
Technical Report MPI-SWS-2016-009

Quantifying the Effect of Period Ratios on Schedulability of
Rate Monotonic

Mitra Nasri(1), Morteza Mohaqeqi(2), Gerhard Fohler(3)
(1) Max Planck Institute for Software Systems (MPI-SWS), Germany.

(2) Department of Information Technology, Uppsala University, Sweden.
(3) Chair of Real-time Systems, Technische Universität Kaiserslautern, Germany.

mitra@mpi-sws.org, morteza.mohaqeqi@it.uu.se, fohler@eit.uni-kl.de

ABSTRACT
In this paper, we study the effect of period ratio and uti-
lization of the tasks on the schedulability of rate monotonic
(RM) in uni-processor systems with preemptive periodic or
sporadic tasks. By quantifying this effect, we show that
there exist other task sets (other than harmonic tasks in
which each period is an integer multiple of the smaller pe-
riods) which are RM-friendly, i.e., they can be scheduled
by RM up to 100% utilization. Furthermore, in order to
quantify non-RM-friendly task sets, we derive a necessary
schedulability test for RM. Our results can be used as a set
of design hints for system designers during the parameter
assignment phase where periods are assigned. We also show
how our results can be used to reduce the computational
cost of the schedulability analysis if particular properties
hold between the periods. From theoretical perspective, our
work improves the understanding about outputs of different
random task set generation methods. We provide examples
to show how the hidden effect of period ratio may lead to
an inaccurate judgment about RM schedulability1.

1. INTRODUCTION
Rate monotonic (RM) is a widely used scheduling algo-

rithm which has been implemented in many real-time oper-
ating systems. It is known that RM is not able to sched-
ule many feasible task sets which can potentially be sched-
uled by the earliest deadline first (EDF) scheduling algo-
rithm [16]. So far, schedulability analysis of RM has been
studied in a number of researches by introducing utilization-
based tests such as [16], the exact test [1], approximation
tests [6, 11], or sufficient tests [18]. These works try to dis-
tinguish a schedulable task set from a non-schedulable one,
yet they are limited in terms of providing a deeper knowl-
edge about the behavior of the rate monotonic itself.

In [12], it has been shown that if periods are harmonic, i.e.,
each period is an integer multiple of the smaller periods, then

1The conference version of this extended technical report
appears in the proceedings of Real-Time Networks and Sys-
tems (RTNS 2016), October 2016, ACM. Sect. 7 and Ap-
pendix have been added to the content of the main paper.

RM can schedule task sets up to 100% utilization. Harmonic
task sets have been widely used in industries. Also there are
several works showing how to construct harmonic periods
from a given set of initial period values [12, 14] or from a
given range [17]. However, harmonic task sets are not the
only type of RM-friendly task sets, i.e., task sets that can be
scheduled by RM up to 100% utilization. In [15] a stochastic
analysis has been performed to show that when the period
ratio approaches to infinity, the maximum schedulable uti-
lization reaches to 1. Both of these results have motivated
us to explicitly consider the role of period ratios on RM
schedulability.

The timing parameters of a task set are usually described
by the period (or the minimum inter-arrival time) and the
worst-case execution time (WCET) of the tasks. In this pa-
per, we focus on sporadic task sets with implicit deadlines.
During our preliminary experiments we have noticed that
the ratio between consecutive periods (assuming periods are
sorted in an ascending order) has a significant effect on RM
schedulability. Fig. 1 shows the schedulability ratio of ran-
domly generated task sets as a function of the maximum and
minimum consecutive period ratio (CPR), denoted by Kmax

and Kmin, respectively. We have generated the periods with
the following rule Ti = aTi−1 where a is a random value
with uniform distribution which is selected from a range. In
Fig. 1-(a), a ∈ [1,Kmax] and in Fig. 1-(b), a ∈ [Kmin, 4].
Here Ti−1 denotes period of the previous task assuming that
tasks are indexed by their period and T1 is the smallest pe-
riod. Fig. 1 shows a strong relation between period ratio and
schedulability. In this experiment, we have used the exact
schedulability test [1] for determining schedulable task sets.

In this paper, we quantify the effect of timing parameters
of the task set on the schedulability of RM. For this aim,
we adopt some of the existing schedulability tests for RM
and use them to describe the schedulability as a function
of period ratio, period residual, and utilization of the tasks,
where period residual is the residual part of dividing one
period by another. We show that if the average period ratio
is large or the residual values are either small or large, the
chance that the task set is schedulable by RM is significantly
high. We identify some other RM-friendly task sets based

Figure 1: Schedulability ratio as a function of: (a)
the maximum CPR, i.e., Kmax, and (b) the minimum
CPR, i.e., Kmin (see Sect. 6 for details).

on period ratio. Furthermore, in order to identify non-RM-
friendly task sets, we derive a necessary schedulability test
for RM. We also show how our results can be used to reduce
the computational cost of the exact schedulability analysis
if particular properties hold between the periods.

Results of our work can be used by the designer/integrator
of the system in order to assign parameters in an RM-friendly
way. Doing so, less iterations over the whole design process
are needed until the designer reaches to a schedulable set
of parameters. Thus, we can reduce both time and cost
of the design of large systems with large number of tasks.
Moreover, our work can be used to design more efficient task
partitioning algorithms for multiprocessor systems.

Knowing how RM schedulability will be affected by the
timing parameters of the tasks, we will be able to design
more fair experiments when we evaluate performance of the
schedulability tests. Also we will have more accurate in-
terpretation of the results. Using the diagram in Fig. 2-(a)
we show how lack of this knowledge may lead to an unreal-
istic conclusion about RM schedulability. In this diagram,
we have used the same period assignment method suggested
by [4], i.e., the periods have been selected from range [1,
1000] with a uniform distribution. As it can be seen, by the
increase in the number of tasks while keeping the utiliza-
tion 0.9, the schedulability tends to 0. One may interpret
the result as “RM is unable to schedule task sets with large
number of tasks in 90% utilization”. However, by looking at
Fig. 2-(b) where Kmax, Kmin, and the average CPR of the
generated task sets have been reported, we observe that one
of the reasons behind such a decrease in schedulability is the
decrease in the average CPR. According to Fig. 3-(a), if we

Figure 2: The effect of period selection on RM
schedulability. Periods have been selected from
range [10, 1000] and utilizations have been gener-
ated by uUniFast [4] with total sum 0.9. For each
data point, 20,000 task sets have been generated
with different number of tasks shown in the hori-
zontal axis. (a) shows schedulability ratio and (b)
shows Kmax, Kmin and average CPR.

change the period assignment such that, for example, the av-
erage CPR remains between 1.3 and 1.7, then the resulting
schedulability ratio which we get will be different.

The remainder of the paper is organized as follows; Sys-
tem model in described in Sect. 2 and is followed by the
motivations of our work in Sect. 3. We study the effect of
period ratio on RM schedulability in Sect. 4 and present the
necessary schedulability test in Sect. 5. Sect. 6 presents the
experimental results. In Sect. 8 related work are presented
and finally the paper is concluded in Sect. 9.

2. SYSTEM MODEL AND NOTATIONS
We consider a preemptive uni-processor system with a set

of n independent periodic or sporadic tasks. The task set is
denoted by τ = {τ1, τ2, . . . , τn}. Each task τi, 1 ≤ i ≤ n,
is identified by τi : (Ci, Ti), where Ci ∈ R is the worst-case
execution time (WCET) and Ti ∈ R is the minimum inter-
arrival time (called period). We consider implicit deadlines,
i.e., deadline of the task is equal to its period. The system
utilization is denoted by U =

∑n
i=1 ui where ui = Ci/Ti is

the utilization of task τi. The hyperperiod is the least com-
mon multiple (LCM) of the periods. The tasks are indexed
according to their period so that T1 ≤ T2 ≤ . . . ≤ Tn.

Our work is focused on RM, a fixed priority scheduling
algorithm in which priorities are monotonic with 1/Ti. A
set of sporadic tasks is schedulable by RM if the worst-case
response time (WCRT) of each task is not greater than its
deadline. The WCRT of τi can be obtained when all high
priority tasks are released synchronously with the release of
τi and they are activated periodically.

Next, we define relative period ratio and its components.

Definition 1. Relative period ratio (RPR) of two tasks
τi and τj (1 ≤ j < i ≤ n) is denoted by Ki,j as

Ki,j = ki,j + γi,j =
Ti
Tj

(1)

where ki,j = bTi/Tjc is called the base and γi,j = Ti/Tj −
bTi/Tjc is called the residual. Notice that γi,j ∈ [0, 1).

If in Definition 1 we have i = j + 1, namely, τi and τj
are two consecutive tasks in the task set, Ki,i−1 represents
the consecutive period ratio (CPR). The period ratio of the
task set is defined as Kmin = min{Ki,i−1}ni=2. The task set
is harmonic if ∀i, 1 < i ≤ n,Ki,i−1 ∈ N. If for two tasks τi
and τj (Tj ≤ Ti), γi,j = 0, their period is harmonic. Based
on this property, we define the set of harmonic tasks with
priority higher than or equal to τi as

Definition 2. The set of harmonic tasks with task τi is
denoted by hi and defined as

hi = {τj |γi,j = 0, 1 ≤ j ≤ i} (2)

3. MOTIVATIONS
In the pioneer work of Liu and Layland [16], it has been

shown that the hardest-to-schedule implicit deadline task
set for RM has the following properties: a) T1 < T2 < . . . <
Tn ≤ 2T1, and b) Ci = Ti+1 − Ti, 1 ≤ i < n, and Cn =
2T1 − Tn. The first condition means that Ki,1 < 2, ∀i; 1 <
i ≤ n. Ironically, however, the hardest-to-schedule task set
is the fastest to be checked by the exact schedulability test.
According to [15], if for every task τi we can find a value
t ≤ Ti that satisfies the following inequality, the task set
(defined in Sect. 2) is schedulable

t ≥ Ci +
∑

1≤j<i

⌈ t
Tj

⌉
Cj (3)

In order to apply the exact schedulability test for the
hardest-to-schedule task set, we need to verify only one time
instant per task, i.e., t = T1 − ε where ε is a small positive
number. This observation motivates us to investigate the
relation between the computational complexity of the exact
schedulability test and the period ratio of the tasks.

Values of t which must be checked in (3) are limited to
the integer multiples of periods of the higher priority tasks
than τi because the right-hand-side of the equation varies
only when t = aTj where a ∈ N and aTj ≤ Ti. Following
the work of Lehoczky et al., [15], we obtain an upper-bound
on the computational complexity of the exact analysis. The
following formula counts the number of jobs of high priority
tasks within the period of τi for which (3) must be checked

θi =

i−1∑
j=1

ki,j ⇒ θi ≤ (i− 1)ki,1 ≤ (i− 1)kn,1 (4)

where ki,j represents the maximum number of jobs of any
task τj within one release of τi. Since periods are sorted, we
have ki,j ≤ ki,1 ≤ kn,1 which means that for each task such
as τi, and for each high priority task such as τj , (j < i),
we need to verify at most kn,1 time instants. In order to
evaluate the schedulability of the task set, we must verify
the schedulability of each task τi, 1 ≤ i ≤ n, which means

that we will have θ =
∑n
i=1 θi ≤

∑n
i=1(i − 1)kn,1 which

implies that

θ ≤ kn,1
n∑
i=1

(i− 1) ≤ kn,1 ×
n(n− 1)

2
≤ kn,1 × n2 (5)

Since for each point we must verify (3) which has a com-
plexity of O(n), the final complexity will be O(kn,1 × n3).

If the maximum ratio between the largest and smallest
periods is limited to a reasonable number, the computa-
tional complexity of the exact test will remain polynomial-
time. This observation justifies why the exact schedulability
test for rate monotonic performs very well in practice. In
some works, e.g., some experiments in [9], periods have been
selected randomly from a fixed range such as [100, 500] or
[100, 300], and hence, kn,1 will be at most 5 in the gener-
ated task sets. Thus, even if the task set has 50 tasks, the
maximum number of values which must be checked in (3)
would be less than a million. Today’s computers can eas-
ily perform this evaluation in a reasonably short amount of
time. On the other hand, if kn,1 is an exponential value with
respect to n, for example, imagine that kn,1 ≈ 2n (that may
happen if the periods have a wide range from a millisecond
to tens of seconds), we may have exponential number of op-
erations to verify the schedulability. However, interestingly,
we have observed that the schedulability ratio of a task set
with large CPR is meaningfully higher than those with small
CPR. As it is shown in Fig. 1-(a), with the increase in CPR,
the schedulability ratio increases significantly even in high
utilizations.

When CPR increases, the ratio between the largest and
the smallest period in the system increases as well. It, in
turn, increases the duration of time where the decisions
made by RM will be the same as EDF for each task. For
example, if T1 = 2 and T2 = 49, then for about 47 units of
time, EDF and RM both prioritize jobs of τ1 over the job
of τ2. It means that the duration of time where RM takes
optimal decisions (those that do not threaten the schedula-
bility of τ2) will be increased to 47 over 49 units of time.
Moreover, if u1 + u2 is not a relatively large number, the
chance that WCRT of τ2 happens after time 48 when the
latest job of τ1 is released, decreases.

From another perspective, quantifying the effect of pe-
riod ratio on RM schedulability helps us to have a better
understanding about the results of different task set gen-
eration methods. One example is shown in Fig. 2 where
periods are selected from a fixed range (e.g., in papers such
as [4,9]) while the number of tasks selected from that range
was increasing. If instead of decreasing average CPR (in
Fig. 2-(b)), we could have a relatively fixed average CPR,
then we had totally different diagram as shown in Fig. 3-(a)
(note that these figures show the result of exact RM schedu-
lability test). This time, we have fixed the average CPR,
however, since with the increase in the number of tasks, the
average task utilization decreases, utilization of each task re-
duces as well, and hence, we will have task sets with small ui
values (as shown in Fig. 3-(c)). In this case, Ci is small and
hence, most of the tasks can be finished early. As a result,
the adverse effect of prioritizing a job with smaller period
over a job with an earlier deadline will not cause deadline
misses for low priority tasks.

By quantifying the above mentioned effects on the RM
schedulability, we will be able to provide design hints for
system designers when they configure the system. Conse-

Figure 3: Relative period ratio have been generated
as a real number from range [1, 2.5] and utilizations
have been generated by uUniFast with sum 0.9.

quently, the number of iterations needed to achieve a schedu-
lable configuration will reduce since the chance that the sys-
tem is already schedulable is higher. Moreover, we are inter-
ested to derive conditions which help to reduce the compu-
tational cost of schedulability analysis, e.g., by identifying
the cases where amortized cost of verifying schedulability
of a task will be O(1). This also helps system designers to
reduce the time required to find the best configuration.

4. THEEFFECT OF PERIOD RATIO
In this section, we study the effect of period ratio on RM

schedulability. First we show the effect of base period ratio,
i.e., ki,j , and then we discuss the effect of residual, i.e., γi,j .

4.1 The Effect of Base Period Ratio
Under the RM scheduling algorithm, the exact WCRT of

a task such as τi is the minimum t ≥ Ci which satisfies
(3). τi is schedulable if t ≤ Ti. In some works such as

[18] a sufficient schedulability test is used that only verifies
the schedulability in a certain set of points in time, i.e.,
t ∈ {A1,i, A2,i, . . . , Ai,i} where

Ai,j =
⌊Ti
Tj

⌋
Tj (6)

In order to quantify the relation between the schedulabil-
ity and the period ratio, we consider t = Ti and replace it in
(3). The following inequality presents a sufficient schedula-
bility condition for τi

Ti ≥ Ci +
∑

1≤j<i

⌈Ti
Tj

⌉
Cj (7)

In the next step, we replace Ti/Tj in (7) by its equivalent
value from (1) as Ti ≥ Ci +

∑
1≤j<idki,j + γi,jeCj which

leads to

Ti ≥
∑

1≤j<i
τj /∈hi

(ki,j + 1)Cj +
∑

1≤j≤i
τj∈hi

ki,jCj (8)

where ki,i = 1 by definition. Next, we divide (8) by Ti

1 ≥
∑

1≤j<i
τj /∈hi

(ki,j + 1)

Ti
Cj +

∑
1≤j≤i
τj∈hi

ki,j
Ti

Cj (9)

Using (1) we replace Ti with (ki,j+γi,j)Tj in (9) as follows

1 ≥
∑

1≤j<i
τj /∈hi

(ki,j + 1

ki,j + γi,j

)
uj +

∑
1≤j≤i
τj∈hi

uj (10)

Note that since in the second summation in (9) we have
τj ∈ hi, for every task τj , residual is zero, i.e., γi,j = 0.
Hence, by replacing Ti with (ki,j + γi,j)Tj , only ki,jTj re-
mains in the denominator. Next we simplify (10) by replac-
ing ki,j + 1 with ki,j + 1 + γi,j − γi,j which implies

1 ≥
∑

1≤j<i
τj /∈hi

(1− γi,j
ki,j + γi,j

)
uj +

∑
1≤j≤i

uj . (11)

The resulting (11) is a function of the tasks’ utilization, as
well as the base and the residual of the period ratio. As it can
be observed in (11), the only tasks with extra negative effect
on the schedulability of τi are those which are not harmonic
with the period of τi. This observation is consistent with the
results of [14] where it has been shown that to analyze the
schedulability of a task set which has m harmonic chains,
it is enough to consider each chain as one task (note that
a harmonic chain is a set of tasks with harmonic periods.)
Consequently, the number of substantial tasks which must
be considered in the schedulability analysis reduces to m.

Next we quantify the effect of base period ratio on the
schedulability of τi. For this aim, we plot αi,j for different
values of ki,j from 1 to 5, where

αi,j =
1− γi,j
ki,j + γi,j

(12)

As it can be seen in Fig. 4, for any value of ki,j,, the
maximum value of αi,j appears at γi,j ≈ 0 because this
function is strictly decreasing in the range γi,j ∈ [0, 1). In
fact, αi,j can be interpreted as a multiplier which shows the
adverse effect of the utilization of τj on the schedulability of
τi. For example, if ki,j = 3, the maximum value of αi,j will

Figure 4: αi,j as a function of γi,j for different values
of ki,j.

be 0.33, which means that in the worst-case, τj adversely
adds 33% of its uj to the total sum of the right-hand-side of
(11). However, with the increase in ki,j , this effect becomes
smaller.

Theorem 1. Given task set τ defined in Sect. 2 and Kmin

which is the minimum consecutive period ratio (defined in
Sect. 2), a task such as τi is schedulable if

1−
∑

1≤j≤i

uj ≥
∑

1≤j<i
τj /∈hi

uj
(Kmin)i−j

(13)

Proof. If the minimum period ratio between every two
consecutive tasks is at least Kmin, it means that ki,j ≥
(Kmin)i−j . As shown in Fig. 4, the αi,j function is strictly
decreasing and its maximum value is at γi,j = 0, which
implies αi,j = 1/ki,j , hence, the fraction (αi,j) in (11) can
be replaced by 1/ki,j . Thus, based on the fact that ki,j ≥
(Kmin)i−j , (11) can be simplified to (13) which proves the
claim.

For example, if Kmin is 4 and we have ∀j, 1 ≤ j < i; τj /∈
hi, then (13) will be

ui−1

4
+
ui−2

42
+ . . .+

u1

4i−1
+
∑

1≤j≤i

uj ≤ 1 (14)

In the next step, we show that with the increase in Kmin,
the chance that the task is schedulable tends to 1.

Property 1. In a given task set τ defined in Sect. 2 with
U ≤ 1, if ki,j (∀j, 1 ≤ j < i) or Kmin tends to infinity, the
chance that the task set is schedulable by RM tends to 1.

Proof. If ki,j (or Kmin) tends to infinity, αi,j tends to 0
because ki,j appears in the denominator of (12). Consecu-
tively, (11) becomes 1 ≥

∑
1≤j≤i uj which is true according

to the assumption. It means that both necessary and suffi-
cient schedulability conditions of RM hold, and hence, the
task set is schedulable.

Property 1 shows that having large period ratio increases
the schedulability of the task set. This property can be
justified by the fact that for a task such as τi, the scheduling
decisions of RM and EDF are identical until the latest release
of any task τj , (1 ≤ j < i) before Ti, i.e., before Aj,i. If the
base period ratio, i.e., ki,j is large, the chance that the task
is finished before the last release of the high priority task
increases. Thus, RM decisions will not adversely affect the
schedulability of τi.

4.2 The Effect of Period Residual
In this subsection, we quantify the effect of period residual

on the schedulability of RM. First we show the effect of large
residual values, i.e., when γi,j tends to 1.

Property 2. In a given task set τ defined in Sect. 2 with
U ≤ 1, if γi,j tends to 1 (∀j, 1 ≤ j < i), the chance that the
task set is schedulable by RM tends to 1.

Proof. If γi,j tends to 1, αi,j in (12) tends to 0 because
regardless of the value of ki,j , 1 − γi,j tends to 0. Thus,
(11) simplifies to U ≤ 1, which already holds due to our
assumption. As a result, the task set becomes schedulable
by RM.

Having γi,j ≈ 1 means that the resulting residual from
dividing Ti by any Tj , 1 ≤ j < i, must be close to 1. Equiv-
alently, the latest releases of the high priority tasks before
Ti must be as far as possible from Ti. In other words, the
next release of the high priority tasks after Ti must be very
close to Ti, which means that the period of high priority
tasks must be almost harmonic with Ti.

Another observation in (12) is that since ki,j appears in
the denominator of αi,j , if ki,j is large, the contribution of
γi,j in the value of αi,j becomes small. Thus, the lowest
priority task among those which satisfy τj /∈ hi plays an
important role in the schedulability of τi because it will have
the smallest ki,j .

Remark. To increase RM schedulability, it is better to
not have high utilization tasks with close yet non-harmonic
periods, because then ki,j will not help in reducing the ef-
fect of ui,j in the right-hand-side of (11) which adversely
affects the schedulability. Thus, if a task such as τi has high
utilization, it is better that the next task has large ki+1,i.

In the next step, we show the effect of having small value
of γi,j on the schedulability of τi. For this aim, first we
design another sufficient schedulability test. In this test, we
consider the latest release of each high priority task such
as τj before Ti, denoted by Ai,j (defined in (6)). Also we
define Ai,m = min{Ai,j}1≤j<i and it describes the earliest
release among the latest releases of the high priority tasks
before Ti. Fig. 5-(a) shows an example with 5 tasks and
their latest release before Ti.

Next we rewrite (3) considering t = Ai,m as

Ai,m ≥ Ci +
∑

1≤j<i

⌈Ai,m
Tj

⌉
Cj (15)

Since by definition, Ai,m ≤ Ai,j (∀j; 1 ≤ j < i), no other
high priority task has released its latest job before Ti earlier
than Ai,m. It means that total workload of τj before Ai,m
is smaller than or equal to

⌈
Ai,m/Tj

⌉
Cj which is smaller

than
⌊
Ti/Tj

⌋
Cj . Hence it is safe to replace

⌈
Ai,m/Tj

⌉
Cj

with
⌊
Ti/Tj

⌋
Cj in (15). Next, we replace Ai,m in the left-

hand-side of (15) by its equivalent value ki,mTm, and then
we divide both sides of the inequality by Ti, thus, we have

ki,m
Tm
Ti
≥ ui +

∑
1≤j<i

ujTjki,j
Ti

⇒

ki,m
ki,m + γi,m

≥ ui +
∑

1≤j<i

ki,j + (γi,j − γi,j)
ki,j + γi,j

uj ⇒

ki,m
ki,m + γi,m

+
∑

1≤j<i

γi,j
ki,j + γi,j

uj ≥
∑

1≤j≤i

uj (16)

Property 3. In a given task set τ defined in Sect. 2 with
U ≤ 1, if γi,j tends to 0 (∀i, j, 1 ≤ j < i), the chance that
the task set is schedulable by RM tends to 1.

Proof. If γi,j tends to 0, γi,j/(ki,j + γi,j) tends to 0. In
addition, since τm is also one of the high priority tasks, γi,m
tends to zero as well. As a result, ki,m/(ki,m + γi,m) tends
to 1, and hence, (16) becomes

∑
uj ≤ 1, which is correct

due to our assumption. Thus, τ becomes schedulable.

Property 2 together with Property 3 show that task sets
which are almost harmonic, i.e., all high priority tasks have
a release just before or just after the deadline of τi, have a
high schedulability ratio, and hence, they are RM-friendly.
This situation can easily happen if period of a task such
as Ti is an integer multiple of the hyperperiod of the high
priority tasks, i.e., Ti = x × LCM(T1, T2, . . . , Ti−1) where
x ∈ N>1 is an arbitrary multiplier.

Corollary 1. In a given task set τ defined in Sect. 2
with U ≤ 1 if for task τi we have γi,j = 0, ∀j; 1 ≤ j < i
and all high priority tasks are schedulable, then τi will be
schedulable by RM iff

i∑
j=1

uj ≤ 1 (17)

Proof. If (17) does not hold, the task is not schedula-
ble because it violates the necessary schedulability condition
in [16]. Considering γi,j = 0,∀j; 1 ≤ j < i, (16) will be
equivalent to (17) which proves the if part of the claim.

Corollary 1 shows that not only tasks with harmonic pe-
riods, but also tasks with periods which are harmonic with
the LCM of the other periods (even if those periods are
not harmonic with each other) will be schedulable by RM if
U ≤ 1. This type of task sets can be found in automotive
industry. For example, as shown in a benchmark task set
from Autosar [13], period of each periodic task is one of the
following values {1, 2, 5, 10, 20, 50, 100, 200, 1000} (numbers
are in millisecond). Even though 2 and 5, or 20 and 50 are
not harmonic, all other periods are integer multiples of 10
or 50. Thus using Corollary 1 we can analyze the schedu-
lability of such low priority tasks (through (17)) efficiently
because then the amortized cost of schedulability analysis of
such tasks will be O(1).

The importance of Properties 1, 2, and 3 becomes more
evident when we consider the fact that the task sets with
large period ratio, or very small (or large) residual, usually
have a large hyperperiod which happens due to nonalign-
ment of the integer multiples of the periods. Adversely, for
these task sets, the exact schedulability analysis may have
considerable computational cost due to the large number of
time instants which must be evaluated.

5. NECESSARY SCHEDULABILITY TEST
In this section, we provide a necessary schedulability con-

dition for RM as a function of utilization of the tasks and
period ratios. We show that this test is tighter than the
existing U ≤ 1. Moreover, we derive a condition, based on
period residual, for which the test becomes exact. Results
of this section are only valid for sporadic tasks or periodic
tasks with synchronous release because in these cases, the

Figure 5: An example to show how the ωi is cal-
culated. In (a) the true RM schedule is presented
while (b) shows the way we calculate ωi. In (b), τ3
and τ4 are planned to start after fi,2 even though
in reality they could have started earlier. In this
example, fi,3 = si,4 = fi,4 = Ti.

worst-case release scenario is to have a synchronous periodic
release pattern.

We derive a necessary schedulability condition for each
task such as τi by calculating the lower bound of the effec-
tive workload of all of the tasks that must be finished before
Ti. This lower bound is denoted by Ωi, and it has 3 com-
ponents: a) the workload of τi which is equal to Ci, b) the
exact workload of the high priority jobs which their abso-
lute deadline is smaller than or equal to Ti, and c) the lower
bound of the effective workload of the high priority jobs
which must be executed until Ti and their absolute deadline
is larger than Ti. The last component is denoted by ωi.

In Fig. 5-(a), the RM schedule for a task set is shown.
According to this schedule, the last job of τ3 cannot finish
its execution before Ti, however, τi is schedulable since its
worst-case response time is equal to T3. In Fig. 5-(b), we
show the 3 components of Ωi. The execution times which
are denoted in black boxes show the lower bound of the con-
tribution of each high priority task in ωi. As it can be seen,
this lower bound is smaller than the actual contribution of
the tasks; for example, in Fig. 5-(a), the last job of τ4 is
scheduled slightly after Ai,4 while in Fig. 5-(b), its contri-
bution to ωi is 0. In this figure, si,j and fi,j are the upper
bound on the start time and finish time of the last jobs of
the high priority tasks.

Lemma 1. Given task set τ , the exact workload of the
high priority jobs with absolute deadlines smaller than or
equal to Ti in the interval [0, Ti] is∑

1≤j≤i

⌊Ti
Tj

⌋
Cj (18)

Proof. Since in a successful schedule there is no deadline
miss, all high priority jobs must be executed before their ab-
solute deadlines. Thus, the exact workload from the higher

priority tasks can be obtained by summing up the execution
times of every job of those tasks which has its absolute dead-
line before time Ti. Since each task such as τj , 1 ≤ j ≤ i
can have at most

⌊
Ti/Tj

⌋
jobs in the interval of time from

0 to Ti, the maximum workload of these jobs is (18) which
proves the claim.

Using (18) we calculate Ωi as

Ωi =
∑

1≤j≤i

⌊Ti
Tj

⌋
Cj + ωi (19)

Lemma 2. Given task set τ , the exact workload of the last
job of task τ1 which is released before Ti and has an absolute
deadline larger than Ti is

min{C1, Ti −Ai,1} (20)

where Ai,1 is obtained from (6).

Proof. Since τ1 has the highest priority in each of its
releases, the actual start time of the last job of τ1 will be at
Ai,1. Also since it remains the highest priority task, it can
be executed until Ai,1 +C1, however, if C1 > Ti −Ai,1, this
job will be finished after Ti. Due to the fact that ωi must
only include the workload which must be finished before Ti,
the maximum contribution of τ1 to ωi cannot be larger than
min{C1, Ti −Ai,1}, which proves the claim.

As it can be seen in Fig. 5-(b), the last job of a task such as
τ4 at Ai,4 can be released much earlier than Ai,1, and hence,
it might have some interference with other jobs of τ1 or other
higher priority tasks. Due to this interference, τ4 cannot use
the whole interval [Ai,4, Ti] for its execution since it may not
always be the highest priority task in this interval. In other
words, calculating the exact amount of time that the last job
of a task such as τj (1 < j < i) is executed in the interval
[Ai,j , Ti] requires obtaining the exact interference from the
higher priority tasks in that interval. Since this problem is
not easy to solve, we simplify the condition to derive the
lower bound of the workload instead of the exact amount of
the required workload. This lower bound can be obtained by
assuming that τj does not find any chance to be scheduled
before the finish time of τj−1 at fi,j−1. This situation has
been shown in Fig. 5-(b) where the last job of τ3 started at
fi,2. The intervals marked by the wasted chances are the
price we pay for simplifying our necessary test.

Lemma 3. Given task set τ , the lower bound of the effec-
tive workload of the last job of each task such as τj, 1 < j < i
that is released before Ti and its absolute deadline is larger
than Ti is fi,j − si,j where fi,j and si,j are the upper bounds
on the finish time and start time of the execution of the last
job of τj in the interval [Ai,j , Ti] and they are calculated as

si,j = max
{
fi,j−1, Ai,j

}
(21)

fi,j = min
{
Cj , Ti − si,j

}
+ si,j (22)

where si,1 = Ai,1 and fi,1 = min
{
C1, Ti − si,1

}
+ si,1.

Proof. The proof is based on induction where we show
that the lower bound of the effective workload of any task
such as τj follows fi,j − si,j .

The base: we show the claims hold for τ1. Since τ1 has
the highest priority, it executes right after it is released at

Ai,1, and hence, the upper bound of its start time is equal
to its actual start time at si,1 = Ai,1. Also according to
Lemma 2, the exact workload of τ1 before Ti follows (20)
which means that the actual finish time of τ1 is at fi,1 =
si,1 +min{C1, Ti−Ai,1}. Thus, the claims have been proven
for τ1.

The assumption: we assume that si,m and fi,m obtained
from (21) and (22) are the upper bound on the start and
finish time of the last job of τm, respectively. Also fi,m−si,m
is the lower bound of the effective workload of τm which
must be scheduled before Ti according to RM scheduling
algorithm.

The induction step: we show that si,m+1 and fi,m+1 ob-
tained from (21) and (22) are the upper bound on the start
and finish time of the last job of τm+1, respectively. Also
fi,m+1 − si,m+1 is the lower bound of the effective workload
of τm+1 which must be scheduled before Ti.

Before we start the proof, we show some properties about
fi,m. Because of the way Ai,m is defined in (6), Ti − Ai,j
never becomes negative, thus, ∀j, fi,j ≥ 0. Moreover, di-
rectly from (22) we have ∀j, fi,j ≤ Ti. Finally, due to the
recursive nature of (22), we have

Ai,1 ≤ fi,1 ≤ fi,2 ≤ . . . ≤ fi,m ≤ Ti (23)

because, for example, by replacing si,m in (22) we have

fi,m = min
{
Cm, Ti − si,m

}
+ max

{
fi,m−1, Ai,m

}
which means that

fi,m−1 ≤ fi,m

From (23) we can conclude that at fi,m, all of the higher
priority tasks than τm+1 have been executed, otherwise fi,m =
Ti. If fi,m = Ti, then a safe upper bound on si,m+1 will be
Ti, which further leads to have a safe upper bound on the fin-
ish time of τm+1 at Ti. Since our safe upper bounds fall out
of the interval [Ai,m+1, Ti], the effective workload of τm+1

will be 0. On the other hand, if fi,m < Ti, task τm+1 be-
comes the highest priority task with a pending job at time
fi,m and will have a chance to be scheduled by RM. If τm+1

is already released at that time, i.e., Ai,m+1 ≤ fi,m, a safe
upper bound on its start time will be si,m+1 = fi,m because
then there will be no other high priority task in the system
and Ti − si,m+1 > 0. In such situation, RM has no other
choice but to schedule τm+1. Otherwise, if Ai,m+1 > fi,m,
since none of the tasks with higher priority than τm+1 will
release a job after fi,m, the exact upper bound on the start
time of τm+1 can be obtained at si,m+1 = Ai,m+1. The lat-
ter claim can be proven by considering the fact that due to
(22) and (21), ∀j, 1 ≤ j < m;Ai,j ≤ fi,j ≤ fi,m. It means
that τm+1 is released after the upper bound on the finish
time of all of the higher priority tasks, and hence, as soon as
it is released, it will be the highest priority task in the sys-
tem and must be scheduled by RM. Putting all of the results
together, we have si,m+1 = max{Ai,m+1, fi,m} which proves
(21). Since none of the high priority tasks will interfere with
τm+1 after si,m+1, the upper bound on its finish time will be
the minimum between Ti and Cm+1 + si,m+1. This proves
(22). Moreover, since there is no interference in the execu-
tion of τm+1 from the higher priority tasks after si,m+1, the
lower bound of its effective workload will be fi,m+1− si,m+1

which completes the proof.

Using Lemma 3 we can obtain the lower bound of the

effective workload of all of the high priority tasks as

ωi =
∑

1≤j<i

(
fi,j − si,j

)
(24)

Theorem 2. Given task set τ can be scheduled by RM
only if the following condition holds

Ti ≥
∑

1≤j≤i

⌊Ti
Tj

⌋
Cj +

∑
1≤j<i

(
fi,j − si,j

)
(25)

where si,j and fi,j are obtained from (21) and (22), respec-
tively.

Proof. As shown in Lemma 1, (18) is the workload of
higher priority jobs (including τi) which their absolute dead-
line is smaller than or equal to Ti in the interval [0, Ti]. Also
according to Lemma 3, (24) is the lower bound on the ef-
fective workload of the high priority jobs with release time
smaller than Ti and absolute deadline larger than Ti. Con-
sequently, (25) is the lower bound on the effective workload
of higher priority jobs together with τi, which must be fin-
ished within the interval [0, Ti]. If the lower bound of the
workload, i.e., Ωi, is larger than the duration of the interval,
i.e., Ti, then τi must give its chances to one of the higher
priority jobs which are released before Ti, and hence, cannot
be finish.

In the next step, we convert the necessary schedulabil-
ity test in Theorem 2 to another necessary test which is a
function of the utilization of the tasks and their period ratio.

Theorem 3. Given a task set τ , the following inequality
is a necessary schedulability condition for RM∑

1≤j≤i

uj ≤ 1 +
∑

1≤j≤i

γi,j
ki,j + γi,j

uj −
min{u1, γi,1}
ki,1 + γi,1

(26)

Proof. According to Lemma 2, equation (20) is the ex-
act workload of the last job of τ1 before Ti. If min{C1, Ti −
Ai,1} < C1, then we have fi,1 = Ti, which means that ac-
cording to our formulation, the safe upper bound on the
start time of other high priority tasks will be Ti, leading to
fi,j = si,j = Ti, ∀j, 1 < j < i. Otherwise if min{C1, Ti −
Ai,1} = C1, we know that τ1 must be completely considered
in ωi. However, in the worst-case we might have fi,1 = Ti
which means that there might be no other chance for other
high priority jobs to add a portion of their workload to
ωi. Consequently, in the worst-case, ωi = fi,1 − si,1 =
min{C1, Ti−Ai,1}. We use (25) which is a necessary schedu-
lability test, remove

∑
ωi and replace it with fi,1−si,1 which

can further be simplified as

Ti ≥
∑

1≤j≤i

⌊Ti
Tj

⌋
Cj + min

{
C1, Ti −

⌊ Ti
T1

⌋
T1

}
(27)

We divide (27) by Ti and replacing bTi/Tjc by ki,j , thus

1 ≥
∑

1≤j≤i

ki,jCj
Ti

+ min
{C1

Ti
, 1− ki,1T1

Ti

}
(28)

From (1), we have T1/Ti = 1/(ki,1 + γi,1), thus

1− ki,1T1

Ti
= 1− ki,1

ki,1 + γi,1
=

γi,1
ki,1 + γi,1

Also we have

C1

Ti
=
T1u1

Ti
=

u1

ki,1 + γi,1

Now we put all of these simplifications back in (28)

1 ≥
∑

1≤j≤i

ki,j
ki,j + γi,j

uj +
min{u1, γi,1}
ki,1 + γi,1

(29)

Moreover, we can simplify
∑ ki,j

ki,j+γi,j
uj as∑

1≤j≤i

ki,j
ki,j + γi,j

uj =
∑

1≤j≤i

uj −
∑

1≤j≤i

γi,j
ki,j + γi,j

uj (30)

Using (30) we rewrite (29) to obtain (26), and hence, the
claim is proven.

One of the properties of the necessary condition in Theo-
rem 3 is that this test becomes tighter than U ≤ 1 if∑

1≤j≤i

γi,j
ki,j + γi,j

uj <
min{u1, γi,1}
ki,1 + γi,1

(31)

because then the right-hand-side of (26) becomes smaller
than 1, which means that U ≤ 1− a where a ∈ R>0 .

It is worth noting that if it was possible to calculate the
exact amount of the effective workload of the high priority
jobs which are released before Ti and have absolute deadline
after Ti, it would be possible to derive an exact schedula-
bility test which is based on the workload calculation in the
interval from 0 to Ti instead of calculating the worst-case
response time of the tasks. As one of the contributions of
this paper, in the next theorem we derive a condition in
which the necessary schedulability test in Theorem 2 be-
comes a sufficient condition too, meaning that we provide
a polynomial-time exact schedulability test for RM in those
specific conditions.

Theorem 4. If the following condition holds, the task set
τ defined in Sect. 2 (which is either sporadic or periodic with
synchronous release) is schedulable by RM if and only if (25)
holds for every task τi, 1 ≤ i ≤ n.

Ai,1 ≤ Ai,2 ≤ . . . ≤ Ai,i−1 (32)

Proof. According to (32), the order of the release of the
last jobs of the high priority tasks must be the same as the
order of their priorities. With this condition, the last job of
τ1 is executed in the interval [si,1, fi,1]. Since Ai,2 > Ai,1,
the last job of τ2 comes either before fi,1 or after. In the
former case, it will be the highest priority task at fi,1 and
can be scheduled in the interval [fi,1, fi,1 + C2]. Since at
its release time, the processor is busy by executing τ1, there
is no other chance for τ2 to start earlier than fi,1. In the
latter case where Ai,2 > fi,1, the task τ2 will be the highest
priority task in the system right at its release since the last
instance of τ1 has already been executed and it will not be
released again in the system (due to the definition of Ai,1).
As a result, the upper bound of the start time of τ2 which
is calculated in (21) is equal to the exact start time of τ2.
The same rationale can be applied to τ3 and other high pri-
ority tasks, one by one. Consequently, ωi becomes the exact
effective workload of the higher priority jobs with deadline
larger than Ti. It means that if (25) holds, there exists a

Figure 6: Effect of period residual on schedulability.

time such as t ∈ [0, Ti] when the processor has nothing to
schedule, including τi. Although we do not know the exact
value of t, we know it exists since (25) holds. As a result,
the worst-case response time of τi happens before or at Ti,
which means that τi is schedulable 2.

6. EXPERIMENTAL RESULTS
In the first experiment, we study the effect of period ratio

on the schedulability of RM. We measure the schedulability
ratio, which is the ratio of schedulable task sets to the total
number of generated task sets. For Fig. 1, 2-(a), and 3-(a)
we have used the exact schedulability tests while in Fig. 7 we
show the performance of different schedulability tests such
as DCT [12], Park [18], linear method, our test in (11) which
is based on verifying t = Ti in (3), and finally, our necessary
schedulability test in (25). DCT algorithm finds the largest
set of harmonic periods which are smaller than the given
periods. Then it checks whether using these periods the
utilization is still smaller than 1 or not. In the linear method,
(3) is used while dt/Tje is approximated by (t/Tj) + 1. Test
of Park is based on verifying (3) at t = {Ai,j}1≤j≤i.

Effect of the minimum and maximum CPR on the schedu-
lability of RM has been shown in Fig. 1 and the effect of
period residual has been shown in Fig. 6. For these ex-
periments, we have generated random task sets with 10
tasks. Each data point reports average schedulability ratio
of 20,000 randomly generated task sets. To generate those
task sets, we have used uUniFast [4] and generated random
utilization values with total sum denoted in the diagram.
Each period has been generated as Ti = Ki,i−1×Ti−1 where
T1 has been selected with random distribution from [1, 10].
In Fig. 1-(a) and (b), Ki,i−1 is a random value with uniform
distribution in range [1,Kmax] and [Kmin, 4], respectively.
In Fig. 6, Ti = (ki,i−1+γi,i−1)×Ti−1 where ki,i−1 ∈ {1, 2, 3}
and γi,i−1 is the horizontal axis. After generating periods,
we have assigned the execution times as Ci = uiTi.

As shown in Fig. 1-(a), with the increase in the consecu-
tive period ratio, schedulability ratio increases. According
to (11), by the increase in ui, the effect of αi,j (see (12))
becomes more visible as we can see it in the schedulability
ratio of task sets with 0.975 utilization. Fig. 1-(b) shows
that with the growth of Kmin which implies larger CPR,
the schedulability significantly increases. The reason for the
drops in the schedulability around Kmin = 2 and 3 is that
Kmin affects Ki,j which in turn affects the the schedulabil-

2A more detailed proof is available in the Appendix

Figure 7: Schedulability ratio based on different
schedulability tests as a function of Kmax and pe-
riod residual.

ity. We have seen that when Kmin = 2 or 3, the average
value of γi,i−1 is around 0.5 which is not very helpful for a
task set with U = 0.975. We have seen that the drops of
the schedulability ratio are matched with the drops in the
average value of consecutive residuals.

As depicted in Fig. 6, for example in U ≤ 0.9, if we have
period residual larger than 0.5, the chance that the task set
becomes schedulable is high. According to this diagram,
to have a higher schedulability it is better to have larger
residual if the system is not highly utilized, e.g., U < 0.95.
Otherwise, it would be better to have very small period ratio.

Next, we evaluate performance of our necessary test with
the same task set generation which we used for Fig. 1-(a)
and Fig. 6 for U = 0.9. As shown in Fig. 7-(a), the test
of Park [18] is almost as good as the exact test. Also in
most cases, our test in (11) which only considers t = Ti in
evaluating (3) is much more efficient than the linear test.
When consecutive period ratio is small our necessary test
is able to detect 12% of non-schedulable task sets, e.g., in
Kmax < 1.4. Our necessary test is more efficient if it is used
for task sets with small CPR.

7. MORE EXPERIMENTS
As suggested by Lehoczky in [15], we can use a fixed point

method to obtain the WCRT of each task. It is suggested

to start from R
(0)
i = Ci and in each step, use the previously

calculated R
(m−1)
i to obtain R

(m)
i as follows:

R
(m)
i ≥ Ci +

∑
1≤j<i

⌈R(m−1)
i

Tj

⌉
Cj (33)

until R
(m)
i = R

(m−1)
i .

Figure 8: An example from [3] to show how the
reduced set of points is calculated for verifying the
schedulability of τ5.

Later in [3], another method has been presented to calcu-
late the WCRT of a task by finding a reduced set of points
where (3) must be evaluated. This set is obtained from the
following recursive function

T S(τi)
.
= Pi−1(Di) (34)

Pj(t) =

{
{t} j = 0

Pj−1

(⌊
t
Tj

⌋
Tj
)
∪ Pj−1(t) otherwise

(35)

where the starting point of the recursive function is Pi−1(Di).
This function recursively calls itself until it reaches to the
leaves, i.e., P0(t) = t, which in fact is one of the candidate
points in the final output. If two leaves in the search tree are
equal, only one of them is kept in the resulting set. An ex-
ample has been shown in Fig. 8 (Fig. 3 in [3]). This method
of obtaining WCRT is called hyper-plane exact test (HET).

The computational complexity of HET is said to be in-
dependent from the periods or period ratios. However, in
2008, Davis et al. [8] have shown that in practice, the num-
ber of ceiling operations needed to perform the WCRT test
using HET does not scale if periods are selected from wider
ranges and can have wider variety. We have shown a part of
these results in Fig. 9 (Table 5 from [8]). This table shows
the number of ceiling operations that are needed to verify
(3) until the WCRT is found. This number is shown as
a function of the order of magnitude of the growth in the
range from which periods are selected. In this experiments,
each task set has 24 tasks with an overall utilization of 85
percent. Periods are generated using a uniform distribution
from [1, 10x] where x is the order-of-magnitude mentioned
in the table.

In the next set of experiments we evaluate total number
of operations which has been done by each of those two
algorithms (i.e., RTA and HET). Note that instead of im-
plementing (34), we directly use the test which is presented
in [3] (the FPTest algorithm). The number which we report
is based on counting all operations that can be performed
in O(1), as 1. For example, if we have a loop that iterates
10 times and in each iteration it performs 5 non-loop simple
instructions, then we report 10 operations. Consequently,
each call to the WorkLoad algorithm in [3] is considered as
only 1 operation.

In order to generate random periods, here we use the
method suggested by [10] which implements a log-uniform

Figure 9: (Table 5 from [8]): a comparison between
HET and RTA in terms of the number of ceiling
operations required for verifying schedulability. The
header of the table shows how wide are the ranges
from which periods are randomly selected (with a
uniform distribution).

distribution for periods. First we generate a random value
ri with uniform distribution as:

ri ≈ U(log(Tmin), log(Tmax + Tg)) (36)

where Tg is the granularity of the periods, i.e., all periods will
be integer multiples of Tg. In our case, we assume Tg = 1.
Each period is obtained as

Ti =
⌊exp(ri)

Tg
Tg
⌋

(37)

Figures 10 to 13 show the results of experiments using log-
uniform periods. For each data point, 20000 random task
sets with U = 0.9 are generated. Utilization of each task
is chosen randomly using uUniFast algorithm. Similar to
Fig. 3 and Fig. 2, here we have shown how different period
generation method affects the average, minimum, and max-
imum CPR. Also, for the sake of clarity, we have plotted the
minimum and maximum utilization of the tasks in each task
set in part (c) of the diagrams. Note that since we have used
uUniFast to generate the utilizations, in all four figures part
(c) is the same. This diagram shows that if uUniFast is used
to generate random utilization, it will probably not generate
a case where 1 task has a large utilization, e.g., 80% and the
others have together 10% utilization. In fact, one possible
conclusion here is that uUniFast helps RM to have better re-
sults. Equation (11) shows that if uj values (task utilization
values) are small, they can very well hide the negative effect
of ki,j and γi,j on the schedulability. Our results emphasis
on the importance of revisiting the existing random task set
generation methods and their effects on RM schedulability
(or different schedulability tests).

In part (d) of Figures 10 to 13, we have shown the average
number of operations needed to analyze the schedulability
of a task set using RTA and HET algorithms. In all of the
diagrams, the horizontal axis is the number of tasks.

As it can be seen, HET is not scale-able when the number
of tasks increase and periods are fairly different from each
other. On the other hand, RTA method is very efficient even
in those situations.

8. RELATED WORK
One of the pioneering works to characterize RM-friendly

task sets is [12] where it has been shown that RM is able to
schedule a harmonic task set up to 100% utilization. Our
schedulability test in (16) covers the case of fully harmonic
tasks and brings another proof for their schedulability. An
algorithm to derive the minimum number of harmonic chains
has been presented in [14]. In addition, it has been shown

Figure 10: Periods with log-uniform distribution
from range [1, 100].

Figure 11: Periods with log-uniform distribution
from range [1, 1000].

Figure 12: Periods with log-uniform distribution
from range [1, 10000]. Figure 13: Periods with log-uniform distribution

from range [1, 100000].

Figure 14: Comparing schedulability ratio in Fig. 10
to 13 together.

that each harmonic chain can be considered as one aggregat-
ing task in the test, and hence, it leads to a reduced number
of tasks in the schedulability analysis process. In our work,
1) we quantify the effect of period residual (which shows how
periods are close to harmonic periods) on the schedulabil-
ity, and 2) we do not need to group the tasks into harmonic
chains in order to reduce the complexity of the test.

The effect of the tasks parameters on RM schedulabil-
ity has been studied in several previous works. A numerical
evaluation has been performed in [10] showing that selecting
periods from larger ranges, e.g., using log-uniform distribu-
tion, will increase RM schedulability. In our work, we have
quantified this effect. In [15] a stochastic analysis has been
performed to show that when the period ratio approaches to
infinity, the maximum schedulable utilization reaches to 1.
Also, the asymptotic value of this utilization depends only
on the period distributions (that is, it does not depend on
the distribution of WCETs). Both of these results are moti-
vations to our work to explicitly consider the role of period
ratios on the utilization bound of the RM. Meanwhile, in
the current work, instead of the size of the task set (and a
stochastic situation), we focus on the relative value of the
periods.

A sensitivity analysis of RM schedulability with respect
to the WCET and period was done by Bini et al. [5]. In
our work, we consider the mutual relation between periods
rather than periods themselves. In comparison, we take into
account the fact that changing the value of a period irre-
spective of its ratio to the other periods is not necessarily a
good choice for sensitivity analysis. In [8,10], it was noticed
(through experimental results) that having periods with dif-
ferent order of magnitudes is an important factor when gen-
erating random tasks. Still, they did not analytically studied
the effect of period ratio on the schedulability.

In [19] an efficient schedulability bound for RM has been
presented based on the ratio between the smallest and the
largest periods and utilization of the tasks. Our work consid-
ers more information about relative period ratio and resid-
ual of any pair of tasks in the tests. Moreover, our main
goal is to use the tests to understand the effect of period
ratio on RM schedulability. In [2], a utilization based test is
introduced for arbitrary deadline tasks. This test uses infor-
mation about the minimum ratio between any two consec-

utive periods, i.e., Kmin. Different from them, we exploit
information about relative period ratio of different tasks,
which leads to a less pessimistic test. The analysis in [2] be-
comes very pessimistic for tasks with almost similar periods
(small period residual), while our results show that in those
cases, schedulability increases. We will consider performing
a quantitative evaluation between our approach and theirs
after extending our method to arbitrary deadline tasks.

In [7] it has been shown that an RM-schedulable task set
with U = 1 will only be schedulable if the task set is semi-
harmonic, i.e., Tn|Ti; ∀i. Our result in (16) provides a more
general way to identify schedulable tasks with small, large,
or zero γi,j . Besides, we show how using Ti|Tj ; ∀1 ≤ j < i,
or having condition (32), the exact schedulability analysis
can be done in polynomial-time for some of the tasks.

9. CONCLUSIONS
In this paper, we have quantified the effect of period ratio

on the schedulability of RM in order to characterize RM-
friendly task sets (which can be scheduled by RM with a high
chance). To quantify this effect, we have introduced suffi-
cient schedulability tests which describe the schedulability as
a function of task utilizations and relative period ratio. We
have shown that not only harmonic periods but also the pe-
riods that are very close to an integer multiple of the smaller
periods are RM-friendly. Moreover, when tasks have large
relative period ratio, RM decisions become similar to EDF
decisions, which finally leads to high schedulability ratio for
those task sets. We have introduced a necessary schedulabil-
ity test for RM, and then showed that if a certain condition
holds for a task, our necessary (yet polynomial-time) test
becomes an exact schedulability test. As a future work, we
will consider constrained and arbitrary deadline tasks with
release jitter and then use our results to build more efficient
partitioning algorithms for multiprocessor systems.

Acknowledgment
We would like to thank our anonymous reviewers for their
insightful comments. This work has been supported by
Alexander von Humboldt Foundation.

10. REFERENCES
[1] N. Audsley, A. Burns, M. Richardson, K. Tindell, and

A. J. Wellings. Applying new scheduling theory to
static priority preemptive scheduling. Software
Engineering Journal, 8(5):284–292, 1993.

[2] E. Bini. The quadratic utilization upper bound for
arbitrary deadline real-time tasks. IEEE Transactions
on Computers, 64(2):593–599, 2015.

[3] E. Bini and G. Buttazzo. Schedulability analysis of
periodic fixed priority sysyems. IEEE Transactions on
Computers, 53(11):1462–1473, 2004.

[4] E. Bini and G. Buttazzo. Measuring the Performance
of Schedulability Tests. Real-Time Systems,
30(1-2):129–154, 2005.

[5] E. Bini, M. Di Natale, and G. Buttazzo. Sensitivity
analysis for fixed-priority real-time systems. In
Euromicro Conference on Real-Time Systems
(ECRTS), pages 10–22, 2006.

[6] E. Bini, A. Parri, and G. Dossena. A Quadratic-Time
Response Time Upper Bound with a Tightness

Property. In IEEE Real-Time Systems Symposium
(RTSS), pages 13–22, 2015.

[7] J. Chen. Extensions to fixed priority with preemption
threshold and reservation-based scheduling. PhD thesis,
University of Waterloo, Waterloo, Canada, 2005.

[8] R. Davis, A. Zabos, and A. Burns. Efficient Exact
Schedulability Tests for Fixed Priority Real-Time
Systems. IEEE Transactions on Computers,
57(9):1261–1276, 2008.

[9] A. Diaz-Ramirez, P. Mejia-Alvarez, and L. E.
Leyva-del Foyo. Comprehensive Comparison of
Schedulability Tests for Uniprocessor Rate-Monotonic
Scheduling. Journal of Applied Research and
Technology, 11(3):408–436, 2010.

[10] P. Emberson, R. Stafford, and R. Davis. Techniques
For The Synthesis Of Multiprocessor Tasksets. In
International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems
(WATERS), pages 6–11, 2010.

[11] N. Fisher and F. Dewan. Approximate Bandwidth
Allocation for Compositional Real-Time Systems. In
Euromicro Conference on Real-Time Systems
(ECRTS), pages 87–96, 2009.

[12] C.-C. Han and H.-Y. Tyan. A Better Polynomial-time
Schedulability Test for Real-time Fixed-priority
Scheduling Algorithms. In IEEE Real-Time Systems
Symposium (RTSS), pages 36–45, 1997.

[13] S. Kramer, D. Ziegenbein, and A. Hamann. Real
world automotive benchmark for free. In International
Workshop on Analysis Toolsand Methodologies for
Embedded Real-time Systems (WATERS), 2015.

[14] T.-W. Kuo and A. Mok. Load adjustment in adaptive
real-time systems. In IEEE Real-Time Systems
Symposium (RTSS), pages 160–170, 1991.

[15] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: exact characterization and
average case behavior, 1989.

[16] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time
environment. Journal of ACM, 20(1):46–61, 1973.

[17] M. Nasri and G. Fohler. An Efficient Method for
Assigning Harmonic Periods to Hard Real-Time Tasks
with Period Ranges. In Euromicro Conference on
Real-Time Systems (ECRTS), pages 149–159, 2015.

[18] M. Park and H. Park. An efficient test method for rate
monotonic schedulability. IEEE Transactions on
Computers, 63(5):1309–1315, 2014.

[19] H.-W. Wei, K.-J. Lin, W.-C. Lu, and W.-K. Shih.
Generalized rate monotonic schedulability bounds
using relative period ratios. Information Processing
Letters, 107(5):142–148, 2008.

Appendix
A more detailed proof for Theorem 4

Proof. For the proof, we need to show that (25) with (32)
provides a sufficient schedulability condition. As mentioned
in Sect. 3, existing a time instant t ≤ Ti which satisfies (3)
implies schedulability of task τi. As a result, we need only to
show that, when (32) holds, then (25) leads to the existence
of such a time instant t.

We first review a set of properties used in the proof:

bxc+ 1 ≥ dxe, ∀x ∈ R, (38a)

x ≤ n⇒ dxe ≤ n, ∀x ∈ R, ∀n ∈ Z, (38b)

n ≤ x⇒ n ≤ bxc, ∀x ∈ R, ∀n ∈ Z, (38c)

fi,j ≤ Ti, 1 ≤ j ≤ i− 1, (38d)

fi,j−1 ≤ fi,j , 2 ≤ j ≤ i− 1, (38e)

fi,j < Ti ⇒ fi,j − si,j = Cj , 2 ≤ j ≤ i− 1. (38f)

We elaborate the proof considering two possible cases.
a) fi,i−1 < Ti: According to (38e), this case implies that

fi,j < Ti for all j; 1 ≤ j ≤ i− 1. Consequently, due to (38f),
we have

∑
1≤j<i

(
fi,j − si,j

)
=
∑

1≤j<i Cj . Based on this

relation, (25) can be written as

Ti ≥
∑

1≤j≤i

⌊Ti
Tj

⌋
Cj +

∑
1≤j<i

Cj

= Ci +
∑

1≤j<i

(⌊Ti
Tj

⌋
+ 1

)
Cj (39)

Regarding (38a), Equation (39) leads to

Ti ≥ Ci +
∑

1≤j<i

⌈Ti
Tj

⌉
Cj (40)

Comparing this equation with (3) reveals that we have found
a time instant t ≤ Ti which satisfies (3).

b) fi,i−1 = Ti: First, let define a parameter tb as

tb = min (S ∪ {si,i−1}) (41)

where S = {si,j | 1 ≤ j < i− 1 ∧ si,k = fi,k−1 for all k ∈
[j + 1, . . . , i − 1]}. Intuitively, tb denotes the beginning of
the maximum interval which ends in Ti and the processor
is continually busy with running higher priority tasks (than
τi) during that interval. Further, let m be the respective
task index, i.e.

m = arg min
1≤j<i

{si,j | si,j = tb}. (42)

Based on Lemma 5, we have fi,j < Ti for j < m, which,
according to (38f), implies fi,j − si,j = Cj . As a result, we
can write ∑

1≤j<m

(fi,j − si,j) =
∑

1≤j<m

Cj . (43)

Moreover, based on Lemma 6, we have∑
m≤j<i

(fi,j − si,j) = Ti −Ai,m. (44)

Using (43) and (44) we can rewrite (25) as

Ti ≥
∑

1≤j≤i

⌊Ti
Tj

⌋
Cj +

∑
1≤j<m

Cj + Ti −Ai,m (45)

which yields

Ai,m ≥
∑

1≤j≤i

⌊Ti
Tj

⌋
Cj +

∑
1≤j<m

Cj

= Ci +
∑

1≤j<m

(⌊Ti
Tj

⌋
+ 1

)
Cj +

∑
m≤j<i

⌊Ti
Tj

⌋
Cj

Then, regarding (38a), we obtain

Ai,m ≥ Ci +
∑

1≤j<m

⌈Ti
Tj

⌉
Cj +

∑
m≤j<i

⌊Ti
Tj

⌋
Cj (46)

According to Lemma 7, we know that bTi/Tjc ≥ dAi,m/Tje
for j ≥ m. Thus, from (46) we can obtain:

Ai,m ≥ Ci +
∑

1≤j<m

⌈Ti
Tj

⌉
Cj +

∑
m≤j<i

⌈Ai,m
Tj

⌉
Cj (47)

In addition, as Ti ≥ Ai,m, we can further write

Ai,m ≥ Ci +
∑

1≤j<m

⌈Ai,m
Tj

⌉
Cj +

∑
m≤j<i

⌈Ai,m
Tj

⌉
Cj (48)

With (48), we have shown that (3) holds for some t ≤ Ti
(i.e., for t = Ai,m).

Now, we present lemmas used in the proof of Theorem 4.

Lemma 4. Consider m as defined in (42). Then, we have
si,m = Ai,m.

Proof. If m = 1, then si,1 = Ai,1 by definition. For
m > 1, if si,m 6= Ai,m, then, according to (21), we must
have si,m = fi,m−1. As a result, regarding (41) and (42), m
is not the minimum task index for which the condition in
(42) holds, which contradicts its definition.

Lemma 5. Considering m as defined in (42), we have
fi,j < Ti for j < m.

Proof. We prove the contrapositive of the lemma. If the
lemma does not hold, then ∃j < m such that fi,j = Ti. This
means that si,k = fi,k = Ti for all k ∈ [j+1, . . . , i−1} which
implies si,k = fi,k−1 for all k ∈ [j+1, . . . , i−1}. As a result,
m is not the minimum task index which is inconsistent with
its definition.

Lemma 6. For m as defined in (42), if fi,i−1 = Ti, then∑
m≤j<i

(fi,j − si,j) = Ti −Ai,m. (49)

Proof. First, we rephrase the left-hand-side of (49) as∑
m≤j<i

fi,j − si,j = fi,i−1 − si,m +
∑

m≤j<i−1

fi,j −
∑

m<j<i

si,j

= Ti − si,m +
∑

m<j<i

(fi,j−1 − si,j)

According to the definition of m (see (42) and (41)), we have
si,j = fi,j−1 for all j ∈ [m + 1, . . . , i − 1]; hence, the above
equation implies

∑
m≤j<i(fi,j − si,j) = Ti− si,m. Replacing

si,m with Ai,m (based on Lemma 4) completes the proof.

Lemma 7. Let m denote the parameter defined in (42);
then, for j ≥ m, we have dAi,m/Tje ≤ bTi/Tjc

Proof. For the proof, we notice, according to (32), that

for j ≥ m, we have
Ai,m

Tj
≤ Ai,j

Tj
. Since

Ai,j

Tj
∈ N, we can use

(38b) to conclude that⌈Ai,m
Tj

⌉
≤ Ai,j

Tj
(50)

Additionally, we consider that
Ai,j

Tj
≤ Ti

Tj
which, as

Ai,j

Tj
∈ N

and according to (38c), gives

Ai,j
Tj
≤
⌊Ti
Tj

⌋
(51)

Finally, mixing (50) and (51) yields dAi,m/Tje ≤ bTi/Tjc.

