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Abstract

Information flow control is central to computer security. The objective of information flow control is
to prevent unauthorized flows of secret information to the public outputs of a computation. This task
is often accomplished using type systems that rely on modal operators to label and track information
and, hence, this style of enforcing information flow control is deeply ingrained in logic. One key choice in
designing a type system for information flow control, or dependence analysis in general, is the granularity
at which dependencies are tracked. This article considers two extreme design points in this vast design
space and examines their relative expressiveness.

1 Introduction

Information flow control (IFC) is a basic building block of computer security. IFC prevents the flow of
high-confidentiality (or, simply, high) information to low-confidentiality (low) outputs that may be visible
to attackers. For instance, one would not want private data stored on a file server to flow unencrypted to
network packets since such packets can be read by all machines connected to the network, even those that
are untrusted. Here, the private data is the high information and all unencrypted network packets are low
outputs.

Ideally, IFC demands semantic independence of low outputs from high inputs. This is often called
noninterference [8]: low outputs of a program should not be affected by changes to the program’s high
inputs. In practice, this ideal property is too restrictive but it is useful in designing enforcement techniques,
which often start by aiming for noninterference, and then relax the property by allowing declassification in
various ways [20].

Although TFC can be enforced through several techniques—OS kernel mediation of process I/O [6, 12, 24],
static analysis and type systems [3, 15, 16, 4, 11, 1], language runtime modification [2, 9, 17], the use of
dedicated libraries [13, 19, 22], or compilation [5, 7]—our focus in this article is the enforcement of IFC in
higher-order languages using type systems. Building on the seminal work of Volpano, Smith and Irvine [23],
which was not in a higher-order setting, many type systems have been proposed to enforce IFC in many
different languages, including higher-order ones [1, 16, 4].

The common denominator of all these type systems is type annotations or labels to mark program inputs,
outputs and intermediate values as high or low, and a mechanism to track dependencies between program
values, including inputs and outputs, within the type system. However, there is significant variance in how
the type systems track dependencies. Broadly speaking, dependencies may be tracked at coarse-granularity
or at fine-granularity.

*This is a full version of an article of the same title that appeared in the ACM SIGLOG News, Vol. 4, No. 11. This version
contains an appendix with many details and proofs and makes some changes to the presentation of the formalism.



In coarse-grained dependence analysis, the type system forces any output temporally after the analysis
(elimination) of a high-labeled value to be labeled high, since there could potentially be a dependence from
the analyzed value to the output. Obviously, this introduces a coarse approximation, since not all outputs
after the analysis of a high value may actually depend on the analyzed value. In information flow terminology,
this unnecessary forcing of labels to high is called a label creep. To prevent label creep, the language may
provide a scoping mechanism that syntactically delimits the effect of the analysis of a value. Despite the
problem of label creep, the main advantage of coarse-grained dependence analysis is that it significantly
reduces the need to label intermediate values since, by design, their labels are known implicitly from the
labels of values analyzed in the past.

In contrast to coarse-grained dependence analysis, fine-grained analysis requires annotating (or inferring)
the label of every intermediate value, and then carefully tracks dependencies among values. This makes the
type system more precise but increases the annotation burden for either the programmer or a type-label
inference engine.

The goal of this article is to provide an introduction to coarse- and fine-grained dependence analysis
for IFC and to comment on their relative expressiveness. Specifically, we describe one type system each
for coarse- and fine-grained dependence analysis. For coarse-grained dependence analysis, we choose a type
system that tracks dependencies using a construct similar to an indexed family of monads. This type system
is a simplification of an existing hybrid (mixed static and dynamic) system for dependence analysis called
HLIO [4]. We call this type system CG (for coarse-grained). For fine-grained dependence analysis, we
choose a slight variant of Flow Caml [16], an extension of ML’s type system with information flow types.
We call this type system FG (for fine-grained). In both cases, our setting is a simply-typed call-by-value
lambda-calculus with references. To keep the presentation simple, we do not delve into concurrency or other
evaluation strategies like call-by-name, which have nontrivial implications for dependence analysis and IFC.

Having presented the two type systems, we examine their relative expressiveness through translations.
Specifically, we show that programs typable in CG can be translated in a type-preserving manner to FG.
Although this may be unsurprising given the description of coarse- and fine-grained analysis above, the
translation shows how the dependence analysis in CG can be simulated using specific monads in FG. We
then attempt a translation from FG to CG, relying on a scope restriction construct in CG to prevent label
creep. While we fail to do this (we explain why), we show that a fragment of FG can be translated, type-
preserving, to CG.!

It is not our goal to provide a comprehensive survey of all existing work on type systems for IFC. Indeed,
this area is vast. Instead, we focus on one dimension of the design space—the granularity of the dependence
analysis.

2 Type Systems for Information-Flow Control

We first present two state-of-the-art information-flow security type systems, FG and CG, for higher-order,
stateful functional programming languages. The two type systems differ substantially in the approaches they
follow to track dependencies. This is a consequence of how FG and CG differ computationally: FG allows
(side-) effects in all expressions, & la ML. Since effects can occur so freely, information flows must be tracked
pervasively. Hence, FG is fine-grained. In contrast, CG isolates effects to a monad, a la Haskell. As a result,
flows have to be tracked only at the granularity of the monad, but not within pure expressions. This makes
CG coarse-grained.

Both FG and CG use labels drawn from a lattice (£, C) of confidentiality levels I. Labels higher in the
lattice represent higher confidentiality. The goal of dependence analysis for information flow is to ensure
that terms labeled ! can depend only on terms labeled [ or lower. In examples, we often use the two-point
lattice, LH = ({L, H},C), which contains two levels L (low) and H (high) with L C H and H Z L. We use
1 and T to denote the least and the greatest elements of any lattice. In LH, . = L and T = H.

1Due to lack of space, we omit some details of the translations in the main body of the paper. These are included in the
appendix at the end.



2.1 Fine-grained type system

Syntax, types, constraints:
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Figure 1: Syntax and type system of FG.
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Figure 2: FG subtyping

The fine-grained type system we consider, FG, is shown in Figure 1. FG is a slight modification of
Flow Caml [16], an extension of ML’s type system for information flow control. Computationally, FG is the
call-by-value simply-typed lambda calculus, extended with products, sums, references, label polymorphism,
and ordering constraints on labels.

Since side-effects may appear in any sub-expression in this language, FG must, when analyzing sub-
expressions, account for all information that data concerning the sub-expression can contain. To this end,
FG labels all of the (otherwise standard) types for this language with a structural label ¢, reflecting an upper
bound on the information conveyed by observing the structure of the expression. For instance, say bool is
one of the base types that the symbol b in Figure 1 ranges over. Then observing a value of type bool may
reveal H information.

When analyzing non-ground expressions, FG tracks the propagation of information through the evaluation
of expressions. For instance, FG concludes that the conjunction of a bool” and a bool” value is a bool?
value, as observing the result may convey information about each component in the conjunction.

This tracking alone, however, is insufficient; since (sub)expressions can be evaluated conditionally, ob-
serving the presence or absence of effects can convey information about the control-flow conditions that
facilitated or prevented the effects. Structural labels do not account for this information. For instance, let
x¢ ¢ (unit? +unit?)H | 2o (ref nat?)E| and consider e = case(zc, .(), .z := 42).2 The result of evaluating
e is invariably (), so no information is conveyed by observing the result. However, on evaluation, e reveals
whether z¢ = inl(()) or = inr(()) through the absence or presence of the write to z. FG tracks this infor-
mation by recording control flow information in a control label pc (aka program counter), making it a lower
bound on the write effects that the (sub)expression being typed can perform. For instance, when attempting
to type the previous example, FG raises the pc by the information in the control-flow condition x, which
is H, and checks whether the branches only have write effects at or above this new pc. However, the right
branch writes 42 to x, which stores L-labeled natural numbers. So, with these labels on the types of x and
Z¢, e does not type-check.

2We use the symbol _ to denote a variable, label or type whose actual value is irrelevant. Here, _ denotes anonymous
variables. Later, we use _ to denote labels and types that are irrelevant to the discussion.



Effects in a function’s body are suspended until the function is applied. Further, since our language is
higher-order, a function can take another function as a parameter and apply it. This necessitates additional
type annotations on function types. For instance, let x¢ : (unit? + unit!)? and x : (ref nat!)L. Consider
e = Azp.case(zc, .(), .(zr (). Assuming that xz maps unit” to unit”, e maps such mappings to unit?,
possibly applying z¢ in the process. Now consider ¢/ = A_. (z := 42), a function with a suspended effect,
which maps unit” to unit”. While e ¢’ always returns a result of type unit”, e e’ conditionally applies e/, and
thus, the L effect in e’ leaks the control condltlon (2¢) in e, which is H. FG resolves this by having functlon
types carry a separate control label; in 7 Ly 71 , L. is a lower bound on the level of the write effects that can
occur when a function of this type is apphed. In the example, ¢’ : (unit? 5 unit?)E; thus FG rejects e e’
since e applies a function with L effects in a H context. Finally, note that functions of type (7 Lo " can
be constructed but not applied in FG. This is because such a function can leak its identity, which is labeled
H, to L when it is applied. However, if the functlon is merely passed around, it cannot leak information.

For the same reason, the types Va.(¢., 7) and e 1 also carry the control label /.. In FG, values of these
types (Ae and v e, respectively) are also suspended computations.

FG performs security checks by checking the satisfiability of flow constraints, using the judgment ¥, ¥ - c.
A constraint ¢ is a conjunction of terms of the form ¢ C ¢/, where £ ranges over levels, label-variables, and
lattice operations on these. Let W range over sets of constraints, and ¥ range over sets of label parameters
«. The judgment 3, ¥ F ¢ checks whether, for all instantiations of ¥, assuming W, ¢ holds. Label ¢ covers
type AY (from below), written X, U + AN 0 ES, U HOT L,

Subtyping FG uses subtyping to allow upwards-flows of information. Subtyping amounts to weakening a
guarantee for an expression. In our case, this guarantee is the type of an expression, which Speciﬁes how the
information is classified. The subtyping judgment, defined in Figure 2, has the form X; ¥ F 7 <: 7/. In effect,
this judgment extends (C) to labeled expression types. For any A, <: is covariant in £. This weakening of the
type amounts to up-classifying information, which is safe since it only labels less confidential information as
more confidential. Subtyping is covariant everywhere else, with two exceptions: control labels, and function
arguments. A control label guarantees a lower bound on effects This guarantee is weakened if the control
label is lowered. For instance, if an expression has type (natH Zunitf)L ] the function may produce effects at
or above H. This implies the weaker statement that the function may produce effects at or above L. Hence
(natH = unitf)E < (natH = unit?)E. A function argument appears as an assumption in the function type,
and btrengthemng an assumption amounts to weakening the guarantee. For instance, if an expression has
type (natH S ounitf)L) the functlon does not leak desplte receiving H input. The function still will not leak
if given L input. Hence, (natH = unit?)l < (natL = unitf) L.

Typing judgment and typing rules FG’s type system prevents illicit flows of information by ensuring
that

e eliminating an expression labeled ¢ produces a result covered by /.
e an expression executing under pc can only cause write effects at or above pc.

The typing judgment has the form ¥; ¥;T" . e : 7. It reads: for all ¥, assuming ¥ and I', e has type 7,
and pc is a lower bound on the level of all write effects which can occur when e is evaluated. We focus on
three constructs, since these involve the pc: case, abstraction, and references.

In the rule FG-case, since case deconstructs its sum, the results of the branches must be covered by the
label on the sum. Also, since either one or the other branch is evaluated depending on the sum, in typing
the branches, the pc label is raised by the label on the sum, thus ensuring that the branches do not have
write effects below the label of the sum.

In the rule FG-lam, FG can disregard the pc when typing the body of the function, because the body
will not be evaluated immediately. FG thus only needs to check that the function satisfies what the type
(11 L T5)* says it satisfies: (1) that the body has type 75 given input of type 71, and (2) that all of its effects
are at or above £, which is ensured by checking the body of the function with pc set to £.. The outermost



label on the conclusion’s type 11 R 7o is L because the fact that the function is constructed at this point in
the program reveals no information. In fact, the outermost label is L in the introduction rules of all types,
not just 7 L 7. Rule FG-app checks that the result of applying a function is covered by the label on the
function type, and that the effect of running the function does not leak contextual information, or structural
information about the function.

In rules FG-ref and FG-assign, pc must cover the type of the value written to the reference. This ensures
that write effects of the expression being typed are lower-bounded by pc. Additionally, in FG-assign, the label
of the value written must cover the label on the reference to prevent leaking which reference was written. In
the rule FG-deref, reading a reference conveys information about which reference was read; the result of the
read must thus be covered by the label on the reference. (We implicitly assume that in the type ref 7, the
type 7 is closed, i.e., it has no free label parameters. Not enforcing this can break both subject reduction
and the following noninterference property.)

Noninterference FG enforces noninterference: The result of evaluating an expression of a labeled base
type cannot depend on an input whose label does not cover the label of the base type.

Theorem 2.1. [Noninterference for FG] Suppose (1) ¢; [Z £, (2) x : A% b, e : b, and (3) vy, vs : Afi. If
both e[vy /2] and e[vy/x] terminate, then they produce the same value (of type b).

2.2 Coarse-grained type system

Next, we describe CG, a type system for coarse-grained dependence analysis. CG is not a new type system:
It is the static fragment of HLIO [4], a hybrid type system that mixes static and dynamic analyses to track
flows. One minor difference from HLIO is that CG has call-by-value semantics to match those of FG whereas
HLIO’s semantics are call-by-name. We make this change to make CG’s reduction strategy match FG’s.

CG is designed to minimize type-label annotations. To this end, it isolates all effects in a monad-like
type construct. The syntax and typing rules of CG are shown in Figure 3. Unlike FG, standard typing
constructs like products, arrows and sums are not refined with labels. These types behave exactly as in the
simply typed lambda calculus (which CG extends conservatively) and the corresponding expressions do not
have side-effects. For labeling, CG has a dedicated type constructor Labeled £ 7, which means 7 labeled with
¢. This is the only way to label a type in CG. Expressions are augmented with the constructs Lby(e) and
unlabel(e) to introduce and eliminate Labeled ¢ 7.3

Effects are limited to computations that have the type CG ¢; ¢, 7. This type is similar to a monad
and has the usual monadic return and bind constructs. Importantly, the bind construct is used to track
dependencies coarsely. Finally, CG adds a scoping construct toLabeled(e) that limits label creep. References
in CG store only labeled values. A reference of type ref £ 7 stores values of type Labeled ¢ .

The type CG ¢; ¢, 7 The type CG ¢; £, 7 ascribes (suspended) computations that have effects. We
define two kinds of effects in CG. Input effects cause a computation to learn new information and happen
when a computation unlabels a labeled value. An output effect causes a computation to release information.
This happens when a computation either creates a labeled value or writes to a reference. (Since references
store only labeled values, merely reading a reference is not an input effect—to learn the actual content, the
program must unlabel the value. Strictly speaking, it is also not essential to treat writing a reference as an
output effect in CG. However, in many practical scenarios, attackers can observe writes to memory through
side-channels outside the language, so we treat all writes as outputs.)

The type system enforces that the output effects of a computation of type CG ¢; ¢, 7 are lower-bounded
by ¢; and that its input effects are upper-bounded by ¢,. We call ¢; the “initial” program counter (pc) and
£, the “final” pc for the computation. For instance, when writing to a reference, it is checked that the initial
pc is below the label of the written value (last premise of rule CG-assign). When a value of type Labeled ¢ 7
is unlabeled, the final pc of the computation is joined with ¢ (rule CG-unlabel).

3Due to an oversight, the original SIGLOG article omitted the construct Lby(e). Instead, it had a construct label,(e), which
is not really needed: It can be defined as labely(e) = ret(Lby(e)).



Syntax, types, constraints:
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Figure 3: Syntax and type system of CG.



The construct bind(ey, x.e3) allows sequencing two computations of types CG ¢; ¢ 7 and 7 — CG £ £, 7/
to obtain a computation of type CG ¥¢; ¢, 7. Importantly, the final pc £ of the first computation must
match the initial pc of the second computation. This ensures that the second computation’s output effects
(which are lower-bounded by ¢) are at labels higher than the input effects of the first computation (which
are upper-bounded by ¢) and, hence, prevents any information leak. This is the only mechanism for tracking
dependencies in CG.

It is an invariant of the type system that if e : CG ¢; £, 7, then ¢; C {¢,. This invariant can be enforced
using a well-formedness relation on types, whose straightforward details we omit here.

Construct tolLabeled(e) As described above, sequencing a second computation after a computation of type
CG ¢; £, T using bind requires that the second computation’s output effects be labeled higher than ¢,. This
causes a label creep when the second computation does not actually examine the result of the first compu-
tation (e.g., the second computation may write the first computation’s result to memory without examining
it). To work around such a label creep, CG provides the expression construct toLabeled that coerces the
type CG ¥4; £, T to CG ¢; ¢; (Labeled £, 7). The computation returned by tolLabeled, when forced, forces the
original computation and labels the result with £,.% A computation of the type CG ¢; ¢; (Labeled ¢, 7) can
be followed by a second computation whose output effects are at level ¢; or higher. The pc increases to £,
only if the second computation actually unlabels the result of the first computation.
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Figure 4: CG subtyping.

Subtyping CG includes the usual subtyping rules of the simply typed lambda calculus. Subtyping for
Labeled ¢ 7 is covariant in £. Subtyping for CG ¢; ¢, T is contravariant in ¢; and covariant in ¢,. This is
natural since ¢; is a lower-bound (on the output effects) and ¢, is an upper-bound (on the input effects).
The subtyping rules of CG are shown in Figure 4.

Noninterference CG satisfies noninterference: If a computation has only low input effects and returns a
value of base type, then the returned value must be independent of any high input.

Theorem 2.2. [Noninterference for CG] Suppose (1) ¢; Z £, (2) x : Labeled ¢; 7+ e : CG _ £ b, and (3)
vy, vy : Labeled ¢; 7. If both ef[v; /x] and e[vy/x] terminate when forced, then they produce the same value
(of type b).

4The term “forcing” is used here in the sense of monads. Forcing a value of type CG #; £, T runs the suspended computation,
records its write effects and eventually returns whatever the computation returns.



3 Translations

Having described the fine- and coarse-grained dependence analysis type systems FG and CG, we now turn to
understanding their relative expressiveness. We do so by presenting (attempted) type-preserving translations
from CG to FG, and vice-versa. We start by showing a type-preserving translation from CG to FG in
Section 3.1. We then attempt a translation in the reverse direction, show where it fails and why (Section 3.2).
Based on our attempt, we identify a smaller fragment of FG which can be translated to CG, preserving types.

3.1 Translating CG to FG

In this section, we define a translation [-] from CG to FG and show that it is type-preserving. The translation
of types is shown below.

[b] = b* [unit] = unit*
[[[7['1 — Ty % = E%ﬁ% %[[[[T%)J‘ [ref £ 7] = (ref ([[ZT]] + unit)?)+
71X Tl =AMl X T [CG £; £, 7] = (unit = ([7] + unit))+
[r1 + 2] = ([ra] + [])*
[Labeled £ 7] = ([7] + unit)’ [e=r]=(c= D

Va.r] = (Voo (T, [7])*

This translation relies on three key ideas. First, in CG, labels are limited to the type construct Labeled ¢ T,
so the translation of all other types can simply use the outer label L. There are several choices for translating
Labeled ¢ 7. A natural translation would be A““¢, where A? is the translation of 7. However, this translation
“flattens” nested labels of the form Labeled ¢ (Labeled ¢’ 7), making it impossible to simulate, in the
translation, the selective unlabeling of only the outer ¢, but not the inner ¢, which is allowed in CG. To
keep the labels £ and ¢’ separate in the translation, we translate Labeled ¢ 7 to ([7] + unit)¢, which keeps
the label on 7] separate from ¢. The corresponding translation of expressions uses inl, thus never actually
returning the unit value during execution.

Second, in CG, side-effects are confined to the type CG ¢; £, 7, so when translating CG’s remaining types,
which represent pure terms, we can always use pc = T in FG (since there are no side-effects in the pure
terms, T is trivially the strictest lower-bound on the output effects). As a result, the control labels on —,
= and V in the translations of 7y — 75, ¢ = 7 and Va.7 are all T.

The type CG ¢; £, T represents a suspended computation whose effects are visible only after it is forced.
This is emulated i in, FG using a thunk, a function that takes an argument of unit type. Specifically, CG ¢; ¢, T
translates to (unit 4 ([r] + unit)?e)+, which is a decorated variant of the thunk type unit — [7]. The thunk
can be forced when needed by applying it to (). The ¢; on the arrow means (in FG) that the write-effects of
the computation (the thunk) are lower-bounded by ¢;, which is exactly the meaning of ¢; in CG ¢; ¢, 7. The
label £, on ([7] + unit) implies that the result of the computation cannot be analyzed without raising the
pc to ¢, in FG, which is exactly the consequence of having ¢, in the type CG ¢; £, 7 in CG. (We note that
the translation simulates CG ¢; ¢, T using a combination of the type forms unit — [7] and [r] + unit, both
of which are monads.)

Finally, in CG, a reference of type ref ¢ 7 stores values of type Labeled ¢ 7. Hence, the translation of
ref £ 7 is (ref ([7] + unit)®)*

The translation [-] is lifted pointwise to contexts: [[] & {x : [r] | z : 7 € T'}. The translation of
expressions is type derivation-directed and is written X; U;T'F e : 7 ~ ¢€’. Selected rules of the translation
are shown in Figure 5. They should be unsurprising given the type translation.

The following theorem shows that this translation preserves types, in the sense that ~~ always maps a
valid CG typing derivation to a valid FG typing derivation.

Theorem 3.1 (Type soundness, CG ~ FG). If Z; ;T F e : 7 has a valid CG typing derivation, then there
exists an €' such that ; U; T Fe: 7~ e and 3, [T] b+ € : [7] has a valid FG typing derivation.



;Ui T'kFe:m~ep

label
S;W;T - Lby(e) : Labeled € 7 ~ inl(ep)

X, W:;T'e: Labeled £ 7~ ep
Y, W;T F unlabel(e) : CG 4; (6; L) T~ A_ep

unlabel

YU 'Fe:CGHl by, T~ ep

toLabeled
¥, U;T | tolLabeled(e) : CG ¢; ¢; (Labeled £, 7) ~~ A__.inl(er ())

YoUiTkFe:m~ep
;0T k- ret(e) : CG 4 4 7~ A_inl(ep)

ret

S:U:T ke :CGllT~ ep Sl z:7hey : CGlL, T~ eps

bind
¥, W; T F bind(eg, z.e3) : CG €; £y 7'~ A_.case(er1(), z.ep2(), y.inr()) .

Figure 5: Type derivation-directed expression translation from CG into FG, selected rules.

3.2 Translating FG to CG

Next, we consider translating FG to CG. We start with an incorrect strawman translation, which we refine,
eventually getting to a point where no further progress seems possible. At that point, we identify a fragment
of FG for which the refined translation works. The goal of going through this exercise is to impress upon the
reader the difficulty of translating a fine-grained dependence analysis to a coarse-grained one, and to argue
that there does not seem to be a straightforward translation from all of FG to CG, despite CG having the
construct toLabeled to prevent label creep.

Strawman translation We construct a strawman translation, [-], from FG to CG that we soon show to
be incorrect. We translate the type A’ to Labeled ¢ [A] since this is the only type construct that adds a
label in CG.

Next, consider the function type 71 L 79 in FG. Since the body of a function of this type can have a write
effect at level £, or higher, an intuitive translation of this type could have the form [r] — CG 4. 4, [r2].
For the translation of the function’s body to be well-typed in CG, the label £, must be an upper-bound on
the labels of everything the function’s body analyzes. Nothing in the FG type specifies this upper-bound, so
we must find some other alternative. Fortunately, it is possible to confine the effects of value analysis using
the construct toLabeled in CG. As a result, we may hope that we can choose ¢, = . and translate 71 =5 7o
to [11] = CG £, L. [2].

Independent of what ¢, we choose, this translation has a label creep problem. Consider a FG function
f of type unit K AL in the lattice LH. This function may write high values to references but it even-
tually returns a low value. In FG, the result of f’s application can be written to a reference of type
ref AL. However, after translation, this write would be impossible because f’s type would translate to
[unit] - CG H H (Labeled L A). Applying this type would result in a computation, say ¢, of type
CG H H (Labeled L A). There is no way to extract a low labeled value from this computation. At
best, we may use subtyping, bind and tolLabeled as in tolLabeled(bind(c, z.unlabel(x))) to coerce the type to
CG L L (Labeled H A), but the resulting value still has ghe label H.

Based on this, we may be tempted to translate 71 =% 75 to [11] — CG L L [rz] instead (this is sound
because L is trivially a lower bound on any write effect in the function’s body). Although this translation
would solve the label creep problem mentioned in the previous paragraph, it suffers from a different prob-
lem: Now, the translation cannot simulate an application of the previous paragraph’s function f in a high
context, i.e., in a case branch where the analyzed sum is labeled H. To see this, consider the FG expression
case(h,z.f(),...), where h : (t+7")H. In FG, the type of this expression is A”. In CG, we would correspond-
ingly like to construct a result of type Labeled H [A]. However, this is impossible. Since h’s translation has
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type Labeled H ([r] + [7']), to perform a case analysis on it, we must first unlabel it. This will result in a
computation of type CG L H ([r] + [7']). Next, we can bind this computation and case analyze the value
of type [7] + [7']. However, due to the restrictions in typing bind, any further binds we perform must be on
values of type CG H H _. The body of f’s translation has the type CG L L (Labeled L [A]) (L = L here)
and there is no way to coerce this to the form CG H H _ because subtyping for CG ¢; {. 7 is contravariant
in ¢;. So, we cannot bind the body of f, and, hence, cannot obtain a value of type Labeled _ [A].

Using label polymorphism The problems with the strawman translation above can be addressed using
label polymorphism. For instance, we could translate 7 55 1 to [m1] = Va.CG a « [72]. This would allow
us to use the earlier function f in both contexts, instantiating o with L in the first context and with H in
the second context. However, this translation is unsound. Specifically, instantiating « with some ¢, Z £,
allows us to establish that every write in the function’s body is at the level £, or hlgher which is clearly
false, since the function’s body may write at level £, (according to the FG type 7 R T).

Consequently, we consider a revised translation that maps 7 575 to [r1] = Va.(a C L) = CG aa [r].
The entire type tranblatlon is shown below. (The translation of ¢=%7 and Va. (¢, 7) follows the same intuition
as the translation of 71 L To.)

[b] = b .

[ % m] = [n] = Va(a C L) = CGaa [n] funit] = unit
[[c:iﬂ] Va.(a E be,c) = CG a a [[T]] [ x 72] B [n] <[]
[Va.(le, 7)] = Va.Va/.(o/ C £4,) = CG o’ o [7] [+ 720 =[] + [72]

[AY] = Labeled ¢ [A] [ref A'] = ref £ [A]
The translation of contexts I' is defined pointwise and a FG typing judgment ; ¥;I" I, e : 7 translates
to a CG judgment of the form ¥; ¥; [T'] F €’ : Va.(a E pc) = CG « e 7], mirroring the label polymorphism
in the bodies of function types (¢’ is the translation of e).
Unfortunately, this translation has a different problem! Consider how we would (inductively) translate
the rule FG-case from Figure 1. Inductively, from the premises we obtain ¢, €] and e} (the translations of
e, e1 and es, respectively) such that:

1. 359 [T] F € : Va.(a C pc) = CG a « (Labeled ¢ ([m1] + [72]))

2. 5 U], : [m] F€f : Var.(an E (pel€)) = CG ay oy [7]

3. 50 I,y [r=] F éh: Vag.(a2 C (peU f)) = CG ag ag [7]

The goal is to construct a term e” (the translation of case(e, x.e1,y.€2)) such that
S0 [I] e’ : Ve (af CEpe) = CG o o [7]

We try to search for the appropriate term e” (much as we would look for a proof in a formal proof system).
We pick some o’ such that o/ C pec. We must construct a term of the type CG o/ o/ [r]. Our only option is
to case analyze the value of type ([71] + [72]) in (1), so we must instantiate the quantified « in (1) and bind
the resulting computation type. Since the eventual goal is to obtain something of type CG o’ _ _, we must
pick a = o/. We instantiate o = ', and bind the computation of type CG o’ o’ (Labeled ¢ ([71] + [72])) in
(1), obtaining a local variable of type Labeled ¢ ([71] + [2]). We unlabel this to obtain a computation of
type CG o (o/ U ) ([1] + [=]), which we bind again to obtain a variable of type [r1] + [r2]. This variable
can be case-analyzed. To construct the case branches we must instantiate and bind the computations in (2)
and (3). We show only the operations on (2), those on (3) being similar. First, we must pick a suitable
aq. Since the next computation we construct must have a type of the form CG (o/ LU¢) _ | we must pick
ap = o/ U ¥ (which is indeed below (pc U ¥), as required by the constraint in (2)). Second, we instantiate (2)
with this substitution to obtain a computation of type CG (o/ U ¥) (o/ U ¥) [r]. Repeating this process on
(3), we obtain an end-to-end computation of type CG o (/' LU¢) [7].
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This is almost what we wanted. To complete the proof, we have to coerce the type CG o/ (o’ U¥) [7]
to the type CG o’ o [r]. For this, we consider the cases o' C ¢ and o £ ¢ separately. Strictly speaking,
CG does not allow a case analysis on constraints. However, we show below that the proof cannot even be
completed in the second case, so the case analysis has expository value.

When o C /¢, then CG o’ (o U¥¢) [r] = CG o’ ¢ [7] and it is not difficult to write a coercion function from
CG o/ ¢ [7] to CG o/ o [7]. The fourth premise of the FG-case rule is 7 \, £, so 7 = A’ for some ¢’ J £ and
[7] = Labeled ¢’ [A]. The required coercion function is Az : (CG o’ £ [7]). toLabeled(bind(z, y.unlabel(y)).

However, in the case o’ [Z ¢, such a coercion function may not exist. Concretely, consider the lattice
L T {My, My} C H with M;, My incomparable, o’ = M;, £ = My and 7 = AM2. In this case, our goal is to
coerce CG My H (Labeled M> [A]) to CG M; M; (Labeled My [A]). This is impossible in CG: Our only
hope of getting rid of the H in the given type is to use toLabeled, but that would push the H into the label
of the resulting value.

It follows, therefore, that even our revised translation does not work. However, on any fragment of FG
where the second case o’ IZ £ can never arise, this translation would work. In the following, we identify such
a fragment, FG™.

The fragment FG~ Because o is arbitrary and the only constraint on it is o’ E pe, disallowing o Z £ is
the same as always forcing pc C ¢. One simple way of ensuring pc C £ is to restrict FG to a fragment in which
50T Fpe e o 7 implies 7 N\, pc. Then, (1) would force pc T ¢. Defining such a fragment is straightforward.
We only need to restrict the types in the conclusions of the typing rules for all introduction forms like pairing,
functions, inl, inr, etc. to be labeled pc (currently, these rules allow the label L). Elimination rules do not
require any changes (although some premises in the elimination rules become redundant, e.g., the premise
7 N\, 4 in the rule FG-case). We can then show inductively that X; ¥; T F,. e : 7 implies 7\, pe.

For instance, the rules FG-var and FG-lam of Figure 1 are replaced with the following more restrictive
rules.

S:UkrCr 7! c YUl :m by e m
= \,p FG™-var 1t 7 2 FG™-lam
LWL w i Thpewi T 5,00 Fpe Azee s (11 =3 12)P¢

Lemma 3.2. X; W' e e: 7 in FG— implies ;¥ = 7\ pe.

We can prove that on the fragment FG™, the translation [[-] defined above is total and type-preserving. We
have to first define a type derivation-directed translation of expressions, whose straightforward details we elide
here (the details can be found in the appendix at the end). This translation is written X; U;T' . e : 7~ €.

Theorem 3.3 (Type soundness, FG™ ~» CG). If £;U;T' . e : 7 has a valid FG~ typing derivation, then
there exists an €' such that X;W; T Fpe e : 7~ € and 3; U5 [I] F € - Va.(a C pc) = CG o v [7] has a valid
CG typing derivation.

4 Other type systems

Several other type systems for information flow control can be classified as either fine-grained [16, 23, 10]
or coarse-grained [14, 18, 4]. Of particular note is the dependency core calculus (DCC) [1]. DCC uses
a monad to track dependencies, in a manner similar to CG, but is otherwise pure. [1] show how several
calculi for dependence analysis can be translated to DCC. One of these calculi is a first-order calculus with
references [21]. This calculus has a rule very similar to the case analysis rule of FG, whose translation failed
in Section 3.2. A priori, it seems that we ought to be able to examine the translation from [21] to DCC to
understand how to translate FG’s case analysis rule to CG. However, [1]’s translation is not parametric in
the security lattice: It is defined only for the lattice LH, and treats the (analogues of the) FG judgments
XU’ e:7and X;0; T Fg e : 7 completely differently. Indeed, we expect that such a non-parametric
translation would also exist from FG to CG, at least for the lattice LH.

12



5 Conclusion

At their core, type systems for information flow control perform dependence analysis. Moving from a fine-
grained to a coarse-grained dependence analysis trades off precision for fewer type-label annotations. In
this article, we have initiated a study of the relative expressiveness of these two approaches by considering
type-preserving translations from a coarse-grained type system to a fine-grained type system and vice-versa.
Our analysis indicates that the former is straightforward (as expected) whereas the latter is not.

In ongoing work, we are examining two problems that we have not yet addressed satisfactorily. First,
we would like to prove that the translations are operationally sound (not just type-preserving). Ideally, we
would like to derive the noninterference theorem for one system from the noninterference theorem of the other
system and properties of the translation. Prior work has established similar results for other translations.
For example, [1] establish similar results for the translation of several dependency-tracking calculi into DCC.
In our setting, the problem is harder due to the presence of state, whose combination with higher-order
functions would complicate any model of types. Second, we would like to find a translation from all of FG to
CG or show that such a translation does not exist. Since Section 3.2 already shows a translation from FG™
to CG, the problem of translating FG to CG simplifies to that of finding a translation from FG to FG™.
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A CG

This section describes the CG type system. The type system consists of the standard base types, function
type, reference type, sum and product type. Additionally we also add a monad-like type constructor to the
type system, CG ¢; {5 7, for a computation that starts with pc ¢1, ends with pc ¢ and computes a value of
type 7. We also add the type Labeled ¢ 7 for a value of type 7 at label £. Along with this we add the forall
and constraint types. To the expression language, we add explicit introduction and elimination constructs
for the types described above. Additionally we add a scoping construct, toLabeled(e), that encapsulates the
effect of a computation into a labeled type.

Expressions e == ()| x|ej ex| Axe]| (e1,e2) | fst(e) | snd(e) | inl(e) | inr(e) | case(e, x.eq,y.e2) |
Lbs(e) | unlabel(e) | toLabeled(e) | ret(e) | bind(ey,z.e3) | Ae| e[| |ve|e o

Types T u= unit|b|m o> | x| Ti+Te|ref 7| Labeled 7| CG L b, T | VT |c=T

Label 0 = all] ... |T|LCL|LNYL

Constraints ¢ == (L] (cc)

Figure 6: Language and type syntax
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Uik e: T

S Te:rhe: 7
CG-var ; CG-lam
;U 'FAze:7— 71

WUl :thx: T
Uik er i XU T'kFea: o
CG-prod
50T F (e1,e2) : 11 X T2

ST ke 7 — 7 YUk ea: 7
5 CG-app
Y;Us'Ferea: 7

X;U'Fe:m
CG-inl

;U 'Fe:m X 72
CG-snd -
30T Hinl(e) : 71+ 72

;0T Fsnd(e) : 72

Y;U'Fe:m X7
CG-fst
;0T Ffst(e) : 7

X;UiI'Fe:m
CG-inr
50T Finr(e) : 11+ 72

Y:Ui'Fe:m + 72 “Ue:mber:r YUy :mebe: T
CG-case

3, 0T I case(e, z.e1,y.e2) : T

Uik e:r 3;W;T'F e : Labeled £ 7
CG-label CG-unlabel
;W F Lbe(e) : Labeled ¢ 7 Y;U;T' F unlabel(e) : CG ¢4; (6; UL) T
Y;U:I'Fe:CGl by T Y, U:T'ke: 7
CG-toLabeled CG-ret
;0T Fret(e) : CG 4 4 T

3;W; T+ toLabeled(e) : CG ¢; ¢; (Labeled ¢, T)
Y;UI'Fe : CG U 4T S0 T,c:7hey: CGLL, T . 0T ke: 7 SR <
- > CG-bind CG-sub
;0T F bind(er, xz.e2) : CG 4 £ T XU 'ke:T

X;WiTTke:ref b1
CG-ref — CG-deref
ST He: CG L ¢ (Labeled 2 1)

Y; ;T + e: Labeled ¢/ T S wheCl
YU T Fnewe: CG L4 (ref ¢ 7)

Y, U;T'ke: T

S;WiT keg: Labeled ¢ 7 S; U FEC _
CG-assign —— CG-FI
;'F Ae:Va.r

Wil ke :ref & 1
;W' ke :=e2: CG L 4 unit

XU, 'Fe: T
;'kFve:c=T

59 T'Fe:Var FV() Cx
CG-FE CG-CI
Y;U:'Feeo: T

S, Ui Fel]: 7[¢/q]

Figure 7: Type system of CG.
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Uk T<im S0k Ty <7
——— CGsub-base 5 5 CGsub-arrow
YUk rT<iT iUk 2T <iT] =Ty
S0k <ty S0 bEm<iT Uk o<y S0k <7
5 7 CGsub-prod S 5 CGsub-sum
U kT X To <7y X Ty Si3Ubkm+m<im+m
SUkr< 7 Uil

CGsub-labeled

¥; U I Labeled £ 7 <: Labeled ¢’ 7/

SUkr< 7 UL T UL, EA
YU ECGlly,T<:CGL LT

YUk =

CGsub-monad

YUk <iTy
YU VYo <:Va.m

CGsub-forall

YUk <iTy

CGsub-constraint

X;Ubkep =1 <ica=To

Figure 8: CG subtyping.

——— CG-wff-base
XU b WF

XU bm WFE XUk WE
S0 E (1 5 ) WE

CG-wif-arrow

3k WF ;U bk WF
5,0k (1 +m) WE

CG-wif-sum

a7 WF
5,0k (Vo (1)) WF

CG-wif-forall

Uk WF
S (Labeled £ 7) WF

CG-wif-labeled

————— CG-wff-unit
;W unit WF

XUk WFE XUk WE

CG-wif-times
;U F (1 X 10) WF

FV()=0  FV(r)=0
S;UF (ref £ 7) WF

CG-wif-ref

X U,c-7WF
SiUF (&) WE

CG-wif-constraint

S0k WF
Sk (CG A by 7) WE

CG-wff-monad

Figure 9: Well-formedness relation for closedness of reference types in CG
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B FG

LU LCY O SURA< A

; FGsub-label ———— F'Gsub-base
U AL < A S:Ukb<:b
E;\Ill—7'1<:7'{ E;\I/'_7_2<:Té
FGsub-ref 7 7 FGsub-prod
;U kref 7 <:ref T ;U E T X T <0 Ty X Ty
Uk <7 Uy <:T
! ! ! ’ 7 2, 2 FGsub-sum
SO+ +n
Uk <iT Z;\IJFTQ<:7'£ E;\IIFKIPE&
. FGsub-arrow FGsub-unit

‘ . = uni
2;@%7’1%7’2 <ZT{4TQ/ ;U unit <: unit
S,V T <y S,a; 0 04,

FGsub-forall
S0 Va.(le, 1) <: V. (£, 72) e

YiUlke = YW, o b <y S Uk C L

FGsub-constraint

E;\I/}—CléTl <:CQ%TQ
Figure 10: FG subtyping.

S, Uk 7N\ 2|7 leaks to level £ and higher only

R S A
2,0 AN ¢

Figure 11: Covers relation (FG types).

Expressions e == () | = | e1 e2 | Awe | (e1,ea) | fst(e) | snd(e) | inl(e) |
case(e,z.e1,y.e2) | Ae|el]|ve|ee

Base Types A = Unit|b|7‘+7’|7‘><7’|7‘g7'|I’ef7'|VC¥.(£,T)|C:£>T

Types T u= Al

Constraints ¢ u= (L /] (¢c)

Lemma B.1 (Reflexivity of subtyping). The following hold:
1. Forall X, V,7: ;U 1T <: T
2. For all,U,A: ;0 FA<:A

Proof. Proof by simultaneous induction on 7 and A.

Proof of statement (1)
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XUl bpeert

DRSS BN IR ST o S %
FG-var
S0 :thpex: T

7 FG-lam
50,7 bpe Azee s (1 =5 7'2)l

S0, T Fpeer: (11 Y Tg)e

Ui T bpe ezt T U R N\ 4 YUk peUl C L,
FG-app
;U Fpcer et
0T kpeer i 50T by ig I T2 FC-prod 50T Fpee: (11 X 72)4 Wk N\ 4 FC-fst
30T Fpe (e1,e2) 1 (11 X T2) ;0T by fst(e) : 1
ST hpee: (1 xm2)f S0 F ¢ ST by e
Ui Fpe e (1 X 72) 2> g w8 RGeinl
;Wi T bpe snd(e) @ 2 S0 T Fpe inl(e) = (11 + 72)
XUy e
P © +— FG-inr
;0T by inr(e) : (11 + 72)
Z;\D;kacez(ﬁ—i—h)e S5z 1 bpeeer o T STy o bpeur €20 T Z;\I/FT\EFG
30T by case(e, z.e1,y.€2) : T case
S50 D ke 7 YW - pe C pc Uk <T ;Ui bpee: T Wk TN\ pe
FG-sub
XUl bkpeert

- FG-ref
;05T bpe new e : (ref 7)
E;\Il;Fl—pce:(refT)e Sk r <7 DA AN
7 FG-deref
5,00 Fpeler 7

;Ui e e 0 (ref 7')(Z ST by e

50T Fpeer i=e2

T

Uk clLl

- (P ) FG-assign
s unit

DINTC A\ N o

YW, by e
— FG-FI
50T Fye Ae s (Vau(le, 7))

7 FG-CI
ST kpeve: (c=37)*"
DU T bpe €0 (Vo (be, 7))’ FVEC')CE S0 F peU L C L[ /o]

W[l o] \ 4
0T Fpee [ 270"/

FG-FE
Z);\I/;l_‘l—pce:(c[:gT)lZ > Uke Uk pcUlC L,
YyUiI'kpceo: T

DM\ l
"> pacer

Figure 12: Type system of FG.
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SiWEFAWE

———— FG-wif-label —————— FG-wff-base ——————— FG-wff-unit
YU A WE ;Wb WF ;U Funit WF
Uk WF XUk WF XUk WF XUk WF
7 FG-wff-arrow FG-wif-prod
SO kT S WE L¥Enxn WF
O Fkm WE S50k WFE FV(r)=10
FG-wif-sum FG-wif-ref
YUk 4+ WE S, Uk (ref 7) WF
Ya; 07 WF YW, ckTWF
FG-wit-forall 7 FG-wfl-constraint
DOE Y (b, 7)) WE SOk (% 7)) WF

Figure 13: Well-formedness relation for closedness of reference types in FG

Let 7 = A, Then, we have:

— TH(2) DIV o
YU ERFA<A

YU AL < A

FGsub-label

Proof of statement (2)
We proceed by cases on A.

1. A=b:
—— — FGsub-base
Y;UkEb<:b
2. A =ref 7:
FGsub-ref
YU kref 7 <:ref T
3. A=7 X T9:
—— IH(1) on 7y —— [H(l) on 7»
YUk Tm<im YUk Tm<im

YUk X1 <iTg X T

4. A=T1 + 719

——— TH(l) on 7y ———  TH(l) on
YUk Tm<im YUk Tm<im

YU bk 4+ <int+

Le
5. A=1 =5 1o

——  TH(1 ——— TH(2 _—
SO F <y Mo e M e

Z;\III—7'1€47'2<:7'1€472
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6. A = unit:

7. A=Va.7;:

8. A=c=r;:

3, W F unit <: unit

TH(1) on 75
YUk T<iT

¥, U VYo, <: Va.r;

TH(1) on 75
;UkFe = ¢ XU, ek m <1y

YSiUbkFe=T1<ic=>T
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C FG™

XU bkpeert

Yooy Uik e T YW,y e
XUk pcl XUk pcC

- FG™-FI —— FG-CI
50D e e 1 (Vo (Le, 7)) ST bpe ve s (¢ =5 7)°

ST bpe et (Va.(be, 7)) Fv{'ycs iUk pelUl C L[l /a) W[l o) \ 4
S0 T by ef] - 7[€ /a)

FG™-FE

E;\I/;Fl—pcue:(céﬁT)e >, Uke Uk pcUl Tl DIER e AN/
XU Fpceo: T

FG™-CE

DRV I A S R o
SO krUpe T _ XUk pcC/ B
; FG™-var n FG™-lam
LWL rhpea: T S0, bpe Azee s (11 47’2)2

ST e er: (1 57)  Thrpe:m  SiUbmN\ {0 SUFLCL
U bFpcer ea i1

FG™-app

0T bpee: (11 X 7'2)Z

YU by er: ;U Fpeea: YWk pecCd DI\ l
pe €Tl pe €2 ' T2 7 be = FG™-prod N FG™-fst
;0T Fpe (e1,€2) 1 (11 X T2)° 30Ty Ffst(e) :
;U Tpe ket (T ><7'2)e ;WD be:m
DIRVES / ;U pc T/
- FG-snd = - FG~-inl
30T Fpe snd(e) = 2 30T Fpeinl(e) @ (11 + 72)

50T Fpe e 1o
XUk pecCl

30T by inr(e) = (11 + 7'2)[

FG™-inr

50T kpee: (11 + TQ)Z 50Tz bpecer T 50Ty T2 Fpeue €2 :

-
FG™-case
30T by case(e, x.e1,y.€2) 1 T

YU kpeer T
E;\II;F}—pC/e:T' 0k pe T pe SUET < B XUk pcC _
FG™-sub 7 FG™-ref
Uil bpee: T 3,05 Fpe new e : (ref 1)

S0 T by e 0 (ref 7)° <7
ST N/

T P FG™-deref
) ) pe-t -

ST hpeer: (ref 7)° S0 Thpeer:r S0 ETN\ /4
YW bpeeri=e2: unit?

FG™-assign

Figure 14: Type system of FG™
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PRV Ay U RA< A

; FG™sub-label ———  FG ™ sub-base

20 F AL < A YU kb<:b

E;\III—7'1<:T{ Z;\If}—72<:7'é
FG™ sub-ref 5 - FG™ sub-prod

;W hkref 7 <tref 1 U kT X To <7y X Ty
E;\IJI—7'1<:T{ Z;\If}—7'2<:7'é B
7 7 FG™sub-sum
S50 b+t 4T,
S0k <iT Uk <7 UL T,
FG ™ sub-arrow FG ™ sub-unit

e/ . . . .
Z;\Ijl_Tl gTQ <ZT{ 47_2/ E,\IIFUnIt <:unit
SV T <iT a0 0L C 4,

FG™ sub-forall
S0 F Vo (le, 1) <:Vau (L, 72) e

SiUlkec = YW ek <:To S UL C L,

FG™ sub-constraint

[/
E;\I/}—cliiﬁ <:Cy =Ty

Figure 15: FG™ subtyping.

S,2UWHFAWF
—————— FG™-wif-label —————— FG ™ -wif-base ————— FG ™ -wif-unit
YU A WEF LU -bWF ;U b unit WE
9k WF XUk WF Uk WF XUk WF
n FG™-wff-arrow - FG™-wif-prod
S0k (1 55 ) WF LW (1 xm2) WE
50k WF S5, 9bmn WF FV(r)=0 B
FG™-wff-sum FG™-wif-ref
5,0k (1 + 1) WE ;U (ref 7) WE
Y,V 17 WEF _ XU, ckTWF a
FG™-wif-forall 7 FG™-wff-constraint
LU E (Y (be,T)) WE SiUE(c=S7)WF

Figure 16: Well-formedness relation for closedness of reference types in FG™
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Definition C.1 (Join label with type).
TulE{ AL T =Ab

Lemma C.2. VX, U, T e, T, pc.
STk pee:n, = 59 E7 N\ pe

Proof. Proof by induction on the typing relation

1. FG™-FI:
—— Given
XUk pcC/
Y0 F (Yau(le, 7)) N\ pe
2. FG™-FE:
7 IH
S0 F (Va.(le, 7))\ pe
By inversion m Given
S0k peC/ S0k Tl o) \ ¢
0T a] \ pe
3. FG™-CI:
———— Given
XUk pcC/
S0 F (e & )N, pe
4. FG™-CE:
n TH
YU F (e = 7)f N\ pe
By inversion ———— Given
XUk peC/ SU kT N/
XUk TN\ pe
5. FG™ -var:
Y UkrUpcE T
; Lemma C.3
XU kTN pe
6. FG™ -lam:
——— Given
XUk pcC/l
S0k (7 L Tg)e N pe
7. FG™ -app:
7 IH
YWk (1 5 )t N\ pe
By inversion ——  Given
YUk peC/ MUk 1o N\ 4
XU N\ pe
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10.

11.

12.

13.

14.

15.

FG™ -prod:

Given

XU kpeC/
YU F (1 x 1) N\ pe

FG™ -fst:
; IH
S0 F (X m)t N\ pe
By inversion ——— X Given
XUk pecC/ Uk N\ Y
XU N\ pe
FG™ -snd:
; IH
S0 F (X))t N\ pe
By inversion ——— X Given
YUk pecC/ MUk 1o N/
XU E 7\ pe
FG™-inl:
——— Given
YU bkpeC/
SV (11 +72) N\ pe
FG™ -inr:
——— Given
XUk pcC/
S50k (n +7'2)£ \{ pc
FG™ -case:
7 IH1
S0k (4 12)" N\ pe
By inversion TH2
Uk pcC ¥l S0 7N (peUd)
XUk TN\ pe
FG™ -sub:
XU E TN pe ¥, Wk pe C pe
7 7 Given
XU kTN pe YU R ET
Lemma
U7\ pe
FG™ -ref:
—— Given
XUk pcC/

;W b (ref 7)° N\ pe

25
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16. FG™ -deref:

IH
Wk (ref 7)° N\ pe
By inversion < Given
X;UkpcC Y U ETIN /Y
S0 TN pe

17. FG™ -assign:

7 IH
5,0k (ref 7)° N\ pe
XU kpeCl
S; U F unit® N\, pe

By inversion

Lemma C.3. VX; ¥, 7, pc, 7.
S, 0F7rUpc 7 = 507N\ pe

Proof. Say 7 = A% and 7' = A
From Definition C.1, 7 U pc = Aflspe

Given

S0 - Altre C A%
N WLy Upe C L
Z;\Iﬂ—pcgélg
S0 A N, pe

By inversion

Definition of

Lemma C.4. VX; ¥, 7, pc, 7.
SR N pe AU R < = 50T N\ pe

Proof. Say 7 = A% and 7/ = A’%

—r Given i 7 Given
A5 N pe ) ) S;UEAY < Als ) )
——————— By inversion ; By inversion
XUk peE L, DIRA O Ay
YUk pcC 4,

Definition of
20 Al N\ pe >

26



D FG ~ CG

Definition D.1 (Translation of FG™ types).

[Ar] =

unit

b

[rri] = VYa.(a C L) = CG a a [rr2]
[rr1] + [7r2]

[rra] x [7r2]

Ar = unit
Ar=b

Le
Ap =Tp1 = Tr2
Ap =711 + T2
Ap =Tp1 X T2

ref ¢; [A] Ap = ref A%

VaVo'.o/ Tl = CG o o [7] Ap =Vo.(le,T)

Va.(a Cle,c) = CGaa 7] Ap=c% 7
[rr] £ { Labeled ¢ [Ap] 77 =A%

Definition D.2 (Translation of type environment). Typing environments are translated as follows:

[07:=10
[ : 7T :=a: ], ]

The translation of expressions is defined by the judgment ‘ XUl bpe ep t TR ~ e ‘ Its rules are shown

below.

S0 by, e: 7~ e XUk pcC/
YU T ke e (Ve (be, 7))~ A(v(ret(Lbe(Aec))))

FI

YU T ke et (Va.(be, 7)) ~ec  FVE)ES S0k pelUl T L[/ 0T Ja] N\

S50 T bpe ef] : 7[€7 /] ~ A(v(bind(ec[]e, a.toLabeled(bind(unlabel a, b.b[][]e))))) e

U, el by, €07~ e XUk pcC/
50Tk ve: (e L )¢~ A(v(ret(Lby(ec))))

E;\II;FF,,CVG:(C%T)ZweC ;U ke Uk (peUd) C 4, iUk TN/
5,0, Fpe e o7~ A(v(bind(ec[]e, a.toLabeled(bind(unlabel a, b.b[]e)))))

S UkFrUpeC T
;U027 hpe z o 7~ A(v(ret(z)))

var

S5l :m by, e~ eo: YUk pcC/
pe;TF Azee: (7 L 79)¢ ~ A(v(ret(Lby(Az.ec))))

lam

Z;\I';Fl—pcelz(ﬁgm)[we01 YU T Fpe ea t 1~ eco Uk N\ PIERV

app
YW T Fpeer e i o~ ey

where
e = A(v(toLabeled(bind(ec[]e, a.bind(ecz[]e, b.toLabeled(bind(unlabel a, c.(c b)[]®)))))))
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;Ui bpeer i1~ e ;U bpe eg 1 T2 v eco XUk pcC/
50T Fpe (e1,e2) 1 (11 % 79)t A(v(bind(eci[]e, a.bind(ecz[]e, b.ret(Lby(a, b))))))

prod

YU Thpee: (mxm)wes TUFm N/

fst
S W; T by fst(e) : 71 ~ A(v(bind(ec[]e, a.toLabeled(bind(unlabel a, b.ret(fst b))))))

YU Fpe et (10 X 72)f ~ eo Uk \( 4
X;U;T Fsnd(e) : 71 ~ A(v(bind(ec|]e, a.toLabeled(bind(unlabel a, b.ret(snd b))))))

snd

;Ui bpe et~ eo YUk pcC/
;T by inl(e) : (11 + 72)° ~ A(v(bind(ec[]e, a.ret(Lbe(inl(a))))))

inl

;Ui bpe e~ ec YUk pcC/
5,00 by inr(e) = (11 + 75)¢ ~ A(v(bind(ec[]e, a.ret(Lby(inr(a))))))

inr

50T Fpeer: (i +m) ~ex 5,U T 21 Fpeue e2 0 T~ eco S;UiT, y T bpee €31 T~ ecs

case
;0T by case(er, z.e2,y.€3) 1 T~ e

where

e = A(v(bind(ec1]]e, a.toLabeled(bind(unlabel a, b.ret(case b, x.ec2[]®, y.ecsl]e))))))

;0T bpe €107~ eo ;U F pe C pc Uk <
50T Fpe e 7~ A(v(bind(ec[]e, a.ret(a))))

sub

YUl Fpee: Al vwee B0 F peC 4,
YW T Fpe new e : (ref A%)% ~s A(v(bind(ec[]e, a.toLabeled(new (a)))))

ref

50T Fpe e (ref Afi)eo s eq 0 Al < A S A NV
S ;T Fle : A% ~» A(v(bind(ec[]s, a.toLabeled(bind(unlabel a, b.1)))))

deref

0T Fpeeq 0 (ref N PIRRVES N T Al s eco 20 E AN L,

YUl by e i=ea: unite ~~ N

assign

where
e = A(v(toLabeled(bind(ec1[]e, a.bind(ecz[]e, b.bind(unlabel a, c.c :=b))))))

Theorem D.3 (Type soundness, FG~ ~» CG). Vpc, 3, U, T e, 7.
;U T bpe et 7 is a valid typing derivation in FG~ —
360.
Uil Fpee: T~ ec A
50T F ec : Va.(a C pe) = CG a o [7] s a valid typing derivation in CG

Proof. Proof by induction on the ~~ relation
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1.

FI:

Ty =Vas.(ag C pe) = CG ag ay (Labeled ¢ (Va.Va' .o/ C ¢, = CG o' & [1]))
Ti11 = (a2 C pc) = CG ag ag (Labeled £ (Va.Vo'.o/ C l, = CGa/ o [7]))
Ty 2 = CG ay as (Labeled ¢ (Va.Vo'.o/ C L, = CG o' o [1]))

Ty =Vai.(a1 Cle) = CGag o [7]

Ty1 =VaNog.(ag Cl) = CGay aq [7]

Ty.5 = (Labeled ¢ (YoVay.(ay C L) = CG ay oy [7]))

H a Ty

S5, U 0] ke : Ty !
¥, az,0;V, (ag C pe); [T] - Aeo = To
¥, a9V, (ag C pe); [T] F Lbe(Aec) : Tao
3, a2; W, (ag C pe); [T] F ret(Lbe(Aec)) : Tio
s ag; U; [T] F v(ret(Lbe(Aec))) : Th 1
¥ 0 [T] F A(v(ret(Lbe(Aec)))) : Th

CG-FI, Weakening
CG-label

CG-ret

CG-CI

CG-FI

FE:

T) =Vas.(az C pc) = CG ag ag [7[¢"/d]]

Tia = (a2 E pc) = CG ag az [T[¢"/a]]

Tio=CGazay [r[t"/a]]

Ty =Vay.(a1 C pe) = CG ay a; (Labeled ¢ (Va.Vo'.o/ Tl = CG o/ o [7]))
To1 = (a3 C pc) = CG az as (Labeled ¢ (Va.Vo'.o/ C l, = CGa/ o [7]))
Ty2 = CG a3 ag (Labeled £ (Va.Vo/.o/ C 4, = CG o’ o [7]))

T3 = (Labeled ¢ (Va.Vo'.o/ El. = CG o/ o [1]))

T3 =CGazay Ul ((VaVo'.o/ Cl, = CGa' o [7]))

T51 =VaVod'.o' Tl = CGa o [7]

T30 =Va .o CL[l"/a] = CG o o [r][¢"/a]

T3 = (ap Ul) C L[l /o] = CG (ap U L) (ap U L) [7][¢"/c]

T3.4 = CG (a2 U L) (a2 U L) [r][¢" /]

Tys = CG (as) (as 1) [7][¢"/ol

(c2)
T36 = CG () (g U ¢) Labeled £ L1 ¢, A[¢" /]
T57 =CG (042) (042) Labeled ap LIZ LI Y, A[ﬁ”/a]
T35 = CG (az) (a2) [7][¢"/a]
P6:
Lemma C.2

pc E

P5:
CG-var
E, [eDHN \If7 (O[Q E pC), [F]] ,a 1—‘2_37 b : T3.1 F b : Tg.l CG-FE
Y, a0 U, (a0 T pe); [T],a: Tos,b:Tsq b b[] : T, i
ag; V¥, (ag E pe); [T ,a: Tos 31 0[] 1 T32 COFE

Y003, (ag & pe); [I],a: To3,b: T30 FO[][] : T3.3
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P4:

CG-var
Zv Q2] \:[17 (QQ E pC), ﬂ:]-—‘]] ,a T2_3 '7 a T2.3

CG-unlabel
Y, a0; P, (ag C pe); [T ,a : Tos - unlabel a : T tiabe
P3:
P5
P4 CG-FE
X, a0, (O‘2 cE pc); [[F]] va:Ty3,b:T31 F bH H' 2134 CCbind
Ea 2, \I]a (0(2 E pC); [[F]] ,Ql T2'3 [ bind(unlabel a, bb[] []O) : T3,5
P2:
IH
Y, a0V, (az E pe); [T Fec:Tn
Z7 23 lI/a (a2 C pC), HFH H 60[] : T2.1
Y, a0; ¥, (a2 C pe); [T] - ecllo: To.z
P1:

P2
P3

L D.5
Y, a0; 0, (ag E pe); [I'],a: Ta.s F bind(unlabel a,b.b][]e) : T5.6 ema

CG-toLabeled P6

2, a9 ¥, (g C pe); [I'],a: Tos - toLabeled(bind(unlabel a, b.b[][]e)) : T5.7

Y, a0; ¥, (g C pe); [I] ,a : Tos - toLabeled(bind(unlabel a, b.b[|[]e)) : T5.5
CG-bind

¥, a9; ¥, (ag C pe); [I] + bind(ec|[]e, a.toLabeled(bind(unlabel a,b.b[][]e))) : T35
Lemma D.8

3, a9; U, (ag E pe); [T] F bind(ec|]e, a.toLabeled(bind(unlabel a, b.b[][]e))) : T} 2

Main derivation:

P1
Y, a9; U [T'] F v(bind(ec[]e, a.toLabeled(bind(unlabel a,b.b]][]e)))) : Th.1
;U [T] F A(v(bind(ec[]e, a.toLabeled(bind(unlabel a, b.b][]e))))) : T3

CG-CI
CG-FI

3. CL:
Ty =Vas.(az C pe) = CG ag ay (Labeled £ Vas.(a3 E £, ¢) = CG a3 az [7])
T11 = (a2 E pc) = CG ay oz (Labeled £ Vag.(a3 C 4., c) = CG ag a3 [7])
T2 = CG ag ay (Labeled ¢ Vas.(as C £, c) = CG az as [7])
Ty 5 = Labeled ¢ Vas.(a3 C £e,c) = CG az as [7]
Ty =Vai.(a1 C L) = CGag oy [7]
To1 =Vai.(a; Cle,c) = CG oy oy [7]

Main derivation:

Y, 00,0, (a2 C pe); [T Fec: To
Y009, (ag Cpe); [T Fec: Taa
¥, a2; ¥, (ag C pe); [I] = Lbe(ec) : Trs
¥, a0; U, (ag C pe); [T] F ret(Lbe(ec)) : Th o
3, ag; U [T] F v(ret(Lbe(ee))) : Th 1
Y05 [T - A(v(ret(Lbe(e)))) : Th

Weakening
CG-label

CG-ret
CG-CI

CG-FI
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. CE:

T, =Vas.(a3 C pe) = CG az ag [7]

Ti11= (a3 Cpc) = CGasza; [7]

T2 =CGasasz [7]

Ty =Vay.(a1 E pe) = CG ay oy (Labeled £ Vag.(ay E £e, ) = CG ag ag [7])
To1 = (a3 C pc) = CG az ag (Labeled £ Vas.(ag C le,c) = CG ag az [7])
Ty = CG a3 asz (Labeled £ Vay.(ag C 4, ¢) = CG ay ag [7])

Ty5 = (Labeled £ Vas.(ag C 4, ¢) = CG ag as [7])

To4=CGasaz Ul (Vas.(ag CE Lle,c) = CG az as [7])

Tos = (Vag.(ag C e, c) = CG az as [7])

Tos = (((asUl) Cle,c) = CG (agUL) (as?) [7])

To7 = (CG (az U ) (ag LU O) [7])

Tzs = (CG (a3) (az U f) [7])

To9 = CG (a3) (a3 U L) Labeled fLI ¢, A

T3 = CG («3) (ag) Labeled az UL, A

T3.1 = CG (a3) (a3) Labeled £ U4, A

P4:

CG-var

Y,a3;9, (a3 Epe);[I],a:To3,b:TosFb:Tos

CG-FE
Y,a3;9, (a3 T pe); [T],a : Tos,b: Tos F 0[] : Tog

Given, Weakening

Y,a3; 9, (a3 Cpe) F (pe UL E L)
Given, Weakening
Y, a3; 0, (a3 E pe) b e Y, as; 0, (as Cpe) F (az UL T L)

CG-CE
Z7a3; ‘I’, (043 E pC); [[F]] ,Qa 7—’2.37 b : T2'5 [ b[]. . T2'7

P3:
CG-
a5V, (a5 Cpe)i[[],a: Tosba:Tog
CG-unlabel P4
¥, a3, (a3 E pe); [T],a : Te.3 - unlabel a : Ts 4 CGbind
Y, a3; 9, (a3 E pe); [I'],a: Ta.s F bind(unlabel a,b.b[]e)) : To g o
P2:
IH
Y, a3, (a3 C pe); [T Fec : Ta COTE
¥, a3, (a3 Cpe); [T Fecl] : T
P1:
P2
CG-CE
27 a3; \Ilv (013 C pc); [[F]] F GC[]. : T2»2
P3
Lemma D.5

Y, a3; W, (a3 C pe); [I'],a : Ta.s F bind(unlabel a, b.b[]e) : T5 9
Y, a3; 0, (a3 E pe); [T'] ,a : Te.3 F toLabeled(bind(unlabel a, b.b[]e)) : T3
Lemma C.2

CG-tolabeled

pc &
¥, a3; 9, (a3 E pe); [I'],a : Ta.s b toLabeled(bind(unlabel a, b.b[]e)) : T3 1
3, a3; 0, (ag C pe); [T] F bind(ec|[]e, a.toLabeled(bind(unlabel a, b.b[]e))) : T 2

CG-bind, Lemma D.5
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Main derivation:

P1
3, ag; U [[] + v(bind(ec]]e, a.toLabeled(bind(unlabel a,b.b[]e)))) : T1 1
;05 [T] F A(v(bind(ec|]e, a.toLabeled(bind(unlabel a, b.b[]e))))) : T}

CG-CI
CG-FI

.ovar:

T5 =Vo.(a C pc) = CGa a [7]
Ty =(aCpc)=CGaa [r']

ThpeC 7 o

ca =k Lemma D.4
S, ;0 [T],z: [r]Fa: 7] et [7] <: [] a2

Y, ;9 [C], 2 : [r] Fret(z) : CG aa [7]

CG-ret, CG-sub

S50 [T], 2 : [7] F v(ret(x)) : Ty ce-cl OGP
5,0 0], 2 [7] F Alv(ret(z))) : T
. lam:
T} = Vag.(az C pc) = CG az as (Labeled ¢ ([71] — Yag.(a1 T 4.) = CG oy aq [12]))
Ty = (a2 C pe) = CG ap ag (Labeled ¢ ([11] — Vag.(ar T 4e) = CG aq oy [12]))
T3 = CG g ag (Labeled ¢ ([r] — Vai.(aq C L) = CG g aq [12]))
T5.1 = Labeled ¢ ([71] = Vaq.(a1 E£.) = CG ay a1 [72])
Ty = ([71] = Var.(a1 E L) = CG ay a1 [72])
T5 = (Vag.(a1 E4.) = CG ay a1 [72])
Y000, (ag T pe); [T,z : [n] Fec:Ts H
Y a0V, (ag E pe); [T] F Az.ec : Ty CG-lam OCiabel
Y, ag; 0, (ag C pe); [T F Lby(Az.ec) : T3.1 CCoret
¥, a0, (ag C pe); [T] F ret(Lbe(Az.ec)) : T; .
Y, a0; U [T] F v(ret(Lbe(Az.ec))) : T OGP

Y, a9, (ag C pe); [T] F A(v(ret(Lbe(Ax.ec)))) : Ty

. app:

T, =Vaz.(a3 C pc) = CG az ag [2]

Ty = (a3 C pe) = CG az ag 2]

T35 =CG az as [2]

T, =CG as az U/ [Labeled 2114, A]

T5 = CG as ag (Labeled ¢ ([11] — Va.(a C £.) = CG a a [2]))
Ts = (Labeled ¢ ([71] = Va.(a T l.) = CG a a [r2]))

T61 =CGazag UL ([n] = Va.(a C L) = CGaa [r2])

T2 = ([n] = Va.(a C L) = CGCaa [2])

T3 = (Va.(aCl.) = CGaa [r])
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Toa = (((azU ) C L) = CG (azU ) (asUO) [r2])

Ts5 = (CG (g U Y) (g LU L) [72])

T6.6 = CG (a3) (az U ) (Labeled (£UL¢,) Ag)

Ty7 = CG (as) (as) (Labeled (a3 LU £,) Ay)

Ts.s = CG (a3) (a3) [72]

T7 =Vay.(a1 C pc) = CG ay ay (Labeled ¢ ([71] = Va.(a C 4.) = CG a a [2]))
Ts = (a3 C pe) = CG a3 a3 (Labeled £ ([11] = Va.(a C 4.) = CGC a a [r]))
Ty = Vas.(as C pc) = CG ag as []

Ty0 = (a3 C pe) = CG ag ag [m1]

T = CG asz as [n1]

P4:

CG-unlabel
Y, a3V, (a3 C pe); [T],a: Ts, b : [11] F unlabel a : Ts

CG-app

E,Oég;\I/,(Olg E pC), [[F]] ,a Tg,b: [[7'1]] ,C: T6_2 H (C b) : T6_3
Y,a3; ¥, (a3 C pe); [I],a: Ts,b: [11] ,¢: T2 (e b)]] : To.a

——— Given and Lemma C.2 Given
az CpcC/ =z

(6 %3 e E ée
Y, a3; 0, (a3 C pe); [I],a: T,b: [11],c: Toa b (cb)[]o: Tos
3, a3; 9, (a3 E pe); [T] ,a: Ts, b : [11] F bind(unlabel a,c.(c b)[]e)) : Ts.¢

CG-FE

CG-CE

CG-bind, Lemma D.5

P3:
H2

Y a3; 0, (a3 C pe); [T],a:Ts b eca : Ty !
Y as; 0, (ag Epe); [T],a:Ts F ec2]] : Tho
Y, a3; 0, (a3 C pe); [T ,a: Ts - ecal]e : Tia
P4
Y, a3, (a3 C pe); [T],a: Tg,b : [11] F toLabeled(bind(unlabel a,c.(c b)[]e))) : Ts.7
Y, a3;V, (ag E pe); [T ,a: Ts, b : [11] F toLabeled(bind(unlabel a,c.(c b)[]e))) : Ts.s

CG-FE
CG-CE

CG-tolabeled

CG-bind
S, as; U, (a3 C pe); [T],a : Tg - bind(eca|]e, b.toLabeled(bind(unlabel a, c.(c b)[Je))) : To.s "
P2:
IH1
Bag W (a3 Cpeji [ eca 1 Tr o
Y as; 0, (a3 Cpe); [T F ec[] : Ts
P1:
P2
CG-CE P3
27 asg; \117 (O[g C pC), HFH F 601[]. : T5
- - - CG-bind
Y, as; W, (a3 C pe); [I] F bind(ecq[]e, a.bind(ecs[]e, b.toLabeled(bind(unlabel a, c.(c b)[]®)))) : Ts.s
Main derivation:
P1
CG-CI

3, a3; U3 [I] F v(bind(eci]]e, a.bind(eca[]e, b.toLabeled(bind(unlabel a, c.(c b)[]e))))) : T

;U [T] F A(v(toLabeled(bind(ec1[]e, a.bind(ecz[]e, b.toLabeled (bind(unlabel a, c.(c b)[]e))))))) : T} CeH
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8. prod:
Ty =Vas.(a3 C pc) = CG as a3 (Labeled ¢ [r1] x [2])
Ty = (a3 C pe) = CG ag asz (Labeled ¢ [r1] x [2])
T5 = CG a3 as (Labeled ¢ [71] x [72])
T51 = Labeled ¢ [1] X [72]
Ty =Vai.(a1 C pe) = CG oy a; ]
Tyq = (a3 E pc) = CG az ag [71]
Tio=CGasas [m]
Ts =Vag.(az C pe) = CG ag ay [12]
Ts51 = (a3 E pc) = CG az ag [2]
T5.2 = CG a3 as [m]

P3:
TH2
Y, a3, (ag E pe); [T],a: [11] - eca: Ts COTE
Y,a3; ¥, (a3 & pe); [T ,a: [11] Feca[] : Ts.a
P2:
3 CG-CE
a3, (a3 Cpe); [I],a: [1] Fecz(lo: T5.2
CG-prod
a0, (a3 E pe); [T],a: [m],b: [r=] F (a,b) : ([r1] % [=])
CG-label

Y,as;0, (a3 E pe); [T],a: [m1],b: [r=] F Lbe(a,b) : T34
S, a3; 9, (ag E pe); [T] ,a: [11],b: [r2] F ret(Lbe(a, b)) : Ts
Y, a3; 0, (a3 C pe); [T, a: [71] F bind(eca[]e, b.ret(Lbe(a,b))) : T

CG-ret

P1:

IH1
Y as; 0, (a3 E pe); [T Fect : Ty

Y,a3; ¥, (a3 & pe); [I] Fecr[] : Taa
Y39, (a3 & pe); [IT] Feci[]e : Tuz
Y, as; U, (a3 C pe); [T] F bind(ec[]e, a.bind(eca]]e, b.ret(Lby(a, b)))) : T3

CG-FE

CG-CE P2

CG-bind

Main derivation:

P1
3, a3; U [I] F v(bind(eci]]e, a.bind(eca[]e, b.ret(Lbe(a,b))))) : Tz
;05[] F A(v(bind(ect][]e, a.bind(ec2]]e, b.ret(Lbe(a, b)))))) : Ty

CG-CI
CG-FI

9. fst:
Ty =Vag.(az C pe) = CG ag ay [11]
T11 = (a2 E pc) = CG az as 7]
T2 =CGasas [r]
Ty = Vay.(a1 C pc) = CG ay ay (Labeled ¢ 1] x [7=])
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10.

To1 = (a2 C pe) = CG ag ay (Labeled £ [1] x [72])
Tr0 = CG ag ay (Labeled £ 1] x [2])

Ty.5 = Labeled ¢ [1] X [72]

T3 = CG as (ag U ) [m] x [2]

T31 =[] x [72]

Ty =CG (e U¥) (ag U ) [71]

T5 = CG (042) (042 (] é) [[Tlﬂ
= CG (ag) (ag U L) (Labeled LI 4, A)
T7 = CG (2) () (Labeled ao L€ LI L, A)
P3:
CG-unlabel
Y, a0; U, (g C pe); [T],a : To.3 F unlabel a : T
CG-fst
270[2;‘117(C¥2 Epc);[[F]],a:Tg,g,b:Tg,l }_fSth [[Tl]] cG t
Y, a0, (ag C pe); [T ,a: To.3,b: Ts1 b ret(fst b) : Ty e CCbind
S, a0 U, (aa C pe); [D],a : Tos - bind(unlabel a, bret(fst b)) : T5
P2:
IH
Y, a0, (ag C pe); [T Fec : T COTE
Y a2 W, (a2 Cpe); [ITF ecl] : T2a
P1.1:
P3
Lemma D.5

¥, a9; 9, (az E pe); [I'],a : To.s F bind(unlabel a, b.ret(fst b)) : Tg

CG-tolabeled
S, a2; U, (as C pe); [T],a : Tos I toLabeled(bind(unlabel a, bret(fst b)) : Ty

Lemma C.2

C
pe= Lemma D.5
¥, a0; ¥, (a2 E pe); [I'],a : Ta.s b toLabeled(bind(unlabel a, b.ret(fst b))) : T1 .2
P1:
P2
CG-CE P1.1
27042;\1/,(012 Epc);[[F]] I—ec[]o ZTQ.Q .
- - CG-bind
¥, ag; U, (ag C pe); [I'] F bind(ec]]e, a.toLabeled(bind(unlabel a, b.ret(fst b)))) : T1 .2
Main derivation:
P1
- - CG-CI
3, a9; U, (ag C pe); [T] F v(bind(ec[]e, a.toLabeled(bind(unlabel a, b.ret(fst b))))) : T 1 QLTI
;U [I] F A(v(bind(ec|]e, a.toLabeled(bind(unlabel a, b.ret(fst b)))))) : Ty i
snd:

T} = Vas.(az C pc) = CG ag as [12]

T11= (a2 E pc) = CG as as [12]

T2 =CGas az [2]

Ty = Yay.(a1 T pe) = CG ay ay (Labeled £ ] x [72])
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11.

To1 = (a2 C pe) = CG ag ay (Labeled £ [1] x [72])
Tr0 = CG ag ay (Labeled £ 1] x [2])

Ty.5 = Labeled ¢ [1] X [72]

T3 = CG as (ag U ) [m] x [2]

T31 =[] x [72]

Ty =CG (aa U¥) (ag U ) [72]

T5 = CG (042) (042 ] é) [[TQH
= CG (ag) (ag U L) (Labeled LI 4, A)
T7 = CG (2) () (Labeled ao L€ LI L, A)
P3:
CG-unlabel
Y, a0; U, (g C pe); [T],a : To.3 F unlabel a : T
CG-snd
E,ag;\:[/,(ag EPC);[[F]],GZTQ_g,bZTg_l l‘Sﬂd bl [7‘2]] CG ¢
Y, a0, (ag C pe); [T ,a: Ta3,b: T4 F ret(snd b) : Ty e CCbind
S, a2V, (as C pe); [U],a : Ta.s - bind(unlabel a, bret(snd b)) : T5
P2:
IH
Y, a0, (ag C pe); [T Fec : T COTE
¥, a0; ¥, (ag T pe); [T Fecl] : T
P1.1:
P3
Lemma D.5

Y, a0; WU, (ag E pe); [I'],a : Ta.s F bind(unlabel a, b.ret(snd b)) : Tg

CG-tolabeled
Y, a3V, (ag C pe); [I'] ,a : Te.3 - toLabeled(bind(unlabel a, b.ret(snd b))) : T canee

Lemma C.2
pc
Lemma D.5
¥, a0, (as E pe); [I'],a : To.s b toLabeled(bind(unlabel a, b.ret(snd b))) : T} 2
P1:
P2
CG-CE P1.1
27042;\1/,(012 Epc);[[F]] I—ec[]o ZTQ.Q .
- ; CG-bind
¥, ag; U, (ag C pe); [I'] F bind(ec|]e, a.toLabeled(bind(unlabel a, b.ret(snd b)))) : T1.2
Main derivation:
P1
- ; CG-CI
Y, a9; U, (g C pe); [T] F v(bind(ec[]e, a.toLabeled(bind(unlabel a, b.ret(snd b))))) : T1.1 CGLFI
¥;W; [I'] - A(v(bind(ec[]e, a.toLabeled(bind(unlabel a, b.ret(snd b)))))) : T )
inl:

Ty = Vas.(az C pc) = CG ag as (Labeled £ ([71] + [2]))
T11 = (a2 E pc) = CG ag ay (Labeled £ ([71] + [2]))
T12 = CG ay as (Labeled £ ([71] + [2]))

Ty 5 = Labeled ¢ ([71] + [2])
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12.

Ty =Vai.(a1 C pe) = CG oy a; ]
To1 = (a2 C pc) = CG ag ag 7]
T2_2 = CG Qo (9 [[7'1]]

P3:
- CG-inl
¥, a0; 0, (a2 Cpe); [I],a: [m] Finl(a) : [71] + [72]
P2:
IH
3, a0V, (ag C pe); [T Fec : T CGFE
Y, a0, (ag C pe); [T F el : T2a
P1:
P2
CG-CE
¥, a3, (az Cpe); [T Feclle: Thz
3 CG-label
a9V, (an C pe); [[],a: [n] F Lbe(inl(@)) : Thg  0°
- CG-ret
Y, a0 U, (g C pe); [T],a: [m1] F ret(Lbe(inl(a))) : T1.2
CG-bind

Y, a0; U, (g C pe); [T] F bind(ec (e, a.ret(Lby(inl(a)))) : T1.2
Main derivation:

P1

3, a9; U [T] F v(bind(ec(]e, a.ret(Lby(inl(a))))) : T1 1 cacl

CG-FI
;s [I] - A(v(bind(ec|[]e, a.ret(Lby(inl(a)))))) : Ty
inr:
T} = Voag.(az C pc) = CG ag ag (Labeled ¢ ([r1] + [72]))
Ti1= (042 C pC) = CG ag s (Labeled Y4 ([[Tl]] + [[TQ]]))
T1_2 =CG Qo (V9 (Labeled Y4 ([[7'1]] + [[7-2]]))
T1'3 = Labeled é ([[Tlﬂ + [[TQH)
Ty =Vai.(a1 C pe) = CG ag oy [72]
T2_1 = (042 E pC) = CG a9 (9 [[7'2]]
TQ'Q = CG Qo (9 [[7'2]]
P3:
CG-inr
Y, 00,0, (a2 C pe); [T],a: [r=] Finr(a) : [m1] + [72]
P2:
IH
S, a0, (ag C pe); [T Fec : Ta
CG-FE
Y, a0 ¥, (a2 T pe); [T Fecl] : Toa
P1:
P2
CG-CE
005V, (g C pe); [T Feclle: Too
3 CG-label
S, a2 U, (s C pe); [[],a: [ma] F Lbg(inr(@)) : Thg — °
- CG-ret
3, a0V, (ag C pe); [T],a : [r=] - ret(Lbe(inr(a))) : T2
CG-bind

2,023 ¥, (ag C pe); [I'] F bind(ec[]e, a.ret(Lby(inr(a)))) : T1.2
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Main derivation:

P1
Y, a0; ¥ [T] F v(bind(ec[]e, a.ret(Lby(inr(a))))) : Th.1
;U [T] F A(v(bind(ec|]e, a.ret(Lby(inr(a)))))) : Ty

CG-CI
CG-FI

. case:

Ty =Vay.(as Cpe) = CG ay oy [7]

Ti1= (s Cpc) = CGayay [7]

Ty : Vai.(a1 C pe) = CG ay ay (Labeled £ ([11] + [7=]))
To1: (g C pe) = CG ay oy (Labeled £ ([r1] + [72]))
Too: CG ay oy (Labeled ¢ ([r1] + [72]))

Ty.5 : (Labeled ¢ ([71] + [72]))

To4:CGay (g UL) ([11] + [=2])

Ty5 : ([11] + [72])

T3 =Vas.(ag E (pcU L)) = CG ag as 7]

T31=((as Ul C (pcUl)) = CG (ag U L) (ag U ) [7]
T32 = CG (ag U L) (as L 0) [7]

Ty =Vasz.(az3 C (pcUl)) = CG az ag [7]

Ti1 = (s U0 C (pcll)) = CG (ag U L) (ag UE) [7]
Tyo=CG (s UL) (as L) [7]

Ty3 = CG (ag) (aqg U¥) (Labeled £ ¢, A)

Tia = CG (cua) (cva) (Labeled ay U £ LI €, A)

Ty5 = CG (o) () [7]

Ey = case b, z.eca]e, y.ecs[]e

Po6:
IH3

Y o439, (ag T pe)i[T],a: Tos,b: Tos,y: [12] Fecs : Ty
04,9, (as Cpe);[I],a:Tos,b: Tos,y: [12] Fecs[] : Ta

CG-FE

P5:

TH2
Z,O[4; \IJ, (OZ4 E pC); [[1—‘]] ,a T2.37b : T2A57.Z‘ . [[Tlﬂ [ eco . T3

CG-FE
Y, 04,9, (s Cpe);[I],a:To3,b: Tos,x: [11] Fecal] : Tz

P4.

CG-var
a5, (as Cpe);[T],a:To3,b:TosFb:Tos

P5

Y 043, (ag T pe); [T],a: Tos,b: Tos,x: [11] Fecalle: Ts.2
P6

Y,a4;V, (ag T pe); [T],a: Tog,b: Tos,y - [r2] Fecsl]e: Tyo
Y, 04;U, (g C pe); [T ,a: Tas,b: Tos - case b, z.ecal]e, y.ecsl]e : Tyo

CG-CE

CG-CE

CG-case
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14.

P3:

CG-unlabel
Y, a4, (g E pe); [T],a: To.3 - unlabel a : Ts 4

P4
Y, a; U, (g C pe); [T],a: To3,b: Tos - case b, z.ecal]e, y.ecsl]e : Tus
Y, a4V, (a4 C pe); [T, a: To.s F bind(unlabel a, b.ret(case b, z.eca[]e, y.ecs[]e)) : Tas

CG-sub, Lemma D.5
CG-bind

P2:
IH1
DoagV (@ Cpejifeci: Ty o0
L, 045V, (g E pe); [T]F ecnl] : Taa
P2.0
P3
; CG-tolabeled
Y, a4; VU, (aq E pe); [I'],a: Ta.s b toLabeled(bind(unlabel a, b.ret(E1))) : Ty
P2.1:
P2.0 Lemma C.2
pc &
- Lemma D.5
Y, a4V, (a4 E pe); [I'],a: To.s b toLabeled(bind(unlabel a, b.ret(E1))) : Ty s
P1:
P2
3,043 W, (g Cpe); [T F ecyl]e : T ce-cE P2l
) 45 ¥, = ) s L2,
4 4 =D C1 2.2 CC-bind

Y, aq; ¥, (a4 C pe); [T] F bind(ec[]e, a.toLabeled(bind(unlabel a, b.ret(E1)))) : Tys

Main derivation:

CG-CI
Y, ayg; U [T] F v(bind(ec[]e, a.toLabeled(bind(unlabel a,b.ret(E1))))) : T1 1

;0 [T F A(v(bind(ect([]e, a.toLabeled(bind(unlabel a, b.ret(E1)))))) : Th CG-H

sub:

T} = Vag.(az C pe) = CG az ay [7]
T11= (a2 E pc) = CG ay az [7]

Ty =Vay.(a1 C pd’) = CG oy aq 7]
To1 = (aa E pc’) = CG ag as [7']
Too=CGas ay [7']

T3 =CG az as [7]

P2:
H

I
Y, a0, (ag C pe); [T F ec : Ta

CG-FE
¥, a2; ¥, (ag C pe); [T] Fecl] : Toa
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P1:

Y, a0V, (ag E pe) Fas C pe ¥ a3 ¥, (g C pe) - pe C pc’

P2 :
¥, a0; VU, (a2 E pe) Fag C pe
CG-CE
Y, 003V, (g & pe); [IT] Feclle: Taa
. Y,aV, (aa Cpe) 7 Cr L D4
Y, a0, (ag C pe); [T] ,a: [7]+Fa: 7] e Y, a0, (a C pe) F [7] <: [7] crmma s
S, 02: ¥, (02 C po) [T, a: [ Fa: [7]
7 CG-ret
Y, a0V, (ag E pe); [T],a: [r']F ret(a) : T3 CCbind
Y, a9; U, (g C pe); [T] F bind(ec]]e, a.ret(a)) : T3 o
Main derivation:
Pl CG-CI
3, 03 U [T] F v(bind(ec[Je, aret(a)) : Tiy, o
¥, 0; [ - A(v(bind(ec[]e, a.ret(a)))) : Ty )
15. ref:
T) =Vas.(az C pe) = CG ag ay Labeled ¢, ref ¢; [A]
T11 = (g C pc) = CG ay ag Labeled 4, ref ¢; [A]
TLQ =CG Qg Qg Labeled ‘go ref £1 IIA]]
T, = Val.(ozl C pc) = CG o o Labeled fi [[A]]
To1 = (042 C pC) = CG s ag Labeled fi [[AH
T2_2 =CG Qo (V9 Labeled gz [[A]]
Ty5 = Labeled ¢; [A]
T3 =CG Qg O (ref & [[A]])
T3_1 =CG (0% Eo (ref El [[AH)
T3,2 =CG Qg Qg Labeled go (ref Ei [A]])
P3:
CG-var
Y000, (aa Cpe);[T],a:Tesbta:Tss
7 Lemma C.2 ag C pc
Y, a0, (ag C pe) B A% N pe
2,&2; \117 (062 E pC) F Q2 E E’L
CG-ref
Y, a0, (aa E pe); [I'],a:Tos b new (a) : T3
P2:
IH
Y, a0, (ag C pe); [T Fec : Ta COTE
Y a2 W, (a2 Cpe); [ITF ecl] : Toa
P1:
P2
CG-CE
Y00V, (a2 C pe); [T Fecllo: Too
P3
CG-sub

Y, a0 U, (g C pe); [T],a: Tos b new (a) : T34
Y, a0; W, (ag E pe); [T],a: Tas b toLabeled(new (a)) : T5.2
¥, a9V, (ag C pe); [T] F bind(ec|[]e, a.toLabeled(new (a))) : T35

CG-tolabeled

CG-bind
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16.

Main derivation:

deref:

P1
Y, a9; U [T] F v(bind(ec[]e, a.toLabeled(new (a)))) : Th.1
;U [T] F A(v(bind(ec|[]e, a.toLabeled(new (a))))) : Ty

CG-CI
CG-FI

T, = Vag.(az C pe) = CG az ag Labeled ¢ [A']
T11 = (a2 C pe) = CG ag ag Labeled ¢ [A]

Ti5 = CG az as Labeled £ [A]

Ty = Vay.(a1 C pe) = CG a; aq Labeled ¢, ref £; [A]
T5.1 = (a2 E pc) = CG ag ay Labeled ¢, ref ¢; [A]
To2 = CG ay g Labeled ¢, ref ¢; [A]

Ty.5 = Labeled ¢, ref ¢; [A]

To.4 = CG ag ag UL, ref ¢; [A]

Ty = ref ¢; [A]

Ty = CG (s L £,) (aa U £,) Labeled ¢; [A]

Ty = CG (a2) (g U L,) Labeled ¢; [A]

Ty1 = CG (az2) (a2 U 4,) Labeled £; [A]

Ts = CG (a2) (v2) Labeled £, L £, [A']

P5:
<7 Given - é/ Given
U AY N L, YU E Al < A
Definition of . By inversion
BYELEL TG,
W H L E 4 _—
Y, a0; 0, (OéQ C pc) Fe, C g; eakening
P4:
Al < N Given A = A Given
P3 LTl By inversion A A By inversion
i Lemma D.4
¥, a9; U, (g C pe); [T, a : Tas - bind(unlabel a,.1b) : Ty, R
Y, a0; W, (ag C pe); [I'],a : T3 - toLabeled(bind(unlabel a,b.1b)) : Ts -tolabele
P3:
CG-unlabel
L, a3 W, (o2 Epe); [T, a: To.s - unlabel a : Th 4
CG-deref
Y, a0 W, (aa T pe); [I],a:To3,b:To5 Flb: Ty b
Y, a0; ¥, (g T pe); [T, a: To3 b bind(unlabel a, b.1b) : Ty “om
P2:

IH
S, a0V, (ag C pe); [T Fec : Ta

CG-FE
X a0V, (a2 T pe); [T Fecl] : Toa

41



17.

P1:
P2

Y, a0V, (ag E pe); [T Feclle: Too
¥, a0, (ag C pe); [T],a : Te.3 F toLabeled(bind(unlabel a, b.10)) : Ty o

CG-CE P4 P5

CG-bind
3, as; U, (as C pe); [L] F bind(ec[Js, a.toLabeled(bind (unlabel a,b.10))) : Tr.o
Main derivation:
P1
- - CG-CI
Y, a9; U [I'] F v(bind(ec[]e, a.toLabeled(bind(unlabel a,b.1b)))) : T3 1 CGTT
;0[] F A(v(bind(ec|[]e, a.toLabeled (bind(unlabel a, b.10))))) : Th )
assign:
Ty =Vasz.(a3 C pc) = CG ag ag Labeled £, unit
T11 = (a3 E pc) = CG as a3 Labeled 4, unit
T1o = CG a3 a3 Labeled ¢, unit
T = Vag.(ag C pc) = CG ag ag Labeled fz [[A]]
To1 = (043 C pC) = CG a3 (3 Labeled #; [[Aﬂ
Tz,g =CG Qg Qg Labeled El [[A]]
T2_3 = Labeled 61 [A]]
T; = VOél.(Oq C pc) = CG «; oy Labeled fo ref él [[AH
T31 = (a3 E pc) = CG a3 as Labeled 4, ref ¢; [A]
T3_2 = CG a3 Qa3 Labeled EO ref EIL IIA]]
T35 = Labeled ¢, ref ¢; [A]
T3_4 =CG a3 Qa3 L EO ref gz [[A]]
T3_5 = ref gz [[A]]
T, =CG (asU¥,) (agUL,) unit
T5 = CG (043) (043 L éo) unit
E; = bind(unlabel a, c.c := b)
P6:
CG-
a3, (a3 Cpe); [I],a:T33,b: Tozba:Ts3 o
CG-unlabel
¥ a3, (a3 E pe); [T],a: Ts.3,b: Toz b unlabel a: Ts4
Lemma C.2
¥, a3; ¥, (a3 E pe) Faz E pe E L,
a9 U, (a5 C po) F AT 0 "
O35 ¥, (A3 = " o
3 3 =Pe Definition of
Eva3; \I/a (Oég E pc) F ‘go E 61
Y, a3; ¥, (a3 Epe) FazUl, E 4
CG-assign
270[3; \If, (Ckg E pC)7 [[F]] ,a Tg,g, b : T2,3, C: T3_5 " C .= b : T4 CG-bind
Y, a3, (a3 C pe); [T'],a : Ts.3,b : To.g b bind(unlabel a,c.c:=b) : T o
P5:

H2

I
Yas; 0, (a3 C pe); [T ,a:Ts3F eca: T

CG-FE
Y,a3;, (a3 C pe); [T],a: Tas b ecaf] : Toa
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P4:
P5

CG-CE P6
Y, a3, (a3 Cpe); [I],a: T35 F ecoflo: T CCbind
Y, a3, (a3 E pe); [T],a : Ts.3 - bind(ecz[]e, b.bind(unlabel a, c.c := b))) : T
P3:
IH1
Doag W (as Cpeji[eca:Ts o
Y, a3, (a3 Cpe); [T Fec[] : Tsa
P2:
P3
CG-CE P4
B, 0330, (a3 © pe); [T Fecifle : T .
- . ; CG-bind
Y, as3; ¥, (a3 C pe); [I] F bind(ec[]e, a.bind(ecsa[]e, b.bind(unlabel a,c.c :=b))) : Ts
P1:

P2

CG-tolabeled
S, a3 ¥, (a3 C pe); [I] - toLabeled(bind(ecy [Jo, a.bind(ecz]]e, b.E1))) : Tho oo

Main derivation:

P1
CG-CI
3, a3; U [T] F v(toLabeled(bind(ec1[]e, a.bind(eca[]e, b.E1)))) : Tha COTT
3 ; [I] F A(v(toLabeled(bind(ec1 [Jo, a.bind(ecz[]e, b.E1))))) : Ty i
Lemma D.4 (Subtyping of translated types). Forall X and ¥ the following holds:
1. V74, 7.
S5, Cn = X0 [1a] <: [1]
2. YA, Ap.
S UFACA = S 0F[A] <: [A]
Proof. Proof by simultaneous induciton on the FG™ subtyping relation
Proof of statement (1)
Let 7, = Ale and 7, = A’
7 7~ Given
WA EAY
By inversion IH(2)
UL, 4 U AL <: [A]
SLsub-base

Y; W I Labeled ¢, [A,] <: Labeled ¢, [Ap]

Proof of statement (2) We proceed by cases on the last rule in the given derivation of A, <: Ay.

1. FG ™ sub-base:

————— CGsub-base
Y, UkFb<:b

S0 - [b] <: [b]

Definition of [-]
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2. FG™ sub-ref:

Let 7, = 7, = ref Afl

CGsub-base

5,0 Fref € [A;] <:ref 4; [A;]
DIV o [[ref Afi]] <: |[ref Afi]]

Definition of [-]

3. FG™ sub-prod:

on 712 on 71

U F ] <[] H{) 35Uk ] <: [75] H{1)
0 F ] x [r2] <[] x [74]
U E [ x 7] <: 1 x 73]

CGsub-prod

Definition of [-]

4. FG™~ sub-sum:

) on T2 ) on 11

50 F [n] <[] H({1 U F ] <: [75] H({1
% F ] 4[] <: [1] + [72]
S50 E [+ 7] < [r] + 73]

CGsub-sum

Definition of [-]

5. FG™ sub-arrow:

P2:

J - Given

YU b1 S 7m <7 =% T7) . .
7 By inversion
W E T <7y
; IH(1) and Weakening
L0 F ] <:[r3]
7 CGsub-monad
Y0 FCCaa [r] <:CGaa [n]

P1:

Given

/

IR A <Z7'{g7'é
SOk C o,
S, 0 F (aCl) = (aC L)
S, F (aCl)=Ceaa [r]<:(aCl)=CGCaa [r]
YU FVa(aCl)=CGaa [r] <:Va.(aCTl)=CGaa [ri]

By inversion

P2

CGsub-constraint
CGsub-forall

Main derivation:

Given

’

E;\IH—HZ%TQ <:T{Z47'é
Uk <im
50 F ] <[]
YUk [n] 2 Va(aCl) = CGaa [r] <:[r] - Va.(aCl)=CGCaa [r]

By inversion

IH(1) Pl

CGsub-arrow

v Definition of [-]
XU+ [[71 g Tg]] <: |[T{ — 7'2/]]
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6. FG™ sub-unit:

CGsub-base

;W F unit <: unit
;0 [unit] <: [unit]

Definition of [-]

7. FG™ sub-forall:

PO:
Gi
SV Vo (boor) < V(o)
/ By inversion
2’ @; v ge s
PO.1:
Gi
S Vau(bo, 1) < V(1) o
By inversion
E,O[,\I/ |_ 1 < T2
P2:
PO.1 -  Weaken
S U ] <[] ) and Weakening o
Y0, ;U FCGa o [r] <:CGa o [r] sub-mona
P1:

PO
Y,/ Tl = o' C/,
Y, 5V’ Cl=C6a d [n] <:d Tl = CGd o [r]
Y, ;0 Ve .o Tl = CGa o [n] <:Va'.a' Tl = CGd a [r]

P2

CGsub-constraint

CGsub-forall

Main derivation:

P1
0 FVava'.o Cl, = CGa' o [n] <:VaVd'.o/ Tl = CGd o [r]
S0 V(le, )] < V(£ 72)]

CGsub-forall

Definition of [-]

8. FG™ sub-constraint:
PO:

J 7 Given
YUl =1 <icg=>m

SiU T,

By inversion

PO0.1:

- Given

XUk i37’1 <:czi$7'2
2;\11}_02 — C1

By inversion

P0.2:

Given

E;\Ill—cléiﬁ <ZCQ£$T2

YU kT <imy

By inversion
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P2:
P0.2

IH
E,0; ¥ [n] < [n]
Y0 FCCaa [n] <:CGaa [r]

(1) and Weakening
CGsub-monad

P1:
PO PO.1

Ukl llco = all,c
Y,; 0 F (@ le,c1) = CGaa [n] <:(aCll,c) = CGaa [r]

P2

CGsub-constraint

Main derivation:

P1
U EVa(aCle,c1) = Ceaa [n] <:Va.(aCl,c) = CGaa [r]

Uk [[cl i% 7'1]] <: |[02 i‘? 7‘2]]

CGsub-forall

Lemma D.5 (Expanded label). V7,0, Ap, A, ¢/, %, .
E;\I’F(T:A%)\f _—
3¢,. [r] = Labeled £ U ¢, Ay, where AL, = [AF]

Proof. Since ;¥ F (7 = A%) N\, £ from the definition of \, we get £ C ¢'. Therefore, 3¢,. (LIl = ('
From Definition D.1, [7] = Labeled ¢’ [Ar] = Labeled £ Ui ¢, [Ar] for some £,

Lemma D.6 (Preservation of well-formedness). Forall ¥ and ¥ the following hold:
1.V7. 597 WF = X0+ [r] WF
2.VA. 55V FAWEF = %, U F[A] WF

Proof. Proof by simulataneous induction on the W F relation of FG™
Proof of statement (1)

Let 7 = A¢

———— TH(2 A
o A wE T en

CG-wif-labeled
S, - Labeled £ [A] WE 0 00¢

Proof of statement (2)
We proceed by case analyzing the last rule of given WF' judgment.

1. FG™ -wil-base:

—  CG-wit-b
SUFbWE e
2. FG™ -wif-unit:

———— CG-wff-unit
U b unit WE

46
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3. FG™ -wif-arrow:
P1:

TH(1 Weakeni
S @ U, (0 C0) F [ro] WE () 00 e Weakening

CG-wit- d
5,00, (aCl) F CCaa [tr] WF wimmona
Y0 F (aC¥l.) = CGaa [tr] WF
S, UFVa.(aCl,) = CGaa [rr] WF

CG-wff-constraint

CG-wil-forall
Main derivation:

TH(1 P1
SO ] wE ) en e

DR, T — V ¢ CG-wit- W
; ([[ Flﬂ a.(a C 6) = CGaa [[7_ ]]) WF arro
4. [ (; _VVll_pIOd:

—  IH(1 —  IH(1
SUF[n] WE DT Sy ] wE o

CG-wil-prod
5,0 [n] x [re] WF WHPTO

5. FG™-wif-sum:

———  TH(1 = H1
S UF [n] WF (1) on 7y S UF [r] WF (1) on 7

CG-wit-prod
S U F ] + [r] WF WHPTO

6. FG™ -wil-ref:
Let 7 = Af

m Given
FV(A]) = 7 Lemma D.7

C(}—Wl —]ei

7. FG™ -wil-forall:

TH(1
S, a,a; 0,0 Cl - [7] WF ()onr
7 7 — CG-wff-monad
Y059,/ ClFCGA o [r] WF
Y, Fa’ Cl,=CGa' o [r] WF

CG-wff-constraint
Y, ;¥ Vo' .o Cle = CGo o 1] WF

CG-wif-forall

CG-wif-forall
SV FVava o/ Cl, = Ced o [r] WF whora
8. FG™ -wff-constraint:

TH(1 Weakeni
Y, ;0 (a Che, o) [r] WF (1) on 7, Weakening

CG-wit- d
Y09, (@ Cle,e)FCGaa [r] WF wHmmona
5,0 F (aC le,c) = CGaa [r] WF

CG-wif-constraint

CG-wfit-forall
S, UFVa.(aCle,e) = CGaa 1] WF o
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Lemma D.7. The following hold:
1. V7. FV([r]) € FV ()
2. YA. FV([A]) C FV(A)

Proof. Proof by simultaneous induction on 7 and A
Proof for (1)

Let 7 (Z[[
= FV(Lab eled ¢; [A])  Definition of [-]
= FV(6;)UFV([A])
C FV({)UFV(A) TH(2) on A
= FV(A%)
Proof for (2)
1. A=b:
FV([b])
= FV(b) Definition of [-]
2. A = unit:
FV ([unit])
= FV/(unit) Definition of [-]
3. A=m L T2:
FV( [[7'1 - TQ]]
= FV([n] = Vo.(a Cl) = CGaa [r])
= FV([n])UFV (L) U FV([r])
C Vi(m) UFV( ) UFV(r)
= FV(n L T2)
4. A=1 X 1o

FV([[Tl X TQ]])
V([r] > [r2])

V([mu FV([r])

V(Tl) UFV(TQ)
(

Vv T1 XTQ)

Definition of [-]

IH(1) on 71 and 7o

I

A=m1 +1:

FV([[Tl +’7’2]])
V([r] + [r])
V([mD v FV([r])
V(Tl) UFV(TQ)
V(Tl +7’2)

Definition of [-]

TH(1) on 7p and 7

N

A =ref 7;:
Let 7, = Afi
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[ref 7:])
V (ref ¢; [A]) Definition of [-]

FV(
FV(
FV(6:) U FV([A])
FV({;,)UFV(A) TH(2) on A;
FV(

FV(

N

ref A%Y)
V (ref 7'1)

7. A=V (Le,T;):

V([ (£e, 7)])
FV(Va¥a' .o/ Cl, = CGa' o [r;])  Definition of [-]
FV () UFV([r])
FV(l.)UFV(r;) IH(1) on 7;
FV(Y (be, 7))

il

FV([ets 7
FV(Va.(a ,¢)=> CGaa [r;]) Definition of [-]
FV(te)U F ( )UFV([r])
FV({.)UFV(c)UFV(r;) IH(1) on 7;
FV(c L Ti)

1N

8. A*cén

Cc
.

N

Lemma D.8 (Substitution Lemma). Forall ¢’ the following hold:
1. V7. [7][¢'/a] = [7]¢' /]
2. VA. [A][¢'/a] = [A]¢' /]

Proof. Proof by simultaneous induction on 7 and A

Proof of statement (1)
Let 7 = A%

[A“] [€//al
(Labeled ¢; [A]) [¢'/«] Definition of [-]
(Labeled ¢;[¢' /] [A] [¢'/c])
(Labeled 4;[¢'/a] [A[¢'/a]])  TH(2) on A
B[(Aw'/awf /o]

ALLE fa]]

Proof of statement (2)
We consider cases of A

1. A=b:
[b] [¢'/a]
= b[¢'/a] (Definition of [-])
— b a g FV(b)
= [b] (Definition of [-])
= [blt'/ed]
2. A = unit:
[unit] [¢'/a]
= unit[¢'/a] (Definition of [-])
= unit o & F'V (unit)
= [unit] (Definition of [-])
= [unit[¢'/a]]
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A=

ref 7;:

[ref ;] [¢' /]

[ref A4 [/ /al

(ref ¢; [A])]¢'/a]

(ref &[0 /o] [A][€'/a])

(ref 4;[¢'/a] [All'/a]])
ref A[f’/a]ei[[/a]]]
(ref Aei)[ﬁ’/a]]]

[ref 7:[¢'/a]]

. A=T7 X T9:

[Tl X ’7'2]] [€’/a]

(Ima] x [rD)[€'/al
[][€ /] x [m2] [t/
[71[€'/ad] x [m2[¢'/e]]
[(m1[€'/a] x [’ /a])]
[(71 x 72)[¢'/]]

CA=T1 + T

>
|

j

[+ 7] [€/a]

([ra] + [r=D)[¢' /<]
[7][¢'/ o] + [m=][¢' /]
[m[¢/a]] + [m=2[¢ /o]
[(1[€'/a] + 72[l'/a])]
[(1 4+ 72)[¢'/a]]

—% To:

[[Tl ]] [¢'/a]

Let 7 = At

IH(2) on A

(Definition of [-])

IH(1) on 7 and 7
(Definition of [-])

(Definition of [-])

TH(1) on 7, and 75
(Definition of [-])

([m1] — Vﬁ (BELe) = CG BB [r2]) [¢'/a] (Definition of [-])
(Il [¢'/a] = VB.(B E Le[l'/a]) = CG 3 B 1] [¢'/al)
([m[l' /)] = VB.(B E L[l /a]) = CG B B [m[¢'/a]]) TH(1) on 71 and 5

(nle fa] U e fa)|

[ 55 m)1e /0]
B

[VB.(Ce, )] [€' /]

o0 /o)

(Definition of [-])
e /el

(VBB B C L. = CG B' B [r])[¢' /o] (Definition of [])
EVﬁ.Vﬂ’.ﬁ’ C ze{ 'Jo] = CG B B[] [¢'/a))

VBNYB.B T L,

[VB.(€e, ) [€ /]

Azciiri:

'Ja] = CG B B’ [n[l'/a]])  TH(1) on 7
[VB.(Cc[¢'/ad, 7 EE’/a])]]

(Definition of [-])
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[[c L Ti]] [0/l

(Va.(a Cle,c) = CGaa [1])[¢/a] (Definition of [-])
= NVa(aCTlll/a),cl'/a]) = CCaa [r][¢/a])
= (Va.(aCTL[l'/al,c[l'/a]) = CGaa [r[¢/a]]) IH(1) on T

- [[cw Ja] “E e /a}ﬂ (Definition of [])
[[

(e ) /a]]]

E CG ~ FG

CG types are translated into FG types by the following definition of [-]
[b] = b*

[ = ] = ([n] T, [r])* [ref £ 7] = (ref ([[’T]] + unit)?)+
[[71—><> 7] = ([n] j[[m]])l [CG i £, 7] = (unit % ([7] + unit)‘)*
[+ 7] = (In] + [])* [e=r]=(c= D

[Labeled ¢ 7] = ([7] + unit)* Va.r] = (Vo (T, [7])*

The translation judgment for expressions is of the form ‘ ;Ui T Fpeec i 7o ~ er ‘ Its rules are shown

below.

var
Yoo :thax:7~x
S:Ulz:The: 17 ~ep

1
;U TFAze: 7 — 7~ Azep am

YU Ther:7 =7 ~epr S0 TEey: T~ ep
a
Z;\IJ;FI—el €2:T/W8F1 (& D) P
XUk ey 11~ epy XUk eg: 1o~ epo
prod

;U F (e1,e2) : (11 X TQ)J_ ~ (ep1,er2)

YUk e:m X1y~ ep .
;Ui fst(e) : 71 ~ fst(er) i

YUk e: X1y~ ep
5, U:T'Fsnd(e) : 71~ snd(ep)
Y;UiI'ke:m ~ep
;U T kinl(e) : 7 + 72 ~ inl(ep)

snd

inl

XUk e:m ~ep
S, 0T Finr(e) : 71 4+ 72 ~ inr(er)

inr

3;T'kFe:m+ 7T~ e S5,iTx:mbe i 7~ e ;Ui y:mol-ea: 7w epa

case
5, U T F case(e, x.e1,y.e2) : T ~ case(ep, T.€p1,Y.€F2)

Y,U:T'ke:Tm~ep

label
S, W; T F Lby(e) : (Labeled £ 7) ~ inl(ep)
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YX;U:T'Fe: Labeled £ 7~ e
Y, U;T - unlabel(e) : CG 4; (6; U L) T~ A_ep
YU 'Fe:CG Al by T~ ep
Y, U;T | tolLabeled(e) : CG ¢; ¢; (Labeled £, 7) ~~ A__.inl(er ())

unlabel

toLabeled

X;U:'kFe: 7~ ep
S, Fret(e) : CG 4 £; T~ A_inl(ep)
;0T e : CG U b7~ e S0 T 7her: CGULL, T/~ epo
;W T+ bind(eq, z.e2) : CG 4; £, 7'~ \__.case(er1(), z.er2(), y.inr())
Y;U:T Fe: Labeled ¢ 7 ~ ep PRV Ay
Y;W;T Fnewe: CGLL (ref £/ 7) ~ X_inl(new (er))

ret

bind

ref

X;U;ke:ref £ 7~ ep
YU T Hle: CG ¢ ¢ (Labeled £ 7) ~ A_inl(er)
;Ui ke cref 0/ 7~ epy ;W T ey : Labeled ¢/ 7~ epa PRV Ay
;Ui keg :=e9: CG L L unit ~ A_inl(ep; := ep2)
;0T ke ~ep YUk <
Y,UiT'ke: 7~ ep

deref

assign

sub

Yo UiT'ke: 7~ ep
;0T Ae : Vaur ~ Aep

FI

:U:I'Fe:Var ~ ep FVv{)ex
S5, ke|]:7[l/a] ~ epl]
U . 'Fe:T~ep
3U'Fve:ec=T1~vep

FE

CI

Y;U:'Fe:c=>1~ep E;\IIFCCE
Y;U;'HFeeo: 7~ epe

Assumption E.1. Ve, 7,3, U, T, 4, £,.
Y, U:T'ke:CGl b, = L, C 4,

Theorem E.2 (Type soundness, CG ~ FG). VX, U, T ec, 7.
;U T e : 7 is a valid typing derivation in CG =
E|€F.

;Ui ec 7~ ep A
5,0 ) Froep : [7] is a valid typing derivation in FG

Proof. Proof by induction on the translation judgment. We show selected cases below.

1. label:

IH
;U [T] bt oep: [7] .
¥; W; [I] b1 inl(er) : ([7] + unit)*
Y0 [I] Frinl(er) = ([r] + unit)?

G-inl

FG-sub
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2. unlabel:

P1:

S, HLC Ul Lemma B.1

5 W F ([7] + unit) <: ([7] 4 unit) FGsub-label

;0 b ([r] + unit)® <: ([7] + unit)“*

Main derivation:

X0 [T], _:unit b1 ep : ([7] + unit)

7 1H, Weakening S, UHLET P1
FG-sub

;W [T], - unit b4, ep : ([7] + unit)éH*

3. toLabeled:

P2:

P1:
P2

7 FG-lam
S0 [0],_ cunitb1 A_ep : (unit = ([7] + unit)%24)L

TH, Weakening S UHLET

S [T],  :unitb1 ep : (unit 4 ([r] + unit)®)+

FG-sub

S0 [T], : unit b, ep : (unit 25 (7] + unit)f)*

S0 0], s unit kg, () : unit

SiUHLGULCT Y U F ([r] 4 unit)f N\ L

- —7 FG-app
;[T s unit by, ep() : ([7] + unit)®

Main derivation:

4. ret:

Pl S UF1LLCY4

;03 [T], _:unit b4, inl(er() @ (([7] + unit)e + unit)®

- FG-inl, FG-sub
FG-lam

;0 [T+ A_inl(er()) : (unit 4 (([7] + unit)® + unit)%)+

0[], :unitbTep: [7]

IH, Weakening 35U HLGET

- FG-sub U L1LLCY,
S, U [0], _:unitby, ep : [7]

- - —7 FG-sub, FG-inl
S0 [T, : unit by, inl(er) : ([7] + unit)*

2 FG-lam
;0 [T] F+ A_inl(ep) : (unit = ([7] + unit)®)*
5. bind:
P1.1:
- IH1, Weakening YU HLGET
;0[] : unit B oepy : (unit = ([7] + unit))*
. FG-sub
;0[] : unit b4, epy : (unit = ([7] 4 unit)©)*
P1:
SWE1LLCY
P1.1 N " FG-var E, v+ (El [ J_) E gz 7
X0 I, s unit kg, () : unit S0 F (7] 4 unit)” N\ L rG
-app

0[], unit b4, epi() s ([r] 4 unit)?
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P2.1:

n TH2, Weakening ;2 WHACT
YW [T],  :cunit,z: [7] BT oeps : (unit = ([7'] + unit))+

n FG-sub
S0 [T, unit,z : [7] Fo epo : (unit = ([7'] 4 unit)®)+
P2:
P2.1
S0 LY,

- — FG-var DRV N (AN - —

S0 0], s unityz s [7] Fe () ¢ unit S0 ([7] 4 unit)™ N\, L FG
-a
S0 ], unit,z s [7] Fo,ue ema() : ([7] + unit)fe bp

P3:

- - — FG-var M UELLCY,
;U [T], _ : unit,y : unit 4 () : unit

- - - ; —7 FG-sub, FG-inr
;W [T], _ :unityy : unit g inr() < ([7'] + unit)®

Main derivation:

Given
YU key: CGLL, T
Assumption E.1
;3 WHALC Y,
P1 P2 P3

S0 ([7] + unit)fe N\, ¢ -
S W [T, : unit o, case(em (), z-er2(), yinr() : ([7'] + unit)® Tase

7 FG-lam, weak
20 [T] F+ A_.case(ep1(), z.epz(), y.inr() : (unit = ([7'] + unit)?)+
6. ref:
P1:

- IH, Weakening S, UHACET
XU [I],  :unitbr oep s ([7] + unit)”

7 FG-sub
;0 [T], - unit b4 ep - ([7] + unit)?
S U FOC
S0 b ([r] + unit)? N\, ¢
(1 + wnit)” /l _
YW [T, : unit F new e : (ref([7] + unit)®)

Main derivation:

Pl SUE Ll
- - T 7 FG-inl, FG-sub
;W [T], - unit g inl(new ex) : ((ref([7] + unit)® ) + unit)

7 - FG-lam
;0 [T] F+ A_inl(new ex) : (unit = ((ref([7] + unit)®)* + unit)®)*+
7. deref:
P2:

- — 1 [H, Weakening SUHOCT
;0 [0, s unit b1 oep : (ref ([7] 4 unit)?)

- — T FG-sub
5,9 [I],  :unitby ep : (ref ([7] + unit)®)
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P1:

Lemma B.1

;0 F ([7] + unit)? <: ([7] + unit)* YW F ([r] + unit)f N\, L

- —7 FG-deref
S; 0[], :unitbplep o ([7] 4 unit)
Main derivation:
, S;UHLCY
Pl S0k 1Y/ ; ;
5,0 F ([r] 4 unit)® <: ([7] + unit)
7 FG-inl, FG-sub
Y0 [T], - unit g inl(ler) : (([r] 4 unit)? + unit)®
7 - FG-lam
;0 [0 Fr A_inl(lep) : (unit = (([7] + unit)? 4 unit)? )+
8. assign:
P3:
- TH2, Weakening M5O HLCT
;W [T],_ :unit b1 eps : ([7] + unit)®
7 FG-sub
YW [T],  : unit g eps : ([7] + unit)®
P2:
~— 1H1, Weakening Y, UHLCT
YW [T],  : unit B oepy : (ref([7] + unit)?) —
; -su
;W [T], - unit b epp : (ref([7] + unit)® )+
P1: .
72; TFeC? Given
P2 7
;0 F ([7] + unit)® N\ (£U L)
: - FG-assign
X0 [T, s unitbp epy := epo @ unit
Main derivation:
P1 S0k 1CY
- - - —7 FG-inl, FG-sub
S0 [T], _: unit Fg inl(epy := ep2) : (unit 4 unit)
7 FG-lam
S0 [T] B+ A_inl(ep1 := eps) : (unit = (unit 4 unit)?)*
9. sub:
SOk <iT
~ IH 32U EHETLCT S Lemma E.3
S0 Froer o [7] 50 F ] < [7]
FG-sub
S, U [C] Froep: [7]
10. FI:
IH
S, ;U [T] b+ oep : [7]
T FG-FI
5,05 [T] Fr Aep : (Ve (T, [7]))
11. FE:

H FV()ex SUFTULCT S0 E[r[e/a]] N\ L
S0 [0 b1 ep : (Vo (T, [7]) FOFE

LU Frer 12 [0/

55



12. CI:

IH
E; \I/aC; [FH Frep: [[TH

T FG-CI
S0 krver: (c= [[T]])l

13. CE:

- IH Uk e YSWUETULCT S0 N\ L
YU [T] Froep: (c= [r])* FO.CR

S0 [T Froep o 7]

Lemma E.3. For any CG types 7 and 7', ¥, and U, if ;U b 7 <: 7/, then ;0  [7] <: [7].
Proof. Proof by induction on CG’s subtyping relation
1. CGsub-base:

Lemma B.1

S0 7] <: 7]
2. CGsub-arrow:

IH1 TH2 XU ERETLCET
0 F ] <[] S0k ] <: [15] -

=0 ([n] & [r])* < (7] % [=)*

50k [n % m)] < |[(T{ 5 Tg)ﬂ

FGsub-arrow

Definition of []

3. CGsub-prod:

YU F ] <[] tH1 0k o] <: [15] tH2
S0 E ([n] x [=D* <: ([0] x [m)*
U E (1 x 12)] <: [(1] x 73)]

FGsub-arrow

Definition of [-]
4. CGsub-sum:

2

0[] <: [7] TH1 0[] <: [74] H
S50 ([n] + [t <: ([0 + [=])*
S0 E[(m+ 7)) < [(r +73)]

FGsub-arrow

Definition of [-]

5. CGsub-labeled:

FGsub-unit

IH1
0 F ] <[] ¥; Uk unit <: unit
350 F ([r1] + unit) <: ([71] + unit)

o
Labeled £, 71 <: Labeled &, 7/ " "

hEl
0 (] + unit)Zl <: ([r] + unit)le
3; ¥ + [Labeled ¢1 7] <: [Labeled ¢} 77]

FGsub-sum

By inversion

FGsub-arrow

Definition of [-]

56



6. CGsub-monad:

P3:
IH FGsub-unit
0 F ] <[] S Funit < unit
- 5 - FGsub-sum
X0 F ([r1] + unit) <: ([r1] + unit)
P2:
Gi
SUFCGl by < CGL O
P3 ; By inversion
DI N
; FGsub-label
;0 ([r1] + unit)’ <: ([7]] + unit)®
P1:
—— Given
S5O FECGl by < CG L 0Ty
P2

¥; U b unit <: unit S0k

FGsub-arrow

S0 F (unit 5 ([r] + unit)®) <: (unit 5 ([r/] + unit)®)
Main derivation:

o R —
UL

= FGsub-label
50 F (unit 5 ([r] + unit)’)® <: (unit = ([7{] + unit)%)*
S0 F [CG Y by 1] <: [CG 0 7]

K2

Definition of [-]

7. CGsub-forall:
P1:

TH, Weakeni =
S0 F 7] <: [7'] caxemne S,UFETLCT

E; \I/ l_ (VQ(T, [[7_]])) < (VOZ(T, [[T/]])) FGsub-forall

Main derivation:
P1

YayUE 1L
Y0 (Yo (T, [7])*F <: (Ve (T, [7']))
Uk [Va.r] <: [Va.r']

T FGsub-label

8. CGsub-constraint:
P1:

; - Given

s Ubke=r1<ic =71
— IH 7 By inversion
S50 F 7] <: [7] Y, UWHETLCT YUk = ¢

Sk (e [r]) <: (¢ = [7])

FGsub-constraint

Main derivation:
P1

Yo EHLE L
Uk (e = [t < (¢ = [P
Uk fe=71] <[ =7

FGsub-label
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Lemma E.4 (Preservation of well-formedness for closed reference types). V3, ¥, 7.
5,97 WF = 5,0+ [7] WF

Proof. Proof by induction on the 7 W F' relation.

1. CG-wff-base:
———— FG-wfl-base
Y, Wb WF
T FG-wif-label
X, Wkb- WF
2. CG-wif-unit:
—— FG-wff-unit
;U Funit WF

3. CG-wit-arrow:

— X X  [H1 —— X X  [H2
5Ok [n] WE 5,0k [] WF

T FG-wff-arrow
30k — WF
: [[Tl ]] [[TQHT) FG-wff-label
S0 E ([n] = [rD)" WF
4. CG-wit-prod:
————— IH1 —— X X  [H2
SV E[n] WE S [r] WF
FG-wit-prod
S0 [(J x [r2]) WEF
T FG-wif-label
S0 [(J7 x [r])t WF
5. CG-wil-sum:
— [H1 ——— [H2
S0 [n] WF S UF [r] WF
FG-wit-prod
S0 F ] + [r] WF
T FG-wif-label
S0 F [+ [r])” WF
6. CG-wif-ref:
Given
X;Ubkref b7 WF - '
FV(T) — (Z) Yy 1nversion
Lemma E.5
FV([r]) =0
Given
X;Ubkref b T WF - '
FV (unit) =0 FV(0) =0 y inversion

;0 = FV(([r] + unit)?) = 0
;U F ref ([7] + unit)* WF
YWk (ref ([7] + unit))* WF

FG-wil-ref

FG-wil-label
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7. CG-wil-forall:

H

S0 F [r] WF !
Y0 - (Yo (T, [7]) WF
20 (Yo (T, [7])t WF

FG-wif-forall

CG-wil-label

8. CG-wil-constraint:

IH
S, U,ck [r] WF
S0k (c= [r]) WF

FG-wif-constraint

- CG-wit-label
YUk (e= 1)t WF
9. CG-wft-labeled:
- I - FG-wff-unit
5,0k [r] WF ;U Funit WF
- FG-wff-sum
;U E ([r] 4 unit) WF
—7 CG-wif-label
;U F ([r] + unit)” WF
10. CG-wif-monad:
P1:
—  IH ——————— FG-wff-unit
50Uk [r] WF ;U Funit WF
- FG-wif-sum
;0 F ([r] 4 unit) WF
Main derivation:
P1
———————— FG-wff-unit —7 FG-wft-label
;0 Funit WFE 5,0 F ([7] + unit)® WF
FG-wif-sum

S0 F (unit 5 ([7] + unit)?) WE

. CG-wif-label
Y0 F (unit =5 ([r] + unit))t WF

Lemma E.5. V7. FV([r]) C FV (1)

Proof. Proof by induciton on the CG types, 7

1. 7=b:
FV([b])
= FV(bt)  Definition of [-]

=

— FV(b)

2. T = unit:
FV([b])
=  FV(unitt)  Definition of [-]
0
= FV/(unit)
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10.

T =T — T2:

FV([[Tl — Tgﬂ)
FV([ri] = [r])*
FV([n]) U FV([r])
FV(Tl) U FV(TQ)
FV(r — 1)

N

T =1T1 X To:

FV(HTl X 7'2]])
FV([r] x [r2])*
FV([n])u FV([r])
FV(Tl) U FV(TQ)
FV(m X 1)

N1

T =T + Ta:

FV(HTl -+ 7'2]])
V([r] + [r])*
V([n]) U FV([r])

FV(Tl) U FV(TQ)
V(m + m2)

NI

. T =ref ¥; 7;:

FV([ref ¢; 1])
FV (ref ([1;] + unit)%)+
FV([nl) U FV(£:)
FV (7)) UFV(;)
FV(ref ¢; ;)

o

.T—Vozn

FV([Ve.ri])

FV (You(T, [n])*
FV([n]) — {a})
FV(r) —{a})
FV(VOZ Ti)

[T ]

. T=Cc= T

Vv HC = Tz]])
Vie= [n]*

(
(

FVEM) U FV([r])
(

N

V([c]) UFV(r;)
Vie=m)

. 7 = Labeled ¢; 7;:

FV([[LabeIed ¢ TZ]])
FV([r;] + unit)®
FV([n]) L FV (L)
FV (7)) UFV(;)
FV (Labeled ¢; 7;)

i

T=CG¥l; L, T;:

Definition of [-]

IH on 71 and 7

Definition of [-]

IH on 71 and 7

Definition of [-]

IH on 7 and 7

Definition of

IH

Definition of [-]

IH

Definition of [-]

IH

Definition of [-]

IH

[
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N

FV(ICG & o )
unit 55 ([;] + unit)%)L

(
FV(
FV([n]) UFV (L) UFV ()
FV(r;) UFV(6;) U FV (L)
FV(CG 4; £, 1)

Definition of [-]

IH
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