
Technical Report MPI-SWS-2014-007 November 12, 2014

A Clarification of Link-Based Global Scheduling

Björn B. Brandenburg and James H. Anderson

The analysis of link-based global scheduling presented in [1, 2] rests on the assumptions that (i) schedulability
is established using a global schedulability test assuming fully preemptive, independent tasks,1 and that
(ii) any additional delays incurred due to non-preemptive sections are accounted for by inflating the worst-case
execution parameter of each task prior to applying the test. We clarify these requirements, which were
implicitly assumed (and met) in [1, 2], but not explicitly stated, in the following.

Inflation-based analysis. Suppose we are given a global schedulability test GSTP for a global scheduling
policy P that assumes fully preemptive, independent tasks and an original set of n sporadic tasks τ =
{T1,T2, . . . ,Tn}, where each task Ti has a worst-case execution time of ei, a period pi, and a maximum
non-preemptive section length csi. Deadlines may be arbitrary. For simplicity, we initially assume that tasks
do not self-suspend.

If csi 6= 0 for any Ti, then GSTP obviously cannot be directly applied to τ . To indirectly determine the
schedulability of τ using GST , a per-task inflation term bi is determined to construct an inflated task set
τ ′ = {T ′1,T ′2, . . . ,T ′n}, where e′i = ei + bi for each T ′i and all tasks are fully preemptive. The periods of the
inflated tasks remain unchanged (p′i = pi).

The inflation term bi is usually called a “blocking term” or said to bound “pi-blocking” [1, 2]. We
choose a different term in this document to stress that—even though bi serves to account for “delays due
to non-preemptive sections”—the inflation term is not identical to (and does not bound) the maximum
cumulative duration of “priority inversion” incurred by any job of Ti, at least not under all definitions of
“priority inversion.” For the purpose of the following argument, a priority inversion exists if a higher-priority
job Jh is pending but not scheduled while a lower-priority job Jl is scheduled, thereby violating the normal
preemption policy. We revisit the question of how to define “priority inversion” on page 3.

We require each per-task inflation term bi to be chosen such that the following property holds:

(I) if there exists a job arrival sequence such that a task in τ misses a deadline under scheduling policy P
in the presence of non-preemptive sections, then there also exists a job arrival sequence such that a
task in τ ′ misses a deadline if scheduled under P even if all tasks are fully preemptive.

If Property (I) holds, and if τ ′ is schedulable according to GSTP when scheduled with policy P (on m
processors), then τ is also schedulable under P (on m processors). This follows from the fact that, if τ is not
schedulable (i.e., if some Ti ∈ τ can miss a deadline in some schedule), then by Property (I) there also exists
a schedule in which some T ′j ∈ τ ′ misses a deadline, which implies that τ ′ must fail GSTP.

The inflation approach thus allows us to reuse existing schedulability tests that assume fully preemptive
tasks to derive a schedulability test that is sufficient in the presence of non-preemptive sections. The key
question, then, is how to find (non-trivial) inflation terms that ensure Property (I)?

Link-based scheduling. Let lpi ⊂ τ denote the set of tasks that may be preempted by Ti under policy P
(i.e., lower-priority tasks under fixed-priority scheduling and tasks with longer relative deadlines under EDF).
Under link-based scheduling, Property (I) holds if bi , max{csl | Tl ∈ lpi } for each task Ti.

To support this claim, we show how to transform a link-based schedule S of τ in which an arbitrary
job Jd misses its deadline at time td into a corresponding schedule S′ of τ ′ so that the response time of the
corresponding inflated job J′d in S′ is no less than that of Jd in S.

1Since at the time no other schedulability tests were available for G-EDF, the global scheduling policy considered in [1, 2].

1



Initially, let S′ be a copy of S. Jobs released after td obviously have no impact on J′d; they can thus be
safely removed from S′. Next, we remove all priority inversions involving any of the remaining jobs in S′.

Under link-based scheduling, at any point in time, the m highest-priority jobs are linked (if that many
exist). From this invariant we immediately obtain that, if a job Ji incurs a priority inversion at time t, then
either (a) Ji is linked (but not scheduled) or (b) there exist m higher-priority jobs.

We remove case-(a) priority inversions from S′ by repeatedly applying the following transformation.

Case-(a) priority inversions. Consider the latest point in time t (if any) at which any job J′i is subject
to a case-(a) priority inversion in S′: at time t, J′i is linked but not scheduled because a lower-priority job
J′l is executing non-preemptively on the processor to which J′i is linked. There are two cases to consider,
depending on whether J′l happens to be J′d .

If J′l 6= J′d , then we transform the schedule by

1. shortening J′l ’s non-preemptive section by one time unit (i.e., allowing J′l to be preempted by J′i one
time unit earlier),

2. subtracting one time unit from J′l ’s execution requirement, and

3. adding one time unit to J′i ’s execution requirement, thereby “filling up” the allocation freed by reducing
the demand of J′l .

This has the effect of shifting the preemption of J′l to an earlier instant by one time unit, and as a result
the priority inversion between J′i and J′l at time t is removed. The transformation does not reduce the response
time of J′i , and hence also not the response time of any job other than J′l . (As a corner case, after the
transformation, J′l ’s response time in S′ may be less than J′l s response time in S if Jl completes immediately at
the end of its non-preemptive section. Since J′d 6= J′l , this corner case is irrelevant.)

If J′l = J′d , then we simply skip step (2), that is, we leave J′d’s execution requirement unchanged, which
ensures that J′d’s response time is not lessened. (Any possible perturbation of the schedule past td is irrelevant
to the proof.)

We repeat this transformation until no instance of case-(a) priority inversion is left in S′. Next, consider
case-(b) priority inversions in S.

Case-(b) priority inversions. In fact, the removal of case-(a) priority inversions from S′ has implicitly also
removed all instances of case-(b) priority inversion, which can be observed from the following argument.

Suppose there still exists a case-(b) priority inversion in S′ even after the removal of all case-(a) priority
inversions. We show that this implies the existence of a case-(a) priority inversion, thereby contradicting the
initial assumption that all case-(a) priority inversions have already been removed.

If there exists a case-(b) priority inversion at a time t in S′ with respect to a pending (but not scheduled)
job Ji, then by the definition of case (b) there also exist m higher-priority, linked jobs at time t. That is, all
processors are linked to higher-priority tasks.

At the same time, for Ji to incur a priority inversion at time t, on at least one processor Πk a lower-priority
job must be executing at time t. (Otherwise m higher-priority jobs are scheduled and Ji does not incur a
priority inversion at time t.)

Let Jh denote the higher-priority job linked to Πk at time t. Since Jh has an even higher priority than Ji, Jh
necessarily also incurs a priority inversion at time t.

We observe that Jh is linked but not scheduled at time t, and that Jh incurs a priority inversion at
time t—this, however, constitutes a case-(a) priority inversion.

Therefore, after case-(a) priority inversion elimination, S′ is priority-inversion-free, which is equivalent to
assuming fully preemptive jobs.

2



Ti ei csi bi

T1 3 0 10
T2 7 0 10
T3 3 0 10
T4 7 0 10

Ti ei csi bi

T5 3 0 10
T6 7 0 10
T7 20 0 10
T8 30 10 0

Table 1: Parameters of the example task set depicted in Fig. 1. Periods are irrelevant and have been omitted.

Example. A complete example of the transformation is given in Fig. 1, which shows two example schedules
S and S′ of a task set τ = {T1, . . . ,T8} due to Davis et al. with parameters as given in Table 1.

Fig. 1(a) depicts a possible schedule of τ (assuming link-based fixed-priority scheduling on m = 2
processors, where T1 has the highest priority) in which T7 incurs repeated case-(b) priority inversions.

Fig. 1(b) shows the transformed schedule S′ of the inflated task set τ ′ after all case-(a) priority inversions
have been removed as described above. In particular, in inset (b), the execution costs of T ′1 , T ′3 , and T ′5
have been inflated to account for T8’s non-preemptive sections (which have been removed from T ′8). The
transformation has explicitly removed case-(a) priority inversions (incurred by T1, T3, and T5 in S), and
thereby implicitly also all case-(b) priority inversions (incurred by T7 in S).

In the resulting schedule S′, all tasks are fully preemptive and there exist no more priority inversions.
Furthermore, the response time of each task in Fig. 1(b)—with the exception of T ′8—is no less than the
response time of the corresponding task in Fig. 1(a). If the response time of T ′8 is relevant, that is, if it must
not be shortened for the sake of establishing Property (I) for T8, then the schedule shown in Fig. 1(c) results
(which is truncated at time 50).

The example in Fig. 1 demonstrates that a sound schedulability test cannot claim τ ′ to be schedulable if
the scenario depicted in Fig. 1(a) causes a task in τ to miss a deadline.

Maximum inflation. From the link-based scheduling algorithm [2], we observe that, with respect to each
job (and in the absence of self-suspensions), an interval of case-(a) priority inversion occurs at most once and
only immediately upon release, and its duration is bounded by the length of one lower-priority non-preemptive
critical section. Therefore, case-(a) elimination increases each job J′i ’s execution requirement by at most
bi = max{csl | Tl ∈ lpi } time units.

The resulting schedule S′ is thus a valid, fully preemptive schedule of τ ′ in which J′d’s response time is no
shorter than that of Jd in S. This establishes Property (I).

Self-suspensions. Allowing self-suspensions (due to either I/O or suspension-based locking-protocols)
does not change the structure of the argument. A job that resumes from a self-suspension is vulnerable
to case-(a) priority inversion similar to a newly released job. Thus, if ηi bounds the maximum number of
self-suspensions of Ti, then setting bi , (1+ηi) ·max{csl | Tl ∈ lpi } is sufficient for the argument to hold.2

Relation to suspension-oblivious pi-blocking. The previous descriptions of link-based schedulability
analysis [1, 2] refer to the per-task inflation charge bi as “pi-blocking,” and claim that link-based scheduling
ensures O(1) pi-blocking. In fact, this is accurate under the suspension-oblivious definition of pi-blocking,
but it is not true under the suspension-aware definition of pi-blocking [2–4].

2It is possible to derive more accurate bounds that take the actual frequency of long non-preemptive sections into account.

3



time
5 10 15 20 25 30 35 40 45 500

CPU 1 sched.

CPU 1 linked

CPU 2 sched.

CPU 2 linked

T1 Prio. Inv.

T2 Prio. Inv.

T3 Prio. Inv.

T4 Prio. Inv.

T5 Prio. Inv.

T6 Prio. Inv.

T7 Prio. Inv.

T8 

T7 T2

T1

T7

T8

T4

T3

T7

T8 T5

T6 T7

T1T8 T3T8 T5T8

T7 T2 T7 T4 T7 T6 T7

(a) The original schedule S. Task T8 is assumed to execute non-preemptively during [0,10), [13,23), and [26,36).

time
5 10 15 20 25 30 35 40 45 500

CPU 1 sched.

CPU 1 linked

CPU 2 sched.

CPU 2 linked

T’8 

T’7 T’2

T’1

T’7

T’8

T’4

T’3

T’7

T’8 T’5

T’6 T’7

T’1T’8 T’3T’8 T’5T’8

T’7 T’2 T’7 T’4 T’7 T’6 T’7

(b) The schedule S′ after case-(a) priority inversions have been removed.

time
5 10 15 20 25 30 35 40 45 500

CPU 1 sched.

CPU 1 linked

CPU 2 sched.

CPU 2 linked

T’8 

T’7 T’2

T’1

T’7

T’8

T’4

T’3

T’7

T’8 T’5

T’6 T’7

T’1T’8 T’3T’8 T’5T’8

T’7 T’2 T’7 T’4 T’7 T’6 T’7

T’8

T’8

(c) The schedule S′ after case-(a) priority inversions have been removed if the response time of T ′8 must not be shortened.

Figure 1: An example schedule (due to Davis et al.) before and after case-(a) priority inversion removal.

4



In short, a job Ji incurs suspension-oblivious priority inversion at time t if and only if Ji is pending but
not scheduled and fewer than m higher-priority jobs are pending. That is, to rule out this kind of priority
inversion, m higher-priority jobs merely need to exist, but they do not necessarily need to be scheduled.

In contrast, a job Ji incurs a suspension-aware priority inversion at time t if and only if Ji is pending but
not scheduled and fewer than m higher-priority jobs are scheduled, which matches the definition of priority
inversion adopted on page 1.

It may be surprising to talk about “suspensions” in the context of non-preemptive sections (where tasks
don’t actually suspend). However, suspension-oblivious schedulability analysis relies on the inflation of
execution time parameters exactly as described herein. Therefore, in hindsight, a perhaps more fitting
description of suspension-oblivious schedulability analysis would have been “inflation-based schedulability
analysis.”

This relationship also illustrates why it is useful to distinguish between suspension-oblivious (i.e.,
“inflation-based”) and suspension-aware (i.e., “accurate-processor-demand-based”) schedulability analysis:
the existence of higher-priority delayed jobs is “useful knowledge” under suspension-oblivious analysis
precisely because their inflated counterparts can be arranged to take up a processor. In other words, their
mere existence guarantees that it is possible to establish Property (I) by converting any delays and inversions
into additional execution of fully preemptive higher-priority tasks, which allows us to charge these delays as
regular interference.

Summary. Link-based scheduling is inherently tied to inflation-based schedulability analysis, which
is analogous to suspension-oblivious schedulability analysis [2–4]. The “trick” underlying link-based
scheduling is not to avoid priority inversion altogether (which is impossible in general), but to arrange
untimely preemptions (the root cause of priority inversion) such that most delays arise only when m higher-
priority tasks are present, which allows any such delays to be conveniently attributed to inflated demand. In
short, link-based scheduling ensures analysis conditions that are favorable for inflation-based analysis.

The bound on suspension-oblivious pi-blocking characterizes the magnitude of the inflation term required
in the worst case to construct a schedule that establishes Property (I). As argued in this document, a charge of
bi = O(1) per-task maximum suspension-oblivious pi-blocking is sufficient for Property (I) to hold. With
eager preemptions, that is, without link-based scheduling, much more pessimistic bounds must be assumed,
as described in [2].

References

[1] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible real-time locking protocol for
multiprocessors. In RTCSA’07, 2007.

[2] B. Brandenburg. Scheduling and Locking in Multiprocessor Real-Time Operating Systems. PhD thesis,
UNC Chapel Hill, 2011.

[3] B. Brandenburg and J. Anderson. Optimality results for multiprocessor real-time locking. In RTSS’10,
2010.

[4] B. Brandenburg and J. Anderson. The OMLP family of optimal multiprocessor real-time locking
protocols. Design Automation for Embedded Sys, 17(2), 2013.

5


