of higher levels.
Also notice the unidirectional arrow between the handlers and the executor.

This is due to the fact that the executor should not have any knowledge about
the handlers, and for compatibility reasons and because the needed communi-
cation is a special case we did not include it in the interface the handlers should
implement.

Furthermore, note that the executor has many handlers, not only the two
types we have shown here. The typical handlers an executor has are one of each
shown in Figure 4.4. All of these handlers have a reference to the instance of the
executor they belong to, so they can interact with the graphical user interface as
well as other handlers, if they need to. The MotionControlHandler is used for the
region to region movement, which can include sending the low-level commands
to the robot. If not, it can rely on the DriveHandler and LocomotionCommandHandler.
As an example, differential-drive robots cannot use a two-dimensional velocity
command directly, instead they have to use a velocity and some rotation to
achieve the same movement, which is the responsibility of the DriveHandler. The
LocomotionCommandHandler then just has to send the correct command depending
on the robot type. All the other handlers are self-explanatory.

4.1.2. AbstractHandler

As seen in Figure 4.4, our implementation of the AbstractHandler is done as
a subclass of the MotionControlHandler. Instead of moving the robot from one
region directly or through the drive- and locomotion-handlers, we instantiate a
game of the next lower level.

In Algorithm 1 the pseudo code of the AbstractHandler is shown. In addition
to that procedure, an RPC server is set up to listen to events from the local game,
since the handler is the only connection between the current game and the newly

15

LocalGame

run()

stop()

handle event(type, data)

Executor

run()

MotionControlHandler

gotoRegion(current, next, last): Boolean

PoseHandler

getPose()

DriveHandler

setVelocity(x, y, theta)

LocomotionCommandHandler

sendCommand(cmd)

InitHandler

SensorHandler

ActuatorHandler

AbstractHandler

Figure 4.4.: Typical Handlers of LTLMoP used by the executor

16

created one. If the event is not meant for this handler or game, it is just passed
on in the hierarchy until it reaches the correct component. But there are events
targeted at the AbstractHandler, such as crossing borders or if the local game
reports it is not synthesizable.

Algorithm 1 AbstractHandler

1: procedure gotoRegion(current_region, next_region)
2: if arrived is True then
3: stop local game
4: return True
5: check for goal
6: if a game is running and next_region != current_goal then
7: stop local game
8: if there is no game running then
9: set arrived to False

10: create a local game
11: start the local game
12: return arrived

In line 5 we check for the goal, because some additional steps are needed
when deriving the goal from the next region. As such, it can happen that the
next region is the same region the robot is in. In that case, we set the goal to
None, which allows us to stay in the current region on that level and execute
the specifications of it. As an example, assume the robot is in the cafeteria and
should stay there to take orders. The region should not be changed, as the robot
should stay in the cafeteria, but the specification, that represents the handling
of orders, should still be executed. Even if the special case of no goal is not
applicable, the internal representation of the region has to be translated to the
actual name used in the map, which is also done in that line.

As a next step, we check if there already is a game with a different goal
running. This could be related to a sensor change in the upper level for example.
To return to the cafeteria example, a sensor could check the time, and when the
robot’s shift is over, it could change the goal to the room the robot’s battery is
charged in. The local game would be stopped, so the check if a game is running
shortly later is evaluating to true and a game with the new goal can be started.

The procedure shown above does not actually handle the state transitions di-
rectly, this is done by the handle_event method, which is part of the AbstractHandler’s
RPC interface. Once the border is crossed to the goal region in the local game
handle_event is called by the local game with the type BORDER and thus the in-
stance variable arrived is set to True. After it is set to True, the next iteration of
gotoRegion will return True to its executor as well, triggering a state change and

17

the current and next regions with it.
To actually create a game with goal in the AbstractHandler, the current region

as well as the goal get passed to the constructor of LocalGame, which we will
describe in the following.

4.1.3. LocalGame

The local game is the starting point of the algorithm, so to start a scenario the
first thing that will be created is a LocalGame of the highest level with no goal,
which starts the execution of the game of that level. As mentioned before, this
will also set up an RPC server for the LocalGame and pass the port to the executor.
That way, they can communicate in both directions.

On initialization of a LocalGame, several things are done: some information
about the game are extracted from the file name and the specification. We as-
sume the file name is of some specific form that contains the basic name of the
project, the hierarchical level and the path to the game in the hierarchical sense,
joined by periods. If we take our example of the buildings, the local game on
level 0 in building 1, room 2 would be buildings.0.1.2. As the specification needs
a region file as well, the original files have to be named buildings.0.1.2.spec and
buildings.0.1.2.regions.

While we do not have to change the regions, the specification might have to
be changed, for example if we want to set another goal to that game. This is
because we need a specification for the local game, applied to our buildings
example this could be the specification to visit all rooms inside of a building
if we have no goal set by the higher level and therefore do not need to go to
another building. But we still want to visit all rooms of the building and then
move to the next building in case the higher level dictates it, so we have to
change the specification.

Thus, we need to read in the specification file and to be flexible we keep it as a
list of lines. To set a goal we can then append the line go to exits, where exits

are the regions leading to the goal, without touching the rest of the specification.
There are several ways to acquire the exits. If it is given by the parent and
starts with “exit”, we keep that name as goal. In case it is another name, we
have to read the region file and check for the correct pattern. As a convention,
we assume exits have the special pattern exit_level_from_to, where exit is the
literal string “exit”, level is the hierarchical level this exit represents, and from

and to are the regions the exit is connecting on that level. Including the level in
the name is used so we do not need regions that represent exits to exits and to
distinguish between regions of one level from regions of another level. In our
example it can be seen in room 1, where one region is called exit_0_1_3 and
another one exit_1_1_3. The first one is the connection to the room 3 on the

18

same level, the latter is connecting building 1 to building 3.
After that, we build a new file path for the specification by building the SHA1

hash value of the list of specification lines, appending it to the file path and
writing the updated specification to it. This allows us to keep already synthe-
sized strategies for known specifications, saving us from redoing it every time.
Note however, that we still have to synthesize a strategy possibly several times
per region, because the specification is different for every goal region the level
above has.

After the initialization of the LocalGame is done, it can be started by calling the
run method. The loop and main idea is described in Algorithm 2. The variable
had_changes is a variable that indicates whether there were any changes made
to the specification, thus meaning we have to check if we need to synthesize
it again. Reasons for this can appear if something unforeseen has happened
while executing the game and we need to adapt. The details for this will be
discussed in Section 5.2, since these should not happen in a basic simulation
of the games. Checking if the current specification needs to be synthesized is
done by is_dirty(), which checks if the file appended with the hash value of
the specification is already existing or not.

In case it is not existing, we need to synthesize a strategy. To do so the
SpecCompiler class provided by LTLMoP is instantiated with the current spec-
ification path and then compiled. This may fail, because the specification is ac-
tually unrealizable, in which case the parent is sent a message of type UNSYNTH

with the goal region as data. synthesize itself returns either True if was unreal-
izable or False otherwise.

Algorithm 2 LocalGame

procedure run()
set had_changes
while had_changes do

clear had_changes
if is_dirty() then ▷ Check if file is existent

if !synthesize() then
break ▷ Unrealizable → stop game

set up executor
wait until game is done
store outputs of the game
stop executor

On the other hand, if the LocalGame is receiving an UNSYNTH message, it means
the lower game could not be synthesized and therefore we have to change some-
thing. Since we look at an specification of type GR(1) and the order is arbitrary,

19

reordering the places to visit can resolve the issue, because some temporary con-
straint to not go into a region, which is necessary on the path to the goal, might
be gone later. Thus, we search for the line visit region, where region is that
goal in our specification list and and we try to move it to the very end. Should
the goal be on the last line already, we stop the game, because we know no other
means to resolve the conflict. But if that is not the case we write this specifica-
tion to the file, after updating the path with the new hash value. If the new
specification is synthesizable, we proceed to run it, by setting the had_changes

flag so the next iteration of the run loop will be run.

4.1.4. Memory propositions

As we have seen in the previous section, the execution of a local game might be
restarted. If we just restart the game with a changed specification, it would try
to reach the first goal again. To be more specific, consider the example seen in
Figure4.5a.

The robot starts in region 1 and then tries to region 2. However, if we forbid
the region which represents the exit to region 2 in the local specification for
demonstrating purposes, the specification will not be able to be synthesized.
The resolution will then try to reorder the regions and restart the game. This
would imply the robot again tries to reach region 2 first. Since we already have
visited it, we do not want to go there again, so we need a way to express that.

As a solution to this we have considered either storing the visited regions
somewhere and hooking into the running automaton to change to another state
that is trying to reach the next goal, or to add information about that to the
specification. As LTLMoP supports having custom propositions and these can
be used as such, that solution seems to be the cleaner one.

In 4.5b a specification that uses these propositions is shown. Propositions that
represent the memory are added and guards are placed around the temporary
goals. The specification now tries to visit the regions only, if the proposition is
not true already. In this example, the propositions are set when the correspond-
ing region is visited, but never reset, which means the robot would stop after
visiting all regions, because no goal is left to reach.

Those propositions can not only be set and reset on regions, but any Boolean
formula. For the purpose of memorizing where the robot was already, taking
only regions into account is enough.

4.1.5. Changes to the Existing Code

As discussed in the previous sections, detecting the crossing of a region border
is important for our implementation. But to get this information we had to mod-

20

(a) Example of a scenario with memory
propositions

i f not v1 then v i s i t 1
i f not v2 then v i s i t 2
i f not v3 then v i s i t 3
i f not v4 then v i s i t 4

v1 i s s e t on 1 and r e s e t on f a l s e
v2 i s s e t on 2 and r e s e t on f a l s e
v3 i s s e t on 3 and r e s e t on f a l s e
v4 i s s e t on 4 and r e s e t on f a l s e

(b) Specification with memory proposi-
tions

ify the existing code of the LTLMoPExecutor and the ExecutorStrategyExtensions,
which handle execution of the automaton that represents the winning strategy.
To be precise, we have added a new target for remote procedure calls, that
gets set when a LocalGame instantiates an LTLMoPExecutor. Instead of sending
messages to the graphical interface we are now able to send messages or call
methods of the LocalGame corresponding to this executor. Sending messages is
implemented by calling the method handle_event on the remote target, with a
string as message type and an arbitrary object as message data. This way, we
can send a message to the LocalGame when the executor detects a border change,
by sending a message of type BORDER with the name of the region we went into
as data, to the handle_event method of the LocalGame. If it is a game of lower
level and the region is an exit to another game, this region is passed to the
AbstractHandler above, to decide what the next step should be.

Furthermore we have exposed the output propositions of an executor as a
method, so we can get the current state when we stop a game and set it as
initial truths of the next game, if we want to. This will prove beneficial when we
want to change the specification of the current game and restart it with the new
specification. The initial truths can be set through the configuration as well, so
we had to merge those with the ones we get when initializing, in that case we
simply override the initial values by the newer ones.

When running an LTLMoP simulation, the user had to press a button to start
the execution. Because we are starting multiple simulations by using the hierar-
chical approach starting every game is not desirable, so we have changed it to
start the execution when it is run.

Apart from these changes we have also added some methods for convenience.
Internally LTLMoP uses mostly subregions that get created when synthesizing

21

the specification. Since the specification itself has different names and we want
to use those, we have added methods to find the original region name by the
subregion name.

As a last change we modified the name of the counter-strategy, which the
GR(1) implementation creates if the specification was not realizable. It was the
same name that gets used for a valid strategy, and since we check for existence
of this file we had to change it, so it does not get mistaken for a valid strategy.

4.1.6. Specifics to the Basic Simulation

While the previously described changes and additions could be used in other
simulations as well, we had to make some additional changes to get a more
realistic result with the basic simulation of LTLMoP.

One issue is, that the position handler of the basic simulation needs an initial
position. Where in a more realistic setting the robot would provide a pose, here
the initial pose has to be given in the form of a region. Since we need a generic
way of telling the simulator in which region we start, we have added some vari-
ables that keep track of the last region the robot was in in the AbstractHandler,
so when the goal changes there, the new game can be given its last region as
initial one. The higher levels have to know the region of the lower levels, which
in principle breaks the idea of hierarchies, but it is only used for the simulation
and would not be used in the more realistic version. Also, the algorithm itself
does not depend on it.

But also creating new local games when exits are reached need more informa-
tion, because it is not know which region in the next game the exit corresponds
to. To overcome that lack of information we are checking if a file named map-
pings.json exists in the same directory the specifications are in, and use those
information to set the correct region in the new game based on the mapping
defined in that file. This file should contain of a nested JavaScript Object Nota-
tion (JSON) object, that represents the regions in the topmost nesting depth, the
hierarchical layer on the next depth, and finally the mapping of exit to region it
corresponds to as key and value respectively.

Again, the AbstractHandler uses these information to set the last known region
to the one from the mapping before it starts the new game, so the simulation of
the next game starts in the correct region.

4.2. Evaluation

One important goal of the hierarchical approach was to see if the reduced com-
plexity of the games result in an improvement in terms of time needed to syn-
thesize or size of possible games.

22

In order to see how the hierarchical approach performs in comparison to the
monolithic one, we have used the example of two buildings connected by some
other area from the beginning of the chapter again. The task of the robot is to
simply patrol between every room in every building. The layout and regions of
the monolithic version can be seen in Figure 4.6.

Figure 4.6.: Monolithic version of the buildings example

The corresponding hierarchical game is the same as in the introduction of this
chapter, but the figures are shown again for convenience. Figure 4.7 represents
the buildings, and the exemplary room 1 of building 1 in Figure 4.8.

Preparing the scenario in a hierarchical manner takes a lot of time as it cur-
rently is, because not only the way how it can be divided into layers has to be
determined, but also because the individual layers and games have to be set up.
Every game has to have its own defined regions of the corresponding subarea of
the original scenario and its own specification. While the graphical interface of
LTLMoP to edit regions tends to be unresponsive for a large number of regions
(like our monolithic example of the buildings), it is still faster to set up only this
one big game instead of creating 11 individual games. This set up time could
be improved by adapting the tooling to allow an efficient way to edit multiple
games, but this has not been implemented yet.

4.2.1. Live lock because of reordering

A problem that exists in reactive controller synthesis could not be solved: if the
robot has to choose between two doors, depending if one or the other is open,
it might come to a live lock. Assume it chooses the first door, because that one
is open. The robot will start to move towards this goal, but before it can reach

23

(a) Building 1, consisting of Room 1 (top),
Room 2 (bottom left) and Room 3 (bot-
tom right)

(b) Building 2, consisting of Room 2 (top
left), Room 1 (bottom left) and Room 3
(right)

Figure 4.7.: Buildings example on the intermediate layer in the LTLMoP region
editor

Figure 4.8.: Room 1 in building 1 in the LTLMoP region editor

24

it the door is closed. Since the second door is open, it will pursue this new
goal. Again, before it can reach it the door is closed and the first one is opened
again. This can potentially continue forever, creating a live lock where the robot
satisfies the specification, but will never reach its goal.

To demonstrate this, we have built a hierarchical scenario with two levels,
where the robot starts in the middle of three regions and the specification states
it has to go to the left and right region. The lowest level specification for the
center region however forbids to go to the exits to left and right. The two speci-
fications are shown in Figure 4.9, the complete example is in B.2.

v i s i t l e f t
v i s i t r i g h t

(a) Specification of the top level

always not e x i t _ 0 _ m i d _ l e f t
always not ex i t_0_mid_r ight

(b) Specification of the center game on
level 0

Figure 4.9.: Specifications of the live lock example

Once the game is started, it will try to synthesize the low level game of the
center region with either goal. Because the specification is unsatisfiable in both
cases, it will fail and propagate that information to the higher level. Our resolu-
tion then tries to reorder the regions and chooses the other side as the next goal,
which will fail again, continuing the alternation of sides forever.

One workaround for this particular case could be to count the number of
consecutive failures and abort after some threshold. While this would solve
the problem in that static example, mimicking the behaviour of the monolithic
approach which would return that the specification is not realizable, it would
not help where the change of goals is induced by doors or sensor input, so we
decided not to implement such a failure counting.

4.2.2. Resource usage

At first we thought the time needed to synthesize one monolithical game would
take much longer than several small games, because the complexity is still cubic.
Benchmarks supported this, until we have noticed, that LTLMoP is spending
most of the time to process the regions of the map. To be more precise, it checks
for overlapping regions to create non-overlapping regions and decomposing. If
region A and B are overlapping, it creates the subregions A \ B, B \ A and A ∩ B.
Decomposing is needed if so called non-projective locative propositions are used
in the specification. These could be near, between or within. In that case again
subregions have to be created to represent those regions.

Since every region is compared with every other region and checking for over-

25

laps seems to be computationally complex enough to have a big impact, this
makes up for most of the time needed to compute a strategy.

Because of this additional time we decided to turn off the decomposition of
regions and shift the weight onto the user, who has to make sure regions do
not overlap. It also means these locative propositions can not be used and also
obstacles are not supported.

The times of the time it took to synthesize the strategy on our used com-
puter can be seen in Table 4.1. The tests were run on an Intel i5-2500 with
8GB of RAM on Ubuntu 16.04. Because of the issues with decomposition men-
tioned before, we stopped the monolithic version after over 60 minutes, al-
though execution time was only about 758s at that time, according to the timing
tool. To time the execution time the tool perf stat was used to run the compi-
lation 10 times, the average time used can be seen in the table. To calculate
the sum of the individual hierarchical games we have taken into account that
games have to be synthesized more than once, because of the different goals.
The typical sequence of synthesizing the games for this scenario is the follow-
ing: 22, 11, 11, 21, 11, 31, 11, 31, 13, 21, 22, 12, 22, 32, 22, 13, where the superscript is the
level if different from the lowest and the subscript being the region of the next
higher level. After those, every possible region and goal combination needed
is synthesized and can be reused. For the sum we have multiplied the number
of occurrences of every game with the time used to synthesize it with one goal
only, we did not change goals, because for the time to synthesize the difference
in goals is insignificant.

Game # Regions Time in s
Time in s

(no decomposition)

Buildings(Monolithic) 67 >758 1.20
Buildings(Sum) 150 23.04 6.25
Buildings.2 3 0.34 0.35
Buildings.1.1 4 0.35 0.39
Buildings.1.2 4 0.37 0.36
Buildings.1.3 3 0.34 0.34
Buildings.0.1.1 15 5.09 0.36
Buildings.0.1.2 10 0.59 0.43
Buildings.0.1.3 13 1.46 0.47
Buildings.0.3.1 3 0.35 0.34
Buildings.0.2.1 13 1.28 0.34
Buildings.0.2.2 12 0.58 0.45
Buildings.0.2.3 13 0.94 0.46

Table 4.1.: Benchmark of a monolithic versus the hierarchical version

26

Following these results, the hierarchical approach seems to take longer than
the monolithical version if decomposition can be turned off. However, time is
not the only limiting factor.

The amount of propositions that are used for memory blow up the state space,
which can lead to the implementation running out of memory before finding a
solution, especially if the memory of the system is limited. By splitting the
games into smaller ones it is possible that propositions are only needed in some
of the games instead of all of them and thus needing less memory.

Even if memory usage is the main concern, additional propositions increase
the time needed to find a strategy as well. Some benchmarks for the mono-
lithical against a hierarchical game can be seen in Table 4.2 with the respective
specifications in Listing 4.10. The main reason why the hierarchical example is
faster than the monolithic version is the number of regions. The total time of the
hierarchical game would heavily rely on the kind of propositions needed.

i f not sensor1 then v i s i t 11
i f not sensor2 then v i s i t 12
i f not sensor3 then v i s i t 13
i f not sensor4 then v i s i t 23
i f not sensor5 then v i s i t 33
i f not sensor6 then v i s i t 32

go to e x i t _ 0 _ 1 _ 2

(a) Room 1 in building 1

i f not sensor1 then v i s i t 1 _3_12
i f not sensor2 then v i s i t 1 _2_11
i f not sensor3 then v i s i t 1 _3_11

i f not sensor4 then v i s i t 3 _1_1

i f not sensor5 then v i s i t 2 _2_11
i f not sensor6 then v i s i t 2 _3_11
v i s i t 2 _1_11

(b) Monolithic version

Figure 4.10.: Example specifications with sensor propositions

In case the propositions are global, meaning that every game has to rely on all
the sensor inputs, the total amount of time needed to compile every game could
be even higher than in the monolithic case.

If the propositions are local to some games however, the time savings could
be huge. To make this distinction between global and local propositions clear,
consider these examples: A global proposition is one, that would be needed in
every game in the hierarchical approach, like the robot should move to some
region if the battery is running too low. It has to react in every possible game,
thus is considered global. On the other hand, a local specification could be
confined to a specific room. Assuming room 1 in building 1 is a cafeteria, the
robot should not get too close to the buffet between 11:00 and 14:00 o’ clock. This
proposition, modeled as sensor input, is only needed in this one game instead
of globally, so it is considered as local.

27

Local propositions do not affect the time needed to synthesize other games, so
having mostly local propositions would decrease the overall time significantly.

Game # Regions # Propositions Time in s

Monolithic 67 4 5.42
Monolithic 67 5 37.28
Monolithic 67 6 366.81

Buildings.0.1.1 15 4 1.01
Buildings.0.1.1 15 5 2.57
Buildings.0.1.1 15 6 12.44

Table 4.2.: Benchmark of some games with additional propositions

Independent of the memory and time issues the hierarchical approach has
one big advantage: it allows to change specifications for lower levels while the
system is running. Consider an environment that changes, because cubicles are
moved. Once the robot is out of that particular room, the specification could be
changed and the corresponding strategy file deleted. The next time the robot
enters that room it will not find the strategy and therefore start to synthesize it
without having to be restarted. This also means that only a part of the games has
to be synthesized again, instead of the whole game in the monolithical approach.

28

5. Connecting it with the Real World

Having such a simple simulation is a good starting point, but we aimed to run
it on a real robot or at least some more realistic simulation of it. Therefore
we have searched for an integration of ROS in LTLMoP. There was a proof of
concept this did that integration mentioned in [24], but their solution had some
problems with our goal.

In their example, a world in Gazebo is generated on every run, based on the
map in LTLMoP. It is a plane with the colors of the regions and obstacles are
boxes of a fixed height. The position is obtained by asking Gazebo directly,
so it is always accurate and thus the driving could be done by direct velocity
commands in their LocomotionCommandHandler for ROS.

Since we wanted a more realistic simulation, we could not use their solution
directly. First, we had to build the world for Gazebo, in which the robot should
move. Then, the mapping between the LTLMoP map and the Gazebo world had
to be established. And last, we had to get the position of the robot based on its
navigation stack and move it using the same.

5.1. Connecting LTLMoP with ROS

Multiple steps are necessary to connect LTLMoP with ROS and Gazebo. First,
we have created a world in Gazebo representing the scenario of the buildings.
Secondly, we have written a launch file to start all the needed ROS nodes to run
the example and lastly, the handlers that connect LTLMoP with ROS have been
implemented.

5.1.1. Gazebo world

The world we created was an empty plane at first. Then we created a model of
the building using Gazebo’s building editor, which allows the user to import a
floor plan and add walls, stairs and doors relatively easy. The resulting building
complex can be partly seen in Figure 5.1, where also some cylindrical obstacles
have been added. We have left the building as basic as possible and added obsta-
cles only on demand, a more realistic approach could be a completely furnished
office building or similar.

29

Figure 5.1.: Buildings example in Gazebo simulator

5.1.2. Launch file for ROS

This world file has to be included in the launch file, which actually starts the
ROS nodes needed for execution. The file can be split into different parts: the
Gazebo simulator loading the world, nodes involving the Turtlebot, such as
configuration and spawning, and the navigation stack.

To start the Gazebo simulator it suffices to include the launch file of an empty
world with a different world as parameter. Optionally, the flag if debug output
should be turned on and if simulation time should be used can be set. Using
simulation time is important, because it tells ROS that somebody else, in this
case Gazebo, is publishing to the /clock topic, which is used to check if messages
are recent enough and because the simulation could be slower or faster than the
real time, Gazebo should be the one to publish it.

Starting Gazebo alone will not spawn a robot, so this has to be done by an-
other node. The ROS package turtlebot_gazebo for Turtlebot-Gazebo integration
already includes a launch file to spawn a robot, so this is used with some default
settings for sensors and the base.

The bigger portion of the launch file is the part concerning the navigation
stack. There, a map server is used, that publishes the static map to a topic,
which the localization and movement nodes will read from. These nodes are
the AMCL node for localization and move_base for moving respectively. As the
AMCL node operates on 2D laser scans rather than the 3D point cloud the cam-
era is providing, an additional node that converts the point cloud to a laser scan
is started as well.

30

Once the launch file is started, another tool called Rviz can be started. It can be
used to visualize the perceived environment of the robot, or to visualize the cur-
rent perception of the navigation node, including it’s approximated pose with
uncertainty and the planned path. Its interface for the navigation visualization
can be seen in Figure 5.2. The bold lines are representing the walls provided
by the static map and the two round shapes represent the cylindrical obstacles
perceived with the laser scan as a local cost map. The lines from the black dot
representing the robot are the simulated trajectories the robot considers as vi-
able and the thin line on the top left of the upper obstacle is the global plan the
robot is following right now. On top of that, Rviz also lets you send manual
navigation commands and reset the perceived pose of the robot, which is useful
if it gets stuck.

Figure 5.2.: Visualization of the navigation in Rviz

5.1.3. Handlers in LTLMoP

As a last step LTLMoP and ROS have to be connected. Again, LTLMoP’s ar-
chitecture with different handlers are of advantage. The default PoseHandler is
replaced by a RosHierarchicalPoseHandler. It starts up another ROS node that
listens to the transformation between the base link, which represents the robot,
and the map, thus resulting in the position of the robot relative to the map. This
only returns the approximated position of the robot though. In order to get
the position as well as the covariance matrix, the pose handler would have to
subscribe to the topic published by the AMCL node directly, but since we did
not want to use that information we chose not to. The third way of getting the

31

position of the robot would be to ask Gazebo directly, as we mentioned before,
which was the way the authors of LTLMoP chose.

Because the coordinate systems of LTLMoP and the Gazebo world can be
different, a way to transform coordinates from one into another has to be pro-
vided. LTLMoP handles this already, by giving the user a calibration tool. To
use it the user has to mark at least three points which should be checked in
the LTLMoP map. After that one point after another are shown and the robot
should be moved to that position manually. When it arrived a button can be
pressed to get the current position by the pose handler. When the position of
all points is known a calibration matrix is calculated and can be used in han-
dlers to convert coordinates from one system into another through the functions
coordmap_map2lab and coordmap_lab2map.

Using these functions, the MoveBaseMotionHandler is implemented. Again, it
is a ROS node. As an implementation of the motion handler interface, the
method gotoRegion(current_region, next_region) has to be satisfied. The gen-
eral idea is very similar to the AbstractHandler mentioned in Section 4.1.2, but
instead of creating another game, the coordinates of the goal, which is some
point in the next region, are transformed to the world coordinates and sent to a
SimpleActionServer of move_base, which then tries to reach that goal, by using a
global and a local planner.

The complete algorithm can be seen in Section 5.2, where we discuss some
additional problems and embedded some solutions into the handler.

In contrast to simple messages published or subscribed, these ActionServers
and ActionClients are meant for tasks that should be tracked in the application.
This means the status of the current goal can be asked for, which is useful to
determine if the robot has arrived at the goal already or even more importantly
to check whether the goal could not be reached.

Additional handlers or templates are provided by the LTLMoP authors, such
as exemplary actuator handlers for a different type of robot called PR2, which
in contrary to the Turtlebot, has arms that can be used. Templates for two types
of sensor handler implementations had been added by the authors as well: one
for a subscriber type of sensor that listens to a ROS topic and one for utilizing a
ROS service type. Those handlers are specific to the application and because we
do not have an application where we need them, we have left them out. Also
the initialization handler is left as a stub. It could be used to run start the launch
file, but we decided it is better to leave the starting of the Gazebo simulator and
running the hierarchical game decoupled, so the simulator can continue to run
even if the hierarchical game is stopped.

32

5.2. Additional Problems

When testing our implementation of the handlers in combination with Gazebo,
some additional problems had arisen.

For one, different from the basic simulation done by LTLMoP, the robot can
get into situations where it cannot move, which can have several reasons. As an
example, a dynamic obstacle, like a person could get in the way of the planned
path and therefore make the robot replan its path or even stop.

Another reason came up because the world in Gazebo might differ slightly
from the map in LTLMoP, since both are created manually. Although the same
floor plans were used, pixel accurate drawing in LTLMoP with a computer
mouse is hard to achieve, because it does not allow to zoom in or scale the
map in another way. As a practical size we had chosen a resolution of 10 cm

px ,
thus, being off one or two pixels is an error of the size of the robot or a wall
for example. This leads to situations where the coordinates translated from LTL-
MoP into the Gazebo world may be inside of a wall, so the robot will not be able
to reach the goal.

Also the calculated translation matrix between the two coordinate systems
adds some error if it is done by the calibration tool, because it is hard to get
the exact position of a point in LTLMoP to the exact corresponding coordinates
of the Gazebo simulation, even if the the accurate position of Gazebo is used,
and not the approximated one by AMCL, because the robot has to be positioned
manually and there might not be a good indicator where this position should
be. In our examples we have used corners and doors of the building as points,
so we had to move the robot inside of walls, which could also not be done in a
real setting.

Not only dynamic obstacles like people could be an issue, but also static ob-
stacles that are not modeled in the LTLMoP map. Examples could be desks or
cupboards, which in principle could be moved, but mostly are not. Again, the
goal coordinates could be inside of some obstacle.

To deal with the failures to move because of inaccuracies or obstacles, we
have added a resolution function that tries to resolve the failure, as seen in
Algorithm 3.

Algorithm 3 Handling blockages and failures
1: procedure Resolve

2: Try different points in the region
3: if all failed then
4: Try to avoid the region (changing the specification of this layer)
5: Rerun the game with new specification

33

The first point we try to reach in the next region is its center. Should that fail,
because there is some obstacle or for some other reason, we first try to go to
another point in the region. The next points tried are the shuffled corners of the
region. Depending on the algorithm used as global planner this can lead to good
results, meaning the region can be reached at some point and the hierarchical
algorithm can continue.

Once we run out of points to reach for a region, we consider the goal as
failed and communicate this failure up to the LocalGame instance of this game.
It changes the specification, by adding the line always not region, where region

is the failed region as reported by the motion handler. Then the specification
is rewritten as a new file, which sets the had_changes flag in the LocalGame and
leads to the new game getting synthesized and run if it did not exist already as
seen in Algorithm 2. In case the new specification could not be synthesized, for
example if the region we could not reach was the only exit to the next game, the
next higher layer is informed about the failure. As mentioned in Section 4.1.4,
this leads to the robot potentially visiting regions twice before going to the next
region, so to avoid that memory propositions should be inserted.

Now that the general concept is described, the complete algorithm is shown in
Algorithm 4. One important detail is that even if the move_base node reports that
the goal was reached in line 19 we treat it as a failure, because we have checked
if we are in the goal region before in line 2 and return early, which means the
goal was not in the correct region after transforming the coordinates back to the
LTLMoP system, indicating inaccuracies. In that case a STATS message is passed
up to the top layer and logged to a file there, to see where issues in the scenario
exist. When it is reported that the robot is failing to reach a region repeatedly, it
might be better to mark the region as obstacle in the scenario, so that the robot
will not try to go there in the first place.

To actually check if we are inside the goal region, we ask for the current posi-
tion from the pose handler, transform these coordinates into the LTLMoP system
and check if the transformed coordinates are inside of the polygon describing
the region.

As we have mentioned before, results depend on the global planner used and
generally the settings of the navigation stack. The default for the global planner
is to use the Dijkstra algorithm to find a global plan for reaching the goal. The
problem with this and our handling of failures to move in combination with
the inaccuracies is that the global plan created might differ too much from the
implicit plan given by the winning strategy created by LTLMoP and therefore
can ignore the specification.

Consider a room that has two doors leading to the next room, like in Figure 5.3.
The goal of the robot is the lower room, itself being in the upper room. The
goal told by LTLMoP is the left door and the specification states the danger

34

Algorithm 4 MoveBaseMotionHandler
1: procedure gotoRegion(current_region, next_region)
2: if we are in the next_region then
3: return True
4: prepare regions and names
5: check if we are in another region
6: if we have failed last iteration then
7: if we have points left to try then
8: get the next point to try
9: send command to move_base

10: else
11: report failure to LocalGame
12: exit
13: else if our current goal is different from next_region then
14: update our goal
15: prepare list of points
16: get the center of the region
17: create goal and send to move_base
18: get the status of move_base
19: if status is succeeded then
20: set failed to True
21: return False
22: else if status is aborted, rejected or lost then
23: if if we have no points to try left then
24: report failure to LocalGame
25: set failed to True
26: return False
27: else if status is neither active nor pending then
28: report that something else is going on
29: return False

35

zone should be avoided. If the robot fails to move to the region 1 for some
reason, the global planner might decide that it could reach the goal coordinates
by going through the danger zone and using region 2 and therefore ignoring the
specification.

robot s t a r t s in room1
always not danger
go to room2

Figure 5.3.: Example of rooms with two doors and a danger zone that should be
avoided

We have considered two solutions to this problem. One is to stop the robot
once it is in a region it is not supposed to be in, meaning neither the region it
was starting from nor the region it was trying to reach. This could handled in
the same way a normal failure to reach the region, by choosing a different point
in the region and trying again.

Another solution specific to the global planner being too advanced is choosing
another global planner. This is supported by the ROS nodes through configu-
ration. Instead of using the global planner that implements the Dijkstra algo-
rithm we chose the CarrotPlanner, which is a very basic planner, that only plans
a straight line from the robot’s current position to the goal. Since the global
planning is done by LTLMoP already, this also seems to be the more suitable
approach. Because it is still using a local planner, smaller obstacles can still
be avoided, but it tends to report a failure more often than the more complex
counterpart.

36

The configuration of these planners also allows to tweak the behaviour. In
combination with the carrot planner, important settings for the local planner are
goal tolerances, to set the with which distance to the goal it should be consid-
ered reached, the simulation time, where a higher value means the simulated
trajectories are longer, and the trajectory scoring, where factors for the cost func-
tions can be set. With the trajectory scoring settings, the bias for trajectories
following the global plan or those which get closer to the local goal should be
preferred. We have chosen the settings described in [25] as starting values and
used it as a reference for the effects of different settings.

5.3. Experiments and observations

Although our initial goal was to run the algorithm on a real Turtlebot, we de-
cided it was not feasible at that time. First, a detailed floor plan of the building
would have to be acquired and copied over to an LTLMoP map, which could
have lead to very imprecise regions. Secondly and more importantly, the build-
ing in question has a lot of glass walls, which can not be sensed with the sensors
available on the Turtlebot, so the robot would run into them and also the posi-
tion would be inaccurate, if the map available to the navigation module expects
a (glass) wall, but does not sense it.

Therefore, to see how the implementation and execution does in the 3D sim-
ulated setting, we ran the building example with a minor modification in one
room in combination with ROS. In order to see if the algorithm works if one
door is blocked or closed, we have added another door from room 1 in building
1 to room 2.

At the start of the simulator we first moved the robot to some initial position
and used the function to estimate its position with Rviz, so it has a good idea
where it actually is. Then we have started the hierarchical games of the highest
layer. This will get the current position of the robot according to the pose handler
and determine the region it is in together with the next goal. It then starts the
game of the next lower layer via the AbstractHandler.

As we have already mentioned before, different global planners can be used
with the move_base package. In our example, the carrot planner had more trouble
with navigating through doors and around obstacles, but this is mainly because
the regions we have chosen were rather large and not well positioned for this
use case. This lead to the robot trying to cut corners and fails to reach the goal
with the carrot planner, as seen in Figure 5.4.

By defining regions, that are just as big as the doors, around doors, LTLMoP
would send the robot to the center of the region above or below the door and
therefore avoid the walls. Having more regions would also allow to treat ob-

37

Figure 5.4.: Carrot Planner fails on door

stacles in a better way. Consider a region we should visit as per specification,
but half of the region is occupied by some obstacle and only the other half is
relevant. Then it might happen that the robot tries to move through the obstacle,
fails, and thus cannot reach the goal. However, if those regions were split in two,
the algorithm would change the specification to avoid the occupied region and
find another way to the goal.

Another persisting problem when running the scenario is that due to the dis-
cussed inaccuracies, the pose handler might return coordinates, which are not
inside of any region after they get translated to the LTLMoP coordinates. This
is especially the case if the robot is close to walls. Also, because every game
can have a different configuration and therefore different coordinate translation
matrices it can also happen, that the layer that represents a building considers
the robot being in room 1 and therefore starts a local game of room 1, but room
1 considers that position not in any of its regions.

While having different translation matrices might seem problematic, the over-
all accuracy of the lowest layer seemed to be better in our experience when
compared to having the same translation matrix for every game. When we have
tried using only one matrix, moving the robot through doors was troublesome,
because the coordinates were often in or behind the walls to the next room.
This is why we decided to use one calibration matrix for the higher levels and
calibrate every room by itself.

38

In general, finding the exact pose of the robot in big, empty rooms is hard,
because of the lack of features the algorithm could orientate to. If the static map
only consists of the walls and the robot moves along those without having any
other features, the pose will get more and more inaccurate because it takes into
account that moving a certain amount of time with a specific velocity might not
actually result in the same distance the robot actually travelled.

39

6. Conclusion and Outlook

During the course of this work, we have implemented the hierarchical algorithm
proposed by Schmuck and Majumdar with slight modifications. It was done
by integrating it into a tool called LTLMoP. We have discussed how we imple-
mented the individual parts in more detail and closed the chapter by evaluating
our implemented solution. The evaluation was done by studying the pros and
cons of the hierarchical approach for controller synthesis with the traditional
approach of monolithic games in context of the LTLMoP tool.

We have seen, that our implementation can have a big impact on the time
needed to synthesize strategies, but also that it is very dependent on the sce-
nario. The time and memory needed to find a strategy depends on the number
of regions as well as the count of propositions used, thus reducing both in hierar-
chical games can lead to a better result in terms of resources used. In cases where
for example the number of propositions cannot be reduced for every game, the
overall time needed to synthesize all smaller strategies might be higher than in
the monolithic version, but finding a strategy every individual game is relatively
fast.

Then the problem has been lifted from a simple simulation to a more complex
and realistic simulation using the 3D simulator Gazebo and the collection of
libraries and tools around ROS, which provides state-of-the-art algorithms for
several, more known problems in robotics. These have been integrated in our
implementation of the hierarchical approach and experiments, if this is viable
to use in a more realistic setting has been tested. We have tried to address addi-
tional problems that occurred when running in the more complex context, such
as inaccuracies, obstacles and failures by retrying and changing the specification
to avoid problematic regions.

Because ROS is targeted at real robots and not only 3D simulations, the step
from the simulation to running it on actual robots is minor. The only changes
needed would be to start ROS without the simulator, load the correct map for
the navigation and run the LTLMoP instances on the robot itself or connect to
the robot’s ROS master node through the network.

Further development to improve the result could be done. As we have men-
tioned in Section 4.2, setting up the individual games for the hierarchical ap-
proach can be time consuming. The graphical interface of LTLMoP is not meant
to edit several games at once, so as one improvement the interface could be up-

41

graded to allow the user to edit all local games inside of one instance of LTLMoP,
by adding views for different levels of abstraction or defining subregions or re-
finements of games directly. This and the ability to scale or zoom the view in the
region editor could improve the accuracy we have described in Section 5.2. By
allowing the user to refine regions in a game of a lower level it could be asserted
they have the exact same borders and with zooming the regions drawn by hand
could be more precise, maybe even with the help of rulers known by graphic
editing software or a way to create maps or regions inside of some external
graphic editing software.

Another improvement for the lowest level of games would be the ability to
define a grid of regions automatically. While this would be fairly easy for regions
that are rectangular, this would be very helpful, because doing it manually is
time consuming and repetitive.

Following the idea of a single instance of LTLMoP it could be nice to have
a combined specification editor. Currently, every specification is local to a sin-
gle game and similar to the idea of a combined region editor you could also
implement a combined specification editor.

As far as the 3D simulation experiment is concerned, efforts to make it more
realistic by adding sensor noise to the experiments could be made.

Algorithmically it could be interesting to explore the integration of a map-
ping algorithm like Simultaneous Localization and Mapping (SLAM) with the hier-
archical approach. Static obstacles repeatedly detected by the sensors could be
added as regions to be avoided through changing the specification permanently
or maybe even the other way around, if obstacles disappear and the regions
could be traversed in general.

42

Appendices

43

A. Source Code

Our modified and additional source code can be found on Github: https://

github.com/ayonix/LTLMoP/tree/hier_ros, the branch is called hier_ros. The
implementation of LocalGame can be found in src/hierarchical.py, AbstractHandler
is in src/lib/handlers/share/MotionControl/AbstractHandler.py and the handlers for
ROS are located in src/lib/handlers/Hierarchical.

A.1. Conventions

• File names: basename.hierarchy_level.path_of_game.extension, joined by
periods, example: example.0.3.2.spec, in order to find the specification
files. The basename should not any period.

• Goals: Use go to for goals, visit for temporary goals, both get translated
to □♢ goal, used to differentiate between the goals by another level and
goals of the current level

• Exits: named exit_level_from_to#identifier, #identifier is optional if
there is only one exit between regions from and to

• Regions: regions should not contain any characters but alphanumerical
and underscores, since other characters can lead to problems if decompos-
ing is turned off

45

https://github.com/ayonix/LTLMoP/tree/hier_ros
https://github.com/ayonix/LTLMoP/tree/hier_ros

A.2. Messages

Type Data Comment

Executor(l) → LocalGame(l)
BORDER region Border to region is crossed

LocalGame(l) → AbstractHandler(l+1)
BORDER region Border to region was crossed, passing it on
STATS dict Passing it on
UNSYNTH region We could not synthesize, tell the parent

AbstractHandler(l) → LocalGame(l)
BORDER region Used for basic simulation only
STATS dict Passing it on
UNSYNTH region Lower game was unrealizable, just pass it on to this level’s

LocalGame

MoveBaseMotionHandler(l) → LocalGame(l)
FAIL region We couldn’t move to the region
STATS dict Reporting that move_base reached goal, but we were still

in the wrong region

Table A.1.: Messages sent, listed by sender and receiver, the l indicates if it com-
municates with the instance of the same level, or the level above

46

B. Scenarios

The examples we have used can be found here: https://github.com/ayonix/

hierarchical_examples.

B.1. Reorder

The idea in this scenario is that the higher level tells the lower level to move from
region 1 to region 2, but the lower level cannot go there. It tells the upper level
of its failure and the upper level therefore reorders the goals, to go to region 3
first. From region 3 it goes to region 4, where it cannot go to region 2 again and
therefore stops, since region 2 was already the last goal in the upper level.

(a) reorder.1.regions

i f not v1 then v i s i t 1
i f not v2 then v i s i t 2
i f not v3 then v i s i t 3
i f not v4 then v i s i t 4

v1 i s s e t on 1 and r e s e t on f a l s e
v2 i s s e t on 2 and r e s e t on f a l s e
v3 i s s e t on 3 and r e s e t on f a l s e
v4 i s s e t on 4 and r e s e t on f a l s e

(b) reorder.1.spec

(a) reorder.0.1.regions

go to e x i t . 0 . 1 _2

always not e x i t . 0 . 1 _2

(b) reorder.0.1.spec

47

https://github.com/ayonix/hierarchical_examples
https://github.com/ayonix/hierarchical_examples

(a) reorder.0.2.regions

go to e x i t . 0 . 2 _1

(b) reorder.0.2.spec

(a) reorder.0.3.regions

go to e x i t . 0 . 3 _4

(b) reorder.0.3.spec

(a) reorder.0.4.regions

always not e x i t . 0 . 4 _2
go to e x i t . 0 . 4 _2

(b) reorder.0.4.spec

B.2. Lock because of reordering

In this scenario the live lock behaviour is shown if two regions are tried to be
reached in vain.

48

(a) lock.1.regions

i f not v l e f t then v i s i t l e f t
i f not v r i g h t then v i s i t r i g h t

v l e f t i s s e t on l e f t and r e s e t on f a l s e
v r i g h t i s s e t on r i g h t and r e s e t on f a l s e

(b) lock.1.spec

(a) lock.left.regions

go to e x i t _ 0 _ l e f t _ m i d

(b) lock.left.spec

(a) lock.mid.regions

always not ex i t_0_mid_r ight
always not ex i t_0_mid_r ight

go to 1

(b) lock.mid.spec

(a) lock.right.regions

go to ex i t_0_r ight_mid

(b) lock.right.spec

49

B.3. Multiple doors example

Simulating the situation where a door is marked as blocked, but there is another
door to the same region. The strategy for this scenario is to go to door2 directly.

(a) doors.regions

always not door1
go to door1 or door2

(b) doors.spec

B.4. Buildings with ROS

To test a scenario we have used the following specifications and regions.

B.4.1. Level 2

(a) buildings.2.regions

Group bui ld ings i s 1 ,2
v i s i t a l l bui ld ings

(b) buildings.2.spec

50

B.4.2. Level 1

(a) buildings.1.1.regions

i f not d1 then v i s i t 1
i f not d2 then v i s i t 2
i f not d3 then v i s i t 3

d1 i s s e t on 1 and r e s e t on e x i t _ 1 _ 1 _ 3
d2 i s s e t on 2 and r e s e t on e x i t _ 1 _ 1 _ 3
d3 i s s e t on 3 and r e s e t on e x i t _ 1 _ 1 _ 3

go to e x i t _ 1 _ 1 _ 3

(b) buildings.1.1.spec

(a) buildings.1.2.regions

v i s i t 1
v i s i t 2
v i s i t 3

go to e x i t _ 1 _ 2 _ 3

(b) buildings.1.2.spec

(a) buildings.1.3.regions

go to e x i t _ 1 _ 3 _ 2

(b) buildings.1.3.spec

51

B.4.3. Level 0

(a) buildings.0.1.1.regions

go to e x i t _ 0 _ 1 _ 2 #1

(b) buildings.0.1.1.spec

(a) buildings.0.1.2.regions

go to e x i t _ 0 _ 1 _ 2 #1

(b) buildings.0.1.2.spec

52

(a) buildings.0.1.3.regions

v i s i t 43
go to e x i t _ 0 _ 3 _ 1

(b) buildings.0.1.3.spec

(a) buildings.0.2.1.regions

v i s i t 31
go to e x i t _ 0 _ 1 _ 2

(b) buildings.0.2.1.spec

(a) buildings.0.2.2.regions

v i s i t 22
go to 33

(b) buildings.0.2.2.spec

53

(a) buildings.0.2.3.regions

v i s i t 31
go to 31

(b) buildings.0.2.3.spec

(a) buildings.0.3.1.regions

go to e x i t _ 1 _ 3 _ 2

(b) buildings.0.3.1.spec

54

Bibliography

[1] Benjamin Aminof, Fabio Mogavero, and Aniello Murano. “Synthesis of
Hierarchical Systems”. In: Sci. Comput. Program. 83 (Apr. 2014), pp. 56–
79. issn: 0167-6423. doi: 10.1016/j.scico.2013.07.001. url: http:
//dx.doi.org/10.1016/j.scico.2013.07.001.

[2] M. Y. Belkhouche and B. Belkhouche. “Formal specification and simulation
of the robot path planner”. In: 2009 IEEE International Conference on Systems,
Man and Cybernetics. Oct. 2009, pp. 4484–4489. doi: 10.1109/ICSMC.2009.
5346910.

[3] Roderick Bloem et al. “Synthesis of Reactive(1) designs”. In: Journal of Com-
puter and System Sciences 78.3 (2012). In Commemoration of Amir Pnueli,
pp. 911–938. issn: 0022-0000. doi: http://dx.doi.org/10.1016/j.jcss.
2011.08.007. url: http://www.sciencedirect.com/science/article/
pii/S0022000011000869.

[4] Romain Brenguier, Jean-François Raskin, and Ocan Sankur. “Assume-Admissible
Synthesis”. In: CoRR abs/1507.00623 (2015). url: http://arxiv.org/abs/
1507.00623.

[5] Romain Brenguier et al. “AbsSynthe: abstract synthesis from succinct safety
specifications”. In: Proceedings 3rd Workshop on Synthesis, SYNT 2014, Vi-
enna, Austria, July 23-24, 2014. 2014, pp. 100–116. doi: 10.4204/EPTCS.157.
11. url: http://dx.doi.org/10.4204/EPTCS.157.11.

[6] Rüdiger Ehlers and Vasumathi Raman. “Slugs: Extensible GR(1) Synthe-
sis”. In: Computer Aided Verification: 28th International Conference, CAV 2016,
Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II. Ed. by Swarat
Chaudhuri and Azadeh Farzan. Cham: Springer International Publishing,
2016, pp. 333–339. isbn: 978-3-319-41540-6. doi: 10.1007/978- 3- 319-
41540-6_18. url: http://dx.doi.org/10.1007/978-3-319-41540-6_18.

[7] Georgios E. Fainekos et al. “Temporal Logic Motion Planning for Dynamic
Robots”. In: Automatica 45.2 (Feb. 2009), pp. 343–352. issn: 0005-1098. doi:
10.1016/j.automatica.2008.08.008. url: http://dx.doi.org/10.1016/
j.automatica.2008.08.008.

55

http://dx.doi.org/10.1016/j.scico.2013.07.001
http://dx.doi.org/10.1016/j.scico.2013.07.001
http://dx.doi.org/10.1016/j.scico.2013.07.001
http://dx.doi.org/10.1109/ICSMC.2009.5346910
http://dx.doi.org/10.1109/ICSMC.2009.5346910
http://dx.doi.org/http://dx.doi.org/10.1016/j.jcss.2011.08.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.jcss.2011.08.007
http://www.sciencedirect.com/science/article/pii/S0022000011000869
http://www.sciencedirect.com/science/article/pii/S0022000011000869
http://arxiv.org/abs/1507.00623
http://arxiv.org/abs/1507.00623
http://dx.doi.org/10.4204/EPTCS.157.11
http://dx.doi.org/10.4204/EPTCS.157.11
http://dx.doi.org/10.4204/EPTCS.157.11
http://dx.doi.org/10.1007/978-3-319-41540-6_18
http://dx.doi.org/10.1007/978-3-319-41540-6_18
http://dx.doi.org/10.1007/978-3-319-41540-6_18
http://dx.doi.org/10.1016/j.automatica.2008.08.008
http://dx.doi.org/10.1016/j.automatica.2008.08.008
http://dx.doi.org/10.1016/j.automatica.2008.08.008

[8] C. Finucane, Gangyuan Jing, and H. Kress-Gazit. “LTLMoP: Experiment-
ing with language, Temporal Logic and robot control”. In: 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Oct. 2010, pp. 1988–
1993. doi: 10.1109/IROS.2010.5650371.

[9] Open Source Robotics Foundation. Gazebo. url: http://gazebosim.org
(visited on 11/25/2016).

[10] Open Source Robotics Foundation. ROS.org | Powering the world’s robots.
url: http://www.ros.org (visited on 11/25/2016).

[11] D. Fox, W. Burgard, and S. Thrun. “The dynamic window approach to col-
lision avoidance”. In: IEEE Transactions on Robotics and Automation 4 (1997),
p. 1.

[12] Dieter Fox et al. “Monte carlo localization: Efficient position estimation for
mobile robots”. In: AAAI/IAAI 1999 (1999), pp. 343–349.

[13] Grammar for the English to LTL Parser. May 2011. url: https://github.
com/VerifiableRobotics/LTLMoP/raw/development/doc/grammar.pdf

(visited on 11/16/2016).

[14] Gangyuan Jing, Rudiger Ehlers, and Hadas Kress-Gazit. “Shortcut through
an evil door: Optimality of correct-by-construction controllers in adversar-
ial environments”. In: 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems (Nov. 2013). doi: 10.1109/iros.2013.6697048. url:
http://dx.doi.org/10.1109/IROS.2013.6697048.

[15] M. Kloetzer, X. C. Ding, and C. Belta. “Multi-robot deployment from LTL
specifications with reduced communication”. In: 2011 50th IEEE Conference
on Decision and Control and European Control Conference. Dec. 2011, pp. 4867–
4872. doi: 10.1109/CDC.2011.6160478.

[16] Manuel Mazo, Anna Davitian, and Paulo Tabuada. “PESSOA: A Tool for
Embedded Controller Synthesis”. In: Computer Aided Verification: 22nd In-
ternational Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceed-
ings. Ed. by Tayssir Touili, Byron Cook, and Paul Jackson. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2010, pp. 566–569. isbn: 978-3-642-14295-
6. doi: 10.1007/978-3-642-14295-6_49. url: http://dx.doi.org/10.
1007/978-3-642-14295-6_49.

[17] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. “Synthesis of Reactive(1) De-
signs”. In: Verification, Model Checking, and Abstract Interpretation: 7th Inter-
national Conference, VMCAI 2006, Charleston, SC, USA, January 8-10, 2006.
Proceedings. Ed. by E. Allen Emerson and Kedar S. Namjoshi. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2006, pp. 364–380. isbn: 978-3-540-
31622-0. doi: 10.1007/11609773_24. url: http://dx.doi.org/10.1007/
11609773_24.

56

http://dx.doi.org/10.1109/IROS.2010.5650371
http://gazebosim.org
http://www.ros.org
https://github.com/VerifiableRobotics/LTLMoP/raw/development/doc/grammar.pdf
https://github.com/VerifiableRobotics/LTLMoP/raw/development/doc/grammar.pdf
http://dx.doi.org/10.1109/iros.2013.6697048
http://dx.doi.org/10.1109/IROS.2013.6697048
http://dx.doi.org/10.1109/CDC.2011.6160478
http://dx.doi.org/10.1007/978-3-642-14295-6_49
http://dx.doi.org/10.1007/978-3-642-14295-6_49
http://dx.doi.org/10.1007/978-3-642-14295-6_49
http://dx.doi.org/10.1007/11609773_24
http://dx.doi.org/10.1007/11609773_24
http://dx.doi.org/10.1007/11609773_24

[18] Amir Pnueli, Yaniv Sa’ar, and Lenore D. Zuck. “Jtlv: A Framework for
Developing Verification Algorithms”. In: Computer Aided Verification: 22nd
International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceed-
ings. Ed. by Tayssir Touili, Byron Cook, and Paul Jackson. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2010, pp. 171–174. isbn: 978-3-642-14295-
6. doi: 10.1007/978-3-642-14295-6_18. url: http://dx.doi.org/10.
1007/978-3-642-14295-6_18.

[19] Rattanachai Ramaithitima et al. “Hierarchical Strategy Synthesis for Pursuit-
Evasion Problems”. In: ECAI 2016 - 22nd European Conference on Artificial
Intelligence, 29 August-2 September 2016, The Hague, The Netherlands - In-
cluding Prestigious Applications of Artificial Intelligence (PAIS 2016). 2016,
pp. 1370–1378. doi: 10.3233/978 - 1- 61499- 672- 9- 1370. url: http:
//dx.doi.org/10.3233/978-1-61499-672-9-1370.

[20] Vasumathi Raman and Hadas Kress-Gazit. “Analyzing Unsynthesizable
Specifications for High-Level Robot Behavior Using LTLMoP”. In: Com-
puter Aided Verification: 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings. Ed. by Ganesh Gopalakrishnan
and Shaz Qadeer. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 663–668. isbn: 978-3-642-22110-1. doi: 10.1007/978-3-642-22110-
1_54. url: http://dx.doi.org/10.1007/978-3-642-22110-1_54.

[21] Roni Rosner. “Modular Synthesis of Reactive Systems”. PhD thesis. The
Weizmann Institute of Science, Feb. 1991.

[22] I. Saha et al. “Automated composition of motion primitives for multi-robot
systems from safe LTL specifications”. In: 2014 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems. Sept. 2014, pp. 1525–1532. doi:
10.1109/IROS.2014.6942758.

[23] Anne-Kathrin Schmuck and Rupak Majumdar. “Dynamic Hierarchical Re-
active Controller Synthesis”. In: CoRR abs/1510.07246 (2015). url: http:
//arxiv.org/abs/1510.07246.

[24] Kai Weng Wong, Cameron Finucane, and Hadas Kress-Gazit. “Provably-
correct robot control with LTLMoP, OMPL and ROS”. In: IROS. 2013,
p. 2073.

[25] Kaiyu Zheng. ROS Navigation Tuning Guide. Sept. 2016. url: http://www.
zkytony.com/documents/navguide.pdf.

57

http://dx.doi.org/10.1007/978-3-642-14295-6_18
http://dx.doi.org/10.1007/978-3-642-14295-6_18
http://dx.doi.org/10.1007/978-3-642-14295-6_18
http://dx.doi.org/10.3233/978-1-61499-672-9-1370
http://dx.doi.org/10.3233/978-1-61499-672-9-1370
http://dx.doi.org/10.3233/978-1-61499-672-9-1370
http://dx.doi.org/10.1007/978-3-642-22110-1_54
http://dx.doi.org/10.1007/978-3-642-22110-1_54
http://dx.doi.org/10.1007/978-3-642-22110-1_54
http://dx.doi.org/10.1109/IROS.2014.6942758
http://arxiv.org/abs/1510.07246
http://arxiv.org/abs/1510.07246
http://www.zkytony.com/documents/navguide.pdf
http://www.zkytony.com/documents/navguide.pdf

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbststän-
dig und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt
habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken
sind als solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher oder
ähnlicher Form keiner anderen Prüfungskommission vorgelegt und auch nicht
veröffentlicht.

Kaiserslautern, den
Ort, Datum Adrian Leva

	Introduction
	Related Work
	Preliminaries
	Game Solving and GR(1)
	Linear Temporal Logic MissiOn Planning
	Robot Operating System
	Localization with AMCL
	Local Motion Planning with DWA

	Hierarchical Approach
	Implementation with LTLMoP
	Overview
	AbstractHandler
	LocalGame
	Memory propositions
	Changes to the Existing Code
	Specifics to the Basic Simulation

	Evaluation
	Live lock because of reordering
	Resource usage

	Connecting it with the Real World
	Connecting LTLMoP with ROS
	Gazebo world
	Launch file for ROS
	Handlers in LTLMoP

	Additional Problems
	Experiments and observations

	Conclusion and Outlook
	Appendices
	Source Code
	Conventions
	Messages

	Scenarios
	Reorder
	Lock because of reordering
	Multiple doors example
	Buildings with ROS
	Level 2
	Level 1
	Level 0

