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Abstract

The C/C++11 memory model defines the semantics of concur-
rent memory accesses in C/C++, and in particular supports
racy “atomic” accesses at a range of different consistency
levels, from very weak consistency (“relaxed”) to strong, se-
quential consistency (“SC”). Unfortunately, as we observe in
this paper, the semantics of SC atomic accesses in C/C++11,
as well as in all proposed strengthenings of the semantics,
is flawed, in that both suggested compilation schemes to
Power are unsound. We propose a better semantics for SC ac-
cesses that restores the soundness of the compilation schemes
to Power, maintains the DRF-SC guarantee, and provides
stronger, more useful, guarantees to SC fences. In addition,
we formally prove, for the first time, the correctness of the pro-
posed stronger compilation schemes to Power that preserve
load-to-store ordering and avoid “out-of-thin-air” reads.

1. Introduction

The C/C++11 memory model (C11 for short) [7] defines
the semantics of concurrent memory accesses in C/C++, of
which there are two general types: non-atomic and atomic.
Non-atomic accesses are intended for normal data: races on
such accesses lead to undefined behavior, thus ensuring that it
is sound to subject non-atomic accesses to standard sequential
optimizations and reorderings. In contrast, atomic accesses
are specifically intended for communication between threads:
thus, races on atomics are permitted, but at the cost of
imposing restrictions on how such accesses may be merged
or reordered during compilation.

The degree to which an atomic access may be reordered
with other operations—and more generally, the implemen-
tation cost of an atomic access—depends on its consistency
level, concerning which C11 offers programmers several op-
tions according to their needs. Strongest and most expensive
are sequentially consistent (SC) accesses, whose primary
purpose is to restore the simple interleaving semantics of se-
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quential consistency [18] if a program (when executed under
SC semantics) only has races on SC accesses. This property
is called “DRF-SC” and was a main design goal for C11.
To ensure DRF-SC, the standard compilation schemes for
modern architectures must insert hardware “fence” instruc-
tions appropriately into the compiled code, with those for
weaker architectures (like Power and ARM) introducing a
full (strong) fence adjacent to each SC access.

Weaker than SC atomics are release-acquire accesses,
which can be used to perform “message passing” between
threads without incurring the implementation cost of a full
SC access; and weaker and cheaper still are relaxed accesses,
which are compiled down to plain loads and stores at the
machine level and which provide only the minimal synchro-
nization guaranteed by the hardware. Finally, the C11 model
also supports language-level fence instructions, which pro-
vide finer-grained control over where hardware fences are to
be placed and serve as a barrier to prevent unwanted compiler
optimizations.

In this paper, we are mainly concerned with the semantics
of SC atomics (i.e., SC accesses and SC fences), and their
interplay with the rest of the model. Since sequential consis-
tency is such a classical, well-understood notion, one might
expect that the semantics of SC atomics should be totally
straightforward, but sadly, as we shall see, it is not!

The main problem arises in programs that mix SC and
non-SC accesses to the same location. Although not common,
such mixing is freely permitted by the C11 standard, and has
legitimate uses—e.g., as a way of enabling faster (non-SC)
reads from an otherwise quite strongly synchronized data
structure. Indeed, we know of several examples of code in
the wild that mixes SC accesses together with release/acquire
or relaxed accesses to the same location: seqlocks [8] and
Rust’s crossbean library [2]. Now consider the following
program (see Manerkar et al. [20]):

Q= Tacq /1 || b:= Yacq /1 — 1
ci=yse 10 || di=ascn0 || YT
(IRTW-acg-sc)

T =g 1




Here and in all other programs in this paper, we write a, b, ...
for local variables (registers), and assume that all variables
are initialized to 0. The program contains two variables, x and
1y, which are accessed via SC atomic accesses and also read
by acquire-atomic accesses. The annotated behavior (reading
a =b=1and ¢c = d = 0) corresponds to the two threads
observing the writes to x and y as occurring in different
orders, and is forbidden by C11. (We defer the explanation
of how C11 forbids this behavior to §2.)

Let’s now consider how this program is compiled to Power.
Two compilation schemes have been proposed [6]: the first
scheme, the one implemented in the GCC and LLVM compilers,
inserts a sync fence before each SC access (“leading sync”
convention), whereas an alternative scheme inserts a sync
fence after each SC access (“trailing sync” convention). The
intent of both schemes is to have a strong barrier between
every pair of SC accesses, and thereby enforce sequential
consistency on programs containing only SC accesses. Never-
theless, by mixing SC and release-acquire accesses, one can
quickly get into trouble, as illustrated by IRIW-acq-sc.

In particular, if one compiles the program into Power using
the trailing sync convention, then the behavior is allowed.
Since all SC accesses are at the end of the threads, the
trailing sync fences have no effect, and the example reduces
to IRIW with only acquire reads, which is allowed by the
Power memory model. In §2.1, we show further examples
illustrating that the other, leading-sync scheme also leads to
behaviors in the target of compilation to Power that are not
permitted in the source.

Although previous work has found multiple problems in
the C11 model (e.g., out-of-thin-air problem [28, 10], the lack
of monotonicity [27]), none of them until now affected the
correctness of compilation to the mainstream architectures.
In contrast, the IRIW-acq-sc program and our examples in
§2.1 show that both the suggested compilation schemes to
Power are unsound with respect to the C11 model, thereby
contradicting the published results of [6, 24]. Consequently,
the strengthened model of Batty et al. [4] is also not efficiently
implementable on Power.

In the remainder of the paper, we propose a way to repair
the semantics of SC accesses that resolves the problems
mentioned above. In particular, our corrected semantics
restores the soundness of the suggested compilation schemes
to Power. Moreover, it still satisfies the standard DRF-SC
theorem: if a program’s sequentially consistent executions
only ever exhibit races on SC atomic accesses, then its
semantics under full C11 is also sequentially consistent. It is
worth noting that our correction only affects the semantics
of programs mixing SC and non-SC accesses to the same
location: we show that, without such mixing, our correction
coincides with the strengthened model of Batty ef al. [4].

We also apply two additional, orthogonal, corrections
to the C11 model, which strengthen the semantics of SC
fences. The first fix corrects a problem already noted before
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Figure 1. An execution of IRIW-acq-sc yielding the result
a=b=1ANc=d=0.

[24, 19, 15], namely that the current semantics of SC fences
does not recover sequential consistency, even when SC fences
are placed between every two commands in programs with
only release/acquire atomic accesses. The second fix provides
stronger “cumulativity” guarantees for programs with SC
fences. We justify these strengthenings by proving that the
compilation schemes for TSO, Power, and ARMv7 remain
sound with the stronger semantics.

Finally, we apply another, mostly orthogonal, correction
to the C11 model, in order to address the well-known “out-of-
thin-air” problem. The problem is that the C11 standard per-
mits certain executions as a result of causality cycles, which
break even basic invariant-based reasoning [10]. The correc-
tion, which is simple to state formally, is to strengthen the
model to enforce load-to-store ordering for atomic accesses,
thereby ruling out such causality cycles, at the expense of
requiring a less efficient compilation scheme for relaxed ac-
cesses. The idea of this correction is not novel—it has been
extensively discussed in the literature [28, 10, 27]—but the
suggested compilation schemes to Power and ARMv7 have
not yet been proven sound. Here, we give the first proof that
one of these compilation schemes—the one that places a fake
control dependency after every relaxed read—is sound. The
proof is surprisingly delicate, and involves a novel argument
similar to that in DRF-SC proofs.

Putting all these corrections together, we propose a new
model called RC11 (for Repaired C11) that supports nearly
all features of the C11 model except consume atomics (§3).
We prove correctness of compilation to TSO (§4), Power
(§5), and ARMvV7 (§6), the soundness of a wide collection of
program transformations (§7) and a DRF-SC theorem (§8).

2. The Semantics of SC Atomics in C11:
What’s Wrong, and How Can We Fix It?

The C11 memory model defines the semantics of a program
as a set of consistent executions. Each execution is a graph.
Its nodes, E, are called events and represent the individual
memory accesses and fences of the program, while its edges
represent various relations among these events:

® The sequenced-before (sb) relation, a.k.a. program order,
captures the order of events in the program’s control flow.

e The modification order (n0) is a union of total orders,
one for each memory address, totally ordering the writes
to that address. Intuitively, it records for each memory



address the globally agreed-upon order in which writes to
that address happened.

e Finally, the reads-from (rf) relation associates each write
with the set of reads that read from that write. In a
consistent execution, the reads-from relation should be
functional (and total) in the second argument: a read must
read from exactly one write.

As an example, in Fig. 1, we depict an execution of the IRTW-
acq-sc program discussed in the introduction. In addition to
the events corresponding to the accesses appearing in the
program, the execution contains two events for the implicit
initialization writes to x and y, which are assumed to be
sb-before all other events.

Notation 1. We write R, W, F, RMW for the set of read, write,
fence, and RMW events in E. (RMW events are “read-modify-
write” events, induced by atomic update operations like fetch-
and-add and compare-and-swap.) We also write E*¢ for the
set of all SC events in E.

Given a binary relation R, we write R’, R, and R*
respectively to denote its reflexive, transitive, and reflexive-
transitive closures. The inverse relation is denoted by R~!.
We denote by R1; Rs the left composition of two relations
Ry, Ry, and assume that ; binds tighter than U and \. Finally,
we denote by [A] the identity relation on a set A. In particular,
[A]; R;[B] = RN (A x B).

Based on these three basic relations, let us define some
derived relations. First, whenever an acquire or SC read
reads from a release or SC write, we say that the write
synchronizes with (sw) the read.! Next, we say that one event
happens before (hb) another event if they are connected by
a sequence of sb or sw edges. Formally, hb is taken to be
(sbUsw)™. For example, in Fig. 1, event k synchronizes with
[ and therefore k happens-before [ and m. Lastly, whenever
a read event e reads from a write that is mo-before another
write f to the same location, we say that e reads before (rb) f.
Formally, rb = (rf~1;mo) \ [E]. (The “\ [E]” part is needed
so that RMW events do not read before themselves.)

Consistent C11 executions require that hb is irreflexive
(i.e., sb U sw is acyclic), and further guarantee coherence
(aka SC-per-location). Roughly speaking, coherence ensures
that (¢) the order of writes to the same location according to

does not contradict hb (COHERENCE-WW); (i) reads do
not read values written in the future (NO-FUTURE-READ and
COHERENCE-RW); (#i7) reads do not read overwritten values
(COHERENCE-WR); and (iv) two hb-related reads from the
same location cannot read from two writes in reversed mo-
order (COHERENCE-RR). We refer the reader to Prop. 1 in §3
for a precise formal definition of coherence.

Now, to give semantics to SC atomics, C11 stipulates that
in consistent executions, there should be a strict total order,
S, over all SC events, intuitively corresponding to the order

I The actual definition of sw contains further cases, which are not relevant
for the current discussion. These are included in our formal model in §3.

in which SC events are executed. This order is required to
satisfy a number of conditions (but see Remark 1 below):

(S1) S must include hb restricted to SC events
(formally: [E®¢]; hb; [E®¢] C S);

(S2) S must include
(formally: [E3°];

restricted to SC events

s [ES] € 9);

(S3) S must include rb restricted to SC events
(formally: [ES¢]; rb; [E®¢] C S);

(S4-7) S must obey a few more conditions having to do with
SC fences.

Remark 1. The S3 condition above, due to Batty et al. [4],
is slightly simpler and stronger than the one imposed by the
official C11. Crucially, however, all the problems and coun-
terexamples we observe in this section, concerning the
C11 semantics of SC atomics, hold for both Batty ef al.’s
model and the original C11. The reason we use Batty et al.’s
version here is that it provides a cleaner starting point for our
discussion, and our solution to the problems with C11’s SC
semantics will build on it.

Intuitively, the effect of the above conditions is to enforce
that, since S corresponds to the order in which SC events
are executed, it should agree with the other global orders
of events: hb, mo, and rb. However, as we will see shortly,
condition (S1) is too strong. Before we get there, let us first
look at a few examples to illustrate how the conditions on S
interact to enforce sequential consistency.

Consider the classic “store buffering” litmus test:

T =g 1 Y i=gc 1 (SB)

a:=Ysc /0 || b:= x5 /0

Here, the annotated behavior is forbidden by C11. Without
loss of generality, assume x :=g. 1 1is before y :=5. 1in S. By
condition S1, since y :=¢. 1 is sequenced before b := xg,
it is also before b := x5, in S. Thus, by transitivity of S,
T =g 1 is before b := x4 in S. Finally, if the read of x
returns 0, then that means it reads-before x :=4. 1, which
by condition S3 means that S must order b := x4, before
T =g 1. This would entail a cycle in S, which is impossible.

Similarly, C11’s conditions guarantee that the following
(variant given in [29] of the) 2+2W litmus test disallows the
annotated weak behavior:

T =g 1 Yi=sc 1
Y =sc 2 T ‘=sc 2 (2+2W)
a:=ypx /1 || b:=xp /1

Because of coherence condition (7ii), mo—and thus, by S2,
also S—must order x :=4. 2 before x :=4. 1, and y :=5. 2
before y :=;. 1; otherwise, the reads at the end of each
thread would be reading overwritten values. At the same time,
T =g 1 1s sequenced before y :=. 2, and y :=;. 1 before
T =g 2, and thus by S1, those orderings must be included
in S as well. Together, these induce an illegal cycle in S.
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Figure 2. A C11 execution of Z6.U. The initialization of y
is omitted as it is not relevant.

Let us now move to the IRIW-acq-sc program from the
introduction, whose annotated behavior is also forbidden
by C11. To see that, suppose without loss of generality
that S(p, k) in Fig. 1. We also know that S(k, m) because
of happens-before via [ (S1). Thus, by transitivity, S(p, m).
However, if the second thread reads y = 0, then m reads-
before p, in which case S(m, p) (S3), and S has a cycle.

2.1 First Problem: Compilation to Power is Broken

As we saw in the introduction, the IRIW-acq-sc example
demonstrates that the trailing sync compilation is unsound
for the C11 model. We will now see an example showing that
the leading sync compilation is also unsound. Consider the
following behavior, where all variables are zero-initialized
and FAI(y) represents an atomic fetch-and-increment of y
returning its value before the increment:

T =g 1
Y ‘=rel 1

Y ‘=sc 3
a = Tgc /0

b:=FAI(y)sc /1

¢ = yery /3 (Zz6.U)

We will show that the behavior is disallowed according to
C11, but allowed by its compilation to Power.

Fig. 2 depicts the only execution yielding the behavior in
question. The rf and mo edges are forced because of coher-
ence: even if all accesses in the program were relaxed-atomic,
they would have to go this way. S(k, m) holds because of
condition S1 (k happens-before I, which happens-before m);
S(m, 0) holds because of condition S2 (m precedes o in mod-
ification order); S(o,p) holds because of condition S1 (o
happens-before p). Finally, since p reads z = 0, we have that
p reads-before k, so by S3, S(p, k), thus forming a cycle in S.

Under the leading sync compilation to Power, however,
the behavior is allowed (albeit not yet observed on existing
implementations). Intuitively, all but one of the sync fences
because of the SC accesses are useless because they are at the
beginning of a thread. In the absence of other sync fences,
the only remaining sync fence, due to the a := x4 load in
the last thread, is equivalent to an lwsync fence (cf. [15, §7]).

A similar example can be constructed without SC RMW
instructions, using SC fences instead (see Appendix A.1).

What Went Wrong and How to Fix it Generally, in order to
provide coherence, hardware memory models provide rather
strong ordering guarantees on accesses to the same memory
location. Consequently, for conditions S2 and S3, which only
enforce orderings between accesses to the same location,

ensuring that compilation preserves these conditions is not
difficult, even for weaker architectures like Power and ARM.

When, however, it comes to ensuring a strong ordering
between accesses of different memory locations, as S1 does,
compiling to weaker hardware requires the insertion of ap-
propriate memory fence instructions. In particular, for Power,
to enforce a strong ordering between two hb-related accesses,
there should be a Power sync fence occurring somewhere in
the hb-path (the sequence of sb and sw edges) connecting
the two accesses. Unfortunately, in the presence of mixed
SC and non-SC accesses, the Power compilation schemes do
not always ensure that a sync exists between hb-related SC
accesses. Specifically, if we follow the trailing sync conven-
tion, the hb-path (in Fig. 1) from k to m starting with an sw
edge avoids the sync fence placed after k. Conversely, if we
follow the leading sync convention, the hb-path (in Fig. 2)
from k to m ending with an sw edge avoids the fence placed
before m. The result is that S1 enforces more ordering than
the hardware provides!

So, if requiring that hb (on SC events) be included in S
is too strong a condition, what should we require instead?
The essential insight is that, according to either compilation
scheme, we know that a fence will necessarily exist between
SC accesses a and b if the hb path from a to b starts and ends
with an sb edge. Secondarily, note that if a is a write and b
is a read that reads directly from a, then the hardware will
preserve the ordering anyway. These two observations lead
us to replace condition S1 with the following:

(S1fix) S must include hb, restricted to SC events, and further
restricted to hb-paths that either start and end with a sb
edge, or consist of a single rf edge

(formally: [E®¢]; (sb U sb;hb;sb U rf); [E®¢] C S).

We note that condition S1fix, although weaker than S1,
suffices to rule out the weak behaviors of the basic litmus tests
(i.e., SB and 2+2W). In fact, just to rule out these behaviors,
it suffices to require sb (on SC events) to be included in S.

Further, we note that in the absence of mixing of SC and
non-SC accesses to the same location, every hb-path between
two SC accesses that does not go through another SC access
is either a direct rf-edge or has to start and end with an sb
edge, in which case the two conditions coincide.

Fixing the Model Before formalizing our fix, let us first
rephrase conditions S1-S3 in the more concise style sug-
gested by Batty et al. [4]. Instead of expressing them as sepa-
rate conditions on a total order S, Batty et al. require a single
acylicity condition, namely that [E*¢]; (hb U mo U rb); [E®°]
be acyclic. (In general, acyclicity of | R; is equivalent to the
existence of a total order S that contains 1, Ro, ...)

We propose to correct the condition by replacing hb with
sb U sb; hb; sb U rf, thus requiring the relation

pscy = [E]; (sb U sb; hb; sb U rf Umo U rb); [E5]



to be acyclic instead. Our weaker condition suffices to provide
the most basic usefulness criterion for SC accesses, namely
the DRF-SC theorem. It turns out that even the acyclicity of
[E%€]; (sb U rf Umo U rb); [E3°] suffices to prove DRF-SC.
This should not be very surprising: in the extreme case when
all accesses are SC, this corresponds exactly to the declarative
definition of sequential consistency [25].

2.2 Second Problem: SC Fences are Too Weak

We move on to a second problem, this time involving SC
fences. Denote by F*¢ the set of SC fences in E. The condition
of Batty et al. [5] for the full model is that

pocay 2 (2 ) s U0 Uy (5100 )

is acyclic. This condition generalizes the earlier condition
by forbidding (hb U mo U rb)-cycles even between non-SC
accesses provided they are preceded/followed by an SC fence.
This condition rules out weak behaviors of examples such as
SB and 2+2W where all accesses are relaxed and SC fences
are placed between them in all threads.

In general, one might expect that inserting an SC fence be-
tween every two instructions restores sequential consistency.
This holds for hardware memory models, such as TSO, Power,
and ARM, for programs with aligned word-sized accesses
(for their analogue of SC fences), but does not hold neither
in the original C11 model nor in its strengthening [5] for two
reasons. The first reason is that C11 declares that programs
with racy non-atomic accesses have undefined behavior, and
even if fences are placed everywhere such races may exist.
There is, however, another way in which putting fences every-
where in C11 does not restore sequential consistency, even if
all the accesses are atomic. Consider the following program:

a = Trix /1 Y ‘=rix 1
T :=r1x 1 || fenceg fenceg. (RWC+syncs)
b=y /0 || ¢:= xr1x /0

The annotated behavior is allowed according to the model of
Batty er al. [5]. Fig. 3 depicts a consistent execution yielding
this behavior, as the only pscpauy-edge is from f; to fo. Yet,
this behavior is disallowed by all implementations of C11.
We believe that this is a serious omission of the standard
rendering the SC fences too weak, as they cannot be used to
enforce sequential consistency. This weakness has also been
observed in an C11 implementation of the Chase-Lev deque
by LE et al. [19], who report that the weak semantics of SC
fences in C11 requires them to unnecessarily strengthen the
access modes of certain relaxed writes to SC. (In the context
of the RWC+syncs, it would amount to making the write to x
in the first thread into an SC write.)

Remark 2 (Itanium). A possible justification for this weak-
ness of the standard is that there was a fear that the implemen-
tation of fences on Itanium does not guarantee the property of

koW (z,1)---->1:R"(x,1) n: W (y, 1)
)f ot ¢ b T
. fl . Fsc f2 . FSC
b Vo |
m : R (y,0) o :R™(x,0)

Figure 3. An execution of RWC+syncs yielding the result
a = 1Ab = ¢ = 0, where the initialization events have
been omitted. The rb edges are due to the reading from the
initialization events and the omitted mo edges from those.

restoring sequential consistency when fences are inserted ev-
erywhere. This fear is unfounded for two independent reasons.
First, all atomic accesses are compiled to release/acquire Ita-
nium accesses on which Itanium fences guarantee ordering.
Second, even if this were not the case, [tanium implementa-
tions provide multi-copy atomicity, and thus cannot yield the
weak outcome of IRIW even without fences [13, §3.3.7.1].
Nevertheless, the whole discussion is probably not very rele-
vant any more, as Itanium is becoming obsolete.

Fixing the Semantics of SC Fences Analyzing the execu-
tion of RWC+syncs, we note that there is a sb; rb; rf; sb path
from f5 to f1, but this path does not contribute to pscgayy-
Although both rb and rf edges contribute to psc, their com-
position rb; rf does not.

To repair the model, we define the extended coherence
order, eco, to include the read-from relation, rf, the modifi-
cation order, mo, the reads-before relation, rb, and also all the
compositions of these relations with one another—namely, all
orders forced because of the coherence axioms. Our condition
then becomes that

s ([E¥TU . - b ([E*]U
pscy = ([FSC]; sb) ; (sb U sb; hb; sb U eco); <sb; 7o)

is acyclic, where eco £ (rf U mo U rb)*. This stronger
condition rules out the weak behavior of RWC+syncs because
there are sb; rb; rf; sb paths from one fence to another and
vice versa (in one direction via the x accesses and in the other
direction via the y accesses).

Intuitively speaking, compilation to Power remains correct
with this stronger model, since eco exists only between
accesses to the same location, on which Power provides
strong ordering guarantees.

Now it is easy to see that, given a program without non-
atomic accesses, placing an SC fence between every two
accesses guarantees SC. By the definition of SC, it suffices
to show that eco U sb is acyclic. Consider a eco U sb cycle.
Since eco and sb are irreflexive and transitive, the cycle
necessarily has the form (eco; sb)™*. Between every two eco
steps, there must be an SC fence. So in effect, we have a cycle
in (eco; sb; [F5¢]; sb) ™, which can be regrouped to a cycle in
([F=¢]; sb; eco; sb; [F5¢]) T, which is forbidden by our model.
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Figure 4. An abbreviated execution of W+RWC yielding
a=1ANb=c=0.

2.3 Adjustments of the Model

Next, we describe two modifications of our condition above
that we employ in our model.

Restoring Fence Cumulativity Consider the following vari-
ant of the store buffering program, where the write of x := 1
has been moved to another thread with a release-acquire syn-
chronization.

= a:= Zacqg /1 || Y :=r1x 1
. ::rlX . fenceg, fenceg, (W+RWC)
“=rel b= UYrlx /0 C:i= Tyix /0

The annotated behavior corresponds to the writes of x and
y being observed in different orders by the reads, although
SC fences having been used in the observer threads. This
behavior is disallowed on TSO, Power and ARM because
their fences are cumulative: the fences order not only the
writes performed by the thread with the fence instruction,
but also the writes of other threads that are observed by the
thread in question [21].

In contrast, the behavior is allowed by the model described
thus far. Consider the execution shown in Fig. 4. While there
is a sb; rb; sb path from f to f’, the only path from f’ back
to f is sb; rb; sb; sw; sb, and so the execution is allowed.

To disallow such behaviors, we can strengthen the SC
condition and require that

pscs £ <[E JU ) ; (sb U sb; hb; sb U eco); <[E JU )

[F*¢]; hb hb; [F5¢]

is acyclic, thereby ruling out the cycle in the execution in
Fig. 4. (Note that to rule out only the cycle shown in Fig. 4,
it would suffice to have replaced only the sb to a fence by
an hb. We can, however, also construct examples, where it is
useful for the sb from a fence to be replaced by hb. We thus
strengthen them both.)

Elimination of SC Accesses Finally, we observe that our
condition disallows the elimination of an SC write immedi-
ately followed by another SC write to the same location, as
well as of an SC read immediately preceded by an SC read
from the same location. While no existing compiler performs
these eliminations, these are sound under sequential consis-
tency, and one may wish to preserve their soundness under
weak memory.

To see the unsoundness of eliminating an overwritten
SC write, consider the following program. The annotated

behavior is forbidden, but it will become allowed after
eliminating z =4 1.

T =g 1
€T i=gc 2

Y =sc 1
C:= Tsc /0

@ 1= Tacq /2

b= yoo /0 (WWmerge)

Similarly, the unsoundness of eliminating a repeated SC
read is witnessed by the following program. Again, the
annotated behavior is forbidden, but it will become allowed
after replacing b := x5. by b := a.

C = Trix /1
t=sc 1 a:=xsc /1
z = b= pr || F T 2 (RRmerge)
+—rel . sc d = Ysc //0

The problem here is that these transformations remove
an sb-edge, and thus removes an sb; hb; sb path between
two SC accesses.” Note that the removed sb-edges are all
edges between same location accesses. Thus, supporting these
transformations can be achieved by a slight weakening of
our model. The solution is to replace sb;hb;sb in pscs
by sb|z10c; hb; Sb|£10c, Where sb|iioc denotes sb-edges
between accesses to different locations. Our final condition
becomes acyclicity of the following relation:

sc A [E°]U \ [(sbUecoU [[E®*°]U
PEC= { [F*¢];hb ) 7 \ sb|.410c; hb; Sb|410c ) * \ Bb; [F*°]
We note that this change does not affect programs that do not
mix SC and non-SC accesses to the same location.

2.4 A Final Problem: Out-of-Thin-Air Reads

The C11 memory model suffers from a major problem, known
as the “out-of-thin-air problem” [28, 10]. Designed to allow
efficient compilation and many optimization opportunities
for relaxed accesses, the model happened to be too weak,
admitting “thin-air” behaviors, which no implementation
exhibits. The standard example is load buffering with some
form of dependencies:

a:=Trx /1
if(a) y :=p1x a

b:= Yrix yal

i€ (b) 2 i—vae b (LB+deps)

In this program, the formalized C11 model by Batty et al. [7]
allows reading a = b = 1 even though the value does not
appear in the program. The reason is that the execution where
both threads read and write the value 1 is consistent: each
read reads from the write of the other thread. As one might
expect, such behaviors are very problematic because they
invalidate almost all forms of formal reasoning about the
programs. In particular, the example above demonstrates a
violation of DRF-SC, the most basic guarantee that users of
C11 were intended to assume: LB+deps has no races under
sequential consistency, and yet has some non-SC behavior.
Fixing the model in a way that forbids all out-of-thin-air
behaviors and still allows the most efficient compilation is

2To assist the reader, execution graphs are depicted in Appendix A.2.



beyond the scope of the current paper (see [14] for a possible
solution).

In this paper, we will settle for a simpler solution of requir-
ing sb U rf to be acyclic. This is a relatively straightforward
way to avoid the problem, although it carries some perfor-
mance cost. Clearly, it rules out the weak behavior of the
following load-buffering program, which is nevertheless per-
mitted by the Power and ARM architectures.

b = yrlx //l
T =pyx 1

a:=Trx /1

Y=y 1 (LB)

To correctly compile the stronger model to Power and ARM
one has to either introduce a fence between a relaxed-atomic
read and a subsequent relaxed-atomic write or a forced de-
pendency between every such pair of accesses [10]. The latter
can be achieved by inserting a dummy control-dependent
branch after every relaxed-atomic read.

While the idea of strengthening C11 to require acyclicity
of sb U rf is well-known [28, 10], we are not aware of any
proof showing that the proposed compilation schemes of
Boehm and Demsky [10] are correct, nor that DRF-SC holds
under this assumption. The latter is essential for assessing
our corrected model, as it is a key piece of evidence showing
that our semantics for SC accesses is not overly weak.

Importantly, even in this stronger model, non-atomic
accesses are compiled to plain machine loads and stores.
This is what makes the compilation correctness proof highly
non-trivial, as the Power model allows certain sb U rf cycles
involving plain loads and stores. As a result, one has to rely
on the “catch-fire” semantics (races on non-atomic accesses
result in undefined behavior) for explaining behaviors that
involve such cycles. A similar argument is needed for proving
the correctness of non-atomic read-write reordering.

3. The Proposed Memory Model

In this section, we formally define our proposed corrected
version of the C11 model, which we call RC11. Similar to
C11, the RC11 model is given in a “declarative” style in
three steps: we associate a set of graphs (called executions) to
every program (§3.1), filter this set by imposing a consistency
predicate (§3.2), and finally define the outcomes of a program
based on the set of its consistent executions (§3.3). At the end
of the section, we compare our model with C11 (§3.4).

Before we start, we introduce some further notation. Given
a binary relation R, dom(R) and codom(R) denote its do-
main and codomain. Given a function f, =y denotes the
set of f-equivalent pairs (=7 = {(a,b) | f(a) = f(b)}),
and R|; denotes the restriction of R to f-equivalent pairs
(R|¢ £ RN =y). When R is a strict partial order, R|imm de-
notes the set of all immediate R-edges, i.e., pairs (a,b) € R
such that for every ¢, (c,b) € R implies (c,a) € R’, and
{a,c) € Rimplies (b,c) € R.

We assume finite sets Loc and Val of locations and values.
We use z, y, z as metavariables for locations and v for values.

The model supports several modes for accesses and fences,
partially ordered by [ as follows:

rel
na —rlx acqrel — sc

acq

3.1 From Programs to Executions

First, the program is translated into a wide set of executions.
An execution G consists of:

1. a finite set of events E C N containing a distinguished
set Eg = {af | € Loc} of initialization events. We use
a, b, ... as metavariables for events.

2. afunction lab assigning a label to every event in E. Labels
are of one of the following forms:

e R°(xz,v) where o € {na, rlx, acq,sc}.

e W°(x,v) where o € {na,rlx,rel,sc}.

e F° where o € {acq,rel,acqrel,sc}.
We assume that lab(af) = W**(x, 0) for every af € Eo.
lab naturally induces functions typ, mod, loc, val,, and

val, that return (when applicable) the type (R,W or F),
mode, location, and read/written value of an event.

For T € {R,W,F}, T denotes the set {e € E | typ(e) = T}.
We also concatenate the event sets notations, use sub-
scripts to denote the accessed location, and superscripts
for access modes (e.g., RW = R U W and W=""°! denotes all
events a € W with loc(a) = x, and mod(a) J rel).

3. astrict partial order sb C E X E, called sequenced-before,
which orders the initialization events before all other
events, i.e., Eg x (E\ Eg) C sb.

4. a binary relation rmw C [R]; (sblimmN =10c); [W], called
read-modify-write pairs, such that for every (a, b) € rmw,
(mod(a), mod(b)) is one of the following:

o (rlx,rlx) (RMW™'¥) e (acq,rel) (RMWacael)
e (acq,rlx) (RMW*?) e (sc,sc) (RMWS®)

e (rlx,rel) (RMW™®!)

We denote by At the set of all events in E that are a part
of an rmw edge (that is, At = dom(rmw) U codom(rmw)).

5. a binary relation rf C [W]; =10c; [R] called reads-from,
satisfying (¢) val,(a) = val,(b) for every (a,b) € rf;
and (i) a1 = ag whenever (a1, b), (ag,b) € rf.

6. a strict partial order on W, called modification order,
which is a disjoint union of relations {mo },eloc, Such
that each mo,, is a strict total order on W,,.

In what follows, to resolve ambiguities, we may include a
prefix “G.” to refer to the components of an execution G.

Executions of a given program represent prefixes of traces
of shared memory accesses and fences that are generated by
the program. In this paper, we only consider “partitioned”
programs of the form ||;cTig ¢;, where Tid is a finite set
of thread identifiers, || denotes parallel composition, and




ay : R*™(y,0) ag : W= (z,0)

= \
/ m. 1 R%(y, 1 \\\

kawc(z, 1) o -7 ) rmw -~ Cz:wsc(y73)
/’// mw:wsc(yvz) ,'/\/\:
,// i« L’//rf rf\\
LW (y, 1) n:R™(y,3) p:R*(z,0)

Figure 5. An execution of Z6.U.

each ¢; is a sequential program. Then, the set of executions
associated with a given program is defined by induction
over the structure of sequential programs. We do not define
formally this construction (it depends on the particular syntax
and features of the source programming language). In this
initial stage the read values are not restricted whatsoever (and
rf and mo are arbitrary). Note that the set of executions of
a program P is taken to be prefix-closed: an sb-prefix of
an execution of P (which includes at least the initialization
events) is also considered to be an execution of P. By full
executions of P, we refer to executions of P that represent
traces generated by the whole program P.

We show an example of an execution in Fig. 5. This is
a full execution of the Z6.U program, and is essentially the
same as the C11 execution shown in Fig. 2, except that for
convenience our executions represent RMWs differently from
C11 executions. Here each RMW is represented as two events,
aread and a write, related by the rmw relation, whereas in C11
they are represented by single RMW events, which act as both
the read and the write of the RMW. Our choice is in line with
the Power and ARM memory models, and simplifies a bit the
formal development (e.g., the definition of receptiveness).

3.2 Consistent Executions

The main part of the memory model is filtering the consistent
executions among all executions of the program. The first
obvious restriction is that every read should read some
written value (formally, R C codom(rf)). We refer to such
executions as complete. Next, the model defines several
constraints with the help of a number of derived relations.

rs £ [W]; sb|zoc; [w9r1X]; (rf; rmw)*

sw £ [EZ™°1]; ([F]; sb)?; rs; rf;
[R=74T; (sbs [F]); [E=2<1]

hb 2 (sbUsw)t

(release sequence)
(synchronizes with)

(happens-before)

An important derived relation is the happens-before order
(hb), which intuitively records when an event is globally
perceived as occurring before another one. Happens-before
is defined in terms of two more basic definitions. First,
following [27], the release sequence (rs) of a write contains
the write itself and all later writes to the same location in the
same thread, as well as all RMWs that recursively read from
such writes. Next, a release event a synchronizes with (sw)
an acquire event b, whenever b (or, in case b is a fence, some
sb-prior read) reads from the release sequence of a (or in

case a is a fence, of some sb-later write). Finally, we say that
an event a happens-before another event b if there is a path
from a to b consisting of sb and sw edges.

Next, we define the extended coherence order, eco, to be
(rf Umo Urb)*, where rb is the reads-before order. Since
the modification order, mo, is transitive, the definition of eco
can be simplified as follows:

rb 2 el (reads-before or from-read)

eco 2 rf U (mo U rb); rf’  (extended coherence order)
We remark that eco is a strict order. Finally, we define the

partial SC relation, psc, as follows.

a [[E*€]U sbUecoU [Esc] U
psc = sc]. ; Chhe ; . [psc
[F5°]; hb sb|£10c; hb; Sb|£10c hb; [F5°]

where sb|z10c = [RW]; sb; [RW] \ sb|10c.
Using these derived relations, RC11-consistency imposes
four constraints on executions:

Definition 1. An execution G is called RC11-consistent if it
is complete and the following hold:

® hb; eco’ is irreflexive. (COHERENCE)
e rmw N (rb;mo) = . (ATOMICITY)
® pscis acyclic. (sC)

e sb U rf is acyclic. (NO-THIN-AIR)

COHERENCE ensures that programs with only one shared
location are sequentially consistent, as at least two locations
are needed for a cycle in sb U eco. ATOMICITY ensures that
the read and the write comprising a RMW are adjacent in
eco: there is no write event in between. The SC condition
is the main novelty of RC11 and will be used to show the
DRF-SC theorem and other criteria for ensuring sequential
consistency (see §8). Finally, NO-THIN-AIR rules out thin-air
behaviors, albeit at a performance cost, as we will see in §5.

3.3 Program Outcomes

Finally, in order to allow the compilation of non-atomic read
and writes to plain machine load and store instructions (as
well as the compiler to reorder such accesses), RC11 follows
the “catch-fire” approach: races on non-atomic accesses
result in undefined behavior, that is, any outcome is allowed.
Formally, it is defined as follows.

Definition 2. Two events a and b are called conflicting in an
execution G if a,b € E, W € {typ(a), typ(b)}, a # b, and
loc(a) = loc(b). A pair {a, b) is called a race in G (denoted
(a,b)y € race) if a and b are conflicting events in G, and
{a,b) ¢ hb Uhb~ L.

Definition 3. An execution G is called racy if there is some
(a,b) € race with na € {mod(a),mod(b)}. A program P
has undefined behavior under RC11 if it has some racy RC11-
consistent execution.



Definition 4. The outcome of an execution G is the function
assigning to every location x the value written by the mo-
maximal event in W,. We say that O : Loc — Val is an
outcome of a program P under RC11 if either O is an
outcome of some RC11-consistent full execution of P, or
P has undefined behavior under RC11.

3.4 Comparison with C11

Besides the new SC and NO-THIN-AIR conditions, RC11
differs in a few other ways from C11.

e It does not support consume accesses, a premature feature
of C11 that is not implemented by major compilers, nor
locks, as they can be straightforwardly implemented with
release-acquire accesses.

e For simplicity, it assumes all locations are initialized.

e [t incorporates the fixes proposed by Vafeiadis et al. [27],
namely (¢) the strengthening of the release sequences def-
inition, (i7) the removal of restrictions about different
threads in the definition of synchronization, and (7i7) the
lack of distinction between atomic and non-atomic loca-
tions (and accordingly omitting the problematic rf C hb
condition for non-atomic locations). The third fix avoids
out-of-thin-air problems that arise when performing non-
atomic accesses to atomic location [5, §5].

e [t does not consider “unsequenced races” between atomic
accesses to have undefined behavior. (Such gratuitous
undefined behavior is not needed for any of our results.)

We have also made three presentational changes: (1) we have
a much more concise axiomatization of coherence; (2) we
model RMWs using two events; and (3) we do not have a
total order over SC atomics.

Proposition 1. RC11’s COHERENCE condition is equivalent

to the conjunction of the following constraints of C11:
(IRREFLEXIVE-HB)

(NO-FUTURE-READ)
(COHERENCE-RW)
(COHERENCE-WW)
(COHERENCE-WR)
(COHERENCE-RR)

e hb is irreflexive.

e rf;hb is irreflexive.

;rf; hb is irreflexive.

e 10;hb is irreflexive.

e mo;hb; rf 1 is irreflexive.

o mo; rf;hb;rf ! is irreflexive.

Proposition 2. The SC condition is equivalent to requiring
the existence of a total strict order S on E®° such that S; psc
is irreflexive.

Finally, the next proposition ensures that without mixing
SC and non-SC accesses to the same location, RC11 supplies
the stronger guarantee of C11. As a consequence, program-
mers that never mix such accesses may completely ignore the
difference between RC11 and C11 regarding SC.

Proposition 3. If all SC accesses are to distinguished loca-
tions (for every a,b € E\ Eg, ifmod(a) = sc and loc(a) =
loc(b) then mod(b) = sc) then [E®¢]; hb; [E*¢] C psc.

(R) £ MOV (from memory)  (WE"!]) £ MOV (to memory)
(W*°) = MOV;MFENCE or XCHG (RMW|) £ CMPXCHG
(F=*¢) £ No operation (F**) £ MFENCE

Figure 6. Compilation to TSO.
4. Compilation to x86-TSO

In this section, we show that RC11 can be correctly compiled
to the TSO architecture. Fig. 6 summarizes the proposed
compilation scheme to TSO [1], which is implemented in
the GCC and the LLVM compilers. Since TSO provides much
stronger consistency guarantees than Power, it allows more
language primitives to be compiled to plain loads and stores.
Barriers are only needed for the compilation of SC writes,
either in the form of explicit fences, or by performing an
atomic exchange that includes an implicit fence.

While a direct compilation correctness proof is straight-
forward, assuming TSO’s declarative model of by Owens
et al. [23], we follow here a different simpler approach utiliz-
ing the recent result of Lahav and Vafeiadis [17]. That result
provides an alternative characterization of the TSO memory
model, in terms of program transformations (or “compiler
optimizations”). They show that every weak behavior of TSO
can be explained by a sequence of:

o load-after-store reorderings
(e.g., MOV [z] 1; MOV r [y] ~ MOV r [y]; MOV [z] 1); and
e load-after-store eliminations

(e.g., MOV [z] 1; MOV r [x] ~> MOV [z] 1; MOV r 1).

They further outline an application of this characterization
to prove compilation correctness, which we follow here.
Accordingly, we have to meet three conditions:

1. Every outcome of the compiled program under SC is an
outcome of the source program under RC11. This trivially
holds, since obviously RC11 is weaker than SC (even if
arbitrary fences are added to the source).

2. Every store-load reordering that can be applied on the
compiled program corresponds to a transformation on the
source program that is sound under RC11. Indeed, the
compilation scheme ensures that adjacent load after store
in the compiled program ( P]) correspond to adjacent read
after non SC write in the source P. These can be soundly
reordered under RC11 (see §7), resulting in a program P’
whose compilation (| P’]) is identical the reordered (| P|).

3. Every load-after-store elimination that can be applied on
the compiled program corresponds to a transformation on
the source program that is sound under RC11. Again, the
compilation scheme ensures that an load adjacently after
a store in the compiled program (| P|) corresponds to an
adjacent read after a non SC write in the source P. The
read can be soundly eliminated under RC11 (see §7),

A similar argument establishes the correctness of an
alternative compilation scheme to TSO that places a barrier
before SC reads rather than after SC writes. Since there are



typically more SC reads than SC writes in programs, this
scheme is less preferred.

5. Compilation to Power

In this section, we present the Power model and the mappings
of language operations to Power instructions. We then prove
the correctness of compilation from RC11 to Power.

As a model of the Power architecture, we use the recent
declarative model by Alglave et al. [3], which we denote by
Power. Its executions are similar to the ones above, with the
following exceptions:

e Read/write labels have the form R(x, v) and W(z, v) (they
do not include a “mode”).

e Power executions track syntactic dependencies between
events in the same thread, and derive a relation called
preserved program order, denoted ppo, which is a subset
of sb guaranteed to be preserved. The exact definition of
ppo is quite intricate, and is included in Appendix F.

e Power has two types of fence events: a “lightweight fence”
and a “full fence”. We denote by F*¥sy2¢ and FSY¢ the set
of all lightweight fence and full fence events in a Power
execution. Power’s “instruction fence” (isync) is used to
derive ppo but is not recorded in executions.

In addition to ppo, the following additional derived re-
lations are needed to define Power-consistency (see [3] for
further explanations and details).

* sync = [RW]; sb; [F5"¢]; sb; [RW]

e lwsync 2 [RW]; sb; [F¥s9°¢]: sb; [RW] \ (W x R)

e fence £ sync U lwsync (fence order)

® hb, £ ppoU fenceUrfe  (Power’s happens-before)
e prop, = [W];rfe’; fence;hb,*; W]
* prop, = (noeUrbe)’;rfe’; (fence; hb,*)’; sync; hb,*
e prop £ prop; U prop, (propagation relation)
where for every relation c (e.g., rf, mo, etc.), we denote
by ci and ce (internal ¢ and external c) its thread-internal
and thread-external restrictions. Formally, ci = ¢ N sb and
ce =c )\ sb.

Definition 5. A Power execution G is Power-consistent if it
is complete and the following hold:

. 8b|1oc U rf U rb Umo is acyclic. (SC-PER-LOC)
. rbe; prop; hb,* is irreflexive. (OBSERVATION)
U prop is acyclic. (PROPAGATION)

e) is irreflexive.  (POWER-ATOMICITY)

(POWER-NO-THIN-AIR)

. rmw N (rbe;
. hby, is acyclic.

Remark 3. The model in [3] contains an additional con-
straint: mo U [At]; sb; [At] should be acyclic (recall that
At = dom(rmw) U codom(rmw)). Since none of our proofs
requires this property, we excluded it from Def. 5.

(rR™) 21d (W) 2 st

(R™=) £ 1d;cmp;be (W) £ st

(r=9) 2 1d;cmp;be;isync (W) £ lusync;st
(F&=*) £ Jwsync (F*°) £ sync
(RMW™*) £ L:lwarx;cmp;bc Le;stwex.;bc L;Le:
(RMW*?)) £ (RMW™*|);isync

(RMW™') £ lwsync; (RMW™*))

(RMW*¥<l)) £ 1ysync; (RMW™)); isync

Figure 7. Compilation of non-SC primitives to Power.

Leading sync Trailing sync

(R°) = sync;(R*) (R°°) = 1d;sync
(W) £ sync;st (w) £ (w™);sync
(RMW*°]) £ sync; (RMW*Y)  (RMW*°)) £ (RMW™'));sync

Figure 8. Compilations of SC accesses to Power.

Unlike RC11, well-formed Power programs do not have
undefined behavior. Thus, a function O : Loc — Val is an
outcome of a Power program P if it is an outcome of some
Power-consistent full execution of P (see Def. 4).

As already mentioned, the two compilation schemes from
C11 to Power that have been proposed in the literature [1]
differ only in the mappings used for SC accesses (see Fig. 8).
The first compilation scheme follows the leading sync con-
vention, and places a sync fence before each SC access. The
alternative scheme follows the trailing sync convention, and
places a sync fence after each SC access. Importantly, the
same scheme should be used for all SC accesses in the pro-
gram, since mixing the schemes is unsound. The mappings for
the non-SC accesses and fences are common to both schemes
and are shown in Fig. 7. Note that our compilation of relaxed
reads is stronger than the one proposed for C11 (see §2.4).

Our main theorem says that the compilation schemes are
correct. For a program P, we denote by (P]) the Power-
program obtained by compiling P using the scheme in Fig. 7
and either of the schemes in Fig. 8 for SC accesses.

Theorem 1. Given a program P, every outcome of (P))
under Power is an outcome of P under RC11.

Proof (Outline). The main idea is to consider the compilation
as if it happens in three steps, and prove the soundness of
each step:

1. Leading sync: Each R®¢/W®¢/RMWS¢ in P is replaced by
Fs¢ followed by R2°9 /wrel /RMwacarel,

Trailing sync: Each R®¢/W®¢ /RMW*¢ in P is replaced by
R2°d /el /RMWaee! followed by F=°.

2. The mappings in Fig. 7 are applied.

3. Leading sync: Pairs of the form sync; lwsync that origi-
nated from R3¢ /W5¢ /RMW*° are reduced to sync (eliminat-
ing the redundant 1wsync).

Trailing sync: Any cmp;bc;isync;sync sequences
originated from R®¢ /W®¢ /RMW=° are reduced to sync (elim-
inating the redundant cmp; bc; isync).
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Table 1. Deorderable pairs of accesses/fences (z and y are distinct locations).

The resulting Power program is clearly identical to the one
obtained by applying the mappings in Figures 7 and 8.
Soundness of the steps (that is, none of them introduces
additional outcomes) follows from Lemmas E.2 and H.2
and Appendix F.3. O

The main difficulty (and novelty of our proof) lies in
proving soundness of the second step, and more specifically
in establishing the NO-THIN-AIR condition. Since Power,
unlike RC11, does not generally forbid sb U rf cycles, we
have to show that such cycles can be untangled to produce
aracy RC11-consistent execution, witnessing the undefined
behavior. Here, the idea is, similar to DRF-SC proofs, to
detect a first rf-edge that closes an sbUrf cycle, and replace
it by a different rf-edge that avoids the cycle. This is highly
non-trivial because it is unclear how to define a “first” rf-
edge when sb U rf is cyclic. To solve this problem, we came
up with a different ordering of events, which does not include
all sb edges, and Power ensures to be acyclic (a relation we
call Power-before in Appendix G).

For completeness, we also show that the conditional
branch after the relaxed read is only necessary if we care
about enforcing the NO-THIN-AIR condition. That is, let
weakRC11 be the model obtained from RC11 by omitting
the NO-THIN-AIR condition, and denote by (P]),... the
Power-program obtained by compiling P as above, except
that relaxed reads are compiled to plain loads (again, with
either leading or trailing syncs for SC accesses). Then, this
scheme is correct with respect to the weakRC11 model.

Theorem 2 (Compilation of weakRC11 to Power). Given a
program P, every outcome of (P)),... under Power is an
outcome of P under weakRC11.

Finally, we note that it is also possible to use a lightweight
fence (lwsync) instead of a fake control dependency and an
instruction fence (isync) in the compilation of (all or some)
acquire accesses. The correctness follows from Appendix F.3.

6. Compilation to ARMv7

The ARMv7 model [3] is very similar to the Power model
just presented in §5. There are only two differences.

First, while ARMv7 has analogues for Power’s strong
fence (sync) and instruction fence (isync), it lacks an
analogue for Power’s lightweight fence (lwsync). Thus, on
ARMvV7 we have F1"/%¢ = () and so fence = sync.

The second difference is that ARMv7 has a somewhat
weaker preserved program order, ppo, than Power, which in
particular does not always include [R,]; sb; [W;] (following
the model in [3]). In our Power compilation proofs, how-
ever, we never rely on this property of Power’s ppo (see Ap-
pendix F).

The compilation schemes to ARMv7 are essentially the
same as those to Power substituting the corresponding
ARMV7 instructions for the Power ones: dmb instead of sync
and lwsync, and isb instead of isync. (Since ARMv7 lacks
an analogue for lwsync, the compilation to ARMv7 uses a
strong fence (dmb) instead.) The soundness of compilation to
ARMV7 follows directly from Theorems 1 and 2.

We note that neither GCC (version 5.4) nor LLVM (version
3.9) map acquire reads into 1d ; cmp; bc; isb. Instead, they
emit 1d ;dmb (that corresponds to Power’s 1d; sync). With
this stronger compilation scheme, there is no correctness
problem in compilation of C11 to ARMv7. Nevertheless, if
one intends to use isb’s, the same correctness issue arises
(e.g., the one in Fig. 1), and RC11 overcomes this issue.

7. Correctness of Program Transformations

In this section, we list program transformations that are sound
in RC11, and prove that this is the case. As in [27], to have
a simple presentation, all of our arguments are performed at
the semantic level, as if the transformations were applied to
events in an execution. Thus, to prove soundness of a program
transformation Py ~+ Pigt, we are given an arbitrary RC11-
consistent execution Gyg 0f P, and construct a RC11-
consistent execution G, of P, such that either G, and
Ggt have the same outcome or G is racy. In the former
case, we show that Gy is racy only if G, is. Consequently,
one obtains that every outcome of Fig under RC11 is also an
outcome of P, under RC11.

The soundness proofs (sketched in Appendix I) are mostly
similar to the proofs in [27], with the main difference con-
cerning the new SC.

Strengthening Strengthening transforms the mode o of
an event in the source into o in the target where o C 0'.
Soundness of this transformation is trivial, because RC11-
consistency is monotone with respect to the mode ordering.

Sequentialization Sequentialization merges two program
threads into one, by interleaving their events in sb. Essen-
tially sequentialization just adds edges to the sb relation. Its
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Figure 9. Mergeable pairs. o, denotes the maximal mode
in {na, rlx, acq, sc} satisfying o, C o; and oy, denotes the
maximal mode in {na, r1x, rel, sc} satisfying oy, C o.

soundness trivially follows from the monotonicity of RC11-
consistency with respect to sb.

Deordering Table 1 defines the deorderable pairs, for
which we proved the soundness of the transformation
XY ~» X || Yin RC11. (Note that reordering is obtained
by applying deordering and sequentialization.) Generally
speaking, RC11 supports all reorderings that are intended
to be sound in C11 [27], except for load-store reorderings
of relaxed accesses, which are unsound in RC11 due to the
conservative NO-THIN-AIR condition (if one omits this con-
dition, these reorderings are sound). Importantly, load-store
reorderings of non-atomic accesses are sound due to the
“catch-fire” semantics. The soundness of these reorderings
(in the presence of NO-THIN-AIR) was left open in [27], and
requires a non-trivial argument of the same nature as the one
used to show NO-THIN-AIR in the compilation correctness
proof (see Appendices G and I).

Merging Merges are transformations of the form X; Y ~~ Z,
eliminating one memory access or fence. Fig. 9 defines the set
of mergeable pairs. Note that using strengthening, the modes
mentioned in Fig. 9 are upper bounds (e.g., R*°; R™** can be
first strengthened to R*°%; R*°? and then merged). Generally
speaking, RC11 supports all mergings that are intended to be
mergeable in C11 [27].

Remark 4. The elimination of redundant read-after-write
allows the write to be non-atomic. Nevertheless, an SC
read cannot be eliminated in this case, unless it follows
an SC write. Indeed, elimination of a an SC read after a
non-SC write is unsound in RC11. We note that while this
elimination is allowed by a certain fix of of C11 described
in [27], its effectiveness seems to be low, and, in fact, it is
already unsound for the model in [4] (see Appendix A.3 for a
counterexample). Note also that read-after-RMW elimination
does not allow the read to be an acquire read unless the update
includes an acquire read (unlike read-after-write). This is
due to release sequences: eliminating an acquire read after
a relaxed update may remove the synchronization due to a
release sequence ending in this update.

Register Promotion Finally, “register promotion” is sound
in RC11. This global program transformation replaces all the
accesses to a memory location by those to a register, provided
that the location is used by only one thread. At the execution
level, all accesses to a particular location are removed from
the execution, provided that they are all sb-related.

8. Programming Guarantees

In this section, we demonstrate that our semantics for SC
atomics (i.e., the SC condition in Def. 1) is not overly weak.
We do so by proving theorems stating that programmers who
follow certain defensive programming patterns can be assured
that their programs exhibit no weak behaviors. The first such
theorem is DRF-SC, which says that if a program has no races
on non-SC accesses under SC semantics, then its outcomes
under RC11 coincide with those under SC.

In our proofs we use the standard declarative definition of
SC: an execution is SC-consistent if it is complete, satisfies
ATOMICITY, and sb U rf Umo U rb is acyclic [25].

Theorem 3. [fin all SC-consistent executions of a program
P, every race (a,b) has mod(a) = mod(b) = sc, then the
outcomes of P under RC11 coincide with those under SC.

Next, we show that adding a fence instruction between
every two accesses to shared locations restores SC, or there
remains a race in the program, in which case the program has
undefined behavior. More formally, we say that a location is
shared if it is accessed by more than one threads.

Definition 6. A location x is shared in an execution G if
{a,b) ¢ sb U sb™! for some distinct events a, b € E,.

Theorem 4. Let G be an RC11-consistent execution. Sup-
pose that for every two distinct shared locations x and v,
[E;]; sb; [Ey] C sb; [F*¢]; sb. Then, G is SC-consistent.

We remark that for the proofs of Theorems 3 and 4, we
do not need the full SC condition: for Thm. 3 it suffices for
[E%¢]; (sbUrf Umo Urb); [E®¢] to be acyclic; and for Thm. 4
it suffices for [F=°]; sb; eco; sb; [F=°] to be acyclic.

9. Related Work

Despite having been developed quite recently, a fair number
of problems have been found in the C11 memory model. The
model itself was designed by the C++ standard committee
based on a paper by Boehm and Adve [9]. During the
standardization process, Batty ef al. [7] formalized the C11
memory model and proved soundness of its compilation to
x86-TSO. They also proposed a number of key technical
improvements to the model (such as some coherence axioms),
which were incorporated into the standard.

Soon afterwards, Batty et al. [6] and Sarkar et al. [24]
studied the compilation of C11 to Power, and incorrectly
proved the correctness of two compilation schemes. In their
proofs, from a consistent Power execution, they constructed
a corresponding C11 execution, which they tried to prove
consistent, but in doing so they forgot to check the overly
strong condition S1. The examples shown in the introduction
and in §2.1 are counterexamples to their theorems.

Quite early on, a number of papers [11, 28, 22, 10] noticed
the disastrous effects of thin-air behaviors allowed by the
C11 model, and proposed strengthening the definition of
consistency by disallowing sb U rf cycles. [10] further



discussed how the compilation schemes of relaxed accesses
to Power and ARM would be affected by the change, but did
not formally prove the correctness of their proposed schemes.

Next, Vafeiadis et al. [27] noticed a number of other prob-
lems with the C11 memory model, which invalidated a num-
ber of source-to-source program transformations that were
assumed to hold. They proposed local fixes to those problems,
and showed that these fixes enabled proving correctness of a
number of local transformations. We have incorporated their
fixes in the RC11-consistency definition.

Then, in 2016, Batty et al. [4] proposed a more concise
semantics for SC atomics, whose presentation we have fol-
lowed in our proposed RC11 model. As their semantics is
stronger than C11, it cannot be compiled efficiently to Power,
contradicting the claim of that paper. Moreover, as already dis-
cussed, SC fences are still too weak according to their model:
in particular, putting them between every two accesses in a
program with only atomic accesses does not guarantee SC.

Finally, Manerkar et al. [20] recently discovered the prob-
lem with trailing-sync compilation to Power (in particular,
they observed the IRIW-acq-sc counterexample), and iden-
tified the mistake in the existing proof. Independently, we
discovered the same problem, as well as the problem with
leading-sync compilation. Moreover, in this paper, we have
proposed a fix for both problems, and proven that it works.

A number of works [28, 26, 16, 15] have previously
studied only small fragments of the C11 model—typically
the release/acquire fragment. Among these, Lahav et al. [15]
previously proposed strengthening the semantics of SC fences
in a different way by treating them as read-modify-writes to
a distinguished location. That strengthening, however, was
considered in the restricted setting of only release/acquire
accesses, and does not directly scale to the full set of C11
access modes. In fact, for the fragment containing only SC
fences and release/acquire accesses, RC11-consistency is
equivalent to RA-consistency that treats SC fences as RMWs
to a distinguished location [15].

10. Conclusion

In this paper, we have introduced the RC11 memory model,
which corrects all the known problems of the C11 model.
We have further proved (i) the correctness of compilation
from RC11 to x86-TSO [23], Power and ARMv7 [3]; (i)
the soundness of various program transformations; (i7i) a
DRF-SC theorem; and (iv) a theorem showing that for
programs without non-atomic accesses, weak behaviors can
be always avoided by placing SC fences. It would be useful
to mechanize the proofs of this paper in a theorem prover; we
leave this for future work.

A certain degree of freedom exists in the design of the
SC condition. A very weak version, which still maintains the
two formal programming guarantees of this paper, would
require acyclicity of ([E®¢] U [F*¢]; sb); (sb U eco); ([ES¢] U
sb; [F*¢]). In our choice of psc we aimed to provide: (i)

stronger guarantees, while still, needless to say, ensuring the
correctness of compilation; and (7¢) additional optimization
opportunities which are sound for sequential consistency
(eliminating overwritten SC writes and repeated SC reads).

Regarding the infamous out-of-thin-air problem, we em-
ployed in RC11 a conservative solution at the cost of in-
cluding a fake control dependency after every relaxed read.
While this was already considered as a valid solution before,
we are the first to prove the correctness of this compilation
scheme, as well as the soundness of reordering of indepen-
dent non-atomic accesses under this model. Correctness of
an alternative scheme that places a lightweight fence after
every relaxed write is left for future work. It is interesting to
check the practical performance costs of each scheme. On
the one hand, relaxed writes (which are not followed by a
fence) are perhaps rare in real programs, compared to relaxed
reads. On the other hand, a control dependency is cheaper
than a lightweight fence, and relaxed reads are often anyway
followed by a control dependency.

Another important future direction would be to combine
our SC constraint with the recent model of Kang ez al. [14],
which prevents out-of-thin-air values (and avoids undefined
behaviors all together), while still allowing the compilation
of relaxed reads and writes to plain loads and stores. This
is, in particular, crucial for adopting a model like RC11 in a
type-safe language, like Java, that cannot allow undefined be-
haviors. Integrating our SC condition in that model, however,
is non-trivial because the Kang et al. [14] model is defined in
a very different style from C11, and thus we will have to find
an equivalent operational way to check our SC condition.

Finally, establishing the correctness of compilation of
RC11 to ARMv8 [12] is another important future goal.
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A. Further Examples
A.1 Failure of leading sync convention with SC fences
The following behavior is disallowed according to C11, but

allowed by its compilation to Power.

T i=p1x 2 Y=g 1
fenceg. T i=re1 1

b::yrlx//o d3:xr1x//2

e :=xs. /1 (Rsync+Rsc)

Under C11, this behavior is forbidden. Consider the following
execution (the initialization of x is omitted):

w*(y, 0)
// |

kW' (z,2) rf Tpws(y, 1)
N o7 - \ rf
1 Fs© /v\\ o:wrel(x’1)~ ----- »q Rsc(l',l)
i P = SR i sw
I's ~x
m : W (y, 0) p R (2,2)
The rf and mo edges are forced because of coherence.

Now, the C11 conditions on SC fences require, in particu-
lar, that [F°]; sb; rb; [E*°] C S and [E®°]; rb; sb; [F*°] C S.
Hence, we must have S(I, n) (essentially because if we had
S(n, 1), then m would have been reading from an overwritten
write), as well as S(q, [) (essentially because if we had S(I, ¢),
then m would have been reading from an mo-overwritten
write before the fence). By transitivity, we thus have S(g, n)
which contradicts condition S1, which requires S(n, q) be-
cause of the happens-before path via o.

The compilation to Power allows the behavior because
again the sync fences do not provide sufficient synchroniza-
tion: again all but one sync fences are useless, as they are
placed at the beginning of a thread.

A.2 Failure of write-after-write and read-after-read
eliminations using pscs

We present the executions showing the failure of write-after-
write and read-after-read eliminations using pscs (see §2.3).

First, the following execution is an execution of WWmerge
yielding the result a = 2Ab = ¢ = 0. The initialization events
are omitted.

th
L A
k:R*Y(x,2)" m: W(z, 1) b O w*(y, 1)
RS A
1:RC(y,0) TT n:we(s,2) p:R*(z,0)

This execution is inconsistent with the SC condi-
tion that requires acyclicity of pscs (since we have
(m,1),{l,0),{o,p), (p,m) € pscsy). It is, however, consis-
tent using our final psc relation ({(m, [) & psc).

Now, the following execution is an execution of the same
WWmerge program, but after applying the elimination of
T =g, 1, again yielding the result a = 2 A b = ¢ = 0. This
execution is consistent with the SC condition that requires
acyclicity of pscs (as well as with our final psc relation).

B ey
k:R*(z,2)" 0: Wy, 1)

-~ _

|- ] {
LR®(1,0)  TF n W (2,2) < Foep: (2, 0)

Second, the following execution is an execution of
RRmerge yielding the resulta =b=c=1Ad = 0.

k: wsc(y7 1) rf m: RSC(.’L’, 1) _rjf7)0 . Rl‘lx(m7 1)
6 LT T i
l wrel(b{;, 1) Y RSC($7 1) __________ >p wsc(x’2)
q Rsc(y70)
Th e

This execution is inconsistent with the SC condi-
tion that requires acyclicity of pscs (since we have
(k,n), (n,p), (p,q), (g, k) € pscs). It is, however, consis-
tent using our final psc relation ((k,n) ¢ psc).

Now, the following execution is an execution of the same
RRmerge program, but after replacing b := xs. by b := a,
again yielding the result a = b = ¢ = 1 A d = 0. This
execution is consistent with the SC condition that requires
acyclicity of pscg (as well as with our final psc relation).

k:wc(y,1) m:R*(z,1) rf o:R™(z,1)

» ’(r:f:i,’#4/’ ,.-—..‘__’..._) i
1wt (1) T W (e, 2)

.
q:R*(y,0)

A.3 Failure of SC-read-after-non-SC-write elimination

Ysc ‘= 27 T =g 2; Y ‘=sc 2v T =g 2;
T =nx 1; — . T = 1 = :

— . Y *=sc 1; ~M o q. Y ‘=sc 1;
a:= Tgc; /1 o Ly 0= 1 e .2
b= xx; /2 = Yrx b= Ty1x; /2 = Yrlxs

The annotated behavior is allowed under RC11 for the
target, but not for the source. The same applies to the model
of Batty et al. [4].



B. Programs to Executions: Receptiveness Assumption

To carry out the compilation correctness proof, we need to record syntactic dependencies between instructions,
as in the Power model. (This is only needed if one is interested in the NO-THIN-AIR condition; compilation
correctness for weakRC11 may completely ignore this extension.) Dependencies are classified into data, address
and control dependencies. Accordingly, we extend the definition of an execution (see §3.1), with additional
relations data, addr and ctrl. We use deps to denote the union of the three relations. We require data, addr
and ctrl to satisfy the following:

1. data CR x W. 3. ctrl CR X E. 5. rmw C deps.
2. addr CR x (RUW). 4. ctrl;sb C ctrl.

The dependency relations are calculated from the program syntax, together with the generation of program’s
execution (like in Power), and the construction ensures that the above properties hold. Moreover, the
construction of executions from programs provides us with the following receptiveness property:

Definition B.1. A function [ab’ : Event — Label is called a reevaluation of lab : Event — Label if for every
event a, the label lab’(a) is identical to lab(a), except possibly for read/written value.

Notation B.1. Given an execution G and a reevaluation lab of G.1ab, lab(G) denotes the execution G’ given
by: G'.1ab = lab, G'.xf = (), and G'.c = G.c for every c € {E, sb, rmw,mo, data, addr, ctrl}.
Assumption B.1 (receptiveness). Let G be an execution of a program P. Let a € R, and suppose that
a & dom(deps*; (ctrl U addr)). For every v € Val, there exists a reevaluation lab of G.1ab such that:

¢ lab(G) is an execution of P.

¢ lab(G).valy(a) = v.

e lab(b) = G.1lab(b) whenever (a,b) ¢ G.deps™.
Note that a more basic receptiveness property follows from this assumption: if a ¢ dom(sb) then for every

v € Val, we have that lab(G) is an execution of P, for the reevaluation lab of G.1ab that sets the read value of
a to v, and otherwise is identical to G.1ab.

In addition, we assume that the set of executions of a program is prefix-closed:

Notation B.2. Given an execution (G and a set £/ C E that is downwards closed w.r.t. sb (i.e., a € E whenever
(a,b) € sb for some b € E), and contains at least all the initialization events, the restriction of G to E,
denoted G|, is the execution G’ given by G'.E = E, G'.1ab = G.lab|g, and G’'.c = [E]; G.c;[E] for
c € {sb, rmw, rf, mo,data, addr, ctrl}.

Assumption B.2 (prefix-closed executions). Let G be an execution of a program P, and let £ be a subset of E

that is downwards closed w.r.t. sb, and contains at least all the initialization events. Then, G| is an execution
of P.

C. Properties of RC11

In this section, we present some basic properties of the derived relations eco, sw, hb and of RC11-consistent
executions. We omit some of the proofs that straightforwardly follow from our definitions. For the rest of this
section, consider an arbitrary execution G.

Proposition C.1. eco is a strict partial order.

Proposition C.2. Suppose that [W]; sb|iec; [W] C mo and rmw C rb. Then, the following hold:

1. rs C eco’. 3. [W]; sw; [F] C eco;sb.
2. [W]; sw; [R] C eco. 4. eco;hb C eco U eco; (sb \ rmw); hb”.
Proof.

1. Let {a,b) € rs. Then, by definition, (a,b) € [W]; sb|?,.; [W2"**]; (rf; rmw)*. Since [W]; sb|1oc; [W] €
and rmw C rb, we have (a,b) € eco*. Since eco is transitive, we have (a, b) € eco’.



b) € [W]; sw; [R]. Then, by definition, we have (a,b) € rs;rf. Using the previous item, we obtain
a,b) € eco’;eco C eco.
b) € [W]; sw; [F]. Then, by definition, we have (a,b) € rs;rf;sb. Using the first item, we obtain
b) S eco?; eco; sb C eco; sb.
4. Let (a,c) € eco;hb, and let b € E be an eco-maximal event satisfying (a, b) € eco, and (b, c) € hb’. If

b = cthen (a, c) € eco, and we are done. Otherwise, the maximality of b ensures that (b,d’) € sb \ sw and
(V',c) € hb’ for some b’ € E. Since rmw C rb C eco, it follows that (a,c) € eco; (sb \ rmw);hb?. O

Lemma C.1 (Read at end). Let a € R\ dom(sb). Suppose that G' = G|gg\{a} is RCl1l-consistent.
Then, there exists an event b € G'\W such that the execution G" given by G".c = G.c for every
¢ € {E, sb,rmv,data,addr, ctrl,mo}, G”.1ab = G’.lab U {a +— R™%%)(loc(a),val, (b))}, and
G".rf =G .rf U{(b,a)} is RC1l1-consistent.

Proof. Take b to be the mo-maximal event in G.Wy,c(q). It is straightforward to show that G”, as defined in the
statement, is RC11-consistent. O
Proposition C.3. Let a € W="'*\ dom(r£). Let G’ = G| g\ {a}- Then, |G’ .E]; G.hb; [G' E] = G’ hb.

Proposition C.4. Let G’ be any execution obtained from G by possibly changing the value read at some
a € R™, and the source of the rf-edge entering the event a. Then, G’ .hb = G .hb.

Proposition C.5. Let G’ be an execution, such that G'E = G.E W {a} for some event a. Suppose that
a € G'R™, G.sb C G'.sb, G.1lab C G'.1lab, G.rmw = G .rmw, and G’ .xf = G.xf U {(b,a)} for some
b € G.E. Then, [G.E|; G’ .hb; [G.E] = G.hb.

D. The RC,, Model

In this section we present a variant of RC11, which has a smaller psc relation, and is useful in our correctness
of compilation proofs. It is based on the following additional derived relations:

rb™ £ [R™]; rb
b7 £ rp \ rb*
eco”™ £ rf U (mo Urb?™); rf’
psc?™ £ ([E5°] U [F*¢];1ib); (sb U eco™™® U sb|10c; hb; b 410c); ([E*¢] U hb; [F5°])

Proposition D.1. If rb™ C hb then psc = psc?™.

Proof. Immediately follows from our definitions.
(Note that psc \ psc?®® C [F*°]; hb; (rb7™2; r£”); ([E®°] U hb; [F*°]), and hb; rf’ C hb’; (sb U rf).) O

We call an execution RCy,-consistent if it satisfies all conditions of Def. 1, except possibly for Sc, and psc?®
is acyclic.

Lemma D.1. Let G be an RC,,-consistent execution of a program P. Then, either G is RC11-consistent, or P
has undefined behavior under RC11.

Proof. If rb™ C hb, then, by Prop. D.1, psc = psc?éna and G is RC11-consistent. Suppose otherwise. We
show that P has undefined behavior under RC11. Let a4, ... , a,, be an enumeration of E that respects sb U rf
(that is, ¢ < j whenever (a;,a;) € sbUrf). Forevery 1 <i <n,let E; =EqU {aq,...,a;} and G; = G|g,.
Let k be the minimal index such that G.rb** ¢ G} hb. Then, by Prop. D.1, Gi_1.psc = Gk_l.psc:#na is
acyclic, and so G, is RC11-consistent. Let (ag, ay) € Gj.rb™ \ G}.hb. Then, we must have ay, € {ag, ay}.
Note also that {ay, ag) & Gj.hb since G}, satisfies COHERENCE.

Now, if G}, is RC11-consistent, then we are done (it is a racy execution of P). Suppose otherwise. We show
that aj # ay. Indeed, since Gy, is RCp,-consistent but not RC11-consistent, and Gj,_1 is RC11-consistent, it
must be the case that mod(ay) = sc, and there exist b, f € Ej_1 such that:

® {ap,b) € Gp.mo; G_1.7t7; (Gr_1.hb; [F])?; [Gh_1.E%]



o (b, f) € G_1.psc*; [F*°]

L4 <f7 ak> S kal.hb; Gy.rb™
Now, since we have [Ey_1]; Gi.tb; G.mo; [Ex—1] € Gg—1.rb, it follows that (f,b) € Gk_;.psc. This,
however, contradicts the fact that G, _1 is RC11-consistent.
Therefore, we have ap = ag. Let x = G.loc(ag). By Lemma C.1, there exists an event b € Gp_1.W,
such that the execution G’ given by G'.c = Gy.c for every ¢ € {E,sb,rmw,data,addr,ctrl,mo},
G’'.lab = Gp_i.lab U {a; — R™(z,val,y(b))}, and G'.xf = Gp_1.vf U {(b,ax)} is RC11l-consistent.
By Assumption B.1, G’ is an execution of P. In addition, we have (ay, a;) ¢ G'.hb (since {ay, ar) € Gr.hb
and G’.hb = G.hb by Prop. C.4), and so G’ is racy. Hence, P has undefined behavior under RC11. O

Next, we prove some lemmas that allow us (under some restrictions) to add a memory access inside a given
execution. In what follows, we take G to be an arbitrary execution.

Proposition D.2. If a & dom(sb’; [EZT®Y]), then for every b € E, we have (a,b) € hb iff (a,b) € sb.

Proof. The assumption that a ¢ dom(sb’; [EZ7*1]) ensures that a & dom(sb’; sw), and so we have (a, b) € hb
HfF (a, b) € sb. 0

Lemma D.2 (Add write). Let a € W\ (dom(sb’; [EZ"]) U At). Suppose that G' = G|g\ {a} is RCpa-
consistent. Let x = loc(a), and suppose that (a,b) € sb;[Ry] implies {a,b) € sb;[W;];sb. Then,
there exists a relation T C GW, x G.W, such that the execution G' given by G".c = G.c for every
c € {E, lab, sb, rmw, data, addr, ctrl}, G".rf = G'.rf, and G".mo = G’ .mo U T is RC,,-consistent.

Proof. Let C = {c € G' W, | (a,c) € G.sb;G' .m0’} and take T = ({a} x C) U ((G".W, \ C) x {a}). It
is straightforward to show that G”, as defined in the statement, is RC,-consistent. In particular, we have
G".psc?® = (' .psc7™2, O

Lemma D.3 (Add rmw write). Suppose that rmw ';rf~lrf;rmw - [G.E]. Let
a € (WM At) \ dom(sb’; [EF*]). Suppose that G' = G|gi\{a} is RCaa-consistent. Let x = loc(a),
and suppose that (a,b) € sb; [R;] implies (a,b) € sb; [Wy|; sb. Then, there exists a relation T C G.W; X G.Wy
such that the execution G" given by G".c = G.c for every ¢ € {E,lab, sb,rmw,data, addr, ctrl},
G" rf =G .rf, and G" .mo = G'.mo U T is RC,,-consistent.

Proof. Let b,d € G’ .E such that (b,a) € G.rmw and (d,b) € G'.xf.Let C = {c € G' W, | (d,c) € G'.mo},
and take T' = ({a} x C) U ((G' W, \ C) x {a}). It is straightforward to show that G”, as defined in the
statement, is RC,,-consistent. O

Lemma D.4 (Add non-atomic read). Let a € R* \ dom(sb; [EZ*®!]). Suppose that G' = G|gz\{a} is
RC,a-consistent. Then, there exists an event b € G'.W such that the execution G" given by G .E = G.E,
G".1ab = G’.1ab U {a — R**(loc(a),valy(b))}, G".c = G.c for every ¢ € {sb, rmw, data, addr, ctrl},
G".rf =G .rfU{(b,a)}, and G" .mo = G.mo is RCy,-consistent.

Proof. Let z = loc(a). Let B = {b € G.W, | (b,a) € G.r£’; G.hb}, and take b be the mo-maximal event in
B. 1t is straightforward to show that G/, as defined in the statement, is RC,-consistent. O

E. Proof of Global Transformation of SC accesses

In this section we prove the soundness of a global program transformation that either adds an SC fence before
every SC access, or adds an SC fence after every SC access, and then replaces all SC accesses by release/acquire
ones. This will allow us later to prove the correctness of compilation only for programs that do not contain any
SC accesses.

We use the following additional notations:

pscr 2 [F]; psc; [F] sb’ £ sb \ rmw



Lemma E.1. Let G be an execution satisfying all conditions of Def. 1, except possibly for SC. Suppose that
[RW=°]; (sb’ U sb’; hb; sb’); [RW3°] C hb; [F*°]; hib. Let T' = sb U sb|£10c; hb; sb|£10c U eco. Then:

1. [F];hb; eco’; ([RWSS]; T; [RWS°])*; eco’; hb; [F5¢] C pscy .

2. If pscr is acyclic, then so is psc.

Proof.

1. We show by induction on n, that [F5¢]; hb; eco’; ([RWSS]; T'; [RWSS])™; eco’; hb; [F3¢] C pscy for every
n > 0. For n = 0, the claim holds since eco’;eco’ C eco’, and [FSC];hb;eco?;hb; [F5¢] C pscF.
Suppose now that [F5¢];hb;eco’; ([RWSS]; T; [RW*°])"L;eco’;hb; [F*¢] C  pscd, and let
R = [F*°];hb;eco’; ([RWS]; T’; [RW*°])"; eco’; hb; [F5¢]. Expanding the definition of 7' (keeping in
mind that rmw C eco) we have R C Ry U Ry, where:

Ry = [F*°];hb; eco’; ([RW]; T; [RW=S])"~1; [RWS®]; (b’ U $b|£10c; hb; Sb| £10c); [RWSS]; eco’; hib; [F5€,
Ry = [F*°];hb; eco’; ([RWS]; T'; [RW*])"~1; eco; eco’; hb; [F5°].
Since eco; eco’ C eco, by the induction hypothesis, we have R, C psc{f . In addition, since
Sb|£10c; hb; Sb|x£10c C sb’; hb; sb’, our assumption entails that R, is contained in
R = [F*°];hb; eco”; ([RWSS]; T'; [RW=°])"~1; hb; [F*¢]; hb; eco’; hb; [F°],
which, in turn, using the induction hypothesis is contained in pscy .
2. Contrapositively, suppose that psc is cyclic. Then, by definition, the union of the following relations is

cyclic:

e Ay = [RW*°|; T'; [RW*°] e A3 = [RW*°]; (sb U eco); hb’; [F5]

e Ay = [F*¢];hb’; (sb U eco); hb’; [F5°] e Ay = [F*°];hb’; (sb U eco); [RW]

Consider first the case that A; is cyclic. Then, since rmw - eco, the relation
[RW™]; (b’ U sb|x10c; hb; sb|210c); [RWS] U eco is cyclic. Our assumption on G entails that
hb; [F*¢];hb U eco is cyclic. Since both hb; [F*¢];hb and eco are transitive and irreflexive, we ob-
tain that hb; [F5¢];hb; eco is cyclic, which in turn implies that [F5¢];hb;eco;hb;[F*¢] C pscr is
cyclic.
Now, consider the case that A; is acyclic. Then, the union of the following two relations must be cyclic:

e By = [F*¢];hb’; (sb U eco); ([RW=]; T'; [RW=¢])*; (sb U eco); hb’; [F5¢]

® By = [F*¢];hb’; (sb U eco); hb?; [F5]
Note that By C psce. In addition, we have [F*¢];hb’;(sb U eco) C [F®¢];hb;eco’ and
(sb U eco);hb’; [F*¢] C eco’;hb; [F*¢]. By item 1, it follows that B; C psc; as well, and so pscy
is cyclic. O

Remark E.1. The proof of Lemma E.1 can be easily adapted for the following alternative psc relations:
psco £ ([E*] U [F*]; sb); (sb U eco); ([E°] U sb; [F*<])
psca = ([E5¢] U [F¢]; sb); (sb U sb’; hb; sb’ U eco); ([E*°] U sb; [F5°])
pscz = ([E*°] U [F5°];hb); (sb U sb’; hb; sb’ U eco); ([E°] U hb; [F*°])

This ensures the correctness of the transformation for all alternative fixes presented in §2.

Lemma E.2. Let G be an RCl1-consistent execution without any SC accesses. Let A C R=2a U w2l such
that [A]; (sb’ U sb’; hb; sb’); [A] C hb; [F*¢|; hb, and [A]; rmw = rmw; [A]. Then, the execution G’ obtained
from G by changing all modes of events in A to sc is RCl1-consistent.

Proof. The only constraint that is affected by such modification is sC. Now, in G’ we have
[G' .RW*¢]; (G’.sb’ UG’ .sb’; G’ .hb; G'.sV'); [G'.RW™¢] C G’ .hb; [G'.F*°]; G’ hb, and by Lemma E.1 it suffices
to show that G’.pscg is acyclic. This follows from the fact that G satisfies SC, since G’ .pscr = G.pscp. U



F. Properties of the Power and ARMv7 Models

In this appendix we provide the full definition of preserved program order (ppo) used by Power and ARMv7,
and prove various properties of these models that are needed in our compilation correctness proof.

F.1 Preserved Program Order

ppo is defined based on the four dependencies — data, addr,ctrl, ctrl;gy,. — that satisfy the following
properties:

1. data C R X W. 5. ctrligync; sb € ctrligynec.
2. addr CRx (RUW). 6. rmw C data U addr U ctrl
3. ctrligync € ctrl CR X E. 7. rmw; sb C ctrl

4. ctrl;sb C ctrl.

1 — 5 hold by definition (see [3]). 6 — 7 hold due to the compilation scheme: it always places a dependency
from the load to the store that form an RMW pair, and a branch after each (conditional) store in such pairs.

The relation deps includes all types of dependencies:

deps £ dataUaddr U ctrl

Herd’s definition of ppo is as follows:

rdw = (rbe;rfe) Nsb detour £ (moe;rfe) N sb
iig £ addr UdataUrdw U rfi é 0
cig 2 ctrligyn U detour g°""e 2 dataU ctrl Uaddr;sb’ U sb|10c
cchf™VT £ gata U ctrl U addr; sb’
ppo £ [R; i1; [R] U [R]; ic; W]
where, ii,ic, ci, cc are inductively defined as follows:
iig ci icjci iijii
i ii ii ii
icyp ii cc icjcc iijic
? ; ; ic ic
cig cij;ii cc;ci
i ci ci
(o oy} ci cijic cc;cc
cc cc cc cc

Note that ci C ii C ic,aswellas ci C cc C ic.

Alternatively the relations ii, ic, ci, cc can be defined as follows:

A 1.1 ..2.2
xy 2 [ x'y' 0 ¥%y% Xy
n>1
where:
e x, vy, xt L, xyh Lyt € {d,c).
o Ifx = cthenx! = c.
e Forevery1 <i<n—1,ify’ = cthenx'*! = c.

e Ify=itheny” =
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Note that the only difference between Power and ARMV7 is in the definition of ccy. Henceforth, we only
assume ARMv7’s definition, which is weaker, so our proofs apply for both Power and ARMv7.

Next, we prove some useful properties of ppo. In all propositions below we assume some Power-consistent
execution.

Proposition F.1. ppo is transitive.

Proof. Immediately follows from the definition. O

Proposition F.2. [W];psbloc C ii.

Proof. Let {(a,b) € [W];psbloc and let z = loc(a). Then, by definition, a € W,, b € Ry, (a,b) € sb, and
there is no ¢ € W, such that {(a,c), (¢,b) € sb. Since G is complete, there exists some d € W, such that
(d,b) € rf. If d = a, then we are done since rfi C ii. Otherwise, since G satisfies SC-PER-LOC, we have
(a,d) € mo, (d,a) & sb, and (b,d) ¢ sb. It follows that (a,d) € moe and (d,b) € rfe. Thus, we have
(a,b) € detour C ii. O

Proposition F.3. (deps U addr; sb); [W]; psbloc;ppo; [W] C ppo.

Proof. Let a,b, ¢, d € E such that (a, b) € (deps U addr;sb); W], (b,c) € psbloc, and (¢, d) € ppo; [W]. If
(a,b) € ctrl, then by definition, we have (a,d) € ctrl, and so {(a,d) € ppo. If (a,b) € addr; sb, then by
definition, we have (a,d) € cc, and so {(a,d) € ppo. Otherwise, (a,b) € addr U data C ii. By Prop. F.2,
we also have (b, ¢) € ii. Hence, (a,c) € ii, and so {(a, c) € ppo. It follows that (a, d) € ppo. O

Proposition F.4. (deps U addr; sb); [R]; sb; [W] C ppo.

Proof. Let a, b, c € E such that (a,b) € (deps U addr; sb); [R] and (b, ¢) € sb; [W]. If (a,b) € ctrl, then by
definition, we have (a,c) € ctrl, and so {a,c) € ppo. Otherwise, (a,b) € addr; sb’. In this case, we have
(a, ) € addr; sb, and so {(a, ¢) € ppo. O

Proposition F.5. Let R = deps U addr; sb U psbloc. Then, (deps U addr; sb); R*; [W] C ppo.

Proof. We prove by induction that for every n > 0, (deps U addr; sb); R"; [W] C ppo. For n = 0, we have
(deps U addr; sb); [W] C ppo by definition. Let n > 1 and suppose that (deps U addr; sb); R¥; [W] C ppo for
every k < n. Let (a,b) € (deps U addr;sb); R"; [W]. Let ¢ € E such that (a,c) € (deps U addr;sb), and
{¢,b) € R™. If ¢ € R, then we are done using Prop. F.4. Otherwise, ¢ € W, and (¢, b) € psbloc; R"~!. Letd
be the sb-maximal event satisfying (c, d) € psbloc and (d,b) € R* for some k < n — 1. The maximality of
d ensures that (d, b) € (deps U addr; sb); R¥~1. By the induction hypothesis, we have (d,b) € ppo. Hence,
we have (a, b) € (deps U addr; sb); [W]; psbloc; ppo; [W], and the claim follows by Prop. E.3. O

Proposition F.6. Let R = deps U addr; sb U psbloc. Then, rfe; RT; [W] C rfe;ppo.

Proof. Let {(a,c) € rfe; RT;[W]. Let b be the sb-maximal event satisfying (a,b) € rfe and (b,c) € R*.If
(b, ¢) € (deps U addr; sb); R*, then we are done by Prop. F.5. Otherwise, let d be the sb-maximal element
such that (b,d) € psbloc and (d,c) € R*. Then, d € R, and since ¢ € W, we have (d,c) € R*'. The
maximality of b and SC-PER-LOC ensure that (b, d) € rdw, and so (b, d) € ppo. The maximality of d ensures
that (d, ¢) € (deps U addr;sb); R*. By Prop. E.5, we have (d, ¢) € ppo, and so (a, c) € rfe;ppo. O

Proposition F.7. ppo”;rbi C ppo;mo’ Umo U rbi.

Proof. For any n > 0, let ppo,, denote ppo-edges that are formed by at most n basic ppo edges (iigp, icq, cigp,
and ccp). Then, ppo’ = \U,,>0 PPoy. The proof proceeds by induction on n. For n = 0, the claim obviously
holds. Suppose now that it holds for n — 1, and let (a,b) € ppo,, and (b, c) € rbi. Then, b must be a read
event, and so there exists a’ such that (a,a’) € ppo,,—1 and (a’,b) € iig U cig. This leads to five cases:

e (a/,b) € addr. In this case we have (a’, ¢) € ccg, and so (a, ¢) € ppo.

e (a’,b) € rdw. In this case we have (a’, ¢) € rbi, and the claim follows by the induction hypothesis.
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e (a’,b) € rfi. In this case we have (a’,c) € mo, and so (a, c) € ppo’;
® (a/,b) € ctrligymc. In this case we have (a/, ¢) € cig, and so (a, ¢) € ppo.

e (a’,b) € detour. In this case we have (a’, ¢) € mo, and so (a, c) € ppo’;mo. O

F.2 Additional Properties

Proposition F.8. rmw N (rb;mo) = (.

Proof. POWER-ATOMICITY condition ensures that rmw N (rbe;moe) = (. In addition, in every execution we
have rmw C sb, rbe; sb € sb, sb;moe ¢ sb, and sb; sb € rmw. It follows that rmw N (rb;mo) = (. O

?

Proposition F.9. Let R € {sync, fence}. Then, R;hb,*;rbi C R;hby*;

Proof. We prove by induction on 7 that for every n > 0, we have R;hb,"; rbi C R;hb,™; ?.Forn = 0, the
claim follows since R; rbi C R. Now, suppose it holds for n — 1, and let a, b, ¢, d such that (a, b) € R; hbp"*I,
(b,c) € hby, and (c,d) € rbi.If (b,c) € rfe, then we have (b,d) € mo, and so (a,d) € R;hb,*;mo. If
(b, c) € fence, then we have (b,d) € fence, and so (a,d) € R;hb,*. Otherwise, we have (b, ¢) € ppo, and
the claim follows using Prop. F.7 and the induction hypothesis. O

Proposition F.10. fence is transitive.

Proof. Immediately follows from the definition of fence. O

Proposition F.11. fence;hb,* C sb U fence; [W];hby*.

Proof. Let a,b,c € E such that (a,b) € fence and (b,c) € hby*. If (b,c) € sb, then the claim follows
since fence C sb. Suppose otherwise. Then, there exists (d,e) € rfe such that (b,d) € hb,* N sb’ and
(e,¢) € hby*. It follows that (a, d) € fence, and so (a,c) € fence; [W];hby*. O

Proposition F.12. [RW]; sb; (fence;hb,*)’; sync C (fence;hby*)’; sync.
Proof. Immediately follows from the definition of sync and Prop. F.11. O
Proposition F.13. eco’; (fence;hb,*)’; sync; hb,* is acyclic.
Proof. By definition, we have eco’ = (mo Urbe)”; rf’ Urbi;rfi’ Urbi;rfe. Thus, it suffices to show that
the union of the following relations is acyclic:

o A= ((moUrbe)’;rf’ Urbijrfi’); (fence;hb,*)’; sync;hb,*

® B =rbi;rfe; (fence;hbp*)?; sync; hb,*

By Prop. E9, A; B C A; A and B; B C B; A. Hence, it suffices to show that A is acyclic and B is irreflexive.
Acyclicity of A follows from Power’s PROPAGATION condition, since we have A C ?;prop2 (using
Prop. F.12). Irreflexivity of B also follows from PROPAGATION, using Prop. F.9. O

Proposition F.14. Let A= {a € W | 3b € F. (b, a) € sb|jpy; rmw’ }.
Then, (sb”; [F];sb U [A];moi”); rfe;hb,*; (sb; [F])? is a strict partial order.

Proof. Let R = (sb; [F]; sb U [A];moi”); rfe; hb,*; (sb; [F])”. The fact that R is transitive follows from the
following facts (obtained by expanding the relevant definitions):

® sb; [F]; (sb’; [F];sb U [A];moi”);rfe C fence;rfe C hb, ™.

e rfe;hb,*;sb’; [F];sb;rfe C rfe;hb,*;fence;rfe C rfejhb,*.

e rfe;hby*; [Al; i’:rfe C rfe;hby,*; (rmw; sbUsb; [F; sb); rfe C rfe;hby*; (ppoUfence);rfe C rfe;hby*.
Now, to see that R is irreflexive, note that (a,a) € R implies (using these three properties) that (a,a) € hb, ™

which contradicts POWER-NO-THIN-AIR. O

Proposition F.15. eco; (sb U fence;hb,*) is irreflexive.
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Proof. eco; sb is irreflexive using SC-PER-LOC. By Prop. F.11, it suffices to show that eco; fence; [W]; hby* is
irreflexive. Suppose otherwise, and let a, b € E such that (a,b) € eco and (b, a) € fence; [W]; hb,*. First, if
(a,b) € sb, then we have (a,a) € fence;hby* C hb,™, which contradicts POWER-NO-THIN-AIR. Suppose
otherwise, and consider the possible cases:

® (a,b) € rfe.In this case we obtain (a,a) € hb,™, which contradicts POWER-NO-THIN-AIR.
® (a,b) € mo;r£’. Let ¢ € E such that (a, c) € mo and (c,b) € r£’. Then, we have (c,a) € prop,, and we
obtain that mo; prop, is not irreflexive, which contradicts PROPAGATION.

* (a,b) € rbe;rf’. Let ¢ € Wsuch that {a,c) € rbe and (c,b) € r£’. Let d € W such that (b, d) € fence
and (d, a) € hby*. Then, we have (c, d) € prop,, and obtain a violation of OBSERVATION.

® (a,b) € rbijrfe. Let ¢ € W such that (a,c¢) € rbi and (¢,b) € rfe. By Prop. F9, we have

(b,c) € fence;hb,*;mo’. Let d € E such that (b,d) € fence;hb," and (d,c) € mo’. Then, we have

¢,d) € prop,, and we obtain that mo”; prop, is not irreflexive, which contradicts PROPAGATION. O
prop; prop;

~ T~

F.3 Removing Redundant Fences

Lemma F.1. Let G be a Power execution, and let {a,b) € [FSY]; sb|jum; [F*¥92¢]. Let G’ be the execution
obtained from G by removing b (G’ = G| g\(v})- If G' is Power-consistent, then so is G.

Proof. Since b’s immediate sb-predecessor is a full fence, we have G'.fence = G.fence. Then, it is easy to
see that for every relation ¢ mentioned in Def. 5, we have G'.c = G'.c, and so if G’ is Power-consistent, then
sois G. O

Lemma F.2. Let G be a Power execution, and let (a,b) € [R];(sbliwm N ctrlisymc); [F|. Let G’
be the execution obtained from G by removing the ctrligy,. dependency edges from a onwards
(G'.ctrligyne = G.ctrligync \ ({a} X E)). If G' is Power-consistent, then so is G.

Proof. Since a’s immediate sb-successor is a fence, we have (a,c¢) € G.fence for every ¢ € RW such that
(a,c) € sb. Now, by omitting ctrlisyn,. dependency edges from a onwards, we may remove ppo-edges from
a, but whenever ppo is used to form an hb,-edge, it can be replaced by a fence-edge. Consequently, for every
relation ¢ mentioned in Def. 5, we have G’.c = G.c, and so if G’ is Power-consistent, then so is G. O

G. Power-before Relation

In this section, we define a relation that we call Power-before (pb), and show that if pb is acyclic in some
execution G of a program P, then either GG is RC11-consistent, or P has undefined behavior under RC11. This
relation is the key for showing that NO-THIN-AIR holds when proving compilation correctness. (Thus, if one is
only interested in weakRC11-consistency, this section can be completely ignored.)

In what follows we assume an execution G.

pb is given by:

psbloc 2 sb|iec; [R] \ Sblioc; [W]; sb (preserved sb-loc)
pbi £ deps U addr; sb U [RZ™* UW="* UF]; sb U psbloc U sb; [EZY]  (internal Power-before)
pb £ pbi Urfe (Power-before)

Clearly, pb C sb U rf, and so pb is acyclic in every RC11-consistent execution.

Proposition G.1. If G is weakRC11-consistent, then rf C pb.

Proof. COHERENCE guarantees that rfi C psbloc C pbi, and by definition we have rfe C pb. O
Proposition G.2. For every weakRC11-consistent execution G, hb C sb U pb™.
Proof. Tt suffices to show that sb”; swe; sb’ C pb™. By definition, we have

sb?; swe; sb’ C sb?; [E;rel]; sb?; (rf Urmw)t; [R;rlx]; sb’.
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The claim follows because we have:
e sb’; [EZ%*!];sb” C pbi*
e rf C pband rmw C deps C pbi.
o [RI™¥];sb? C pbi”. O

Proposition G.3. If pb is acyclic, but sb U rf is cyclic, then (rfe; [R™] \ hb); sb # 0.

Proof. A cycle in sbUrf implies a cycle in rfe; sb. Since rfe; [R=7*]; sb and (rfeNhb); sb are contained in
pb* (using Prop. G.2 for the latter), there must exist an edge (a, b) € rfe; sb that is neither in rfe; [R=7%]; sb
nor in (rfe N hb); sb. Then, we have (a, b) € (rfe; [R*?]\ hb); sb. O

Lemma G.1. Suppose that G is a weakRC11-consistent execution of a program P, and that pb is acyclic, but
G is not RC11-consistent. Then, P has undefined behavior under RC11.

Proof. Since G is weakRC11-consistent but not RC11-consistent, we have that sb U rf is cyclic. By Prop. G.3,
rf; [R"] Z hb. We show that this implies that P has undefined behavior under RC11.

Let a1, ..., a, be an enumeration of E that respects pb (that is, ¢ < j whenever (a;,a;) € pb™). For every
1<i<m,letE; ={a,...,a;}. Let k be the minimal index such that [E}]; rf; [R*®]; [Ex] € hb. Then, we
have (a;,ax) € rf;[R™] \ hb for some j < k. Let B = dom(sb’; [Ey]) and H = B \ E,.

Claim 1: h € R® U WS forevery h € H.

Proof: Otherwise, since [R="1* U W="*1 U F]; sb C pb, we would obtain (h,a) € pb for some a € Ej. This
contradicts the fact that h & Ej. O

Claim 2: (h,b) & sb’ forevery h € H and b € B N (EZe1).

Proof: Suppose otherwise. Let a € Ej, such that (b, a) € sb”. It follows that (h, a) € sb’; EZ**}; sb”, and so
(h,a) € pb*. Hence, h € E}, as well, which contradicts our assumption. O

Claim 3: (h,b) & deps*;ctrl forevery h € H and b € B.

Proof: Suppose otherwise. Let a € Ej, such that (b,a) € sb’. Since ctrl;sb’ C ctrl, it follows that
(h,a) € deps™, and so (h,a) € pb™. This contradicts the fact that h & F. O

Claim 4: (h,b) ¢ deps™;addr forevery h € H and b € B.

Proof: Suppose otherwise. Let a € Ej, such that (b, a) € sb’. Then, (h,a) € deps*;addr;sb’ C pb*. This
contradicts the fact that h & E}. O

Let hy, ..., hy, be an enumeration of H that respects sb, and let H; = {hy, ..., h;} forevery 0 < i < m.

Claim 5: For every 1 <1 < m, h; ¢ dom(deps™; [E, U H;_1]).

Proof: Suppose otherwise, and let a € Ey, U H;_ such that (h;,a) € deps™. Then, (h;,a) € pb™.If a € E},
then h; € Ej, as well, which contradicts our assumption. Hence, we have a € H;_;. This contradicts the fact
that the h;’s enumeration respects sb. O

Claim 6: Let 1 < i < m, and let x = loc(h;). Leta € (Ex U H;_1) N R, and suppose that (h;,a) € sb.
Then, (h;,a) € sb; [(Ex U H;—1) NW,]; sb.

Proof: Suppose otherwise. Let i < j < m be the maximal index satisfying h; € E,, (h;, hj) € sb’ and
(hj,a) € sb.Then, (h;,a) € psbloc,andso (hj,a) € pb.Ifa € Ey, then h; € Ej, as well, which contradicts
our assumption. Hence, we have a € H;_;. This contradicts the fact that the h;’s enumeration respects sb. [J

For every 1 < i < m, let and G; = G|g,. Since G.xrf C G.pb (Prop. G.1), all the G;’s are weakRC11-
consistent. Additionally, G;.pb is acyclic for every 1 < i < n.

We inductively construct a sequences of labeling functions laby, ..., lab,, : B — Label and executions
0y .-, G, such that the following hold:

1. Forevery 0 < i <m, G,.E = E;, U H;.
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2. Forevery 0 < i < m, Gi.1lab = labi|G§,E.

3. Forevery 0 < i < m, G} is RCp,-consistent.

4. Forevery 0 < i < m, (a;,ax), {(ak, a;) ¢ G;.hb.

5. For every 0 < ¢ < m, lab;(G| ) is an execution of P.

6. Forevery 0 <i < m, G.rmw1; GL.rf~1; Gl.rf; Gormw C [GLE].

Finally, we would obtain that G, is a racy RC,,-consistent execution with G, .E = B, and
lab,,(G|p) = G.,.1ab(G|p) is an execution of P. Hence, G/, is an execution of P, and by Lemma D.1, G/,
is RC11-consistent or P has undefined behavior under RC11. Since G/, is racy, in any case we would obtain
that P has undefined behavior under RC11.

First, we define laby and G{,. The minimality of k£ and Prop. G.3 ensure that G, is RC11-consistent. Hence,
Lemma D.4 ensures that there exists some event b € E}, such that the execution G’ given by G’.c = Gj.c
for every ¢ € {E,sb, rmw, data,addr,ctrl,mo}, G'.1ab = Gj.lablar — R**(G.loc(ay), G.valy(b))],
and G'.xf = Gp.rf U {(b,ax)} is RCya-consistent. In addition, a;, ¢ dom(G|p.deps) (since it is G.pb
maximal in G|g). By Assumption B.1, there exists a reevaluation lab of G.1lab such that lab(G|p) is an
execution of P, lab(G|p).val,(ar) = G.valy(b), and lab(c) = G|p.1lab(c) for every ¢ € B\ {axr}. We
take laby = lab and G{, = G'. It is straightforward to see that lab and G’ satisfy the six conditions above. In
particular, G|g.rnw™1; G’ v~ G’ .xf; G| p.rmw C [G.E] follows from the fact that G satisfies ATOMICITY.
Additionally, by Prop. C.4, G’ .hb = G,.hb, and so, we have (a;, ai), (ax, a;) ¢ G'.hb.

Next, let 1 < ¢ < m, and suppose that lab;_; and G_; are defined. We construct lab; and G. By Claim 1
above, we have h; € G.R** U G.WE™1*, Let G be the execution obtained from G, by adding the event h;,
labeled with lab;_1 (h;), and the sb, rmw, and dependency edges from/to h; as in G|g. By Claim 2 above, we
also have h; & dom(G.sb; [GF.E*Y]). Let x = G.1loc(h;), and consider the two cases:

h; € GR™: Since G)_; is RCy,-consistent, Lemma D.4 ensures that there exists some
event b € FE, U H;_; such that the execution G’ given by G'E = E, U H,,
G'lab = G)_;1ab U {h; +—  R™(z,Gfvaly(h))}, G'.c = Gfc for every
¢ € {sb,rmw,data,addr,ctrl,mo}, and G'.rf = Gf.rf U {(b,ax)} is RCya-consistent. In addi-
tion, by Claims 3 and 4 above, we have that h; ¢ dom(G|p.deps*; (G|p.ctrl UG|p.addr)). By
Assumption B.1, there exists a reevaluation lab of lab;_1 such that lab(G|p) is an execution of P,
lab(G|p).val(h;) = G.valy(b), and lab(c) = lab;_1(c) for every c such that (h;,c) € G|p.deps™.
We take lab; = lab and G}, = G'. Again, it is straightforward to see that lab and G’ satisfy the required
conditions. In particular, G}.1ab = labi|G;_E follows from the fact that G;_;.1ab = lab;_1|g,um,_,,> and
Claim 5 above. In addition, by Prop. C.5, we have [G’,_,.E]; G’ .hb; [G’_, .E] = G_, .hb, and so, we have
(aj,ar), (ak,a;) ¢ G'.hb.

h; € GW=F1*: By Claim 6 above, we have that for every b € GI.E, if (h;,b) € GF.sb;[G}.Ry]
then (a,b) € G} .sb; [G¥W,];GY.sb.  Thus, since G)_; is RCpy,-consistent, and
Grow 4G, rf 4G, rf;Grmw C [G.E], Lemmas D.2 and D.3 ensure that there exists
T C GiW, x GfW, such that the execution G’ given by G'.E = E, U H;, G'.1ab = lab,_1|¢" &,

G'.c = G} .cforevery c € {sb,rmw,data,addr, ctrl}, G'.rf = G,_;.rf,and G}.no = G,_;.moUT
is RCp,-consistent. We take lab; = lab;_1 and G, = G'. It is straightforward to see that lab;_; and G’
satisfy the required conditions. In particular, Prop. C.3 guarantees that (a;, ax), (ax,a;) ¢ G’.hb. O

H. Proof of Compilation Correctness

Lemma H.1. Let G be an execution without SC accesses. Let G, be a Power-execution. Suppose that the
following hold:

¢ GR=G,R GW=_GpW G.sb C Gp.sb, Grmw = Gp.row, G.rf = Gp.1f, and G.no = G,,.

¢ G.data C (Gp.data, G.addr C Gp.addr, and G.ctrl C G,.ctrl.

e G.row; G.sb C Gp.ctrl.

® G.F-35¢ C G, F'"¢ and G.F°¢ = G,.F"°.

® G C Awhere A= {a € GpW | 3b € Gp.F. (ba) € Gp.sb|imm; Gp.rmv’ }.
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e [GR™*\ G.At];G.sb C Gp.ctrl.

® [G.R*%|;G.sb C Gp.rmw?; Gp.ctrligync.
Then:

e G and G, have the same outcome.

¢ If G, is Power-consistent, then G is weakRC11-consistent and G.pb is acyclic.

Proof. The first claim easily follows from our definitions. Suppose that G, is Power-consistent. Before proving
the second claim, we present some properties relating G' and G,.
1. G.swe; G.sb” C (G,.5b%; [G,.F; Gp.sb U [A]; Gpmoi?); Gp.rfe; Gp.hby*; (Gyp.sb; [Gy.F])’
(follows from the definition of sw)
2. G.hb C Gp.sbU(G,.5b%; [Gp.Fl; G,.sbU([A]UG,.rnw); Gp.moi’); Gp.rfe; Gp.hby*; (Gp.sb; [G.F])?
(follows from Item 1 using Prop. F.14; note that G,.sb; [A] C G,,.sb”; [F]; Gp.sb U G .xmw)
3. [GRW]; (G.sb \ G.rmw); G.hb’ C G,.sb U Gp.fence; G.hby*; (Gy.sb; [G).F])’
(again follows from Item 1 using Prop. F.14)
4. [G.F*°]; G.hb; [G.RW] C [G).F?7°]; Gp.sb; Gp.hby*; [Gp . RW]
(easily follows from Item 2)

In addition, in order to apply Prop. C.2 in the proof below, we note that:

® [G.W]; G.8bl|1oc; [GW] € G.mo: Indeed, we have [G.W]; G.sbl1oc; [GW] = [GpW]; Gp.sb|ioc; [Gp.W] and
G.mo = Gp.mo, and the claim follows by Power’s SC-PER-LOC condition.

¢ G.rnw C G.rb: Indeed, we have G.rmw = G),.rmw and G.rb = G,,.rb, and the claim follows by Power’s
SC-PER-LOC and the fact that G is complete.

Next, we show that G is weakRC11-consistent. Clearly, it is complete (since G.R = G,.R and G.rf = G),.rf).

COHERENCE. We show that G.eco’; G.hb is irreflexive. The irreflexivity of G.hb follows from Prop. F.14.
Now, applying Prop. C.2, it suffices to show that G.eco U G.eco; (G.sb \ G.rmw); G.hb” is irreflexive.
First, G.eco = (p.eco is irreflexive because of SC-PER-LOC. Second, by property 3 above, we
have G.eco; (G.sb \ G.rmw); G.hb"; [G.RW] C G).eco; (Gp.sb U Gp.fence; Gp.hb,*). By Prop. F.15,
Gp.eco; (Gp.sb U G)p.fence; G)p.hby*) is irreflexive.

ATOMICITY. By Prop. E8, we have Gp.rmv N (G,.rb; G,.mo) = (. Then, G.rmw N (G.rb; G.mo) = ()
immediately follows since G.rmw = G.rmw, G.rb = G,.rb, and G.mo = G),.

SC. We show that G.psc is acyclic. Assuming no SC accesses, we have G.psc = R; U Ry
where Ry = [G.F*°]; G.hb; G.eco; G.hb; [G.F*°] and Ry = [G.F*¢]; G.hb; [G.F*°]. Since Ry is ir-
reflexive and Ry ;R; C Ry, it suffices to prove the acyclicity of R;. To this end, we show
that G.eco; G.hb; [G.F*¢]; G.hb; [G.RW] is acyclic. Applying Prop. C.2, it suffices to show that
G.eco; (G.sb \ G.rmw); G.hb’; [G.F*°]; G.hb; [G.RW] is acyclic. Using properties 3-4 above (and applying
several simple simplifications), it suffices to show that the following relation is acyclic:

Gp-eco; (Gp.fence; Gp.hb,*)’; G.5D; (G, F¥™]; G,.5b; G)p.hby*; [G,.RY].
Using the definition of sync, this relation is equal to:
Gp.eco; (Gp.fence; Gp.hb,*)’; Gp.sync; G.hb,*; [G.RU].

Its acyclicity then follows by Prop. F.13.

Next, we show that G.pb is acyclic. Suppose otherwise. Then, there are ai,...,a, such that
(aj,a;11) € G.rfe;G.pbit for every 1 < i < n (where a,y1 = a1). We show that
(a;,a;41) € Gphby,t for every 1 < ¢ < n (which contradicts POWER-NO-THIN-AIR). Let
1 < i < n,and let b € E such that (a;,b) € G.rfe = G,.rfe and (b,a;+1) € G.pbit.

If (b,ai+1) € Gp.fence, then we are done since G,.rfe,G,.fence C G,.hb,. Otherwise, it
follows that (b,a;11) € (Gp.deps U G,.addr;Gp.sb U Gp.psbloc)™. By Prop. F6, we have
(a;,ai41) € Gp.rfe; Gp.ppo C G.hb, ™. O
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Lemma H.2. Given a program P without SC accesses, every outcome of (| P|) under Power is an outcome of
P under RC11.

Proof. Given a full Power-consistent Power execution G}, of (| P)), the compilation scheme (see Fig. 7) ensures
that there exists some full execution G of P for which the properties of Lemma H.1 hold. Here we assumed
that all RMW write attempts (stwcx.) succeed in the first attempt. Indeed, otherwise, one could always remove
the RMW reads (lwarx) that precede the failed stwcx. attempts while preserving Power-consistency as well as
the outcome of the execution. Now, Lemma H.1 ensures that G has the same outcome as G, G is weakRC11-
consistent, and G.pb is acyclic. By Lemma G.1, either G.sb U G.rf is acyclic (and NO-THIN-AIR holds) or P
has undefined behavior under RC11. In any case, we obtain that the outcome of G, is an outcome of P under
RC11. O

I. Proofs for §7 (Correctness of Program Transformations)

In this appendix, we state (and outline the proofs of) the properties that ensure the soundness of the
transformations discussed in §7. For this purpose, it is technically convenient to employ a different presentation
of RMWs, that treat them as single events (like in C11). To this end, we consider RMW-executions, defined as
the executions in §3, with the following exceptions:

e Labels in RMW-executions may also be RMW® (, v, vy, ) Where o € {rlx, acq,rel, acqrel, sc}. Both sets
G.R and G.W include all events a with typ(a) = RMW, while G.RMW denotes the set of all events a with
typ(a) = RMW.

® RMW-executions do not include an rmw component.
RC11-consistency for RMW-executions is also defined as for executions, with the following exceptions:
e G.rb 2 rf~Limo \ [E].
¢ Instead of ATOMICITY we now require:
rf N (mo;mo) = 0. (ATOMICITY-RMW)
The rest of the notions are defined for RMW-executions exactly as for executions above.

There exists a trivial one-to-one correspondence, denoted by ~, between executions according to §3 and
RMW-executions (the latter are obtained by collapsing rmw-edges to single RMW events).

Proposition I.1. Suppose that G ~ G™ for some execution G and RMW-execution G*™. Then:
o G is RCl1-consistent iff G*™ is RC11-consistent.
o G is racy iff G*™ is racy.
Using this correspondence, we may define and prove the correctness of transformations on RMW-executions.

Lemma L1 (Strengthening). Let Gy be an RMW-execution, obtained from an RMW-execution G by
strengthening some access/fence modes (Ggc.mod(a) C Gig.mod(a) for every a € G .E). Then:

¢ If Gigt is RC11-consistent, then 5o is Grc.

¢ If Gig is racy, then 50 is Ge.

Proof. Easily follows from our definitions, because both properties are monotone with respect to the mode
ordering. O

Lemma I.2 (Sequentialization). Let Gigr be an RMW-execution, and let {a,b) € sb \ sb; sb. Let G be the
RMW-execution obtained from G by removing the sb-edge {(a, b). Then:

¢ If Gigt is RC11-consistent, then 5o is Gyc.

® [f Gigt is racy, then 5o is G
Proof. Easily follows from our definitions, because both properties are monotone with respect to sb. O

Next, to state the soundness of deordering transformations, we use the following definition of adjacency.
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Definition I.1. Let R be a strict partial order on a set A. A pair {(a,b) € A x A is called R-adjacent if the
following hold for every ¢ € A:

e If (c,a) € Rthen (c,b) € R.
e If (b, c) € R then (a,c) € R.

Lemma 1.3 (Non-load-store deordering). Let Ggt be an RMW-execution, and let a,b € G .E such that (a, b)
is Gygr.sb-adjacent. Let G be the RMW-execution obtained from G by adding an sb-edge (a,b). Suppose
that the labels of a and b form a deorderable pair according to Table 1, except for the load-store deorderable
pairs (R; W, R; RMW, and RMW; W). Then:

® If Gigt is RC11-consistent, then so is Gsc.

® [f Gigt is racy, then 5o is G

Proof. 1t is straightforward to verify that all components and derived relations in G are identical to those
of Gigt except for: Ggre.sb = Gige.sb U {(a, b)} and Ggc.hb = Gige.hb U {(a, b) }. Then, the fact that G is
RC11-consistent, easily follows from the fact that G is RC11-consistent. In particular, since a, b is not a load-
store deorderable pair, assuming that Gy satisfies NO-THIN-AIR, we cannot have (b, a) € (Gerc.sbUGsc.7£) 7,
so the additional sb-edge (a, b) cannot close an sb U rf cycle. Finally, since Ggc.race = Gg.race, we have
that G is racy if Gty is racy. O

Lemma 1.4 (Load-store deordering). Let Gigt be an RMW-execution, and let a,b € Gig.E such that (a,b) is
Glgt.sb-adjacent. Let Gy be the RMW-execution obtained from G by adding an sb-edge {(a,b). Suppose that
the labels of a and b form a load-store deorderable pair (R; W, R; RMW, or RMW; W) according to Table 1. Then:

¢ If Gigt is RC11-consistent, then G is weakRC11-consistent and G..pb is acyclic.
® [f Gigt is racy, then 5o is G

Proof. The proof is similar to the proof of Lemma I.3. The fact that G is weakRC11-consistent follows from
the fact that G'g; is RC11-consistent. In addition, since Gigrc.pb = Glgt.pb C Glgr.Sb U Gige.rf, assuming that
Gigt satisfies NO-THIN-AIR, we have that G..pb is acyclic. O

Using Lemma G.1, one obtains the soundness of load-store deordering according to Table 1.

Notation LI.1. For a binary relation R on a set A and an element @ € A, we denote by R! the set
{be A| (b,a) € R},and by R} the set {b € A | (a,b) € R}.

Lemma L5 (Read-read merging). Let Gigt be an RC11-consistent RMW-execution. Let a € R\ RMW, and let
a' € Esuchthat {a',a) € rf. Let b ¢ E, and let G be the RMW-execution satisfying:

L] GSI’C'E = Gtgt'E (G {b}.

o Gyc.lab = Gig.lab U {b — Gig.1ab(a)}-

@ Gire.5b = Glgr.5b U {(a,b)} U (Ggr-5b! x {b}) U ({b} X Gigr.sbY).

L] Gsrc.rf = Gtgt.rf U {<a/, b>}.

[ ] GSFC' = Gtgt-

Then, G is RC11-consistent, and it is racy if Gig: is racy.

Proof. By definition, G is complete, and ATOMICITY-RMW holds (since G- = Gig. and
b & Gec.R\ G RMW). It is also easy to see that we have:

® Ggc.eco = Gigr.eco U (Gtgt.ecoz x {b}) U ({b} x Gtgt.ecoi).

® Ggchb = Gigr.hb U {(a,0)} U (Gege.hb! x {b}) U ({b} X Gige.hbY).
Hence, G satisfies COHERENCE. To see that NO-THIN-AIR holds, note that if we had
(b,a) € (Gsre.s5b U Gge.xf)™, then we would have (a,a) € (Gigr.sb U Gig.rf)™; and, similarly, if we
had (b, a’) € (Gsre.sb U Gsre.vf) ™, then we would have (a,a’) € (Gigr.sb U Gige.r£) ™. It remains to show

that Gerc.psc is acyclic. If Gigr.mod(a) # sc, then we have Gyrc.psc = Gigt.psc, and the claim follows since
Gigt satisfies SC. Otherwise, we have:

® Gyc.psc = Gigr.psc U {(a,b)} U (Gtgt.pscz x {b}) U ({b} x Gtgt.psci).
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This implies that a Ggc.psc U Gee.psc cycle would imply a Gigr.psc U Gig.psc cycle. Finally, if
(¢,b) € Ggre.race, then we have (¢, a) € Gig.race. O

Lemma 1.6 (Write-write merging). Let Gigt be an RC11-consistent RMW-execution. Let b € W\ RMW, a ¢ E,
and v € Val. Let Ggc be the RMW-execution satisfying:

o GSFC'E == Gtgt'E (] {a}

o Gyc.lab = Gigr.labU {a — thgt'Md(b)(Gtgt.loc(b), v)}

e Gyc.5b = Gigr.5b U {(a,b)} U (Gigr-sbp x {a}) U ({a} X Gig.sby).

o Gye.rf = Gig.rf.

o Gaeno = Gigr.mo U {(a,b)} U (Gigrmop x {a}) U ({a} x Gigrmop).

Then, G is RC11-consistent, and it is racy if Gig is racy.

Proof. By definition, Gy is complete. To see that ATOMICITY-RMW holds, note that we have
Glsre 1105 Ggre.m0; [RMW] € Glegy.1m0; Gigr.mo U ({a} X Ggc.E), and that a has no outgoing rf-edges. It is
also easy to see that we have:

® Ggc.eco = Gig.eco U {(a,b)} U (Gtgt.ecog x {b}) U ({b} x Gtgt.ecoi).

® Ggchb = Gigr.hb U {(a,0)} U (Gige.hb! x {b}) U ({b} X Gigr.hbY).

Hence, G satisfies COHERENCE. To see that NO-THIN-AIR holds, note that if we had
(bya) € (Gse.sb U Gge.rf)™, then we would have (b,b) € (Gigr.sb U Gige.xf)™. It remains to show
that Gerc.psc is acyclic. If Gigr.mod(a) # sc, then we have Gyrc.psc = Gigt.psc, and the claim follows since
G satisfies SC. Otherwise, we have:

® Gyc.psc = Gigr.psc U {(a,b)} U (Gtgt.pscz x {b}) U ({b} x Gtgt.psci).

This implies that a Gsc.psc U Gse.psc cycle would imply a Gigr.psc U Gig.psc cycle. Finally, if
(¢,b) € Ggre.race, then we have (¢, a) € Gigr.race. O

Lemma L7 (Write/RMW-read merging). Let Gt be an RC11-consistent RMW-execution. Let a € Wand b ¢ E.
Let o € Ord, such that:

e [ftyp(a) = Wand o = sc, thenmod(a) = sc.

e Iftyp(a) = RMW, then o C mod(a).

Let G be the RMW-execution satisfying:

(] Gsrc~E == Gtgt'E (] {b}

o Ggc.lab = Gig.1ab U {b — R?(Gg.1oc(a), Gigr.valy(a))}.

@ Gyre.5b = Gigr.5b U {{a,b)} U (Gige.sb] x {b}) U ({b} X Gige.SbY).

® Goc.rf = Gigr.vf U {(a,b)}.

o Gyemo = Gtgt-

Then, G is RCl1-consistent, and it is racy if Gig is racy.

Proof. Similar to the proof of Lemma L.5. O

Lemma L.8 (Write-RMW merging). Let Gy be an RC11-consistent RMW-execution. Let b € W\ RMW, a ¢ E,
v € Val, and o € Ord such that o,, = mod(b). Let Gy be the RMW-execution satisfying:

o Gyc.E = G EW {a}.

® Ggc.lab = Gig.1ab[b — RMW?(Gigr.1oc(b), v, Gigr.valy(h))] U {a — WO (Gigr.loc(b), v)}.

e Gyc.5b = Gigr.sb U {(a,b)} U (Gigr-sbp x {a}) U ({a} X Gig.sby).

® Goc.rf = Gigr.vf U {(a,b)}.

o Gore10 = Gige.no U {{a, )} U (Gigemop x {a}) U ({a} X Gigr.nop).

Then, Gy is RC11-consistent, and it is racy if Gig: is racy.
Proof. By definition, Gy is complete. To see that ATOMICITY-RMW holds, note that we have

Glsre 105 Ggre.1m0; [RMW] € Glygr.0; Gigr.mo U ({a} X Gsre.E) U (Gore.E x {b}), and that a has only an rf-edge
to its immediate G..mo-successor b. The rest of the properties are proved as in the proof of Lemma 1.6. [
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Lemma L9 (RMW-RMW merging). Let Gz be an RCl1-consistent RMW-execution. Let a € E with
lab(a) = RMW®(x, v,, vy ). Let b € E and v € Val, and let G, be the RMW-execution satisfying:

® Goc.E = G EW {b}.

o Gyc.lab = Gig.labla — RMWO(z, vy, v)] U {b — RMW®(z, v, vy,) }.

@ Gyrc.5b = Gigr.5b U {{a,b)} U (Gege.sb! x {b}) U ({b} x Gtgt.sbt).
o Goc.rf = Gigr.vf U {(a,b)}.

o G0 = Gigr.no U {{a, b)} U (Gegemo] x {b}) U ({b} x Gige.mo}).

Then, Gy is RC11-consistent, and it is racy if Gig: is racy.

Lemma I.10 (Fence-fence merging). Let Gt be an RC11-consistent RMW-execution. Let a € F, b ¢ E, and let
Gsrc be the RMW-execution satisfying:

o G E= Gigr EW {b}.

o Gyc.lab = Gigr.lab U {b — Gig.1ab(a)}

@ Gyrc.5b = Gigr.5b U {{a,b)} U (Gige.sb] x {b}) U ({b} X Gige.SbY).
® Gge.rf = Gig.rf.

o Gyre. = Gtgt~

Then, Gy is RC11-consistent, and it is racy if Gig: is racy.

Proof. By definition, G is complete, and ATOMICITY-RMW holds since Ggc.rf = Gig.rf and
Gore.mo = Gige.mo. It is also easy to see that we have Ggrc.eco = Glgr.eco and:

® Gychb = Gige.hb U {(a,b)} U (Gege.hb! x {b}) U ({b} X Gige.hb?).

Hence, (. satisfies COHERENCE. To see that NO-THIN-AIR holds, note that if we had
(b, a) € Gsre.sb U Ggre.rf, then we would have (a, a) € Gigr.sb U Gig.rf. It remains to show that Gc.psc
is acyclic. If Gyge.mod(a) # sc, then we have Gc.psc = Gig.psc, and the claim follows since Gy satisfies
SC. Otherwise, we have:

® Gyc.psc = Gigr.psc U {{a,b)} U (Gtgt.pscl x {b}) U ({b} x Gtgt.psci).

This implies that a Ggc.psc U Ggc.psc cycle would imply a Gig.psc U Gigr.psc cycle. Finally,
Gsrc.race = Gigr.race, so G is racy if Gig is racy. O]

Soundness of register promotion is proved in two steps. First, we show that if all accesses to some location are
in one thread, then they can be safely weakened to non-atomic accesses. Second, we show that these non-atomic
accesses can be safely removed (replaced by register assignments at the program level).

Lemma I.11 (Register promotion-a). Let Gt be an RC11-consistent RMW-execution. Suppose that all accesses
to some location x are related by Gig:.sb. Let G be the RMW-execution obtained by strengthening the accesses
mode of all accesses to x to sc. Then, G is RCl11-consistent, and it is racy if Gig is racy.

Proof. By definition, we have Gec.c = Gig.c for ¢ € {sb,rf,mo,eco}. It is also easy to see that
G- hb = Gl hb. Hence, G is complete, and ATOMICITY,COHERENCE,NO-THIN-AIR hold for G
since they hold for Gg:. To see that Ggc.psc is acyclic, it suffices to note that Gsc.psc C Gigr.psc U Gigt.sb
(acyclicity of Gigt.psc U Gigt.sb follows from the acyclicity of Gig.psc since psc; sb; psc C psct in every
execution). Finally, if (a, b) € Gigr.race and na € {Gig.mod(a), Gigr.mod(b)}, then the same holds in Gg.:
we must have loc(a) # x if (a,b) & Gigr.hb U (Gige-hb) L. O

Lemma 1.12 (Register promotion-b). Let Gig be an RC11-consistent RMW-execution. Let x € Loc and let
X = {b € E|loc(b) = x}. Suppose that all accesses in X are related by Gygt.sb. Let a € E, let Gy be an
RMW-execution satisfying:
o Gyc.E= G .EW {a}.
o Gyc.lab = Gig.lab U {a — L} where L is some access label with mode na and location x.
® Ggrc.8b D Gigi.sb and every ecent in X is Gc.sb-related to a.
® Gge.rf = Gigr.vT if Gsre.typ(a) = W\ RMW,
and otherwise Gsec.tf = Gige.vf U {(maxe, v Gsrc.sbl, a)}.
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® Gyrcm0 = Gigp.m0 if Ggre.typ(a) = R\ RMY,
and otherwise Ggrc.mo = Gige.m0 U (Gsrc.sbg x {a}) U ({a} x Gsm.sbi).

Then, G is RC11-consistent, and it is racy if Gigt is racy.

Proof. Easily follows from our definitions. O

J. Proofs for 8 (Programming Guarantees)

Theorem 3. Ifin all SC-consistent executions of a program P, every race {(a,b) has mod(a) = mod(b) = sc,
then the outcomes of P under RC11 coincide with those under SC.

Proof. Let P be a program, and suppose that every race (a,b) in some SC-consistent execution of P has
mod(a) = mod(b) = sc. We prove that P has no weak behaviors. Suppose toward a contradiction that there
exists an execution GG of P that is RC11-consistent but not SC-consistent. (Note that if P has undefined behavior
under RC11, then there exists a racy RC11-consistent execution of P, and our assumption ensures that this
execution is not SC-consistent.)

We call an execution G is a prefix of an execution G if it is obtained by restricting G to a set E of events that
contains the set Eq of initialization events, and is closed with respect to G.sb U G.rf (a € E whenever b € F
and {(a,b) € G.sbU G.rf). It is easy to show that G’ is RC11-consistent, provided that G is RC11-consistent.

Notation J.1. For an execution G, G.rfl|s. denotes the restriction of G.rf to SC accesses
(G.rf|sc = [G.E*]; G.rf; [G.E*°]). A similar notation is used for G.mo and G.rb.

For a set of events E, let II(E') denote the set of all pairs (a,b) € E x E of conflicting events, such that
{G.mod(a), Gmod(b)} # {sc} and (a,b), (b,a) & (G.sbU G.rf|s.)". Let ay, ..., a,, be an enumeration of
E \ E¢ that respects G.sb U G.rf (that is, ¢ < j whenever (a;,a;) € G.sbU G.rf). For every 1 <i < n, let
E; =EyU{ai,...,a;} and G; = G|g,. Since the G;’s are all prefixes of G, all of them are RC11-consistent.

Claim: For every 1 < i < n, if II(E;) = () then G; is SC-consistent.
Proof: Suppose that II(E;) = (). Since G satisfies COHERENCE, it follows that:

o G;.rf C (G.sbUG.rfls)T.

e G;mo C (G.sbUG.rflse)t UGumols.

e G;.rb C (G.sbUG.rfls.)T UG b

Hence, we have G;.sb U G;.rf U G.mo U Gy.tb C RT, where R = G.sb U G.rf|s. U Gimo|sc U G.rblsc.

Since G satisfies the SC condition, we have that R is acyclic, and so G; is SC-consistent (ATOMICITY holds
since it holds for G). 0

Now, since G is not SC-consistent, we have II(G.E) # (. Let k = min{s | II(E;) # 0}. Then,
II(Ex—1) = 0 (and so, Gx—_1 is SC-consistent), and there exists some j < k, such that a; and ay,
are conflicting, {G.mod(a;), G.mod(ay)} # {sc}, and (a;,ax), (ax,a;) & (G.sb U G.rfls)". Let
B ={be Ej | (b,ar) € G.sb}. Since (a;,ar) ¢ (G.sbUG.rf|s.)", and Gy_1.rf C (G.sbU G.rf|s) T,
we have (a;,b) & (G.sbU G.rf)" for every event b € B. Let z = loc(ay), and consider two cases:

® typ(ar) =W:

Claim: (a;, a;) € Gj.race.

Proof: Clearly, we have (ax,a;) € (Gj.sb U Gj.rf)" (ax has no outgoing sb and rf edges in Gy).
In addition, we have (a;,ai) € (Gj.sb U Gi.rf)" (otherwise, (a;,b) € (G.sb U G.rf)" for some
b€ B). 0

Claim: G, is not SC-consistent.

Proof: Since (a;j,ar) € Gy.race and {G.mod(a;), G.mod(ax)} # {sc}, the claim follows from our
assumption. O

Claim: a;, ¢ G.At.
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Proof: Suppose otherwise, and let b € G.E such that (b, ax) € rmw. Since G}, is not SC-consistent, but
G,—1 is SC-consistent, it must be the case that (ax, ¢) € G.mo and (¢, ai) € (G.sbUG.rf UG.moUG.xb)*"
for some ¢ € Ei_q. Let d € Ej_; such that {(¢,d) € (G.sb U G.rf U G.mo U G.rb)* and
(d,ar) € G.sbUG.moUG.rb. Then, we also have (¢, d) € (Gx—_1.sbUGk_1.rfUGL_1.m0UG_1.rb)*.
If (d, ar) € G.moUG.rb, then we obtain (d, ¢) € G.moUG.rb, and so (d, c) € Gj_1.moUGg_1.rb, which
contradicts the fact that G is SC-consistent. Otherwise, (d, a) € G.sb. It follows that {d,b) € G.sb”.
Now, COHERENCE ensures that G.rmw C G.rb, and it follows that (b, ¢) € G.rb. Hence, (b, c) € G_1.rb,
which again contradicts the fact that G is SC-consistent. O

Let G, be the extension of G,_1 with the event aj, (with the same label as in G},), the sb-edges of Gy, and
the mo-edges {(a, ax) | @ € Gr_1.W;}. It is easy to see that G}, is SC-consistent as well (in particular, it
is important here that a;, € G.At). Except for mo, it is identical to G, and so it is an execution of P and
(aj,ar) € Gj,.race. Since {G.mod(a;), G.mod(ar)} # {sc}, this contradicts our assumption.

typ(ax) = R:
In this case, we must have typ(a;) = W. Let

E={acGE]|(a,axr) € (G.sbUGj_1.vT)" V (a,a;) € (G.sbUGp_1.v£)"}.

Let G’ be the restriction of G, to the events in E. Since G'| g\ {4, is a prefix of G_1, it is SC-consistent.
Let ¢ = maxg... G’ .W,, and consider two cases.

"c# ay:
Let G” be the execution obtained from G’ by (i) modifying the value read at ay, to valy(c), and (i)
adding the reads-from edge (c, a). It is easy to see that G is SC-consistent, and Assumption B.1 ensures
that it is an execution of P. Additionally, (a;, ax) & (G”.sb U G”.rf)™" (there are no outgoing sb and
rf edges from a; in G”), and so, (a;j,ar) € G".race. Since {G.mod(a;), G.mod(ay)} # {sc}, this
contradicts our assumption.

"Cc= aj:
Let d be the immediate G.mo-predecessor of ¢, and let G” be the execution obtained from G’ by (i)
modifying the value read at ay, to valy(d), and (i) adding the reads-from edge (d, a). Again, it is easy
to see that G is SC-consistent, and Assumption B.1 ensures that it is an execution of P. As in the
previous case we obtain a contradiction to our assumption. O

Theorem 4. Let G be an RC11-consistent execution. Suppose that for every two distinct shared locations x
and y, [Eg]; sb; [E,] C sb; [F*°]; sb. Then, G is SC-consistent.

Proof. Tt suffices to show that sb U ecoe is acyclic (recall that ecoe = eco \ sb). Consider a cycle
in sb U ecoe of a minimal length. Cycles with at most one ecoe edge are ruled out by COHERENCE.
Hence, our cycle must have at least two ecoe edges. Let aq,b1,a2,bs,...,a,,b, € E (where n > 2)
such that (a;,b;) € ecoe and (b;,a;11) € sb for every 1 < i < n (where we take a1 to be aj).
The events aq,b1, ..., a,, b, are all accesses to shared locations (since {a;,b;) € ecoe C=i,. for every
1 <4 < n). In addition, we have loc(b;) # loc(a;41) for every 1 < i < n (otherwise we would have
(ai,ai+1) € ecoe; sblioc C ecoe, which contradicts the minimality of the cycle). Therefore, our assumption
entails that there exist f1, ..., f, € F*¢ such that (b;, f;) € sband (f;,a;41) € sbforevery 1 < i <mn.It
follows that (f;, fi+1) € [F*¢]; sb; ecoe; sb; [F*¢] C psc for every 1 < ¢ < n (where we take f,,11 to be f1).
This contradicts the fact that G satisfies the SC constraint. O]
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