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Abstract—Bounding worst-case blocking delays due to lock con-
tention is a fundamental problem in the analysis of multiprocessor
real-time systems. However, virtually all fine-grained (i.e., non-
asymptotic) analyses published to date make a simplifying (but
impractical) assumption: critical sections must not be nested. This
paper overcomes this fundamental limitation and presents the first
fine-grained blocking bound for nested non-preemptive FIFO spin
locks under partitioned fixed-priority scheduling. To this end, a
new analysis method is introduced, based on a graph abstraction
that reflects all possible resource conflicts and transitive delays.

I. INTRODUCTION

Virtually any multiprocessor (real-time) system contains at
least a couple of locks, and complex systems like Linux contain
thousands. Naturally, some threads will want to acquire more
than one of these locks at the same time, thereby giving rise to
nested critical sections. In Linux, for instance, this happens every
time a task migrates among cores, to name just one example.

Yet despite the ubiquity of nested critical sections, and despite
the fact that there is a rich literature on the analysis of locks in
multiprocessor real-time systems (reviewed in §VII), which by
now spans more than two and a half decades of work [18], very
little progress has been made in the analysis of nested critical
sections. In fact, no practical bounds on worst-case blocking
applicable to nested locks have been given in the published
literature to date. In this paper, we present the first non-trivial,
non-asymptotic analysis of this kind, namely a bound on worst-
case blocking for nested non-preemptive FIFO spin locks.

Why study nested spin locks? Understanding the worst-case
behavior of nested spin locks is simultaneously of great practical
relevance and of fundamental importance. First, spin locks are
likely the most widespread lock type, to be found in nearly
all shared-memory multiprocessor systems: if not at the layer
of applications and libraries, then surely at the kernel layer
(interesting research systems [17] notwithstanding).

Second, nested locks are not a rarity in real-world applications.
Nesting occurs unintentionally in complex systems software
whenever subsystem boundaries are traversed due to the natural
layering of well-structured software. For example, Linux’s high-
resolution timer subsystem protects its internal state with several
spin locks. When invoking core timer APIs, one of these spin
locks is typically acquired on API entry, and released again
before returning to the caller. If the caller happens to already hold
a spin lock—e.g., a runqueue lock in the scheduler when setting
a budget-enforcement timer, or a driver lock in the network stack
when requesting a timeout—critical sections are nested.

Beyond such “accidental” nesting, lock nesting is also offi-
cially supported by programming standards. For example, the
AUTOSAR standard [1] explicitly specifies the semantics of
nested spin locks (including lock-ordering rules and deadlock

detection, etc.). It stands to reason that embedded software in
the wild will make use of these facilities.

And third, in addition to the practical considerations, under-
standing nested spin locks is of fundamental importance simply
because it is hard. It is hard both in the sense of computational
complexity—even greatly simplified variants of the nested
blocking analysis problem are NP-hard on multiprocessors [23]—
and in the sense of human intuition (or lack thereof). If we cannot
analyze nested non-preemptive FIFO spin locks, we stand little
chance to attack other, more complicated lock types.

Regarding the latter aspect, the difficulty of the problem,
consider the examples in Fig. 1, which highlight three effects
that do not occur in conventional (non-nested) analyses.

(a) Transitive blocking prevents local reasoning. In this
example, there is one critical section (CS) on processor P1,
protected by lock `1—how much blocking can it incur in the
worst case? Let us consider two different scenarios, as indicated
by the dashed and solid edges in Fig. 1(a), respectively.

Dashed edge: There are only two other CSs related to `1 in
inset (a), both on processor P2. Without nesting, simply picking
the longer one yields the worst case, as at most one CS per
processor can block (non-preemptive FIFO spin locks).

Solid edges: With nesting, however, this simple reasoning is
wrong. The locally shorter CS (connected by the solid edge)
contains a nested CS protected by `2, which can be blocked by
the CS on P3, which contains a CS protected by `3, which in turn
can be blocked by the long CS on P4 (highlighted in yellow).
The cumulative delay due to these transitively blocking CSs
(15 time units) exceeds the length of the locally longer CS on P2

(10 time units): we observe that a task’s worst-case blocking can
be determined by resources that it does not access, on processors
that it does not interact with directly. Such transitive “ripple
effects” prevent any attempt at localized analysis.

(b) Nested blocking exhibits scheduling anomalies. In this
example, there are two CSs on processor P1—how much
blocking can they incur in total? Let us again consider two
cases, as indicated by the solid and dashed edges in Fig. 1(b).

Solid edges: When P1 tries to lock `1, it blocks on P2. The CS
on P2 contains a nested CS protected by `2, which causes it to
block on the CS on P3. P3’s CS finally contains a CS protected
by `3. At this point, `3 is guaranteed to be uncontested—the
only other CS related to `3 is on processor P2, and P2 is still
spinning non-preemptively to acquire `2. Hence P3 proceeds
and the blocking chain unravels.Tracing the path, we observe
that P1 is blocked for a total of 1 + 1 + 1 + 1 = 4 time units.

Afterwards, P1 executes its second CS, which is protected by
`2. No additional blocking occurs, as all other CSs related to `2
have already terminated. Now consider the alternate case.
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Fig. 1. Three examples of blocking scenarios that are difficult to reason about due to the presence of nested critical sections. How to read the examples: There are
four spin locks `1, . . . , `4. Each node represents a CS and is labeled with the respective lock and CS length (worst-case execution time). Each column represents a
processor and lists the CSs executed on that processor. A vertical edge between two CSs means that one is nested in the other: for example, in inset (a), on P2, a CS
protected by `2 is nested in a CS protected by `1. A horizontal edge represents blocking: for example, in inset (a), the CS on P1 (which is protected by `1) is
blocked by the CS on P2. Dashed edges represent alternate scenarios that are discussed in the text.

Dashed edges: Again, P1 blocks on P2 when it tries to lock `1.
However, in this case, P2 does not execute the nested CS (e.g.,
it is skipped by an if statement). This prevents the buildup of a
long blocking chain, and P1 incurs only 1 time unit of blocking.

However, when P1 attempts to lock `2 for its second CS, it can
now block on the CS on P3, which in turn, due to nesting, can
block on the long CS on P2 (highlighted in yellow). The total
blocking in this case is 13: we observe that a local improvement
(P2 omits a blocking CS) can increase overall blocking. Such
scheduling anomalies render simple greedy analyses infeasible.
(c) Partial solutions cannot be reused. The final example ex-
hibits a structure that makes reusing the bounds for one processor
(or CS) in the analysis of another extremely pessimistic.

Dashed edges: First, consider the maximum blocking that
processor P2 can incur when it locks `4—there are two related
CSs on processors P3 and P4 of length 10 each (highlighted in
yellow), up to 20 time units of blocking is hence possible.

Solid edges: Now consider the maximum total blocking that
processor P1 can incur, as indicated by the solid edges: 15 +
15 + 1 + 1 = 32. Notably, when P1 transitively blocks on P2’s
nested CS, `4 is guaranteed to be uncontested—the large CSs on
processors P3 and P4 are nested within CSs serialized by `2 and
`1, respectively, which P1 both holds. We observe that the CS of
P1 accessing `3 and the CSs on processors P3 and P4 accessing
`4 are implicitly serialized, in the sense that the intervals in which
they are executed cannot overlap in any schedule. Reusing the
fact that P2 can be blocked for 20 time units when it locks `4
would far overestimate the actual maximum.

Clearly, with many CSs, identifying the true worst case, or
even a reasonably accurate upper bound, is non-trivial.
This paper. To tackle the intrinsic complexity of nested block-
ing analysis, we propose a novel graph abstraction (§III-B).
The proposed graph abstraction encodes all possible blocking
interactions among tasks, while eliding details that are irrelevant
for a blocking analysis. We show how to map any schedule to a
subgraph (§III-C) and identify 13 structure invariants that any
such subgraph satisfies (§IV). We then proceed to identify a

maximal subgraph (§V), in the sense that the identified subgraph
corresponds to a non-trivial safe (but not tight) bound on the
true worst-case blocking in the face of nested critical sections—
the first of its kind. Finally, we report on an evaluation of the
proposed analysis in terms of both runtime and performance
against group locks, a well-known workaround to reduce fine-
grained, nested locking to coarse-grained, non-nested locking.

II. BACKGROUND AND SYSTEM MODEL

We assume the standard sporadic task model, which we
augment with a resource model to express nested CSs.

A. System Model and Notation

We consider a real-time workload τ consisting of n sequential
sporadic tasks T1, . . . , Tn scheduled on m identical processors
P1, . . . , Pm. Each task Ti has a worst-case execution time
(WCET) ei, a minimum inter-arrival time pi (also called its
period), and a relative deadline di, where ei ≤ di ≤ pi. We
let Ji denote a job of Ti. A job Ji is pending from its release
until it completes. Ti’s worst-case response time ri denotes the
maximum duration that any Ji remains pending. Pending jobs
are always ready (i.e., we assume that tasks do not self-suspend).

We assume partitioned fixed-priority (P-FP) scheduling, as
mandated for instance by AUTOSAR. For brevity, we assume
that tasks are indexed in order of decreasing priority. Each
task is statically assigned to a processor, and each processor
preemptively executes pending jobs in order of decreasing
priority, unless preemptions are temporarily restricted by the
locking protocol. We let P (Ti) denote Ti’s assigned processor.

Audsley et al. [3] established that a bound on Ti’s response
time ri is given (if ri ≤ pi) by the least positive solution of

ri = ei + bi +
∑
h<i

P (Th)=P (Ti)

⌈
ri
ph

⌉
× eh,

where bi denotes an upper bound on the total locking-related
delay incurred by any Ji. The main contribution of this paper is
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an analysis that yields such a bound bi in the presence of nested
CSs, based on the following resource model.

Besides the m processors, the tasks share nr serially-reusable
resources Q = {`1, . . . , `nr} such as data structures, I/O ports,
etc. For each task Tx ∈ τ , we let Nx,q denote the maximum
number of times that any Jx requests `q (i.e., the maximum
number of CSs related to `q executed by any Jx). Throughout
this paper, we use the terms “critical section” (or “CS”) and
“request” interchangeably. We letN i

x,q , d(ri + rx)/pxe×Nx,q
denote the maximum number of requests for resource `q that
jobs of task Tx can issue while a single job of Ti is pending.

We let Rx,q,v denote the vth request for resource `q issued
by jobs of task Tx. To reduce clutter, we generally elide all
irrelevant indices with asterisks. For example, to denote any
request of task Tx (for any resource), we write Rx,∗,∗, and to
denote any request for resource `q (by any task), we writeR∗,q,∗,
etc. If all indices are irrelevant, we simply writeR,R′,R′′ . . .

CSs can be nested: while holding the lock for a resource `q,
a job can issue a nested request for a different resource `p. We
writeR .R′ to express thatR′ is directly nested withinR (i.e.,
there is no third requestR′′ such thatR . . . . .R′′ . . . . .R′). If
R .R′, thenR starts beforeR′ starts, andR′ completes before
R completes (i.e., nested CSs are fully contained).

We assume that locks are not reentrant. That is, while holding
the lock for a resource `q , a task cannot request `q again.

We further require the existence of a partial lock order <Q
that is obeyed by all jobs such that, if R∗,o,∗ . R∗,c,∗, then
`o <Q `c. This requirement is a common software practice used
to avoid deadlocks. For instance, the Linux kernel has a locking
discipline checker that tests whether such a lock order is obeyed
(any violations are flagged as serious bugs), and the AUTOSAR
standard goes as far as explicitly mandating this requirement.1

We assume that jobs must be scheduled in order to use shared
resources, and that jobs release all shared resources prior to
completion. For each request Rx,q,v, we let Lx,q,v denote the
maximum CS length of that request excluding the CS lengths
of any nested requests. That is, Lx,q,v only accounts for the
maximum duration that Rx,q,v is executed without executing
any requests nested withinRx,q,v .

Next, we review the locking protocols considered in this paper.

B. The Multiprocessor Stack Resource Policy (MSRP)

The MSRP [16] is a shared-memory locking protocol that
enables predictable access to shared resources. The MSRP
distinguishes global and local resources: a resource is local
if it is shared only among tasks on the same processor, and
global otherwise. For local resources, the MSRP uses the classic
uniprocessor Stack Resource Policy (SRP) [4].

The SRP is based on priority ceilings. The priority ceiling
of a resource `q is the highest priority of any task accessing
`q: Π(`q) = min{i|Ni,q > 0}. Further, a dynamic, per-
processor system ceiling Π̂(t, p) is maintained, which is the
highest resource ceiling of any resource `q locked at time t on
processor p (if any), and n+ 1 if no resource is locked.

1Specifically, see requirement SWS Os 00660 in AUTOSAR OS 4.2.2 [1].

The key scheduling rule of the SRP is that a newly released
job of Ti may only start executing at time t if i < Π̂(t, P (Ti)),
which implies that all required resources are available. A simple
way to realize this rule is to raise the effective priority of lock-
holding tasks to the ceiling priority. For instance, this approach
is specified by OSEK and AUTOSAR under the name OSEK
priority ceiling protocol; another common name for this policy
is immediate priority ceiling protocol.

For global resources, the MSRP cannot use the uniprocessor
SRP, which does not generalize to multiprocessor systems.
Instead, the MSRP uses FIFO spin locks to coordinate access
to global resources: to gain access to a global resource `q, a
job becomes non-preemptive and starts spinning until it gains
access to `q . Concurrent requests by jobs on other processors to
the same resource are served in FIFO order. Once a job finishes
its CS, it becomes preemptable again and normal scheduling
resumes. For notational convenience, we define the priority
ceiling Π(`q) of a global resource `q to be zero.

Since AUTOSAR specifies the availability of the SRP (i.e.,
the OSEK priority ceiling protocol), support for non-preemptive
sections, and spin locks, the MSRP is readily available in current
automotive systems (as well as many other embedded systems)
and thus of considerable practical relevance.

C. Group Locks

The SRP permits arbitrary nesting of requests for local
resources, which the MSRP maintains, but the MSRP prohibits
any nesting involving global resources: within a global CS, no
further request for a global resource may be issued.

A trivial workaround is to use group locks [8, 18], where the
set of resources Q is partitioned into minimal resource groups
such that, if there exist two requestsR∗,o,∗ andR∗,c,∗, such that
R∗,o,∗ .R∗,c,∗, then `o and `c are in the same resource group.

Each resource group is associated with a group lock that a
task must acquire before accessing any resource in the group. As
a result, group locks reduce fine-grained nested CSs into coarse-
grained non-nested CSs. This greatly simplifies the analysis—
existing analyses for non-nested CSs [8, 16, 22] may be readily
reused—but has the disadvantage of serializing non-conflicting
requests, thereby reducing parallelism and increasing wait times.

Next, we describe a variant of the MSRP that lifts the MSRP’s
nesting restrictions without resorting to group locks.

D. The Nested Multiprocessor Stack Resource Policy (nFIFO)

The Nested Multiprocessor Stack Resource Policy is simply
the MSRP with all nesting restrictions removed: requests for
both local and global resources may be arbitrarily nested within
other requests for either local or global resources (i.e., requests
for local resources may be nested in requests for global resources,
and vice versa), provided the partial lock order <Q is respected.
For clarity, we denote this protocol version herein as nFIFO (for
nested FIFO spin locks) and reserve the abbreviation “MSRP”
to denote the un-nested variant using group locks.

Since nFIFO is a relaxation of the MSRP, no additional
protocol rules are required. However, unrestricted nesting pro-
vides substantial analysis challenges. In particular, there are now
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TABLE I
EXAMPLE TASK SET

Task Processor ei pi di Ni,1 Ni,2 Ni,3 Nesting Request Lengths

T1 P1 2.5 50 50 1 0 0 — L1,1,1 = 1
T2 P1 6.5 60 60 0 2 0 — L2,2,1 = 2, L2,2,2 = 1
T3 P1 2.5 70 70 1 0 0 — L3,1,1 = 1

T4 P2 7.7 80 80 0 2 1 R4,2,2 .R4,3,1 L4,2,1 = 2, L4,2,2 = 0.2, L4,3,1 = 1

T5 P3 9.5 90 90 0 0 2 — L5,3,1 = 2, L5,3,1 = 3

three types of blocking that must be taken into account: arrival
blocking, direct blocking, and transitive blocking, which are
defined as follows and illustrated in Fig. 2.

Arrival blocking occurs due to local lower-priority tasks that
either execute non-preemptively or that have raised the system
ceiling. For example, in the scenario shown in Fig. 2, Π(`1) = 1
since J1 accesses `1. When J2 is released at time t = 1, the
system ceiling Π̂(1, P1) = 1 exceeds J2’s priority since J3 holds
`1. J2 can start execution only at time t = 2 when J3 releases
`1 and the system ceiling rebounds to n+ 1 = 6.

Direct blocking occurs when remote tasks compete for global
resources. In Fig. 2, J2 requests `2 at time t = 3, but J4 already
holds `2. While waiting for `2, J2 is blocked and spins non-
preemptively until time t = 4. At time t = 4, J4 releases `2 and
J2 ceases to spin and acquires the resource.

Arrival blocking and direct blocking arise under both the
MSRP and the nFIFO protocol. A new type of blocking specific
to the nFIFO protocol is transitive blocking, which arises only
if global CSs are nested. For example, in Fig. 2, J2’s second
request for `2 at time t = 8 is blocked by J4’s request for `2,
which contains a nested request for `3. However, `3 is held by
J5 during [6, 9), and J4’s nested request for `3 is hence blocked
until time t = 9. At time t = 10, J4 releases both `2 and `3,
allowing J2 to acquire the lock for `2. Notably, although J2 and
J5 do not share any resources, J2’s request for `2 is transitively
blocked by J5’s request for `3 during the time interval [8, 9).

The last point bears repeating: due to transitive blocking,
a job can be delayed—repeatedly—by requests for resources
that it does not access, which causes considerable analytical
complications, as illustrated in §I. Transitive blocking is exceed-
ingly difficult to model with prior techniques such as those used
in [5, 8, 10, 12, 15, 16, 22] if even a modicum of accuracy is
desired. We therefore chose to develop a new analysis approach
based on a conflict graph model, which we introduce next.

III. STATIC AND DYNAMIC BLOCKING GRAPHS

In this section, we establish the foundation for our analysis
of worst-case blocking in the presence of nested CSs. To begin
with, we first provide a high-level overview of the whole analysis
approach before introducing the core concepts in full detail.

A. Analysis Outline

The underlying principle is that—unlike in classic blocking
analyses (e.g., [15, 16]), and similar to prior analyses of non-
nested synchronization based on linear optimization (e.g., [5,
10, 22])—we do not aim to identify and characterize a global
or local worst case. Rather, we initially assume that all CSs

50 10

J1

J2

J3

P1

P2

P3 J5

J4

`1

`1

`3

`3

`2
`2

`3

`2 `2

job executing

job executing
critical section

job holding resource `1

spinning

arrival blocking

job release

time

Fig. 2. Example nFIFO schedule of five tasks using three shared resources,
with parameters as given in Table I. For simplicity, the periods of the tasks have
been chosen such that only a single job of each task is relevant for this example.

can block (a safe, but naı̈ve starting point), and then rule out
scenarios that we can establish to be impossible. As a result, we
obtain an upper bound on blocking with respect to all scenarios
that have not been shown to be impossible, which includes the
(generally unknown) actual worst case.

While this general strategy has been employed before [5, 10,
22], the particular challenge in the context of nested critical
sections is the difficulty of identifying and characterizing
impossible scenarios (with a reasonable degree of accuracy), as
demonstrated by the examples in Fig. 1. In particular, we found
the existing approaches to be too inflexible and not powerful
enough to enable a rigorous and sufficiently accurate analysis of
nested critical sections. We therefore adopted a novel approach
based on the following four steps.
Step 1. We first introduce a novel graph abstraction that
unambiguously encodes all possible scenarios in which a single
job of the task under analysis can incur synchronization-related
delays. We call this abstraction the static blocking graph (§III-B).
Importantly, the static blocking graph encodes all possible
transitive blocking opportunities.
Step 2. We then establish a mapping that associates a given
concrete schedule S (i.e., an arbitrary, but fixed trace of the
system) with a matching dynamic blocking graph (§III-C), which
reflects the blocking interactions that actually do occur in S.

This mapping has four important properties: (i) for every
possible schedule, there exists a matching dynamic blocking
graph (i.e., the mapping is total); (ii) a dynamic blocking graph
implies an upper bound on the total blocking incurred in the
corresponding schedule; and (iii) every dynamic blocking graph
is a subgraph of the static blocking graph. However, the reverse
is not true: (iv) not all subgraphs of the static blocking graph
correspond to actually possible schedules.
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Since the mapping applies to any schedule, it also applies
to the (generally unknown) schedule in which the worst-case
blocking is incurred. Thus, by finding a subgraph that dominates
all possible dynamic blocking graphs with regard to the implied
blocking bound, it is possible to generally bound the maximum
blocking in any schedule, including the (unknown) worst case.

This points to the core idea of the paper: by characterizing
the set of dynamic blocking graphs that can actually result from
a valid schedule (i.e., for which we seek a dominating subgraph),
we can implicitly rule out impossible schedules (i.e., reduce
analysis pessimism). Since the static and dynamic blocking
graphs abstract from irrelevant details, we found this approach to
be easier and more accurate than reasoning about (im)possible
schedules directly. This indirection further has the benefit of
providing a precise and clear foundation for rigorous proofs.

Step 3. As motivated in the preceding discussion, in the third
step, we characterize the set of dynamic blocking graphs that can
result from valid schedules. In particular, due to the rules of the
locking protocol, the scheduling policy, and the characteristics
of the task set, many blocking scenarios are impossible in actual
schedules. Based on this observation, we identify invariants
that hold in any dynamic blocking graph that corresponds to a
valid schedule (§IV). In other words, the invariants reflect the
structure of all the dynamic blocking graph instances generated
by the mapping procedure established in Step 2.

Step 4. Finally, to derive a safe blocking bound, we identify a
maximal subgraph: a subgraph of the static blocking graph that
dominates all possible dynamic blocking graphs with regard to
the implied blocking bound (§V). Due to the mapping between
schedules and dynamic blocking graph instances, the maximal
subgraph yields a safe blocking bound for any possible schedule.

We solve the problem of identifying a suitable maximal
subgraph with the help of an appropriately constructed Integer
Linear Program (ILP), wherein the invariants from Step 3 are
used as lemmas to justify the constraints of the ILP.

In a narrow sense, this ILP constitutes the actual proposed
analysis: Steps 1–3, including the blocking graph abstraction,
are needed only to provide a correctness argument for the
ILP presented in §V. However, we believe that this indirection
(i.e., the intermediate analysis of dynamic blocking graphs) is
justified despite any complexity that it might add, as we think
that it would be difficult to provide a compelling and rigorous
correctness argument for the stated ILP without the clear and
precise foundation provided by the blocking graph abstraction.

Having described and justified our approach at a high level,
we now describe each step in full detail and start by defining
how to construct the static blocking graph. For convenience, a
summary of all relevant notation is given in Table II.

B. Static Blocking Graph

In the following, we let Ti denote the task under analysis, that
is, the task for which we seek to derive a blocking bound. We
focus on an arbitrary, but fixed job Ji of Ti. For the construction
of the static blocking graph, we consider all requests that can
exist while Ji is pending (including Ji’s own requests).
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Fig. 3. The static and dynamic blocking graphs for J2 in Fig. 2.

The static blocking graph of Ti is a directed graph G = (V ∪
{vS}, E), with three edge set partitions EN ∪EM ∪ERT = E,
which we define in the following.
Vertices. The set of vertices corresponds directly to the requests
that can exist while Ji is pending:

V = {vx,q,v| ∃Rx,q,v},
where Rx,q,v denotes the vth request for resource `q by jobs
of task Tx (while Ji is pending), and 0 < v ≤ N i

x,q.
Additionally, G contains a special source vertex vS , which does
not correspond to any request, to serve as the starting point of
the analysis. For brevity, we define four common subsets of V :
• V(k) , {vx,q,v | P (Tx) = Pk } denotes all vertices corre-

sponding to requests of tasks on processor Pk;
• V(k) , {vx,q,v | P (Tx) 6= Pk } = V \ V(k) denotes all

vertices corresponding to requests on other processors;
• V LL , {vx,q,v | vx,q,v ∈ V(P (Ti)) ∧ i < x} denotes all

vertices corresponding to local lower-priority tasks; and
• V R , V(P (Ti)) is simply the set of all vertices corre-

sponding to remote requests.
Matching the shorthand notation for requests, we elide vertex

indices when they are irrelevant. For instance, v∗,q,∗ denotes
any vertex corresponding to a request by any task for `q, and
v, v′, v′′, . . . denote arbitrary vertices in V .
Edges. Edges in the blocking graph serve three purposes: they
(i) encode the nesting of requests, (ii) model that two requests
issued by jobs of different tasks could conflict, and (iii) connect
the source vertex vS to the vertices representing requests issued
by local jobs. Correspondingly, we define three edge partitions:
• nesting edges EN , {(vx,o,∗, vx,q,∗) | Rx,o,∗ .Rx,q,∗};
• mutex edges EM , {(vx,q,∗, vy,q,∗) | P (Tx) 6= P (Ty)};
• and root edges ERT , {(vS , vx,∗,∗) | P (Tx) = P (Ti)}.

Example. Fig. 3(a) depicts the static blocking graph constructed
for the example task set given in Table I, assuming that Ti = T2
is the task under analysis. For simplicity, all task periods have
been chosen such that at most one job of each other task overlaps
with any job of T2, and hence N2

x,q = Nx,q for all tasks.

5



TABLE II
SUMMARY OF NOTATION

Pk kth processor in the system, where 1 ≤ k ≤ m
P (Tx) processor that task Tx is assigned to

Π(`q) priority ceiling of resource `q
N i

x,q maximum number of requests for `q that jobs of
Tx can issue while a single job of Ti is pending

Rx,q,v vth request for `q issued by jobs of Tx

Lx,q,v maximum CS length ofRx,q,v

Rx,∗,∗ any request issued by jobs of Tx

R∗,q,∗ any request for `q
R,R′, . . . arbitrary requests for shared resources
R .R′ R′ is directly nested inR
G(Ji, S) graph representing the blocking incurred by

job Ji in a schedule S
vx,q,v vertex corresponding to requestRx,q,v

v, v′, . . . arbitrary vertices in G(Ji, S)

V(k) set of vertices corresponding to requests on Pk

V(k) complement of V(k)
V LL set of vertices corresponding to requests of

local low-priority tasks of task Ti

V R set of vertices corresponding to remote requests

ERT set of root edges
EM set of mutex edges
EN set of nesting edges

For each critical section of any task, there is a corresponding
vertex in Fig. 3(a). For instance, J2’s first and second request
for resource `2 are represented by vertices v2,2,1 and v2,2,2,
respectively. Similarly, J3’s request for `1 is mapped to v3,1,1.

As there is only one nested critical section in the entire task set,
there is only one nesting edge from v4,2,2 to v4,3,1 in Fig. 3(a).

In contrast, there are many mutex edges in Fig. 3(a): there
are two mutex edges between any two vertices corresponding
to requests for the same resource on different processors
(e.g., between vertices v4,3,1 and v5,3,2). Notably, in the static
blocking graph, mutex edges are always bidirectional, which
reflects the symmetry inherent in mutual exclusion.

Finally, all vertices corresponding to requests executed on
processor P1 (i.e., T2’s local processor) are connected from vS
by root edges (i.e., vertices v1,1,1, v2,2,1, v2,2,2, and v3,1,1).

Together, these edges encode all possible blocking scenarios
that affect J2, as we show next by defining a suitable mapping.

C. Dynamic Blocking Graph

Given an arbitrary, but fixed schedule S of task set τ , and an
arbitrary job Ji in S of the task under analysis Ti, the dynamic
blocking graph G(Ji, S) is a subgraph of the static blocking
graph G that represents the blocking incurred by Ji in S.

To define G(Ji, S), we need to characterize precisely when a
request is considered to cause “direct” or “transitive” blocking.
Def. 1. A requestRx,q,∗ directly blocks another requestRy,q,∗
at time t if and only if Rx,q,∗ is in progress at time t (i.e., Tx
is holding resource `q) and Ry,q,∗ has been issued but not yet
satisfied (i.e., Ty is busy-waiting to acquire `q).

Based on Def. 1, “transitive” blocking is defined inductively as
the transitive closure of the nesting and direct blocking relations.

Def. 2. A requestR transitively blocks a requestR′ at time t if
and only if, at time t, either

1) R directly blocksR′,
2) R is pending (at time t) and nested in a request that

transitively blocksR′, or
3) R directly blocks a request that transitively blocksR′.
For brevity, we simply say that a request “blocks” to express

that it transitively blocks (which includes direct blocking).
Subgraph definition. Mirroring the structure ofG, the dynamic
blocking graph G(Ji, S) = (V (Ji, S) ∪ {vS}, E(Ji, S)) is a
directed graph, where V (Ji, S) ⊆ V and E(Ji, S) ⊆ E. As
it is the case with the static blocking graph, the set of edges
is partitioned in mutex, nesting, and root edges: E(Ji, S) =
EM (Ji, S) ∪ EN (Ji, S) ∪ ERT (Ji, S), where EN (Ji, S) ⊆
EN , EM (Ji, S) ⊆ EM and ER(Ji, S) ⊆ ER.

Based on Defs. 1 and 2, the vertex and edge sets that
constitute G(Ji, S) are populated as follows. Initially, V (Ji, S),
EM (Ji, S), EN (Ji, S), and ERT (Ji, S) are empty.
S1 Identify in S all requests executed by any job on Ji’s local

processor P (Ti) while Ji is pending, including lower- and
higher-priority jobs and Ji itself. Let RL denote this set.

S2 Identify in S all requests that, at any point in time t,
transitively block (Def. 2) some request in RL. Let RR

denote this set of remote, transitively blocking requests.
S3 Define V (Ji, S) ,

{
vx,q,v

∣∣Rx,q,v ∈ (RL ∪RR)
}

.
For brevity, v corresponds toR and v′ corresponds toR′ in the
following. For any pair of requests (R,R′) ∈ RR ×RL:
S4 If there exists a time t at whichR directly blocksR′ in S,

then include the mutex edge (v′, v) in EM (Ji, S).
For any pair of requests (R,R′) ∈ RR ×RR:
S5 IfR andR′ both transitively block some requestR′′ ∈ RL

at some time t in S, and if also R directly blocks R′ at
time t, then include the mutex edge (v′, v) in EM (Ji, S).

S6 IfR .R′, and if there exists a time t such that bothR and
R′ transitively block some requestR′′ ∈ RL at time t, then
include the nesting edge (v, v′) in EN (Ji, S).

For any pair of requests (R,R′) ∈ RL ×RL:
S7 IfR .R′, include the nesting edge (v, v′) in EN (Ji, S).

Finally, for any requestR ∈ RL:
S8 If there does not exist an outer requestR′ ∈ RL such that
R′ .R, include the root edge (vS , v) in ERT (Ji, S).

This completes the definition of G(Ji, S).
Example. Fig. 3(b) depicts the dynamic blocking graph
G(J2, S) for job J2. The graph is constructed from the schedule
S show in Fig. 2 by following Steps S1–S8.

According to Steps S1 and S3, the requests issued by the
local jobs J1, J2 and J3 are represented as vertices in G(J2, S).
Similarly, according to Steps S2 and S3, the requests issued by
the remote jobs J4 and J5 that (transitively) block any local
requests are also included in the graph. Note that vertex v5,3,2
is included since R5,3,2 transitively blocks R2,2,2, whereas
vertex v5,3,1 is not included since, in this particular schedule,
the corresponding request does not affect J2 in any way.
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Consider the time interval [3, 4) in Fig. 2. In this interval the
job J2 is directly blocked by the first request for `2 issued by J4.
Hence, in Step S4, a mutex edge is inserted by connecting v2,2,1
to v4,2,1. The same step is performed for the second request
of J2, which is directly blocked during [8, 10) by J4’s second
critical section; hence v2,2,2 is connected to v4,2,2.

In the time interval [9, 10), J4 is directly blocked by J5 due to
contention for resource `3. Consequently, J2 is also transitively
blocked by J5’s request for `3. Therefore, according to Step S5,
v4,3,1 is connected to v5,3,2 via a mutex edge.

Analogously, since J4’s nested request for `3 transitively
blocks J2, a nesting edge is inserted to connect v4,2,2 with
v4,3,1 in Step S6. Step S7 does not apply to this simple example
because there are no nested requests issued by local tasks.

Finally, the vertices corresponding to local critical sections
are connected to the source vertex vS via root edges in Step S8.
This results in the dynamic blocking graph shown in Fig. 3(b).

D. Implied Blocking Bound

The subgraphG(Ji, S) is an abstraction of the concrete delays
incurred by Ji in S, and hence yields an upper bound on the
total blocking incurred by Ji.

Lemma 1. In a given schedule S, Ji incurs arrival, direct, or
transitive blocking for a total of at most

bi =
∑

vx,q,v∈B
Lx,q,v (1)

time units, where B = (V R ∪ V LL) ∩ V (Ji, S).

Proof: By steps S1–S3, V (Ji, S) contains the vertices
corresponding to all local requests, and to all remote requests
that block Ji at any time. CSs of local higher-priority tasks are
not considered to cause blocking (they are accounted for as
regular interference during response-time analysis); hence only
requests corresponding to vertices in V R and V LL delay Ji.
Example. As illustrated in Fig. 3(b), in the dynamic blocking
graph G(J2, S) related to the scenario shown in Fig. 2, the
following vertices corresponding to requests of local lower-
priority jobs (V LL) or remote jobs (V R) are included: v3,1,1
(arrival blocking), v4,2,1 and v4,2,2 (direct blocking), and v4,3,1
and v5,3,2 (transitive blocking), with corresponding lengths
of L3,1,1 = 1, L4,2,1 = 2, L4,2,2 = 0.2, L4,3,1 = 1, and
L5,3,2 = 3, respectively. The sum of their lengths (7.2 time units)
is a safe upper bound on the total blocking of any kind incurred
by J2 in Fig. 2 (4 time units). The bound is not tight because
Fig. 2 does not depict a worst-case scenario (e.g., J2 could have
incurred more blocking if J5 would have been released later).

IV. THE STRUCTURE OF DYNAMIC BLOCKING GRAPHS

In this section, we characterize the structure of subgraphs
corresponding to actually possible schedules. To this end, we
next establish 13 invariants that any subgraph G(Ji, S) created
by steps S1–S8 satisfies, for any Ji and any S. As explained
in §III-A, these invariants are essential to our analysis as they
are the foundation of the ILP presented in §V. More precisely,
the following invariants are used as lemmas in the proofs

of correctness of the individual constraints that comprise the
ILP used to determine a bound on worst-case blocking in the
presence of nested critical sections.

When preparing this section, we faced a presentation problem.
On the one hand, as illustrated in §I, transitive blocking is
difficult to grasp based on intuition alone; any safe analysis
hence fundamentally requires a firm formal footing to establish
its correctness. On the other hand, due to the needed precision,
some of the following graph invariants require rather technical
proofs, which are quite lengthy and can be somewhat challenging
to digest when first encountered. As a compromise, to accom-
modate space constraints and to keep the paper as accessible
as possible without forgoing a proper correctness argument, we
highlight the intuition underlying each invariant in this section,
and provide more formal proofs in an online appendix [6].

We begin with simple structural observations.

Invariant 1. No vertex in V(P (Ti)) has an incoming mutex
edge: if (v′, v) ∈ EM (Ji, S), then v ∈ V R.

Proof: Follows immediately from Steps S4 and S5, which
are the only steps that add edges to EM (Ji, S).

Analogously, root edges always connect vertices in V LL.

Invariant 2. No vertex in V R has an incoming root edge: if
(vS , v) ∈ ERT (Ji, S), then v ∈ V(P (Ti)).

Proof: Follows immediately from Step S8, which is the
only step that adds root edges.

Further, any vertex in G(Ji, S) is reachable from vS .

Invariant 3. For each vertex v ∈ V (Ji, S), there exists a path
in G(Ji, S) from vS to v.

Intuition: Every vertex v in the graph corresponds to a request
R that is either local or remote with regard to Ti. First, consider
the local case. Then,R can be either (i) non-nested and is hence
inserted by Step S8, or (ii) nested in an outer requestR′, from
which it can be reached via a nesting edge according to Step S7.
In case (ii), by induction on Step S7, it is possible to reach a
request that is not nested and for which case (i) holds.

Now consider the case in which R is a remote request.
Analogous to the above argument, by induction on Steps S5
and S6 and the definition of transitive blocking (Def. 2), it is
possible to reach a vertex corresponding to a request that directly
blocks a local requestR′′. In this case, Step S4 applies, and since
R′′ is a local request, the above local case applies.

The next two invariants restate classic SRP properties.

Invariant 4. If (vS , v∗,q,∗) ∈ ERT (Ji, S) and v∗,q,∗ ∈ V LL,
then Π(`q) ≤ i.

Intuition: Since the edge (vS , v∗,q,∗) is included (S8), and
since v∗,q,∗ ∈ V LL, v∗,q,∗ must correspond to a request that is
executed by a local lower-priority job while Ji is pending (S1).
This is possible only if the request is executed non-preemptively,
or if Ji is prevented from preempting the lower-priority task by
the SRP’s arrival rule. In either case, Π(`q) ≤ i.
Invariant 5. At most one vertex v ∈ V LL is connected by a
root edge (vS , v) ∈ ERT (Ji, S).
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Intuition: The SRP famously ensures that a job is blocked by
at most one lower-priority CS.

Next, we derive an invariant from the observation that a
request is directly blocked by at most one request per processor.

Invariant 6. For any Pk, if there are two paths 〈vS , . . . , v, v′〉
and 〈vS , . . . , v′′, v′′′〉 in G(Ji, S) ending in mutex edges such
that v′ ∈ V(k), v′′′ ∈ V(k), and v′ 6= v′′′, then v 6= v′′.

Intuition: From the mutex edge inclusion rules (S4 and S5),
we have that, if v = v′′, then the corresponding request R =
R′′ is directly blocked by both R′ and R′′′. Since conflicting
requests are served in FIFO order, both R′ and R′′′ must be
issued before, and complete after, the time that R is issued.
However, this would require two non-preemptive CSs to exist
simultaneously on the same processor Pk.

To state the next invariant, we require additional notation to
express that requests for certain resources are pending only when
certain other resources are already locked (recall Fig. 1 (c)).
Def. 3. The set of nesting prerequisites of vertex v, denoted
np(v), is the set of resources corresponding to vertices in V from
which v is reachable exclusively via nesting edges: np(v) ,
{`o | v is reachable from v∗,o,∗ in the digraph GN = (V,EN )}.
Invariant 7. If there exists a path in G(Ji, S) of the form
〈vS , . . . , v, v′〉 ending in a mutex edge, then np(v)∩np(v′) = ∅.

Intuition: If the mutex edge (v, v′) is included in G(Ji, S),
then the two requests are executed by different tasks, and R′
directly blocks R. To conflict, both requests must be pending
simultaneously (S5). To be pending, the resources that constitute
the nesting prerequisites of bothR andR′ must be locked by the
corresponding tasks. Since two tasks cannot simultaneously lock
the same resource, the nesting prerequisites must be disjoint.

Now we state two key invariants that express that the dynamic
blocking graph is actually a tree rooted in vS .

Invariant 8. For any vertex v ∈ V , there exists at most one
edge of the form (vS , v) or (v′, v) in E(Ji, S).

Intuition: LetR be the request corresponding to v. Consider
two cases. If v ∈ V(P (Ti)), then by Step S8 (vS , v) is included
only if it is not reached by a nesting edge. By Invariant 1, vertices
of local requests do not have incoming mutex edges.

If v ∈ V(P (Ti)), first note that, at some point in time t, all
requests corresponding to vertices on a path ending in v are
transitively blocked byR at t (by induction on the definition of
transitive blocking). Now suppose v has two incoming edges
(v′, v) and (v′′, v), where v′ 6= v′′: then there exist two paths
from vS to v (follows from applying Invariant 3 to v′ and v′′).
Hence, two cases are possible: (i) the two paths are disjoint with
the exception of vS and v, or (ii) there exists a vertex v′′′ ∈ V
with two outgoing edges that originates the two paths reaching v.
In case of (i), then there are two different vertices in V(P (Ti))
that both originate a path to v, which implies that two local
requests are transitively blocked at the same time t. Since jobs,
when blocked by a remote CS, busy-wait non-preemptively, this
is impossible. In case of (ii), R′′′, the request corresponding
to v′′′, is either (a) directly blocked by two requests at time t

(if v′′′ originates the two paths via two outgoing mutex edges),
(b) directly blocked while already executing a nested request
(outgoing mutex and nesting edge), or (c) executing two directly
nested requests simultaneously (two outgoing nesting edges).
Clearly all of these cases are impossible.

Invariant 9. For any vertex v ∈ V , there exists at most one
path P in G(Ji, S) of the form 〈vS , . . . , v〉.

Intuition: Since, by Invariant 8, each vertex has at most one
incoming edge, then, by induction, there is at most one path
ending in a given vertex. (It’s a tree.)

Next, we note that, if a vertex v is reachable via a mutex edge
from v′, then v′ is reached via either a root or a nesting edge,
i.e., no path ends in two consecutive mutex edges.

Invariant 10. If there is a path P = 〈vS , . . . , v′, v〉 in G(Ji, S)
with (v′, v) ∈ EM (Ji, S), then either P = 〈vS , v′, v〉 or P is of
the form 〈vS , . . . , v′′, v′, v〉, where v′′ = vx,∗,∗ and v′ = vx,∗,∗.

Intuition: If there is a segment 〈v′′, v′, v〉 consisting of mutex
edges, then there exists a time t at which bothR directly blocks
R′ andR′ directly blocksR′′. However, from the definition of
direct blocking, this implies that there must be more than one
lock holder at time t, thus violating mutual exclusion.

We now establish that the traversal of a nesting edge
(va,o,∗, va,c,∗) implies that a path does not terminate in a vertex
v such that `o ∈ np(v).

Invariant 11. If there is a path P = 〈vS , . . . , v′, v〉 in G(Ji, S)
ending with a mutex edge, and if the nesting edge (va,o,∗, va,c,∗)
is a segment of P , then `o /∈ np(v).

Intuition: As (v′, v) is a mutex edge, there exists a time t at
whichR′ is directly blocked byR. Since v′ can be reached from
va,o,∗ via P , the corresponding requestRa,o,∗ (for resource `o)
is in progress at t and Ta holds `o. However, if `o ∈ np(v), then
the job that issuedR would also need to hold `o at time t.

Next we observe that paths do not circle back to already-
visited processors after traversing a mutex edge.

Invariant 12. For any Pk, for any (v, v′) ∈ V (k) × V (k), if
there is a path P = 〈vS , . . . , v, . . . , v′, . . .〉 in G(Ji, S), then
the segment 〈v, . . . , v′〉 contains only nesting edges.

Intuition: Suppose not. Then there exist at least two mutex
edges in the path from v to v′, one leading away from processor
Pk and one leading back to Pk. However, this implies that Pk
is simultaneously non-preemptively busy-waiting (the outgoing
edge) and non-preemptively executing a request (the incoming
edge) at the same time.

Finally, before presenting the last invariant, it is necessary to
introduce the notion of the depth of a path.
Def. 4. A path P = 〈vS , . . . , v〉 in G(Ji, S) has depth l if P
includes exactly l mutex edges.

Invariant 13. Any vertex v ∈ V reached by a path P =
〈vS , . . . , v〉 in G(Ji, S) with depth l can have at most m− l− 1
outgoing mutex edges.

Intuition: Since conflicting requests are served in FIFO order
and jobs busy-wait non-preemptively, each request can be
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directly blocked by at most one remote request per processor
(different than the one on which R is issued), for a total of at
most m− 1 requests. If v is reached by a path of depth l, then,
as long as the corresponding request R is pending, there are l
processors executing busy-waiting jobs (exactly one for each
vertex that has an outgoing mutex edge). Hence,R can only be
blocked by requests on the remaining m− 1− l processors.

The invariants presented above restrict the set of graphs
G(Ji, S) that can possibly result from an actual schedule S.
Next, we describe how Invariants 1–13 allow us to obtain an
upper bound on blocking in the presence of nested spin locks.

V. FINDING A SUBGRAPH WITH MAXIMAL BLOCKING

As the final part of our analysis, corresponding to Step 4 in
the high-level overview (§III-A), we construct an ILP to find a
subgraph of G that is maximal in the sense that it dominates all
possible dynamic blocking graphs with regard to the implied
blocking bound (Lem. 1). More precisely, since our objective
is to find a blocking bound (and not a subgraph per se), we do
not actually identify such a subgraph of G in full detail, and
instead compute only its corresponding implied blocking bound
(without explicitly constructing the subgraph). To reduce the
amount of pessimism inherent in the final bound, we leverage
the characterization of the set of “all possible dynamic blocking
graphs” in §IV (Invariants 1–13).

To begin, we define the main variables used in our ILP.

Def. 5. For each vertex vx,q,v ∈ V , we define two binary
variables XD

x,q,v and XN
x,q,v , with the interpretation that

• XD
x,q,v = 1 iff vx,q,v ∈ V (Ji, S) is reachable from vS in

G(Ji, S) via a path that ends in a root or a mutex edge; and
• XN

x,q,v = 1 iff vx,q,v ∈ V (Ji, S) is reachable from vS in
G(Ji, S) via a path that ends in a nesting edge.

Since the variables can be instantiated for any graph G(Ji, S)
resulting from any schedule S, their definitions also hold for the
(generally unknown) graph resulting from a schedule in which
Ji incurs maximal blocking (i.e., the true worst case). Recall
from Lem. 1 that the blocking bi incurred by Ji can be bounded
based on the vertices included in G(Ji, S). Since we seek to
find a subgraph in which this blocking bound is maximized, we
consequently define the objective function to be:

Maximize bi =
∑

vx,q,v∈(V R ∪V LL)

Lx,q,v × (XD
x,q,v +XN

x,q,v).

This upper bound reflects all possible graphs (and hence
schedules) that are not excluded by the subsequent constraints,
thus including all possible worst-case scenarios.

We now present the set of constraints that exploit the in-
variants presented in §IV. We begin with two basic constraints
related to the vertices corresponding to local resources.

Constraint 1. ∀ vx,q,v ∈ V LL s.th. Π(`q) > i : XD
x,q,v = 0

Proof: Vertices in V LL have no incoming mutex edges
(Invariant 1), and vertices corresponding to resources with
priority ceilings below Ti’s priority have no incoming root edges
(Invariant 4). Hence XD

x,q,v = 0 for any such vx,q,v .

Constraint 2.
∑

vx,q,v∈V LL

XD
x,q,v ≤ 1

Proof: Vertices in V LL have no incoming mutex edges
(Invariant 1) and at most one vertex in V LL has an incoming
root edge (Invariant 5). The constraint follows.

Next, we introduce a key constraint that enforces that no
vertex is reached by both a mutex and a nesting edge.

Constraint 3. ∀ vx,q,v ∈ V : XD
x,q,v +XN

x,q,v ≤ 1

Proof: Follows from Invariant 8: since each vertex has at
most one incoming edge in G(Ji, S), no vx,q,v has both an
incoming nesting edge and an incoming mutex or root edge.

The next constraint reflects that a vertex is reached via a
nesting edge only if both endpoints are included in the graph.

Constraint 4.

∀ (vx,o,v, vx,c,w) ∈ EN : XN
x,c,w ≤ XD

x,o,v +XN
x,o,v

Proof: Follows from the topology of the graph. By def-
inition, XN

x,c,w = 1 if and only if vx,c,w is contained in
G(Ji, S) and reachable from vS via a path that ends in a
nesting edge. It follows from the definition of EN that each
vertex has at most one incoming nesting edge. Therefore, if
(vx,o,v, vx,c,w) ∈ EN (Ji, S), then vx,o,v must also be contained
in G(Ji, S) and reachable from vS via a path that ends in either
a nesting edge (in which case XN

x,o,v = 1) or a mutex or root
edge (in which case XD

x,o,v = 1).
Trivially, non-nested requests cannot be reached via nesting

edges: the following constraint encodes this observation.

Constraint 5. ∀ vx,q,v ∈ V s.th. np(vx,q,v) = ∅ : XN
x,q,v = 0

Proof: If a vertex has no incoming nesting edge (i.e., if
np(vx,q,v) = ∅), then it clearly cannot be reached from vS via a
path that ends in a nesting edge.

Before we can state the next constraint, some additional
notation is needed. First, we define the set av(v) of always-
visited resources for a vertex v that is reached via a nesting edge
(v′, v). Intuitively speaking, av(v) is the set of resources for
which there is a corresponding vertex on all possible valid paths
in the static graph G reaching v via the nesting edge (v′, v). In
other words, there does not exist a valid path from vS to v′ that
does not include at least one vertex for each resource in av(v).
In this context, a path is considered valid if it does not contain
two consecutive mutex edges (recall Invariant 10).
Def. 6. Let AP (v′) denote the set of all paths in G from vS to a
vertex v′ ∈ V that do not contain two consecutive mutex edges.
For each vertex v ∈ V , if there exists an edge (v′, v) ∈ EN ,
then the set of always-visited resources av(v) is defined as

av(v) , {`o | ∀ P ∈ AP (v′) ∃ (va,o,∗, va,∗,∗) ∈ P}.
If no edge in EN terminates at v, then av(v) , ∅.

Second, we define the set IS , which contains all possible
subsets of nesting prerequisites (recall Def. 3), with respect
to any vertex in the static graph. The rationale for this set
lies in the observation that requests that share any nesting
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prerequisites cannot overlap in time, because the resources in
their nesting prerequisites are implicitly serializing such requests,
as previously illustrated in Fig. 1(c) in §I.

Def. 7. IS is the set of sets of potentially implicitly serializing
resources:

IS ,
⋃

vx,q,v ∈V
{sr | sr ⊆ np(vx,q,v)}.

With Defs. 6 and 7 in place, we are now ready to state a key
constraint that excludes blocking scenarios (i.e., certain mutex
edges) that are impossible due to implicit serialization.

Constraint 6. ∀k, 1 ≤ k ≤ m, P (Ti) 6= k, ∀sr ∈ IS ,∀`q :∑
vx,q,v ∈V(k)

sr ⊆np(vx,q,v)

XD
x,q,v ≤

∑
vy,q,w ∈V(P (Ti))

XD
y,q,w +

∑
vy,q,w ∈V(k)

sr ∩np(vy,q,w)= ∅
sr ∩ av(vy,q,w)= ∅

XN
y,q,w

Proof: By contradiction. Suppose the inequality does not
hold for some G(Ji, S), i.e., suppose |A| > |B|+ |C|, where

A = {v | v ∈ V(k) ∩ V (Ji, S)

∧ ∃(v′, v) ∈ EM (Ji, S)

∧ sr ⊆ np(v) },
B = {v′ | v′ ∈ V(P (Ti)) ∩ V (Ji, S)

∧ ∃(vS , v′) ∈ ERT (Ji, S)}, and

C = {v′ | v′ ∈ V(k) ∩ V (Ji, S)

∧ ∃(v′′, v′) ∈ EN (Ji, S)

∧ sr ∩ np(v′) = ∅
∧ sr ∩ av(v′) = ∅ }.

Consider any vertex v ∈ A. Since A ⊆ V (Ji, S), by
Invariant 3, v is reachable from vS in G(Ji, S). By Invariant 8,
since v is reachable and has an incoming mutex edge, it does
not have an incoming nesting edge in G(Ji, S). By Invariant 2,
since A ⊆ V(k) and Pk 6= P (Ti), v does not have an
incoming root edge. Hence, v must be connected in G(Ji, S)
by a path P = 〈vS , . . . , v′, v〉 ending in a mutex edge, i.e.,
(v′, v) ∈ EM (Ji, S). To derive a contradiction, we will show
that v′ is included in either B or C.

From the definition of EM , it follows that v′ ∈ V(k). By
Invariant 7, np(v′) ∩ np(v) = ∅, and since sr ⊆ np(v), it
follows that np(v′) ∩ sr = ∅.

By Invariant 10, v′ is connected via a nesting edge (v′′, v′) ∈
EN (Ji, S) or a root edge (vS , v

′) ∈ ERT (Ji, S). Let us
consider the two possible cases separately.

Case 1: (vS , v
′) ∈ ERT (Ji, S). Then, by Invariant 2, v′ ∈

V(P (Ti)). Therefore, v′ ∈ B.
Case 2: (v′′, v′) ∈ EN (Ji, S). Consider the possible paths

from vS to v′′: if there exists a nesting edge (v∗,a,∗, v∗,∗,∗) ∈
EN (Ji, S) on the path from vS to v′′, then by Invariant 11
`a /∈ np(v). Now consider the set av(v′): by definition, for
any resource `o ∈ av(v′), there exists an edge (v∗,o,∗, v∗,∗,∗)
on the path from vS to v′′. Taken together, we observe that

av(v′) ∩ np(v) = ∅, and since sr ⊆ np(v), it follows that
sr ∩ av(v′) = ∅. Therefore, v′ ∈ C.

Thus, in either case, v′ ∈ B ∪ C. Since the argument applies
to any v ∈ A, and since by initial assumption |A| > |B|+ |C|,
it follows by the pigeonhole principle that there exists a vertex
v′ ∈ B ∪ C that is incident to at least two outgoing mutex
edges in EM (Ji, S) that terminate at vertices in A ⊆ V(k). By
Invariant 6, this is impossible.

Constraints 1–6 are the core structural constraints. However,
in certain scenarios, additional accuracy can be obtained by
reasoning about the depth (Def. 4) of paths in G(Ji, S). The cor-
responding constraints may be found in an online appendix [6].

Finally, it may be interesting to note that, in the absence
of nesting, Constraints 1–6 are exactly as accurate as the
prior linear-optimization-based analysis of non-nested non-
preemptive FIFO spin locks [22]. In particular, when Con-
straint 6 is instantiated for the degenerate case of sr = ∅, it
enforces the well-known “at most one blocking critical section
per remote core” property of non-preemptive FIFO spin locks
(e.g., Constraint 8 in [22]).

VI. IMPLEMENTATION AND EXPERIMENTS

We ran experiments to investigate two questions: (1) How
long does it take to solve the ILP formulated in §V? (2) Is
the proposed analysis sufficiently accurate to exhibit noticeable
schedulability differences, relative to group locks as a baseline?

To this end, we implemented the proposed analysis, including
the constraints presented in the online appendix [6], in the open-
source SchedCAT framework [2], with CPLEX serving as the
underlying ILP solver. For the analysis of group locks, we relied
on an earlier analysis of non-nested spin locks [22].2

Setup. We considered platforms with m ∈ {4, 8} processors.
For each processor Pk, we generated a set of tasks assigned
to Pk with Emberson et al.’s task set generator [13]. The
generator was given a target utilization Uk chosen uniformly
at random from either [0.5, 0.7] or [0.7, 0.9], and a target task
count of nk tasks, which we varied in the experiments. Periods
were randomly chosen from a log-uniform distribution over
the interval [10ms, 100ms]. All tasks were assigned implicit
deadlines and rate-monotonic priorities.

We assumed the presence of nr ∈ {m, 2m, 4m} shared
resources. Each task accesses each resource `q through an
outermost (i.e., non-nested) CS with probability pouter ∈
{0.1, 0.25, 0.4}. With probability pnest ∈ {0.1, 0.25, 0.4}, each
request for a resource `q contains a request for another resource
`p (with p > q, to satisfy the lock-order requirement). To
ensure some structure, resources were further partitioned into
NG ∈ {1, 2, 3} groups, such that only resources within the
same group can be nested within each other. We limited the
maximum nesting depth to ND ∈ {2, 3, 4}. For each task
Ti accessing a resource `q, Ni,q was selected randomly from
{1, . . . , Nmax}, with Nmax ∈ {1, 2, 4}. CS lengths were
chosen uniformly at random from either [1µs, 15µs] (short)

2The source code and detailed Artifact Evaluation instructions are available
at http://www.mpi-sws.org/∼bbb/papers/ae/rtss16/nFIFO.html.
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or [1µs, 100µs] (medium). To ensure plausibility, we enforced
that ei ≥

∑
`q∈QNi,q · Li,q for each task Ti.

Schedulability. We explored more than 500 different configu-
rations, while varying the number of tasks n. As the number of
tasks grows, the potential for contention for shared resources also
increases. In each experiment, we measured the percentage of
systems deemed schedulable by the tested analyses. As expected,
whenever blocking is not a bottleneck (i.e., if contention is
low), both analyses tend to perform equally. Similarly, with
extremely high contention or chaotic nesting, both approaches
show poor performance. However, in cases with significant, but
not extreme contention, we identified several scenarios in which
nFIFO exhibits improved schedulability. Fig. 4 shows three such
results; the relevant parameters are listed above each graph.

Inset (a) shows results for a quad-core platform where the
total number of tasks is varied from 4 to 40 in steps of 4. As can
be seen, both analyses tend to degrade as the number of tasks
increases (i.e., as contention increases). However, performance
under nFIFO degrades more slowly: for instance, for n = 32,
nFIFO exceeds group locks by more than 20 percentage points.

Inset (b) reports the results for another quad-core platform,
with a higher number of resources (16), deeper nesting (up to
4 levels), and lower-utilized processors. Again, nFIFO exhibits
better schedulability, enabling additional task sets to be admitted
that correspond to up to 30 percentage points.

Finally, inset (c) reports results for a platform with eight cores.
Both analyses show a consistent degradation in performance,
reflecting the overall increased contention on the larger platform,
but nFIFO still maintains a small but consistent lead.

Solving time. We monitored how much CPU time was needed
to solve the ILP presented in §V for each task set evaluated in the
representative configurations discussed above. The experiments
have been performed on a 32-core Intel Xeon E5 platform
clocked at 3.3 GHz. Fig. 5 shows a histogram of the runtimes
(note the log scale). As is apparent, most ILP instances were
solved in less than 50 seconds. The peak frequency occurs for
runtimes below 2 seconds, and only in fewer than 2% of the
cases did the runtime exceed 100 seconds.

It is worth observing that all experiments were performed with
a literal implementation of the ILP as presented in §V, which
has not yet been optimized for runtime. Runtimes could thus
likely benefit from standard ILP tuning techniques. Nevertheless,
this evaluation confirms that the proposed approach enables a
fine-grained analysis of nested spin locks in a timeframe that is
still reasonable for an offline, design-time analysis.

Overall, our initial experiments show the analysis to be
practical in terms of solving time, and sufficiently accurate to
exploit benefits of fine-grained synchronization.

VII. RELATED WORK

The first work on real-time locking protocols for shared-
memory multiprocessors dates back to 1990, when Rajku-
mar [18] analyzed the MPCP, a now-classic multiprocessor
semaphore protocol. To obtain a bound on blocking, he intro-
duced the assumption that, “[s]ince nested global critical sections

can potentially lead to large increases in blocking durations, [. . . ]
global critical sections cannot nest other critical sections or be
nested inside other critical sections” [18]. With a few notable
exceptions (see below), the vast majority of the many works on
multiprocessor real-time locking published in the last 25 years
has retained this limitation (see [9, 10, 24] for recent surveys).

In particular, most prior blocking analyses of common spin
locks, starting with Gai et al.’s initial proposal and analysis of
the MSRP [16], postulate non-nested CSs. Gai et al.’s analysis
was later extended to globally scheduled systems [8, 12], and
more recently to hierarchical scheduling [7].

A substantially improved analysis for non-nested spin locks
was proposed by Wieder and Brandenburg [22], based on a
novel analysis technique using linear programming previously
developed by Brandenburg [10]. Most recently, this approach
was extended to EDF-scheduled systems and to the analysis of
lock-free synchronization [5]. This paper is a successor to these
prior works in spirit. However, in terms of technique, this work
is fundamentally different, and necessarily must be so given
the challenges highlighted in §I. In particular, none of the prior
works employs anything resembling our graph abstraction (§III).

Concerning the notable exceptions that previously considered
nesting, two are due to Ward and Anderson [20, 21]. First, they
proposed the real-time nested locking protocol (RNLP), a meta-
protocol that can be integrated with both spin locks and different
semaphore-based protocols. The RNLP relies on a clever token
mechanism that limits the possible blocking interactions among
tasks, at the cost of a possible serialization of non-conflicting
CSs, not unlike group locks. However, no fine-grained analysis
of the RNLP has been published to date as the focus has been on
asymptotic bounds and optimality considerations [20, 21]. We
are hopeful that the proposed graph abstraction can also serve as
a foundation for a fine-grained analysis of the RNLP.

The second major exception is a reader-writer variant of the
RNLP [21]. Reader-writer exclusion adds another twist to the
blocking problem that undoubtedly causes substantial analytical
complications. We expect that a blocking graph abstraction will
prove useful as a foundation for formal proofs in this case, too.

A much earlier proposal, which can be seen as a conceptual
precursor of the RNLP, is due to Takada and Sakamura [19], who
provided specialized protocols for nested spin locks. Like the
RNLP, Takada and Sakamura’s protocol uses a token mechanism
to order nested requests, but unlike the RNLP, it is work-
conserving (it never delays requests for currently uncontested
resources) and hence not asymptotically optimal. Like Ward and
Anderson, Takada and Sakamura [19] provided only asymptotic
bounds, which also hold only under a limiting two-phase locking
assumption (no locks can be acquired after one was released).

Another relevant exception is due to Faggioli et al. [14], who
proposed the multiprocessor bandwidth inheritance (MBWI)
protocol, a FIFO locking protocol for reservation-based sched-
ulers. To deal with nested CSs, they proposed an analysis that
is essentially a brute-force exhaustive search. Unsurprisingly,
as reported by the authors [14], their analysis quickly becomes
intractable for systems including more than a few tasks.

Finally, Burns and Wellings [11] proposed the multiprocessor
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resource sharing protocol (MrsP), a locking protocol that
combines FIFO spin locks and resource ceilings (as in the
MSRP [16]) with a migratory inheritance mechanism (similar to
the MBWI protocol [14]). While the focus in [11] is primarily
on the non-nested case, nested critical sections are briefly
considered and a nesting-aware blocking bound is stated, albeit
without proof. Unfortunately, to us, it is not clear how the
provided bound [11] follows in the presence of nesting. After
consultations with the authors, it presently remains unclear how
to account for nesting under the MrsP. Given that the MrsP is
based on FIFO spin locks, we believe that the analysis presented
in this paper could be applied with only few changes.

VIII. CONCLUSION

We have developed the first fine-grained blocking analysis for
non-preemptive FIFO spin locks in the presence of nested CSs.
Motivated by several complications that arise when targeting
nested locks, we have introduced a novel graph abstraction
to abstract from scheduling phenomena while unambiguously
encoding all possible blocking interactions among tasks.

In a nutshell, our analysis works by first defining a mapping
from schedules to dynamic blocking graphs, which are sub-
graphs of the static blocking graph. We then identify invariants
that any dynamic blocking graph created by this mapping must
satisfy. Finally, we use the established invariants to derive an
ILP that yields a safe upper bound on worst-case blocking.

We believe that the introduced graph abstraction and the
general analysis approach have utility beyond this initial analysis.
In future work, we aim to extend our analysis to different types of
spin locks (e.g., preemptive and priority-ordered spin locks), the
spin-based RNLP, and eventually also to semaphore protocols.
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APPENDIX A
EXTENDED CONSTRAINTS

To encode constraints that express invariants related to path
depth (Def. 4), we define an extended modeling layer on top of
the variables XD

x,q,v and XN
x,q,v by “splitting” them into layers.

This modeling layer only applies to vertices corresponding to
remote requests.

Def. 8. For each vertex vx,q,v ∈ V R, for each depth l ∈
{1, . . . ,m− 1}, and for each processor Ps 6= P (Tx), we define
the following variables:

• D
(l),s
x,q,v, a binary variable such that D

(l),s
x,q,v = 1

iff vx,q,v is reachable in G(Ji, S) via a path
P = 〈vS , . . . , vj,q,∗, vx,q,v〉 that has depth l where
(vj,q,∗, vx,q,v) is a mutex edge and P (Tj) = Ps.

• N
(l),s
x,q,v, a binary variable such that N (l),s

x,q,v = 1 iff
vx,q,v is reachable in G(Ji, S) via a path P =
〈vS , . . . , vj,f,∗, vx,f,∗, . . . , vx,q,v〉 that has depth l where
(vj,f,∗, vx,f,∗) is a mutex edge, P (Tj) = Ps and the last
segment 〈vx,f,∗, . . . , vx,q,v〉 of the path is composed of
only nesting edges.

As a first step, we connect the variables introduced in Def. 8
to the ones defined in Def. 5.

Constraint 7. ∀vx,q,v ∈ V, P (Tx) 6= P (Ti),

XD
x,q,v =

m−1∑
l=1

∑
Ps 6=P (Tx)

D(l),s
x,q,v

XN
x,q,v =

m−1∑
l=1

∑
Ps 6=P (Tx)

N (l),s
x,q,v

Proof: By Invariant 9, there exists at most one path P in
G(Ji, S) ending in vx,q,v. Given that such a path (if any) is
unique, there can be only one depth l and one processor Ps
satisfying the definition of variables D(l),s

x,q,v (resp. N (l),s
x,q,v). If

such a path exists, the RHS of the constraint equals one and,
by Def. 5, the corresponding variable XD

x,q,v (resp. XN
x,q,v) is

enabled.
Analogously to Constraint 4, we exploit the nesting relation-

ship among requests along the depth dimension.

Constraint 8. ∀ (vx,o,v, vx,c,w) ∈ EN , vx,o,v ∈ V R,
vx,c,w ∈ V R,∀l ∈ {1, . . . ,m− 1},∀Ps 6= P (Tx)

N (l),s
x,c,w ≤ D(l),s

x,o,v +N (l),s
x,o,v

Proof: Follows from the topology of the graph, analogously
to the proof of Constraint 4.

To reduce clutter in the remaining three constraints, we adopt
the following shorthand notation: D(l),s

x,q =
∑Ni

x,q

v=1 D
(l),s
x,q,v. The

same holds analogously for N (l),s
x,q , XD

x,q and XN
x,q .

We observe that vertices reached by a path of depth 1 ending
in a mutex edge must correspond to requests that directly block
some local requests. The following constraint relies on this fact
to enforce a key property of FIFO non-preemptive spin locks:

each local request can be blocked by at most one remote request
per processor.

Constraint 9. ∀`q ∈ Q,∀Pd 6= PL = P (Ti),∑
Tj∈τ(Pd)

D
(1),L
j,q ≤

∑
Tx∈τ(PL)

XD
x,q +XN

x,q

Proof: By Invariant 10, a path of depth l = 1 end-
ing in vj,q,w ∈ V (d) for which D

(1),L
j,q,w = 1 must be

either (i) of the form 〈vS , vx,q,v, vj,q,∗〉 or (ii) of the form
〈vS , vx,∗,∗, . . . , vx,q,v, vj,q,∗〉. Note that in case (i) it must be
that XD

x,q,v = 1, while in case (ii) it must be that XN
x,q,v = 1. By

Invariant 8, every vertex in V has at most one incoming edge.
Hence, for each vertex vj,q,w ∈ V (d) such that D(1),L

j,q,w = 1,
there must exist a unique mutex edge (vx,q,v, vj,q,w) in G(Ji, S)
with vx,q,v ∈ V (L). Suppose now that the constraint does not
hold. Then, there exists at least one vertex vx,q,v ∈ V (L) with
two outgoing mutex edges that are incident to two vertices in
V (d). By Invariant 6 this is impossible. Contradiction.

The same reasoning can be applied to paths of depth l ≥ 2 by
considering the requests whose corresponding vertex is reached
by a path of depth l − 1.

Constraint 10. ∀`q ∈ Q,∀Ps 6= P (Ti),∀Pd 6= Ps, Pd 6=
P (Ti), ∀l ∈ {2, . . . ,m− 1},∑

Tj∈τ(Pd)

D
(l),s
j,q ≤

∑
Tx∈τ(Ps)

∑
Pr 6=Pd
Pr 6=Ps

N (l−1),r
x,q .

Proof: By Invariant 10, each vertex vj,q,w ∈ V (d) for
which D

(l),s
j,q,w = 1 must be reached by a path P of depth

l ≥ 2 of the form 〈vS , . . . , vx,f,∗, . . . , vx,q,v, vj,q,w〉, where
the segment 〈vx,f,∗, . . . , vx,q,v〉 is composed of only nesting
edges and (vx,q,v, vj,q,w) is a mutex edge. By structural in-
duction on the definition of the depth of a path, the subpath
〈vS , . . . , vx,f,∗, . . . , vx,q,v〉 must be of depth l − 1.

If P exists, it must hence be that N (l−1),r
x,q,v = 1 for one

particular processor Pr 6= Ps, with vx,q,v ∈ V (s). Moreover,
by Invariant 12 it must also be that Pr 6= Pd. Suppose now that
the constraint does not hold. Then, similarly as argued in the
proof of Constraint 9, there exists one vertex vx,q,v ∈ V (s),
reached by a path of depth l− 1, with two outgoing mutex edges
that are incident to two vertices in V (d). By Invariant 6 this is
impossible. Contradiction.

Finally, we further exploit the notion of depth to introduce
another key observation: if a vertex v is reached by a path of
depth l, then, when the corresponding request R is pending,
l processors are executing busy-waiting jobs. Hence, since
the transitive nesting relation <Q guarantees the absence of
deadlock, R cannot be blocked by requests issued on such
processors. The following constraint expresses this fact.

Constraint 11. ∀Ps 6= P (Ti),∀`q ∈ Q, ∀l ∈ {2, . . . ,m− 1},∑
Pd 6=Ps

∑
Tj∈τ(Pd)

D
(l),s
j,q ≤ (m− l)

∑
Tx∈τ(Ps)

∑
Pr 6=Ps

N (l−1),r
x,q .
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Proof: Analogously to the proof of Constraint 10, by
Invariant 10, each vertex vj,q,w ∈ V (d) for which D(l),s

j,q,w = 1
must be reached by a path P of depth l ≥ 2 of the form
〈vS , . . . , vx,q,v, vj,q,w〉, with (vx,q,v, vj,q,w) being a mutex edge
and vx,q,v incident to a nesting edge. By structural induction on
the definition of the depth of a path, vx,q,v ∈ V (s) is reached
by a path of depth l − 1 in G(Ji, S), hence it must be that
N

(l−1),r
x,q,v = 1 for one particular processor Pr 6= Ps. Now, note

that the LHS of the constraint expresses the total number of
vertices in V (d) (Pd 6= Ps) that are reached by such a type of
paths. By contradiction, if the constraint does not hold, then there
must exists a vertex vx,q,v ∈ V (s) (reached by a path of depth
l− 1) that has more than m− l outgoing mutex edges. However,
by Invariant 13, vx,q,v can have at most m− (l−1)−1 = m− l
outgoing edges if it is reached by a path of depth l.

APPENDIX B
PROOF OF INVARIANTS

Proof of Invariant 3. According to Step S3, a vertex v (other
than vS) is included in V (Ji, S) only if the corresponding
request R is included in RL ∪ RR. We consider each set
individually.

Case 1: R ∈ RL. The claim follows by induction on the
nesting depth ofR. IfR is not nested in a request also included
in RL (i.e., nesting depth zero), then, by Step S8, v is directly
reachable via a root edge. Otherwise, ifR is nested in a request
R′ ∈ RL, then, by Step S7, v is reachable via nesting edge from
v′, which, by the induction hypothesis, is reachable from vS .

Case 2: R ∈ RR. Then there exists a time t at which R
transitively blocks a request R′ ∈ RL. The claim follows
by structural induction on the definition of transitive blocking
(Def. 2).

Base case:R directly blocksR′. By Step S4, v is reachable
via a mutex edge from v′, which itself is reachable sinceR′ ∈
RL (Case 1).

Nesting case: R is nested in a request R′′ that transitively
blocksR′. By Step S6, v is reachable via a nesting edge from v′′,
which itself is reachable from vS by the induction hypothesis.

Direct blocking case:R is directly blocking a requestR′′ ∈
RR that transitively blocks R′. By Step S5, v is reachable via
a mutex edge from v′′, which itself is reachable from vS by the
induction hypothesis.

Proof of Invariant 4. If a vertex v ∈ V LL is included in
V (Ji, S), then, by Steps S1 and S3, the corresponding requestR
was executed on Ji’s processor while Ji was pending. Since v ∈
V LL, it follows that Tx has a lower priority than Ti. Therefore,
either Tx executed non-preemptively, which means that `q is
a global resource (and by definition Π(`q) = 0 < i), or Ji
could not preempt Tx due to an elevated system ceiling. Since
(vS , v) ∈ ERT (Ji, S),R is not nested within another request in
RL (Step S8);R hence defines the system ceiling at the time of
Ji’s release. Therefore, Π(`q) ≤ i.

Proof of Invariant 5. If an edge (vS , v) ∈ ERT (Ji, S), where
v ∈ V LL, is included in V (Ji, S), then, by Steps S1, S3 and S8,

the corresponding requestR is executed on Ji’s processor by a
lower-priority task Tx while Ji is pending andR is not nested
within another request in RL. By Invariant 4, Π(`q) ≤ i. The
SRP [4] ensures that at most one CS is in progress at any time
that both (i) raises the system ceiling to or above Ti’s priority and
(ii) is outermost (or nested within a CS that accesses a resource
with priority ceiling below Ti’s priority, which are irrelevant to
Ji). Furthermore, under the SRP, lower-priority tasks cannot
issue any requests after Ji has commenced execution [4]. Thus
there is at most one such request executed while Ji is pending;
the claim follows.

Proof of Invariant 6. By contradiction: suppose there exist
two vertices v′ ∈ V(k) and v′′′ ∈ V(k) and a vertex v ∈ V(k)
such that both (v, v′) ∈ EM (Ji, S) and (v, v′′′) ∈ EM (Ji, S).

According to Steps S4 and S5, the mutex edges (v, v′) and
(v, v′′′) are added only if there exist points in time t and t′,
respectively, at which the corresponding requests R′ and R′′′,
respectively, directly blockR. Without loss of generality, assume
t ≤ t′.

Clearly, to incur direct blocking at time t,R must be issued
on or before time t, and both R′ and R′′′ must precede R in
the FIFO queue for `q. Thus at time t, all three requests are
pending. However, since jobs are non-preemptable when they
busy-wait and while executing global CSs, there can be at most
one issued and incomplete request for resource `q per core at
any time. Contradiction.

Proof of Invariant 7. According to Steps S4 and S5, if the
mutex edge (v, v′) is included in G(Ji, S) then there exists a
time t at which R′ is directly blocking R. Following Def. 1,
both R and R′ must be pending at time t and must be issued
by two different tasks, say Tx and Ty. To be pending, all the
resources in the nesting prerequisites of both R and R′ must
be locked at time t. However, since resources are accessed in
mutual exclusion, Tx and Ty cannot simultaneously lock the
same resource, hence the invariant follows.

In preparation of the next three invariants, we first establish
three simple lemmas.

Lemma 2. At any time t, for any requestR ∈ (RL∪RR), there
is at most one other request R′ ∈ (RL ∪ RR) such that R′

is
incomplete at time t and eitherR .R′ orR′ directly blocksR
at time t.

Proof: In order to issue a nested request, a job must first
hold the resource corresponding to the outer CS. Hence, if there
exists a pending request nested inR at time t, then there is no
request that is directly blockingR, and vice versa. Furthermore,
since by Def. 1 a request that is directly blockingR must be in
progress (i.e., the job executing the blocking request must hold
`q), there can be at most one such request at any time.

Next, we formalize the observation that a request cannot
proceed until all transitively blocking requests have completed.

Lemma 3. LetRx,q,∗ denote any request, and let tf denote the
time at whichRx,q,∗ is complete (i.e., when Tx releases `q). If
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Rx,q,∗ transitively blocks another requestRa,b,∗ at time t, then
Rx,q,∗ transitively blocksRa,b,∗ also at every t′ ∈ [t, tf ).

Proof: Follows by structural induction on the definition of
transitive blocking (Def. 2).

Base case:Rx,q,∗ directly blocksRa,b,∗ at time t (and q = b).
Then Ta spins non-preemptably until it acquires `q, which it
does no earlier than at time tf , and hence Rx,q,∗ transitively
blocksRa,b,∗ throughout [t, tf ).

Nested case: Rx,q,∗ is nested in a request Rx,∗,∗ that tran-
sitively blocks Ra,b,∗ at time t. By the induction hypothesis,
Rx,∗,∗ transitively blocksRa,b,∗ untilRx,∗,∗ completes. Since
nesting is well-ordered, Rx,∗,∗ cannot complete until Rx,q,∗
completes at time tf , and henceRx,q,∗ transitively blocksRa,b,∗
throughout [t, tf ).

Direct blocking case: Rx,q,∗ is directly blocking a request
Ry,q,∗ that transitively blocks Ra,b,∗ at time t. As in the base
case, it follows from the fact that Ty is busy-waiting thatRx,q,∗
transitively blocksRa,b,∗ throughout [t, tf ).

Lemma 4. Let R ∈ RR, R′ ∈ RR, and let tf denote the time
thatR′ completes. If bothR andR′ transitively block a request
R′′ ∈ RL at time t, and if R .R′ or R′ directly blocks R at
time t, thenR transitively blocksR′′ also at every t′ ∈ [t, tf ).

Proof: By Lem. 3, R transitively blocks R′′ at any time
after t until R completes, and since R′ directly blocks or is
nested within R, R cannot complete before R′ completes at
time tf .

Proof of Invariant 8. We consider two separate cases based
on the observation that V = V(P (Ti)) ∪ V(P (Ti)).

Case 1: v ∈ V(P (Ti)). Then, by Invariant 1, v has no
incoming mutex edge. By the definition of nesting edges, there
is at most one nesting edge in EN incident to v, and clearly
there can be at most one root edge (vS , v). Finally, no vertex v
has both an incoming nesting edge and an incoming root edge in
G(Ji, S) because Steps S7 and S8, the only steps to add root and
nesting edges incident to vertices in V(P (Ti)), have mutually
exclusive conditions.

Case 2: v ∈ V(P (Ti)). By contradiction: suppose v is
incident to two or more incoming edges in G(Ji, S). By
Invariant 2, v has no incoming root edge. Since there is at
most one nesting edge in EN incident to v, in order to be
incident to more than one incoming edge in total, v must be
incident to either two incoming mutex edges or at least one
mutex and a nesting edge. Let v′ and v′′ denote two vertices in
V (Ji, S) such that both (v′, v) ∈ EN (Ji, S) ∪ EM (Ji, S) and
(v′′, v) ∈ EN (Ji, S) ∪ EM (Ji, S), and let R′ and R′′ be the
two corresponding requests.

From Steps S4, S5, and S6, we observe that there must exist
two times t′ and t′′ such that either

(i) R′ ∈ RL and R′′ ∈ RL are local requests and are
respectively blocked byR at times t′ and t′′; or

(ii) R′ ∈ RR andR′′ ∈ RR are remote requests such thatR′
andR simultaneously block a requestR′′′ ∈ RL at time t′

andR′′ andR simultaneously block some request in RL

at time t′′; or

(iii) a mixed scenario, whereR′ (resp.,R′′) is a local request
blocked byR at time t′ (resp., t′′) andR′′ (resp.,R′) is a
remote request that simultaneously withR blocks a request
R′′′ ∈ RL at time t′′ (resp., t′).

Without loss of generality, suppose t′ ≤ t′′. It then follows
from Lem. 3 that either

(i) R is still directly blockingR′ ∈ RL at time t′′; or
(ii) R′ ∈ RR is still transitively blocking R′′′ ∈ RL at time

t′′; or
(iii) R is still directly blocking R′ ∈ RL at time t′′ (respec-

tively,R′ is still transitively blockingR′′′ at time t′′).
We now discuss each subcase separately.
Case (i): This implies that at time t′′ there exist two distinct,

incomplete, directly blocked requests on processor P (Ti). Since
jobs spin non-preemptively while waiting for global resources,
and since jobs request resources one at a time, this is clearly
impossible.

Case (ii)-a:R′′ does not transitively blockR′′′ at time t′′. As
R′′ is transitively blocking some request in RL at time t′′, and
since R′ is transitively blocking R′′′ at time t′′, there are two
distinct, incomplete, transitively blocked requests on processor
P (Ti) which is impossible as argued in Case (i).

Case (ii)-b: both R′ and R′′ transitively block R′′′ at time
t′′. Then it follows from the inductive definition of transitive
blocking (Def. 2) that either
• there exist two distinct requests in RR that both directly

blockR′′′ at time t′′, which by Lem. 2 is impossible;
• there exists a request R′′′′ ∈ RR that transitively blocks
R′′′ at time t′′, and further two distinct requests in RR that
transitively block R′′′ at time t′′ and that are both nested
in or directly block R′′′′ at time t′′, which by Lem. 2 is
impossible; or

• there exists a deadlock, i.e., a request nested in R is
transitively delayed by eitherR′ orR′′, which is impossible
given the assumption that the transitive nesting order is
irreflexive.

Case (iii): This implies that at time t′′ both R′ ∈ RL (resp.,
R′′ ∈ RL) and R′′′ ∈ RL are blocked requests on processor
P (Ti), which is impossible as argued in Case (i).

Since both Case 1 and Case 2 result in contradictions, the
claim follows.

Proof of Invariant 9. To prove the invariant, we establish the
following stronger claim: for any two vertices v′, v ∈ V ∪
{vS}, there exists at most one path P in G(Ji, S) of the form
〈v′, . . . , v〉. We show this by induction on the length of P using
Invariant 8.

Base case: by Invariant 8, there is at most one edge of the
form (vS , v) or (v′, v) in E(Ji, S).

Inductive step: suppose that P = 〈v′, . . . , v〉 is the unique
path in G(Ji, S) that ends in v starting from v′. Then, by
applying Invariant 8 on v′, there exists at most one path
P ′ = 〈v′′, v′, . . . , v〉 or P ′ = 〈vS , v′, . . . , v〉 in G(Ji, S).

Proof of Invariant 10. Consider a path P in G(Ji, S) from vS
to v that ends with the mutex edge (v′, v).
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Case 1: v′ ∈ V(P (Ti)). By Invariant 1, there is no mutex
edge in EM (Ji, S) with v′ as a terminal vertex.

Case 2: v′ ∈ V R. By Step S5, there is a time t where bothR′
andR are transitively blocking a request inRL andR is directly
blocking R′ at time t. Since v′ ∈ V R, it follows from Def. 1,
Def. 2, and Lem. 4 that there must exist a requestR′′ ∈ RR that
transitively blocks a request in RL at time t such thatR′′ .R′.
Then, by Step S6, (v′′, v′) ∈ EN (Ji, S), and thus it follows
from Invariant 8 that there is no mutex edge in EM (Ji, S) with
v′ as a terminal vertex.

Proof of Invariant 11. Consider the point in time t at which, by
Steps S4 and S5,R = Rx,q,∗ is directly blockingR′. Similarly
to the proof of Lem. 3, it follows by structural induction on
Def. 2 and from Invariant 8 that Ra,o,∗ and Ra,c,∗ remain
incomplete untilR completes. SinceRa,o,∗ .Ra,c,∗ andRa,c,∗
is incomplete at time t, it follows that Ta holds `o at time t.
Further, since by Def. 1 Tx is holding `q and executing Rx,q,∗
at time t, it follows that Tx also holds the resources used in
any outer CSs containingRx,q,∗. From the fact that deadlock is
impossible (recall that the transitive nesting relation is assumed
to be irreflexive), it follows that Ta 6= Tx. Finally, because each
resource is held by at most one task at any time, Tx cannot hold
`o at time t, which implies `o /∈ np(vx,q,∗).

To establish the last two invariants, we first establish a final
auxiliary lemma.

Lemma 5. If there exists a path in G(Ji, S) of the form
〈v, . . . , v′〉, then there exists a time t at which R′ transitively
blocksR in the schedule S.

Proof: Since v′ is included in G(Ji, S), by Steps S4, S5,
and S6, there exists a time t at whichR′ is transitively blocking
some requestR′′ ∈ RL. By structural induction on Def. 2 and
Steps S4, S5 and S6, there must also exist a path in G(Ji, S)
that connects v′′ to v′ in which every vertex corresponds to a
request that is transitively blocked byR′ at time t. By Steps S7
and S8, v′′ is also reachable from the source vertex vS . By
Invariant 9, there is at most one path P that connects vS to v′,
and hence 〈v, . . . , v′〉must be a segment ofP . As a consequence,
R′ transitively blocksR at time t and the lemma follows.

Proof of Invariant 12. Suppose not. Then the segment
〈v, . . . , v′〉 includes at least one mutex edge. Let v′′ be the vertex
that has the first outgoing mutex edge in the segment. By the
definition of a mutex edge, and since v ∈ V (k) and v′ ∈ V (k),
there must exist another mutex edge in the segment 〈v, . . . , v′〉:
let v′′′ the vertex that is incident to the last mutex edge in such a
segment.

Hence, the path has the form 〈v, . . . , v′′, . . . , v′′′, . . . v′〉.
Note that the segment 〈v, . . . , v′′〉 must be either composed
of only nesting edges or v = v′′, which implies v′′ ∈ V (k).
Analogously, v′′′ ∈ V (k).

By Lemma 5, there exists a time t at which R′′′ transitively
blocksR′′. Additionally, since v′′ ∈ V (k), Def. 1 implies that,
at time t, there is a job executing on Pk that is busy-waiting
because of R′′. However, at the same time, since v′′′ ∈ V (k),

too, there is also a job executing on Pk that is executing the
critical section corresponding toR′′′. Contradiction.

Proof of Invariant 13. By contradiction. First note that
conflicting requests are served in FIFO order and jobs are non-
preemptable when they busy-wait and while executing global
CSs. According to Def. 1, this implies that a request can be
directly blocked by at most one request per remote processor.

According to Def. 4, P includes exactly l mutex edges. Let
V ∗ be the set of the l vertices in P that have an outgoing mutex
edge. By Invariant 12, the vertices in V ∗ correspond to requests
issued by tasks assigned to l different processors.

Now suppose that v has more than m− l− 1 outgoing mutex
edges. Then, as there are only m processors, there must exist,
for some processor 1 ≤ k ≤ m such that V (k) ∩ V ∗ 6= ∅, a
path in G(Ji, S) of the form 〈vS . . . , v′, . . . , v, v′′〉 with v′ ∈
V (k) ∩ V ∗, v /∈ V (k), and v′′ ∈ V (k). However, since (v, v′′)
is a mutex edge, this is impossible by Invariant 12.
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