
TU KAISERSLAUTERN

DOCTORAL THESIS

Algorithms and Tools for Verification and
Testing of Asynchronous Programs

A dissertation submitted to

the Department of Computer Science, TU Kaiserslautern

by

Zilong Wang

2015

c© Copyright by

Zilong Wang

2015

iii

Abstract
Algorithms and Tools for Verification and Testing of Asynchronous Programs

by Zilong Wang

Software is becoming increasingly concurrent: parallelization, decentralization, and

reactivity necessitate asynchronous programming in which processes communicate by

posting messages/tasks to others’ message/task buffers. Asynchronous programming

has been widely used to build fast servers and routers, embedded systems and sensor

networks, and is the basis of Web programming using Javascript. Languages such as

Erlang and Scala have adopted asynchronous programming as a fundamental concept

with which highly scalable and highly reliable distributed systems are built.

Asynchronous programs are challenging to implement correctly: the loose coupling

between asynchronously executed tasks makes the control and data dependencies diffi-

cult to follow. Even subtle design and programming mistakes on the programs have the

capability to introduce erroneous or divergent behaviors. As asynchronous programs

are typically written to provide a reliable, high-performance infrastructure, there is a

critical need for analysis techniques to guarantee their correctness.

In this dissertation, I provide scalable verification and testing tools to make asyn-

chronous programs more reliable. I show that the combination of counter abstraction

and partial order reduction is an effective approach for the verification of asynchronous

systems by presenting PROVKEEPER and KUAI, two scalable verifiers for two types

of asynchronous systems. I also provide a theoretical result that proves a counter-

abstraction based algorithm called expand-enlarge-check, is an asymptotically optimal

algorithm for the coverability problem of branching vector addition systems as which

many asynchronous programs can be modeled. In addition, I present BBS and LL-

SPLAT, two testing tools for asynchronous programs that efficiently uncover many sub-

tle memory violation bugs .

v

Acknowledgements

I would like to thank the many people who have encouraged my PhD studies and

made my years at MPI-SWS and TU-KL enjoyable.

I would like to thank my adviser Rupak Majumdar for his many years of excep-

tional guidance. He has not only provided me the necessary vision, encouragement

and advice throughout my graduate school journey but also given me great freedom

and trust to pursue independent research.

I thank my committee members and reviewers, Roland Meyer, Pierre Ganty, and

Klaus Schneider, for their valuable feedback and being flexible with my constraints.

I thank the many MPI-SWS and TU-KL professors who provided me valuable classes

and opinions: Roland Meyer, not only for his excellent concurrent theory and automata

courses that led me to the beautiful world of formal methods, but also for his care-

ful guidance and inspiration during the collaboration with him; Deepak Garg, for his

classes on type theories and logics; Ruzica Piskac, for her classes on decision proce-

dures and SAT/SMT theories.

I would like to thank the many academic collaborators: Indranil Saha, K.C. Shashid-

har, Sai Deep Tetali, and Min Gao (among others) for the many fruitful discussions I

have had with them. They have influenced me in more ways than they could imagine.

I had a great time during my internship at Microsoft Research, India. I thank Akash

Lal for hosting me there, the careful explanation of the large-scale verification tools

used in Microsoft, and his experience about doing research in industry.

I would also like to thank all friends at MPI-SWS for making my day-to-day life

entertaining: Ezgi Cicek, Yan Chen, Dmitry Chistikov, Rayna Dimitrova, Susanne van

den Elsen, Nancy Estrada, Johannes Kloos, Ori Lahav , Cheng Li, Filip Niksic, Vinayak

Prabhu, and Anne-Kathrin Schmuck. I specially thank Reinhard Munz for giving me a

lot of free driving to Saarland University. Without his kind help, I would have had to

start off at 5am to catch up with a train to Saarbruecken everyday.

Finally, I thank my parents for their unconditional love, patience and understand-

ing. I dedicate this dissertation to them.

vii

Contents

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Outline . 5

2 PROVKEEPER: A Provenance Verifier for Message Passing Programs 7
2.1 Introduction . 7
2.2 Example . 10
2.3 Message Passing Programs . 14

2.3.1 Programming Model . 15
2.3.2 Examples . 18

2.4 Model Checking . 18
2.4.1 Labeled Petri Nets . 19
2.4.2 From Message Passing Programs to Labeled Petri Nets 21

2.5 EXPSPACE Upper Bounds . 22
2.6 Implementation and Experiments . 26

2.6.1 Expand-Enlarge-Check and Partial Order Reduction 26
2.6.2 Case Studies: Message Passing Benchmarks 27
2.6.3 Private Mode and Firefox Extensions 28

2.7 Related Work . 31
2.8 Extensions . 31

3 KUAI: A Model Checker for Software-defined Networks 35
3.1 Introduction . 35
3.2 Software-defined Networks . 38
3.3 Optimizations . 46

3.3.1 Barrier Optimization . 47
3.3.2 Client Optimization . 49
3.3.3 (0,∞) Abstraction . 49
3.3.4 All Packets in One Shot Abstraction 50
3.3.5 Controller Optimization . 51

3.4 Implementation and Evaluation . 52
3.5 Proof Details . 57

3.5.1 Proofs for Barrier Optimization . 57
3.5.2 Proofs for Client Optimization . 61
3.5.3 Proofs for (0,∞) Abstraction . 63

Semantics . 63
Proofs . 64

3.5.4 Proofs for All Packets In One Shot 70

ix

3.5.5 Proofs for Controller Optimization 70
3.6 Related Work . 72

4 Expand, Enlarge, and Check for Branching Vector Addition Systems 73
4.1 Introduction . 73
4.2 Preliminaries . 76
4.3 Under- and Over-approximation . 78

4.3.1 Underapproximation . 78
4.3.2 Overapproximation . 81
4.3.3 EEC Algorithm . 84

4.4 Complexity Analysis . 85

5 BBS: A Phase-Bounded Model Checker for Asynchronous Programs 89
5.1 Introduction . 89
5.2 Sequentialization Overview . 90
5.3 Experimental Evaluation . 93

5.3.1 TinyOS Execution Model . 93
5.3.2 BBS Overview . 94
5.3.3 Experimental Experience with BBS 95

6 LLSPLAT: A Concolic Testing Tool with Bounded Model Checking 97
6.1 Introduction . 97
6.2 A Motivating Example . 99
6.3 Concolic Testing . 101

6.3.1 Program Model . 101
6.3.2 The Concolic Testing Algorithm 102

6.4 Combining Concolic Testing with BMC 103
6.4.1 Identifying Program Portions for BMC 104
6.4.2 Translating Governed Regions to BMC Formulas 106

The BMC Formula Generation Algorithm 106
6.4.3 Integrating BMC Formulas with Concolic Testing 108

Example . 110
6.5 Experiments and Evaluation . 111

6.5.1 Comparing LLSPLAT with CREST and KLEE 112
6.5.2 Comparing LLSPLAT with CBMC 113

6.6 Related Work . 113
6.7 Proof Details . 117

6.7.1 Preliminaries . 117
6.7.2 Properties of Effective Dominance Sets and Governors 118
6.7.3 Properties of the BMC Generation Algorithm 119

Bibliography 125

x

List of Figures

2.1 Medical system example . 10
2.2 Complemented finite automaton for provenance property 12
2.3 Translation of an example. 13

3.1 SSH Example . 36
3.2 Verification time vs processes . 54
3.3 State space of MAC learning controller . 55

5.1 An error trace before sequentialization . 92
5.2 The sequentialized error trace after sequentialization 92
5.3 The workflow of BBS . 95

6.1 Sequential program model . 101
6.2 An example for the concolic+BMC algorithm 106
6.3 A histogram for branch coverage improvement of LLSPLAT 113
6.4 Branch coverage . 114
6.5 The crossing time . 115
6.6 Topological ordering of the governed region 120
6.7 An execution from the governor gov to a destination d 121
6.8 Topological ordering of the governed region 121

xi

List of Tables

2.1 Message passing benchmarks . 28
2.2 Experimental results for PROVKEEPER (1) 29
2.3 Experimental results for PROVKEEPER (2) 33

3.1 Experimental results for KUAI . 53

5.1 TinyOS benchmarks . 96
5.2 Experimental results for BBS . 96

6.1 Edge formulas and block formulas . 108
6.2 Sequentialized SystemC benchmarks . 116

xiii

To my Family.

xv

Chapter 1

Introduction

Software is becoming increasingly concurrent: parallelization (e.g., in scientific com-

putations), decentralization (e.g., in web applications), and reactivity (e.g., for GUI

and web servers) necessitate asynchronous computations. Although shared-memory

implementations are often possible, the burden of preventing unwanted thread inter-

leavings without crippling performance is onerous. Many have instead adopted asyn-

chronous programming models in which processes communicate by posting messages/-

tasks to others’ message/task buffers—Miller et al.[94] discuss why such models pro-

vide good programming abstractions. An asynchronous program can involve either a

single process or multiple processes: a single-process asynchronous program executes

a series of short-lived tasks one-by-one, and each task may potentially buffering ad-

ditional tasks to be executed later. Since single-process asynchronous models ensure

quick response to incoming events (e.g., user input, connection requests), they have

been widely used to build fast servers and routers [71, 99], embedded systems and

sensor networks [58], and are the basis of Web programming using Javascript. On the

other hand, in a multi-process asynchronous program, each process handles messages

from its own buffer, and may communicate with other processes by sending messages

to others’ buffers. Languages such as Erlang and Scala have adopted the multi-process

asynchronous programming as a fundamental concept with which highly scalable and

highly reliable distributed systems are built.

Asynchronous programs are challenging to implement correctly. Writing correct

single-process asynchronous programs is hard since the loose coupling between asyn-

chronously executed tasks makes the control and data dependencies in the programs

difficult to follow. Writing correct multi-process asynchronous programs is also hard

1

2 Chapter 1. Introduction

because of the large amount of nondeterminisms introduced by process interleavings

and message delays. Even subtle design and programming mistakes on the programs

have the capability to introduce erroneous or divergent behaviors. As asynchronous

programs are typically written to provide a reliable, high-performance infrastructure,

there is a critical need for analysis techniques to guarantee their correctness.

In this dissertation, I provide scalable verification and testing tools to make asynchronous

programs more reliable.

Verification of Asynchronous Programs The goal of verification is that, given an

asynchronous program and a property, check whether the property holds in the pro-

gram. As side effect, a verifier may provide a witness explaining why the property

does not hold in the program.

Asynchronous programs are notoriously hard to verify because they may contain

infinitely many states due to the unbounded number of contents in buffers. It is im-

possible for a verifier to naively examine all states to check a property holds, from the

algorithmic point of view.

In the dissertation, I show that the combination of counter abstraction and partial or-

der reduction (CntAbs+POR) is an effective approach to verify asynchronous programs

in which contents in buffers are unordered. Counter abstraction bounds the number of

contents of the buffers abstractly: given a pre-defined bound k, as long as a buffer has

no more than k contents, counter abstraction counts the contents of the buffer precisely.

However, if the buffer contains more than k contents, counter abstraction regards it as

if it contains infinitely many contents. Therefore, from the verification point view, the

size of the buffer becomes finite after counter abstraction: either from 0 to k, or infinity.

Counter abstraction provides a finite-state over-approximation of the behaviors of an

asynchronous program. Thus if the over-approximation can be easily proved to be cor-

rect w.r.t. a property, the original asynchronous program is correct w.r.t. the property,

too.

Once the state space becomes finite, partial order reduction comes into play to fur-

ther reduce the number of states to be examined, intuitively, by analyzing “impor-

tant” ones only. Partial order reduction is the key to make verification of asynchronous

Chapter 1. Introduction 3

programs from possible to practical: I empirically show that the verification time on

realistic asynchronous systems is significantly reduced by partial order reduction tech-

niques.

In the dissertation, I present two applications following the CntAbs+POR approach.

I present (1) PROVKEEPER, a verifier for message passing systems, and (2) KUAI, a ver-

ifier for software-defined networks (SDNs). PROVKEEPER verifies provenance-related

properties on message passing systems such as browser extensions, ensuring correct

access control and information dissemination. KUAI verifies safety properties on SDNs,

such as no packet-forwarding loops, no black holes, and correct enforcement of mid-

dlebox policies, etc. I empirically show that both PROVKEEPER and KUAI are scalable

to verify realistic asynchronous systems efficiently.

Besides the above practical tools, I also provide a theoretical result about the expand-

enlarge-check algorithm (EEC) [47], which is a counter-abstraction based decision pro-

cedure for Petri nets [100] in which many asynchronous programs can be modeled [39,

45, 66, 67, 83, 112]. I extend EEC to branching vector addition systems (BVAS) [35], a

model that is more expressive than Petri nets, and prove that EEC is an asymptotically

optimal algorithm for both BVAS and Petri nets.

Testing of Asynchronous Programs When contents in buffers are FIFO-ordered in

asynchronous programs, precise algorithmic reasoning such as state-reachability be-

comes undecidable [16], even when there is only a single finite-state process (post-

ing messages to itself). Thus one cannot expect algorithmic tools that not only keep

the FIFO order requirement on contents but also prove the correctness of such asyn-

chronous programs. Instead, I choose to keep the FIFO order requirement but develop

efficient and scalable testing tools for such asynchronous programs. The goal of test-

ing is that, given an asynchronous program and a property, detect as many bugs as

possible that violate the property in the program. Testing is not required to prove the

property holds in asynchronous programs.

Sequentialization has been shown to be very successful for finding bugs in asyn-

chronous programs [4, 14, 49, 75, 76, 78, 79, 96, 103, 104, 116, 118]. The key idea of

4 Chapter 1. Introduction

sequentialization is to define a bounding parameter to translate an asynchronous pro-

gram into a sequential program such that the behaviours of the sequential program is

a subset of the ones of the original asynchronous program. In other words, the se-

quential program is an under-approximation of the original asynchronous program: if

the sequential program is buggy, then the asynchronous program is also buggy. Since

testing of sequential programs is well-understood, any tools that work for sequential

programs can be used for finding bugs in asynchronous programs.

Two factors are considered as the keys to maximize the value of sequentialization.

The first factor is to show a bounding parameter is effective in the sense that under a

small bound, many interesting bugs can be found already in realistic applications. This is

important because (1) a smaller bound results in a smaller under-approximation which

is easier for a tool to analyze, and (2) many bounding parameters can be naively defined

in theory but are not scalable to find bugs efficiently in real applications. The second

factor is the capability of the underlying tools for sequential programs. After all, it is

the tools that perform the work for finding bugs.

In the dissertation, I present two testing tools BBS and LLSPLAT, keeping the above

two factors in mind. Bouajjani and Emmi introduced phase-bounding sequentialization

algorithm [13] for asynchronous programs. However, there was no empirical evalua-

tion to show the practical value of phase-bounding. I implement the phase-bounding

algorithm in the tool BBS and use BBS to test TinyOS [46, 58] programs, which are

widely used in wireless sensor networks. The empirical results indicate that a vari-

ety of subtle memory violation bugs are manifested within a small phase bound (3 in

most of the cases). From the evaluation, I conclude that phase-bounding is an effective

approach in bug finding for asynchronous programs.

The next contribution is LLSPLAT, a testing tool for sequential programs. LLSPLAT

combines concolic testing [52, 111] and bounded model checking [29, 31, 73, 92] to-

gether to gain better testing performance. I evaluate LLSPLAT with two state-of-the-art

concolic testing tools CREST [19] and KLEE [20] using 36 standard benchmarks. The

evaluation shows that (1) for the same time budget (an hour per program), LLSPLAT

provides on average 31%, 19%, 20%, 21% higher branch coverage than CREST’s four

Chapter 1. Introduction 5

search strategies, and on average 21% higher branch coverage than KLEE, and (2) LL-

SPLAT achieves higher branch coverage quickly: LLSPLAT starts to outperform CREST

and KLEE after at most 3 minutes. In addition, I also evaluate LLSPLAT with the state-

of-the-art bounded model checker CBMC [73] using 13 sequentialized SystemC bench-

marks. The experiments show that LLSPLAT can find bugs more quickly than CBMC.

1.1 Outline

The rest of my dissertation is organized as follows. Chapter 2–4 present PROVKEEPER,

KUAI, and the complexity results of EEC, respectively, which show the power of counter

abstraction and partial order reduction for the verification of asynchronous programs.

Chapter 5 and Chapter 6 present BBS and LLSPLAT, respectively, which enrich the tech-

niques for testing asynchronous programs. The first four contributions have been pub-

lished in [86], [88], [90], and [89], respectively. The work about LLSPLAT is currently

under submission.

Chapter 2

PROVKEEPER: A Provenance Verifier

for Message Passing Programs

2.1 Introduction

Controlled access and dissemination of data is a key ingredient of system security: we

do not want secret information to reach untrusted principals and we do not want to

receive bad information (indirectly) from untrusted principals. Many organizations re-

ceive private information from users and this information is passed around within the

organization to carry out business-critical activities. These organizations must ensure

that the data is not accidentally disclosed to unauthorized users, as the potential cost of

disclosure can be high. Moreover, in many domains, such as healthcare and finance, the

control of data is required by regulatory agencies through legislation such as HIPAA

and GLBA.

We present an abstract model of information dissemination in message passing

systems, and a static analyzer to verify correct dissemination. We model systems as

concurrent message passing processes, one process for each principal in the system.

Processes communicate by sending and receiving messages via a shared set of chan-

nels. Channels are unbounded, but can reorder messages. Sends are non-blocking, but

receive actions block until a message is available.

To track information about the origin and access history of a message, we aug-

ment messages with provenance annotations. Roughly, the provenance of a message

is a function of the sequence of principles that have transmitted the message in the

7

8 Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs

past. Depending on the function, we get different provenance annotations. For exam-

ple, the annotation can simply be the sequence of principals. Whenever a principal

sends a message, we append the name of the principal to the current provenance of the

message. The provenance verification problem asks, given a message passing program,

a variable in the program, and a set of allowed provenance annotations, whether the

provenance of every message stored in the variable, on every run of the program, be-

longs to the set of allowed provenances.

Consider a healthcare system in which a patient sends health questions to a sec-

retary or a nurse, who in turn, forwards the question to doctors. An information-

dissemination policy may require that every health answer received by the patient has

been seen by at least one doctor. That is, the provenance of every message received by

the patient must belong to the regular language Patient(Secretary + Nurse) Doctor+.

We consider provenance verification for general provenance domains satisfying an

algebraic requirement. Static provenance verification is hard because of two sources

of unboundedness in the model. First, the provenance information associated with a

single message can be unbounded. For example there is no bound on the number of

doctors who see a health question before an answer is sent back. Second, the number

of pending messages in the system can be unbounded. We tackle these two sources of

unboundedness as follows.

We give a reduction from provenance verification problem to coverability in labeled

Petri nets, where tokens carry (potentially unbounded) provenance data. As a result,

we obtain a general decidability result for provenance verification problem, when the

domain of provenance annotations is well-structured [1, 41]. Specifically, we show

verification is EXPSPACE-complete for the set provenance domain, that tracks the set

of principals that have seen a message, as well as for the language provenance do-

main, in which provenance information is stored as ordered sequences of principals

that have seen the message and policies are regular languages. Our proofs combine

well-structuredness arguments with symbolic representations; we analyze coverability

in a product of a Petri net modeling the system and a symbolic domain encoding the

set of allowed provenances.

While our decision procedures reduce the verification problems to problems on

Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs 9

Petri nets, our experiences with a direct implementation of provenance verification

based on existing Petri net coverability tools have been somewhat disappointing. Mostly,

this is because after the reduction to Petri nets, the coverability tools fail to utilize the

structure of message passing programs, in particular potential state-space reductions

arising from partial order reduction (POR) [51].

We implemented a coverability checker PROVKEEPER that is tuned for message

passing programs on top of the Spin model checker [59]. Our implementation uses the

expand-enlarge-check (EEC) paradigm [47]. The EEC algorithm explores a sequence of

finite-state approximations of the message passing program. Intuitively, the approxi-

mation is obtained by replacing the counters in the Petri net with “abstract” counters

that count precisely up to a given parameter k, and then set the count to∞. Since the

induced state space is finite for each approximation, we can use a finite-state reachabil-

ity engine (such as Spin) to explore its state space. Additionally, we use partial order

reduction, already implemented in Spin, to reduce the explored state space, allowing

local actions of different processes to commute.

Our choice of a message passing programming model with unbounded but un-

ordered buffers was inspired by the communication model in browser extensions, where

several components communicate asynchronously. Specifically, we checked the follow-

ing property of extensions. Most browsers have a “private mode” that allow users to

browse the internet without saving information about pages visited. Browser exten-

sions should respect the private mode and not save user information (or worse, upload

user information to remote servers) while the user is browsing in the private mode. We

checked this property and found that several widely-used Firefox extensions, includ-

ing some extensions whose purpose is to improve user privacy, do not properly handle

“private mode” settings. Among nine browser extensions using message passing, local

storage, and sometimes remote database accesses, we found five extensions store user

data even in the private mode. Thus, our experiments demonstrate that a precise static

tool can be useful in detecting privacy violations in this domain.

One can view our result as a general compilation procedure from a provenance

verification problem for a program P to a safety verification problem for an instru-

mented program P ′. The instrumentation P ′ adds some counters to P but keeps the

10 Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs

patient {
var p1, p2, p3;
while (true) {

choose
P1: [] p1 = HQ; send(ch0, p1);
P2: [] p1 = AR; send(ch0, p1);
P3: [] recv(ch1, p2);
P4: if (p2 == HA) p3 = p2;

}
}

secretary {
var s1, s2;
while (true) {

S1: recv(ch0, s1);
S2: if (s1 == HQ)
S3: send(ch2, s1);
S4: else {
S5: s2 = AA(s1);
S6: send(ch1, s2);

} }
}

}
doctor{

var d1, d2;
while(true) {

D1: recv(ch2, d1);
D2: d2 = HA(d1);
D3: choose
D4: [] send(ch1, d2);
D5: [] send(ch2, d2);

}
}

Pa#ent' Secretary' Doctor'

ch0'

ch2'

ch2'

ch1'

FIGURE 2.1: Medical system example

other features (e.g., complex control flow and data structures) the same: program P ′

is safe iff P satisfies the provenance properties. After the reduction, we can harness

any verification technique that has been developed for the underlying class of pro-

grams (e.g., abstract interpretation or software model checking). Our experiments use

a simple dataflow abstraction, but other abstract domains could be used for more pre-

cision. We chose message passing programs for our presentation as they capture the

essence of provenance tracking: concurrency, unbounded provenance information, and

unbounded channels. This focus allows us to settle the complexity of provenance veri-

fication without mixing it with the complexity of features in the programming model.

2.2 Example

We motivate our results by modeling a simple online health system described in [8],

which allows patients to interact with their doctors and other healthcare professionals

using a web-based message passing system. In the system, users have different roles,

such as Patient, Secretary, and Doctor. Patients can ask health questions and receive

answers by exchanging messages with their doctors.

Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs 11

For simplicity of exposition, we describe a subset of the functionality of the system

as a message passing program. (In Section 2.6, we modeled the entire system as a case

study.) Intuitively, a message passing program is a collection of imperative processes

running concurrently, one for each principal in the system. In our example, each role

(Patient, Doctor, etc.) is modeled as a different principal. The processes run by the

principals have local variables, and in addition, communicate with each other by send-

ing to and receiving from shared channels. We assume shared channels are potentially

unbounded, but may reorder messages. Message sends are non-blocking, the execu-

tion continues at the control point following the send. Receives are blocking: a process

blocks until some message from the channel is received.

Figure 2.1 shows a simple implementation of the system, written in a simple imper-

ative language. We have three principals: Patient (modeling the set of patients using

the system), Secretary (modeling secretaries who receive and forward messages), and

Doctor (modeling the set of doctors using the system). The choose construct nondeter-

ministically chooses and executes one of its branches. A send action sends a message

to a channel, and a recv receives a message from a channel into a local variable.

There are four kinds of messages in the system. The patient can send a health ques-

tion (HQ) or an appointment request (AR). The healthcare providers can send back a

health answer (HA) or an appointment confirmation (AA). The principals communi-

cate through shared channels ch0, ch1, and ch2.

The patient process runs in a loop. In each step, it nondeterministically decides

to either send an HQ or an AR to ch0, or to receive an answer on channel ch1. The

secretary process runs a loop. In each step, it receives a message from channel ch0.

If it is an HQ, the message is forwarded to doctors on channel ch2. If it is an AR,

the secretary answers the patient directly on channel ch1. The doctor process receives

health questions on channel ch2. It computes a health answer based on the received

message (the assignment on line D2). It can either reply directly to the patient (on

channel ch1), or put the answer back to channel ch2 for further processing.

Figure 2.1 also shows a possible message sequence for a health question, where the

patient sends a health question to the secretary, the secretary forwards it to the doctor,

and the doctor looks at the message several times before replying with a health answer.

12 Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs

q0 q1 q2 q3Patient Secretary Doctor
Doctor

FIGURE 2.2: Complemented finite automaton for provenance property.
We omit an accepting sink to which all unspecified edges go.

We capture the flow of messages through the principals using provenance annotations

with each message; the provenance captures the history of all the principals that have

forwarded the message. While in Section 2.3 we give a general algebraic definition

of a provenance domain, for the moment, think of a provenance as a string over the

principals. When a message is initially assigned, e.g., on line P1, the provenance is the

empty string ε. After the patient sends the message, the channel ch0 contains an HQ

message with provenance Patient. When the message is forwarded to channel ch2, its

provenance becomes Patient Secretary. Finally, when the message is sent back on ch1,

its provenance is a string in the regular language Patient Secretary Doctor+, indicating

that it has been sent originally by the patient, seen by the secretary next, and then seen

by the doctor one or more times.

The provenance verification problem asks, given the message passing program, a vari-

able v, and a regular language R of provenances, whether the content of v has a prove-

nance in R along all program executions. In the example, we can ask if the provenance

of variable p3 is in the set

ε+ Patient Secretary Doctor+, (2.1)

capturing the requirement that any health answer must be initiated by a health ques-

tion from the patient, and must be seen by a doctor at least once, after it has been seen

by a secretary.

Notice that the example is unbounded in two dimensions. First, the channels can

contain unboundedly many messages. For example, the patient process can send un-

boundedly many messages on channel ch0 before the secretary process receives them.

Second, the provenance annotations can be unbounded: a message in channel ch2 can

have an unbounded number of Doctor annotations.

We show the provenance verification problem is decidable. The first observation

Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs 13

patient {
var p1, p2, p3;
while (true) {

choose
P1′ [] p1 = 〈HQ,q0〉; 〈ch0, HQ,q1〉++;
P2′ [] p1 = 〈AR,q0〉; 〈ch0, AR,q1〉++;
P31 [] if 〈ch1, HQ, q〉 > 0 (for each q ∈ Q)

p2 = 〈HQ, q〉; 〈ch1, HQ, q〉-;
P32 [] if 〈ch1, HA, q〉 > 0 (for each q ∈ Q)

p2 = 〈HA, q〉; 〈ch1, HA, q〉-;
P4′ if (p2 == (HA, ·)) p3 = p2;
P33 [] if 〈ch1, AA, q〉 > 0 (for each q ∈ Q)

p2 = 〈AA, q〉; 〈ch1, AA, q〉-;
P34 [] if 〈ch1, AR, q〉 > 0 (for each q ∈ Q)

p2 = 〈AR, q〉; 〈ch1, AR, q〉-;
}

}

FIGURE 2.3: Translation of patient. We have simplified some state-
ments for readability: the actual translation performs a case split over
p1 in lines P1′ and P2′, and performs the check on line P4′ after each

statement P3i.

is that, if we ignore provenances, we can keep a counter for each channel ch and each

message type m, that counts the number of messages with value m that are currently

in ch . A send action increases the counter, a receive decrements it. We can then show

that the transition system of a message passing program is well-structured [1, 41]: an

action that could be taken in a state can also be taken if there are more messages in the

channels. Formally, we give a reduction to Petri nets, an infinite-state well-structured

system with good decidability properties.

In the presence of provenances, we have to be more careful. Unlike a normal Petri

net, now the “tokens” (the messages in the channels) will carry potentially unbounded

provenance annotations. However, given the regular setR, we only need to distinguish

two provenance annotations that behave differently with respect to a deterministic fi-

nite automaton A for R. So, we keep more counters that are now of the form 〈ch,m, q〉:

one counter for each combination of channel ch, message type m, and state q of A. The

state of the automaton A remembers where the automaton would go to, starting with

its initial state, on seeing the provenance annotation. Similarly, for each variable in the

program, we distinguish the contents of the variable based on the message type m as

well as the state q of the automaton.

14 Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs

Figure 2.2 shows a deterministic automaton accepting the complement of the lan-

guage in (2.1). Using this automaton, we describe the reduction to a well-structured

system as follows. Let Q = {q0, q1, q2, q3, q4} be the set of states of the automaton (q4

is the omitted sink state). We have a set of integer-valued counters 〈chi,m, q〉, for

i= 0, 1, 2, m ∈ {HQ, HA, AA, AR}, and q ∈Q. For example, the counter 〈ch0, HQ, q1〉 stores

the number of HQs in ch0 for which the automaton is in state q1. Figure 2.3 shows the

translation of the patient process. The send actions are replaced by incrementing

the appropriate counter. For example, the action send(ch0,p1) in line P1 is replaced

with incrementing the counter 〈ch0, HQ, q1〉, the state of the automaton is q1 because the

principal Patient takes the automaton from its initial state q0 to the state q1. The re-

ceive action non-deterministically selects a non-zero counter and decrements it, while

storing the message and the state into the local variable.

After the translation, we are left with a well-structured system. Verifying the prove-

nance specification reduces to checking if there is a reachable configuration of the sys-

tem in which v contains a message whose provenance automaton is in a final state.

This reachability question can be solved as a coverability problem on the well-structured

system, which is decidable. In fact, we show a symbolic encoding that gives an optimal

algorithm.

2.3 Message Passing Programs

Preliminaries A multiset m over a set Σ is a function Σ → N with finite support (i.e.,

m(σ) 6= 0 for finitely many σ ∈ Σ). By M[Σ] we denote the set of all multisets over

Σ. As an example, we write m = Jσ21, σ3K for the multiset m ∈ M[{σ1,σ2,σ3}] with

m(σ1) = 2,m(σ2) = 0, and m(σ3) = 1. We write ∅ for the empty multiset, mapping

each σ ∈ Σ to 0. Two multisets are ordered by m1 ≤ m2 if for all σ ∈ Σ, we have

m1(σ) ≤ m2(σ). Let m1 ⊕m2 (resp. m1 	m2) be the multiset that maps every element

σ ∈ Σ to m1(σ) +m2(σ) (resp. max{0,m1(σ)−m2(σ)}).

For a set X , a relation � ⊆ X×X is a well-quasi-order (wqo) if it is reflexive, transi-

tive, and such that for every infinite sequence x0, x1, . . . of elements fromX , there exists

Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs 15

i < j such that xi � xj . Given a wqo �, we define its induced equivalence ≡ ⊆ X ×X by

x ≡ y if x � y and y � x.

A subset X ′ of X is upward closed if for each x ∈ X , if there is a x′ ∈ X ′ with x′ � x

then x ∈ X ′. A subset X ′ of X is downward closed if for each x ∈ X , if there is a x′ ∈ X ′

with x � x′ then x ∈ X ′. A function f : X → X is called �-monotonic if for each

x, x′ ∈ X , if x � x′ then f(x) � f(x′).

A transition system TS = (C, c0,→) consists of a set C of configurations, an initial

configuration c0 ∈ C, and a transition relation→⊆ C ×C. We write→∗ for the reflexive

transitive closure of→. A configuration c ∈ C is reachable if c0 →∗ c. A well-structured

transition system is a TS = (C, c0,→) equipped with a well-quasi order � ⊆ C × C such

that for all c1, c2, c3 ∈ C with c1 � c2 and c1 → c3, there exists c4 ∈ C with c3 � c4 and

c2 → c4.

2.3.1 Programming Model

Syntax We work in the setting of asynchronous message passing programs. For sim-

plicity, we assume that the programming language has a single finitely-valued datatype

M of messages. A channel is a (potentially unbounded) multiset of messages support-

ing two actions: a send action (written ch!x) that takes a message stored in variable x

and puts it into the channel, and a receive action (written ch?x) that takes a message m

from the channel and copies it to the variable x. Let C be a finite set of channels.

A control flow graph (CFG)G = (X,V,E, v0) consists of a setX of message variables,

a set V of control locations including a unique start location v0 ∈ V , and a set E of

labeled directed edges between the control locations in V . Every edge in E is labeled

with one of the following actions:

• an assignment y := ⊗(x), where x, y ∈ X and ⊗ is an uninterpreted unary opera-

tion on messages;

• an assume action assume(x = m), where x ∈ X and m ∈M;

• a send action ch!x, or a receive action ch?x, where x ∈ X and ch ∈ C.

A message passing program P = (Prin, C, {Gp}p∈Prin) consists of a finite set Prin of

principals, a set C of channels, and for each p ∈ Prin , a control flow graph Gp.

16 Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs

Intuitively, a message passing program consists of a finite set of processes. Each

process is owned by a named entity or a principal. The processes have local variables

which can be updated using unary operators, and communicate with other processes

by asynchronously sending to and receiving messages from the set of channels C.

We shall use the notation v
a,p−−→ v′ to denote that the CFG Gp of principal p has an

edge (v, v′) ∈ Ep labeled with the action a. Given the set {Gp}p∈Prin of CFGs, we define

XF =]{Xp | p ∈ Prin}, V F =]{Vp | p ∈ Prin}, and EF =]{Ep | p ∈ Prin} as the

disjoint unions of local variables, control locations, and control flow edges, respectively.

Semantics We now give a provenance-carrying semantics to message passing programs.

Let U be a (not necessarily finite) set of provenances. We shall associate with each mes-

sage in a message passing program a provenance from U .

Let P = (Prin, C, {Gp}p∈Prin) be a message passing program. A provenance domain

U = (U,�, ψ) for P consists of a set U of provenances, a well-quasi ordering � on U ,

and for each principal p ∈ Prin and for each operation op ∈ ⊗ ∪ {!, ?}, a �-monotonic

function ψ(p, op) : U → U . A provenance domain is decidable if � is a decidable

relation and ψ is a computable function. We assume all provenance domains below are

decidable.

Since channels are unordered, we represent contents of a channel as a multiset of

pairs of messages and provenances. A configuration (`, c, π) consists of a location func-

tion ` : Prin → V F mapping each principal to a control location; a channel function

c : C → M[M× U] mapping each channel to a multiset of pairs of messages fromM

and provenances from U ; and a store function π : XF →M×U mapping each variable

to a message and its provenance.

Define `0 : Prin → V F as the function mapping p ∈ Prin to the start location

v0p ∈ Vp and c0 : C → M[M× U] as the function mapping each ch ∈ C to the empty

multiset ∅. Let π0 :XF→M×U be a mapping from variables in XF to a default initial

value m0 fromM and a default initial provenance ε from U .

The provenance-carrying semantics of a message passing programP with respect to

the provenance domain (U,�, ψ) is defined as the transition system TS(P) = (C, c0,→)

Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs 17

where C is the set of configurations, the initial configuration c0 = (`0, c0, π0), and the

transition relation→⊆ C × C is defined as follows.

For a function f : A → B, a ∈ A, and b ∈ B, let f [a 7→ b] denote the function

that maps a to b and all a′ 6= a to f(a′). We define (`, c, π) → (`′, c′, π′) if there exists

p ∈ Prin and (`(p), a, `′(p)) ∈ EF such that for all p′ 6= p, we have `(p′) = `′(p′); and

1. if a ≡ y := ⊗(x) and (m,u) = π(x) then c′ = c and π′ = π[y 7→ (⊗(m), ψ(p,⊗)(u))];

2. if a ≡ assume(x = m) then c′ = c, π′ = π, and π(x) = (m, ·);

3. if a ≡ ch!x then π′=π and if (m,u)=π(x), then c′ = c[ch 7→ c(ch)⊕J(m,ψ(p, !)(u))K];

4. if a ≡ ch?x and there is (m,u) such that c(ch)(m,u) > 0 then c′ = c[ch 7→

c(ch)	J(m,u)K] and π′ = π[x 7→ (m,ψ(p, ?)(u))].

Intuitively, in each step, one of the principals executes a local action. An assignment

action y := ⊗(x) transforms the message contained in x by applying the operation

⊗ and transforms the provenance of x by applying ψ, storing the new message and

its provenance in y. An assume checks that a variable has a specific message. Sends

and receives model asynchronous communication to shared channels. Send actions are

non-blocking, receive actions are blocking, and a channel can reorder messages.

Let P be a message passing program and U = (U,�, ψ) a provenance domain. We

consider provenance specifications given by downward closed sets over U . Downward

closed sets capture the “monotonicity” property that holds in many domains. For ex-

ample, a security policy that holds when a given set of trusted principals looks at a

message, is also met when fewer principals look at it. Conversely, bad behaviors are

captured by upward closed sets.

The provenance verification problem asks, given a variable x of P and a downward

closed set D ⊆ U , if the provenance of the content of variable x is always in D along

all runs of the program. Dually, the specification is violated if there exists a reachable

configuration where the provenance of variable x is in the upward closed set I = U\D.

Such a configuration indicates a violation of security policies. We shall use the dual

formulation in our algorithms.

18 Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs

2.3.2 Examples

We now give illustrative examples of provenance domains.

Example 1. [The Language Provenance Domain] Consider U = Prin∗, the set of finite

sequences over principals. Let (Q,Prin, q0, δ) be a deterministic finite automaton, and let � be

defined as u � v iff δ(q0, u) = δ(q0, v). Let ψ be the function defined as ψ(p, !)(u) = u · p, and

ψ(·, ·)(u) = u for all other operations. Intuitively, the language provenance domain associates

a list of principals with each message: the sequence of principals who have sent this message

along the current computation.

A downward closed set D in the language provenance domain is a regular language that

prescribes a set F ⊆ Q of final states for the finite automaton A. The corresponding upward

closed set I is a regular language that prescribes a set Q \ F of final states for the complement

automaton A. The provenance verification problem asks, for example, if the provenance of the

message in p3 always belongs to the regular language Patient Secretary Doctor+ along all

runs of the program.

Example 2. [The Set Provenance Domain] Let U = 2Prin , the set of sets of principals. Let

� be set inclusion. Since the set of principals is finite, this is a wqo. Let ψ be the function

defined as ψ(p, !)(u) = u∪ {p}, and ψ(·, ·)(u) = u for all other operations. The set provenance

domain associates a set of principals with each message: the set contains all the principals who

have sent this message (potentially multiple times). An upward closed set I corresponds to a

set of sets of principals, such that if a set of principals is in I , each of its supersets is also in I .

As an example, suppose the set of principals Prin is divided into “trusted” and “untrusted”

principals. A downward closed set D specifies the sets all of whose elements are “trusted”.

As a result, the corresponding upward closed set I captures all sets containing at least one

“untrusted” principal. The provenance verification problem asks, given a variable x, if there is

a message stored in x along a run that has a provenance which is one of the sets in I .

2.4 Model Checking

We now give a model checking algorithm for provenance verification by reduction to

labeled Petri nets.

Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs 19

2.4.1 Labeled Petri Nets

A Petri net (PN) is a tuple N = 〈S, T, (I,O)〉where S is a finite set of places, T is a finite

set of transitions, and functions I : T → S → {0, 1} and O : T → S → {0, 1} encodes

pre- and post-conditions of transitions.

A marking is a multiset over S. A transition t ∈ T is enabled at a marking µ, denoted

by µ[t〉, if µ ≥ I(t). An enabled transition t at µ may fire to produce a new marking µ′,

denoted by µ[t〉µ′, where µ′ = µ 	 I(t) ⊕ O(t). We naturally lift the enabledness and

firing notions from one transition to a sequence σ ∈ T ∗ of transitions.

A PNN and a marking µ0 define a transition system TS(N) = (M[S], µ0,→), where

µ→ µ′ if there is a transition t such that µ[t〉µ′.

The encoding of a PN N is given by a list of pairs of lists. Each transition t ∈ T is

encoded by two lists corresponding to I(t) and O(t). Each list I(t) or O(t) is encoded

as a bitvector of size |S|. The size of N , written ‖N‖, is the sum of the representations

of all the lists.

Let N be a Petri net and µ0 and µ markings. The coverability problem asks if there is

µ′ ≥ µ that is reachable from µ0, so µ0 →∗ µ′ ≥ µ. In this case, we say µ is coverable

from µ0.

Theorem 1. [82, 106] The coverability problem for Petri nets is EXPSPACE-complete.

In the usual definition of Petri nets, tokens are simply uninterpreted “dots” and

markings count the number of dots in each place. We now extend the Petri net model

with tokens labeled with elements from a decidable provenance domain U . A U-labeled

Petri netN = 〈S, T, (I,O),Λ〉 is a Petri net 〈S, T, (I,O)〉 that is equipped with a labeling

function Λ specifying how provenance markings are updated when a transition is fired.

Consider a transition t ∈ T . Let p1, . . . , pk be an ordering of all the places in S for which

I(t)(p) = 1. For each place p′ ∈ S with O(t)(p′) = 1, the labeling function Λ(t, p′) is a

�-monotonic function Uk → U . We assume the labeling function Λ is computable.

A labeled marking µ is a mapping from places S to multisets over U , i.e., it labels

each token in a marking with an element of U . A labeled marking µ induces a marking

erase(µ) that maps each p ∈ S to
∑

u∈U µ(p)(u) obtained by erasing all provenance

information carried by tokens. Fix a transition t, and let p1, . . . , pk be an ordering of the

20 Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs

places such that I(t)(p) = 1. The transition t is enabled at a labeled marking µ if for

each p ∈ S with I(t)(p) = 1, we have erase(µ)(p) ≥ 1. An enabled transition t at µ can

fire to produce a new labeled marking µ′, denoted (by abuse of notation) µ[t〉µ′, defined

as follows. To compute µ′ from µ, first pick and remove arbitrarily tokens from p1 to pk

with labels u1 to uk respectively. Then, for each p′ withO(t)(p′) = 1, add a token whose

label is Λ(t, p′)(u1, . . . , uk) to p′. All other places remain unchanged. We extend the

firing notion to sequences of transitions, as well as notions of transition system, size,

reachability, and coverability to labeled Petri nets in the obvious way.

To prove the coverability problem is decidable for U-labeled Petri nets, we argue

that their transition systems (M[U]S , µ0, ↪→) are well-structured in that the labeled mark-

ings can be equipped with an order that allows larger labeled markings to mimic the

behaviour of smaller ones, i.e. there is a wqo� ⊆ M[U]S ×M[U]S that is compatible

with the transitions: for all µ1↪→µ′1 and µ1�µ2 there is µ2 ↪→ µ′2 so that µ′1 � µ′2.

To define a suitable wqo on labeled markings, we first compare the multisets on a

place. Intuitively, µ(p) � µ′(p) with µ, µ′ ∈ M[U]S and p ∈ S if for every u in µ(p)

there is an element u′ in µ′(p) such that u � u′ in the wqo � of the provenance domain.

Hence, µ � µ′ if for each p ∈ S there is an injective function fp : µ(p) → µ′(p) so

that for each u ∈ µ(p), we have u � fp(u). The result is a wqo by Higman’s lemma

[57] and the fact that wqos are stable under Cartesian products. The ordering is also

compatible with the transitions by the monotonicity requirement on labelings. The

following theorem follows using standard results on well-structured transition systems

[1, 41].

Theorem 2. The coverability problem for U-labeled Petri nets is decidable and EXPSPACE-

hard for decidable provenance domains U .

The coverability problem for labeled Petri nets need not be in EXPSPACE, even

when the operations on U are provided by an oracle. For example, nested Petri nets

[85] can encode reset nets, for which a non-primitive recursive lower bound is known

for coverability [110].

Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs 21

2.4.2 From Message Passing Programs to Labeled Petri Nets

Let P = (Prin, C, {Gp}p∈Prin) be a message passing program and U = (U,�, ψ) a

provenance domain. We now give a labeled Petri net semantics to the program.

Define the labeled Petri net N(P,U) = 〈S, T, (I,O),Λ〉 as follows. There is a place

for each program location, for each local variable and message value, and each channel

and message value: S = V F ∪ (XF×M) ∪ (C×M).

In the definition of labels, we use variable prov(p) for the token (which is a prove-

nance) in place p ∈ S that is used for firing. The set T is the smallest set that satisfies

the following conditions.

1. For each e ≡ v
y:=⊗(x),p−−−−−−→v′ in EF, and for each m,m′∈M, there is a transition t

with I(t)=Jv, (x,m), (y,m′)K and O(t)=Jv′, (x,m), (y,⊗m)K. Also, Λ(t, (x,m)) =

prov(x,m), Λ(t, (y,⊗m))=ψ(p,⊗)(prov(x,m)), and Λ(t, v′)=ε.

2. For each e ≡ v
assume(x=m),p−−−−−−−−−→v′ in EF, there is a transition t with I(t)=Jv, (x,m)K

and O(t)=Jv′, (x,m)K. Also, Λ(t, v′) = ε, and Λ(t, (x,m)) = prov(x,m).

3. For each e ≡ v
ch!x,p−−−−→v′ in EF, and for each m∈M, there is a transition t with

I(t)=Jv,(x,m)K,O(t)=Jv′,(x,m),(ch,m)K. Also, Λ(t, v′)=ε, Λ(t, (x,m))=prov(x,m),

and Λ(t, (ch,m))=ψ(p, !)(prov(x,m)).

4. For each e ≡ v ch?x,p−−−−→v′ inEF, for eachm,m′∈M, there is a transition twith I(t) =

Jv, (x,m), (ch,m′)K and O(t) = Jv′, (x,m′)K. Also, Λ(t, v′) = ε and Λ(t, (x,m′)) =

ψ(p, ?)(prov(ch,m′)).

To relate P with its Petri nets semantics N(P,U), we define a bijection ι between

configurations and labeled markings: ι(`, c, π) = µ iff all of the three conditions hold:

(1) µ(v) = JεK iff there is p ∈ Prin with `(p) = v; (2) for all x ∈ XF, for all m ∈ M, and

for all u ∈ U , µ(x,m) = JuK iff π(x) = (m,u); (3) for all ch ∈ C, for all m ∈ M, and

for all u ∈ U , µ(ch,m)(u) = k iff c(ch)(m,u) = k. Define the initial labeled marking

µ0 = ι(`0, c0, π0). The following observation follows from the definition of ι.

Lemma 1. TS(P) and TS(N(P,U)) are isomorphic.

Complexity-wise, the problem inherits the hardness of coverability in (unlabeled)

Petri nets for any non-trivial provenance domain.

22 Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs

Theorem 3. Given a message passing program P and a decidable provenance domain U =

(U,�, ψ), the provenance verification problem is decidable. It is EXPSPACE-hard for any

provenance domain with at least two elements.

Proof. From the construction of the labeled Petri net, Lemma 1, the provenance veri-

fication problem is reducible in polynomial time to coverability for labeled Petri nets.

Thus, by Theorem 2, provenance verification problem is decidable.

For EXPSPACE-hardness, we reduce Petri net coverability to provenance verifica-

tion. To simulate a Petri net with a message passing program, we introduce a channel

for every place and then serialize the reading of tokens. Consider N = 〈S, T, (I,O)〉.

We construct a message passing program with one principal, one message, and a chan-

nel for each place in S. The control flow graph of the only principal has a central

node from which loops simulate the Petri net transitions. At each step, the central

node picks a transition t ∈ T non-deterministically and simulates first the consump-

tion and then the production of tokens — one by one. To consume a token from place

p with I(t)(p) = 1, the principal receives a message from channel p. For the produc-

tion, it sends a message to the channel p′ with O(t)(p′) = 1. Additionally, the principal

non-deterministically checks if the current configuration of channels covers the target

marking. If so, it writes a message into a special variable x. The provenance verifi-

cation problem asks whether x ever contains a message with non-trivial provenance.

EXPSPACE-hardness follows from Theorem 1.

2.5 EXPSPACE Upper Bounds

For set and language provenance domains, we can in fact show a matching upper

bound on the complexity. It relies on a fairly general product construction and reduc-

tion to Petri nets. We say that a provenance domain U is of finite index if the equivalence

induced by � has finitely many classes. We denote this equivalence by ≡. Clearly, any

finite provenance domain (thus, the set domain) is of finite index. The language do-

main is also of finite index: take the equivalence relation induced by the Myhill-Nerode

classes of the language. The following lemma characterizes the structural properties of

provenance domains of finite index.

Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs 23

Lemma 2. Consider a Petri net N = 〈S, T, (I,O),Λ〉 that is labelled by U of finite index. (1)

The equivalence classes are closed under Λ: for any tuple e1, . . . , ek of≡-equivalence classes, the

image Λ(e1, . . . , ek) is fully contained in another equivalence class e. (2) The upward-closure

of any u ∈ U is a finite union of ≡-classes.

Let N = 〈S, T, (I,O),Λ〉 be a U-labeled Petri net, and suppose U is of finite in-

dex. We now define a product construction that reduces N to an ordinary Petri net

N ′ = 〈S′, T ′, (I ′, O′)〉. Intuitively, for each place p ∈ S and each equivalence class e,

there is a place (p, e) in S′ that keeps track of all tokens in N at place p and having their

label in the equivalence class e. We define S′ = S × {[u]≡ | u ∈ U}. Each transition

in N is simulated by a family of transitions in T ′, one for each combination of equiva-

lence classes for the source tokens. More precisely, T ′ is the smallest set that contains

the following family of transitions for each t ∈ T . Let p1, . . . , pk be the places in S with

I(t)(pi) = 1. For each sequence p = 〈e1, . . . , ek〉 of k-tuples of≡-equivalence classes, we

have a transition tp ∈ T ′ such that I ′(tp)((pi, ei)) = 1 for i = 1, . . . , k and I ′(tp)(p) = 0

for all other places. Moreover, for each p ∈ S with O(t)(p) = 1 labeled with Λ, we have

thatO′(tp)((p, e)) = 1 with Λ(e1, . . . , ek) ⊆ e. Note that this inclusion is well-defined by

Lemma 2(1). This product construction reduces a labelled coverability query in N to

several unlabelled queries in N ′. What are the unlabelled queries we need? Consider

a token u in a labelled marking µ ∈ M[U]S . We use the equivalence classes that, with

Lemma 2(2), characterize the upward closure of u. In the following proposition, we as-

sume that these classes are effectively computable. This is the case for set and language

domains.

Proposition 1. If U is of finite index, coverability for U-labeled Petri nets is reducible to cov-

erability for Petri nets.

Proposition 1 provides a 2EXPSPACE upper bound for the set and language do-

mains, which is not optimal. Consider the set domain. Each subset of principals yields

an equivalence class of provenances. Hence, there is an exponential number of classes

and the above product net is exponential. A similar problem occurs for the language

24 Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs

domain if the provenance specification is given by a non-deterministic finite automa-

ton. There are regular languages where this non-deterministic representation is expo-

nentially more succinct than any deterministic one. The deterministic one, however, is

needed in the product. To derive an optimal upper bound, we give compact represen-

tations of these exponentially many classes.

Theorem 4. Provenance verification problem is in EXPSPACE for set and language domains.

Proof. To establish membership in EXPSPACE, we implement the above reduction from

labeled to unlabeled coverability in a compact way, so that the size of the resulting Petri

net is polynomial in the size of the input. The challenge is to avoid the multiplication

between places and equivalence classes, which may be exponential. Instead, we first

encode the classes into polynomially many additional places, and maintain the rela-

tionship between a place and a class in the marking of the new net. Second, we only

keep the provenance information for tokens in the goal marking, and omit the prove-

nance of the remaining tokens.

Let E be the set of equivalence classes of a provenance domain of finite index. Let

κ = dlog |E|e. The symbolic representation of E uses 2κ places. Let the places be

b0, d0, . . . , bκ−1, dκ−1. We maintain the invariant that in any reachable marking, exactly

one of bi, di contains a single token, for i = 0, . . . , (κ − 1). Intuitively, a token in bi

specifies the bit i is one, and a token in di specifies the bit i is zero. Using constructions

on (1-safe) Petri nets, one can “copy” a bitvector, remove all tokens from a bitvector, or

update a bitvector to a value.

For example, to empty out a bitvector, we introduce κ+ 1 places p0, . . . , pκ, with an

initial token in p0. Each pi, i ∈ {0, . . . , κ − 1}, has two transitions: they take a token

from pi and from bi (resp. di), and put a token in pi+1. When pκ is marked, all the bits

have been cleared. Similarly, to copy the configuration from places b0, d0, . . . , bκ−1, dκ−1

to empty places b′0, d
′
0, . . . , b

′
κ−1, d

′
κ−1, we use the following gadget. We add additional

κ + 1 places p0, . . . , pκ, with an initial token on p0. For each pi, i ∈ {0, . . . , κ − 1} there

are two transitions: one takes a token from pi and one token from bi and puts a token

in pi+1, one in bi, and one in b′i; the other takes a token from pi and one from di and

Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs 25

puts a token in pi+1, one in di, and one in d′i. When the place pκ is marked, the bits in

b0, d0, . . . , bκ−1, dκ−1 have been copied to b′0, d
′
0, . . . , b

′
κ−1, d

′
κ−1.

Now, in the translation of the Petri net, instead of a place (x,m, e) for each variable

x, message m, and equivalence class e ∈ E, we keep 2κ places for each place (x,m),

encoding the equivalence class e for x and m. If all 2κ places for (x,m) are empty in

a marking, it implies that the current content of x is not m; otherwise, the provenance

equivalence class e ∈ E of (x,m) is encoded by the 2κ bits. The transitions of the net

are updated with the gadgets to copy the provenance bitvectors in case of assignments.

Moreover, for each channel ch , we maintain the provenance information of one

message, and drop the provenance of every other message in the channel. That is, each

channel ch is modeled using places (ch,m) for each m ∈ M, and in addition, 2κ·|M|

places that encode the provenance equivalence class of one message for each value in

M stored in the channel. Intuitively, tokens in (ch,m) denote messages with value m

in the channel ch whose provenance has been “forgotten” and tokens in the bitvectors

encode one message (per message type) in the channel whose provenance is encoded

using 2κ places. We use non-determinism to guess which messages contribute to the

message with provenance in the target. When a message is sent to a channel, we non-

deterministically decide to keep its provenance (thus using the bitvectors, moving any

tokens already there) or to drop its provenance.

Similarly, when we receive from a channel, we non-deterministically decide to ei-

ther read from the “special” places for the encoding of an equivalence class, or from

the “normal” place.

Now, for the set domain, we use 2|Prin| places to encode sets of principals. For the

language domain, where the specification is given by a non-deterministic automaton

with states Q, we use 2|Q| places to encode the subsets of states. The encoding allows

us to perform the subset construction on the fly. Each action of the program requires

at most a polynomial number of additional places to encode the gadgets. Thus, we

get a Petri net that is polynomial in the size of the message passing program and the

specification. Thus, using Theorem 1, we get the EXPSPACE upper bound.

26 Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs

2.6 Implementation and Experiments

We have implemented PROVKEEPER, a verifer for the provenance verification prob-

lem for language provenance domains. PROVKEEPER takes as input a message passing

program encoded in an extended Promela syntax in which channels are marked asyn-

chronous and have the semantics described in Section 2.3. It reduces the provenance

verification problem to Petri net coverability using the algorithm from Section 2.4. We

first used state-of-the-art tools for Petri net coverability [44, 93]. Unfortunately, the

times taken to verify the provenance properties were high. This is because Petri net

coverability tools are optimized for nets with many places that can be unbounded and

for high concurrency. Instead, message passing programs only have few places that

are unbounded (the channels). Our second observation is that message passing pro-

grams have a lot of scope for partial-order reduction, by allowing a process to continue

executing until it hits a blocking receive action. To take advantage of these features,

we implemented PROVKEEPER that combines expand-enlarge-check (EEC) [47] with

partial order reduction [51].

2.6.1 Expand-Enlarge-Check and Partial Order Reduction

The EEC procedure [47] performs counter abstraction over a Petri net. We observe that

only the places representing shared channels can have more than one token in our Petri

nets. Instead of counting the exact number of messages in a channel, we fix a parameter

k ≥ 0 and count precisely up to k. If at any point, the number of messages in a channel

exceeds k, we replace the number by∞. Once the count goes to∞, we do not decrease

the count even when messages are removed from the channel. For example, if k = 0,

the abstraction of a channel distinguishes two cases: either the channel has no messages

or it has an arbitrary number of messages.

The abstraction is sound, in that if a marking is coverable in the original net, it is

also covered in the abstraction. However, the abstraction can add spurious counterex-

amples, in that a marking can be considered coverable in the abstraction, even though it

is not coverable in the original net. By concretely simulating a specific counterexample

Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs 27

path, we can decide if the counterexample is genuine or spurious. In case the coun-

terexample is spurious, we increase the parameter k and continue. This abstraction-

refinement process is guaranteed to terminate, by either finding a genuine path that

covers a given marking, or by proving that the target marking is not coverable for some

parameter k in the abstraction [47]. We have found that k = 1 is usually sufficient to

soundly abstract the state space and to prove a provenance property; this is consistent

with other uses of counter abstractions in verification [64, 101].

Additionally, we note that once the parameter k is fixed, the state space of the sys-

tem is finite, since each channel can have at most k + 2 messages ({0, . . . , k} ∪ {∞}).

Thus, for each k, we can perform reachability analysis using a finite-state reachability

engine. The implementation of PROVKEEPER uses the Spin model checker [59] to per-

form reachability analysis in every iteration where k is fixed. In Spin models, for each

channel, each message type, and each state of the provenance automaton, we have a

variable that takes k + 2 values, implementing the k-abstraction.

Additionally, message passing programs have the potential for partial order reduc-

tion. For example, each process in the program can be executed until it reaches a block-

ing receive action, and the local actions of different processes commute. Since Spin

already implements partial order reduction, we get the benefits of partial order reduc-

tion for free.

2.6.2 Case Studies: Message Passing Benchmarks

We first describe our evaluation on a set of three message passing systems (see Ta-

ble 2.1). The example MyHealth Portal is described in [8]. We checked if the provenance

of a variable is always in the regular language Patient (Secretary + ε) Nurse Doctor+ +

ε. The bug tracking system [63] manages software bug reports. It has five princi-

pals and eight types of messages (bug report, closed, fix-again, fix, must-fix, more-

information, pending, and verified). The provenance specification, given as an au-

tomaton with nine states, encodes the flow of events leading from a bug report to a

bug fix. We found that the original system violated the specification because a mes-

sage was sent to an incorrect channel. After fixing the bug, we were able to prove the

property for the new system. The Service Incident Exchange Standard (SIS) specifies a

28 Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs

Example Principals Messages Channels Automaton
Health Care 4 4 5 6
Bug Tracking 5 8 5 9
SIS 16 9 18 2

TABLE 2.1: Message passing benchmarks. “Principals” is the number
of principals, “Messages” the possible values of messages, “Channels”
is the number of shared channels, and “Automaton” is the number of

states in the provenance automaton.

system to share service incident data and facilitate resolutions. The standard envisages

interactions between service requesters and providers. We took the system model from

[23], which consists of 16 principals, 18 channels, and 9 message types. The property

to check is once a service request is terminated, it is never reopened.

Results Table 2.2 lists the analysis results. All experiments were performed on a 2 core

Intel Xeon X5650 CPU machine with 64GB memory and 64bit Linux (Debian/Lenny).

We compare state-of-the-art Petri net coverability tools (Mist2 [44] and Petruchio [93])

with PROVKEEPER. We run Petruchio and three different options of Mist2 and report

the best times. A timeout indicates that all the tools timed out. The “Markings” row

indicates the number of coverability checks required to prove correctness. The time

denotes the sum of the times for all the coverability checks to finish, where for each

check, we take the best time by any tool.

For PROVKEEPER, we report the parameter k for which either a genuine counterex-

ample was found, or the system was proved correct. We compare the results with and

without partial order reduction. For each run, we give three numbers: the number of

states and transitions explored by our checker and the time taken. There is a significant

reduction when partial order reduction is turned on. Moreover, PROVKEEPER is orders

of magnitude faster than the Petri net coverability tools.

2.6.3 Private Mode and Firefox Extensions

We performed a larger case study on provenance in browser extensions. Modern

browsers provide a “private mode” that deletes cookies, forms, and browsing history

at the end of each browsing session. Browsers also provide an extension mechanism,

through which third-party developers can add functionality to browsers. Extensions

Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs 29

PN tools Health Care Bug Tracking (1) Bug Tracking (2) SIS
Markings 12 1 40 127
Time 125.6s 2308.940s timeout 1152.07s
PROVKEEPER Health Care Bug Tracking (1) Bug Tracking (2) SIS
k 0 1 0 1
States (No POR) 6351 39 4905516 3738754
States (POR) 2490 39 995468 893786
Trans (No POR) 23357 39 24850365 17274836
Trans (POR) 4249 39 1707682 1736062
Time (No POR) 0.04s 0.01s 38.6s 58.7s
Time (POR) 0.01s 0.01s 3.37s 6.10s

TABLE 2.2: Results of the message passing benchmarks. Bug Tracking
(1) is the buggy version.

can communicate between their front- and back-ends by asynchronous messages pass-

ing, and between each other via temporary files. Moreover, Firefox lets extension devel-

opers manage SQLite databases in user machines by invoking a service called mozIS-

torageService. It provides a set of asynchronous APIs for extensions to communicate

with databases through SQL queries. If extension developers do not properly handle

the private mode, user data may be stored in the database while the user is browsing

in private mode.

It is expected that browser extensions should respect the private mode. Unfortu-

nately, browsers do not restrict an extension’s capability in private mode, and it is the

responsibility of developers not to record user data in private mode. In the second set

of case studies, we check if extension developers for Firefox obey the privacy concerns

when the user is browsing in private mode.

Our goal is to check if extensions using mozIStorageService can store user data while

in private mode. We formulate the problem of tracking information flow in private

mode as a provenance verification problem. Consider a set of browser extensions

cooperating with each other, and a principal Db modelling a database. For each ex-

tension A, we introduce two principals NormA and PrivA that represent two instances

of A running in the normal and in the private mode, respectively. For each exten-

sion A that saves data to the database, there are two channels chDb, ch
′
Db for NormA

and PrivA to interact with Db. Moreover, for each pair of extensions (A,B) where A

sends data to B, for instance, by writing and reading files, there are four combinations:

30 Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs

(NormA,NormB), (PrivA,NormB), (NormA,PrivB), and (PrivA,PrivB). For each case, we

introduce a channel ch to model the message flow from A to B. The property we check

is whether some PrivA directly or indirectly updates the database. Note that it is not

sufficient to ensure every write to the database is guarded by a check that the browser

is not in private mode. There can be indirect flows where data is stored in a temporary

file in private mode, or communicated to a different extension, and later stored in the

database.

We use Firefox 13.0.1 in our experiments. We selected nine popular extensions from

Firefox’s extension repository, by filtering them based on the keywords form, history,

and shopping, and then filtering based on their use of mozIStorageService. The extensions

we chose have about 50000 users on average.

The workflow of the verification is as follows. We first use JSure [38], a Javascript

parser and static analyzer, to obtain the control flow from the extension source code,

and to produce a message passing program in Promela syntax. As the access to a

database is either via calling the mozIStorageService APIs directly or via helper exten-

sions, we capture along the control flow the information about when an extension calls

these APIs to update the database, and the information about when extensions commu-

nicate with each other by writing and reading temporary files. Our front end abstracts

away complex data structures in the program. In particular, we do not track the con-

tents inserted into the database. This may lead to false positives in the analysis. We

then run PROVKEEPER to verify the message passing program.

Table 2.3 lists the results. Five out of the nine examples are found to store user

information even in private mode. All examples can be verified efficiently (in a few

milliseconds) because usually a small portion of code is related to database accesses

and extension communications, and complex data structures are abstracted out. For all

unsafe cases, we have successfully replayed executions that violate the private mode

in Firefox.

Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs 31

2.7 Related Work

Provenance annotation on data has been studied extensively in the database commu-

nity [18, 33, 54], both for annotating query results and for tracking information through

workflows. Provenance information is usually tracked for a fixed database and a fixed

query in a declarative query language. Seen as a program, the query has exactly one

“execution path.” The connection between provenance tracking and dependency anal-

ysis in (sequential) programs was made in [26]. A provenance-tracking semantics for

asynchronous π-calculus was given in [115], but the static analysis problem was not

considered. Most previous work focused on dynamic tracking and enforcement along

one execution path, and the static meet-over-all-paths solution was not considered. In

contrast, we provide algorithms to track provenances in concurrent message passing

programs, and give algorithms to check provenance queries over all execution paths of

programs. We were inspired by the algebraic framework of provenance semirings [54]

to give a similar algebraic description of provenance domains.

Our algorithm for provenance verification generalizes algorithms for explicit in-

formation flow studied in the context of sequential programs [107], e.g., through taint

analysis. Taint analysis problems [60, 84] classify methods as sources, sinks, and sanitiz-

ers, and require that any data flow from sources to sinks must go through one or more

sanitizers. In our model, this property can be formulated by requiring that the prove-

nance of every message received by a sink must conform to the regular specification

(source+ sanitizer+)∗. We are able to verify such properties for message passing pro-

grams, where the source, sanitizer, and sink can be concurrently executing processes

sharing unbounded channels, and with other intermediary processes as well. Previ-

ous work, too numerous to enumerate here, either dealt with dynamic enforcement

or provided imprecise static checks for these domains. We show precise static analysis

remains decidable!

2.8 Extensions

We have described a general algebraic model of provenance in concurrent message

passing systems and an algorithm for statically verifying provenance properties. For

32 Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs

these expressive programs, only dynamic checks or imprecise static checks had been

studied so far. While the complexity may seem high, reachability analysis in message

passing programs is already EXPSPACE-complete, so provenance verification does not

incur an extra cost.

Our decidability results continue to hold under some extensions to the program-

ming model. For example, our decidability results also hold when programs can test

the provenance of a message against an upward closed set in a conditional, or in the

presence of a spawn instruction that dynamically generates a new thread of execution.

Informally, to decide provenance verification in the presence of provenance-tests, we

extend the product construction to track the membership in each upward closed set ap-

pearing syntactically in some conditional. To handle spawn, we modify the reduction

to Petri nets to keep a place for each spawned instance (that is, each tuple of control

location and valuation to local variables).

On the other hand, many other extensions are easily seen to be undecidable. For

example, if each principal executes a recursive program, or if messages come from an

unbounded domain such as the natural numbers, or if channels preserve the order of

messages, the provenance verification problem becomes undecidable by simple reduc-

tions from known undecidable problems [95].

Chapter 2. PROVKEEPER: A Provenance Verifier for Message Passing Programs 33

Name LOC Leak Usage Leak Details Time

Amazon Price
History and
More 4.1.4

8124 Yes

Provide comparative
pricing for searched
products. Inform pric-
ing drops for searched
products.

Records shopping
history while in
private mode.

57ms

Facebook Chat
History Man-
ager 1.5

2798 Yes
Help users organize
conversations by time
and names of persons.

Records the person
to whom users
talk, the conversa-
tion content, and
the time in private
mode.

60ms

FVD Speed
Dial with On-
line Sync 4.0.3

21278 Yes

Provide a dashboard
holding favorite web-
sites of users. Cross-
platform bookmark
synchronization.

Keeps counting
how often users
look at the web-
sites on heir Speed
Dial in private
mode and lists
them.

57ms

Privad 1.0 17593 Yes
Uses differential pri-
vacy to prevent ad tar-
geting.

Records user
browsing history
while in private
mode.

60ms

Shopping As-
sist 3.2.4.6

15263 Yes
Provide comparative
pricing for searched
products.

Records shopping
history while in
private mode.

57ms

Form History
Control 1.2.10.3

16560 No
Autosave text on forms,
search bar history, for
crash recovery.

63ms

History
Deleter 2.4

3027 No
Utilities to delete his-
tory automatically by
user defined rules.

90ms

Lazarus: Form
Recovery 2.3 10839 No

Autosave text on
forms, search bar
history, for crash
recovery.

64ms

Session Man-
ager 0.7.9 14010 No

Autosave sessions by
time for crash recov-
ery.

104ms

TABLE 2.3: Experimental results for Firefox extensions.

Chapter 3

KUAI: A Model Checker for

Software-defined Networks

3.1 Introduction

Software-defined networking (SDN) is a novel networking architecture in which a cen-

tralized software controller dynamically updates the packet processing policies in net-

work switches based on observing the flow of packets in the network [40, 62]. SDNs

have been used to implement sophisticated packet processing policies in networks, and

there is increasing industrial adoption [62, 91].

We consider the problem of verifying that an SDN satisfies a network-wide safety

property. Since the controller code in an SDN can dynamically change how packets

flow in the network, a bug in the controller code can lead to hard-to-analyze network

errors at run time. We describe the design of , a distributed enumerative model checker

for SDNs. The input to is a model of an SDN consisting of two parts. The first part is the

controller, written in a simplified guarded-command language similar to Murphi. The

second part is the description of a network, consisting of a fixed finite set of switches, a

fixed set of client nodes, and the topology of the network (i.e., the connections between

the ports of the clients and the switches). Given a safety property of the network,

explores the state space of the SDN to check if the property holds on all executions.

Figure 3.1 shows a simple SDN. It consists of two switches sw1 and sw2 connected

to two clients c1 and c2. Each client has a port and each switch has two ports to send

and receive packets, and the figure shows how the ports are connected to each other.

Each connection between ports represents a bi-directional communication channel that

35

36 Chapter 3. KUAI: A Model Checker for Software-defined Networks

FIGURE 3.1: SSH Example

1 def pktIn(pkt)
2 (sw,pt) = pkt.loc
3 if pkt.prot = SSH:
4 drop(pkt)
5 else:
6 dest = 2 if pt = 1 else 1
7 fwd(pkt, [|dest|], sw)
8 rule r1 = (5,{prot=SSH},[||])
9 rule r2 = (1,{port=1},[|2|])

10 rule r3 = (1,{port=2},[|1|])
11 message cm1 = add(r1)
12 message cm2 = add(r2)
13 message cm3 = add(r3)
14 for sw in [sw1, sw2]:
15 send_message(cm1, sw)
16 send_message(cm2, sw)
17 send_message(cm3, sw)

LISTING 3.1: Controller for SSH

may reorder packets. Moreover, the switches are connected to a controller through

dedicated links. Packets are routed in the network using flow tables in switches. A

flow table is a collection of prioritized forwarding rules. A rule consists of a priority, a

pattern on packet headers, and a list of ports. A switch processes an incoming packet

based on its flow table. It looks at the highest priority rule whose pattern matches

the packet and forwards the packet to the list of ports specified in the rule, and drops

the packet if the list of ports in the rule is empty. In case no rule matches a packet,

the switch forwards the packet to the controller using a request queue and waits for a

reply from the controller on a forward queue. The controller replies with a list of ports

to which the packet should be forwarded, and optionally sends control messages to the

control queue of one or more switches to update their flow tables. A control message

Chapter 3. KUAI: A Model Checker for Software-defined Networks 37

can add or delete a rule in a switch.

By specifying the rules to be added or deleted, a controller can dynamically control

the behaviors of all switches in an SDN network. For example, suppose we want to

implement the policy that all SSH packets are dropped. The controller can update

the switches with a rule that states that no SSH packets are forwarded, and another

that states all non-SSH packets are forwarded. List 3.1 shows a possible controller that

implements this policy. Essentially, the controller drops SSH packets, and adds three

rules on the switches: r1 to drop SSH packets, r2 to forward packets from port 1 to port

2, and r3 to forward packets from port 2 to port 1. Since dropping SSH packets (rule r1)

has higher priority, it will match SSH packets, and rules r2 and r3 will only match (and

forward) non-SSH packets. The controller has a subtle bug. It turns out that a switch

can implement rules in arbitrary order. Thus, the switches may end up adding rules r2

and r3 before adding r1, thus violating the policy. Our model checker KUAI confirms

the bug A possible fix in this case is to implement a barrier after line 15, to ensure that

rule r1 is added before the other rules. Our model checker confirms the policy holds in

the fixed version.

The verification of SDNs is challenging due to several reasons. First, even when

the topology is fixed with a finite set of clients and switches, the state space is still

unbounded, as clients may generate unboundedly many packets and these packets

could be simultaneously progressing through the network. For example, client c1 may

send a packet to sw1 at any point, and an unbounded number of packets can be in the

network before sw1 processes them. Similarly, there may be an unbounded number

of control messages (i.e., messages sent from the controller to a switch) between the

controller and the switches. While there may be a physical limit on the number of

packets and control messages imposed by packet buffers in the switches, the sizes of

these buffers can be large (of the order of megabytes) and precise modeling of buffers

will blow up the state space.

Second, the packets may be processed in arbitrary interleaved orders, and the pro-

cessing of one packet may influence the processing of subsequent ones because the

controller may update flow tables based on the first packet. Similarly, control messages

between the controller and the switches may be processed in arbitrary order and this

38 Chapter 3. KUAI: A Model Checker for Software-defined Networks

may lead to potential bugs, including the bug pointed to above.

KUAI handles these challenges in the following way. First, instead of modeling

unbounded multisets for packet queues, we implement a counter abstraction where we

track, for each possible packet, whether zero or arbitrarily many instances of the packet

are waiting in a multiset. This abstraction enables us to apply finite-state model check-

ing approaches.

Second, we implement a set of partial-order reduction techniques that are specific to

the SDN domain. For example, we note that while in principle a switch only processes

one packet at a time, we do not lose behaviors by processing all packets at the packet

queue of a switch atomically. Similarly, using the semantics of the barrier message [91],

we show that a switch can atomically execute all control messages up to the last barrier

in its control queue. Specifically, this optimization enables the model checker to bound

the size of control queues. Additionally, we show that whenever there is a packet in a

client’s packet queue, the client can receive and process it immediately, so that sends

from switches can be atomically processed with receives at clients. Finally, we show

that we can eagerly serve requests to the controller, that is, we do not lose behaviors if

we restrict the controller’s request queue to size one and service these requests as soon

as they appear.

We empirically demonstrate that our set of partial order reduction techniques sig-

nificantly reduces the state spaces of SDN benchmarks, often by many orders of mag-

nitude. For the simple SSH example, the number of explored states is approximately 2

million without partial order reductions, but only 13 with reductions!

To handle large state spaces, our model checker KUAI distributes the model check-

ing over a number of nodes in a cluster, using the PReach distributed model checker

[10] (based on Murphi [37]) as its back end. The large-scale distribution enables KUAI

to model check large state spaces quickly.

3.2 Software-defined Networks

Preliminaries. A multiset m over a set Σ is a function Σ → N with finite support (i.e.,

m(σ) 6= 0 for finitely many σ ∈ Σ). By M[Σ] we denote the set of all multisets over

Chapter 3. KUAI: A Model Checker for Software-defined Networks 39

Σ. We shall write m = Jσ21, σ3K for the multiset m ∈ M[{σ1,σ2,σ3}] with m(σ1) =

2,m(σ2) = 0, and m(σ3) = 1. We write ∅ for an empty multiset, mapping each σ ∈ Σ to

0. We write {} for an empty set. Two multisets are ordered by m1 ≤ m2 if for all σ ∈ Σ,

we have m1(σ) ≤ m2(σ). Let m1 ⊕m2 (resp. m1 	m2) be the multiset that maps every

element σ ∈ Σ to m1(σ) +m2(σ) (resp. max{0,m1(σ)−m2(σ)}).

Given a set of states, a (guarded) action α is a pair (g, c) where g is a guard that

evaluates the states to a boolean and c is a command. A action α is enabled in a state

s if the guard of α evaluates s to true. If α is enabled in s, the command of α can

execute and lead to a new state s′, denoted by s α−→ s′. We write α(s) = s′ if s α−→ s′.

A transition system TS is a tuple (S,A,→, s0,AP , L) where S is a set of states, A is a

set of actions, →⊆ S × A × S is a transition relation, s0 ∈ S is the initial state, AP is

a set of atomic propositions, and L : S → 2AP is a labeling function. We write→∗ for

the reflexive transitive closure of→. A state s′ is reachable from s if s →∗ s′. We write

s →+ s′ if there is a state t such that s → t →∗ s′. For a state s, let A(s) be the set

of actions enabled in s; we assume A(s) 6= ∅ for each s ∈ S. The trace of an infinite

execution ρ = s
α1−→ s1

α2−→ . . . is defined as trace(ρ) = L(s)L(s1) The trace of a

finite execution ρ = s
α1−→ s1

α2−→ . . .
αn−−→ sn is defined as trace(ρ) = L(s)L(s1) . . . L(sn).

An execution is initial if it starts in s0. Let Traces(TS) be the set of traces of initial

executions in TS . We define invariants and invariant satisfaction in the usual way.

Syntax of Software-defined Networks We model an SDN as a network consisting of

nodes, connections, and a controller program. Nodes come from a finite set Clients of

clients and a (disjoint) finite set Switches of switches. Each node n has a finite set of ports

Port(n) ⊆ N which are connected to ports of other nodes. A location (n, pt) is a pair of

a node and a port pt ∈ Port(n). Let Loc be the set of locations. A connection is a pair

of locations. A network is well-formed if there is a bijective function λ : Loc → Loc,

called the topology function, such that {((n, pt), λ(n, pt)) | (n, pt) ∈ Loc} is the set of

connections and no two clients are connected directly.

We model a packet pkt in the network as a tuple (a1, . . . , ak, loc), where (a1, . . . , ak) ∈

{0, 1}k models an abstraction of the packet data and loc ∈ Loc indicates the location of

pkt . Let Packet be the set of all packets.

Each switch contains a set of rules that determine how packets are forwarded. A

40 Chapter 3. KUAI: A Model Checker for Software-defined Networks

rule is a tuple (priority , pattern, ports), where priority ∈ N determines the priority of

the rule, pattern is a proposition over Packet , and ports is a multiset of ports. We

write Rule to denote the set of all rules. Intuitively, a packet matches a rule if it satis-

fies pattern . A switch forwards a packet along ports for the highest priority rule that

matches.

Rules are added or deleted on a switch by the controller through a set of control

messages CM = {add(r), del(r) | r ∈ Rule}. Additionally, the controller uses a barrier

message b to synchronize.

type client {

Port : set of nat

pq : multiset of packets

}

rule "send(c, pkt)"

true ==> send(c, pkt)

end

rule "recv(c,pkt,pkts)"

exist(pkt:c.pq, true) ==> recv(c,pkt,pkts)

end

LISTING 3.2: Client

A client c ∈ Clients is modeled as in List 3.2. It consists of a finite set Port of

ports and a packet queue pq ∈ M[Packet] containing a multiset of packets which have

arrived at the client. We use (guarded) actions to model behaviors of clients. An action

is written as “rule name guard =⇒ command end.” Predicate exist(i : X,ϕ) asserts

that there is an element i in the set (or multiset) X such that the predicate ϕ holds.

Additionally, if exist(i : X,ϕ) holds, then the variable i is bound to an element of X

that satisfies ϕ and can be used later in the command part. In each step, a client c can

(1) send a non-deterministically chosen packet pkt along some ports (rule send), or (2)

receive a packet pkt from its packet queue and (optionally) send a multiset of packets

pkts on some ports (rule recv).

Chapter 3. KUAI: A Model Checker for Software-defined Networks 41

type switch {
Port : set of nat
ft : set of rules
pq : multiset of packets
cq : list of barriers and

multisets of control messages
fq : set of forward messages
wait : boolean

}
rule "match(sw,pkt,r)"
!sw.wait & noBarrier(sw) &
exist(pkt:sw.pq,
exist(r:sw.ft, bestmatch(sw,r,pkt))) ==>

match(sw,pkt,r)
end
rule "nomatch(sw,pkt)"
!sw.wait & noBarrier(sw) & !RqFull(controller) &
exist(pkt:sw.pq,
!exist(r:sw.ft,bestmatch(sw,r,pkt))) ==>

nomatch(sw,pkt)
end
rule "add(sw,r)"
!sw.wait & noBarrier(sw) &
exist(add(r):sw.cq[0],true) ==>
add(sw,r)

end
rule "delete(sw,r)"
!sw.wait & noBarrier(sw) &
exist(del(r):sw.cq[0],true) ==>
delete(sw,r)

end
rule "fwd(sw,pkt,pts)"
sw.wait & noBarrier(sw) &
exist((pkt,pts):fq, true) ==>
fwd(sw,pkt,pts)

end
rule "barrier(sw)"
!noBarrier(sw) ==>
barrier(sw)

end

LISTING 3.3: Switch

A switch sw is modeled as in List 3.3. It consists of a set of ports, a flow table ft ⊆

Rule , a packet queue pq containing packets arriving from neighboring nodes, a control

queue cq containing control messages or barriers from the controller, a forward queue fq

consisting of at most one pair (pkt , ports) through which the controller tells the switch

42 Chapter 3. KUAI: A Model Checker for Software-defined Networks

to forward packet pkt along the ports ports , and a boolean variable wait . Predicate

noBarrier(sw) asserts sw .cq does not contain a barrier. Predicate bestmatch(sw , r, pkt)

asserts that r is the highest priority rule whose pattern matches the packet pkt in switch

sw’s flow table.

Intuitively, a switch has a normal mode and a waiting mode determined by the wait

variable. When the switch is in the normal mode, as long as there is no barrier in its

control queue, it can either attempt to forward a packet from its packet queue based

on its flow table, or update its flow table according to a control message in its control

queue. When the switch cannot find a matching rule in its flow table for a packet, it can

initiate a request to the controller, change to the waiting mode, and wait for a forward

message from the controller telling it how to forward the packet. Once it receives a

forward message (pkt , pts) and there is no barrier in the control queue, it forwards the

pending packet pkt to the ports in pts , and changes back to the normal mode. If the

control queue contains one or more barriers, the switch dequeues all control messages

up to the first barrier from its control queue and updates its flow table.

type controller {

CS : set of control states

cs0 : CS cs : CS

rq : set of packets κ : N+

pktIn : function

}

rule "ctrl(pkt,cs)"

exist(pkt:controller.rq, true) ==>

ctrl(pkt,controller.cs)

end

LISTING 3.4: Controller

A controller controller is modeled as in List 3.4. It is a tuple (CS , cs0, cs, rq, κ, pktIn)

where CS is a finite set of control states, cs0 ∈ CS is the initial control state, cs is the

current control state, rq is a finite request queue of size κ ≥ 1 consisting of packets for-

warded to the controller from switches, and pktIn is a function that takes a packet

Chapter 3. KUAI: A Model Checker for Software-defined Networks 43

pkt and a control state cs1, and returns a tuple (η, (pkt , pts), cs2) where η is a function

from Switches to (M[CM] ∪ {b})∗, (pkt , pts) is a forward message, and cs2 is a control

state. Intuitively, in each step, the controller removes a packet pkt from rq and exe-

cutes pktIn(pkt , controller .cs). Based on the result (η, (pkt , pts), cs ′), it sends back to

the source of the packet the forward message (pkt , pts) that specifies pkt should be for-

warded along pts , and goes to a new control state cs ′. Further, for each switch sw in

the network it appends η(sw) to sw ’s control queue.

Semantics of Software-defined Networks The semantics of an SDN is given as a tran-

sition system. LetN = (Clients,Switches, λ,Packet ,Rule, controller) be an SDN, where

each component is as defined above.

A state s of the SDN N is a quadruple (π, δ, cs, rq), where π is a function map-

ping each client c ∈ Clients to its packet queue pq and δ is a function mapping each

switch sw ∈ Switches to a tuple (pq , cq , fq , ft ,wait) consisting of its packet queue, con-

trol queue, forward queue, flow table, and the wait variable.

For a non-empty list l = [x1, x2, . . . , xn], define l.hd=x1, l.tl=[x2, . . . , xn], and l[i] as

the i-th element in l. Given two lists l1 and l2, let l1@l2 be the concatenation of l1 and

l2. For two non-empty lists l1 = [x1, . . . , xm] and l2 = [y1, . . . , yn] in (M[CM] ∪ {b})∗,

define l1 + l2 be the list [x1, . . . , xm−1, xm ⊕ y1, y2, . . . , yn] if xm 6= b and y1 6= b; l1@l2

otherwise.

Given a flow table ft and a list l ∈ (M[CM]∪ b)∗, let update(ft , l) be a procedure that

updates ft based on l as follows. It dequeues the head of l and sets l to l.tl . If the head

is a barrier b, then ignore it. If the head is a multiset m, it nondeterministically chooses

a fetching order p and based on p, removes a control message cm with m(cm) > 0 from

m. If cm is add(r), then add the rule r to ft , or if cm is del(r), then delete r from ft . It

keeps updating ft based on p until m becomes empty. It repeats the above instructions

on l until l becomes empty. Then it returns the resulting flow table ft .

For a function f : X → Y , x ∈ X , and y ∈ Y , let f [x 7→ y] denote the function that

maps x to y and all x′ 6= x to f(x′). Let f [x1 7→ y1;x2 7→ y2; . . . ;xn 7→ yn] denote the

function f [x1 7→ y1][x2 7→ y2] . . . [xn 7→ yn]. Given a subset X ′ = {x1, . . . , xn} ⊆ X , let

f [foreach xi ∈ X ′ : xi 7→ yi] be the function f [x1 7→ y1] . . . [xn 7→ yn] where 1 ≤ i ≤ n.

Given a tuple t = (f1, . . . , fn), let t.fi be the field fi, for 1 ≤ i ≤ n. By abuse of

44 Chapter 3. KUAI: A Model Checker for Software-defined Networks

notation, we write t[fi 7→ v] to be the tuple such that t[fi 7→ v].fi = v and for any j 6= i,

t[fi 7→ v].fj = t.fj .

We define the following basic operations over δ and π:

1. Add or delete packets in switches or in clients. Given a set X ⊆ Switches ×

PacketN, define addPkt(δ,X) = δ[foreach (sw , pktk) ∈ X, sw 7→ δ(sw)[pq 7→

δ(sw).pq

⊕ JpktkK]]. Given a set Y ⊆ Clients × PacketN, define addPkt(π, Y) =

π[foreach (c, pktk) ∈ Y, c 7→ π(c) ⊕ JpktkK]. We define delPkt(δ,X) and

delPkt(π, Y) analogously by replacing ⊕with 	 above.

2. Set the wait bit of a switch sw to true or false. Define setWait(δ, sw) = δ[sw 7→

δ(sw)[wait 7→ true]] and unsetWait(δ, sw) = δ[sw 7→ δ(sw)[wait 7→ false]].

3. Add or delete a rule r in the flow table of a switch sw. Define addRule(δ, sw, r) =

δ[cq 7→ [δ(sw).cq .hd 	 Jadd(r)K]; sw 7→ δ(sw)[ft 7→ δ(sw).ft ∪ {r}]]. De-

fine delRule(δ, sw, r) = δ[cq 7→ [δ(sw).cq .hd 	 Jdel(r)K]; sw 7→ δ(sw)[ft 7→

δ(sw).ft\{r}]].

4. Add or delete a forward message msg in a switch sw . Define

addFwdMsg(δ, sw ,msg) = δ[sw 7→ δ(sw)[fq 7→ δ(sw).fq ∪ {msg}]] and

delFwdMsg(δ, sw ,msg) = δ[sw 7→ δ(sw)[fq 7→ δ(sw).fq\{msg}]].

5. Flush and run all control messages up to the first barrier in a switch. Define

flush(δ, sw) = δ[sw 7→ δ(sw)[cq 7→ l; ft 7→ update(δ(sw).ft , [m, b])]] where l = [∅], if

δ(sw).cq = [m, b]; l = l′, if δ(sw).cq = [m, b]@l′ and l′ is not an empty list.

6. Flush and run all control messages up to the last barrier in a switch. Define

flushall(δ, sw) = δ[sw 7→ δ(sw)[cq 7→ l1; ft 7→update(δ(sw).ft , l2)]] where l1 = [∅]

and l2 = δ(sw).cq if the last element of δ(sw).cq is a barrier. Otherwise, let

δ(sw).cq = l@[m]. Then l1=[m] and l2= l.

7. Add control messages and barriers to the control queues of the switches. Given

a total function f : Switches → (M[CM] ∪ {b})∗, define addCtrlCmd(δ, f) =

δ[foreach sw ∈ Switches : sw 7→ δ(sw)[cq 7→ δ(sw).cq + f(sw)]].

Chapter 3. KUAI: A Model Checker for Software-defined Networks 45

For a switch sw , a packet pkt , and a multiset of ports pts , let FwdToC (sw , pkt , pts)

be a set {(c, pkt ′k) | ∃pt ∈ sw .Port . pts(pt) = k ∧ λ(sw , pt) = (c, pt ′) ∧ c ∈ Clients ∧

pkt ′ = pkt [loc 7→ (c, pt ′)]} and FwdToSw(sw , pkt , pts) be a set {(sw ′, pkt ′k) | ∃pt ∈

sw .Port . pts(pt) = k ∧ λ(sw , pt) = (sw ′, pt ′) ∧ sw ′ ∈ Switches ∧ pkt ′ = pkt [loc 7→

(sw ′, pt ′)]}. Intuitively, when sw is about to forward pkt on its ports pts , these two

sets summarize how many packets should be forwarded to its connected clients and

switches.

For an SDN N , let Send = {send(c, pkt) | c ∈ Clients ∧ pkt ∈ Packet} be the set of

send actions. We define analogously the set of receive actions Recv , the set of match actions

Match , the set of no-match actions NoMatch , the set of add actions Add , the set of delete

actions Del , the set of forward actions Forward , the set of barrier actions Barrier , and the

set of control actions Ctrl .

Let π0 = λc ∈ Clients.∅ and δ0 = λsw ∈ Switches.(∅, [∅], {}, {}, false). The semantics

of an SDN N is given by a transition system TS (N) = (S,A,→, s0,AP , L). Here, S is

the set of states, s0 = (π0, δ0, cs0, {}) is the initial state, and A = Send ∪Recv ∪Match ∪

NoMatch ∪ Add ∪ Del ∪ Forward ∪ Barrier ∪ Ctrl . The transition relation s
α−→ s′ is

defined as follows.

1. α = send(c, pkt). (π, δ, cs, rq)
α−→ (π, δ′, cs, rq) where δ′ = addPkt(δ, {(sw , pkt)})

and sw = pkt .loc.n.

2. α = recv(c, pkt , pkts). (π, δ, cs, rq)
α−→ (π′, δ′, cs, rq) where π′ =

delPkt(π, {(c, pkt)}), δ′ = addPkt(δ,X) and X = {(sw , pkt ′k) | pkts(pkt ′) =

k ∧ pkt ′.loc.n = sw}.

3. α = match(sw , pkt , r). (π, δ, cs, rq)
α−→ (π′, δ′, cs, rq)

where π′ = addPkt(π,FwdToC (sw , pkt , r.ports)) and δ′ =

addPkt(δ,FwdToSw(sw , pkt , r.ports)).

4. α = nomatch(sw , pkt). (π, δ, cs, rq)
α−→ (π, δ′, cs, rq ′) where rq ′ = rq ∪ {pkt}, δ′′=

delPkt(δ, {(sw , pkt)}), and δ′ = setWait(δ′′, sw).

5. α = add(sw , r). (π, δ, cs, rq)
α−→ (π, δ′, cs, rq) where δ′ = addRule(δ, sw , r).

6. α = del(sw , r). (π, δ, cs, rq)
α−→ (π, δ′, cs, rq) where δ′ = delRule(δ, sw , r).

46 Chapter 3. KUAI: A Model Checker for Software-defined Networks

7. α = fwd(sw , pkt , pts). (π, δ, cs, rq)
α−→ (π′, δ′, cs, rq) where π′ =

addPkt(π,FwdToC (sw , pkt , pts)), δ1 = delFwdMsg(δ, sw , (pkt , pts)), δ2 =

addPkt(δ1,FwdToSw(sw , pkt , pts)), and δ′ = unsetWait(δ2, sw).

8. α = barrier(sw). (π, δ, cs, rq)
α−→ (π, δ′, cs, rq) where δ′ = flush(δ, sw).

9. α = ctrl(pkt , cs). Let pktIn(pkt , cs) = (η,msg, cs ′) and sw = pkt .loc.n.

(π, δ, cs, rq)
α−→ (π, δ′, cs ′, rq ′) where rq ′ = rq\{pkt}, δ′′ = addFwdMsg(δ, sw ,msg),

and δ′ = addCtrlCmd(δ′′, η).

An atomic proposition p ∈ AP is an assertion over packet fields or over control states.

Define an SDN specification as a safety property �φ where φ is a formula over AP

and � is the “globally” operator of linear-temporal logic. The model checking problem

for an SDN asks, given an SDN N and an SDN specification �φ, if TS (N) satisfies

�φ. For example, blocking SSH packets can be specified as �
∧

pkt∈Packet(pkt .loc.n ∈

Clients ∧ pkt .src ∈ Clients ∧ pkt .loc.n 6= pkt .src ⇒ pkt .prot 6= SSH).

3.3 Optimizations

We now describe partial-order reduction and abstraction techniques that reduce the

state space. These techniques use the structure of SDNs and, as we demonstrate empir-

ically, are crucial in making the model checking scale to non-trivial examples. We state

the correctness theorems; the proofs are in Section 3.5.

Partial Order Reduction Let TS = (S,A,→, s0,AP , L) be an action-deterministic tran-

sition system, i.e., s α−→ s′ and s
α−→ s′′ implies s′ = s′′. Given two actions α, β ∈ A

with α 6= β, α and β are independent if for any s ∈ S with α, β ∈ A(s), β ∈ A(α(s)),

α ∈ A(β(s))), and α(β(s)) = β(α(s)). The actions α and β are dependent if α and β are

not independent. An action α ∈ A is a stutter action if for each transition s α−→ s′ in TS ,

we have L(s) = L(s′).

For i ∈ {1, 2}, let TS i = (Si,Ai,→i, s
i
0,AP , Li) be transition systems. Infi-

nite executions ρ1 of TS 1 and ρ2 of TS 2 are stutter-equivalent, denoted ρ1 , ρ2,

if there is an infinite sequence A0A1A2 . . . with Ai ⊆ AP , and natural numbers

Chapter 3. KUAI: A Model Checker for Software-defined Networks 47

n0, n1, n2, . . . ,m0,m1,m2, . . . ≥ 1 such that

trace(ρ1) = A0 . . . A0︸ ︷︷ ︸
n0 times

A1 . . . A1︸ ︷︷ ︸
n1 times

A2 . . . A2︸ ︷︷ ︸
n2 times

. . .

trace(ρ2) = A0 . . . A0︸ ︷︷ ︸
m0 times

A1 . . . A1︸ ︷︷ ︸
m1 times

A2 . . . A2︸ ︷︷ ︸
m2 times

. . .

TS 1 and TS 2 are stutter equivalent, denoted TS 1 , TS 2 , if TS 1 E TS 2 and TS 2 E TS 1,

whereE is defined by: TS 1ETS 2 iff for all ρ1 ∈ Traces(TS 1). ∃ρ2 ∈ Traces(TS 2). ρ1 ,

ρ2.

3.3.1 Barrier Optimization

Intuitively, barrier optimization uses the observation that for any state, we can al-

ways flush out control queues of switches until there are no barriers in them. This

implies that after a control action is executed, one can immediately update flow tables

of switches whose control queue has barriers added by the controller. Hence a con-

trol action and successive barrier actions can be merged. We prove its correctness by

viewing it as an instance of partial order reduction.

For an SDN N , note that TS (N) is not action-deterministic due to barrier actions.

With different fetching orders, barrier(sw) may lead to multiple states. Define b(s, sw)

as the number of transitions of the form s
barrier(sw)−−−−−−−→ s′. Note that a barrier action from

any s leads to at most 2|Rule| states. Hence for each transition s
barrier(sw)−−−−−−−→ si where

1 ≤ i ≤ b(s, sw), we can append the action with the index i, i.e., s
barrier(sw)i−−−−−−−→ si. In the

following, we redefine the set Barrier = {barrier(sw)i | sw ∈ Switches∧1 ≤ i ≤ 2|Rule|},

and assume that TS (N) is action-deterministic by renaming barrier actions.

A switch sw has a barrier iff there is a barrier in sw ’s control queue. A state

s has a barrier, denoted hasb(s), iff some switch sw ∈ Switches has a barrier in s.

Define the ample set for every state s in TS (N) as follows: if s has a barrier, then

ample(s) = {barrier(sw)i | 1 ≤ i ≤ b(s, sw) ∧ sw has a barrier in s}, that is, all bar-

rier actions enabled in s. If s does not have a barrier, then ample(s) = A(s).

Given TS (N), we now define a transition system T̂S = (Ŝ,A,⇒, s0,AP , L) where

Ŝ = S is the set of states, and the transition relation ⇒ is defined as: if s α−→ s′ and

48 Chapter 3. KUAI: A Model Checker for Software-defined Networks

α ∈ ample(s), then s α
=⇒ s′.

Theorem 5. Let TS (N) be an action-deterministic transition system. TS (N) , T̂S .

Intuitively, Theorem 5 holds because any barrier action is independent of other

actions and is a stutter action. Hence for an infinite execution s
α1−→ s1 . . .

αn−−→

sn
barrier(sw)−−−−−−−→ t in TS (N) where s has a barrier and αi is not a barrier action for all

1 ≤ i ≤ n, we can permute barrier(sw) forward until s and obtain a stutter-equivalent

execution in T̂S .

Since Theorem 5 holds, we can merge a control action and successive barrier ac-

tions into a single transition s
ctrl(pkt ,cs)−−−−−−−→2 s′ where we define the new semantics

of ctrl(pkt , cs) under the transition relation →2. Formally, Let (η, (pkt , pts), cs ′) =

pktIn(pkt , cs) and sw = pkt .loc.n.

Ctrl. (π, δ, cs, rq)
ctrl(pkt ,cs)−−−−−−−→2 (π, δ′, cs ′, rq ′) where rq ′ = rq\{pkt}. Define δ′′ =

addFwdMsg(δ, sw , (pkt , pts)), and δ′′′= addCtrlCmd(δ′′, η). Let {sw1, . . . , swn} be

the set of all switches whose control queue has barriers in δ′′′. Let δ0 = δ′′′ and

δi = flushall(δi−1, sw i) for all 1 ≤ i ≤ n. Define δ′ = δn.

Given T̂S = (Ŝ,A,⇒, s0,AP , L), define a transition system TS 2 = (S2,A2,→2

, s0,AP2, L2) where S2 ⊆ Ŝ is a set of states reachable by →2, A2 is A\Barrier ,

AP2 = AP , L2 = L, and→2 is defined inductively as

s0
α
=⇒ s′

s0
α−→2 s

′

s0 →+
2 s

α
=⇒ s′ ∧ α 6∈ Ctrl

s
α−→2 s

′

s0 →+
2 s

α
=⇒ t⇒∗ s′ ∧ α ∈ Ctrl ∧ ¬hasb(s′)

s
α−→2 s

′

Since we only remove barrier actions which are stutter actions, we have TS 2 ,

T̂S , TS (N). Hence we have the following theorem:

Theorem 6. Given an SDNN and a safety property�φ, TS (N) satisfies�φ iff TS 2 satisfies

�φ.

Chapter 3. KUAI: A Model Checker for Software-defined Networks 49

3.3.2 Client Optimization

Given transition system TS 2 = (S2,A2,→2, s0,AP2, L2), we further reduce the state

space by observing that any receive action of a client is a stutter action and is in-

dependent of other actions. Formally, we define ample(s) for each state s ∈ S2

as follows: if there is a client in s such that its packet queue is not empty, then

ample(s) = {recv(c, pkt , pkts) | pkt is in c.pq at s}, that is, all receive actions enabled in

s. Otherwise, ample(s) = A(s). We now define a transition system TS 3 = (S3,A3,→3

, s0,AP3, L3) where S3 = S2, A3 = A2, AP3 = AP2, L3 = L2, and where the transition

relation→3 is defined as: if s α−→2 s
′ and α ∈ ample(s), then s α−→3 s

′.

Theorem 7. (1) TS 2 , TS 3. (2) Given a safety property �φ, TS 2 satisfies �φ iff TS 3

satisfies �φ.

3.3.3 (0,∞) Abstraction

The (0,∞) abstraction bounds the size of packet queues and the multiset in each control

queue. The idea is as follows. One can regard a multiset as a counter that counts the

number of elements in it exactly. Instead, (0,∞) abstraction abstracts a multiset so that

for each element e, it either does not contain e (i.e. 0) or contains unboundedly many

copies of e (i.e. ∞). Then the size of an abstracted multiset is bounded. Note that for

any state s in TS 3, any switch’s control queue contains exactly one multiset. Hence,

the abstraction bounds the length of control queues.

Let N∞ = N ∪ {∞} be the extension of the natural numbers with infinity. We nat-

urally extend the addition operation by assuming that ∞ +∞ = ∞ and ∞ + c = ∞

for all c ∈ Z. Given a multiset m ∈ M[D] for some finite set D, define an extended

multiset over(m) such that for each element d ∈ D, over(m)(d) = 0 if m(d) = 0, and

over(m)(d) = ∞ otherwise. Define M[D]∞ as the set of all extended multisets and

multisets over D. Given a control queue cq with length n, let over(cq) be such that

for 1 ≤ i ≤ n, over(cq)[i] = over(cq [i]) if cq [i] 6= b; over(cq)[i] = b otherwise. For

m1,m2 ∈ M[D]∞, we write m1 ≤e m2 iff for all d ∈ D, m1(d) ≤ m2(d) or m2(d) = ∞.

Given two control queues cq , cq ′ of same length n, define cq ≤e cq ′ iff for each 1 ≤ i ≤ n,

(cq [i] = b↔ cq ′[i] = b) ∧ (cq [i] 6= b→ cq [i] ≤e cq ′[i]).

50 Chapter 3. KUAI: A Model Checker for Software-defined Networks

Given an SDN and the transition system TS 3 = (S3,A3,→3, s0,AP3, L3), Define

a transition system TS 4 = (S4,A4,→4, s0,AP4, L4) where S4 = {over(s) | s ∈ S3},

A4 = A3, AP4 = AP3, and L4 = L3. The definition of →4 is given in detail in Sec-

tion 3.5.3. We provide the intuition of →4 here: →4 is defined so that (1) whenever a

packet pkt is added k ≥ 1 times into a packet queue pq , we set pq to over(pq ⊕ JpktkK),

and (2) whenever η(sw) is added into switch sw ’s control queue cq , we set cq to

over(cq + η(sw)). The following lemma claims that TS 4 simulates TS 3, which leads

to Theorem 8.

Lemma 3. For any infinite initial execution s0
β1−→3 s1

β2−→3 s2 . . . in TS 3, there is an infinite

initial execution t0
β1−→4 t1

β2−→4 t2 . . . in TS 4 such that for all i ≥ 0, si = (πi, δi, csi, rq i) and

ti = (π′i, δ
′
i, cs

′
i, rq

′
i) satisfy the following condition: for all c ∈ Clients , πi(c) ≤e π′i(c) and for

all sw ∈ Switches , δi(sw).pq ≤e δ′i(sw).pq , δi(sw).cq ≤e δ′i(sw).cq , δi(sw).fq = δ′i(sw).fq ,

δi(sw).ft = δ′i(sw).ft , and δi(sw).wait = δ′i(sw).wait , and csi = cs′i, and rq i = rq ′i.

Theorem 8. Given a safety property �φ, if TS 4 satisfies �φ then TS 3 satisfies �φ.

3.3.4 All Packets in One Shot Abstraction

So far, a switch processes a single packet at a time. We can further reduce the reachable

state space by forcing a switch to process all packets matched by some rule at a time.

The intermediate states produced by successive match actions in a switch are removed.

Let TS 4 = (S4,A4,→4, s0,AP4, L4). Define a transition system TS 5 = (S5,A5,→5

, s0,AP5, L5) where S5 = S4, AP5 = AP4, L5 = L4, A5 is the union of the new “multi-

ple” match actions and A4 excluding the old “single" match actions, and→5 is defined

as:
s
α−→4 s

′ ∧ α is not a match action

s
α−→5 s

′

and if pkt_lst = [pkt1, . . . , pktn] and r_lst = [r1, . . . , rn]

s
match(sw ,pkt1,r1)−−−−−−−−−−−→4 s1 . . . sn−1

match(sw ,pktn,rn)−−−−−−−−−−−→4 s
′

s
match(sw ,pkt_lst ,r_lst)−−−−−−−−−−−−−−→5 s

′

Chapter 3. KUAI: A Model Checker for Software-defined Networks 51

We prove TS 5 simulates TS 4. We define a relation R ⊆ S4 × S5 such that

((π, δ, cs, rq), (π′, δ′, cs ′, rq ′)) ∈ R iff for all pkt ∈ Packet , for all c ∈ Clients , π(c)(pkt) =

∞→ π′(c)(pkt) =∞ and for all sw ∈ Switches , δ(sw).pq(pkt) =∞→ δ′(sw).pq(pkt) =

∞, δ(sw).cq = δ′(sw).cq , δ(sw).fq = δ′(sw).fq , δ(sw).ft = δ′(sw).ft , and δ(sw).wait =

δ′(sw).wait , and cs = cs ′, and rq = rq ′.

Theorem 9. (1)The relation R is a simulation relation. (2)For a safety property �φ, if TS 5

satisfies �φ, then TS 4 satisfies �φ.

3.3.5 Controller Optimization

We consider a restricted class of SDNs in which the size κ of the controller’s request

queue is one. Under this restriction, we can define a new transition system TS 6 that

is stutter equivalent to TS 5 and has fewer reachable states. The idea is to observe that

a no-match action is a stutter action and is independent of any actions before a corre-

sponding control action is executed. Formally, given TS 5 = (S5,A5,→5, s0,AP5, L5),

we define a new transition relation→6 inductively:

s0
α−→5 s

′

s0
α−→6 s

′

s0 →+
6 s1

nomatch(sw ,pkt)−−−−−−−−−−→5 s2
ctrl(pkt ,cs)−−−−−−−→5 s

′

s1
nomatch_ctrl(sw ,pkt ,cs)−−−−−−−−−−−−−−−→6 s

′

s0 →+
6 s1

α−→5 s
′ ∧ α is not a no-match action

s1
α−→6 s

′

where a new action nomatch_ctrl(sw , pkt , cs) merges nomatch(sw , pkt) and ctrl(pkt , cs)

actions. We define a transition system TS 6 = (S6,A6,→6, s0,AP6, L6), where S6 =

S5 is the set of states, A6 is the union of all nomatch_ctrl(sw , pkt , cs) actions and

A5\(NoMatch ∪ Ctrl), AP6 = AP5, and L6 = L5.

Theorem 10. Given an SDNN where the size of the request queue of the controller is one, and

a safety property �φ. (1) TS 5 , TS 6. (2) TS 5 satisfies �φ iff TS 6 satisfies �φ.

52 Chapter 3. KUAI: A Model Checker for Software-defined Networks

3.4 Implementation and Evaluation

KUAI1 is implemented on top of PReach [10], a distributed enumerative model checker

built on Murphi. We model switches, clients, and the controller as concurrent Murphi

processes which communicate using message passing, with the queues modeled as

multisets. We manually abstract IP packets using predicates used in the controller. We

implement (0,∞)-counter abstraction as a library on top of Murphi multisets.

KUAI takes as input topology information such as the number of switches, clients,

and their connections, (manually) abstracted packets, and the controller code written as

a Murphi process, and invariants written in Murphi syntax. We found it fairly straight-

forward to port POX [102] controllers due to the imperative features of Murphi. Mur-

phi allows arbitrary first order logic formulas as invariants and it is easy to specify

safety properties. KUAI compiles them into a single Murphi file and the model check-

ing effort is then distributed across several machines using PReach. Finally the output

of the tool is an error trace if the program invariant fails, or success otherwise.

We have evaluated KUAI on a number of real world OpenFlow benchmarks. The

experiments were performed on a cluster of 5 Dell R910 rack servers each with 4 Intel

Xeon X7550 2GHz processors, 64 x 16GB Quad Rank RDIMMs memory and 174GB

storage. Our experiments had access to a total of 150 cores and had access to 4TB of

RAM.

Table 3.1 shows a summary of experimental results and compares against model

checking without the optimizations from Section 3.3. Empty rows indicate model

checking did not terminate in 1 hour or ran out of memory. Figure 3.2 shows the scal-

ability of model checking with increasing distribution on the three largest examples.

We noticed that the performance of the distributed model checker plateaued around 70

Erlang processes on these and other large examples. Thus, times (in table 3.1) are pro-

vided for configurations that use 70 Erlang processes. As we introduced abstractions,

it is possible that we get false positives. We verified the existence of all bugs reported

by KUAI manually and there were no false positives.

Besides the table, we plot the MAC learning example in Figure 3.3, which shows

1The tool is can be downloaded at https://github.com/t-saideep/kuai

Chapter 3. KUAI: A Model Checker for Software-defined Networks 53

Program Bytes/ w/o optimizations w/ optimizations
state States Time States Time

SSH 2×2 304 2,283,527 23.52s 13 6.40s
ML 3×3 320 9,109,456 89.99s 5308 6.39s
ML 6×3 748 23,926,202 604.07s
ML 9×2 1276 18,615,767 793.84s
FW(S) 1×2 332 2,110,986 26.89s 3645 5.45s
FW(M) 2×4 448 45,507 8.03s
FW(M) 3×4 560 512,439 55.06s
FW(M) 4×4 676 5,360,871 475.54s
RS 4×4 764 4998 6.60s
RS 4×5 764 590,570 82.82s
RS 4×6 764 5,112,013 327.39s
SIM 5×6 632 167 6.23s
SIM 5×8 632 167 6.34s
SIM 5×12 1108 167 6.85s

TABLE 3.1: Experimental results. Omitted entries indicate that model checking
did not terminate. The number X×Y in the Program column means that there

are X switches and Y clients in the example.

how significantly our optimization techniques reduce the state space. Though we still

suffer from the state-space explosion problem, our optimizations delay it and enable

us to verify SDNs with much larger configurations.

We now describe the benchmarks in detail.

SSH We run KUAI on the SSH controller from Listing 3.1. It finds the control mes-

sage reordering bug in 0.1 seconds. By adding a barrier after line 15, KUAI proves the

correctness in 6.4 seconds by exploring 13 states. In contrast, the unoptimized version

explores over 2 million states.

MAC Learning Controller (ML) This is based on the POX [102] implementation of

the standard ethernet discovery protocol. We checked there are no forwarding loops

(similar to [114]), i.e., a packet should not reach a switch more than once. Packets

are augmented with a bit for each switch which gets set when the switch processes

that packet. The invariant is specified using these visit-bits (called reached): � ∀sw ∈

Switches. ∀pkt ∈ sw .pq. (¬pkt .reached(sw)).

A cycle in the topology will lead to forwarding loops as the controller does not

compute the minimum spanning tree. We discover the bug in a cyclic topology of 3

switches 3 clients in 0.47 seconds. We re-ran the example on a topology containing the

minimum spanning tree of the original cyclic topology and the tool is able to prove

54 Chapter 3. KUAI: A Model Checker for Software-defined Networks

FIGURE 3.2: Verification time vs processes ◦ ML 9×2 ∆ ML 6×3 � FW(M) 4×4

that there were no forwarding loops in 6.39 seconds. We scale the example by adding

more switches. We notice that while the verification on topology with 9 switches and 2

clients has fewer states than the one with 6 switches and 3 clients, each state in the latter

case is bigger than the former and hence the memory and communication overheads

are higher.

Single Switch Firewall (FW(S)) This is based on an advanced GENI assignment [48] on

building an OpenFlow based firewall. The controller takes as input a simple configura-

tion file which is a list of tuples of the form (client1, port1, client2, port2). This specifies

that packets originating from client1 on port1 can be forwarded to client2 on port2. We

abbreviate the tuples as (client1: port1 → client2: port2). Any flow not explicitly al-

lowed is forbidden. The flows are uni-directional and the above flow will reject traffic

initiated by client2 on port2 towards client1 on port1. However, once client1 initiates

a flow, the firewall should allow client2 to reply back, making the flow bi-directional

until client1 closes the connection.

The naive implementation of the controller is as follows: on receiving a packet

(c1: p1 → c2: p2), check if there is a tuple matching the flow in the policy. If

it does, add rules (c1: p1 → c2: p2) and (c2: p2 → c1: p1) and forward the

packet to c2. Otherwise add a rule to drop packets of the form (c1: p1 →

c2: p2). The invariant to verify here is to ensure the policy of the firewall, i.e.,

Chapter 3. KUAI: A Model Checker for Software-defined Networks 55

FIGURE 3.3: State space of MAC learning controller.
∆: optimized, ◦: unoptimized

a packet from c1: p1 should be forwarded to c2: p2 if and only if (c1: p2 →

c2: p2) exists in the firewall policy or if (c2: p2 → c1: p1) exists in the policy

and c2 has already initiated the corresponding flow. The following formula speci-

fies that allowed packets should not be dropped: �∀p ∈ Packet . on_dropped(p) ⇒

¬flows[p.src][packet.src_port][packet.dest][p.dest_port], where on_dropped(p) is set if a

packet-drop transition is fired on packet p (and reset at the beginning of every transi-

tion). flows is an auxiliary variable in the controller which keeps track of allowed flows

based on the firewall policy and initiating client.

We ran the experiment on a topology with 2 clients and a firewall. We found an

interesting bug in our implementation which is caused by not assigning proper prior-

ities to rules. For example, when (c1: p1 → c2: p2) is present in the policy but not

(c2: p2 → c1: p1), the rule to drop flows should have a lower priority than the rules

to allow flows. Otherwise, the following bug would occur. If c2 initiates the flow

(c2: p2 → c1: p1) then the controller adds a rule to drop packets matching that flow.

Later on, if c1 initiates (c1: p1 → c2: p2) and the controller adds the corresponding

rules to allow the flow on both directions, the switch now has two conflicting rules of

the same priority. One to allow and the other to drop (c2: p2 → c1: p1). The switch

may non-deterministically choose to drop the packet. Once we fixed the bug, the tool

could prove the invariant in 5.45 seconds.

56 Chapter 3. KUAI: A Model Checker for Software-defined Networks

Multiple Switch Firewalls (FW(M)) We extend the above example to include multiple

replicated firewalls for load balancing. We now allow the clients to send packets to all

of these firewalls. We augment the implementation of the single switch controller to

add the same rules on all firewalls. However, this implementation no longer ensures

the invariant in the multi-switch setting.

Consider the case with two firewalls, f1 and f2. The tool reports the following bug:

c1 initiates (c1: p1 → c2: p2) on firewall f1. The controller adds the corresponding

rules to allow flows in both directions to f1 and f2 but only sends a barrier to f1. Now

f2 delays the installation of (c2: p2 → c1: p1) and c2 replies back to c1 through f2

which forwards the packet to the controller. The controller then drops the packet.

The fix here is to add the rules along with barriers on all switches and not just the

switch from which the packet originates. With this fix the tool is able to prove the

property in 8 seconds. In order to test the scalability, we tested the tool on increasing

number of firewalls in the topology.

Resonance (RS) Resonance [97] is a system for ensuring security in large networks

using OpenFlow switches. When a new client enters the network, it is assigned regis-

tration state and is only allowed to communicate with a web portal. The portal either

authenticates a client by sending a signal to the controller (and the controller assigns

the client an authenticated state), or sets the client to quarantined state. In the authen-

ticated state, the client is only allowed to communicate with a scanner. The scanner

ensures that the client is not infected and sends a signal to the controller and lets the

controller assign it an operational state. If an infection is detected, it is assigned a quar-

antined state. The clients in operational state are periodically scanned and moved to the

quarantined state if they are infected. Quarantined clients cannot communicate with

other clients.

In our model, the web portal non-deterministically chooses to authenticate or quar-

antine a client and the scanner non-deterministically marks a client operational or quar-

antined. We check the invariant that packets from quarantined clients should not be

forwarded: �∀p ∈ Packet . on_forward(p) ⇒ (state(p.src) 6= Quarantined). Similar to

on_drop, on_forward is set when packet-forward transition is fired and reset before the

beginning of every transition. The controller follows the Resonance algorithm [97].

Chapter 3. KUAI: A Model Checker for Software-defined Networks 57

We ran the experiment on a topology of two clients, one portal, one scanner and

four switches. The topology is the same as in Figure 2 of [97] without DHCP and

DNS clients. KUAI proves the invariant in 6.6 seconds. We scale up the example by

increasing the number of clients.

Simple (SIM) Simple [105] is a policy enforcement layer built on top of OpenFlow to

ensure efficient middlebox traffic steering. In many network settings, traffic is routed

through several middleboxes, such as firewalls, loggers, proxies, etc., before reaching

the final destination. Simple takes a middlebox policy as input and translates this to

forwarding rules to ensure the policy holds. The invariant ensures that all source pack-

ets to a client will be received and forwarded by the middleboxes specified in a given

policy before the packet reaches its destination.

We ran the experiment on a topology of two clients, two firewalls, one IDS, one

proxy and five switches (see Figure 1 of [105]). KUAI can prove the invariant in 6.48

seconds.

We scale up the example by fixing the destination client and increasing the number

of source clients that can send packets to it. Because of our “all packets in one shot”

optimization (section 3.3.4), no matter how many packets get queued initially, they

are all forwarded in lock-step as the controller forwarding rule applies to all incoming

packets.

3.5 Proof Details

3.5.1 Proofs for Barrier Optimization

To ease the proof of Theorem 5, we first provide several lemmas. Lemmas 4 and 5

provide two properties of a barrier action.

Lemma 4. Let TS (N) = (S,A,→, s0,AP , L) be an action-deterministic transition system.

For each 1 ≤ i ≤ 2|Rule|, for all sw ∈ Switches , barrier(sw)i is independent of A\Barrier .

Proof. It is straightforward to check the correctness of this lemma by using the defini-

tion of independence between actions.

58 Chapter 3. KUAI: A Model Checker for Software-defined Networks

Lemma 5. Let TS (N) = (S,A,→, s0,AP , L) be an action-deterministic transition system

and an SDN specification �φ. For each 1 ≤ i ≤ 2|Rule| and sw ∈ Switches , barrier(sw)i is a

stutter action w.r.t. �φ.

Proof. φ is a proposition over packets that have been forwarded by some switch at

least once, or over control states. Since barrier(sw)i does not change packets or control

states, barrier(sw)i is a stutter action.

Lemma 6 shows the definition of ample set in TS (N) satisfies three conditions.

Lemma 6. ample(s) satisfies the following conditions.

1. ∅ 6= ample(s) ⊆ A(s).

2. Let s β1−→ s1
β2−→ . . .

βn−→ sn
α−→ t be a finite execution in TS (N). If α ∈ A\ample(s)

depends on ample(s), βi ∈ ample(s) for some 0 < i ≤ n.

3. If ample(s) 6= A(s) then any α ∈ ample(s) is a stutter action.

Proof. Conditions (1) and (3) are straightforward to verify.

Let us prove condition (2) by contradiction. Suppose (2) does not hold. Then there

is a finite execution ρ = s
β1−→ s1

β2−→ . . .
βn−→ sn

α−→ t in TS (N) such that for any

1 ≤ i ≤ n, βi 6∈ ample(s) and α depends on ample(s).

If ample(s) = A(s), then β1 ∈ ample(s), which leads to a contradiction. Otherwise

ample(s) = {barrier(sw)i | 1 ≤ i ≤ b(s, sw) ∧ sw has a barrier in s}. Since α depends

on ample(s), by Lemma 4, α can only be a barrier action. Since for any 1 ≤ i ≤ n,

βi 6∈ ample(s), βi is not a barrier action. Hence α ∈ A(s). By the definition of ample(s),

α ∈ ample(s), which leads to a contradiction. Therefore condition (2) holds.

Lemma 6 implies the following three lemmas from 7 to 9.

Lemma 7. Let s be a state in TS (N). If α ∈ ample(s), then α is independent of

A(s)\ample(s).

Proof. Suppose not. Then there is an action β ∈ A(s)\ample(s) such that α and β are

dependent. Since β ∈ A(s), then s
β−→ s1 is a finite execution in TS (N). However it

violates the condition (2) in Lemma 6.

Chapter 3. KUAI: A Model Checker for Software-defined Networks 59

Lemmas 8 and 9 explain two ways to obtain a stutter equivalent execution.

Lemma 8. Let ρ be a finite execution in TS (N) of the form s
β1−→ s1

β2−→ . . .
βn−→ sn

α−→ t

where βi 6∈ ample(s), for 0 < i ≤ n, and α ∈ ample(s). There exists a finite execution ρ′ of

the form s
α
=⇒ t0

β1−→ . . .
βn−1−−−→ tn−1

βn−→ t and ρ , ρ′.

Proof. We prove it by induction on i ≥ 1.

Base case (i = 1): Then ρ = s
β1−→ s1

α−→ t. Since β1 6∈ ample(s) and α ∈ ample(s)

by Lemma 7, we have β1 and α are independent. Hence we can permute them and get

ρ′ = s
α−→ t1

β1−→ t. Since α ∈ ample(s), we have ρ′ = s
α
=⇒ t1

β1−→ t. Moreover, since α is a

barrier action and it is a stutter action, we have ρ , ρ′.

Induction step (i = n): Let ρ = s
β1−→ s1

β2−→ . . .
βn−→ sn

βn+1−−−→ sn+1
α−→ t. Since

βn+1 6∈ ample(s) and α ∈ ample(s), by Lemma 7, βn+1 and α are independent. Hence

we have ρ̂ = s
β1−→ s1

β2−→ . . .
βn−→ sn

α−→ tn
βn+1−−−→ t. Since α is a stutter action, ρ ,

ρ̂. Let ρ̂(n) = s
β1−→ s1

β2−→ s2 . . .
βn−→ sn

α−→ tn. By induction hypothesis, there is a

ρ′(n) = s
α
=⇒ t0

β1−→ t1 . . .
βn−1−−−→ tn−1

βn−→ tn such that ρ̂(n) , ρ′(n). Then we have

ρ′ = s
α
=⇒ t0

β1−→ t1 . . .
βn−1−−−→ tn−1

βn−→ tn
βn+1−−−→ t and ρ′ , ρ̂ , ρ.

Lemma 9. Let ρ = s
β1−→ s1

β2−→ . . . be an infinite execution in TS (N) where βi 6∈ ample(s),

for i > 0. There exists an execution ρ′ of the form s
α
=⇒ t0

β1−→ t1
β2−→ . . . where α ∈ ample(s)

and ρ , ρ′.

Proof. Since for all i > 0, βi 6∈ ample(s) and α ∈ ample(s), by Lemma 7, βi and α are

independent. Hence we have ρ′ = s
α
=⇒ t0

β1−→ t1
β2−→ . . . where for each i > 0, α(si) = ti.

Since α is a stutter action, for each i > 0, L(si) = L(ti) and L(s) = L(t0). Hence

ρ , ρ′.

The transition system T̂S has the following property in Lemma 10.

Lemma 10. For any infinite execution ρ in T̂S , there are infinitely many state s in ρ such that

ample(s) = A(s).

Proof. Suppose not. Without loss of generality, assume that from the k-th state sk on,

all the states after sk in ρ are such that ample(s) 6= A(s). Then we have for all i > k, the

action taken from si is a barrier action. However, sk has finitely many barriers, which

implies that ρ cannot be infinite. Contradiction.

60 Chapter 3. KUAI: A Model Checker for Software-defined Networks

Finally, we prove our main theorem for the barrier optimization:

Theorem 11. Let TS (N) be an action-deterministic transition system. TS (N) , T̂S .

Proof. By the definition of⇒, we know that every execution in T̂S is also an execution

in TS (N), and hence T̂S E TS (N).

We now prove that TS (N) E T̂S , that is, for any initial infinite execution ρ in

TS (N), there is an initial infinite execution ρ′ in T̂S such that ρ , ρ′. The idea is the

following. Let ρ be an infinite initial execution in TS (N) that is not in T̂S . Let l be

the minimal index in ρ such that for all 1 ≤ i ≤ l, the transition si−1
µi−→ si is also a

transition si−1
µi
=⇒ si in T̂S , that is,

ρ = s0
µ1
=⇒ . . .

µl=⇒ s
β1−→ s1

β2−→ s2 . . .︸ ︷︷ ︸
ρ0

Let ρ0 be an execution in TS (N) which starts in state s and is induced by the action

sequence β1β2β3 . . . where β1 6∈ ample(s). The execution ρ0 is successively replaced

with stutter-equivalent executions ρm, m = 1, 2, 3, ..., by means of the transforma-

tions indicated in Lemmas 8 and 9. Each of these executions ρm starts in state s and

is based on an action sequence of the form α1 . . . αmβ1γ1γ2γ3 . . . The action sequence

α1 . . . αm contains the actions of the ample sets, which are newly inserted according

to Lemma 9, and all actions βn, which were shifted forward according to Lemma 8.

γ1γ2γ3 . . . denotes the remaining subsequence of β1, β2, β3, Thus, ρm is of the form

s
α1=⇒ t1

α2=⇒ . . .
αm==⇒ tm

β1−→ tm0
γ1−→ tm1

γ2−→ tm2
γ3−→ . . . where α1, . . . αm are stutter actions.

By Lemma 10, β1 ∈ ample(tm) for some m ≥ 1. Then s
α1=⇒ t1

α2=⇒ . . .
αm==⇒ tm

β1
=⇒ tm0

becomes an execution in T̂S . By repeating this reasoning to the rest of the execu-

tion tm0
γ1−→ tm1

γ2−→ tm2
γ3−→ . . ., we obtain an execution ρ′0 in T̂S (as the “limit” of

ρm, ρm+1, . . .), where the induced action sequence contains all actions that occur in ρ0

(in TS).

Let us assume that ρ has the form s0
ξ1−→ s1

ξ2−→ . . . and let 0 = k0 < k1 < k2 < . . .

such that ξk1 , ξk2 , . . . results from ξ1, ξ2, . . . by omitting all stutter actions in ξ1, ξ2,

Then, trace(ρ) has the formA+
0 A

+
1 A

+
2 . . ., whereAi is the label L(sk) of all states sk with

ki ≤ k < ki+1. Since each of the nonstutter actions ξki is eventually processed, when

generating the executions ρ1, ρ2, ρ3, . . ., for each index ki there is some finite sequence

Chapter 3. KUAI: A Model Checker for Software-defined Networks 61

wi of the form A+
0 A

+
1 . . . A

+
i and some index li such that the traces of the executions

ρj for all j ≥ li start with wi. In particular, wi is a proper prefix of wi+1 and wi are

prefixes of the trace associated with the limit execution ρ′. Hence, trace(ρ′) has the

form A+
0 A

+
1 A

+
2 . . ., and ρ , ρ′.

Theorem 12. Given an SDNN and a safety property�φ, TS (N) satisfies�φ iff TS 2 satisfies

�φ.

Proof. If TS (N) does not satisfy �φ, then there is an execution s0
α1−→ . . .

αn−−→ sn in

TS (N) such that L(sn) does not satisfy φ. Since TS (N) E TS 2, there is an execution

s0
β1−→2 . . .

βm−−→2 tm in TS 2 such that L(tm) = L(sn). Hence L(tm) does not satisfy φ

either. Hence TS 2 does not satisfy �φ.

We can prove the other direction analogously.

3.5.2 Proofs for Client Optimization

The proofs for client optimization mimic the ones in the barrier optimization above.

We first show that a receive action is independent of any other actions in Lemma 11

and is a stutter action in Lemma 12.

Lemma 11. Let TS 2 = (S2,A2,→2, s0,AP2, L2) be an action-deterministic transition sys-

tem. Any receive action recv(c, pkt , pkts) is independent of A2\{recv(c, pkt , pkts)}.

Proof. It is straightforward to check the correctness of this lemma by using the defini-

tion of independence between actions.

Lemma 12. Let TS 2 = (S2,A2,→2, s0,AP2, L2) be an action-deterministic transition sys-

tem and an SDN specification�φ. Any receive action recv(c, pkt , pkts) is a stutter action w.r.t.

�φ.

Proof. φ is a proposition over packets that have been forwarded by some switch at least

once or over control states. Since any packet sent to the network by a receive action

has not been forwarded yet, and a receive action does not change control states, any

receive action is a stutter action.

Lemma 13 shows the definition of ample set in TS 2 satisfies three conditions.

62 Chapter 3. KUAI: A Model Checker for Software-defined Networks

Lemma 13. ample(s) satisfies the following conditions.

1. ∅ 6= ample(s) ⊆ A(s).

2. Let s β1−→2 s1
β2−→2 . . .

βn−→2 sn
α−→2 t be a finite execution in TS 2. If α ∈ A\ample(s)

depends on ample(s), βi ∈ ample(s) for some 0 < i ≤ n.

3. If ample(s) 6= A(s) then any α ∈ ample(s) is a stutter action.

Proof. Conditions (1) and (3) are straightforward to verify.

Let us prove condition (2) by contradiction. Suppose (2) does not hold. Then there

is a finite execution ρ = s
β1−→2 s1

β2−→2 . . .
βn−→2 sn

α−→2 t in TS 2 such that for any

1 ≤ i ≤ n, βi 6∈ ample(s) and α depends on ample(s).

If ample(s) = A(s), then β1 ∈ ample(s), which leads to a contradiction. Otherwise

ample(s) contains only receive actions. By Lemma 11, α is a receive action. Since for all

1 ≤ i ≤ n, βi is not a receive action, α ∈ A(s). Hence α ∈ ample(s), which leads to a

contradiction. Therefore condition (2) holds.

The transition system TS 3 has the following property in Lemma 14.

Lemma 14. For any infinite execution ρ in TS 3, there are infinitely many state s in ρ such

that ample(s) = A(s).

Proof. Suppose not. Without loss of generality, assume that from the k-th state sk on,

all the states after sk in ρ are such that ample(s) 6= A(s). Then we have for all i > k,

the action taken from si is a receive action. However, there are finitely many packets in

packet queues of clients in sk, which implies that ρ cannot be infinite. Contradiction.

Finally, we prove our main theorem for the client optimization:

Theorem 13. (1) TS 2 , TS 3. (2) Given a safety property �φ, TS 2 satisfies �φ iff TS 3

satisfies �φ.

Proof. Since Lemmas 13 and 14 hold, we can mimic the proof for Theorem 11 and prove

claim (1). By claim (1), claim (2) holds immediately.

Chapter 3. KUAI: A Model Checker for Software-defined Networks 63

3.5.3 Proofs for (0,∞) Abstraction

Semantics

Given a flow table ft and a list l in (M[CM]∞ ∪ b)∗, let updatee(ft , l) be a procedure that

updates ft based on l as follows. It dequeues the head of l and sets l to l.tl . If the head is

a barrier, then ignore it. If it is an extended multiset m, it nondeterministically chooses

a fetching order p and based on p, removes a control message cm with m(cm) = ∞

from m and set m(cm) = 0. If cm is add(r), then add the rule r to ft , or if cm is del(r),

then delete r from ft . It keeps updating ft based on p until m becomes empty. It repeats

the above instructions on l until l becomes empty. Then it returns the resulting flow

table ft .

We define the following operations for over-approximation:

1. Add packets in switches or clients. Given a set X ⊆ Switches × PacketN,

define addPkte(δ,X) = δ[foreach (sw , pktk) ∈ X, sw 7→ δ(sw)[pq 7→

over(δ(sw).pq ⊕ JpktkK)]]. Given a set Y ⊆ Clients × PacketN, define

addPkte(π, Y) = π[foreach (c, pktk) ∈ Y, c 7→ over(π(c)⊕ JpktkK)].

2. Flush and run all control messages up to the last barrier in a switch. Define

flushalle(δ, sw) = δ[sw 7→ δ(sw)[cq 7→ l1; ft 7→ updatee(δ(sw).ft , l2)]] where l1 = [∅]

and l2 = δ(sw).cq if the last element in δ(sw).cq is a barrier. Otherwise, let

δ(sw).cq = l@[m]. Then l1 = [m] and l2 = l.

3. Add control messages and barriers to the control queues of the switches. Given

a total function f : Switches → RE , define addCtrlCmde(δ, f) = δ[foreach sw ∈

Switches : sw 7→ δ(sw)[cq 7→ over(δ(sw).cq + f(sw))]].

For an SDN and the transition system TS 3 = (S3,A3,→3, s0,AP3, L3), define a

transition system TS 4 = (S4,A4,→4, s0,AP4, L4) where S4 = {over(s) | s ∈ S3}, A4 =

A3, AP4 = AP3, L4 = L3, and for t, t′ ∈ S4, t α−→4 t
′ is defined as

1. α = send(c, pkt). (π, δ, cs, rq)
α−→4 (π, δ′, cs, rq) where δ′ = addPkte(δ, {sw , pkt})

and sw = pkt .loc.n.

64 Chapter 3. KUAI: A Model Checker for Software-defined Networks

2. α = recv(c, pkt , pkts). (π, δ, cs, rq)
α−→4 (π′, δ′, cs, rq) where π′ =

delPkt(π, {c, pkt}), δ′ = addPkte(δ,X) and X = {(sw , pkt ′k) | pkts(pkt ′) =

k ∧ pkt ′.loc.n = sw}.

3. α = match(sw , pkt , r). (π, δ, cs, rq)
α−→4 (π′, δ′, cs, rq)

where π′ = addPkte(π,FwdToC (sw , pkt , r.ports)) and δ′ =

addPkte(δ,FwdToSw(sw , pkt , r.ports)).

4. α = nomatch(sw , pkt). (π, δ, cs, rq)
α−→4 (π, δ′, cs, rq ′) where δ′′ =

delPkt(δ, {sw , pkt}), δ′ = setWait(δ′′, sw), and rq ′ = rq ∪ {pkt}.

5. α = add(sw , r). (π, δ, cs, rq)
α−→4 (π, δ′, cs, rq) where δ′ = addRule(δ, sw , r).

6. α = del(sw , r). (π, δ, cs, rq)
α−→4 (π, δ′, cs, rq) where δ′ = delRule(δ, sw , r).

7. α = fwd(sw , pkt , pts). (π, δ, cs, rq)
α−→4 (π′, δ′, cs, rq) where π′ =

addPkte(π,FwdToC (sw , pkt , pts)), δ1 = delFwdMsg(δ, sw , (pkt , pts)), δ2 =

addPkte(δ1,FwdToSw(sw , pkt , pts)), and δ′ = unsetWait(δ2, sw).

8. α = ctrl(pkt , cs). (π, δ, cs, rq)
α−→4 (π, δ′, cs ′, rq ′) where rq ′ = rq\{pkt}.

Let pktIn(pkt , cs) = (η,msg, cs ′) and sw = pkt .loc.n. Define δ′′ =

addFwdMsg(δ, sw ,msg), and δ′′′= addCtrlCmde(δ′′, η). Let {sw1, . . . , swn} be the

set of all switches whose control queue has barriers in δ′′′. Let δ0 = δ′′′ and

δi = flushalle(δi−1, sw i) for all 1 ≤ i ≤ n. Define δ′ = δn.

Proofs

Lemma 15. Given a flow table ft and a multiset m of control messages. For any fetch-

ing order p chosen by update(ft , [m]) to process m, there is a fetching order p′ chosen by

updatee(ft , [over(m)]) to process over(m) such that update(ft , [m]) = updatee(ft , [over(m)]).

Proof. Let R = {r | m(add(r)) > 0 ∨m(del(r)) > 0} be the set of rules that are manipu-

lated bym. Fix a fetching order p for update . We construct a fetching order p′ for updatee

such that for each r ∈ R, if p adds r to ft , then p′ also adds r to ft ; and if p deletes r from

ft , then p′ deletes r from ft too. As a result, update(ft , [m]) = updatee(ft , [over(m)]).

Fix a rule r ∈ R. If p adds r to ft , then there are two cases to consider.

Chapter 3. KUAI: A Model Checker for Software-defined Networks 65

1. m(add(r)) > 0 and m(del(r)) = 0. Then we have over(m)(add(r)) = ∞ and

over(m)(del(r)) = 0. Then any fetching order of updatee(ft , [over(m)]) including

p′ adds r to ft .

2. m[add(r)] > 0 and m[del(r)] > 0. Then we have over(m)(add(r)) = ∞ and

over(m)(del(r)) = ∞. We require that p′ fetch del(r) first and then add(r). Hence

p′ adds r to ft as well.

If p deletes r from ft , then there are two cases to consider.

1. m(add(r)) = 0 and m(del(r)) > 0. Then we have over(m)(add(r)) = 0 and

over(m)(del(r)) = ∞. Then any fetching order of updatee(ft , [over(m)]) includ-

ing p′ deletes r from ft .

2. m(add(r)) > 0 and m(del(r)) > 0. Then we have over(m)(add(r)) = ∞ and

over(m)(del(r)) = ∞. We require that p′ fetch add(r) first and then del(r). Hence

p′ deletes r from ft as well.

Consequently, if update(ft , [m]) chooses p, then let updatee(ft , [over(m)]) choose p′, and

we have update(ft , [m]) = updatee(ft , [over(m)]).

We can naturally extend the notion of fetching order from a single multiset to a

list l in (M[CM] ∪ b)∗. Given l, let l′ be the list of multisets [m1, . . . ,mn] obtained by

removing all barriers from l. Let pi be a fetching order formi, where 1 ≤ i ≤ n. Define a

fetching order of update(ft , l) to be p1, p2, . . . , pn, that is, the composition of individual

fetching orders one by one. Given a list l in (M[CM]∞ ∪ b)∗, we define a fetching order

of updatee(ft , l) analogously. We now can extend Lemma 15 to a list l in (M[CM] ∪ b)∗

as a corollary.

Corollary 1. Given a flow table ft and a list l in (M[CM] ∪ b)∗. for any fetching order p

of update(ft , l), there is a fetching order p′ of updatee(ft , over(l)) such that update(ft , l) =

updatee(ft , over(l)).

The following lemma claims two properties between finite initial executions in TS 3

and TS 4.

66 Chapter 3. KUAI: A Model Checker for Software-defined Networks

Lemma 16. Let s0
α1−→3 s1

α2−→3 s2 . . .
αn−−→3 sn be an initial execution in TS 3 and t0

α1−→4

t1
α2−→4 t2 . . .

αn−−→4 tn be an initial execution in TS 4 for some n ≥ 0. For all 0 ≤ i ≤ n, let

si = (πi, δi, csi, rq i) and ti = (π′i, δ
′
i, cs

′
i, rq

′
i). The following two properties hold:

1. For all 0 ≤ i ≤ n, sw ∈ Switches , and rule r ∈ Rule , if δi(sw).cq = [mi] ∧

mi(add(r)) = 0∧mi(del(r)) = 0∧δ′i(sw).cq = [m′i]∧m′i(add(r)) =∞∧m′i(del(r)) =

0, then r ∈ δi(sw).ft and r ∈ δ′i(sw).ft .

2. For all 0 ≤ i ≤ n, sw ∈ Switches , and rule r ∈ Rule , if δi(sw).cq = [mi] ∧

mi(add(r)) = 0∧m(del(r)) = 0∧δ′i(sw).cq = [m′i]∧m′i(del(r)) =∞∧m′i(add(r)) =

0, then r 6∈ δi(sw).ft and r 6∈ δ′i(sw).ft .

Proof. We now prove property 1 by induction on n.

Base case (n = 0): the property 1 holds trivially.

Induction step: suppose for all 0 ≤ i ≤ n, property 1 holds. We now prove that

property 1 also holds for two executions of length n + 1. Suppose we have two initial

executions s0
α1−→3 s1

α2−→2 s2 . . .
αn−−→3 sn

αn+1−−−→3 sn+1 and t0
α1−→4 t1

α2−→4 t2 . . .
αn−−→4

tn
αn+1−−−→4 tn+1. Without loss of generality, fix a switch sw and a rule r. Assume that

δn+1(sw).cq = [mn+1]∧mn+1(add(r)) = 0∧mn+1(del(r)) = 0∧ δ′n+1(sw).cq = [m′n+1]∧

m′n+1(add(r)) = ∞∧m′n+1(del(r)) = 0 holds. Our goal is to prove r ∈ δn+1(sw).ft and

r ∈ δ′n+1(sw).ft . We prove it by case analysis on the action αn+1.

1. αn+1 is in Send ∪Recv ∪Match∪NoMatch∪Forward , or is of the form add(sw ′, r′)

or del(sw ′, r′) where sw ′ ∈ Switches and r′ 6= r. Then we have δn(sw).cq =

[mn] ∧ mn(add(r)) = 0 ∧ mn(del(r)) = 0 ∧ δ′n(sw).cq = [m′n] ∧ m′n(add(r)) =

∞ ∧ m′n(del(r)) = 0. By induction hypothesis, r ∈ δn(sw).ft and r ∈ δ′n(sw).ft .

Since αn+1 does not add or delete r, we have r ∈ δn+1(sw).ft and r ∈ δ′n+1(sw).ft .

2. αn+1 is the action add(sw , r). Then r ∈ δn+1(sw).ft and r ∈ δ′n+1(sw).ft trivially

hold because r is added by αn+1.

3. αn+1 is the action del(sw , r). This case is impossible because this implies that

δ′n+1(sw).cq = [m′n+1] and m′n+1(del(r)) =∞.

4. αn+1 is a control action ctrl(pkt , cs). There are three cases that αn+1 may modify

the control queue cq of the switch sw .

Chapter 3. KUAI: A Model Checker for Software-defined Networks 67

(1) αn+1 appends nothing to cq . Then by the same argument in (1), we have

r ∈ δn+1(sw).ft and r ∈ δ′n+1(sw).ft .

(2) αn+1 appends a multiset m′′ to cq . Since mn+1(add(r)) = mn+1(del(r)) =

0 at sn+1, we have m′′(add(r)) = m′′(del(r)) = 0, and δn(sw).cq =

[mn] ∧ mn(add(r)) = 0 ∧ mn(del(r)) = 0. Since m′n+1(add(r)) = ∞ and

m′n+1(del(r)) = 0 at tn+1 and m′′(add(r)) = 0, we have δ′n(sw).cq = [m′n] ∧

m′n(add(r)) = ∞ ∧ m′n(del(r)) = 0. By induction hypothesis, r ∈ δn(sw).ft

and r ∈ δ′n(sw).ft . Since αn+1 does not change any flow table, we have

r ∈ δn+1(sw).ft and r ∈ δ′n+1(sw).ft .

(3) αn+1 appends more than one multiset to cq . This case is impossible because

a barrier must be appended in cq . Then m′n+1(add(r)) = ∞ at tn+1 implies

that mn+1(add(r)) 6= 0 at sn+1, which is a contradiction.

Since the proof of property 2 is analogous to the proof of property 1 above, we skip

it now.

We now prove TS 4 simulates TS 3 in the following lemma.

Lemma 17. For any infinite initial execution s0
β1−→3 s1

β2−→3 s2 . . . in TS 3, there is an infinite

initial execution t0
β1−→4 t1

β2−→4 t2 . . . in TS 4 such that for all i ≥ 0, si = (πi, δi, csi, rq i) and

ti = (π′i, δ
′
i, cs

′
i, rq

′
i) satisfy the following condition: for all c ∈ Clients , πi(c) ≤e π′i(c) and for

all sw ∈ Switches , δi(sw).pq ≤e δ′i(sw).pq , δi(sw).cq ≤e δ′i(sw).cq , δi(sw).fq = δ′i(sw).fq ,

δi(sw).ft = δ′i(sw).ft , and δi(sw).wait = δ′i(sw).wait , and csi = cs′i, and rq i = rq ′i.

Proof. Induction on the length k of an initial execution in TS 3.

Base case (k = 0): it holds because s0 = t0.

Induction step: Suppose the theorem holds for k = n. Consider an initial execution

s0
β1−→3 s1

β2−→3 s2 . . .
βn−→3 sn

βn+1−−−→3 sn+1 in TS 3. By induction hypothesis, there is an

initial execution t0
β1−→4 t1

β2−→4 t2 . . .
βn−→4 tn in TS 4 such that if for 0 ≤ i ≤ n, si and

ti satisfy the condition. Hence βn+1 is enabled at tn. Suppose βn+1(tn) = tn+1. Our

goal is to prove sn+1 and tn+1 also satisfy the condition. We prove it by case analysis

on βn+1. It is easy to check if all actions except control actions are taken from sn and

get sn+1, the same action can also taken from tn and get tn+1, and sn+1 and tn+1 satisfy

the condition.

68 Chapter 3. KUAI: A Model Checker for Software-defined Networks

Let us consider the case where a control action βn+1 is taken from sn to sn+1. By

induction hypothesis, rq ′n = rqn and cs′n = csn. Hence rq ′n+1 = rqn+1 and cs′n+1 =

csn+1. Without loss of generality, it is sufficient to analyze one switch sw and show

δn+1(sw).cq ≤e δ′n+1(sw).cq and δn+1(sw).ft = δ′n+1(sw).ft .

Denote l be the list in (M[CM]∪ b)∗ that is added to the switch sw by the controller.

If l is empty, then cq and ft do not change after βn+1 is taken, that is, δn+1(sw).cq =

δn(sw).cq ≤e δ′n(sw).cq = δ′n+1(sw).cq , and δn+1(sw).ft = δn(sw).ft = δ′n(sw).ft =

δ′n+1(sw).ft . If l is not empty, we consider three cases:

1. l = [m]. Since l has no barriers, δ′n+1(sw).ft = δ′n(sw).ft = δn(sw).ft = δn+1(sw).ft .

In addition, δn+1(sw).cq = [δn(sw).cq .hd ⊕ m] ≤e [δ′n(sw).cq .hd ⊕ over(m)] =

δ′n+1(sw).cq

2. l = [m]@l2@[b, m̂] or [m]@l2@[b]. Then δn+1(sw).cq ≤e δ′n+1(sw).cq . Suppose

δn(sw).cq = [m0] and δ′n(sw).cq = [m′0]. we show that for any fetching order

p of update(δn(sw).ft ,m0 ⊕ m) that leads to f̂t , there is a fetching order p′ of

updatee(δ′n(sw).ft ,m′0 ⊕ over(m)) that leads to f̂t
′

such that f̂t = f̂t
′
. Fix a fetching

order p. We construct p′ based on each rule r ∈ Rule .

(a) r is added to δn(sw).ft by p. There are two possibilities.

i. m0 ⊕ m(add(r)) > 0 and m0 ⊕ m(del(r)) = 0. Then we have m′0 ⊕

over(m)(add(r)) = ∞. If m′0 ⊕ over(m)(del(r)) = 0, then we do not

restrict p′ because r must be added. If m′0 ⊕ over(m)(del(r)) = ∞, then

we require p′ fetch del(r) first and then add(r).

ii. m0 ⊕ m(add(r)) > 0 and m0 ⊕ m(del(r)) > 0. Then we have m′0 ⊕

over(m)(add(r)) =∞ and m′0⊕over(m)(del(r)) =∞. We require p′ fetch

del(r) first and then add(r).

(b) r is deleted from δn(sw).ft . There are two possibilities.

i. m0 ⊕ m(add(r)) = 0 and m0 ⊕ m(del(r)) > 0. Then we have m′0 ⊕

over(m)(del(r)) = ∞. If m′0 ⊕ over(m)(add(r)) = 0, then we do not

restrict p′ because r must be deleted. If m′0 ⊕ over(m)(add(r)) =∞, then

we require p′ fetch add(r) first and then del(r).

Chapter 3. KUAI: A Model Checker for Software-defined Networks 69

ii. m0 ⊕ m(add(r)) > 0 and m0 ⊕ m(del(r)) > 0. Then we have m′0 ⊕

over(m)(add(r)) =∞ and m′0⊕over(m)(del(r)) =∞. We require p′ fetch

add(r) first and then del(r).

(c) m0 ⊕m(add(r)) = 0 and m0 ⊕m(del(r)) = 0. There are three possibilities.

i. m′0 ⊕ over(m)(add(r)) = ∞ and m′0 ⊕ over(m)(del(r)) = ∞. If r ∈

δ′n(sw).ft , then we require p′ fetch del(r) first and then add(r). If r 6∈

δ′n(sw).ft , then we require p′ fetch add(r) first and then del(r).

ii. m′0 ⊕ over(m)(add(r)) = ∞ and m′0 ⊕ over(m)(del(r)) = 0. Then we

have m′0(add(r)) = ∞ and m′0(del(r)) = 0. By Lemma 16, r ∈ δ′n(sw).ft .

Hence we do not restrict p′ because r must be added to a flow table that

already contains r.

iii. m′0 ⊕ over(m)(add(r)) = 0 and m′0 ⊕ over(m)(del(r)) = ∞. Then we

have m′0(add(r)) = 0 and m′0(del(r)) = ∞. By Lemma 16, r 6∈ δ′n(sw).ft .

Hence we do not restrict p′ because r must be deleted from a flow table

that does not contain r.

Intuitively, p′ adds or deletes a rule in δ′n(sw).ft if p adds or deletes the rule in

δn(sw).ft . For those control messages of the form add(r) and del(r) that are not

in m0 ⊕m but in m′0 ⊕ over(m), either p′ adds r to δ′n(sw).ft containing r already,

or deletes r from δ′n(sw).ft not containing r, or neutralizes add(r) and del(r) to

keep r ∈ f̂t
′

iff r ∈ δ′n(sw).ft . Hence, f̂t = f̂t
′
. By Corollary 1, for any fetching

order p2 of update(f̂t , l2@[b]) that leads to δn+1(sw).ft , there is a fetching order

p′2 of updatee(f̂t
′
, over(l2@[b])) that leads to δ′n+1(sw).ft such that δn+1(sw).ft =

δ′n+1(sw).ft .

3. l = [b]@l2@[b, m̂] or [b]@l2@[b]. The proof is analogous to the case (2) wherem = ∅.

Since we have proved all cases, the lemma holds.

Since TS 4 simulates TS 3 by Lemma 17, we have the following theorem.

Theorem 14. For an SDN property �φ, if TS 4 satisfies �φ, TS 3 satisfies �φ.

70 Chapter 3. KUAI: A Model Checker for Software-defined Networks

3.5.4 Proofs for All Packets In One Shot

We prove that TS 5 simulates TS 4. We define a relation R ⊆ S4 × S5 such that

((π, δ, cs, rq), (π′, δ′, cs ′, rq ′)) ∈ R iff for all pkt ∈ Packet , for all c ∈ Clients , π(c)(pkt) =

∞→ π′(c)(pkt) =∞ and for all sw ∈ Switches , δ(sw).pq(pkt) =∞→ δ′(sw).pq(pkt) =

∞, δ(sw).cq = δ′(sw).cq , δ(sw).fq = δ′(sw).fq , δ(sw).ft = δ′(sw).ft , and δ(sw).wait =

δ′(sw).wait , and cs = cs ′, and rq = rq ′.

Theorem 15. (1) The relation R is a simulation relation. (2) For a safety property �φ, if TS 5

satisfies �φ, TS 4 satisfies �φ.

Proof. Proof of claim (1):

It is straightforward to verify that for all (s, t) ∈ R, if s α−→4 s
′, then there are t′ and α′

such that t α′−→5 t
′ and (s′, t′) ∈ R. In particular, α = α′ if α is not a match action. If α is a

match action match(sw , pkt , r) in A4, then α′ is a match action match(sw , pkt_lst , r_lst)

in A5 such that pkt is in pkt_lst and r is in r_lst .

By claim (1), TS 5 simulates TS 4 and hence claim (2) holds accordingly.

3.5.5 Proofs for Controller Optimization

Theorem 16. Given an SDNN where the size of the request queue of the controller is one, and

a safety property �φ. (1) TS 5 , TS 6. (2) TS 5 satisfies �φ iff TS 6 satisfies �φ.

Proof. Proof of claim (1):

We first prove TS 6 E TS 5, i.e., for each initial infinite execution ρ = t0
α1−→6

t1
α2−→6 . . . in TS 6, there is an initial infinite execution ρ′ = s0

β1−→5 s1
β2−→5 . . .

such that ρ , ρ′. We construct ρ′ by scanning ρ from the beginning. For all i ≥ 0,

if ti
nomatch_ctrl(sw ,pkt ,cs)−−−−−−−−−−−−−−−→6 ti+1 in ρ, then we split nomatch_ctrl(sw , pkt , cs) into two

actions nomatch(sw , pkt) and ctrl(pkt , cs) and introduce a new intermediate state ui

such that si
nomatch(sw ,pkt)−−−−−−−−−−→5 ui

ctrl(pkt ,cs)−−−−−−−→5 si+1 in ρ′. If ti
α−→6 ti+1 and α is not

nomatch_ctrl(sw , pkt , cs), then define si
α−→5 si+1. The construction of ρ′ ensures that

for all i ≥ 0, si = ti. Moreover, if ui is the successor of si then L5(si) = L5(ui) because

nomatch(sw , pkt) is a stutter action. Therefore, ρ′ , ρ.

We then prove TS 5 E TS 6. Let ρ = s0
β1−→5 s1

β2−→5 . . . be an initial infinite execution

in TS 5. The construction of ρ′ is the following. We walk through ρ until we find a

Chapter 3. KUAI: A Model Checker for Software-defined Networks 71

nomatch(sw , pkt) action. If we cannot find it, then ρ is in TS 6 by definition. Otherwise,

ρ is of the form ρ = s0
β1−→5 s1

β2−→5 . . .
βi−1−−−→5 si−1

nomatch(sw ,pkt)−−−−−−−−−−→5 si
βi+1−−−→5 si+1 . . .

where for all 1 ≤ j ≤ i− 1, βj is not a no-match action. By definition of→6, we have an

execution ρ̂ = s0
β1−→6 s1

β2−→6 . . .
βi−1−−−→6 si−1

nomatch(sw ,pkt)−−−−−−−−−−→5 si
βi+1−−−→5 si+1 We now

consider two cases.

(1) Control action ctrl(pkt , cs) does not appear in βj for all j > i. Since we as-

sume that the size of the request queue of the controller is 1, we know that for all

j > i, nomatch(sw , pkt) is independent of βj . We can keep permuting nomatch(sw , pkt)

backward with βi+1, βi+2, . . . and at the limit, we get an execution ρ′′ in which

nomatch(sw , pkt) is never executed.

ρ′′ = s0
β1−→6 s1

β2−→6 . . .
βi−1−−−→6 si−1

βi+1−−−→5 ui
βi+2−−−→5 ui+1 . . .

Since the size of the request queue of the controller is one, for all j > i, βj is not a

no-match action and by the definition of→6, we have

ρ′ = s0
β1−→6 s1

β2−→6 . . .
βi−1−−−→6 si−1

βi+1−−−→6 ui
βi+2−−−→6 ui+1 . . .

Moreover, since nomatch(sw , pkt) is a stutter action, we have ρ′ , ρ.

(2) Control action ctrl(pkt , cs) appears and the first one is βk for some k > i. Hence

ρ̂ has the form: ρ̂ = s0
β1−→6 . . .

βi−1−−−→6 si−1
nomatch(sw ,pkt)−−−−−−−−−−→5 si

βi+1−−−→5 si+1 . . . sk−1
βk−→5

sk

Since the size of request queue is one, then nomatch(sw , pkt) is independent of any

actions βj where i < j < k. We then permute nomatch(sw , pkt) with βj successively

and end up with an execution as follows: s0
β1−→6 . . .

βi−1−−−→6 si−1
βi+1−−−→5 ui

βi+2−−−→5

. . . uk−2
nomatch(sw ,pkt)−−−−−−−−−−→5 sk−1

βk−→5 sk

Since for all i < j < k, βj is not a no-match action, by definition of →6, we have

ρ1 = s0
β1−→6 . . .

βi−1−−−→6 si−1
βi+1−−−→6 ui

βi+2−−−→6 . . . uk−2
nomatch_ctrl(sw ,pkt ,cs)−−−−−−−−−−−−−−−→6 sk

The execution s0 →∗5 sk of ρ and the execution s0 →∗6 sk of ρ1 are stutter equivalent

because nomatch(sw , pkt) is a stutter action.

Now the next task to make the rest execution of ρ1 from sk and the rest execution of

ρ from sk stutter equivalent. By repeating the reasoning in cases (1) and (2) from sk on

72 Chapter 3. KUAI: A Model Checker for Software-defined Networks

in ρ1, at the limit, we end up with an execution ρ′ in TS 6 such that ρ′ , ρ.

Since claim (1) holds, claim (2) holds immediately.

3.6 Related Work

There is a lot of systems and networking interest in SDNs [40, 62] and standards such as

Openflow [91]. From the formal methods perspective, research has focused on verified

programming language frameworks for writing SDN controllers [43, 55]. Here, veri-

fication refers to correct compilation from Frenetic to executable code, or to checking

composability of programs, not the correctness of invariants.

Previous model checking attempts for SDNs mostly focused either on proving a

static snapshot of the network [69] or on model checking or symbolic simulation tech-

niques for a fixed number of packets [22, 98]. Recent work extended to controller up-

dates and arbitrary number of packets [114], but used a manual process to add non-

interference lemmas. In contrast, our technique automatically deals with unboundedly

many packets and, thanks to the partial-order techniques, scales to much larger con-

figurations than reported in [114]. Program verification for SDN controllers using loop

invariants and SMT solving has been proposed recently [6]. While the invariants can

quantify over the network (and therefore not limited to finite topologies), the model

of the network ignores asynchronous interleavings of packet and control message pro-

cessing that we handle here.

Our work builds on top of distributed enumerative model checking and the PReach

tool [10]. Our contribution is identifying domain specific state space reduction heuris-

tics that enable us to explore large configurations.

Chapter 4

Expand, Enlarge, and Check for

Branching Vector Addition Systems

4.1 Introduction

Branching vector addition systems (BVAS) are an expressive model that generalize vec-

tor addition systems (VAS, or Petri nets) with branching structures. Intuitively, one can

consider a VAS as producing a linear sequence of vectors using unary rewrite rules,

where a rewrite rule takes a vector v and adds a constant δ to it, as long as the sum

v + δ remains non-negative on all co-ordinates. A branching VAS adds a second, bi-

nary rewrite rule that takes two vectors v1 and v2 and rewrites them to v1 + v2 + δ

for a constant δ, again provided the sum is non-negative on all co-ordinates. Thus,

a BVAS generates a derivation tree of vectors, starting with a multiset of initial vec-

tors, or axioms, at the leaves and generating a vector at the root of a derivation, where

each internal node in the tree applies a unary or a binary rewrite rule. The reachabil-

ity problem for BVAS is to check if a given vector can be derived, and the coverability

problem asks, given a vector v, if a vector v′ ≥ v can be derived. These generalize the

corresponding problems for VAS. Several verification problems, such as the analysis

of recursively parallel programs [12] and the analysis of some cryptographic protocols

[120], have been shown to reduce to the coverability problem for BVAS.

Coverability for BVAS is known to be decidable, both through a generalized Karp-

Miller construction [119] as well as through a bounding argument [35]. Further,

the bounding argument characterizes the complexity of the problem: coverability is

73

74 Chapter 4. Expand, Enlarge, and Check for Branching Vector Addition Systems

2EXPTIME-complete [35] (contrast with the EXPSPACE-completeness for VAS [106]).

The Karp-Miller construction is non-primitive recursive, since BVAS subsume VAS [68].

Despite potential applications, the study of BVAS has so far remained in the do-

main of theoretical results, and to the best of our knowledge, there have not been any

attempts to build analysis tools for coverability. In contrast, tools for VAS coverability

have made steady progress and can now handle quite large benchmarks derived from

the analysis of multi-threaded programs [65, 70]. In our view, one reason is that a direct

implementation of the algorithms from [35, 119] are unlikely to perform well: Karp-

Miller trees for VAS do not perform well in practice, and Demri et al.’s complexity-

theoretically optimal algorithm performs a non-deterministic guess and enumeration

by an alternating Turing machine.

In this dissertation, we apply the expand, enlarge, and check paradigm (EEC) [47] to

the analysis of BVAS. EEC is a successful heuristic for checking coverability of well-

structured transition systems such as Petri nets. It constructs a sequence of under-

and over-approximations of the state space of a system such that, for a target state t,

(1) if t is coverable, then a witness is found by an under-approximation, (2) if t is not

coverable, then a witness for un-coverability is found by an over-approximation, and

(3) eventually, one of the two outcomes occur and the algorithm terminates.

EEC offers several nice features for implementation. First, each approximation it

considers is finite-state, thus opening the possibility of applying model checkers for

finite-state systems. Second, EEC is goal-directed: it computes abstractions that are

precise enough to prove or disprove coverability of a target, unlike a Karp-Miller pro-

cedure that computes the exact coverability set independent of the target. Third, it

allows a forward abstract exploration of the state space, which is often more effective

in practice.

Our first contribution is to port the EEC paradigm to the coverability analysis of

BVAS. We show how to construct a sequence of under- and over-approximations of

derivations such that if a target is coverable, an under-approximation derives a wit-

ness for coverability, and if a target is not coverable, an over-approximation derives

Chapter 4. Expand, Enlarge, and Check for Branching Vector Addition Systems 75

a witness for un-coverability. We generalize the proof of correctness of EEC for well-

structured systems. Since there is no BVAS analogue of a backward-reachability algo-

rithm for VAS, our proofs instead use induction on derivations and the Karp-Miller

construction of [119].

A natural question is how well EEC performs in the worst case compared to asymp-

totically optimal algorithms. For example, even for VAS, it is unknown if the EEC algo-

rithm can match the known EXPSPACE upper bound for coverability, or if it matches

the non-primitive recursive lower bound for Karp-Miller trees. Our second contribu-

tion is to bound the number of iterations of the EEC algorithm in the worst case. We

show that we can compute a constant c of size doubly exponential in the size of the

BVAS and the target vector such that the EEC algorithm is guaranteed to terminate

in c iterations. In each iteration, the algorithm explores approximate state spaces of

derivations, that correspond to exploring AND-OR trees of size doubly exponential in

the input. In other words, if each exploration is performed optimally, we get an op-

timal asymptotic upper bound for EEC. Specifically, for VAS, we get an EXPSPACE

upper bound, since there are doubly exponential iterations and each iteration checks

two reachability problems over doubly-exponential state spaces. (In practice though,

model checkers do not implement space-optimal reachability procedures.) While our

proof uses Rackoff-style bounds [35, 106], our implementation does not require any

knowledge of these bounds. A similar argument was used in [15] to show a doubly

exponential bound on the backward reachability algorithm for VAS.

We have implemented the EEC-based procedure for BVAS coverability. Our moti-

vation for analyzing BVAS came from the analysis of recursively parallel programs [12,

45]. It is known that the analysis of asynchronous programs, a co-operatively sched-

uled concurrency model, can be reduced to coverability of VAS [45], and there have

been EEC-based tools for these programs [64]. However, some asynchronous programs

use features such as posting a set of tasks in a handler and waiting on the first task to

return, that are not reducible to asynchronous programs. Bouajjani and Emmi [12] de-

fine a class of recursively parallel programs that can express such constructs, and show

that the safety verification problem for this class is equivalent to coverability of BVAS.

We applied this reduction in our implementation, and used our tool to model check

76 Chapter 4. Expand, Enlarge, and Check for Branching Vector Addition Systems

safety properties of recursively parallel programs. We coded the control flow of tasks

in a simple web server [34] and showed that our tool can successfully check for safety

properties and find bugs. On our examples, the EEC algorithm terminates in one iter-

ation, that is, with a {0, 1,∞} abstraction. While our evaluations are preliminary, we

believe there is a potential for model checking tools for complex concurrent programs

based on BVAS coverability.

4.2 Preliminaries

Well quasi ordering. A quasi ordering (X,�) is a reflexive and transitive binary relation

on X . A quasi ordering (X,�) is a well quasi ordering iff for every infinite sequence

x0, x1, . . . of elements from X , there exists i < j with xi � xj . A subset X ′ of X is

upward closed if for each x ∈ X , if there is an x′ ∈ X ′ with x′ � x then x ∈ X ′. A subset

X ′ of X is downward closed if for each x ∈ X , if there is an x′ ∈ X ′ with x � x′ then

x ∈ X ′. Given x ∈ X , we write x ↓ and x ↑ for the downward closure {x′ ∈ X | x′ � x}

and upward closure {x′ ∈ X | x � x′} of x respectively. Downward and upward closures

are naturally extended to sets, i.e., X ↓=
⋃
x∈X x↓ and X ↑=

⋃
x∈X x↑. A subset S ⊆ X

is minimal iff for every two elements x, x′ ∈ S, we have x 6� x′.

Numbers and vectors. We write N, N+ and Z for the set of non-negative, positive

and arbitrary integers, respectively. Given two integers a and b, we write [a, b] for

{n ∈ Z | a ≤ n ≤ b}.

For a vector v ∈ Zk and i ∈ [1, k], we write v[i] for the ith component of v. Given

two vectors v, v′ ∈ Zk, v ≤ v′ iff for all i ∈ [1, k], v[i] ≤ v′[i]. Moreover, v < v′ iff v ≤ v′

and v′ 6≤ v. It is well-known that (Nk,≤) is a well quasi ordering. We write 0 for the

zero vector.

Given a finite set S ⊆ Z of integers, we write max(S) for the greatest integer in the

set. We define max(∅) = 0. Given a vector v ∈ Zk, let max(v) = max({v[1], . . . , v[k]}).

When k = 0, we have max(()) = 0. We define min(S) analogously. We write min(0, v)

for the vector (min({0, v[1]}), . . . ,min({0, v[k]})). The vector max(0, v) is defined anal-

ogously. For simplicity, we write v− for the vector −min(0, v) and v+ for the vector

max(0, v). Given a finite set of vectors R ⊆ Zk, let R−/+ be the set {v−/+ | v ∈ R}

Chapter 4. Expand, Enlarge, and Check for Branching Vector Addition Systems 77

respectively. We define max(R) = max({max(v+) | v ∈ R}). The size of a vector is the

number of bits required to encode it, all numbers being encoded in binary.

Trees. A finite binary tree T , which may contain nodes with one child, is a non-empty

finite subset of {1, 2}∗ such that, for all n ∈ {1, 2}∗ and i ∈ {1, 2}, n · 2 ∈ T implies

n · 1 ∈ T , and n · i ∈ T implies n ∈ T . The nodes of T are its elements. The root of

T is ε, the empty word. All notions such as parent, child, subtree and leaf, have their

standard meanings. The height of T is the number of nodes in the longest path from

the root to a leaf.

BVAS, derivations, and coverability. A branching vector addition system (BVAS) [35,

119] is a tuple B = (k,A,R1, R2), where k ∈ N is the dimension, A ⊆ Nk is a non-empty

finite set of axioms, andR1, R2 ⊆ Zk are finite sets of unary and binary rules, respectively.

The size of a BVAS, size(B) is the number of bits required to encode a BVAS, where

numbers are encoded in binary.

The semantics of a BVAS B is captured using derivations. Intuitively, a derivation

starts with a number of axioms from A, proceeds by applying rules from R1 ∪ R2,

and ends with a single vector. Applying a unary rule means adding it to a derived

vector, and applying a binary rule means adding it to the sum of two derived vectors.

While applying rules, all derived vectors are required to be non-negative. Formally, a

derivation D of B is defined inductively as follows.

(D1) If v ∈ A, then v is a derivation.

(D2) If D1 is a derivation with a derived vector v1 ∈ Nk, then for each unary rule

δ1 ∈ R1 with 0 ≤ v1 + δ1,

... D1
v1D : δ1v

is a derivation, where v = v1 + δ1.

(D3) If D1 and D2 are derivations with derived vectors v1, v2 ∈ Nk respectively, then

for each binary rule δ2 ∈ R2 with 0 ≤ v1 + v2 + δ2,

... D1
v1

... D2
v2D : δ2v

78 Chapter 4. Expand, Enlarge, and Check for Branching Vector Addition Systems

is a derivation, where v = v1 + v2 + δ2.

A derivation D can be represented as a finite binary tree whose nodes are labelled

by non-negative vectors. Therefore, all notions of trees can be naturally applied to

derivations. For a derivation D and its node n, we write D(n) for the non-negative

vector labelled at n. We say D derives a vector v iff D(ε) = v.

A derivation D is compact iff for each node n and for each its ancestor n′, we have

D(n) 6= D(n′). Given a derivation D with a node n and an ancestor n′ of n with D(n) =

D(n′), a contraction D[n′ ← n] over D is obtained by replacing the subtree rooted at

n′ with the subtree rooted at n in D. We write compact(D) for the compact derivation

computed by a finite sequence of contractions over D.

Given a BVAS B = (k,A,R1, R2), we say a vector v is reachable in B iff there is a

derivation D with D(ε) = v. We write Reach(B) = {v | ∃D. D(ε) = v} for the set

of reachable vectors in B. We say a vector v is coverable in B iff there is a derivation

D with v ≤ D(ε). We call a derivation D a covering witness of v iff v ≤ D(ε). The

coverability problem asks, given a BVAS B and a vector t ∈ Nk, whether t is coverable in

B. Equivalently, t is coverable iff t ∈ Reach(B)↓.

4.3 Under- and Over-approximation

We give two approximate analyses for BVAS: an under-approximation that fixes a fi-

nite set of vectors and only considers those vectors in that finite set, and an over-

approximation that introduces limit elements. The under-approximation can show that

a vector is coverable and the over-approximation can prove that a vector is not cover-

able.

4.3.1 Underapproximation

Truncated Derivations Given a BVAS B = (k,A,R1, R2) and an i ∈ N, define Ci ⊆ Nk

asA∪{0, . . . , i}k. Given a vector v ∈ Nk and an i ∈ N, We write under(v, i) for a truncated

vector such that for all j ∈ [1, k], under(v, i)[j] = v[j] if v[j] ≤ i, under(v, i)[j] = i

otherwise. For all vector v ∈ Nk and for all i ∈ N, under(v, i) ≤ v. A truncated derivation

F w.r.t. i is defined inductively as follows.

Chapter 4. Expand, Enlarge, and Check for Branching Vector Addition Systems 79

(T1) If v ∈ A, then v is a truncated derivation.

(T2) If F1 is a truncated derivation with a derived truncated vector v1 ∈ Nk, then for

each unary rule δ1 ∈ R1 with 0 ≤ v1 + δ1,

... F1
v1F : δ1v

is a truncated derivation, where v = under(v1 + δ1, i).

(T3) If F1 and F2 are truncated derivations with derived truncated vectors v1, v2 ∈ Nk

respectively, then for each binary rule δ2 ∈ R2 with 0 ≤ v1 + v2 + δ2,

... F1
v1

... F2
v2F : δ2v

is a truncated derivation, where v = under(v1 + v2 + δ2, i).

Analogously to derivations, a truncated derivationF is a finite binary tree whose nodes

are labelled by truncated vectors. We say F derives a truncated vector v iff F(ε) = v. We

naturally extend the notions of compactness, covering witness, and coverability to trun-

cated derivations w.r.t. ≤.

Lemma 18. Let B = (k,A,R1, R2) be a BVAS and i ∈ N. For any h ∈ N+, there are finitely

many truncated derivations of a BVAS of height h.

Given a BVAS B, we define a total orderingv on truncated derivations according to

their heights as follows. Since for each h ∈ N+ there are only finitely many, say kh, trun-

cated derivations of height h, we can enumerate them without repetition, arbitrarily as

Fh1, . . . ,Fhkh . We define Fmi v Fnj iff m < n, or m = n and i ≤ j.

The Forest Under(B, Ci) Given a BVAS B = (k,A,R1, R2) and i ∈ N, we construct

a forest Under(B, Ci) whose nodes are compact truncated derivations by the following

rules:

(U1) For each axiom v ∈ A, the truncated derivation v is a root.

80 Chapter 4. Expand, Enlarge, and Check for Branching Vector Addition Systems

(U2) Let F1 be a compact truncated derivation in the forest. Let F be a truncated

derivation obtained by applying a unary rule δ1 ∈ R1 to F1 (as in rule T2). If

compact(F) has not been added to the forest then add compact(F) as a child of

F1 in the forest.

(U3) Suppose compact truncated derivations F1,F2 are in the forest. Let F be a trun-

cated derivation obtained by applying a binary rule δ2 ∈ R2 to F1 and F2 (as in

rule T3). If compact(F) has not been added to the forest then we add compact(F)

to the forest as a child of F ′ where F ′ is the greater one between F1 and F2 w.r.t.

the total order v.

The following lemma shows that the construction of Under(B, Ci) eventually termi-

nates, and that it can be used to prove coverability.

Theorem 17 (Underapproximation). Let B be a BVAS.

1. For any i ∈ N, the forest Under(B, Ci) is finite.

2. Given an i ∈ N, for any truncated derivation F , there is a derivation D in B such that

F(ε) ≤ D(ε).

3. For any vector v ∈ Nk, we have v ∈ Reach(B)↓ iff there exists i ∈ N such that there is a

truncated derivation F in Under(B, Ci) with v ≤ F(ε).

Proof. Part (1). Fix i. It is easy to see that there are finitely many trees in the forest

and each tree is finitely branching, since there are at most finitely many trees of a given

height. If the forest is not finite, then by König’s lemma, there is an infinite simple path

of compact truncated derivations F1,F2, . . . in the forest such that for every i ≥ 1, Fi is

a sub-compact truncated derivation of Fi+1. This induces an infinite sequence of trun-

cated vectors F1(ε),F2(ε) . . . such that for every i 6= j, Fi(ε) 6= Fj(ε). However, since

for all F in the forest, F(ε) ∈ Ci and Ci is finite, such infinite sequence of truncated

vectors does not exist.

Part (2). By induction on the height of F .

Part (3). ⇒: SinceReach(B)∩v↑6= ∅, there is a derivationD in B such that v ≤ D(ε).

Let S be the union of the set of axioms A and the set of all vectors in compact(D).

Chapter 4. Expand, Enlarge, and Check for Branching Vector Addition Systems 81

Because both sets are finite, let i be max(S). Then compact(D) is in Under(B, Ci) and

v ≤ D(ε) = compact(D)(ε).

⇐: By Part (2), there is a derivation D in B such that F(ε) ≤ D(ε). Since D(ε) ∈

Reach(B) and v ≤ F(ε), v ∈ Reach(B)↓.

4.3.2 Overapproximation

To define over-approximation of derivations, we introduce extended derivations which

consider vectors over N∪ {∞}. We then present an algorithm that builds a forest over-

approximating the downward closure of reachable vectors of a given BVAS and prove

termination and correctness.

Let N∞ = N∪{∞} be the extension of the natural numbers with infinity. An extended

vector is an element of Nk∞. For extended vectors u, u′ ∈ Nk∞, we write u ≤∞ u′ iff for

all i ∈ [1, k], we have u[i] ≤ u′[i] or u′[i] = ∞. We write u <∞ u′ iff u ≤∞ u′ and

u′ 6≤∞ u. We always use words starting with the letter u to denote an extended vector

(e.g. u, u′, u1 etc.) and words starting with the letter v to denote a vector in Zk (e.g.

v, v′, v1 etc.). Extended vectors describe sets of vectors: we define γ : Nk∞ → 2N
k

as

γ(u) = {v ∈ Nk | v ≤∞ u}, and naturally extend γ to sets of extended vectors.

Proposition 2. [47] (1) Given an extended vector u ∈ Nk∞ and a finite set of extended vectors

S ⊆ Nk∞, γ(u) ⊆ γ(S) iff there is u′ ∈ S such that u ≤∞ u′. (2) Given two finite and minimal

sets S1, S2 ⊆ Nk∞, S1 = S2 if and only if γ(S1) = γ(S2).

Given a BVAS B = (k,A,R1, R2), there exists a finite and minimal subset CS(B) ⊆

Nk∞ such that γ(CS(B)) = Reach(B) ↓. We shall call CS(B) the finite representation of

Reach(B)↓.

Extended Derivations Given a BVAS B = (k,A,R1, R2) and an i ∈ N, let Ci =

{0, . . . , i}k ∪ A and Li = {0, . . . , i,∞}k \ {0, . . . , i}k. Given two sets S1 ⊆ Nk and

S2 ⊆ Nk∞, we say that S2 is an overapproximation of S1 iff S1 ⊆ γ(S2). Moreover, we

say that S2 is the most precise overapproximation of S1 in Li ∪ Ci iff there is no finite and

minimal subset S ⊆ Li ∪ Ci such that S1 ⊆ γ(S) ⊂ γ(S2). In the following, in case S2

is a singleton set {u}, we write that u is (the most precise) overapproximation of S1 for

simplicity.

82 Chapter 4. Expand, Enlarge, and Check for Branching Vector Addition Systems

Given an extended vector u ∈ Nk∞ and an i ∈ N, We write over(u, i) for the extended

vector such that for all j ∈ [1, k], over(u, i)[j] = u[j] if u[j] ≤ i, over(u, i)[j] = ∞ other-

wise. Note that over(u, i) is an overapproximation of γ(u), and interestingly, is the most

precise overapproximation of γ(u) in Li ∪ Ci [47].

We can naturally extend the addition of vectors to the addition of extended vectors

by assuming that∞+∞ =∞ and∞+ c =∞ for all c ∈ Z.

Given a BVAS B = (k,A,R1, R2) and i ∈ N, an extended derivation E is defined

inductively as follows.

(E1) If v ∈ A, then v is an extended derivation.

(E2) If E1 is an extended derivation with a derived extended vector u1 ∈ Nk∞, then for

each unary rule δ1 ∈ R1 with 0 ≤∞ u1 + δ1,

... E1
u1E : δ1u

is an extended derivation, where u = over(u1 + δ1, i).

(E3) If E1 and E2 are extended derivations with derived extended vectors u1, u2 ∈ Nk∞

respectively, then for each binary rule δ2 ∈ R2 with 0 ≤∞ u1 + u2 + δ2,

... E1
u1

... E2
u2E : δ2u

is an extended derivation, where u = over(u1 + u2 + δ2, i).

Analogously to derivations, an extended derivation E is a finite binary tree whose

nodes are labelled by extended vectors. For an extended derivation E and its node

n, we write E(n) for the extended vector labelled at n. We say E derives an extended

vector u iff E(ε) = u. We naturally extend the notions of compactness, covering witness,

and coverability to extended derivations w.r.t. ≤∞. Similar to derivations, the following

lemma shows that there are finitely many extended derivations of a given height.

Lemma 19. Given a BVAS B = (k,A,R1, R2) and i ∈ N, for each h ∈ N+, there are finitely

many extended derivations of height h.

Chapter 4. Expand, Enlarge, and Check for Branching Vector Addition Systems 83

Given a BVAS B, we define a total ordering ve on extended derivations accord-

ing to their heights. Since for each h ∈ N+ there are only finitely many, say kh, ex-

tended derivations of height h, we can enumerate them without repetition, arbitrarily

as Eh1, . . . , Ehkh . We define Emi ve Enj iff m < n, or m = n and i ≤ j.

The Forest Over(B, Li, Ci) Given a BVAS B = (k,A,R1, R2) and an i ∈ N, we con-

struct a forest Over(B, Li, Ci) whose nodes are compact extended derivations by fol-

lowing the rules below.

(O1) For each axiom v ∈ A, the extended derivation v is a root.

(O2) If a compact extended derivation E1 is already in the forest and compact(E) has

not been added in the forest where E is computed by applying a unary rule to E1

as in Rule E2, then add compact(E) as a child of E1 in the forest.

(O3) If compact extended derivations E1, E2 are already in the forest and compact(E)

has not been added in the forest where E is computed by applying a binary rule

to E1 and E2 as in Rule E3, then we add compact(E) to the forest as a child of E ′

where E ′ is the greater one between E1 and E2 w.r.t. the total order ve.

Theorem 18 (Overapproximation). Let B be a BVAS.

1. For each i ∈ N, the forest Over(B, Li, Ci) is finite.

2. Given i ∈ N, for any derivation D, there is a compact extended derivation E in

Over(B, Li, Ci) with D(ε) ≤∞ E(ε).

3. For v ∈ Nk, Reach(B) ∩ v ↑= ∅ iff there exists an i ∈ N such that for any compact

extended derivation E in Over(B, Li, Ci), we have γ(E(ε)) ∩ v↑= ∅.

Proof. The proof of Part (1) is similar to the proof of Theorem 17(1), because Li ∪ Ci is

finite.

The proof of Part (2) is by induction on the height of D.

Part (3). ⇐: Suppose Reach(B)∩ v↑6= ∅. Then there is a derivation D in B such that

D(ε) ∈ v ↑. Using Part (2), we can find E in Over(B, Li, Ci) such that D(ε) ≤∞ E(ε). For

E , we have D(ε) ∈ γ(E(ε)) and thus γ(E(ε)) ∩ v↑6= ∅.

84 Chapter 4. Expand, Enlarge, and Check for Branching Vector Addition Systems

Algorithm 1: EEC Algorithm to decide the coverability problem of BVAS.

Input: A BVAS B = (k,A,R1, R2) and a vector t ∈ Nk.
Output: “Cover” if t is coverable in B, “Uncover” otherwise.
begin

i←− 0
while true do

Compute Under(B, Ci) // Expand
Compute Over(B, Li, Ci) // Enlarge
// Check
if ∃F ∈ Under(B, Ci). t ≤ F(ε) then

return “Cover”
else if ∀E ∈ Over(B, Li, Ci). t 6≤∞ E(ε) then

return “Uncover”

i←− i+ 1

⇒: Since Reach(B) ∩ v ↑= ∅ iff Reach(B) ↓ ∩v ↑= ∅, γ(CS(B)) ∩ v ↑= ∅. Take

i ∈ N such that CS(B) ⊆ Li ∪ Ci. For every extended derivation E in B, we have

γ(E(ε)) ⊆ γ(CS(B)). This can be proved by induction on the height of E .

For every compact extended derivation E in Over(B, Li, Ci), we therefore have that

γ(E(ε)) ⊆ γ(CS(B)). Hence γ(E(ε)) ∩ v↑= ∅.

4.3.3 EEC Algorithm

Algorithm 1 shows the schematic of the EEC algorithm. It takes as input a BVAS B and

a target vector t. It uses an abstraction parameter i, initially 0, and defines the fam-

ily of abstractions Ci and Li. It iteratively computes the under-approximation Under

and over-approximation Over w.r.t. i. If the under-approximation covers t, it returns

“Cover”; if the over-approximation shows t cannot be covered, it returns “Uncover.”

Otherwise, it increments i and loops again. From Theorems 17 and 18, we conclude

that this algorithm eventually terminates with the correct result.

We briefly remark on two optimizations. First, instead of explicitly keeping forests

of derivations in Over and Under, we can only maintain the vectors that label the roots

of the derivations. The structure of the forest was required to prove termination in

[119], but can be reconstructed using only the vectors and the timestamps at which the

vectors were added. Second, in Under (resp. Over), we can only keep maximal vectors

(resp. extended vectors): if two vectors v1 ≤ v2 (resp. extended vectors u1 ≤∞ u2), we

Chapter 4. Expand, Enlarge, and Check for Branching Vector Addition Systems 85

can omit v1 (resp. u1) and only keep v2 (resp. u2). Indeed, if t ≤ v1 in Under, we also

have t ≤ v2, and so the cover check succeeds in the EEC algorithm. Further, if t 6≤∞ u2

in Over, we have t 6≤∞ u1, and so the uncover check succeeds as well. We thank Sylvain

Schmitz for these observations.

4.4 Complexity Analysis

We now give an upper bound on the number of iterations of the EEC algorithm. Given

a BVAS B = (k,A,R1, R2) and a derivationD, for each internal node n, we write δ(n) ∈

Zk for the rule δ ∈ R1 ∪ R2 that is applied to derive D(n). We extend this notation to

truncated and extended derivations as well. Given a derivation D and an i ∈ Nk, we

define a truncated derivation under(D, i) inductively as follows:

1. If n is a leaf, then under(D, i)(n) = D(n).

2. If n has a child n′ and D(n) = D(n′) + δ(n), then under(D, i)(n) =

under(under(D, i)(n′) + δ(n), i).

3. If n has two children n′, n′′ andD(n) = D(n′)+D(n′′)+δ(n), then under(D, i)(n) =

under(under(D, i)(n′) + under(D, i)(n′′) + δ(n), i).

We can also define an extended derivation over(D, i) inductively by following the above

rules except that we replace all under(�, i) by over(�, i).

We start with some intuition in the special case of vector addition systems. A vector

addition system (VAS) V is a BVAS (k, {a}, R, ∅). For simplicity, we write a VAS as just

(k, a,R). Note that a derivation D of a VAS V is degenerated to a sequence of non-

negative vectors. In the following, we say the length of D instead of the height of D

for convenience in the VAS context. For VAS, Rackoff [106] proved the coverability

problem is EXPSPACE-complete by showing that if a covering witness (derivation)

exists, then there must exist one whose length h is at most doubly exponential in the

size of the VAS V and the target vector t. Further, there is a derivation of length at most

h in which the maximum constant is bounded by i := h · size(V) + max(t). This is

because in h steps, a vector can decrease at most h · size(V), so if any co-ordinate goes

over i, it remains higher than max(t) after executing the path. By the same argument,

86 Chapter 4. Expand, Enlarge, and Check for Branching Vector Addition Systems

if there is an extended derivation of length at most h and constant i covering t, then we

can find a derivation for t.

If t is coverable, using the above argument and Theorem 17, we see that

Under(V, Ci) will contain a covering witness of t. If t is not coverable, then the above

argument shows that all extended derivations of Over(V, Li, Ci) of length at most h

will not cover t. However, there may be longer extended derivations in Over(V, Li, Ci).

For these, we can show that Over(V, Li, Ci) also contains a contraction of that extended

derivation of length at most h. In both cases, EEC terminates in i iterations, which is

doubly exponential in the size of the input.

We now show the bound for BVAS. The following lemma is the key observation in

the optimal algorithm of [35].

Lemma 20. [35] Given a BVAS B = (k,A,R1, R2) and a vector t ∈ Nk, if t is coverable in B,

then there is a covering witness (derivation) D whose height is at most (max((R1 ∪ R2)
−) +

max(t) + 2)(3k)!.

Moreover, the following lemma shows that the maximum constant appearing in a

height-bounded derivation can remain polynomial in the height.

Lemma 21. Given a BVAS B = (k,A,R1, R2), a vector t ∈ Nk and a derivation D whose

height is at most h, for any bound i ≥ h ·max((R1 ∪R2)
−) + max(t), D is a covering witness

of t iff under(D, i) is a covering witness of t.

Proof. Fix an i such that i ≥ h ·max((R1 ∪R2)
−) + max(t).

⇐: It holds by Theorem 17.

⇒: Given a derivationD, we say that an index j is marked iff during the construction

of under(D, i), there is a vector v, which is computed after applying a rule and before

comparing to i, such that v[j] > i.

Given a derivation D, during the construction of under(D, i), for each index j ∈

[1, k], we check the following: If j is marked, then there is a node n such that

under(D, i)(n)[j] = i. Since height(under(D, i)) = height(D) ≤ h, we know that

the length of the path from n to the root ε is at most h. Hence under(D, i)(ε)[j] ≥

under(D, i)(n)[j]−h ·max((R1∪R2)
−) = i−h ·max((R1∪R2)

−) ≥ max(t) ≥ t[j]. On the

other hand, if j is not marked, we have that for all node n, under(D, i)(n)[j] = D(n)[j].

Chapter 4. Expand, Enlarge, and Check for Branching Vector Addition Systems 87

Hence under(D, i)(ε)[j] = D(ε)[j] ≥ t[j]. Hence under(D, i) is a covering witness of

t.

We now prove the case where the target vector t is coverable. We show that

Under(B, Ci) contains a truncated derivation covering t, where i is bounded by a dou-

bly exponential function of the input.

Lemma 22. Given a BVAS B = (k,A,R1, R2) and a vector t ∈ Nk, if t is coverable in

B, then there exists F ∈ Under(B, Ci) such that t ≤ F(ε) for some i = 22
O(n logn) , where

n = size(B) + size(t).

Proof. Let h be the bound from Lemma 20. Clearly, h = 22
O(nlogn)

. Pick i = h2. By

Lemma 20, there is a derivation D that covers t and whose height is at most h. Since

i = h2 ≥ h ·max((R1 ∪ R2)
−) + max(t), by Lemma 21, there is a truncated derivation

under(D, i) that covers t. Moreover, compact(under(D, i)) is in Under(B, Ci).

Assume now that the target vector t ∈ Nk is not coverable. Lemma 23, from [35],

connects derivations of “small” height to extended derivations for high enough con-

stants. Lemma 24 shows that extended derivations of “large” height can be contracted.

The proof of this lemma mimicks the proof for (ordinary) derivations.

Lemma 23. [35] Given a BVAS (k,A,R1, R2), a vector t ∈ Nk, and a derivation D whose

height is at most h, for any bound i ≥ h ·max((R1 ∪R2)
−) + max(t), D is a covering witness

of t iff over(D, i) is a covering witness of t.

Lemma 24. Let B = (k,A,R1, R2) be a BVAS and i ∈ N. If there is an extended derivation E

that covers t ∈ Nk, then there is a contraction of E whose height is at most (max((R1∪R2)
−)+

max(t) + 2)(3k)!.

Finally, we prove that if t is not coverable, then Over(B, Li, Ci) does not find an

extended derivation covering t, for i as above.

Lemma 25. Given a BVAS B = (k,A,R1, R2) and t ∈ Nk, there is an i = 22
O(n logn) , where

n = size(B) + size(t), such that if t is not coverable in B, then for all extended derivations

E ∈ Over(B, Li, Ci), we have E does not cover t.

88 Chapter 4. Expand, Enlarge, and Check for Branching Vector Addition Systems

Proof. Suppose not. Then there is an E ∈ Over(B, Li, Ci) so that E covers t. Let h be the

bound from Lemma 24, and let i = h2. We consider two cases: (1) The height of E is at

most h. Then since i = h2 ≥ h ·max((R1 ∪R2)
−) + max(t), by Lemma 23, t is coverable

in B. Contradiction. (2) The height of E is greater than h. By Lemma 24, there is a

contraction of E that covers t and whose height is at most h. Following the arguments

in case (1), we again get a contradiction.

Our main theorem follows from Lemmas 22 and 25.

Theorem 19. Given a BVAS B = (k,A,R1, R2) and a vector t ∈ Nk, the EEC algorithm

terminates in 22
O(n logn) iterations, where n = size(B) + size(t).

The bound on the number of iterations also provides a bound on the overall asymp-

totic complexity of the algorithm. For BVAS, each iteration of the EEC algorithm per-

forms two instances of AND-OR reachability to perform the cover and the uncover

checks. Moreover, the size of the graph is at most doubly exponential in the size of the

BVAS, since the finite component of each vector is bounded by a doubly exponential

function of the input. Since AND-OR reachability can be performed in time linear in

the size of the graph, this gives a 2EXPTIME algorithm. For VAS, each iteration of the

EEC algorithm performs two instances of reachability to perform the checks. Thus,

if reachability is implemented in a space optimal (NLOGSPACE) way, we get an EX-

PSPACE upper bound. (In practice, reachability is implemented using a linear time

algorithm, which leads to a 2EXPTIME upper bound.)

Chapter 5

BBS: A Phase-Bounded Model

Checker for Asynchronous Programs

5.1 Introduction

In many asynchronous applications, a single-threaded worker process interacts with a

task queue. In each scheduling step of these programs, the worker takes a task from

the queue and executes its code atomically to completion. Executing a task can call

“normal” functions as well as post additional asynchronous tasks to the queue. Addi-

tionally, tasks can be posted to the queue by the environment. This basic concurrency

model has been used in many different settings: in low-level server and networking

code, in embedded code and sensor networks [46], in smartphone programming en-

vironments such as Android or iOS, and in Javascript. While the concurrency model

enables the development of responsive applications, interactions between tasks and

the environment can give rise to subtle bugs.

Bouajjani and Emmi introduced phase-bounding [13]: a bounded systematic search

for asynchronous programs that explores all program behaviors up to a certain phase

of asynchronous tasks. Intuitively, the phase of a task is defined as its depth in the task

tree: the main task has phase 1, and each task posted asynchronously by a task at phase

i has phase i + 1. Their main result is a sequentialization procedure for asynchronous

programs for a given fixed bound L on the task phase.

Though phase-bounding was well understood in theory, as far as we are aware, there

were no tools that evaluated the practical value of phase-bounding by showing that

many bugs in realistic applications can be effectively found within small phase bounds.

89

90 Chapter 5. BBS: A Phase-Bounded Model Checker for Asynchronous Programs

We describe our tool BBS1 that implements phase-bounding to analyze C programs

generated from TinyOS applications, which are widely used in wireless sensor net-

works. Our empirical results indicate that a variety of subtle memory-violation bugs

are manifested within a small phase bound (3 in most of the cases). From our eval-

uation, we conclude that phase-bounding is an effective approach in bug finding for

asynchronous programs.

While our evaluation focuses on TinyOS, our tool is generic, and can be ported to

other platforms that employ a similar programming model. We leave certain exten-

sions, such as handling multiple worker threads, and the experimental evaluation of

this technique to other domains, such as smartphone applications or Javascript pro-

grams, for future work.

5.2 Sequentialization Overview

We now give an informal overview of Bouajjani and Emmi’s sequentialization proce-

dure. Given an asynchronous program, we first perform the following simple trans-

formation to reduce assertion checking to checking if a global bit is set: (1) we add a

global Boolean variable gError whose initial value is false ; (2) we replace each asser-

tion assert(e) by gError = !e; if(gError) return;; and (3) we add if(gError) return;

at the beginning of each task’s body and after each procedure call. The translation

ensures that an assertion fails iff gError is true at the end of main.

Intuitively, the sequentialization replaces asynchronous posts with “normal” func-

tion calls. These function calls carry an additional parameter that specifies the phase

of the call: the phase of a call corresponding to an asynchronous post is one more than

the phase of the caller. The sequentialization maintains several versions of the global

state, one for each phase, and calls the task on the copy of the global state at its phase.

The task can immediately execute on that global state, without messing up the global

state at the posting task’s phase. Since tasks are executed in FIFO order, notice that

when two tasks t1 and t2 are posted sequentially (at phase i, say), the global state after

running t1 is exactly the global state at which t2 starts executing. Thus, the copy of the

1BBS stands for Buffer phase-Bounded Sequentializer and can be downloaded at https://github.com/
zilongwang/bbs.

https://github.com/zilongwang/bbs
https://github.com/zilongwang/bbs

Chapter 5. BBS: A Phase-Bounded Model Checker for Asynchronous Programs 91

global state at phase i correctly threads the global state for all tasks executing at phase

i.

The remaining complication is connecting the various copies of the global state. For

example, the global state when phase i starts is the same as the global state at the end of

executing phase i− 1, but we do not know what that state is (without executing phase

i − 1 first). Here, we use non-determinism. We guess the initial values of the global

state for each phase at the beginning of the execution. At the end of the execution, we

check that our guess was correct, using the then available values of the global states at

each phase. If the guess was correct, we check if some copy of gError is set to true: this

would imply a semantically consistent run that had an assertion failure.

We now make the translation a bit more precise. Given a phase bound L ∈ N, i.e.,

the maximal number of phases to explore, the sequentialization consists of four steps:

1. Track the phase of tasks at which they run in an execution. Intuitively, the phase

of main, the initial task, is 1, and if a task at phase i executes post p(e), then

the new task p is at phase i + 1. As an example, consider an error trace in Fig-

ure 5.1, task t0 is at phase 1, and tasks t1, t2 are at phase 2. This tracking can

be done by augmenting each procedure’s parameter list with an integer k that

tracks the phase of the procedure. Consequently, we also replace each normal

synchronous procedure call p(e) by p(e, k), and each asynchronous call post p(e)

by post p(e, k + 1).

2. Replace each post p(e, k + 1) by if(k < L) p(e, k + 1);, meaning that if some task

at phase k posts the task p and k+ 1 does not exceed the phase bound L, the task

p is immediately called and runs at phase k + 1 instead of putting it into the task

queue.

3. For each global variable g, create L copies of it, denoted by g[1], . . . , g[L]. Set the

initial value of the first copy g[1] to the initial value of g, and nondeterministically

guess the initial values of the other copies. For each statement of a program, if

g appears, then replace it by g[k]. Intuitively, the i-th copy of global variables is

used to record the evolution of global valuations along an execution at phase i.

92 Chapter 5. BBS: A Phase-Bounded Model Checker for Asynchronous Programs

FIGURE 5.1: An error trace before sequentialization. Circles denote the
starting or ending points of tasks. Solid lines denote the execution of
tasks. Triangles with dashed arrows indicate a post statement that posts
a task to the queue; triangles without dashed arrows are statements right
after post statements. The cross represents where the assertion fails. This
error trace is read as follows: task t0 runs, posts tasks t1 and t2 to the
task queue, and completes. Then t1 and t2 runs one after another. We
divided the error trace into execution segments (1)–(5), ordered by their
execution order. Values of the global state x at each segment are shown.
E.g., when segment (1) starts and ends, x = v0 and x = v1, respectively.
When segment (4) starts and ends, x = v4 and x = v5, respectively. Note

that due to the FIFO order, v3 = v4.

4. Run the initial task t0 at phase 1. When t0 returns, for each phase i ∈ [2, L], enforce

that the guessed initial values of the i-th copy are indeed equal to the final values

of the (i− 1)-th copy. Finally, a bug is found if some copy of gError equals true .

Step 4 is better explained through an example. We present how a sequentialized

execution in Figure 5.2 is related to an error trace of Figure 5.1. Suppose that the phase

bound L = 2 and the above first three steps have been done correctly.

FIGURE 5.2: The sequentialized error trace after sequentialization. Val-
ues of each copy of the global state x at each segment are shown. E.g.,
when segment (a) starts and ends, the first copy x[1] = v0 and x[1] = v1,
respectively. When segment (b) starts, the second copy x[2] is guessed to

v4. When segment (b) ends, x[2] = v5.

Consider segment (a) in Figure 5.2 and segment (1) in Figure 5.1. When task t0

starts, notice that the global state x in segment (1) and its first copy x[1] in segment

(a) are always the same because both are initialized to v0, and in each step of their

executions, the way that segment (1) modifies x is the same as the way that segment

Chapter 5. BBS: A Phase-Bounded Model Checker for Asynchronous Programs 93

(a) modifies x[1]. In this case, we say that segment (a) uses the first copy of the global

state to “mimic” the evolution of the global state in segment (1).

Since the last statement of segment (a) is if(k < L) p(e, k+1); and the current phase

k = 1, segment (b) starts. Notice that segment (b) runs at phase 2 and only modifies the

second copy of the global state x[2]. Additionally, if we assume that the initial value of

x[2] are guessed correctly, i.e., v4, shown in Figure 5.2, then segment (b) uses the second

copy of the global state to “mimic” the evolution of the global state in segment (4).

After segment (b) completes, the control goes back to phase 1 and segment (c) starts.

Note that segment (b) does not modify the first copy x[1], and hence when segment (c)

starts, the value of x[1] is still v1. As a result, segment (c) uses the first copy of the global

state to “mimic” the evolution of the global state in segment (2).

After segment (c) completes, segment (d) starts. Note that since segment (c) does

not modify the second copy x[2], the value of x[2] is still v5 at the beginning of segment

(d), which is the same as the value of x at the beginning of segment (5). Hence segment

(d) uses x[2] to mimic x in segment (5). When segment (d) completes, segment (e) starts

to use the first copy x[1] to mimic segment (3).

Finally, When segment (e) completes, by using assume statements, we enforce that

the initial value for the second copy x[2] is indeed guessed to v4 in order to satisfy the

FIFO order imposed by the task queue. After the enforcement, the sequential execution

in Figure 5.2 and the error trace in Figure 5.1 reach exactly the same set of global states.

Hence we conclude that a bug is found.

5.3 Experimental Evaluation

We first provide a brief introduction to TinyOS applications. We then present the design

of BBS and elaborate on our experimental results.

5.3.1 TinyOS Execution Model

TinyOS [58] is a popular operating system designed for wireless sensor networks. It

uses nesC [46] as the programming language and provides a toolchain that translates

94 Chapter 5. BBS: A Phase-Bounded Model Checker for Asynchronous Programs

nesC programs into embedded C code and then compiles the C code into executables

which are deployed on sensor motes to perform operations such as data collection.

TinyOS provides a programming language (nesC) and an execution model tailored

towards asynchronous programming. A nesC program consists of tasks and interrupt

handlers. When the program runs, TinyOS associates a scheduler, a stack, and a task

queue with it, and starts to run the “main” task on the stack. Tasks run to completion

and can post additional tasks into the task queue. When a task completes, the scheduler

dequeues the first task from the task queue, and runs it on the stack.

Hardware interrupts may arrive at any time (when the corresponding interrupt is

enabled). For instance, a timer interrupt may occur periodically so that sensors can

read meters, or a receive interrupt may occur to notice sensors that packets arrived

from outside. When an (enabled) interrupt occurs, TinyOS pre-empts the running task

and executes the corresponding interrupt handler defined in the nesC program. An

interrupt handler can also post tasks to the task queue, which is used as a mechanism

to achieve deferred computation and hide the latency of time-consuming operations

such as I/O. Once the interrupt handler completes, the interrupted task resumes.

5.3.2 BBS Overview

We implemented BBS to perform phase-bounded analysis for TinyOS applications. BBS

checks user-defined assertions as well as two common memory violations in C pro-

grams: out-of-bound array accesses (OOB) and null-pointer dereference.

The workflow of BBS is shown in Figure 5.3. First, given a TinyOS application con-

sisting of nesC files, the nesC compiler nescc combines them together and generates a

self-contained embedded C file. nescc supports many mote platforms and generates

different embedded C code based on platforms. In our work, we let nescc generate

embedded C code for MSP430 platforms.

BBS takes as inputs the MSP430 embedded C file containing assertions and a phase

bound, and executes three modules.

The first module performs preprocessing and static analysis on the C program to

instrument interrupts and assertions. Interrupt handlers are obtained from nescc-

generated attributes in the code. A naive way to instrument interrupts is to insert

Chapter 5. BBS: A Phase-Bounded Model Checker for Asynchronous Programs 95

FIGURE 5.3: The workflow of BBS

them before each statement of the C program. However, if a statement does not have

potentially raced variables2, we do not need to instrument interrupts before it, because

the execution of such statements commutes with the interrupt handler: either order of

execution leads to the same final state. Thus BBS performs static analysis to compute

potentially raced variables and instruments interrupts accordingly.

The second module implements the sequentialization algorithm. The resulting se-

quential C program is fed into the bounded model checker CBMC [28, 73], which out-

puts either an error trace or “program safe” up to the phase bound and the bound

imposed by CBMC.

5.3.3 Experimental Experience with BBS

We used BBS to analyze eight TinyOS applications in the apps directory from TinyOS’s

source tree. These benchmarks cover most of the basic functionalities provided by a

sensor mote such as timers, radio communication, and serial transmission.

In Table 5.1, we summarize the size and complexity of these benchmarks in terms

of (1) lines of code in the cleanly reformatted ANSI C program after the preprocessing

stage, (2) the number of types of tasks that can be posted, (3) the number of types of

hardware interrupts that are expected, (4) the number of global variables as well as the

number of potentially raced variables (found by the static analysis).

In each of the first three benchmarks, we manually injected a realistic memory vi-

olation bug that programmers often make. The rest five benchmarks were previously

known to be buggy [17, 30, 80, 108]. The TestSerial benchmark contains two bugs and

2A potentially raced variable is accessed by both tasks and interrupt handlers, and at least one access
from both is a write.

96 Chapter 5. BBS: A Phase-Bounded Model Checker for Asynchronous Programs

Benchmark LOC Tasks Interrupt Global Potentially raced
Types variables global variables

TestAdc 6738 9 2 100 19
TestEui 7467 13 3 138 17
TestAM 11259 13 5 154 27
BlinkFail 3153 3 1 64 5
TestSerial 6590 10 3 127 17
TestPrintf 6882 13 3 136 18
TestDissemination 13004 17 5 166 37
TestDip 17091 25 7 243 49

TABLE 5.1: TinyOS benchmarks

Benchmark Bug type Min phase Time Error Trace

Seq. (s) CBMC (s) (in steps)

TestAdc NullPtr 2 3.92 15.92 2014
TestEui OOB 2 3.97 12.78 9425
TestAM NullPtr 3 5.88 342.99 12925
BlinkFail OOB 3 2.55 2.69 3773
TestSerial OOB 4 3.75 23.92 13531

User-defined 4 39.01 14161
TestPrintf OOB 3 3.78 30.32 14154
TestDissemination NullPtr 3 5.95 843.68 17307
TestDip NullPtr 3 7.69 681.81 20274

TABLE 5.2: Experimental results

each of the rest has one bug. We ran BBS on these benchmarks to see whether it could

find these bugs efficiently within small phase bounds.

Experimental results All experiments were performed on a 2 core Intel Xeon X5650

CPU machine with 64GB memory and 64bit Linux (Debian/Lenny). Table 5.2 lists the

analysis results, showing that BBS successfully uncovered all bugs that are injected in

the first three benchmarks, as well as all previously known bugs in the rest five bench-

marks. We report the type of bugs, the minimal phases that are required to uncover

the bugs, the time used in both sequentialization and CBMC, and the lengths of error

traces. Notice that all bugs were found within small phase bounds, that is, at most

4 phases. This result indicates that the phase-bounded approach effectively uncovers

interesting bugs within small phase bounds for realistic C programs.

Chapter 6

LLSPLAT: A Concolic Testing Tool

with Bounded Model Checking

6.1 Introduction

With the increasing power of computers and advances in constraint solving technolo-

gies, an automated dynamic testing technique called concolic testing [52, 111] has re-

ceived much attention due to its low false positives and high code coverage [21, 25].

Concolic testing runs a program under test with a random input vector. It then gen-

erates additional input vectors by analyzing previous execution paths. Specifically,

concolic testing selects one of the branches in a previous execution path and gener-

ates a new input vector to steer the next execution toward the opposite branch of the

selected branch. By carefully selecting branches for the new inputs, concolic testing

avoids generating redundant input vectors that execute the same program path, and

thus enumerates all non-redundant program paths. In practice, concolic testing suffers

from path explosion: it has to enumerate a huge number of non-redundant execution

paths [3, 21, 25, 50].

On the other hand, bounded model checking (BMC) [29, 31, 73, 92] is a fully sym-

bolic testing technique. Given a program under test and a bound k, BMC unrolls loops

and inlines function calls k times to construct an acyclic program which is an under-

approximation of the original program. It then performs verification condition (VC) gen-

eration over the acyclic program to obtain a formula which encodes the acyclic program

and a property to check. The formula is then fed into a SAT solver. If the formula is

proved to be valid by the solver, the property holds. Otherwise, the solver provides a

97

98 Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking

model from which we can extract an execution of the program that violates the prop-

erty. BMC provides a way to encode and reason about multiple execution paths using

a single formula, but its scalability is often limited by deterministic dependencies be-

tween program paths and data values.

A natural question is whether there is a way to combine concolic testing with BMC to

boost the exploration among the huge number of program paths? In this dissertation, we

provide a positive answer and propose a concolic+BMC algorithm. Intuitively, given

a program under test, the algorithm starts with the per-path search mode in concolic

testing while referring to the control flow graph (CFG) of the program to identify easy-

to-analyze portions of code that do not contain loops, recursive function calls, or other

instructions that are difficult to generate formulas using BMC. Whenever a concolic

execution encounters such a portion, the algorithm switches to the BMC mode and

generates a BMC formula for the portion, and identifies a frontier of hard-to-analyze in-

structions. The BMC formula summarizes the effects of all execution paths through the

easy-to-analyze portion up to the hard frontier. When the concolic execution reaches

the frontier, the algorithm switches back to the per-path search mode to handle the

cases that are difficult to summarize by BMC.

We have developed LLSPLAT, a tool that implements the concolic+BMC algorithm

for C programs. We evaluate LLSPLAT with two state-of-the-art concolic testing tools

CREST [19] and KLEE [20], using 36 programs from SVCOMP15 [117]. The evaluation

shows that (1) for the same time budget (an hour per program), LLSPLAT provides on

average 31%, 19%, 20%, 21% higher branch coverage than CREST’s four search strate-

gies, and on average 21% higher branch coverage than KLEE, and (2) LLSPLAT achieves

higher branch coverage quickly: in our experiments, it starts to outperform CREST and

KLEE after at most 3 minutes. In addition, we also evaluate LLSPLAT with the state-

of-the-art bounded model checker CBMC [73] using 13 sequentialized SystemC bench-

marks. The experiments show that LLSPLAT finds bugs more quickly than CBMC.

Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking 99

6.2 A Motivating Example

We illustrate the inadequacy of concolic testing and BMC acting alone, and the benefits

of their combination, using the function foo below. The function runs in an infinite

loop, and receives two inputs in each iteration. One input c is a character and the other

input s is a character array. The function foo hits an error if the variable state is

9 and the input array s holds the string “reset”. Similar functions like foo are often

generated by lexers.

1 void foo() {

2 char c, s[6];

3 int state = 0;

4

5 while(1) {

6 c = input(); s = input();

7

8 if (c == ’[’ && state == 0) state = 1;

9 if (c == ’(’ && state == 1) state = 2;

10 if (c == ’{’ && state == 2) state = 3;

11 if (c == ’~’ && state == 3) state = 4;

12 if (c == ’a’ && state == 4) state = 5;

13 if (c == ’x’ && state == 5) state = 6;

14 if (c == ’}’ && state == 6) state = 7;

15 if (c == ’)’ && state == 7) state = 8;

16 if (c == ’]’ && state == 8) state = 9;

17 if (s[0] == ’r’ && s[1] == ’e’ && s[2] == ’s’ &&

18 s[3] == ’e’ && s[4] == ’t’ && s[5] == 0 && state == 9)

19 goto ERROR;

20 }

21 ERROR: assert(0);

22 }

LISTING 6.1: A motivating example

100 Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking

To reveal the error in the function foo, concolic testing systematically explores all

execution paths of the function. Since the function foo runs in an infinite loop, the

number of distinct feasible executions is infinite. To perform concolic testing we need

to bound the number of iterations of the loop if we perform a depth-first search of the

execution paths. There are 17 possible choices of values of c and s that concolic testing

would consider, and at least 9 iterations are required to hit the error. Hence, concolic

testing will explore about 179 ≈ 1011 execution paths. It is unlikely that concolic test-

ing can hit the error in a reasonable time budget. We confirm this fact by testing the

function foo using CREST [19] and KLEE [20]. Both tools could not hit the error in an

hour. It is worth mentioning that, if there were code consisting of many conditionals

after the ERROR label instead of the assertion, things would get even worse because

concolic testing cannot reach them, which is a primary reason for poor branch cover-

age.

On the other hand, BMC by itself does not reveal the error in foo either. BMC

relies on the user to figure out an appropriate unrolling bound k to reach a deep error.

To prevent inadequate unrolling bound which leads to unsoundness, BMC adds an

unrolling assertion assert(¬cond) as the last statement of the k-th unrolling, where cond

is the looping condition of the unrolled loop. Thus, no matter what unrolling bound

k is set for the infinite loop in foo, an unrolling assertion assert(0) is always added,

which prevents BMC from hitting the actual error. We validated this fact by running

the example with CBMC [73].

In our concolic+BMC approach, whenever a concolic execution encounters a con-

ditional, it has a choice either to save a predicate representing that a particular branch

is taken along the execution as concolic testing does, or to save a BMC formula, for ex-

ample, that encodes the entire conditional. Which choice is taken depends on whether

the conditional is “simple” enough to generate a BMC formula easily. For example, a

conditional is simple if there are no loops and recursive function calls1 inside it.

1The program size after function inlining can be exponentially larger than the size of the original pro-
gram.

Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking 101

Program P ::= (var g)∗ · Fn+
Functions Fn ::= f((var p)∗) · (var l)∗ ·BB+

Basic blocks BB ::= Inst∗ · TermInst
Instructions Inst ::= x←− e | f(e∗) | x←− input()
Basic block terminators TermInst ::= ret | br e BB1 BB2 | br BB | ERROR
Variables x ::= g | p | l

FIGURE 6.1: Program Model

Since all conditionals are simple in function foo, the concolic+BMC approach can

easily hit the error. We validated this fact by using LLSPLAT to test function foo. LL-

SPLAT found the bug in 3s.

6.3 Concolic Testing

LLSPLAT implements the concolic testing algorithm used in DART/CUTE [52, 111]. We

first review the algorithm, and then describe how LLSPLAT modifies it.

6.3.1 Program Model

We describe how concolic testing works on a simple language shown in Figure 6.1. A

program consists of a set of global variables and a set of functions. Each function consists

of a name, a sequence of formal parameters, a set of local variables, and a set of basic

blocks representing the control flow graph (CFG) of the function. Each basic block consists

of a list of instructions followed by a terminating instruction. There are three types of

instructions: x ←− e is an assignment, f(e∗) is a function call, and x ←− input()

indicates that the variable x is a program input. There are four types of terminating

instructions: ret is a return instruction, br e BB1 BB2 is a conditional branch, br BB is

an unconditional branch, andERROR indicates program abortion. We omit an explicit

syntax of expressions. We assume there is an entry function main that is not called

anywhere. We assume each function has an entry basic block, and every basic block of

the function is reachable from it.

102 Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking

6.3.2 The Concolic Testing Algorithm

To test a program P , concolic testing tries to explore all execution paths of P . It first

instruments the program P by Algo 2, and outputs an instrumented program P ′. Ig-

nore the red-highlighted lines in the algorithms for now because they are used in the

concolic+BMC approach we describe later. Algo 3 repeatedly runs the instrumented

program P ′. Due to limited space, we omit the instrumentation for function calls, and

the code that bounds the search depth in the search strategy — these are identical to

previous work [52, 111].

Algo 2 first makes a copy P ′ of the program P , and inserts various global variables

and function calls which are used for the symbolic execution. It then returns the instru-

mented program P ′. Algo 4 presents the definitions of the instrumented functions. The

expressions enclosed in double quotes (“e”) represent syntactic objects. We denote &x

to be the address of a variable x.

The function initInput(“x”) initializes the input variable x using the input map I

in all runs except the first. The variable x is assigned randomly in the first run. The

function also saves a fresh symbolic variable for x in the symbolic store.

The function updateSymStore(“x”, “e”) updates x’s symbolic expression in the

symbolic store symStore based on the expression e. We write symexpr(“e”) to rep-

resent the symbolic expression by substituting each variable v in “e” with its symbolic

expression symStore[&v]. For example, if “e” = “a + b”, symStore[&a] = ea, and

symStore[&b] = eb, then symexpr(“e”) = ea + eb.

The function addPathConstraint(“e”, e) updates the path constraint pathC and the

coverage history branch_hist. Symbolic predicate expressions from the branching points

are collected in the list pathC. At the end of the execution, pathC contains all predicates

whose conjunction holds for the execution path. To explore paths of the program under

test, each run (except the first) is executed based on the coverage history computed

in the previous run. The coverage history is a list of BranchNodes. A BranchNode

has two boolean fields: isCovered records which branch is taken, and done records

whether both branches have executed in prior runs (with the same history up to this

branch node).

Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking 103

Algorithm 2: Instrumentation

Program instrument(P):
P ′ ←− P
Add to P ′ global vars i←− 0, inputNo←− 0, symStore←− [], pathC ←− []
Govs←− {BB | BB is a governor in P}
Add to P ′ global vars bmcNo←− 0, currGov ←− None, init←− None
foreach BB ∈ P ′ do

if BB ∈ GR(gov) for some gov ∈ Govs then continue
foreach Inst ∈ BB do

switch Inst do
case x←− input()

Replace Inst by InitInput(“x”)
case x←− e

Add updateSymStore(“x”, “e”) before Inst
case br e BB1 BB2

if BB ∈ Govs then
Add startBMC(BB) before Inst
foreach d ∈ Dests(BB) do

Add endBMC(BB, d) as the 1st instruction of d

else
Add addPathConstraint(“e”, e) before Inst

case Return
if Inst is in the main function then

Add SolveConstraint() before Inst

case ERROR
Add print(“ERROR found”) before Inst

return P ′

The function solveConstraint() determines new inputs that forces the next run to

execute the last unexplored branch of the j-th conditional in branch_hist.

6.4 Combining Concolic Testing with BMC

We now present the concolic+BMC algorithm. The key observation is that given a

program P under test, the instrumented program for P can additionally refer to the

(static) CFG of P and perform static analysis at run time. Section 6.4.1 describes how

to identify program portions for BMC formula generation. Section 6.4.2 describes the

BMC formula generation algorithm. Section 6.4.3 integrates this with concolic testing.

104 Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking

Algorithm 3: run_llsplat

void run_llsplat(P):
I ←− []; branch_hist←− []; completed←− false
CFGP ←− CFGofProgram(P)
while ¬completed do execute instrument(P)

6.4.1 Identifying Program Portions for BMC

Preliminaries Given a CFG, a basic block m dominates a basic block n if every path

from the entry basic block of the CFG to n goes through m. We denote Dom(m) to be

the set of basic blocks which m dominates. A depth-first search of the CFG forms a

depth-first spanning tree (DFST). There are edges in CFG that go from a basic block m to

an ancestor of n in DFST (possibly to m itself). We call these edges back edges, and recall

the following result [32].

Lemma 26. A directed graph is acyclic iff a depth-first search yields no back edge.

Governors, Governed Regions, and Destinations Given a basic block m, a basic

block n ∈ Dom(m) is polluted in Dom(m) in the following four cases: (1) n contains

function call instructions, (2) n has no successors, (3) n is the source or the target of a

back edge, or (4) n is reachable from a polluted basic block k ∈ Dom(m). A basic block

m effectively dominates a basic block n if n ∈ Dom(m) and n is not polluted in Dom(m).

We denote Edom(m) to be the set of basic blocks that m effectively dominates.

A basic block m is called a governor candidate if (1) the terminating instruction of

m is of the form br e BB1 BB2, (2) m dominates both BB1 and BB2, and (3)

Edom(BB1) and Edom(BB2) are not empty. Given a governor candidate m with

its two successors BB1 and BB2, the governed region of m, denoted by GR(m), is

Edom(BB1) ∪ Edom(BB2). A basic block n is a destination of GR(m) if n 6∈ GR(m)

and n is a successor of some basic block k ∈ GR(m). Let the set Dests(m) be all des-

tinations of GR(m). A basic block gov is a governor if gov is a governor candidate, and

there is no governor candidate m with gov ∈ GR(m). We prove the following lemma

about governors. The proof is in Section 6.7.

Lemma 27. For any governor gov, (1) GR(gov) is acyclic and does not have function calls,

(2) gov dominates every basic block BB ∈ GR(gov).

Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking 105

Algorithm 4: Concolic Testing

void InitInput(“x”):
inputNo←− inputNo+ 1
j ←− inputNo
if I[j] is undefined then

x←− random()
I[j]←− x

else
x←− I[j]

// symj is a fresh variable for x
symStore[&x]←− symj

void updateSymStore(“x”, “e”):
symStore[&x]←− symexpr(“e”)

struct BranchNode:
isCovered : bool
done : bool

void addPathConstraint(“e”, b):
if b then

pathC[i]←− symexpr(“e”)
else

pathC[i]←− ¬symexpr(“e”)

if i < |branch_hist| then
if i = |branch_hist| − 1 then
branch_hist[i].done←− true

else
branch_hist[i]←−
BranchNode(isCovered : b, done :
false)

i←− i+ 1

void SolveConstraint():
j = i - 1
while j ≥ 0 do

if ¬branch_hist[j].done then
if branch_hist[j] is BmcNode then

foreach d such that ¬branch_hist[j].isCovered[d] do
if
∧

0≤k≤j−1 pathC[k] ∧ rmLastDest(path_c[j]) ∧
∨
c∈Edges_d[d] c has a

solution I ′ then
branch_hist←− branch_hist[0..j]
I ←− I ′
return

j ←− j − 1

else
branch_hist[j].isCovered←− ¬branch_hist[j].isCovered
pathC[j]←− ¬pathC[j]
if pathC[0..j] has a solution I ′ then

branch_hist←− branch_hist[0..j]
I ←− I ′
return

j ←− j − 1

else
j = j − 1

if j < 0 then completed←− true

Example Consider the program in Fig 6.2a. BB0 is a governor. Its governed region

GR(BB0) includes BB1, BB2, BB4, BB5, and BB6, which are inside the red dash

circle. BB3 and BB7 are the destinations in Dests(BB0). Though BB2 is a governor

106 Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking

candidate, it is not a governor because it is in GR(BB0).

(A) A program under test (B) Variable renaming

FIGURE 6.2: An Example

6.4.2 Translating Governed Regions to BMC Formulas

A governed region is ideal for generating a BMC formula because it is acyclic, does not

have function calls, and is “sufficiently” large in the sense that it includes as many (un-

polluted) basic blocks as its governor governs. We present our algorithm that translates

a governed region to a BMC formula, and provide an example.

The BMC Formula Generation Algorithm

Given a governor gov, we construct a BMC formula φ for GR(gov) in five steps:

1. Renaming variables inGR(gov) into an SSA-form. LetAccV ars be the set of vari-

ables accessed by the instructions in GR(gov). Let a version map V be a map from

each variable x ∈ AccV ars to a variable xα with a version α ∈ N. We naturally

extend the notation V to expressions: we denote V(e) to be an expression that

replaces each variable x in e by V(x). SinceGR(gov) is acyclic, there exists a topo-

logical ordering over the basic blocks in GR(gov). Without loss of generality, let

BB1, BB2, . . . , BBn be the list of all basic blocks in GR(gov) after a topological

sort, where n is the number of basic blocks in GR(gov). For each 1 ≤ i ≤ n and

Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking 107

each instruction I in BBi, we rename each variable in I according to the version

map V , and update the version map V . Initially, for each x ∈ AccV ars, V(x) = x0.

If I is an assignment x ←− e and V(x) = xα, then we rewrite I to xα+1 ←− V(e)

and set V(x) = xα+1. If I is a conditional branch br e BB1 BB2, then we rewrite

I to br V(e) BB1 BB2.

2. Create a boolean variable gBB for each basic block BB ∈ GR(gov).

3. Compute an edge map Edges that maps each basic block BB ∈ GR(gov) ∪

Dests(gov) to a list of edge formulas as follows. For each BB ∈ GR(gov), if its

terminating instruction is br e BB1 BB2, then we add gBB ∧ e to Edges[BB1],

and add gBB∧¬e toEdges[BB2]; if it is br BB1, then we add gBB toEdges[BB1].

Let the governor’s terminating instruction be br e BB1 BB2. Let e0 be an expres-

sion obtained by replacing each variable x in e with x0. We set Edges[BB1] = e0

and Edges[BB2] = ¬e0.

4. Compute a block map Blks that maps each basic block BB ∈ GR(gov) to a block

formula. For each BB ∈ GR(gov), let I1, I2, . . . , Ik be the non-terminating instruc-

tions in BB. For each 1 ≤ i ≤ k, if Ii is xα ←− e, we define an instruction formula

ci to be xα = ite(gBB, e, xα−1). We set Blks[BB] =
∧

1≤i≤k ci.

5. Create the final BMC formula φ, defined as follows:

φ :
∧

BB∈GR(gov)

gBB =
∨

c∈Edges[BB]

c

 ∧Blks[BB]


Intuitively, φ claims that for each basic block BB ∈ GR(gov), (1) BB is taken (i.e.,

gBB is true) if one of its predecessor is taken, and (2) the block formula of BB

must hold.

Our BMC formula generation algorithm has the following important property. The

proof is in Section 6.7.

Theorem 20. Let gov be a governor and T be an arbitrary topological ordering over GR(gov).

After the BMC algorithm is done w.r.t. T , for any destination d ∈ Dests(gov), (1) the formula

108 Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking

BB Edges[BB] Blks[BB]

BB1 {x0 > y0} x3 = ite(gBB1, x2− y0, x2)
BB2 {¬(x0 > y0)} x1 = ite(gBB2, y0− x0, x0)
BB3 {gBB1, gBB6 ∧ y1 6= 9}
BB4 {gBB2 ∧ x1 > y0} x4 = ite(gBB4, y0− x3, x3)
BB5 {gBB2 ∧ ¬(x1 > y0)} x2 = ite(gBB5, y0− x1, x1)
BB6 {gBB4, gBB5 ∧ x2 6= 0} y1 = ite(gBB6, x4, y0)
BB7 {gBB5 ∧ ¬(x2 6= 0), gBB6 ∧ ¬(y1 6= 9)}

TABLE 6.1: Edge formulas and block formulas

φ ∧
∨
c∈Edges[d] c encodes all executions from gov to d, and (2) for every execution ρ from gov

to d, the final version of each variable x in φ represents the value of x when ρ enters d.

Example We illustrate our BMC algorithm by reusing the example in Fig 6.2a. The

topological order we use for the variable renaming is BB2, BB5, BB1, BB4, BB6. Af-

ter variable renaming, the resulting program is in Fig 6.2b. After Step 4 of the algo-

rithm, the edge map Edges and the block map Blks are shown in Table 6.1.

To give a flavor of the correctness of Theorem 20(2), we examine an execution ρ :

BB0, BB1, BB3 as an example. When ρ enters the destinationBB3, the largest version

of x and y along ρ is x3 and y0, but their final versions in φ are x4 and y1. However,

since BB2, BB4, BB5 and BB6 are not taken along ρ, we have x4 = x3, x2 = x1 = x0,

and y1 = y0. Since BB1 is taken, we have x3 = x2 − y0. Thus x4 = x0 − y0 and

y1 = y0. We conclude that x4 and y1 represent the values of x and y when ρ enters the

destination BB3.

6.4.3 Integrating BMC Formulas with Concolic Testing

To integrate BMC with concolic testing, we add the red lines in Algo 2, 3, and 4. Dur-

ing the instrumentation in Algo 2, we first compute a set Govs of all governors of the

program P . Since basic blocks in governed regions are used to generate BMC formu-

las, we skip instrumenting them. When a basic block BB has two successors, if BB

is a governor, we instrument a function call startBMC(BB) before BB’s terminating

instruction, and for each destination d ∈ Dests(BB), we instrument a function call

endBMC(BB, d) as the first instruction of d. If BB is not a governor, we perform the

old instrumentation in concolic testing.

Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking 109

In Algo 3, we read the CFG of the uninstrumented program P because it is used to

generate BMC formulas along concolic executions.

Algorithm 5: startBMC and endBMC

void startBMC(gov):
currGov ←− gov; bmcNo←− bmcNo+ 1

init←−
∧
x∈AccV ars(gov)

(
xbmcNo0 = symStore[&x]

)
// xbmcNo0 is a fresh variable

struct BmcNode:
isCovered : BasicBlock −→ bool
Edges_d : BasicBlock −→ formula
done : bool

void endBMC(gov, d):
if currGov 6= gov then return
(φ,Vfinal, Edges)←− doBMC(CFGP , gov)
if i <| branch_hist | then

if i =| branch_hist | −1∧∀d′ ∈ Dests(gov)\{d}. branch_hist[i].isCovered[d′]
then branch_hist[i].done←− true

else
branch_hist[i]←− BmcNode(isCovered : λdest ∈ Dests(gov). false,
Edges_d : λdest ∈ Dests(gov). addSup(Edges[dest], bmcNo), done : false)

branch_hist[i].isCovered[d]←− true
pathC[i]←− init ∧ addSup(φ ∧

∨
c∈Edges[d] c, bmcNo)

i←− i+ 1
foreach x ∈ AccV ars(gov) do SymStore[&x]←− addSup(Vfinal(x), bmcNo)

The definition of startBMC(gov) is given in Algo 5. It saves the governor gov

that will be used to generate a BMC formula using currGov. Then it increments

bmcNo, which records the number of BMC formulas that have been generated so far

along the concolic execution. It then uses init to “glue” the execution before enter-

ing GR(gov) with the BMC formula for GR(gov). More concretely, for each variable

x ∈ AccV ars(gov), an equation xBmcNo0 = symStore[&x] is created, and init is the

conjunction of all such equations. Intuitively, the initial version xBmcNo0 represents the

value of x when the concolic execution enters GR(gov), which is also represented by

symStore[&x].

The definition of endBMC(gov, d) is given in Algo 5. If the passed-in governor gov

is the one saved in currGov, it performs the BMC generation algorithm described in

Section 6.4.2 to obtain a BMC formula φ for the governed regionGR(gov), the final ver-

sion map Vfinal, and the edge map Edges. Moreover, the coverage history branch_hist

is updated. We extend branch_hist to be a list ofBranchNode∪BmcNode. ABmcNode

110 Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking

has three fields: isCovered records which destinations have been covered in prior runs,

Edges_d maps each destination to its edge formulas, and done records whether all

destinations have been covered in prior runs. Given a formula ψ and a number j,

we denote addSup(ψ, j) to be the formula obtained by replacing each variable x in ψ

with a new variable xj . We first create a formula φ ∧
∨
c∈Edges[d] c which represents all

executions from the governor gov to the destination d by Theorem 20. Since the gov-

erned region may be reached multiple times along an execution, we compute a formula

ψ ≡ addSup(φ ∧
∨
c∈Edges[d] c, bmcNo) which specifies that ψ is the bmcNo-th BMC for-

mula along the execution. We then add init∧ψ to the path constraint. Finally, to let the

concolic execution proceed, for each variable x ∈ AccV ars(gov), we update the sym-

bolic store so that symStore[&x] represents the value of x when the execution enters

the destination d. By Theorem 20, no matter which execution from gov to d is taken, the

final version Vfinal(x) always represents the value of x at that moment. Thus, we set

symStore[&x] accordingly.

The function SolveConstraint is extended as shown in Algo 4. If the node

branch_hist[j] is a BmcNode, we find an uncovered destination d, and asks if there is

an execution that goes to d. The formula rmLastDest(pathC[j]) is defined by removing

the disjunction of edge formulas of d′ from pathC[j] where d′ is the destination covered

by the just terminating execution. If there are new inputs I ′ for such an execution to d,

a new run is started with inputs I ′.

Example

We again reuse the example in Fig 6.2a. Suppose LLSPLAT randomly generates x = 10

and y = 5 in the first run. When the run terminates, the path constraint is of size 1, and

pathC[0] = init∧φ∧ψd, defined as follows. Note that the superscript 1 of the variables

in pathC[0] represents that it is the first BMC formula generated along the run. The

symbolic variables sym1 and sym2 are created for x and y when InitInput(“x”) and

InitInput(“y”) are called.

Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking 111

The coverage history branch_hist is of size one. branch_hist[0] is a BmcNode de-

fined below:

Now LLSPLAT searches for new inputs for the next run. Since BB7 is the only

uncovered destination based on branch_hist[0].isCovered, LLSPLAT solves the formula

init∧φ∧
∨
c∈branch_hist[0].Edges_d[BB7] c, that is, LLSPLAT tries to find a feasible execution

path that leads to BB7 containing ERROR. Note that there are three execution paths

to BB7, and the formula encodes all. LLSPLAT has a choice to produce inputs that

follow any of them to BB7. Suppose that LLSPLAT generates a model m in which

m(sym1) = 0 and m(sym2) = 0. LLSPLAT starts the second run by setting x = 0 and

y = 0. The run follows the path BB0, BB2, BB5, BB7, and terminates. Since there is

no uncovered destination, LLSPLAT terminates after the second run.

6.5 Experiments and Evaluation

We have developed a tool LLSPLAT2 that implements the concolic+BMC algorithm.

The evaluation of LLSPLAT is divided into two parts. In the first part, we compare

LLSPLAT with two publicly available concolic testing tools, CREST [19] and KLEE [20].

CREST provides four search strategies: (1) an incremental depth-first search(IDFS), (2)

a control-flow-guided search(CFG), (3) a uniform random search(UR), and (4) a random

search selecting unexplored branches randomly(RB). Thus we need to compare against

2LLSPLAT can be downloaded at https://github.com/zilongwang/llsplat.

https://github.com/zilongwang/llsplat

112 Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking

four versions of CREST. In the second part, we compare LLSPLAT with the state-of-the-

art bounded model checker CBMC [73]. All experiments were performed on a 2 core

Intel Xeon E5-2667 v2 CPU machine with 256GB memory and 64bit Linux.

6.5.1 Comparing LLSPLAT with CREST and KLEE

The goal of the experiments is to answer the following two research questions:

(Q1) Given an adequate time budget, which tool has higher branch coverage?

(Q2) Given a limited time budget, which tool has higher branch coverage?

Note that the fact that a tool A outperforms a tool B under an adequate time budget

does not imply that A also outperforms B under a limited time budget. For example, it

may happen thatA starts outperformingB after a day of testing, but the testing budget

is restricted to 10 minutes for each program under test. In this case, B is preferred to A.

We used the ntdriver-simplified and ssh-simplified benchmarks (36 pro-

grams in total) in SVCOMP15 [117] as the evaluation subjects. The benchmark sizes

range over 218–2948 lines of code: 3 of the benchmarks have 200–700 lines, 29 of them

have 701–2000 lines, and 4 of them have 2001–3000 lines. Since the coverage depends

on the initial random input vector, we conducted the experiments 10 times and calcu-

lated the average coverage.

To answer the first question, we assume that one hour is an adequate time budget,

and ran LLSPLAT, KLEE, and CREST with its four search strategies. Fig 6.4 presents

the branch coverage results for each benchmark. We observe that LLSPLAT achieves

the highest branch coverage for all benchmarks: it is on average 31%, 19%, 20%, 21%

higher than IDFS, CFG, UR, and RB, respectively, and is on average 21% higher than

KLEE. We also provide a histogram in Fig 6.3 which clusters benchmarks according to

their branch coverage improvement. We observe LLSPLAT achieves 15%–35% higher

branch coverage for most of the benchmarks than KLEE and CREST, which is close to

the average improvement.

To answer the second question, we compute the crossing time from which on LL-

SPLAT always outperforms CREST and KLEE on the benchmarks. More concretely, for

each benchmark, we analyzed a graph that described how branch coverage evolved

Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking 113

FIGURE 6.3: A histogram for branch coverage improvement of LLSPLAT.
X-axis shows three ranges of branch coverage improvement. Each range
has five bars, from left to right, corresponding to KLEE, CREST with four
strategies IDFS, CFG, UR, and RB, respectively. Y-axis is the number of

benchmarks.

in an hour using LLSPLAT, CREST, and KLEE, and recorded the time from which on

the branch coverage reported by LLSPLAT is always higher than the one reported by

CREST and KLEE. Fig 6.5 shows the results. The crossing time of 34 benchmarks is

below 50s. The 23th benchmark is the worst (172s). Thus we conclude that when the

testing time budget is limited, if it is not too limited (i.e., below 172s), LLSPLAT is still

preferable.

6.5.2 Comparing LLSPLAT with CBMC

The goal of the experiments is to see if LLSPLAT can find bugs more quickly than

CBMC. To achieve the goal, We used 13 sequentialized SystemC benchmarks [27]. They

are known to be buggy, and we test them with LLSPLAT and CBMC to record the time

to find the bugs. Table 6.2 shows the results. We observe that LLSPLAT finds bugs more

quickly than CBMC in 11 benchmarks (except kundu1 and transmitter1), which indi-

cates that our concolic+BMC approach is better than pure bounded model checking.

6.6 Related Work

Concolic Testing Several approaches analyze states (i.e., path constraint and symbolic

store) maintained by concolic testing so as to explore the search space efficiently. Gode-

froid [50] introduced compositional concolic testing. The work was later expended to

do compositional concolic testing on demand [2]. The main idea is to generate function

summaries for an analyzed function based on the path constraint, and to reuse them if

114 Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking

FIGURE 6.4: Branch coverage. X-axis denotes the benchmarks sorted by
alphabetical order over their names. Y-axis is branch coverage. Each
benchmark has six bars representing different tools. Bars from left to
right correspond to LLSPLAT, KLEE, and CREST with four strategies

IDFS, CFG, UR, and RB, respectively.

the function is called again with similar arguments. Instead of computing dynamic un-

derapproximations of summaries, we compute exact summaries of governed regions

using the static representation of the CFG. Kuznetsov et al. [74] introduced the dynamic

state-merging (DSM) technique. DSM maintains a history queue of states. Two states

may merge (depending on a separate and independent heuristic for SMT query diffi-

culty) if they coincide in the history queue. Our concolic+BMC approach is different

because we do not analyze the states to merge execution paths.

Moreover, several approaches combine other testing techniques with concolic test-

ing together. Majumdar and Sen introduced hybrid concolic testing [87] that combines

Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking 115

FIGURE 6.5: The crossing time from which on LLSPLAT outperforms
KLEE and CREST. X-axis denotes the benchmarks sorted by alphabet-
ical order over their names. Y-axis is the cross time. Each benchmark
has five bars, from left to right, corresponding to KLEE and CREST with

four strategies IDFS, CFG, UR, and RB, respectively.

random testing and concolic testing. Boonstoppel et al. proposed RWSet [11], a path

pruning technique identifying redundant execution paths based on similarity of their

live variables. Jaffar et al. [61] used interpolation to subsume execution paths that are

guaranteed not to hit a buggy location. Avgerino et al. [5] combined static data-flow

program analysis techniques with concolic testing. Santelices et al. [109] introduced

a technique that merges multiple execution paths based on the control dependency

graph of a program. To our best knowledge, we are the first who propose to combine

bounded model checking techniques with concolic testing to alleviate path explosion.

A lot of work has focused on search heuristics to quickly guide execution to a

116 Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking

Benchmark CBMC (s) LLSPLAT (s)

kundu1 85 timeout
kundu2 419 0.013
pc_sfifo1 38 0.112
pc_sfifo2 27 0.420
pipeline timeout 0.111
token_ring1 56 2
token_ring2 141 12
token_ring3 269 105
toy1 158 0.024
toy2 151 0.031
transmitter1 16 22
transmitter2 75 21
transmitter3 159 52

TABLE 6.2: Testing time for sequentialized SystemC benchmarks.
Timeout is set to 30min.

specific branch [19, 20, 53, 81, 113, 121]. Search heuristics are orthogonal to our ap-

proach. Although we have implemented concolic+BMC with a naive bounded depth-

first search, the algorithm can be used with other search strategies as well.

Bounded Model Checking VC generation approaches in modern BMC tools can be

classified into two categories. The first one is based on weakest preconditions [36] by

performing a demand-driven backward analysis from the points of interest [7, 24, 42,

77]. The other one encodes a program in a forward manner, such as CBMC [73], ES-

BMC [31], and LLBMC [92]. We are inspired by the VC generation algorithm of CBMC,

and thus conceptually it is the closest work to our BMC algorithm. The VC generation

of CBMC differs from ours in four ways. First, though CBMC also does variable renam-

ing, it does it using a fixed order of basic blocks. We relax this requirement and prove

that any topological order works for variable renaming. This is important to us, be-

cause we do not have to follow the fixed order CBMC uses. In fact, we use the reverse

post order of a governed region as our topological order for variable renaming because

it has been computed during the construction of depth first spanning tree which iden-

tifies back edges. We save the computation time in this way. Secondly, though the

VC generation of CBMC also computes edge formulas for each basic block in a given

Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking 117

acyclic program, all predecessors of the basic block contribute to deriving edge formu-

las. However, this is not the case in ours. For example, suppose that gov is governor,

d is a destination of GR(gov), and there is a predecessor BB 6∈ GR(gov) of d. This

case may happen because BB is polluted. Then our BMC algorithm does not derive

an edge formula from BB for d. Thirdly, CBMC does not have the notion of destina-

tions. Since a governed region may have multiple destinations, it is not clear that no

matter which destination is chosen, whether the final version of variables in the for-

mula φ that encodes the governed region always represents the value of the variables

when the destination is reached. We prove this fact. Lastly, since CBMC encodes the

entire program, it does not identify acyclic portions of a program using the notions such

as governors. It also does function inlining and loop unrolling, which we do not.

ESBMC follows the VC generation algorithm of CBMC. It extends BMC to check

concurrent programs. LLBMC explicitly models the memory as a variable representing

an array of bytes, which requires LLBMC to distinguish if a little-endian or big-endian

architecture is analyzed. They are orthogonal to LLSPLAT.

Software Model Checking Large-block encoding [9] is widely used in software

model checkers. It encodes control flow edges into one formula, for computing the ab-

stract successor during predicate abstraction. Selective enumeration using SAT solvers

[56] and symbolic encodings for program regions, e.g., to summarize loops [72], have

been successfully exploited in software model checking.

6.7 Proof Details

6.7.1 Preliminaries

Given a control flow graph (CFG) of a function, BB0, BB1, . . . , BBn is a path of CFG

if for each 0 ≤ i ≤ n − 1, (BBi, BBi+1) is an edge of CFG. Given an edge (a, b) of the

CFG, we call a the source of the edge and b the target of the edge. A state s of a program

is a function that maps each variable x in the program to a value in the domain of x.

Given two states s and s′, we denote s BB−−→ s′ to be an execution such that by executing

118 Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking

the instructions of BB with the initial state s, the execution ends up with the state s′.

Occasionally, if we are not interested in s or s′, we omit them and write BB−−→ s′ or s BB−−→.

Given a formula ψ, an assignment m of ψ is a function that maps each variable x in

ψ to a value in the domain of x. An assignment m is a model of ψ, denoted by m |= ψ, if

ψ evaluates to true by m.

Given a set S of variables, a version map V is a renaming function that maps each

variable x ∈ S to a variable xα for some α ∈ N. We write V(S) to be the set of variables

{y | ∃x ∈ S. y = V(x)}. Given a version map V and an assignment m to the variables

in V(S), we denote m|V to be an assignment to the variables in S such that for each

variable x ∈ S, m|V(x) = m(V(x)).

We first prove properties of effective dominance sets and governors. We then prove

properties of our BMC algorithm.

6.7.2 Properties of Effective Dominance Sets and Governors

Lemma 28. Given two basic blocks m and n, if n ∈ Edom(m), then for each path from m to

n, any basic block k along the path is not polluted.

Proof. Suppose not. Then there is a path from m to n along which there is some k that

is polluted. We consider two cases. Case 1: m = n. Then k must be n. Thus n is

polluted and is not in Edom(m). Contradiction. Case 2: m 6= n. Then p : m →∗ k →+

n. Since k is polluted and n is reachable by k, n is polluted and is not in Edom(m).

Contradiction.

Lemma 29. For any basic block m, Edom(m) is acyclic.

Proof. Suppose not. Then by Lemma 26, there is a basic block n ∈ Edom(m) such that n

is the source of a back edge. Hence n is polluted and is not inEdom(m). Contradiction.

Lemma 30. Let m be a governor. The governed region GR(m) is acyclic.

Proof. Let BB1 and BB2 be the successors of m. By Lemma 29, Edom(BB1) and

Edom(BB2) are acyclic. Moreover, there is not any edge a→ b where a ∈ Edom(BB1)

and b ∈ Edom(BB2). Otherwise, we can construct a path m → BB1 →∗ a → b which

Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking 119

bypasses BB2, which indicates that BB2 does not dominate b. Similarly, we can prove

that there is not any edge a → b where a ∈ Edom(BB2) and b ∈ Edom(BB1). Thus,

GR(m) is acyclic.

Lemma 31. Let m be a governor. The governed region GR(m) does not have any function

calls.

Proof. Let BB1 and BB2 be the successors of m. By Lemma 28, Edom(BB1) and

Edom(BB2) do not have function calls. Since GR(m) = Edom(BB1) ∪ Edom(BB2),

so does GR(m).

Lemma 32. A governor m dominates every basic block n in its governed region GR(m).

Proof. By definition of GR(m), we know that n is either dominated by BB1 or BB2

where BB1 and BB2 are the successors of m. Without loss of generality, let us assume

that BB1 dominates n. Since m is a governor, m dominates BB1. Since dominance

relation is transitive, m dominates n.

6.7.3 Properties of the BMC Generation Algorithm

Given a governor gov and a basic blockBB ∈ GR(gov), note that if gBB is true, then the

block formula Blks[BB] encodes the program logic of BB in SSA form, which leads to

Lemma 33.

Lemma 33. Given a program P and a governor gov, let V,V ′ be the version map before and

after the SSA variable renaming for BB. The following two statements hold: (1) If an assign-

ment m with m(gBB) = true is a model of Blks[BB], then m|V
BB−−→ m|V ′ is an execution

of P . (2) If s BB−−→ s′ is an execution of P , then there is a model m of Blks[BB] such that

m(gBB) = true , m|V = s, and m|V ′ = s′.

Proof. Proof by induction on the number of instructions in BB.

Given a governor gov, we prove that, for any destination d ∈ Dests(gov), (1) the

formula φ ∧ gd where gd =
∨
e∈Edges[d] e represents all executions from gov to d, and (2)

the final version of each variable x ∈ AccV ars(gov) in φ always represents the value of

x when an execution from gov to d reaches d.

120 Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking

Lemma 34. Given a governor gov, for any topological ordering T over GR(gov) and any

destination d ∈ Dests(gov), if m is a model of φ ∧ gd, then (1) we can construct an execution

ρ from the governor gov to the destination d, and (2) for each variable x ∈ AccV ars(gov), if

xα is the final version of x in φ, then m(xα) is the value of x when the execution ρ enters the

destination d.

Proof. Since m is a model of φ ∧ gd, let the set Taken be {BB | m(gBB) = true}, i.e., the

set of all basic blocks whose guard gBB is set to true by m. Since gd is true , we know

that the guard of a predecessor of d holds, the guard of a predecessor of the predecessor

of d holds, and so on. This indicates that there is a path from gov to d along which the

guards gBB of all basic blocks BB ∈ GR(gov) are set to true by m. Moreover, the

guards gBB of all basic blocks BB ∈ GR(gov) that are not shown along the path are set

to false by m since the guards of two successors cannot hold at the same time. Hence

we know that the set Taken are the intermediate basic blocks of the path from gov to d.

FIGURE 6.6: Topological ordering of the governed region

As shown in Fig 6.6, let BB1, . . . , BBi1 , . . . , BBi2 , . . . , BBik , . . . BBn be the se-

quence of basic blocks in GR(gov) sorted by the topological ordering T such that each

BBij ∈ Taken where 1 ≤ j ≤ k. Note that gov,BBi1 , BBi2 , . . . , BBik , d is a path. Oth-

erwise, T is not a topological ordering. We now construct an execution along this path.

For each BBi ∈ GR(gov) where 1 ≤ i ≤ n, let Vi be the version map before BBi and V ′i

be the one after BBi. By Lemma 33, we know that for each 1 ≤ j ≤ k, m|Vij

BBij−−−→ m|V ′ij

is an execution. Also, since the guards gBB of all basic block BB 6∈ Taken are set to

false by the model m, we have

m|V1 = m|Vi1 , m|V ′i1
= m|Vi2 , . . . , m|V ′ik−1

= m|Vik
, m|V ′ik

= m|V ′n

Hence,
gov−−→ m|Vi1

BBi1−−−→ m|Vi2
BBi2−−−→ . . .

BBik−1−−−−−→ m|Vik

BBik−−−→ m|V ′n
d−→ is an execution

of the program P . Moreover, since m|V ′n
d−→, the final version of each variable x in the

model m represents the value of x when the execution enters the destination d.

Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking 121

Lemma 35. Given a governor gov, for any topological ordering T over GR(gov) and any

destination d ∈ Dests(gov), if there is an execution from gov to d, then we can construct a

model m for the formula φ ∧ gd.

Proof. Let
gov−−→ s0

BBi1−−−→ s1
BBi2−−−→ s2 . . .

BBik−−−→ sk
d−→ be an execution from the governor

gov to a destination d, as shown in Fig 6.7.

FIGURE 6.7: An execution from the governor gov to a destination d

Let BB1, BB2, . . . , BBn be the sequence of basic blocks in GR(gov) sorted by the

topological ordering T . Note that for 2 ≤ j ≤ k, BBij−1 must occur before BBij along

the sequence. Otherwise, T is not a topological ordering. We present this fact in Fig 6.8.

FIGURE 6.8: Topological ordering of the governed region

For each BBi ∈ GR(gov) where 1 ≤ i ≤ n, let Vi be the version map before BBi

and V ′i be the one after BBi. We now construct an assignment m and prove that m is a

model of φ ∧ gd.

Let Taken be the set {BBij | 1 ≤ j ≤ k}. For each basic block BB ∈ GR(gov), if

BB ∈ Taken, then we set m(gBB) = true , m(gBB) = false otherwise. For each variable

x ∈ AccV ars(gov), we construct the assignment m in four steps:

(1) If V1(x) = xl and Vi1(x) = xh, then for each xα with l ≤ α ≤ h, m(xα) = s0(x);

(2) For each j ∈ [1, k − 1], if V ′ij (x) = xl and Vij+1(x) = xh, then for each xα with

l < α ≤ h, m(xα) = sj(x),

(3) If V ′ik(x) = xl and V ′n(x) = xh, then for each xα with l < α ≤ h, m(xα) = sk(x);

(4) For each j ∈ [1, k], by Lemma 33, we know that there is a model mj of Blks[BBij]

such that mj(gBBij
) = true , mj |Vij

= sj−1 and mj |V ′ij
= sj . If Vij (x) = xl and

V ′ij (x) = xh, then for each xα with l < α ≤ h, m(xα) = mj(x).

122 Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking

Note that each variable xα is assigned exactly once in the above construction of m,

which means m does not make different values to xα. Now we show m is indeed a

model of φ ∧ gd. We consider two cases depending on whether a basic block BB ∈

GR(gov) is in the set Taken.

1. Suppose BB ∈ Taken. Then BB is BBij for some j ∈ [1, k]. First, m |=

Blks[BBij] according to Step 4 of the above construction. Secondly, m evaluates

gBBij
to true. Lastly,m evaluates

∨
c∈Edges[BBij

] c to true by proving the following

cases.

(a) BBij is the left successor of the governor gov. Let br e BBij BB2 be the

terminating instruction of gov. Since s0 |= e and m|V1 = s0, we have m |=

V1(e), and thus m |=
∨
c∈Edges[BBij

] c.

(b) BBij is the right successor of the governor gov. This case is proved similarly

as case (a).

(c) BBij is the unique successor of the basic block BBij−1 ∈ Taken. Since

m(gBBij−1
) = true and gBBij−1

∈ Edges[BBij], we have that m |=∨
c∈Edges[BBij

] c.

(d) BBij is the left successor of BBij−1 ∈ Taken. Let br e BBij BB2 be the

terminating instruction of BBij−1 . Since sj−1 |= e and m|V ′ij−1
= sj−1, we

have m |= V ′ij−1
(e). Moreover, since m(gBBij−1) = true , then m |= gBBij−1 ∧

V ′ij−1
(e). Hence m |=

∨
c∈Edges[BBij

] c.

(e) BBij is the right successor of BBij−1 ∈ Taken. This case is proved similarly

as case (d).

2. Suppose BB 6∈ Taken. First, since m(gBB) = false , Blks[BB] are conjunc-

tions of equations of the form xα = xα−1. By Steps (1),(2), and (3), we have

m |= Blks[BB]. Secondly, we prove that m evaluates
∨
c∈Edges[BB] c to false by

contradiction. Suppose there is c ∈
∨
e∈Edges[BB] e such that m |= c. We consider

the following cases depending on the form of c.

Chapter 6. LLSPLAT: A Concolic Testing Tool with Bounded Model Checking 123

(a) c ≡ V1(e). Then BB is the left successor of the governor gov. Let

br e BB BBi1 be the terminating instruction of gov. Since s0 |= ¬e and

m|V1 = s0, we have m |= ¬V1(e), and thus m 6|= c. Contradiction.

(b) c ≡ ¬V1(e). Then BB is the right successor of the governor gov. This case is

proved similarly as case (a).

(c) c ≡ gBB′ . Then we know that BB′ ∈ Taken and BB is the unique successor

of BB′. Since m(gBB′) = true , then m(gBB) = true . Contradiction.

(d) c ≡ gBBu ∧ V ′u(e) for some u ∈ [1, n]. Since m |= gBBu , we know that BBu ∈

Taken and BB is the left successor of BBu. Without loss of generality, let

BBu be BBij for some j ∈ [1, k]. Then V ′u = V ′ij . Let br e BB BB′ be the

terminating instruction of BBij . Note that sj |= ¬e. Since m|V ′ij
= sj , we

have m |= ¬V ′ij (e). Contradiction.

(e) c ≡ gBBu ∧ ¬V ′u(e) for some u ∈ [1, n]. Since m |= gBBu , we know that

BBu ∈ Taken and BB is the right successor of BBu. This case is proved

similarly as case (d).

Now that we have proved for each BB ∈ GR(gov), m |= gBB =
∨
c∈Edges[BB] c and

m |= Blks[BB]. Thus m |= φ. We now prove that m |= gd where gd =
∨
c∈Edges[d] c.

Suppose that the destination d is the unique successor of BBik , then gBBik
∈ Edges[d].

Since m |= gBBik
, m |= gd. Suppose that d is the left successor of BBik , that is, the

terminating instruction of BBik is br e d BB2. Since sk |= e and m|V ′ik
= sk, we have

m |= V ′ik(e). Since gBBik
∧V ′ik(e) ∈ Edges[d], we havem |= gd. By the similar reasoning,

if d is the right successor of BBik , we also have m |= gd. Hence m |= φ ∧ gd.

Theorem 21. Given a governor gov and a destination d ∈ Dests(gov), the formula φ ∧

gd encodes all executions from gov to d. Moreover, the final version of each variable x in φ

represents the value of x when an execution from gov to d enters d.

Proof. Proved by Lemma 34 and 35.

Bibliography

[1] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. “General decidability theo-

rems for infinite-state systems”. In: LICS ’96. IEEE, 1996, pp. 313–321.

[2] S. Anand, P. Godefroid, and N. Tillmann. “Demand-driven Compositional Sym-

bolic Execution”. In: Proceedings of the Theory and Practice of Software, 14th Inter-

national Conference on Tools and Algorithms for the Construction and Analysis of Sys-

tems. TACAS’08/ETAPS’08. Budapest, Hungary: Springer-Verlag, 2008, pp. 367–

381.

[3] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M.

Harman, M. J. Harrold, and P. Mcminn. “An Orchestrated Survey of Method-

ologies for Automated Software Test Case Generation”. In: J. Syst. Softw. 86.8

(Aug. 2013).

[4] M. F. Atig, A. Bouajjani, and S. Qadeer. “Context-Bounded Analysis for Concur-

rent Programs with Dynamic Creation of Threads”. In: TACAS’09: Proc. 15th Int.

Conf. on Tools and Algorithms for the Construction and Analysis of Systems. Vol. 5505.

LNCS. Springer, 2009, pp. 107–123.

[5] T. Avgerinos, A. Rebert, S. K. Cha, and D. Brumley. “Enhancing Symbolic Ex-

ecution with Veritesting”. In: Proceedings of the 36th International Conference on

Software Engineering. ICSE 2014. Hyderabad, India: ACM, 2014, pp. 1083–1094.

[6] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv, M.

Schapira, and A. Valadarsky. “VeriCon: Towards Verifying Controller Programs

in Software-defined Networks”. In: Proceedings of the 35th ACM SIGPLAN Con-

ference on Programming Language Design and Implementation. PLDI ’14. Edin-

burgh, United Kingdom: ACM, 2014, pp. 282–293.

125

126 BIBLIOGRAPHY

[7] M. Barnett and K. R. M. Leino. “Weakest-precondition of Unstructured Pro-

grams”. In: Proceedings of the 6th ACM SIGPLAN-SIGSOFT Workshop on Pro-

gram Analysis for Software Tools and Engineering. PASTE ’05. New York, NY, USA:

ACM, 2005.

[8] A. Barth, J. Mitchell, A. Datta, and S. Sundaram. “Privacy and Utility in Business

Processes”. In: CSF. IEEE, 2007, pp. 279–294.

[9] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani. “Soft-

ware Model Checking via Large-Block Encoding”. In: Proceedings of the 9th In-

ternational Conference on Formal Methods in Computer-Aided Design (FMCAD 2009,

Austin, TX, November 15-18). 2009, pp. 25–32.

[10] B. Bingham, J. Bingham, F. de Paula, J. Erickson, G. Singh, and M. Reitblatt. “In-

dustrial Strength Distributed Explicit State Model Checking”. In: PDMC-HIBI.

2010, pp. 28–36.

[11] P. Boonstoppel, C. Cadar, and D. Engler. “RWset: Attacking Path Explosion in

Constraint-based Test Generation”. In: Proceedings of the Theory and Practice of

Software, 14th International Conference on Tools and Algorithms for the Construction

and Analysis of Systems. TACAS’08/ETAPS’08. Budapest, Hungary, 2008.

[12] A. Bouajjani and M. Emmi. “Analysis of recursively parallel programs”. In:

POPL. 2012, pp. 203–214.

[13] A. Bouajjani and M. Emmi. “Bounded phase analysis of message-passing pro-

grams”. In: STTT 16.2 (2014), pp. 127–146.

[14] A. Bouajjani, S. Qadeer, and S. Fratani. “Context-Bounded Analysis of Multi-

threaded Programs with Dynamic Linked Structures”. In: CAV’07: Proc. 19th Int.

Conf. on Computer Aided Verification. Vol. 4590. LNCS. Springer, 2007, pp. 207–

220.

[15] L. Bozzelli and P. Ganty. “Complexity Analysis of the Backward Coverability

Algorithm for VASS”. In: RP 11. LNCS 6945. Springer, 2011, pp. 96–109.

[16] D. Brand and P. Zafiropulo. “On Communicating Finite-State Machines”. In: J.

ACM 30.2 (Apr. 1983), pp. 323–342.

BIBLIOGRAPHY 127

[17] D. Bucur and M. Z. Kwiatkowska. “Software Verification for TinyOS”. In: Pro-

ceedings of the 9th ACM/IEEE International Conference on Information Processing in

Sensor Networks. IPSN ’10. Stockholm, Sweden: ACM, 2010, pp. 400–401.

[18] P. Buneman, S. Khanna, and W.-C. Tan. “Why and where: A characterization of

data provenance”. In: ICDT. LNCS 1973. Springer, 2001, pp. 316–330.

[19] J. Burnim and K. Sen. “Heuristics for Scalable Dynamic Test Generation”. In:

Proceedings of the 2008 23rd IEEE/ACM International Conference on Automated Soft-

ware Engineering. ASE ’08. Washington, DC, USA, 2008, pp. 443–446.

[20] C. Cadar, D. Dunbar, and D. Engler. “KLEE: Unassisted and Automatic Gener-

ation of High-coverage Tests for Complex Systems Programs”. In: Proceedings

of the 8th USENIX Conference on Operating Systems Design and Implementation.

OSDI’08. San Diego, California: USENIX Association, 2008, pp. 209–224.

[21] C. Cadar and K. Sen. “Symbolic Execution for Software Testing: Three Decades

Later”. In: Commun. ACM 56.2 (Feb. 2013), pp. 82–90.

[22] M. Canini, D. Venzano, P. Perešíni, D. Kostić, and J. Rexford. “A NICE Way

to Test Openflow Applications”. In: Proceedings of the 9th USENIX Conference

on Networked Systems Design and Implementation. NSDI’12. San Jose, CA, 2012,

pp. 127–140.

[23] S. Chaki, S. Rajamani, and J. Rehof. “Types as models: model checking message-

passing programs”. In: POPL. ACM, 2002, pp. 45–57.

[24] S. Chandra, S. J. Fink, and M. Sridharan. “Snugglebug: A Powerful Approach

to Weakest Preconditions”. In: Proceedings of the 30th ACM SIGPLAN Conference

on Programming Language Design and Implementation. PLDI ’09. Dublin, Ireland:

ACM, 2009.

[25] T. Chen, X.-S. Zhang, S.-Z. Guo, H.-Y. Li, and Y. Wu. “State of the Art: Dynamic

Symbolic Execution for Automated Test Generation”. In: Future Gener. Comput.

Syst. 29.7 (Sept. 2013), pp. 1758–1773.

[26] J. Cheney, A. Ahmed, and U. Acar. “Provenance as dependency analysis”. In:

Math. Struct. in Computer Science 21 (2011), pp. 1301–1337.

128 BIBLIOGRAPHY

[27] A. Cimatti, A. Micheli, I. Narasamdya, and M. Roveri. “Verifying SystemC: A

Software Model Checking Approach”. In: Proceedings of the 2010 Conference on

Formal Methods in Computer-Aided Design. FMCAD ’10. Lugano, Switzerland:

FMCAD Inc, 2010, pp. 51–60.

[28] E. Clarke, D. Kroening, and F. Lerda. “A Tool for Checking ANSI-C Programs”.

English. In: Tools and Algorithms for the Construction and Analysis of Systems. Ed.

by K. Jensen and A. Podelski. Vol. 2988. Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2004, pp. 168–176.

[29] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. “Bounded Model Checking Using

Satisfiability Solving”. In: Form. Methods Syst. Des. 19.1 (July 2001), pp. 7–34.

[30] N. Cooprider, W. Archer, E. Eide, D. Gay, and J. Regehr. “Efficient Memory

Safety for TinyOS”. In: Proceedings of the 5th International Conference on Embedded

Networked Sensor Systems. SenSys ’07. Sydney, Australia: ACM, 2007, pp. 205–

218.

[31] L. Cordeiro, J. Morse, D. Nicole, and B. Fischer. “Context-Bounded Model

Checking with ESBMC 1.17”. English. In: Tools and Algorithms for the Construction

and Analysis of Systems. Springer Berlin Heidelberg, 2012, pp. 534–537.

[32] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algo-

rithms. 2nd. McGraw-Hill Higher Education, 2001.

[33] Y. Cui, J. Widom, and J. Wiener. “Tracing the lineage of view data in a ware-

housing environment”. In: ACM TODS 25 (2000), pp. 179–227.

[34] R Cunningham. “Eel: Tools for debugging, visualization, and verification of

event-driven software”. MA thesis. UCLA, 2005.

[35] S. Demri, M. Jurdzinski, O. Lachish, and R. Lazic. “The covering and bounded-

ness problems for branching vector addition systems”. In: J. Comput. Syst. Sci.

79.1 (2013), pp. 23–38.

[36] E. W. Dijkstra. A Discipline of Programming. 1st. Upper Saddle River, NJ, USA:

Prentice Hall PTR, 1997.

BIBLIOGRAPHY 129

[37] D. L. Dill. “The Murphi Verification System”. In: Proceedings of the 8th Inter-

national Conference on Computer Aided Verification. CAV ’96. London, UK, UK:

Springer-Verlag, 1996, pp. 390–393.

[38] B. Durak. “JSure”. Available at https://github.com/berke/jsure.

[39] M. Emmi, A. Lal, and S. Qadeer. “Asynchronous Programs with Prioritized

Task-buffers”. In: Proceedings of the ACM SIGSOFT 20th International Symposium

on the Foundations of Software Engineering. FSE ’12. New York, NY, USA: ACM,

2012, 48:1–48:11.

[40] N. Feamster, J. Rexford, and E. Zegura. “The Road to SDN”. In: Queue 11.12

(Dec. 2013), 20:20–20:40.

[41] A. Finkel and P. Schnoebelen. “Well-structured transition systems everywhere!”

In: Theoretical Computer Science 256.1-2 (2001), pp. 63–92.

[42] C. Flanagan and J. B. Saxe. “Avoiding Exponential Explosion: Generating Com-

pact Verification Conditions”. In: Proceedings of the 28th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. POPL ’01. London, United

Kingdom: ACM, 2001, pp. 193–205.

[43] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and

D. Walker. “Frenetic: A Network Programming Language”. In: Proceedings of the

16th ACM SIGPLAN International Conference on Functional Programming. ICFP

’11. Tokyo, Japan: ACM, 2011, pp. 279–291.

[44] P. Ganty, J.-F. Raskin, and L. V. Begin. “From Many Places to Few: Auto-

matic Abstraction Refinement for Petri Nets”. In: Fund. Informaticae 88(3) (2008),

pp. 275–305.

[45] P. Ganty and R. Majumdar. “Algorithmic Verification of Asynchronous Pro-

grams”. Submitted for publication (TOPLAS). 2011.

[46] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. “The nesC

Language: A Holistic Approach to Networked Embedded Systems”. In: Proceed-

ings of the ACM SIGPLAN 2003 Conference on Programming Language Design and

Implementation. PLDI ’03. San Diego, California, USA: ACM, 2003, pp. 1–11.

130 BIBLIOGRAPHY

[47] G. Geeraerts, J.-F. Raskin, and L. Van Begin. “Expand, Enlarge and Check: new

algorithms for the coverability problem of WSTS”. In: FSTTCS ’04. LNCS 3328.

Springer, 2004, pp. 287–298.

[48] GENI Assignment. GENI Assignment. http : / / groups . geni .

net / geni / wiki / GENIEducation / SampleAssignments /

OpenFlowFirewallAssignment/ExerciseLayout/Execute.

[49] N. Ghafari, A. Hu, and Z. Rakamarić. “Context-Bounded Translations for Con-

current Software: An Empirical Evaluation”. English. In: Model Checking Soft-

ware. Ed. by J. van de Pol and M. Weber. Vol. 6349. Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2010, pp. 227–244.

[50] P. Godefroid. “Compositional Dynamic Test Generation”. In: Proceedings of the

34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages. POPL ’07. Nice, France: ACM, 2007, pp. 47–54.

[51] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems: An

Approach to the State-Explosion Problem. LNCS 1032. Springer, 1996.

[52] P. Godefroid, N. Klarlund, and K. Sen. “DART: Directed Automated Random

Testing”. In: Proceedings of the 2005 ACM SIGPLAN Conference on Program-

ming Language Design and Implementation. PLDI ’05. New York, NY, USA, 2005,

pp. 213–223.

[53] P. Godefroid, M. Y. Levin, and D. Molnar. “SAGE: Whitebox Fuzzing for Secu-

rity Testing”. In: Queue 10.1 (Jan. 2012), 20:20–20:27.

[54] T. Green, G. Karvounarakis, and V. Tannen. “Provenance semirings”. In: PODS.

ACM, 2007, pp. 31–40.

[55] A. Guha, M. Reitblatt, and N. Foster. “Machine-verified Network Controllers”.

In: Proceedings of the 34th ACM SIGPLAN Conference on Programming Language

Design and Implementation. PLDI ’13. Seattle, Washington, USA: ACM, 2013,

pp. 483–494.

[56] W. R. Harris, S. Sankaranarayanan, F. Ivancic, and A. Gupta. “Program analysis

via satisfiability modulo path programs”. In: POPL 2010. ACM, 2010, pp. 71–82.

http://groups.geni.net/geni/wiki/GENIEducation/SampleAssignments/OpenFlowFirewallAssignment/ExerciseLayout/Execute
http://groups.geni.net/geni/wiki/GENIEducation/SampleAssignments/OpenFlowFirewallAssignment/ExerciseLayout/Execute
http://groups.geni.net/geni/wiki/GENIEducation/SampleAssignments/OpenFlowFirewallAssignment/ExerciseLayout/Execute

BIBLIOGRAPHY 131

[57] G. Higman. “Ordering by divisibility in abstract algebras”. In: Proc. London

Math. Soc. (3) 2 (1952), pp. 326–336.

[58] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. “System Archi-

tecture Directions for Networked Sensors”. In: Proceedings of the Ninth Interna-

tional Conference on Architectural Support for Programming Languages and Operat-

ing Systems. ASPLOS IX. Cambridge, Massachusetts, USA: ACM, 2000, pp. 93–

104.

[59] G. Holzmann. “The Spin Model Checker”. In: IEEE Transactions on Software En-

gineering 23.5 (1997), pp. 279–295.

[60] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y. Kuo. “Securing Web

application code by static analysis and runtime protection”. In: WWW. 2004,

pp. 40–52.

[61] J. Jaffar, V. Murali, and J. A. Navas. “Boosting Concolic Testing via Interpola-

tion”. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engi-

neering. ESEC/FSE 2013. Saint Petersburg, Russia: ACM, 2013, pp. 48–58.

[62] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wan-

derer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. “B4: Ex-

perience with a Globally-deployed Software Defined Wan”. In: Proceedings of

the ACM SIGCOMM 2013 Conference on SIGCOMM. SIGCOMM13. Hong Kong,

China, 2013, pp. 3–14.

[63] J. Janák. “Issue Tracking Systems”. Diplomová práce. Masarykova univerzita,

Fakulta informatiky, 2009.

[64] R. Jhala and R. Majumdar. “Interprocedural Analysis of Asynchronous Pro-

grams”. In: POPL ’07. ACM, 2007, pp. 339–350.

[65] A. Kaiser, D. Kroening, and T. Wahl. “Efficient coverability analysis by proof

minimization”. In: CONCUR 2012. LNCS 7454. Springer, 2012, pp. 500–515.

[66] A. Kaiser, D. Kroening, and T. Wahl. “Dynamic Cutoff Detection in Parameter-

ized Concurrent Programs”. In: Proceedings of the 22Nd International Conference on

132 BIBLIOGRAPHY

Computer Aided Verification. CAV’10. Berlin, Heidelberg: Springer-Verlag, 2010,

pp. 645–659.

[67] A. Kaiser, D. Kroening, and T. Wahl. “Efficient Coverability Analysis by Proof

Minimization”. In: Proceedings of the 23rd International Conference on Concurrency

Theory. CONCUR’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 500–515.

[68] R. Karp and R. Miller. “Parallel Program Schemata.” In: Journal of Comput. Syst.

Sci. 3.2 (1969), pp. 147–195.

[69] P. Kazemian, G. Varghese, and N. McKeown. “Header Space Analysis: Static

Checking for Networks”. In: NSDI. 2012, pp. 113–126.

[70] J. Kloos, R. Majumdar, F. Niksic, and R. Piskac. “Incremental, inductive cover-

ability”. In: CAV 2013. LNCS. Springer, 2013.

[71] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. “The Click Mod-

ular Router”. In: ACM Trans. Comput. Syst. 18.3 (Aug. 2000), pp. 263–297.

[72] D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich, and C. Wintersteiger. “Loop

summarization using state and transition invariants”. In: Formal Methods in Sys-

tem Design 42.3 (2013), pp. 221–261.

[73] D. Kroening, E. Clarke, and K. Yorav. “Behavioral Consistency of C and Verilog

Programs Using Bounded Model Checking”. In: Proceedings of DAC 2003. ACM

Press, 2003, pp. 368–371.

[74] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. “Efficient State Merging in

Symbolic Execution”. In: SIGPLAN Not. 47.6 (June 2012), pp. 193–204.

[75] S. La Torre, P. Madhusudan, and G. Parlato. “Model-Checking Parameterized

Concurrent Programs Using Linear Interfaces”. English. In: Computer Aided Ver-

ification. Ed. by T. Touili, B. Cook, and P. Jackson. Vol. 6174. Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 2010, pp. 629–644.

[76] S. K. Lahiri, S. Qadeer, and Z. Rakamarić. “Static and Precise Detection of Con-

currency Errors in Systems Code Using SMT Solvers”. In: Proceedings of the

21st International Conference on Computer Aided Verification. CAV ’09. Grenoble,

France: Springer-Verlag, 2009, pp. 509–524.

BIBLIOGRAPHY 133

[77] A. Lal, S. Qadeer, and S. K. Lahiri. “A Solver for Reachability Modulo Theories”.

In: Proceedings of the 24th International Conference on Computer Aided Verification.

CAV’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 427–443.

[78] A. Lal and T. Reps. “Reducing Concurrent Analysis Under a Context Bound to

Sequential Analysis”. In: CAV ’08: Proc. 20th Int. Conf. on Computer Aided Verifi-

cation. Vol. 5128. LNCS. Springer, 2008, pp. 37–51.

[79] A. Lal, T. Touili, N. Kidd, and T. W. Reps. “Interprocedural Analysis of Concur-

rent Programs Under a Context Bound”. In: TACAS ’08: Proc. 14th Int. Conf. on

Tools and Algorithms for the Construction and Analysis of Systems. Vol. 4963. LNCS.

Springer, 2008, pp. 282–298.

[80] P. Li and J. Regehr. “T-check: Bug Finding for Sensor Networks”. In: Proceedings

of the 9th ACM/IEEE International Conference on Information Processing in Sensor

Networks. IPSN ’10. Stockholm, Sweden: ACM, 2010, pp. 174–185.

[81] Y. Li, Z. Su, L. Wang, and X. Li. “Steering Symbolic Execution to Less Trav-

eled Paths”. In: Proceedings of the 2013 ACM SIGPLAN International Conference

on Object Oriented Programming Systems Languages. OOPSLA ’13. Indianapolis,

Indiana, USA: ACM, 2013, pp. 19–32.

[82] R. Lipton. The reachability problem is exponential-space hard. Tech. rep. 62. Depart-

ment of Computer Science, Yale University, 1976.

[83] P. Liu and T. Wahl. “Infinite-State Backward Exploration of Boolean Broadcast

Programs”. In: Proceedings of the 14th Conference on Formal Methods in Computer-

Aided Design. FMCAD ’14. Austin, TX: FMCAD Inc, 2014, 26:155–26:162.

[84] B. Livshits and M. Lam. “Finding security errors in Java programs with static

analysis”. In: Usenix Security Symposium. 2005, pp. 271–286.

[85] I. Lomazova and P. Schnoebelen. “Some Decidability Results for Nested Petri

Nets”. In: Ershov Memorial Conference. LNCS 1755. Springer, 2000, pp. 208–220.

[86] R. Majumdar, R. Meyer, and Z. Wang. “Static Provenance Verification for Mes-

sage Passing Programs”. In: Static Analysis - 20th International Symposium, SAS

2013, Seattle, WA, USA, June 20-22, 2013. Proceedings. 2013, pp. 366–387.

134 BIBLIOGRAPHY

[87] R. Majumdar and K. Sen. “Hybrid Concolic Testing”. In: Proceedings of the 29th

International Conference on Software Engineering. ICSE ’07. Washington, DC, USA:

IEEE Computer Society, 2007, pp. 416–426.

[88] R. Majumdar, S. D. Tetali, and Z. Wang. “Kuai: A Model Checker for Software-

defined Networks”. In: Proceedings of the 14th Conference on Formal Methods in

Computer-Aided Design. FMCAD ’14. Lausanne, Switzerland: FMCAD Inc, 2014,

27:163–27:170.

[89] R. Majumdar and Z. Wang. “BBS: A Phase-Bounded Model Checker for Asyn-

chronous Programs”. English. In: Computer Aided Verification. Ed. by D. Kroen-

ing and P. C. S. Vol. 9206. Lecture Notes in Computer Science. Springer Interna-

tional Publishing, 2015, pp. 496–503.

[90] R. Majumdar and Z. Wang. “Expand, Enlarge, and Check for Branching Vector

Addition Systems”. In: CONCUR 2013 - Concurrency Theory - 24th International

Conference, CONCUR 2013, Buenos Aires, Argentina, August 27-30, 2013. Proceed-

ings. 2013, pp. 152–166.

[91] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-

ford, S. Shenker, and J. Turner. “OpenFlow: Enabling Innovation in Campus

Networks”. In: SIGCOMM 38.2 (Mar. 2008), pp. 69–74.

[92] F. Merz, S. Falke, and C. Sinz. “LLBMC: Bounded Model Checking of C and

C++; Programs Using a Compiler IR”. In: Proceedings of the 4th International Con-

ference on Verified Software: Theories, Tools, Experiments. VSTTE’12. Philadelphia,

PA: Springer-Verlag, 2012, pp. 146–161.

[93] R. Meyer and T. Strazny. “Petruchio: From Dynamic Networks to Nets”. In:

CAV. LNCS 6174. Springer, 2010, pp. 175–179.

[94] M. Miller, E. Tribble, and J. Shapiro. “Concurrency Among Strangers”. En-

glish. In: Trustworthy Global Computing. Ed. by R. De Nicola and D. Sangiorgi.

Vol. 3705. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2005,

pp. 195–229.

[95] M. Minsky. Finite and Infinite Machines. Prentice-Hall, 1967.

BIBLIOGRAPHY 135

[96] M. Musuvathi and S. Qadeer. “Iterative Context Bounding for Systematic Test-

ing of Multithreaded Programs”. In: Proceedings of the 2007 ACM SIGPLAN Con-

ference on Programming Language Design and Implementation. PLDI ’07. San Diego,

California, USA: ACM, 2007, pp. 446–455.

[97] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark. “Resonance: Dynamic Ac-

cess Control for Enterprise Networks”. In: Proceedings of the 1st ACM Workshop

on Research on Enterprise Networking. WREN ’09. Barcelona, Spain: ACM, 2009,

pp. 11–18.

[98] T. Nelson, A. Guha, D. J. Dougherty, K. Fisler, and S. Krishnamurthi. “A Balance

of Power: Expressive, Analyzable Controller Programming”. In: Proceedings of

the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Network-

ing. HotSDN ’13. Hong Kong, China: ACM, 2013, pp. 79–84.

[99] V. S. Pai, P. Druschel, and W. Zwaenepoel. “Flash: An Efficient and Portable

Web Server”. In: Proceedings of the Annual Conference on USENIX Annual Technical

Conference. ATEC ’99. Monterey, California: USENIX Association, 1999, pp. 15–

15.

[100] C. A. Petri. “Kommunikation mit Automaten”. PhD thesis. Technical University

Darmstadt, 1962.

[101] A. Pnueli, J. Xu, and L. Zuck. “Liveness with (0, 1,∞)-Counter Abstraction”. In:

CAV. LNCS 2404. Springer, 2002, pp. 107–122.

[102] POX. http://www.noxrepo.org/pox/about-pox/.

[103] S. Qadeer. “The Case for Context-Bounded Verification of Concurrent Pro-

grams”. In: SPIN ’08: Proc. of 15th Int. Model Checking Software Workshop.

Vol. 5156. LNCS. Springer, 2008, pp. 3–6.

[104] S. Qadeer and J. Rehof. “Context-Bounded Model Checking of Concurrent Soft-

ware”. In: TACAS’05: Proc. 11th Int. Conf. on Tools and Algorithms for the Construc-

tion and Analysis of Systems. Vol. 3440. LNCS. Springer, 2005, pp. 93–107.

http://www.noxrepo.org/pox/about-pox/

136 BIBLIOGRAPHY

[105] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. “SIMPLE-fying

Middlebox Policy Enforcement Using SDN”. In: Proceedings of the ACM SIG-

COMM 2013 Conference on SIGCOMM. SIGCOMM13. Hong Kong, China: ACM,

2013, pp. 27–38.

[106] C. Rackoff. “The covering and boundedness problems for vector addition sys-

tems”. In: Theoretical Computer Science 6.2 (1978), pp. 223–231.

[107] A. Sabelfeld and A. Myers. “Language-based information-flow security”. In:

IEEE J. Selected Areas in Communications 21 (2003), pp. 5–19.

[108] Safe TinyOS. http://docs.tinyos.net/index.php/Safe_TinyOS.

[109] R. Santelices and M. J. Harrold. “Exploiting Program Dependencies for Scalable

Multiple-path Symbolic Execution”. In: Proceedings of the 19th International Sym-

posium on Software Testing and Analysis. ISSTA ’10. Trento, Italy, 2010.

[110] P. Schnoebelen. “Revisiting Ackermann-Hardness for Lossy Counter Machines

and Reset Petri Nets”. In: MFCS. LNCS 6281. Springer, 2010, pp. 616–628.

[111] K. Sen, D. Marinov, and G. Agha. “CUTE: A Concolic Unit Testing Engine for

C”. In: Proceedings of the 10th European Software Engineering Conference Held Jointly

with 13th ACM SIGSOFT International Symposium on Foundations of Software En-

gineering. ESEC/FSE-13. New York, NY, USA: ACM, 2005, pp. 263–272.

[112] K. Sen and M. Viswanathan. “Model Checking Multithreaded Programs with

Asynchronous Atomic Methods”. In: CAV ’06: Proc. 18th Int. Conf. on Computer

Aided Verification. Vol. 4144. LNCS. Springer, 2006, pp. 300–314.

[113] H. Seo and S. Kim. “How We Get There: A Context-guided Search Strategy in

Concolic Testing”. In: Proceedings of the 22Nd ACM SIGSOFT International Sympo-

sium on Foundations of Software Engineering. FSE 2014. Hong Kong, China: ACM,

2014.

[114] D. Sethi, S. Narayana, and S. Malik. “Abstractions for model checking SDN

controllers”. In: Formal Methods in Computer-Aided Design (FMCAD), 2013. 2013,

pp. 145–148.

http://docs.tinyos.net/index.php/Safe_TinyOS

BIBLIOGRAPHY 137

[115] I. Souilah, A. Francalanza, and V. Sassone. “A Formal Model of Provenance in

Distributed Systems”. In: Workshop on the Theory and Practice of Provenance. 2009.

[116] D. Suwimonteerabuth, J. Esparza, and S. Schwoon. “Symbolic Context-Bounded

Analysis of Multithreaded Java Programs”. In: SPIN ’08: Proc. of 15th Int. Model

Checking Software Workshop. Vol. 5156. LNCS. Springer, 2008, pp. 270–287.

[117] SVCOMP15. Competition on Software Verification. https : / / github . com /

dbeyer/sv-benchmarks/tree/master/c/.

[118] S. La Torre, G. Parlato, and P. Madhusudan. “Reducing Context-Bounded Con-

current Reachability to Sequential Reachability”. In: CAV’09: Proc. 21st Int. Conf.

on Computer Aided Verification. Vol. 5643. LNCS. Springer, 2009, pp. 477–492.

[119] K. Verma and J. Goubault-Larrecq. “Karp-Miller Trees for a Branching Exten-

sion of VASS”. In: Discrete Mathematics & Theoretical Computer Science 7.1 (2005),

pp. 217–230.

[120] K. N. Verma and J. Goubault-Larrecq. “Alternating two-way AC-tree au-

tomata”. In: Inf. Comput. 205.6 (2007), pp. 817–869.

[121] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte. “Fitness-guided path explo-

ration in dynamic symbolic execution”. In: Dependable Systems Networks, 2009.

DSN ’09. IEEE/IFIP International Conference on. 2009, pp. 359–368.

https://github.com/dbeyer/sv-benchmarks/tree/master/c/
https://github.com/dbeyer/sv-benchmarks/tree/master/c/

ZILONG WANG’S CV

EDUCATION

2010–Present PhD Candidate, MPI-SWS, Kaiserslautern, Germany

2006–2010 B. Tech, Computer Science, Nankai University, Tianjin, China

PUBLICATIONS

R. Majumdar, I. Saha, and Z. Wang. Systematic Testing for Control Applications, MEM-

OCODE 2010.

R. Majumdar, I. Saha, K. Shashidhar, and Z. Wang. CLSE: Closed-Loop Symbolic Exe-

cutions, NFM 2012.

R. Majumdar, R. Meyer, and Z. Wang. Static Provenance Verification for Message Pass-

ing Programs, SAS 2013.

R. Majumdar, R. Meyer, and Z. Wang. Provenance Verification, RP 2013.

R. Majumdar and Z. Wang. Expand, Enlarge, and Check for Branching Vector Addition

Systems, CONCUR 2013.

R. Majumdar, S. Tetali, and Z. Wang. Kuai: A Model Checker for Software-defined

Networks, FMCAD 2014.

R. Majumdar and Z. Wang. BBS: A Phase-Bounded Model Checker for Asynchronous

Programs, CAV 2015.

TEACHING ASSISTANT EXPERIENCE

Fall 2012 Verification of Reactive Systems, TU Kaiserslautern, Germany.

Responsible for 2 hours per week of tutorial lecture, supervision

of projects, preparation of sample answers of homework and final

tests, proctoring final tests and grading the tests.

138

INTERNSHIP

Spring 2014 Microsoft Research India, Bangalore, India.

Work with Akash Lal on the project: Houdini Candidate Inference

for Static Driver Verifier.

Spring 2010 University of California, Los Angeles, Los Angeles, USA.

Work with Rupak Majumdar on the project: Static Range Analysis

for Floating-point C Programs.

Summer 2009 University of California, Los Angeles, Los Angeles, USA.

Work with Rupak Majumdar on the project: A Constraint-based Au-

tomatic Test Case Generator for C Programs.

AWARDS AND HONORS

2009 Cross-disciplinary Scholarship in Science and Technology at UCLA.

2009 TEDA & Vestas Scholarship at Nankai University.

2008 National Scholarship at Nankai University.

2007 Outstanding Student Scholarship (1st class) at Nankai University.

139

	Abstract
	Acknowledgements
	Introduction
	Outline

	ProvKeeper: A Provenance Verifier for Message Passing Programs
	Introduction
	Example
	Message Passing Programs
	Programming Model
	Examples

	Model Checking
	Labeled Petri Nets
	From Message Passing Programs to Labeled Petri Nets

	EXPSPACE Upper Bounds
	Implementation and Experiments
	Expand-Enlarge-Check and Partial Order Reduction
	Case Studies: Message Passing Benchmarks
	Private Mode and Firefox Extensions

	Related Work
	Extensions

	Kuai: A Model Checker for Software-defined Networks
	Introduction
	Software-defined Networks
	Optimizations
	Barrier Optimization
	Client Optimization
	(0,) Abstraction
	All Packets in One Shot Abstraction
	Controller Optimization

	Implementation and Evaluation
	Proof Details
	Proofs for Barrier Optimization
	Proofs for Client Optimization
	Proofs for (0,) Abstraction
	Semantics
	Proofs

	Proofs for All Packets In One Shot
	Proofs for Controller Optimization

	Related Work

	Expand, Enlarge, and Check for Branching Vector Addition Systems
	Introduction
	Preliminaries
	Under- and Over-approximation
	Underapproximation
	Overapproximation
	EEC Algorithm

	Complexity Analysis

	Bbs: A Phase-Bounded Model Checker for Asynchronous Programs
	Introduction
	Sequentialization Overview
	Experimental Evaluation
	TinyOS Execution Model
	Bbs Overview
	Experimental Experience with Bbs

	Llsplat: A Concolic Testing Tool with Bounded Model Checking
	Introduction
	A Motivating Example
	Concolic Testing
	Program Model
	The Concolic Testing Algorithm

	Combining Concolic Testing with BMC
	Identifying Program Portions for BMC
	Translating Governed Regions to BMC Formulas
	The BMC Formula Generation Algorithm

	Integrating BMC Formulas with Concolic Testing
	Example

	Experiments and Evaluation
	Comparing Llsplat with CREST and KLEE
	Comparing Llsplat with CBMC

	Related Work
	Proof Details
	Preliminaries
	Properties of Effective Dominance Sets and Governors
	Properties of the BMC Generation Algorithm

	Bibliography

