Incremental
Parallel and Distributed Systems

Thesis for obtaining the title of Doctor of Engineering Science of the
Faculty of Natural Science and Technology I of Saarland University

From
Pramod Kumar Bhatotia
Saarbriicken

April, 2015
Technical report: MPI-SWS-2015-002

Date of Colloquium:
Dean of Faculty:

Chair of the Committee:
Reporters

First Reviewer:

Second Reviewer:
Third Reviewer:
Academic Assistant:

ii

07/04/2015
Univ.-Prof. Dr. Markus Blaser

Prof. Dr. Matteo Maffei

Prof. Dr. Rodrigo Rodrigues
Prof. Dr. Peter Druschel

Dr. Rebecca Isaacs

Dr. Rijurekha Sen

©2015
Pramod K. Bhatotia
ALL RIGHTS RESERVED

iii

ABSTRACT

Incremental computation strives for efficient successive runs of applications by re-
executing only those parts of the computation that are affected by a given input
change instead of recomputing everything from scratch. To realize the benefits of
incremental computation, researchers and practitioners are developing new sys-
tems where the application programmer can provide an efficient update mecha-
nism for changing application data. Unfortunately, most of the existing solutions
are limiting because they not only depart from existing programming models, but
also require programmers to devise an incremental update mechanism (or a dy-
namic algorithm) on a per-application basis.

In this thesis, we present incremental parallel and distributed systems that
enable existing real-world applications to automatically benefit from efficient in-
cremental updates. Our approach neither requires departure from current models
of programming, nor the design and implementation of dynamic algorithms.

To achieve these goals, we have designed and built the following incremen-
tal systems: (i) Incoop — a system for incremental MapReduce computation; (ii)
Shredder — a GPU-accelerated system for incremental storage; (iii) Slider — a
stream processing platform for incremental sliding window analytics; and (iv) iThreads
— a threading library for parallel incremental computation. Our experience with
these systems shows that significant performance can be achieved for existing ap-
plications without requiring any additional effort from programmers.

iv

KURZDARSTELLUNG

Inkrementelle Berechnungen ermdglichen die effizientere Ausfithrung aufeinan-
derfolgender Anwendungsaufrufe, indem nur die Teilbereiche der Anwendung
erneut ausgefiirt werden, die von den Anderungen der Eingabedaten betroffen
sind. Dieses Berechnungsverfahren steht dem konventionellen und vollstindig
neu berechnenden Verfahren gegeniiber. Um den Vorteil inkrementeller Berech-
nungen auszunutzen, entwickeln sowohl Wissenschaft als auch Industrie neue Sys-
teme, bei denen der Anwendungsprogrammierer den effizienten Aktualisierungsmech-
anismus fiir die Anderung der Anwendungsdaten bereitstellt. Bedauerlicherweise
lassen sich existierende Losungen meist nur eingeschrankt anwenden, da sie das
konventionelle Programmierungsmodel beibehalten und dadurch die erneute En-
twicklung vom Programmierer des inkrementellen Aktualisierungsmechanismus
(oder einen dynamischen Algorithmus) fiir jede Anwendung verlangen.

Diese Doktorarbeit stellt inkrementelle Parallele- und Verteiltesysteme vor, die
es existierenden Real-World-Anwendungen ermoglichen vom Vorteil der inkre-
mentellen Berechnung automatisch zu profitieren. Unser Ansatz erfordert weder
eine Abkehr von gegenwértigen Programmiermodellen, noch Design und Imple-
mentierung von anwendungsspezifischen dynamischen Algorithmen.

Um dieses Ziel zu erreichen, haben wir die folgenden Systeme zur inkrementellen
parallelen und verteilten Berechnung entworfen und implementiert: (i) Incoop —
ein System fiir inkrementelle Map-Reduce-Programme; (ii) Shredder — ein GPU-
beschleunigtes System zur inkrementellen Speicherung; (iii) Slider — eine Plat-
tform zur Batch-basierten Streamverarbeitung via inkrementeller Sliding-Window-
Berechnung; und (iv) iThreads — eine Threading-Bibliothek zur parallelen inkre-
mentellen Berechnung. Unsere Erfahrungen mit diesen Systemen zeigen, dass
unsere Methoden sehr gute Performanz liefern konnen, und dies ohne weiteren
Aufwand des Programmierers.

PUBLICATIONS

Parts of the thesis have appeared in the following publications.

¢ "iThreads: A Threading Library for Parallel Incremental Computation". Pramod
Bhatotia, Pedro Fonseca, Umut A. Acar, Bjoern Brandenburg, and Rodrigo
Rodrigues. In proceedings of the 20th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), 2015.

¢ "Slider: Incremental Sliding Window Analytics". Pramod Bhatotia, Umut
A. Acar, Flavio Junqueira, and Rodrigo Rodrigues. In proceedings of the 15th
Annual ACM/IFIP/USENIX Middleware conference (Middleware), 2014. Best stu-

dent paper award.

¢ "MapReduce for Incremental Computation”. Pramod Bhatotia, Alexander
Wieder, Umut A. Acar, and Rodrigo Rodrigues. Invited book chapter: Advances
in data processing techniques in the era of Big Data, CRC Press, 2014.

* "Shredder: GPU-Accelerated Incremental Storage and Computation". Pramod
Bhatotia, Rodrigo Rodrigues and Akshat Verma. In proceedings of the 10th
USENIX conference on File and Storage Technologies (FAST), 2012.

¢ "Incoop: MapReduce for Incremental Computations”. Pramod Bhatotia, Alexan-
der Wieder, Rafael Pasquini, Rodrigo Rodrigues and Umut A. Acar. In pro-
ceedings of the 2nd ACM Symposium on Cloud Computing (SoCC), 2011.

* "Large Scale Incremental Data Processing with Change Propagation". Pramod
Bhatotia, Alexander Wieder, Istemi Ekin Akkus, Rodrigo Rodrigues and Umut
A. Acar. In USENIX Workshop on Hot Topics in Cloud Computing (HotCloud),
2011.

vi

Additional publications published while at MPI-SWS.

* "Orchestrating the Deployment of Computations in the Cloud with Conduc-
tor." Alexander Wieder, Pramod Bhatotia, Ansley Post and Rodrigo Rodrigues.
In proceedings of the 9th USENIX conference on Networked Systems Design and
Implementation (NSDI), 2012.

¢ "Performance Evaluation and Optimization of Random Memory Access on
Multicores with High Productivity." Vaibhav Saxena, Yogish Sabharwal, Pramod
Bhatotia. In proceedings of ACM/IEEE International Conference on High Perfor-
mance Computing (HiPC), 2010. Best paper award.

¢ '"Reliable Data-Center Scale Computations." Pramod Bhatotia, Alexander Wieder,
Rodrigo Rodrigues, Flavio Junqueira, and Benjamin Reed. In proceedings of
the 4th International Workshop on Large Scale Distributed Systems and Middleware
(LADIS), 2010.

¢ "Conductor: Orchestrating the Clouds." Alexander Wieder, Pramod Bhato-
tia, Ansley Post, and Rodrigo Rodrigues. proceedings of the 4th International
Workshop on Large Scale Distributed Systems and Middleware (LADIS), 2010.

* "Brief Announcement: Modelling MapReduce for Optimal Execution in the
Cloud." Alexander Wieder, Pramod Bhatotia, Ansley Post, and Rodrigo Ro-
drigues. In proceedings of the 29th ACM SIGACT-SIGOPS symposium on Princi-
ples of Distributed Computing (PODC), 2010.

vii

Dedicated to my mummy and papa.

viii

TABLE OF CONTENTS

LIST OF TABLESo e Xiv
LISTOF FIGURESo e XV
1 Introduction. e 1
1.1 The Promise of Incremental Computation.............................. 1
1.2 The Inevitability of Parallel & Distributed Systems 2

1.3 Thesis Research: Incremental SystemsL. 3
1.4 Self-Adjusting Computation.................ooooiiiiiiiiii i, 4

1.5 Thesis Contributionscoooiiiiiiiiii i 5

1.6 Organization........... ..o 8

2 Incoop: Incremental Batch Processingooooooiiii, 9
21 Motivationo 9
2.2 ContribUtionScuiet e 10
23 Background........... .. 12
2.3.1 MapReduce Programming Model 12

2.3.2 Hadoop Architecture. ... 13

2.3.21 Hadoop Distributed File System 13

2.3.2.2 Hadoop MapReduce Engine 14

24 OVEIVIEW ..ttt e e 14
241 Basicdesign............oiiiiiiiiii 15

242 Challenge: Transparencyoovveeiiiineeeiiieaeennn.. 17

2.4.3 Challenge: Efficiency ... 17

ix

25 Incremental HDES ... o o 20

2.6 Incremental MapReduce.....................ooo 22
2.7 Memoization Aware Scheduler..............l 26
2.8 Implementation..............oooiiiiiiiiiiiii 28
29 Evaluationoooiiiiiii 29
29.1 Applications and Data Generation.............................. 29
2.9.2 Measurementseouiiirin it 30
2.9.3 Performance Gains..........c.oouuereiniiiiniiiin e, 32
2.9.4 Effectiveness of Optimizations.................................. 33
295 Overheads.........c.coiuiuiiiiiiii 35
2.10 Case StUAIEScuinite et 37
2.10.1 Incremental Log Processing....................oooiiiiiiin. 37
2.10.2 Incremental Query Processingooooiiiii 38
211 Related Work 39
2.12 Limitations and Future Work................c. i, 42
213 SUMMATY ..o 42
Shredder: Incremental Storage...................ooooiiiinnn 44
3.1 Motivationouini 45
3.2 ContribUtionSc.ouiut i 46
3.3 Background........... .. 47
3.3.1 Content-based ChunkingL. 48
3.3.2 General-Purpose Computing on GPUs 50
3.3.3 SDRAM AccessModelc.coiuiiiiiiiiiiiiiiiiiiiii 51
B4 OVEIVIEW ..ttt 52
3.4.1 Basic GPU-Accelerated Framework............................. 53
3.4.2 Scalability Challenges................coooiiiiiiiiii 54

35 Optimizations i 56
3.5.1 Device Memory Bottleneckso 56
3.5.1.1 Concurrent Copy and Execution 56

3.5.1.2 Circular Ring Pinned Memory Buffers 59

3.52 HostBottleneckot 61
3.5.3 Device Memory Conflictsooo 63

3.6 Implementation...............ooooiiiiiiiiiii 66
3.6.1 Host-Only Chunking using pthreads 66
3.6.2 Shredder Implementation.............................o 67
3.6.21 HostDriver.........cooouiiniiiiiiiiiii i 67

3622 GPUKernel...........cooiiiiiiiii i 68

3.7 Evaluationo 69
3.8 Case StUAIesc.uuiiiiii i 70
3.8.1 GPU-accelerated Incremental HDFS 70
3.8.2 GPU-accelerated Incremental Cloud Backup 72

39 Related WOrk . ..o 75
3.10 Limitations and Future Work........ i 78
311 SUMMATY ... 78
Slider: Incremental Stream Processing....................ooooiiiiiiii 79
41 Motivationo.ou e 79
42 Contributionsc.viuiin i e 81
4.3 OVEIVIEW ..ottt e e e e 82
431 StrawmanDesign 83
432 Adding the Contraction Phase 84
4.3.3 Efficiency of the Contraction Tree............................... 86

4.4 Self-Adjusting Contraction Trees ..., 87

xi

441 Folding Contraction Tree...................ooiiiiiiiiii 87

442 Randomized Folding Tree............................aan. 89
4.5 Split Processing Algorithms ... 91
451 Rotating Contraction Trees.................. ..., 92
452 Coalescing Contraction Treesae. 94
4.6 Query Processing: Multi-Level Trees 96
4.7 Implementation...............oooiiiiiiiiiiiii 97
4.8 Evaluationcoooiiiiii 98
4.8.1 Experimental Setup ... 99
4.8.2 Performance Gains..........coouiuiiiiiiiiiininiiiiiniaen... 100
4.8.3 Effectiveness of Optimizations........................oooe 103
484 Overheads..........coouiiiiiiiiiii 108

4.8.5 Analytical Comparison with memoization based ap-
proach and batch-based stream processing 109
49 Case Studies ..ottt 110
49.1 Information Propagationin Twitter.......................... ... 111
492 Monitoring of a Networked System 112
49.3 Accountability in Hybrid CDNs ... 113
4.10 Related Work 115
4.11 Limitations and Future Work.................o i, 117
412 SUMMATY ..ot 119
iThreads: Incremental Multithreadingooo 120
51 Motivationo 120
5.2 ContribUtionsScuuuiii 122
5.3 OVEIVIEW ..ottt e 123
53.1 iThreads OVerviewc.c.oeuiiuiiiiniiiiinineennenn. 123
5.3.2 TheBasic Approach.....................ooon 124

Xii

533 Example........oooiiii 125

54 SystemModel 127
55 Algorithms ... 129
5.5.1 Concurrent Dynamic Dependence Graph (CDDG) 129

5.5.2 Algorithm for the Initial Run 131

5.5.3 Algorithm for the Incremental Run 133

5.6 Implementation...............ooooiiiiiiiiii 137
5.6.1 iThreads Library: Memory Subsystem.......................... 138

5.6.2 iThreads Library: Recorder and Replayer 140

5.6.3 iThreads Library: OS Supportcooiiiiiiii. 141

5.6.4 iThreads Memoizerc.cvuiiiiiiiiiiiiniiiiinaean... 142

5.7 Evaluation ..o 143
5.7.1 Performance Gains...........coouiuiiiiiiiiiiiiiiiiiniean... 145

572 iThreads Scalabilityoooooiii 147

573 Overheads..........coouiiiiiiiiii 149

58 CaseStudies oot 152
59 Related Work 152
5.10 Limitations and Future Work.............. . .o i it 154
511 SUMMATLY ...t 155

6 CONCIUSIONS . ..ottt e 156
BIBLIOGRAPHY ... 157

xiii

2.1
2.2

3.1
3.2

4.1
4.2
4.3
44

51

LIST OF TABLES

Applications used in the performance evaluation of Incoop 30
Results for incremental query processing 39
Performance characteristics of the GPU (NVidia Tesla C2050) 54
Host spare cycles per core due to asynchronous data-transfer

and kernel launch. 61
Read time reduction with memory caching 107
Summary of the Twitter data analysis 112
Summary of the Glasnost network monitoring data analysis 112
Akamai NetSession data analysis summary............................ 114
Space overheads in 4KB pages and input percentage 150

Xiv

2.1
2.2
2.3
24
2.5
2.6

2.7
2.8
2.9

3.1
3.2
3.3
34
3.5

3.6

3.7
3.8
3.9
3.10

3.11

3.12

LIST OF FIGURES

Basic design of Incoop. ... 16
Chunking strategies in HDFS and Inc-HDFS........................... 20
Incremental Map tasks ... 22
Stability of the Contraction phaseoooa. 25
Co-Matrix: Time versus inputsizeooooiiiii.. 33
Performance gains comparison between Contraction and task

variants ... 34
Effectiveness of scheduler optimizations. 35
Overheads imposed by Incoop in comparison to Hadoop 36
Speedup for incremental log processing............................ 38
A simplified view of the GPU architecture. 51
Basic workflow of Shredder ... 52
Bandwidth test between host and device. 56
Concurrent copy and execution......................ooii 57

Normalized overlap time of communication with computa-
tion with varied buffer sizes for 1GBdata. 58

Comparison of allocation overhead of pageable with pinned

MEMOTY FEZIOM. . ..ttt ettt e 59
Ring buffer for the pinned memory region. 60
Multi-staged streaming pipeline. 62
Speedup for streaming pipelined execution. 63
Memory coalescing to fetch data from global device memory
to the shared memory.o 64
Normalized chunking kernel time with varied buffer-sizes
forTGBdata. ... 65
Throughput comparison of content-based chunking between

CPU and GPU VerSIONS. ...t e e e e e e e e e e e e 69

XV

3.13
3.14
3.15
3.16
3.17

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

4.9

4.10

411

4.12

4.13

4.14
4.15

Incremental computation using Shredder. 71
Shredder enabled chunking in Inc-HDFS. 72
A typical cloud backup architecture......................ooon 73
GPU-accelerated consolidated backup setup........................... 74
Backup bandwidth improvement due to Shredder with vary-

ing image similarity ratios.............. ... 76
Strawman design and contraction phaseo 83
Example of folding contraction tree 88
Example of randomized folding tree 91
Example of rotating contraction trees 93
Example of coalescing contraction trees.........................oooo. 95
Slider architecture 97

Performance gains of Slider compared to recomputing from
scratch for the append-only windowing mode......................... 100

Performance gains of Slider compared to recomputing from
scratch for the fixed-width windowing mode 101

Performance gains of Slider compared to recomputing from

scratch for the variable-width windowing mode....................... 101
Performance breakdown for work ... 102
Performance gains of Slider compared to the memoization

based approach (the strawman design) for the append-only
windowingmode........... .o 104
Performance gains of Slider compared to the memoization

based approach (the strawman design) for the fixed-width
windowingmode............ . 104
Performance gains of Slider compared to the memoization

based approach (the strawman design) for the variable-width
windowingmode............. o 105
Effectiveness of Split processing...................ooooiiiiii 105
Query processing speedups using Slider............................... 106

Xvi

4.16
4.17
4.18
4.19

51
52
53

54
55
5.6
5.7

5.8

59

5.10
511
5.12

5.13

5.14
5.15

Randomized folding treel
Performance overheads of Slider for the initial run
Space overheads of Slideroo

Analytical comparison of Slider with batch-based stream pro-

cessing, memoization-based approach, and re-computation
fromscratch
How to run an executable using iThreads..............................

A simple example of shared-memory multithreading

For the incremental run, some cases with changed input or
thread schedule (changes are marked with*)

State transition for thunks during incremental run.....................
iThreads architecture (components are in grey)
Overview of therecorder ...

Performance gains of iThreads with respect to pthreads for
theincremental run........... ...

Performance gains of iThreads with respect to Dthreads for
theincremental run........... ...

Scalability with data (work and time speedups)
Scalability with work
Scalability with input change compared to pthreads for 64 threads. ...

Performance overheads of iThreads with respect to pthreads
fortheinitial run

Performance overheads of iThreads with respect to Dthreads
for the inital TUN . ..ot

Work overheads breakdown w.r.t. Dthreads

Work & time speedups for case-studies

XVii

CHAPTER 1

Introduction

1.1 The Promise of Incremental Computation

Many real-world applications are inherently used in an incremental workflow, that
is, they are invoked repeatedly with only small changes in input. Common exam-
ples span a wide spectrum of applications including scientific simulations, large-
scale data analytics, reactive systems, robots, traffic control systems, scheduling
systems, etc. All these applications naturally arise in a number of domains, in-
cluding software systems, graphics, robotics, databases, and networked systems.
These applications interact with the physical world observing their input data con-
tinuously evolving over time, causing incremental and continuous modifications
to the property being computed. Therefore, these applications must respond to
such incremental modifications correctly and efficiently.

Such applications, when confronted with localized modifications to the input,
often require only small modifications to the output. Therefore, if we have tech-
niques for quickly identifying the parts of the output that are affected by the mod-
ifications and updating them while reusing the rest of the output, we will be able
to incrementally update the output in a significantly more efficient (and thus faster
and cheaper) way than recomputing the entire output from scratch [130].

To realize the benefits of incremental computation, researchers and practition-

ers are developing new systems where programmers can provide efficient update

mechanism for changing application data. These systems for incremental compu-
tation can be significantly more efficient than recomputing from scratch. How-
ever, most of the existing approaches have two major limitations: first, these sys-
tems depart from existing programming models, which prevents existing, non-
incremental programs from taking advantage of these techniques. Second, and
more importantly, these systems require programmers to develop efficient incre-
mental update mechanisms (or a dynamic algorithm) on a per-application basis.
While dynamic algorithms can be asymptotically more efficient than their con-
ventional non-dynamic versions, they can be difficult to design, implement, and
adapt even for simple problems because of their highly specialized nature [55, 60,
70, 71, 78, 83, 118]. Furthermore, dynamic algorithms are overwhelmingly de-
signed for the uniprocessor computing model, and thus cannot take advantage
of the parallelism offered in parallel and distributed platforms, which are increas-

ingly important in today’s computing world, as motivated next.

1.2 TheInevitability of Parallel & Distributed Systems

Parallel and distributed computing is the most prominent way of computing in
the modern environment. Clusters of multicore nodes have become ubiquitous,
powering not only some of the most popular consumer applications — Internet
services such as web search and social networks — but also a growing number of
scientific and enterprise workloads. This computing model is a departure from
the uniprocessor computing model where programs run on a single core machine.
This shift towards adopting parallel and distributed computing frameworks is
driven mainly by a continuous increase in the demand for computing cycles and
I/0O bandwidth to support these modern applications. The uniprocessor comput-

ing model is unable to meet these requirements mainly because increasing a pro-

cessor’s speed to get a boost in performance leads to the heat dissipation problem.
Also, the I/O bandwidth is limited by available disk and network bandwidth per
machine.

To overcome these limitations, the computing platforms are being designed
to increase the parallelism by scaling-them-up as well as by scaling-them-out. In the
scaled-up architecture each node consists of a diverse mix of 100s of cores com-
prising of CPUs and GPUs. These cores operate at a lower frequency to minimize
the heat dissipation problem. The scaled-out architecture consists of tens of thou-
sands of those nodes with their corresponding networking and storage subsystems
to facilitate I/O parallelization. Thus, the combination of parallel and distributed
computing platform provides even more compute cycles and also mitigating the
I/0O bottlenecks.

The parallel and distributed computing platforms comes with several chal-
lenges requiring programmers to manage parallelization, synchronization, load-
balancing, fault-tolerance, distributing the data, and communication. To reduce
these complexity, programming models such as MapReduce [67], and pt hread [15].
Due to the growing importance of these computing frameworks, in this work, we
focus on building systems to support incremental computation in parallel and dis-

tributed systems.

1.3 Thesis Research: Incremental Systems

Thesis statement Incremental systems enable practical, automatic, and efficient in-
cremental computation in real-world parallel and distributed computing.
To this end, our work targets building incremental systems that require neither

aradical departure from current models of programming nor complex, application-

specific dynamic algorithms (which, to reiterate, are challenging to design and
implement).

The focus of our work is on two common computing paradigms, namely par-
allel and distributed computing. In particular, we focus on large-scale data pro-
cessing for distributed incremental computation, and multithreaded programs for
parallel incremental computation. To establish the practicality and benefit of the
envisioned incremental parallel and distributed frameworks, a crucial aspect of
this work is to design and implement incremental systems, and then evaluate the

solution with widely applicable case studies to demonstrate the benefits.

1.4 Self-Adjusting Computation

Our approach is to shift the burden of reasoning about how to efficiently process
incremental updates from the programmer to the system itself by building on the
principles that were developed in the field of self-adjusting computation [24, 25,
27,59, 87, 88, 103, 104] (a sub-field of programming languages research). The
key idea behind self-adjusting computation is to divide a computation into sub-
computations, and maintain a dependence graph between sub-computations. Given
changes in the input data, a change-propagation algorithm is used to update the
output by identifying the parts of the computation that are affected by the changes
and rebuilding only those parts. More precisely, self-adjusting computation com-
bines the following three techniques to incrementally update the output: dynamic
dependence graph, change propagation, and memoization.

The dynamic dependence graph or DDG can be viewed as a representation of the
data and control dependences in a computation. The DDG of a program is built
as the program is executed by tracking the control and data flow operations, and

using it to update the computation and the output when the inputs are modified.

Memoization caches the output of the sub-computations to avoid re-execution. Fi-
nally, the change propagation mimics a complete re-execution of the program with
the modified data, but only re-executes parts of the computation that depend on
the modification. Conceptually similar to cell updates in spreadsheets, the change
propagation algorithm takes full advantage of previously computed results rather
than re-executing everything from scratch on each input change.

Although the work on self-adjusting computation offers a general-purpose
framework for developing computations that can perform incremental updates
efficiently, it has not been applied to parallel and distributed systems. In this the-
sis, we extend the work on self-adjusting computation to support parallel and dis-

tributed computing.

1.5 Thesis Contributions

In this thesis, we present the design and implementation of the following incremen-
tal systems to enable practical, transparent, and efficient incremental computation

for real-world parallel and distributed computing.

Incoop is a system for incremental MapReduce computation [51, 53, 52]. Incoop
transparently detects changes between two files that are used as inputs to con-
secutive MapReduce jobs, and efficiently propagates those changes until the new
output is produced. The design of Incoop is based on memoizing the results of
previously run tasks, and reusing these results whenever possible. Doing this
efficiently introduces several technical challenges that are overcome with novel
techniques, such as a large-scale storage system called Inc-HDFS that efficiently
computes deltas between two inputs, a contraction phase for fine-grained updates,

and a memorization-aware scheduling algorithm.

Shredder is a GPU-accelerated system for incremental storage [50]. Shredder was
initially designed to improve Inc-HDFS, which has high computational require-
ments for detecting duplicate content using content-based chunking [114]. To ad-
dress the computational bottleneck, we designed Shredder, a high performance
content-based chunking framework for identifying deltas between two inputs in
Inc-HDFS. Shredder exploits the massively parallel processing power of GPUs to
overcome the CPU bottlenecks of content-based chunking in a cost-effective man-
ner. Shredder provides several novel optimizations aimed at reducing the cost
of transferring data between host (CPU) and GPU, fully utilizing the multicore
architecture at the host, and reducing GPU memory access latencies. We used
shredder to implement a GPU-accelerated Inc-HDFS for incremental MapReduce
computation. In addition, we show that Shredder is a generic system to accelerate

incremental storage based on data deduplication

Slider is a batched stream processing platform for incremental sliding window
computation [47, 48]. Slider does not require programmers to explicitly manage
the intermediate state for overlapping windows, allowing the existing single-pass
applications to incrementally update the output every time the computation win-
dow slides. The design of Slider incorporates self-adjusting contraction trees, a set
of data structures and algorithms for transparently updating the output of data-
parallel sliding window computations as the window moves, while reusing, to the
extent possible, results from prior computations. Self-adjusting contraction trees
organize sub-computations into self balancing trees, with a structure that is better
suited to each type of sliding window computation (append-only, fixed-width, or
variable-width slides). Furthermore, they enable a split processing mode, where
a background processing leverages the predictability of input changes to pave

the way for a more efficient foreground processing when the window slides. We

also provide an extension of self-adjusting contraction trees to handle multiple-job

workflows such as query processing.

iThreads is a threading library to support parallel incremental computation tar-
geting unmodified C/C++ pthread-based multithreaded programs [49]. iThreads
supports shared-memory multithreaded programs: it can be used as a replace-
ment for pthreads by a simple exchange of dynamically linked libraries, with-
out even recompiling the application code. To enable such an interface, we de-
signed algorithms and an implementation to operate at the compiled binary code
level by leveraging operating system mechanisms encapsulated in a dynamically
linkable shared library. iThreads makes use of parallel algorithms for incremental
multithreading. The parallel algorithms record the intra- and inter-thread control
and data dependencies using a concurrent dynamic data dependency graph, and
use the graph to incrementally update the output as well as the graph on input
changes.

The newly proposed systems for incremental computation are limiting be-
cause they not only require substantial programming effort, but also lose backwards-
compatibility with widely deployed systems. Thus, there is still room for an im-
provement that can ignite the widespread adoption of these newly proposed sys-
tems. Our incremental systems push the limits of the state-of-the-art by applying
the principles and lessons learned in prior algorithms- and programming-language-
centric work to parallel and distributed systems, with the goal of building practical
incremental frameworks that enable existing real-world applications to automati-
cally benefit from efficient incremental updates. Our approach neither requires de-
parture from current models of programming, nor the invention and implementa-
tion of application-specific dynamic algorithms for incremental computation. Our

experience with these systems shows that our techniques can yield very good per-

formance, both in theory and practice, without requiring programmers to write

any special-purpose algorithms for incremental computation.

1.6 Organization

The remainder of the thesis is organized as follows.
In Chapter 2, we present the design and implementation of Incoop.
In Chapter 3, we present the design and implementation of Shredder.
In Chapter 4, we present the design and implementation of Slider.
In Chapter 5, we present the design and implementation of iThreads.

Finally, in Chapter 6, we conclude.

CHAPTER 2

Incoop: Incremental Batch Processing

In this chapter, we describe the design, implementation, and evaluation of
Incoop, a MapReduce framework for incremental computation. Incoop detects
changes to the input and automatically updates the output by employing an effi-
cient, fine-grained result reuse mechanism.

This chapter is organized as follows. We first motivate the design of Incoop
in Section 2.1. We next briefly highlight the contributions of Incoop in Section 2.2.
Thereafter, we present a brief background MapReduce in Section 2.3. We next
present an overview of Incoop in Section 2.4. The system design is detailed in
Sections 2.5, 2.6, and 2.7. We present an experimental evaluation of Incoop in
Section 2.9, and case-studies in Section 2.10. We present the related work in Sec-
tion 2.11. Limitations and conclusion are discussed in Section 2.12 and Section 2.13,

respectively.

2.1 Motivation

Distributed processing of large data sets has become an important task in the life
of various companies and organizations, for whom data analysis is an important
vehicle to improve the way they operate. This area has attracted a lot of attention

from both researchers and practitioners over the last few years, particularly after

the introduction of the MapReduce paradigm for large-scale parallel data process-
ing [67].

A usual characteristic of the data sets that are provided as inputs to large-scale
data processing jobs is that they do not vary dramatically over time. Instead, the
same job is often invoked consecutively with small changes in this input from one
run to the next. For instance, researchers have reported that the ratio between
old and new data when processing consecutive web crawls may range from 10 to
1000X [110].

Motivated by this observation, there have been several proposals for large-
scale incremental data processing systems, such as Percolator [121] or CBP [110],
to name a few early and prominent examples. In these systems, the programmer
is able to devise an incremental update handler (or a dynamic algorithm), which
can store state across successive runs, and contains the logic to update the output
as the program is notified about input changes. While this approach allows for
significant improvements when compared to the “single shot” approach, i.e., re-
processing all the data each time that part of the input changes or that inputs are
added and deleted, it also has the downside of requiring programmers to adopt a
new programming model and API. This has two negative implications. First, there
is the programming effort to port a large set of existing applications to the new
programming model. Second, it is often difficult to devise a dynamic algorithm

for incrementally updating the output as the input changes.

2.2 Contributions

In this chapter, we present the design and implementation of Incoop, a system for

large-scale incremental MapReduce computation [53]. Incoop extends the Hadoop

10

open source implementation of the MapReduce paradigm to run unmodified MapRe-
duce programs in an incremental way.

The idea behind Incoop is to enable the programmer to automatically incre-
mentalize existing MapReduce programs without the need to make any modifica-
tions to the code. To this end, Incoop records information about executed MapRe-
duce tasks so that they can be reused in future MapReduce computations when
possible.

The basic approach taken by Incoop consists of (1) splitting the computation
into sub-computations, where the natural candidate for a sub-computation is a
MapReduce task; (2) memoizing the inputs and outputs of each sub-computation;
(3) in an incremental run, checking the inputs to a sub-computation and using the
memoized output without rerunning the task when the input remains unchanged.
Despite being a good starting point, this basic approach has several shortcomings

that motivated us to introduce several technical innovations in Incoop, namely:

* Incremental HDFS. We introduce a file system called Inc-HDFS that pro-
vides a scalable way of identifying the deltas in the inputs of two consecutive
job runs. This reuses an idea from the LBFS local file system [114], which is
to avoid splitting the input into fixed-size chunks, and instead split it based
on the contents such that small changes to the input keep most chunk bound-
aries. The new file system is able to achieve a large reuse of input chunks
while maintaining compatibility with HDFS, which is the most common in-

terface to provide the input to a job in Hadoop.

¢ Contraction phase. To avoid rerunning a large Reduce task when only a
small subset of its input changes, we introduce a new phase in the MapRe-
duce framework called the Contraction phase. This consists of breaking up

the Reduce task into smaller sub-computations that form an inverted tree,

11

such that, when a small portion of the input changes, only the path from the

corresponding leaf to the root needs to be recomputed.

* Memoization-aware scheduler. We modified the scheduler of Hadoop to
take advantage of the locality of memoized results. The new scheduler uses
a work stealing strategy to decrease the amount of data movement across ma-
chines when reusing memoized outputs, while still allowing tasks to execute

on machines that are available.

We implemented Incoop by extending Hadoop and evaluated it using five
MapReduce applications. We also employed Incoop to demonstrate two important
use cases of incremental processing: incremental log processing, where we use Incoop
to build a framework to incrementally process logs as more entries are added to
them; and incremental query processing, where we layer the Pig framework on top

of Incoop to enable relational query processing on continuously arriving data.

2.3 Background

We first present a brief background on MapReduce programming model and the

associated run-time system.

2.3.1 MapReduce Programming Model

The MapReduce programming model, and a framework that implements it, was
tirst presented by Google [67] to simplify the development and deployment of
large-scale data-parallel applications. The framework provides two basic program-
ming constructs: Map and Reduce. The Map function takes a set of input values and
maps each value to a set of key-value tuples. The Reduce function takes a key and

a list of values as input and reduces the list to a final output value. Next, we de-

12

scribe Hadoop!, an open-source implementation of the MapReduce programming

framework, that forms the basis of our system.

2.3.2 Hadoop Architecture

Hadoop provides a programming and runtime environment for developing and
deploying MapReduce programs on large clusters. The framework consists of two
main components: the Hadoop distributed file system (HDFS) and the Hadoop MapRe-

duce engine, which we describe next.

2.3.2.1 Hadoop Distributed File System

Large-scale data-parallel applications often process and generate tremendous amounts
of data, and managing data storage at that scale raises its own challenges. To ad-
dress these, the Hadoop storage component provides the Hadoop Distributed File
System (HDFS) that is specifically engineered to handle huge amounts of data, such

as the data that is used as input, or produced as the output of MapReduce jobs.

In HDEFS, the data is distributed across multiple Data-nodes, which are typ-
ically the same nodes that also execute the MapReduce jobs. To cope with the
tailure of an individual Data-node, data is replicated among a configurable number
of different nodes. Files in HDFS are split into smaller chunks of fixed size (e.g.,
64MB). To locate data blocks in HDFS, a centralized directory service running on
the Name-node enables clients to look up and access data. To cut the overhead for
maintaining data consistency, HDFS does not allow for modifying data once writ-
ten and provides only append-only interface. This design decision is driven by the
fact that MapReduce jobs only write data once and do not modify it afterwards,

since intermediate and final results of the jobs are written into new files.

'Hadoop: http:/ /hadoop.apache.org/

13

2.3.2.2 Hadoop MapReduce Engine

The Hadoop MapReduce engine implements the logic to coordinate the execution of
a MapReduce job on a cluster and distributes tasks to nodes. Users submit jobs to
the Job Tracker that splits the job into multiple Tasks, which can either consist of ap-
plying the Map function to a specific partition of the input, or applying the Reduce
function to a key and the associated values generated by the all Map functions. The
job execution is divided into the Map phase where all the Map tasks are executed,
and the Reduce phase, which starts upon completion of the Map phase, and where
the output of all the Map tasks is processed by the Reduce tasks.

The Job Tracker is responsible for keeping track of cluster utilization and progress
of the job, and performs all the scheduling decisions that determine where each
task is run. The granularity of Map tasks is determined by the fact that each Task
processes a file split (one or more chunk of the input file). On the other hand, the
granularity of Reduce tasks depends only on the input to the computation, given
that each Reduce task processes a single key and all corresponding values that were

emitted by the union of all Map tasks.

2.4 Overview

We present first a basic design that we use as a starting point, highlight the limita-
tions of this basic design, the challenges in overcoming them, and briefly overview
the main ideas behind Incoop, which addresses the limitations of the basic design.
Our basic strategy is to adapt the principles of self-adjusting computation to the

MapReduce paradigm, and in particular to Hadoop.

14

2.4.1 Basic design

Our goal is to design a system for large-scale incremental data processing that is
able to leverage the performance benefits of incremental computation, while also
being transparent, meaning that it does not require changes to existing programs.

To achieve this goal, we apply the principles of self-adjusting computation to
the MapReduce paradigm. To remind the reader, self-adjusting computation [24,
26, 25,87, 59] offers a solution to the incremental computation problem by enabling
any computation to respond to changes in its data by efficiently recomputing only
the subcomputations that are affected by the changes. To this end, a self-adjusting
computation tracks dependencies between the inputs and outputs of subcompu-
tations, and, in incremental runs, only rebuilds subcomputations affected (transi-
tively) by modified inputs. To identify the affected subcomputations, the approach
represents a computation as a dependency graph of subcomputations, where two
sub-computations are data-dependent if one of them uses the output of the other
as input and control-dependent if one takes place within the dynamic scope of
another. Subcomputations are also memoized based on their inputs to enable
reuse even if they are control-dependent on some affected subcomputation. Given
the “delta”, the modifications to the input, a change-propagation algorithm pushes
the modifications through the dependency graph, rebuilding affected subcompu-
tations, which it identifies based on both data and control dependencies. Before
rebuilding a subcomputation, change propagation recovers subcomputations that
can be re-used, even partially, by using a computation memoization technique that
remembers (and re-uses) not just input-output relationships but also the depen-
dency graphs of memoized subcomputations [25].

In order to apply self-adjusting computation techniques to the Map-Reduce

paradigm, we first need to decide what forms a sub-computation. The natural

15

INCREMENTAL HDFS

{Chunk—l H Chunk-2 U Chunk-3j

MEMOIZATION
SERVER

_—>

Query location
of sub-computation:
-

Figure 2.1: Basic design of Incoop.

candidate is to use Map and Reduce tasks as sub-computations; this makes it pos-
sible to view the data-flow graph of the MapReduce job as the dependency graph.
Since the MapReduce framework implicitly keep track of this graph when imple-
menting the data movement and synchronization between the various tasks, the
dependency graph also captures the control dependencies.

This decision leads to our basic design, which is shown in Figure 2.1. In this
design, the MapReduce scheduler orchestrates the execution of every MapReduce
job normally, by spawning and synchronizing tasks and performing data move-
ment as in a normal MapReduce execution. To record and update the dependency
graph implicitly, our design includes a memoization server that stores a mapping
from the input of a previously run task to the location of the corresponding mem-
oized output. When a task completes, its output is memoized persistently, and a
mapping from the input to the location of the output is stored in the memoization
server. Then, during an incremental run, when a task is instantiated, the memoiza-
tion server is queried to check if the inputs to the task match those of a previous

run. If so, the system reuses the outputs from the previous run. Otherwise, the

16

task runs normally and the mapping from its input to the location of the newly
produced output is stored in the memoization server.

This basic design raises a series of challenges, which we describe next. In
subsequent sections, we describe our key technical contributions that we propose

to address these challenges.

2.4.2 Challenge: Transparency

Self-adjusting computation requires knowing the modifications to the input in or-
der to update the output. To this end, it requires a new interface for making
changes to the input, so that the edits, which are clearly identified by the inter-
face, can be used to trigger an incremental update. We wish to achieve the effi-
ciency benefits of self-adjusting computation transparently without requiring the
programmer to change the way they run MapReduce computations. This goal
seems to conflict with the fact that HDFS (the system employed to store inputs to
MapReduce computations in Hadoop) is an append-only file system, making it im-
possible to convey input deltas (other than appends). To overcome this challenge,
we store the inputs and outputs of consecutive runs in separate HDEFS files and
compute a delta between two HDFS files in a way that is scalable and performs

well.

2.4.3 Challenge: Efficiency

To achieve efficient incremental updates, we must ensure that MapReduce compu-
tations remain stable under small changes to their input, meaning that, when exe-
cuted with similar inputs, many tasks are repeated and their results can be reused.
To define stability more precisely, consider performing MapReduce computations
with inputs I and I’ and consider the respective set of tasks that are executed, de-

noted T and T'. We say that a task t € T’ is not matched if t ¢ T, i.e., the task that is

17

performed with input I’ is not performed with the input I. We say that a MapRe-
duce computation is stable if the time required to execute the unmatched tasks is
small, where small can be more precisely defined as sub-linear in the size of the
input.

In the case of MapReduce, stability can be affected by several factors, which we
can group into the following two categories: (a) making a small change to the in-
put can change the input to many tasks, causing these tasks to become unmatched;
(b) even if a small number of tasks is unmatched, these tasks can take a long time
to execute. To address these issues, we introduce techniques for (1) performing a
stable input partitioning; (2) controlling the granularity and stability of both Map
and Reduce tasks; and (3) finding efficient scheduling mechanisms to avoid unnec-

essary movement of memoized data.

Stable input partitioning. To see why using HDFS as an input to MapReduce
jobs leads to unstable computations, consider inserting a single data item in the
middle of an input file. Since HDFS files are partitioned into fixed-sized chunks,
this small change will shift each partition point following the input change by a
fixed amount. If this amount is not a multiple of the chunk size, all subsequent
Map tasks will be unmatched. (On average, a single insert will affect half of all Map
tasks.) The problem gets even more challenging when we consider more complex
changes, like the order of records being permuted; such changes can be common,
for instance, if a crawler uses a depth-first strategy to crawl the web, and a single
link change can move the position of an entire subtree in the input file. In this case,
using standard algorithms to compute the differences between the two input