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ABSTRACT

There are a number of designs for an online advertising system that allow

for behavioral targeting without revealing user online behavior or user inter-

est profiles to the ad network. Although these designs purport to be practical

solutions, none of them adequately consider the role of ad auctions, which to-

day are central to the operation of online advertising systems. Moreover, none

of the proposed designs have been deployed in real-life settings. In this thesis,

we present an effort to fill this gap. First, we address the challenge of running

ad auctions that leverage user profiles while keeping the profile information pri-

vate. We define the problem, broadly explore the solution space, and discuss the

pros and cons of these solutions. We analyze the performance of our solutions

using data from Microsoft Bing advertising auctions. We conclude that, while

none of our auctions are ideal in all respects, they are adequate and practical

solutions. Second, we build and evaluate a fully functional prototype of a prac-

tical privacy-preserving ad system at a reasonably large scale. With more than

13K opted-in users, our system was in operation for over two months serving

an average of 4800 active users daily. During the last month alone, we registered

790K ad views, 417 clicks, and even a small number of product purchases. Our

system obtained click-through rates comparable with those for Google display

ads. In addition, our prototype is equipped with a differentially private analyt-

ics mechanism, which we used as the primary means for gathering experimental

data. In this thesis, we describe our first-hand experience and lessons learned

in running the world’s first fully operational “private-by-design” behavioral ad-

vertising and analytics system.
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CHAPTER 1

INTRODUCTION

1.1 On the Internet Someone Knows You Are a Dog

Third-party tracking of users is widespread and increasing [43]. One of the

primary purposes of user tracking is behavioral advertising. Although many

companies that participate in tracking and behavioral profiling claim to not

gather Personally Identifying Information (PII), it is often easy to link track-

ing information with PII [42]. While tracking has been going on for a number of

years, the public awareness of this as a privacy problem has recently skyrock-

eted. At the same time, literally dozens of behavioral targeting companies have

emerged, all vying with each other for the number and quality of data sources,

and for their ability to target users based on this data. Public awareness of

online privacy erosion has already had some direct impact on the advertising

ecosystem: recently the start-ups Phorm and NebuAd were heavily criticized

for their targeting practices and sloppy opt-in or opt-out policies [39]. Arguably

most objections were triggered by the threat of “wiretapping” and “deep packet

inspection”, but nevertheless these concerns were enough to cancel or delay pi-

lot deployments and cause serious damage to the reputations of these compa-

nies. Today, we are approaching the same level of concern over online tracking,

leading, for instance, to the Do-Not-Track (DNT) initiative launched by the Fed-

eral Trace Commission (FTC) and to proposals for a Do-Not-Track registry [56].

However, DNT provides only an illusion of privacy while destroying targeting

utility, and as a result has come to stand for “Do-Not-Target”. Not surprisingly,
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DNT has not gained a lot of traction with the public, and ad networks are ac-

tively ignoring it.

1.2 Private-by-Design Advertising

Several research projects have proposed “private-by-design” behavioral adver-

tising systems (Adnostic [58], RePriv [29], Privad [34], MobiAd [36], and Pi-

CoDa [49]). Rather than simply opting out of tracking, or pushing for data-

protection after the fact, they argue that privacy can be embedded from the

start and propose alternative advertising technologies that allow for behavioral

targeting without revealing user online behavior or user interest profiles to the

ad network.

Although the existing private-by-design advertising systems differ in signif-

icant ways, they all share several key design components. All systems propose

a software agent that runs at the client and generates a user profile. All systems

at least share the privacy goal that this profile not be revealed. All these designs

propose that the broker transmit multiple ads to the client, not all of which

match the user profile. For instance, the ads may all be within a given interest

category. From among these ads, the client then locally selects the ads which

best match the user profile, and displays these to the user. The client reports

the result of this selection anonymously, and without letting the broker link to-

gether different components of the user profile. The key privacy mechanisms

are therefore anonymity and unlinkability.

The private-by-design ad systems are meant to be realistic alternatives that

industry finds attractive. None of these systems, however, adequately explore

2



how to operate the auctions that are critical to current advertising systems.

Without this component, these systems leave unanswered what revenue the

broker (i.e. an ad network like Google) can earn, thereby reducing the likelihood

that a private-by-design advertising system will be of commercial interest. In

this thesis, we address the challenge of running auctions that leverage a user

profile for ad ranking while keeping the user profile private.

Each of the systems cited above claims to be practical in that they provide

both good privacy and good utility at reasonable cost. However, none of the

proposed designs have been deployed and evaluated in real-life settings. This

thesis attempts to fill this gap and answer a number of fundamental questions:

“Is private-by-design advertising really practical?”, “Can relevant ads be de-

livered?”, “Is it possible to adequately measure the systems without infring-

ing on user privacy?”, “Will unforeseen devils in the details kill the system?”

To do so, we built, deployed, and evaluated a fully functional prototype of a

private-by-design ad system based on the Privad design [33]. Our deployment

delivered functional ads in the sense that the ads were targeted to user inter-

ests, displayed on publisher webpages, linked to real shopping websites, and

in fact led to actual purchases. Side-by-side with Privad, we also deployed a

distributed differentially-private user analytics system, PDDP [19], that served

as our primary means of gathering experimental data.

1.3 Contributions

Altogether, this thesis makes the following contributions towards transforming

private-by-design advertising from a theoretical abstraction to a practical sys-
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tem that both fits within the current economical model and is a demonstrably

viable alternative to the current non-private designs:

• It proposes two new private-by-design auction mechanisms, and a third

based on the previous work but substantially improved.

• It analyzes the trade-offs between these three designs in terms of privacy

properties, auction properties, and fraud resistance.

• It analyzes the effect of bid churn and auction timing on revenue and ad

ranking using a trace of Bing search advertising auctions, and uses this

analysis to argue for the feasibility of the solutions.

• It presents the design and analysis of the first deployed fully-functional

private-by-design ad system. In so doing it preliminarily shows that

private-by-design behavioral advertising is practical.

• It presents our experience in running a relatively large-scale user-centric

research experiment with differentially private analytics as the primary

means of gathering system and user data. It shows that such an approach

is feasible.

• It analyzes the practical implications of the privacy deficits accumulated

as a result of differentially private data collection. It concludes that dif-

ferential privacy is a poor model for understanding privacy loss in our

deployment (too pessimistic), and that its noise-adding mechanism alone

is too weak to be practical.

Some of the material presented in this thesis was previously published in

a technical report [33], a series of conference papers [34, 54, 19], or is under

submission to a conference at the time of this writing [53].
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1.4 Structure of this Thesis

This thesis has two parts. The first part addresses the challenges of running

private-by-design auctions that leverage user profiles for ad ranking while

keeping the user profile private. It defines the problem, broadly explores the

solution space, and discusses the pros and cons of the proposed solutions. The

second part presents an effort to build and evaluate a fully functional prototype

of a practical private-by-design ad system at a reasonably large scale.

Part I contains Chapters 2 through 5. Chapter 2 provides background on on-

line ad auctions in the current advertising systems. It also outlines an abstract

alternative advertising model that captures key aspects of the existing proposals

for private-by-design advertising. Chapter 3 describes the design goals of the

auction component in the private-by-design advertising system. It then pro-

poses there solutions and discusses each in detail. Chapter 4 analyzes the three

auction designs in terms of privacy, auction quality, and attacks on the auction

component. Chapter 5 analyzes the performance of the proposed solutions us-

ing data from Microsoft Bing advertising auctions.

Part II contains Chapters 6 through 9. Chapter 6 gives a broad overview

of the Privad architecture and discusses the privacy guarantees provided by

the system. It also outlines the design of the PDDP system, which enables dif-

ferentially private data collection in distributed settings. Finally, it describes

previous attempts at building and deploying a private-by-design advertising

system. The experimental Privad prototype we have built is described in detail

in Chapter 7. Chapter 8 describes our experience in deploying the Privad proto-

type and presents results obtained during the deployment. Chapter 9 explores
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the extent to which a differentially private data collection system can be used

to understand what is going on behind the scenes in the private-by-design ad

deployment. It also looks at the privacy deficits accumulated as a result of our

analysis and studies the privacy implications for the end users.

Chapters 1 and 10 fall outside of the two Parts. Chapter 1 is the introduction.

Chapter 10 concludes the thesis and outlines directions for future work.
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Part I

Auctions in Private-by-Design

Internet Advertising
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CHAPTER 2

BACKGROUND AND RELATED WORK

In order for the private-by-design advertising to become a viable alternative

to the current tracking systems, it has to operate within the existing business

model. In particular, it must preserve the auction mechanism that allows adver-

tisers to compete for ad slots and also determines revenues generated by the ad

networks.

The most common pricing model for online advertising systems today is Pay

Per Click1 (PPC): the advertiser does not pay the broker for showing an ad to

a user, rather it pays only if the user clicks on an ad. The broker selects which

ads to show through an auction whereby advertisers bid against each other. In

a PPC system, the broker maximizes revenue by ranking the competing ads ac-

cording to the Bid ×ClickProbability product, and transmitting the highest rank-

ing ads to the client where they are displayed in rank order. Of course, the bro-

ker does not know the precise click probability for every ad. Rather, the broker

tries to predict the click probability as best it can. This prediction is based on a

number of inter-related factors such as the ad keywords, the landing page key-

words, the user search terms or keywords associated with the web-page being

browsed, stored user characteristics, and so on. For example, Microsoft incor-

porates at least seven and perhaps many more such factors in its Bing search

advertising auctions.

The user profile has a strong effect on click probability. To give a simple

example, say a user searches for “running shoes”. Whether the user is a man

or a woman, or prefers brand-name products or discount products, plays an
1Also called Cost per Click (CPC).
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important role in which running shoes ad he or she is more likely to click on.

In a private-by-design advertising system, the broker has no access to the user

profile: if the auction takes place at the broker in the same way that it does

today, then the user profile will not be factored into the result. Therefore the

highest Bid × ClickProbability ads will not be selected, leading to less revenue

than should otherwise be possible.

In this part of the thesis, we characterize the problem of running an auction

that leverages the user profile while preventing the broker from reconstructing

it, and propose three basic solutions. Taking a pragmatic approach to the prob-

lem, we look for a good trade-off between strict privacy guarantees and practi-

cal business and deployment concerns. As such, we explore the pros and cons

of the three approaches in terms of not just privacy (both user and advertiser),

but also revenue, overhead, and vulnerability to attack. We use around 2TB of

auction traces from Microsoft Bing to guide and validate the design choices.

The remainder of this chapter describes how current online advertising sys-

tems such as Google and Microsoft work. It then outlines an abstract alternative

advertising model that captures key aspects of the existing proposals for private-

by-design advertising. Finally, it provides an overview of the related work. In the

process, we establish terminology and define the basic components.

2.1 Current Second Price Ad Systems

In current ad systems [31, 46, 22], advertisers submit ads to a broker. Associated

with each ad is a bid, one or more keywords, and optionally some targeting in-

formation like demographics (location, age, gender) or interests. When a client
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computer does a search or receives a web page with adboxes (space to place an

ad), the broker identifies the ads that match the search terms or keywords asso-

ciated with the web page, and runs an auction. The auction ranks the selected

ads in order of highest expected revenue (Bid × ClickProbability), and transmits

some number of ads to the client. As already discussed, many factors are con-

sidered in estimating click probability. We refer to all of these factors taken

together as a quality score Q, where a higher value means higher expected click

probability. Denoting bid as B, the ranking then is in order of the product (B×Q).

When a user clicks on an ad, the ad ID is transmitted to the broker. The

broker computes Cost per Click (CPC), that is, the price that the advertiser must

pay, using a generalised second-price auction [25]. In this approach, the price paid

is pegged to the bid of the ad that is ranked immediately below the clicked ad.

To give a simple example, suppose that advertiser A is willing to pay as much

as $5 for a click, and advertiser B is willing to pay $10. In a second-price auction,

A could go ahead and bid $5 and B could bid $10. B would win, but would only

pay the so-called second price, which is only incrementally more than A’s bid,

say $5.01.

Second-price auctions allow bidders to bid the maximum that they are will-

ing to pay, rather than frequently modify their bid in search of the value incre-

mentally higher than the next lower bidder. Specifically, the CPC is computed

as:

CPC = Bn

�
Qn

Qc

�

where Bn and Qn are the bid and quality score of the next lower ranked ad, and

Qc is the quality score of clicked ad. This CPC formula captures the minimum

amount the advertiser would have had to bid to beat the next-ranked ad in a
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first-price auction. Note that it prevents the advertiser from paying more than

it bid, even when the next-ranked in fact bid more.

2.2 Abstract Private-by-Design Advertising

Although the private-by-design advertising systems cited in Section 1.2 differ

in significant ways, they all share several key design components. All systems

propose a software agent that runs at the client and generates a user profile. All

systems at least share the privacy goal that this profile not be revealed. All these

designs propose that the broker transmit multiple ads to the client, not all of

which match the user profile. In this section, we describe an abstract private-by-

design advertising system that captures key aspects of the existing proposals.

The principle components of the abstract private-by-design advertising sys-

tem include those of today’s tracking systems, the broker, the client, and the ad-

vertiser. A user profile is stored at the client (i.e., the user’s computer, or a device

trusted by the user: the distinction is not important for our purposes). Each

ad is associated with targeting information. The user profile is defined as that

information needed to determine how well an ad’s targeting matches the user.

To produce the user profile, the client monitors user behavior (i.e., the user’s

searching, browsing, purchases, and so on).

The privacy goals of the abstract private-by-design system are:

• Anonymity: the broker cannot associate any unit of learned informa-

tion with any user personally identifiable information (including network

address), and

11



Figure 2.1: Abstract private-by-design advertising system. All communi-
cations between the client and the broker are relayed by an
anonymizing proxy. [x] denotes encryption of x.

• Unlinkability: the broker cannot associate separate units of learned

information with a single (anonymous) client. This prevents a broker from

building up a user profile, and then associating it with a known user using

externally gathered knowledge.

The broker is assumed to be honest-but-curious. We believe that this is close

to reality (brokers like Google can generally be trusted to do what they claim

they are doing). Nevertheless, we believe it is wise to avoid making it possible

for brokers to obtain high-value information through hard-to-detect cheating,

and our designs reflect this belief.

Figure 2.1 illustrates the basic architecture and message exchange of an ab-

stract private-by-design advertising system. The network layer address of all

messages is anonymized, which we represent as an anonymizing proxy. Mes-

sages are encrypted to prevent viewing by the anonymizing proxy. The client

requests a set of ads of a given type (i.e. for a given product or service). The

request must be generic enough that a substantial set of clients can have le-

gitimately made the request (i.e. K-anonymity and L-diversity). A set of ads

matching the type, each with identifier A and associated targeting information,

are transmitted to the client and stored. When an adbox is presented to the

client, for instance on a web page, the client selects among the stored ads those
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that best match the user profile, and puts them in the ad box for viewing by

the user. The client reports the view and click of the ad A on a webpage with

the given URL. There is nothing in the messages that allows the broker to link

different messages as coming from the same user.

This private-by-design model has two necessary channels of communica-

tions between the client and the broker, ad delivery, and view and click report-

ing. Both channels present opportunities for the broker to learn information

contained in user profiles, and current private-by-design advertising systems

protect these channels. Any new information that must be conveyed for the

purpose of the auction must also be protected.

2.3 Related Work

Most of the work related to privacy preserving auctions revolves around cryp-

tographic protocols designed to protect privacy of the submitted bids. De-

pending on the underlying security model these proposals can be classified

into the following three categories. In the first category, there are protocols

that rely on computation that is distributed among auctioneers who jointly de-

termine the outcome of an auction using threshold multi-party computation

(e.g., [37, 41, 55, 40]). The second category of protocols introduces a semi-trusted

third party, aka an “auction issuer” or “auction authority”, in addition to the

auctioneer, and uses asymmetric multi-party computation technique, such as

Yao’s garbled circuit (e.g., [9, 12, 18, 44, 47]). Finally, protocols in the third cat-

egory allow bidders to cooperatively compute the auction outcome without re-

quiring on any trusted third party, instead they rely on the intractability of the
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decisional Diffie-Hellman problem (e.g., [14, 15, 16]). The primary goal of all

these proposals, and many others not cited, is to keep bids and selling price se-

cret from the auctioneer and other auction participants. The problem that we

address is different. We are primarily concerned with protecting the user, not

the bidder (i.e., advertiser). Indeed the user does not exist in the prior work. In

any event, the high computational and communication complexity imposed by

aforementioned secure auction protocols make them impractical for our prob-

lem.

A large body of work in secure auctions [28, 45, 52, 48, 13, 51, 11] focuses on

verifiable auction integrity developing a number of novel cryptographic tech-

niques and distributed protocols. For example, VEX [11] proposes using hash-

chains to improve integrity in the context of online ad exchange. Unlike the

aforementioned work, our main target is ad networks, and our primary goal is

to preserve user privacy.

An alternative approach to embedding privacy in online auctions relies on

shifting the trust from an auctioneer to hardware, for example, to a hardware

implemented secure co-processor [50]. In other words, the auctioneer is re-

placed by a combination of hardware and software that can be trusted by all

the parties involved in the auction. The auction software (source and signed

executable) is published and can be verified by the participants. Remote au-

thentication is then used to ensure that the running software is not tampered

with. We believe that such hardware-oriented approach is complementary to

private auctions designs, and can be applied most effectively to implement a

variant of Rank-at-Third-Party (Section 3.2.3).
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CHAPTER 3

DESIGNING ONLINE AD AUCTIONS

In this chapter, we broadly explore the design space proposing three solu-

tions for online ad auctions in private-by-design advertising, and then discuss

the pros and cons of these solutions.

3.1 Auction Goals

The privacy goals for the auction component of a private-by-design advertising

system are the same as described in Section 2.2: anonymity and unlinkability.

This section describes the goals of the auction itself.

The primary goal of the auction in a private-by-design advertising system is

to provide a second-price auction mechanism that achieves close-to-ideal rank-

ing of ads (i.e., in order of Bid×ClickProbability). For today’s tracking advertising

systems, leveraging the user profile is straightforward, since the broker itself ac-

cumulates and maintains this information. In a private-by-design system, the

broker does not have user profile information, but does have other information

that goes into the quality score Q. In other words, part of the information used

to produce Q is in the broker, and part is in the client. Therefore, we define a

user score U which directly reflects the effect of the user profile, when matched

against an ad’s targeting information, on click probability. We define a second

quality score G, that reflects the remaining “global” information known to the

broker.

Specifically, this results in an ideal ranking and CPC of:

15



Rank ⇒ B ×G × U (3.1)

CPC = Bn

�
Gn × Un

Gc × Uc

�
(3.2)

For example, U could be a positive real value greater or less than 1 that raises

or lowers the click probability proportionally to its effect on the click probability

defined by G. Section 3.3 briefly discusses how U may be computed. In particu-

lar, the bid B, quality score G, and user score U of an ad may change at any time.

Ideally, the ranking used when displaying ads to users is based on current val-

ues of B, G, and U. To keep auction overhead low, however, it may be necessary

to work with slightly out-of-date values for B, G, and U.

In current tracking advertising systems, the click normally takes place al-

most immediately after the view, and so CPC is normally computed shortly af-

ter the ranking. As a result, the parameters that go into determining the ranking

(B and Q) do not change much between ranking and CPC. In private-by-design

advertising systems, as explained later, some time may pass between when B

is set by the advertiser and when the ad is ranked, or between when an ad is

ranked and when CPC is calculated. Therefore, we set the following goals with

respect to ranking and CPC calculation:

• The B, G, and U used for CPC calculation are the same as the B, G, and U

used for ranking. Note in particular that if they are not the same, then it

is possible for instance for the CPC to be higher than the submitted bid of

the clicked ad.
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• The delay between ranking and CPC calculation is small enough that the

churn in B, G, or U does not have a significant impact on rankings, CPC

values, and broker revenue.

What exactly comprises user score U depends on the client profiler and can

vary from system to system. We can, however, classify user information into

three time frames. At the time frame of months or even years are user demo-

graphics like gender, location, language, age, salary, and so on. User interests

can also last years (e.g. coin collecting), but more typically last weeks (a new

car), days (a new pair of shoes), or minutes (a pizza). If we assume that match-

ing ads to the content of a web page or search page increases click probability,

then user score can change in seconds or less. For instance, a user might be

interested in tennis and music, but the user score for tennis ads may increase

while the user is looking at a tennis website, and vice versa for music ads.

We do not make any assumptions about the relative importance of B, G, or

U. An ideal auction design however must allow for this flexibility.

Besides the basic goal of running an auction that leverages the user profile

while prohibiting the broker from reconstructing it, there are a few additional

related goals that are important:

• to maintain the privacy offered to the advertisers themselves. In particular,

to prevent advertisers from learning each others bids and budgets.

• to maintain the level of click-fraud defense in current tracking systems.

• to minimize the overhead of the auction.
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As will become apparent in subsequent sections, our designs do not perfectly

achieve all of these goals. Rather, our designs offer trade-offs between these

goals.

Note finally that it is possible that the value of U may correlate with the

probability that the user will buy the product or service being advertised as-

suming that the user has clicked. If this is the case, then the advertiser would

want to express multiple bids as a function of U, since different U’s would pro-

duce different revenues for the advertiser. We do not address this capability in

this thesis, but rather leave it for future work should it turn out to be important.

3.2 Detailed Designs

To run the auction specified in the previous section, the system computing the

ranking must have access to the bid B, the broker quality score G, and the user

score U. This means that either 1) B and G are sent to the client, 2) U is sent to

the broker, or 3) B, G, and U are all sent to a third party. These basic approaches

are explored in the following sections.

3.2.1 Rank-at-Client (RaC)

In this approach (see Figure 3.1), the following information is transmitted with

the ad to the client along with everything else required by the advertising sys-

tem (e.g. targeting information, not shown):

A: The ad ID.
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Figure 3.1: Rank-at-Client. A is an ad ID unique to the ad. The subscripts
‘c’ and ‘n’ refer to the clicked ad and the next ranked ad respec-
tively. [x] denotes encryption of x. Messages between the client
and the broker pass through an anonymizing proxy (dashed
lines represent encrypted messages).

(B ×G): A single value which is the product of (B ×G).

[B,G]: The individual values B and G, encrypted with a symmetric key known

only to the broker.

When a collection of ads arrive at the client, it ranks all ads using (B × G ×

U). Note that in this case U is current, while (B × G) can be somewhat stale

depending on the system delays. If the user clicks on an ad, then the client

computes the following values and transmits them to the broker:

Ac: The ad ID of the clicked ad.

((Bn ×Gn) × (Un/Uc)): A single value which is the (Bn ×Gn) product of the next-

ranked ad times the ratio (Un/Uc) of the user score of the next-ranked ad

Un and the user score of the clicked ad Uc.

[Bc,Gc]: The encrypted B and G for the clicked ad as received earlier from the

broker.

Upon reception of this message, the broker decrypts [Bc,Gc]. It uses Gc and

((Bn ×Gn) × (Un/Uc)) to compute the CPC as shown in Equation 3.2. The broker
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Figure 3.2: Rank-at-Broker. ID is an Ad ID unique to the combination of ad
and client. Solid lines represent clear-text messages forwarded
by the proxy.

also compares the resulting CPC with the decrypted Bc. If CPC > Bc, then the

broker knows that the client is engaged in click fraud, and the broker can ignore

the message. If CPC ≤ Bc, then the broker can accept the message, although this

does not mean that the client is not engaged in click-fraud. Other mechanisms,

such as statistical analysis, must be used to detect it as is done today.

Variation: It may not be necessary to transmit the encrypted values [Bc,Gc].

This is because Bc and Gc can be looked-up using the ad ID Ac. The danger here

is that the looked-up values may be different from the Bc and Gc values used to

rank the ads. How different depends on the level of churn in B and G values,

which we found to be minimal in the Bing auction trace (Chapter 5). Therefore,

it may well suffice to use looked-up values rather than values stored along with

the ad at the client. Note that this variation applies to RaB and RaT as well.

3.2.2 Rank-at-Broker (RaB)

One concern with RaC is that the value (B × G) exposes information about the

advertiser (see Section 4.1). This can be avoided if the ranking is done at the
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broker as shown in Figure 3.2. The RaB scheme presented here is a substantially

improved version of the approach first proposed in [33].

Along with the ad, the broker transmits the following to the client:

A: The ad ID.

ID: An identifier unique to this specific delivery of this ad (among all other

deliveries). In other words, the same ad delivered to other clients would

have a different values of ID.

[B ×G]: A single value which is the product of (B ×G), encrypted with a sym-

metric key known only to the broker.

[B,G]: The values B and G, encrypted with a symmetric key known only to the

broker.

The client computes a user score U for each ad (in the absence of knowledge

of what web page the ad may be shown on). In order to obscure the user profile,

the client assigns a random value for U for those ads for which the client has a

very low user score (for instance because the demographic does not match that

of the user).

Clients transmit the ID,U tuples to the broker via a proxy. These messages

are not encrypted. The proxy also remembers which IDs were received from

which clients.

For each received ID, the broker looks up the current values of B and G.

It then uses B, G, and U to rank each received ad among a large number of

recently received ads (say, those received over the last hour), and associates a
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rank number Rank to each ad. Closely ranked ads may have the same ranking

number. The broker transmits the ID,Rank tuple back to the proxy.

The proxy looks up which client is associated with each ID, and forwards the

message on to the client. The client disregards the ads related to the low user

scores, and uses the remaining ranking for selecting ads to put in ad boxes.

When a user clicks on an ad, it transmits the following information to the

broker:

Ac: The ad ID of the clicked ad.

[Bn ×Gn]: The encrypted (B ×G) for the next-ranked ad received earlier.

(Un/Uc): A single value which is the ratio of the user score of the next-ranked

ad Un and the user score of the clicked ad Uc.

[Bc,Gc]: The encrypted B and G for the clicked ad received earlier.

Upon reception of this message, the broker decrypts [Bn ×Gn] and [Bc,Gc]. It

uses Gc, (Bn × Gn), and (Un/Uc)) to compute the CPC as shown in Equation 3.2.

As with RaC, the broker also compares the resulting CPC with the decrypted Bc

for click fraud.

The proxy prevents the broker from learning the identity of the client whose

ads are being ranked. The per-client-per-ad unique ID prevents the proxy,

which does know the client identity (network address), from learning which

ad, and therefore what targeting information, is being referred to.

Even with the noise added to low user scores, we are concerned that the non-

noise user scores can be interpreted at the broker as a kind of fingerprint over
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Figure 3.3: Rank-at-Third-Party

the set of ads (i.e., ads targeted to men should have uniformly higher scores for

men, and lower scores for women). In this way, the broker could potentially

tease out the profile of users.

3.2.3 Rank-at-Third-Party (RaT)

This approach (see Figure 3.3) is similar to RaB, but prevents the fingerprinting

mentioned above. The main difference between RaT and RaB is that in RaT the

broker additionally sends the unique ad IDs and (B×G) products to a third party

system which is trusted not to collude with the broker. This information must

be delayed long enough that the third party system cannot use a timing attack to

correlate the values associated with a single user. This third party also receives

the user scores from the clients, and based on this information, ranks ads in the

same way the broker does in the RaB approach. Since, unlike the broker, it does

not know which ads were transmitted to the same client, it cannot fingerprint

the clients.
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3.2.4 Homomorphic Encryption Variant (RaC, RaB, and RaT)

A variation on all three auction designs is to use homomorphic encryption (e.g.,

ElGamal [26]), which allows for multiplication operations on encrypted data.

This may be used to defend against certain attacks by the broker as described

in Sections 4.1 and 4.3. When a user clicks on an ad, the client encrypts (Un/Uc)

with the broker’s public key. In the case of RaC, it also encrypts (Bn × Gn) with

the broker’s public key. In the case of RaB and RaT, the broker provides the

encrypted [Bn × Gn], but using its public key instead of a symmetric key. For

all three schemes, the broker provides [1/Gc], again encrypted with the broker’s

public key. Using homomorphic property of the encryption, the client is able to

calculate:

[Bn ×Gn] ×
�
Un

Uc

�
× [1/Gc] =

�
Bn

�
Gn × Un

Gc × Uc

��

and transmit the resulting value in the click report. Upon receiving a click re-

port, broker decrypts the value to obtain the CPC. Although homomorphic en-

cryption is relatively expensive, there is no need to do the operation in real-time.

Rather, the client can do the operation when it has spare CPU cycles before

transmitting, and the broker can likewise run the operations later on as batch

processing.

3.3 Computing User Score

So far, we have assumed the existence of a user score U that, when multiplied

with the quality score G produces the expected click probability at the client for

a given ad. Because clicks are relatively rare, it may be difficult to estimate U

at the client based purely on the click history of the client. Therefore, we re-
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quire that the broker anonymously and unlinkably gathers detailed click statis-

tics from clients in order to improve click probability estimates at individual

clients. In what follows, we sketch out an approach.

There are a number of measurable attributes X = {x1, x2, ...xL} at the client

that may help in prediction of click probability. For instance, the level of inter-

est (high or low) in the ad’s product or service, the quality of the match between

the targeting and the user, the context of the webpage, as well as the user’s his-

toric CTR. The idea is that each client reports this information anonymously to

the broker for each ad that it views and clicks. These reports contain: {Ad-ID,

X, click}, where X is the values of the attributes, and ‘click’ indicates whether

or not the ad was clicked. Given this information from many clients, the broker

can determine the effect of the attributes on click probability, and convey this in-

formation to the client as a function f of the attributes such that U = f (X), along

with the ad. This allows the client to compute U by measuring the attributes

and plugging them into the provided function. As mentioned, U in RaC can be

computed at viewing time with the latest set of attributes without churn issues

since that is when the ranking takes place. The function f for a new ad can be

initially set to that of similar existing ads until enough data for the new ad is

gathered. The details of this are left as future work.

One concern is that the set of attribute values X is unique for a given user.

Several factors can mitigate this concern. First, the attributes may be fairly

coarse-grained, thus broadening the set of users to which they apply. Second,

some of the attributes may be hard to correlate using external knowledge, such

as the user’s CTR. Third, attributes like level of interest change from interest to

interest, and even within an interest over time, and therefore are hard to link to
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the same user. Fourth, some attributes are not specific to the user, for instance

webpage context. Finally, the only information beyond the attribute values that

is leaked is the ad viewed. In particular, the user’s click-stream is not exposed.

We believe that it is reasonable to establish public policies that determine the

nature of the attributes in such a way that meaningful privacy is preserved.
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CHAPTER 4

AUCTION ANALYSIS

This chapter analyzes the three types of auctions in terms of privacy, auction

quality, and potential attacks on the auction component.

4.1 Privacy Properties

In this section, we look at the information that is conveyed for the sake of the

auction between honest-but-curious players, and determine whether it consti-

tutes a privacy threat. In Section 4.3 we relax the assumption of honest-but-

curious players.

Broker analyzes (Un/Uc) (RaB and RaT)

In order to exploit this value to gather more information about the user profile,

the broker would have to first tease apart the values of Un and Uc, then use the

value combined with the ad targeting to reverse engineer the user profile, and

then use the user profile knowledge to link together multiple reports. The first

step may be made difficult by making (Un/Uc) relatively coarse-grained, thus

making it harder to uniquely factor out its components. The second step is made

difficult simply by the sheer number of clients that are likely to have similar user

scores. Thus, we conclude that exposure of (Un/Uc) does not constitute a serious

threat.
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Broker analyzes ((Bn ×Gn) × (Un/Uc)) (RaC)

This value is more difficult to reverse engineer than (Un/Uc), and is therefore

also not a threat.

Client analyzes (B ×G) (RaC)

An advertiser can use this value to determine the broker quality score G as-

signed by the broker to its own ads. This can be done by the advertiser simply

creating a client that receives its own ads, and using the known value of B to fac-

tor out G. Whether this is a problem needs to be decided by the broker, though

we point out that today Google reveals a coarse-grained quality score to its ad-

vertising customers.

Transmitting the product (B × G) to the client also reveals the overall rank-

ing of an ad to anyone running a client, including the advertiser’s competitors.

From this, they can also roughly estimate the advertiser’s bids. It is not clear

that this is a problem, for two reasons. First, in today’s advertising systems, an

advertiser can see how its competitors rank relative to itself simply by observing

how ads are displayed. RaC makes it easier and cheaper to obtain this ranking

information, but does not fundamentally change an advertiser’s ability to do so.

Second, historically in traditional advertising (print, TV, radio), advertisers can

monitor how much advertising their competitors do, and can generally know

the cost of that advertising. While certainly all things being equal advertisers

would like to keep this information secret, historically the inability to do so has

not, for the most part, prevented companies from advertising.
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If exposing the product (B×G) to the client is an acceptable privacy loss, then

RaC should be the preferred auction method for its overall simplicity and lower

overhead. If it is not acceptable, then RaB and RaT, which both avoid exposing

this information, may be preferred.

4.2 Auction Properties

In this section, we discuss the various shortcomings of each of the approaches

with respect to the auction properties, especially ranking results and revenue.

4.2.1 System delays

There are several potential delays in the private-by-design advertising systems

that can change both the rankings and the computed CPC. With RaC, there is a

delay between when the ad was transmitted and adbox time when the ranking

takes place. With RaB and RaT, there is a delay between when the ranking

occurs and adbox time when the ranking is actually used. In either case, the bid

B or the broker quality score G used for ranking may no longer be correct, and

an out-of-date ranking takes place.

During the design of the auction approaches, these delays were a major con-

cern. As it turns out, at least for the auction data from Bing search advertis-

ing auctions (Chapter 5), the delays have only a minor impact on both broker

revenue and advertiser costs, even when the delay is several hours or a day.

Nevertheless, this may not be the case for other systems or future systems, and

so it remains important that these delays are engineered to be minimal. This
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could be done, for instance, by having clients frequently request small numbers

of new ads.

4.2.2 Client selection

A problem encountered by the private-by-design advertising is that the broker

does not know which clients are best to send an ad to. For instance, suppose

that some number of clients M have requests ads for watches. The broker does

not know which clients may be interested in cheap watches, and which in ex-

pensive. The advertiser, however, might not have enough budget to pay for all

the clicks that would result if all watch ads are sent to all interested users.

Lets assume that the broker knows the clicks per delivered-ad rate. From

this, it can determine the number of clients N that should receive the ad with-

out exhausting the advertisers budget. If it randomly chooses N clients among

the interested clients, then it will not be sending all ads to the most interested

clients.

One way to solve this problem is for the broker to go ahead and send the

ad to all interested clients, but to also send a parameter giving the minimum

user score that a client must have in order to show the ad. This way, only the

best matching clients will show the ad. The broker may be able to establish

the expected click per delivered-ad rate for various user scores, and therefore

predict the setting of the user score based on the number of clients. If the broker

predicts too high, then it can lower the minimum user score and send this to

clients, thus causing more clients to show the ad.
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4.2.3 Overhead and Latency

RaB and RaT add load to real-time advertising systems (systems that do not

prefetch ads at the client), to the point where neither is a very attractive op-

tion.The extra round trip to the broker (RaB) or third-party (RaT) has to happen

in real-time because the ads must be delivered in time to render the web page.

This is compounded by the fact that a number of ads must be shipped around

for each page load.

If all the ads are to be delivered to the client, the sheer volume of ads that

must be transmitted to the broker or third-party for ranking can also be a scal-

ing challenge. The Bing trace contained 15M unique ads for a single day (see

Section 5.3), with an average ad lifetime of roughly 9 days. This translates into

a little over 1.7M new ads per day per client. Each of these ads is given a user

score by each client, which is then transmitted to a broker or third party for rank-

ing. The Bing trace also counted 14M unique clients. This then translates into 24

tera-ads per day that must be ranked. Fortunately, this ranking function can be

split over many machines (with each taking some fraction of the total number

of ads to rank) without hurting the accuracy of the ranking significantly (as-

suming that each machine has a representative sample of ads). Therefore, while

challenging, this sort is doable.

Though this is not related to the auction per se, note that each ad is roughly

250 bytes of text including the URL. Even ignoring client updates to B and G

values over the lifetime of an ad, this still requires 425MB of ads downloaded

per day per client (uncompressed), or about 43MB compressed (in bulk).
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4.2.4 Auction Scope

An important aspect of the auction is the scope of the auction, by which we

mean the set of ads that compete in any given auction. As a general rule, the

more ads that compete, the higher the CPC. This is simply because the more

ads there are, the more probabilistically likely the next-ranked ad will have a

(B × G × U) closer to that of the clicked ad. On the other hand, the larger the

auction scope, the less fair it is in the sense that very different types of ads must

compete. A local pizza store may not wish to compete with Mercedes for ad

boxes.

The auction scope for search or contextual systems like Bing and Google is

the set of ads whose keywords match that of the search or web page. Today’s ad

exchanges, where advertisers bid in real time, typically for adboxes on premium

publishers, have a potentially much broader scope because any advertiser can

bid. The auction scope in a private-by-design advertising system is tunable. It

may be all ads in a client, or all ads within an ad type (i.e. an interest). What is

more, interests may be hierarchical (sports/tennis/clothing/shoes), and may be

more general or more specific, thus allowing for substantial flexibility in auction

scope.

4.3 Attacks

In this section, we relax our assumption of honest-but-curious players, and con-

sider a number of malicious attacks and defenses.
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Client click fraud

The client can commit a form of click fraud by lying about the value of

((Bn × Gn) × (Un/Uc)) (RaC) or (Un/Uc) (RaB or RaT). By inflating or deflating

these values, the client can cause advertisers to pay more or less, and cause

publishers to earn more or less. At a high level, this is very similar to normal

forms of click fraud that occur today, and in this sense our auctions do not al-

low fundamentally new forms of click fraud. Privad describes how to defend

against click-fraud even with anonymizing brokers [32]. The same method may

be used here. The basic idea is that the proxy tags reports with a per-report

unique identifier. If the broker suspects click fraud, it informs the proxy of the

report ID of the suspicious report. If a given client is suspected more times

than some threshold, its reports can be tagged by the proxy as coming from a

suspected client. In some cases the broker may suspect click fraud simply be-

cause the second price is impossibly high (i.e., higher than the first price bid).

In most cases, however, the broker may use a variety of additional mechanism

to detect an ongoing click fraud attack. As described in Section 6.1, these mech-

anisms range from using statistical analysis of historical per-publisher and per-

advertiser click-trough rates to proactively setting up “bait ads”.

Proxy fingerprints client user scores and resulting ranking (RaB and RaT)

It is difficult but conceivable in RaB and RaT that the proxy could determine

user profiles through observation of the client user scores and rankings. For in-

stance, the proxy could establish a number of fake clients that pretend to have

various profile attributes, and establish fingerprints of the resulting user scores

and rankings. One way to do this might be to determine (B × G) given user
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scores and corresponding ad ranks, and use these values as the fingerprint.

The proxy could then compare these fingerprints with the corresponding fin-

gerprints of real clients. It could be that the signal-to-noise ratio is high enough

to successfully pull off this attack. One way to prevent this would be to encrypt

user scores and rankings. The user scores could be encrypted using the brokers

(RaB) or third-party’s (RaT) public key, and the rankings could be encrypted us-

ing symmetric keys created by the clients and conveyed securely to the broker

or third-party. These symmetric keys would be frequently modified to prevent

the broker or third-party from linking user scores with the same client, and pos-

sibly launching a similar fingerprint attack.

Broker manipulates [Bn ×Gn] (RaB, RaT)

A malicious broker could launch an attack on a private-by-design advertising

system to identify clients by inserting unique IDs into the encrypted fields [B,G]

or [B × G]. Once a client is identified in this way, unlinkability is lost, and the

broker can build up client profiles. The broker can then potentially identify

the client through external means. There is some cost to this approach, as the

broker must “waste” ads to do the tracking1. The homomorphic encryption

variant described in Section 3.2.4 defends against this attack. Because the client

multiplies the received encrypted fields with other fields, the values generated

by the broker are obscured.
1 One might argue that the same attack can be launched simply be creating unique Ad IDs

transmitted in the clear. However, this attack can at least be detected by third parties, for in-
stance running honey-farms of clients.
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Broker sees client user scores (RaB)

The noise added to user scores, combined with the anonymization of the client

address and unlinkability of interest channels makes it extremely difficult for

the broker to build up a user profile. Having said that, we do not prove that

it is impossible, and it could well be that a clever broker could figure out how

to create a kind of user-profile fingerprint on otherwise anonymized channels.

From this, the broker could in theory link together channels with identical fin-

gerprints, thus violating unlinkability claim. The RaT approach eliminates this

possibility altogether.

4.4 Discussion

Overall, we find that RaB is a weak scheme because it opens up a fingerprinting

attack at the broker. RaT solves this problem, though at the expense of requiring

yet another administratively distinct and non-colluding entity. Nevertheless,

we consider it to be a better alternative to RaB.

If exposing the (B × G) product to the client is not a problem for the broker

and advertisers, then RaC is better than RaT because it is simpler, incurs less

overhead and latency, and does not require the third party. In addition, it has

no issues here with respect to user score churn, because ranking takes place at

ad view time. If exposing (B × G) is a problem (this information, however, is

even today indirectly revealed through the ad positions in adboxes), then RaT

appears to be a reasonable approach.
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CHAPTER 5

TRACE-BASED SIMULATION: EFFECT OF CHURN

Section 4.2 describes how various delays in all three auction systems may

distort rankings and CPC computation. How detrimental this delay is depends

on how much churn there is. Churn may affect rank, CPC value, and ultimately

revenue. RaC is affected by churn in B and G, while RaB and RaT are addition-

ally affected by churn in U. In this chapter, we use trace data from Microsoft’s

Bing advertising platform to study in depth the effect of auction delays on B and

G from both the advertiser and broker perspective. We find that, while churn

exists, it has only a negligible impact on broker revenue and advertiser costs.

5.1 What Causes Churn?

B × G for an ad changes when either B or G changes. B can change in one of

three ways: first, the advertiser can manually update the bid; second, the ad

network can automatically update the bid (as directed by the advertiser); third,

a third-party may update the bid on the advertiser’s behalf. Each of these has

different churn characteristics:

Advertiser: Manual updates, we believe, cause very little churn since they

are reactive over a long feedback cycle. Advertisers receive updated campaign

information (i.e., how many clicks, actual amount charged, budget left) at fairly

coarse intervals (few times a day). This limits the number of informed changes

to their campaigns.

Ad Network: The advertiser can invoke functionality provided by the ad net-

work to optimize his bidding strategy. For example, the ad network may al-
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low the advertiser to set a preferred rank (e.g., position 4), and the ad network

automatically lowers or raises the bid to satisfy the request based on the mar-

ket. Other examples may include automatically modifying bids to meet a tar-

get number of impressions per day (while still being charged only for clicks), or

modifying bids based on time of day etc. Some of this functionality (e.g., modify

bids based on time-of-day) can be implemented in the client and would there-

fore not result in any added churn. Other functionality (e.g. preferred rank)

tends to be implemented today as a periodic update (once every few hours).

Third Party: Search Engine Optimization (SEO) companies optimize their

client’s bidding strategy in real-time [21] e.g., based on trending terms, real-

time click-through rates, etc. This could potentially result in high bid churn,

however, due to the premium nature of these SEO services, only a small number

of ads would be affected.

Aside from changes in B, G can also change. Recall G in our model is a

function of what the broker knows: G is computed based on the ad (past CTR,

landing page quality, etc.). G is largely a property of the ad itself, which we do

not expect to change quickly or dramatically. In any event, our Bing auction

trace unfortunately does not allow us to validate our assumption since it does

not isolate user-derived components of G from other components.

5.2 How Does Churn Affect Auctions?

Today auctions take place at the time when an ad is displayed to the user; rank-

ing and CPC calculations can immediately reflect any changes in B or G. Privacy

compatible auction designs described in Chapter 3 are limited in terms of how
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fast new B and G information can be incorporated. Since G does not rapidly

change over time or can be engineered to remain relatively stable (e.g., using U

to reflect short-term changes in click probability), the main source of churn is

the changes in B. To understand the effects of churn in B values, we simulate

auctions that use stale B information for ranking and CPC computation, and

then compare the resulting ranking and CPC computation with auctions that

use up-to-date B information.

5.3 Dataset

For our trace driven simulations, we sampled around 2TB of log data from

Bing’s auction engine spanning a 48 hour period starting September 1, 2010.

The data covers over 150M auctions for over 18M unique ads shown to North

American Bing search users across all search topics. The trace record for an auc-

tion lists all the ads that participated in it (whether the ad was ultimately shown

or not), the bids corresponding to each ad, the corresponding quality scores, and

which if any of the ads were ultimately clicked by the user.

5.4 Methodology

We re-compute auction rankings and the CPC for each auction in our dataset

using stale bid information; we vary staleness from 1 minute to 2 days.

Auction rankings are re-computed using bid and quality data from the trace.

Since our trace does not show when the advertiser updated the bid, we infer the
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time based on multiple auctions that a given ad participates in. If the bid for

the ad is the same for two consecutive auctions, we infer that the bid did not

change during that interval. If the bid is different, we infer that the bid changed

sometime between the two auctions; we use the mid-point as the time of change.

To simulate an auction at time T with stale information from d minutes ago, we

simply use the bids current as of time T − d in our trace. The quality score in

the trace is based on user features (e.g., search query), which correspond to U in

private auctions; since the client always has the current value of U we use the

same quality score for simulated auctions as in the trace.

CPCs are re-computed based on the re-computed auction rankings (using

the second-price formula of Equation 3.2). In other words, for an adbox at time

T in the trace, we compute the ranking based on bid values recorded at time

T − d and populate the adbox using resulting ranking. If the user clicked on an

ad in this adbox, the bid of the next lower ranked ad Bn that we use in the CPC

computation is the stale Bn taken at time T − d.

One limitation we face is that we cannot predict the change in user behavior

when auction rankings change. Consider, for example, two ads A1 and A2 where

in the trace they are ranked 1 and 2, while in the simulated stale auction they

are ranked 2 and 1 respectively. If the user clicked A2 in the trace, what might

we expect the user to click in our simulation? One option is to model the user as

clicking the same ad he clicked in the trace; thus in this case the user clicks A2 in

the simulation. Another option is to model the user as clicking the same position

he did in the trace; in this case the user clicks position 2 (A1 in the simulation).

In reality, the user model is neither of these two extremes — it is well-known

that both ad content and rank effect click-through rates (CTR) [27]. To account
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for this, we simulate 5 user models: 1) same position, 2) 75% same position and

25% same ad, 3) 50%-50%, 4) 25% same position and 75% same ad, and 5) same

ad. Thus we establish an envelope of possible user behavior to get a sense of the

upper- and lower- bounds of our simulation results. Note that always clicking

on the same ad is a strictly conservative estimate. This is because an ad that

was clicked in the trace but is not shown to the user in our simulation (due to

being ranked too low) would not get clicked; at the same time, under the same-

ad model, an ad that was not shown in the trace (due to being ranked too low)

and was therefore not clicked would have no chance of getting clicked even if

it were to be shown to the user in the simulation. This asymmetry biases the

simulation towards fewer clicks (and therefore lower revenues). The only user

model immune to this limitation is the same-position model.

A second limitation we face is that we cannot predict how advertisers would

change their bidding strategy in response to auctions being based on stale infor-

mation. Enterprising advertisers or SEOs, may for instance, attempt to predict

what bid they might want to make one hour hence, and enter it into the system

well in advance. Advance bidding would reduce the effective staleness of infor-

mation. For our purposes, we assume the bidding strategy does not change.

5.5 Simulation Results

Overall our simulations show that there is no appreciable change in broker rev-

enue for using stale bid information; even in the most conservative cases, the

revenue is within ±0.1% of today. For advertisers, while stale bids affect their

auction rankings, they do so in a balanced manner with cases of higher-than-
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Figure 5.1: Change in broker’s revenue

today rank canceling out cases of lower-than-today rank resulting in zero net

change.

Figure 5.1 plots the change in broker revenue compared to today as a func-

tion of the staleness of information used and the user model. The x-axis varies

the stateless of bids from 1 minute to 2 days. The box-and-whisker plot varies

the user model with the top whisker showing the outcome where the user clicks

the same position, and the bottom whisker showing when the user clicks the

same ad; the top edge of the box shows 75% same position and 25% same ad,

and vice versa for the bottom edge of the box; the line in the middle shows the

50%-50% case.

The first observation we make from Figure 5.1 is that under a 50-50 user

model, change in revenue is practically 0% even with bid information as stale

as up to 12 hours. Under the 75-25 and 25-75 models, the change is almost
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always between ±0.05%, and only in the extreme cases 100-0 or 0-100 does it

pass ±0.1%. More importantly, the change increases very gradually. This is good

news since it means a private advertising system would not have a hard delay

deadline beyond which there would be disproportionate change in revenue.

Instead the system can strive to do the best it can, and reduce revenue change

proportionally. The extremely gradual rate of change also means that system

design trade-offs can be biased towards scalability and other engineering goals

without much concern to revenue since it changes very little in the first place.

At first blush the effect of the “same-ad” user-model appears to be to reduce

the revenue, but this is deceptive. As mentioned earlier, the more the user clicks

on the same-ad (going from 0% to 100% from the top whisker to bottom), the

more biased the simulation is towards fewer clicks and therefore less revenue.

Recall that only the top-whisker is unaffected by this simulation bias.

The second observation we make from Figure 5.1 is the slight upwards trend

of the top-whisker signifying higher revenues as more stale information is used.

This suggests a consistent trend of advertisers (as a whole) reducing their bids

over time. We do not know the cause of this trend.

Next we turn to the advertiser perspective. We compute for each ad the frac-

tion of auctions where the user-visible simulated ranking increased or decreased

compared to the trace, and whether the ad became visible or invisible due to be-

ing ranked high-enough or too-low as compared to the trace. Figure 5.2 plots

the average of these numbers across all ads as a function of the staleness of bid

information used.
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We first observe that both increased ranks and decreased ranks are roughly

equal, and so average to nearly zero. The same is true for ads becoming visi-

ble or invisible. While this is consistent with the revenue change in Figure 5.1

averaging out to zero, we note that there are other ways the revenue could aver-

age out to zero while being unfair to advertisers. For instance, fewer increased

ranks could have been compensated by more cases where the ad became visible

thus still resulting in zero revenue change while being unfair to the advertiser;

luckily, this is not the case.

We observe next that there is a very small impact of staleness on change

in ranks; it begins with around 12% of auctions for 1 minute stale data, and

quickly converges to around 16%. The reason this number is high is because of

the cascade effect — if a single ad jumps from a low rank to a high rank, it causes

all the ads in between to register a “change” in rank; thus a single change in bid

can affect up to ten ads. The impact, however, is very little; the ad jumping from
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low to high might register a change of 10 ranks, however, the other 10 ads would

register a change of only 1 rank each (not captured in the graph). Overall we

found a median net change of 1 rank for every 820 auctions the ad participates

in.

To summarize, based on extensive simulations across varying degrees of

staleness and different user-models, there is little impact on broker revenue as

compared to today, and little impact on advertiser fairness as compared to to-

day.
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Part II

Private-by-Design Advertising and

Analytics Meet the Real World
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CHAPTER 6

BACKGROUND AND RELATED WORK

As described in Section 1.2, several research projects have proposed an al-

ternative “private-by-design” advertising model in an attempt to reconcile be-

havioral targeting and user privacy. Each of the proposed systems claims to be

practical in that they provide both good privacy and high utility at reasonable

cost. In this part of the thesis, we attempt to answer one simple question: “Is

private-by-design advertising really practical?”. To do so, we built, deployed,

and evaluated a fully functional prototype of a private-by-design ad system

based on the Privad design. Our deployment delivered functional ads in the

sense that the ads were targeted to user interests, displayed on publisher web-

pages, linked to real shopping websites, and in fact led to actual purchases.

Side-by-side with Privad, we also deployed a distributed differentially-private

user analytics system, PDDP [19], that served as our primary means of gather-

ing experimental data.

By bundling our system with a popular Firefox addon, we deployed it to

over 13K opted-in users. Over a period of two months, the system was used

daily by over 4800 active users on average, with more than 2000 users online

at peak. In October 2013 alone, our backend received 1.1M ad requests and

generated 9.5M ads. During that time, we registered 790K ads views, 417 ad

clicks, and 4 product purchases. While minuscule by commercial standards,

our deployment was big enough to allow us to preliminarily answer a number

of important questions.

The lessons learned from this experiment contain both good news and bad

news. Perhaps the most surprising of the good news is that our system pro-
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duced click-through rates (CTR) on par with Google display ads. This is espe-

cially impressive given that ad generation in our system was fully automated,

in contrast to Google where ads are designed by hand and fine-tuned over time.

Among the bad news, our experience suggests that differential privacy was

a poor model for understanding actual privacy loss in our experiment. Based

on the relatively small number of queries we made to our system (159 dis-

tinct queries generating 790K answers from 9395 unique clients), differential

privacy’s worst-case stance would suggest that a substantial proportion of our

user base could have experienced privacy loss. In reality, no individual user

information whatsoever was leaked through PDDP. Moreover, even if we had

generated malicious queries, at best we could have learned one or two things

about one or two users (assuming we had auxiliary information). This large

discrepancy between the differential private model of privacy loss and actual

privacy loss needs to be addressed by the privacy research community.

The high-level take-away, however, is that the system does appear practical.

We could deliver effective targeted ads, obtain the information needed to pay

publishers and bill advertisers, and gather statistical data giving us visibility

into system operation and user behavior. The main limitation in our experi-

ment is that we did not implement auctions or click-fraud defense. However,

integrating with existing auction systems or ad exchanges does not appear fea-

sible in the context of a small-scale academic research experiment.

In the rest of this chapter, we give a broad overview of the Privad architec-

ture underpinning our prototype implementation and discuss the privacy guar-

antees provided by the system. We then outline the design of the PDDP system

that leverages the same fundamental architecture to enable differentially private
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data collection in distributed settings. Finally, we describe previous attempts at

building and deploying a private-by-design advertising system.

6.1 Privad Model

A number of components in the Privad architecture play the same role as they

do in today’s ad deployments. These include users, publishers, advertisers, and a

broker (ad network): users browse publisher webpages, and advertisers provide

ads to brokers for display on those webpages. Privad defines two new compo-

nents, the client and the dealer, and substantially modifies the role of the broker:

user profiling and ad serving are delegated to the client software, which runs on

the user’s device, rather than in the cloud (i.e., at the broker) as it is done in to-

day’s deployments. The client monitors user behavior (i.e., the user’s searching,

browsing, purchases, and so on) and over time builds up a user profile. It then

uses this behavioral profile to privately fetch ads from the broker and locally

decide which ads should be presented to the user. Finally, the dealer is placed

in between the clients and the broker to anonymously relay all communication

and also help downscale click-fraud attacks.

The fundamental design principle in Privad is that private information about

each user is kept on that user’s computer, not in the cloud [34]. In a sense, users

are still tracked. However, the tracking is done by a software agent running on

the user’s machine, and the information it gathers (the user profile) never leaves

the user’s machine. The challenge is to utilize the user profile to deliver targeted

ad content while revealing the minimum amount of information from the user

profile. Concretely, the privacy goals of the Privad system are formulated as

follows [32]:
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Figure 6.1: The Privad architecture. [x] denotes encryption of x.

• Anonymity: the broker cannot associate any unit of learned information

with any user Personally Identifiable Information (including network ad-

dress), and

• Unlinkability: the broker cannot associate separate units of learned infor-

mation with a single (anonymous) client. This prevents the broker from

building up a user profile, and then associating it with a known user us-

ing externally gathered knowledge.

Privad Operation

Figure 6.1 illustrates the basic Privad architecture and message exchanges be-

tween principal components. The client and the broker are separated by a

proxy-like dealer, which strips away the network layer address of all clients’

messages. The dealer can also coordinate with the broker to identify and dis-

count fraudulent clicks as well as block clients suspected of click-fraud. The

broker in Privad is assumed to be honest-but-curious. While this may be close to

reality (brokers like Google can generally be trusted to do what they claim they
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are doing), the system design nevertheless strives to prevent the broker from

obtaining high-value information through simple but hard-to-detect cheating.

All message exchanges in Privad follow the same basic protocol: the client’s

request is encrypted with the broker’s public key and contains a one-off sym-

metric key generated by the client, which is later used to encrypt the broker’s

response (e.g., the stream of ads sent to a client). Since the encryption is opaque

for the dealer, it blindly forwards the messages without learning anything about

the clients. As long as the broker and the dealer do not collude the system

can offer privacy guarantees: the dealer prevents the broker from learning the

client’s identity or from linking separate messages from the same client.

User profiling software runs at the client. This software monitors the user’s

activity (e.g., search terms, browsing behavior, purchases made) and uses col-

lected information to infer both the interests and demographics of the user. Inter-

ests reflect largely short-term user attributes (for instance, interest in products

or services like sports.equipment.tennis or outdoor.lawn-care). Demographics in-

corporate long-term attributes such as gender, age, salary, and location. When

the profiling software identifies a user interest, it anonymously requests a set of

ads for the given interest category type (i.e., ads for products or services match-

ing the user interest). The request must be generic enough that a substantial

set of clients can have legitimately made the request (as described later, this is

done by using a pre-defined interests categories). A set of ads matching the

user request, each with an identifier id and associated targeting information, are

transmitted to the client. The client software then filters out ads that do not

match the profile and locally stores the rest.
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One of the main requirements for an ad system is good targeting. The de-

sign of the Privad system reflects the view that an endhost client can achieve

deep insight into a particular user as opposed to the shallow view into the

aggregate behavior of a vast number of users available to the current ad net-

works. Thus, relatively simple techniques can be leveraged towards identifying

the users interests and demographics. These techniques include monitoring the

user’s shopping activity, scraping the profile information on social networking

sites, and observing what applications the user runs, what music the user listens

to, and what websites the user browses.

Another key requirement for a private-by-design system is an efficient and

privacy-preserving ad distribution channel. In Privad, advertisers upload their

ads to the broker together with the targeting parameters and bid information.

The broker distributes submitted ads to a fraction of clients through the dealer

via a pub-sub mechanism. To receive ads, clients anonymously subscribe to a

broad interest category combined with a few broad non-sensitive demograph-

ics (gender, language, region). The broker then periodically transmits new ads

to relevant subscription groups. The dealer ensures anonymity of the message

exchanges between the clients and the broker, while encryption makes the mes-

sages opaque to the dealer, so that it does not learn their contents. If the client

detects multiple user interests, it issues a separate subscription for each inter-

est, and the broker is unable to link the separate subscriptions to the same user.

Note, however, that this distribution mechanism does not take into account the

full set of interests and demographics of the user. As a result, the set of ads

delivered to a client covers all demographics and fine-grained interests within a

broad category. In other words, the client receives both ads that are and are not

targeted to the user and has to locally filter out non-matching ads.
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Privad relies on ad auctions to determine both which ads are shown to the

user and in what order. As described in Chapter 3, in addition to bid informa-

tion, ranking is based on both user and global metrics. Among other factors,

user metrics incorporate how well the targeting information matches the user

profile, and the levels of interest in similar ads in the past. Global metrics in-

clude advertiser’s historical click-through-rates, the quality of the landing page,

etc.

When an adbox is presented to the client, for instance on a webpage, the

client evaluates the stored ads, selecting those that best match the user profile,

and inserts them into the adbox displayed to the user. A report of this view

(for each ad in the adbox) is anonymously transmitted to the broker via the

dealer. If the user clicks on the ad, a report of this click is likewise anonymously

transmitted to the broker. These reports supply critical information to the broker

required to bill advertisers and pay publishers. Additionally, the broker also

uses these reports to provide advertisers with feedback on the effectiveness of

their ad campaigns.

Privad recognizes the threat of click-fraud attacks that can be launched by

unscrupulous users or clients against publishers, advertisers, or brokers. This

threat is addressed in the system design, which requires that both the broker

and dealer are involved in detecting and mitigating click-fraud. The mitigation

strategy is for the dealer to identify fraudulent clients and suppress their re-

ports. Privad proposes two mechanisms for identifying attacking clients. First,

the dealer may flag an attacking client directly when the client transmits too

many reports or subscription requests. Second, the broker can identify which

publishers or advertisers are under attack, and indicate to the dealer which re-
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Figure 6.2: The client framework

ports or subscriptions relate to these publishers or advertisers. The dealer then

associates these reports with clients. Any clients associated with a threshold

number of reports are flagged as fraudulent.

Client Framework

Messages between the client and the broker are encrypted to prevent the dealer

from observing their contents. It is critical, however, that users, or privacy

advocates operating on behalf of users, are able to verify that the client can-

not undetectably leak private information in the encrypted messages. Towards

this end, the Privad client architecture allows for a thin trusted reference mon-

itor between the client and the network. (Figure 6.2). The reference monitor

framework provides users and privacy advocates with a hook to detect privacy

violations. The reference monitor validates message contents and performs en-

cryption operations, and ensures that the content of outgoing messages matches

expectations. This software can insure that Privad is operating according to de-

sign. This shifts trust from the Privad client to the simple, open source refer-

ence monitor, which is open to validation so its correctness can be verified, and

which, therefore, can be trusted by the user.
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Privad architecture allows for multiple competing brokers each with a client

on a given user’s computer. There could be either independent clients operating

in parallel, with each client fully implementing the Privad protocol, building its

own user profile, and even communicating with their individual dealers. Al-

ternatively, clients could leverage a number of shared services implementing

common Privad functionality and even basic scraping modules. This shared

functionality, for instance, could be exposed by browser vendors in order to effi-

ciently support multiple clients. Moreover, dealers could also be shared among

multiple brokers.

Ad Dissemination

The fundamental approach to preserving privacy in private-by-design systems

is based on prefetching more ads than will be displayed to a user. This must

be done in such a way that no entity in the system is able to discover which

ads are shipped to which clients. Undoubtedly, the simplest way to guaran-

tee full privacy is to flood all ads to all clients (as this approach prevents the

broker from obtaining any new information about the clients). However, a mea-

surement study of Google search ads [34] revealed that there are too many ads

and too much ad churn for this approach to be practical. This study also found

that ad impressions are distributed according to the power law: a small frac-

tion of broadly targeted ads (ca. 10%) receive a large fraction of impressions

(ca. 80%). In practical terms, it means that only this small portion of all ads

should be delivered to all users (for instance using a P2P mechanism like BitTor-

rent). Cost effective dissemination of the remaining 90% of ads requires finding

a sweet spot between privacy and scalability. Towards this end, Privad employs
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Figure 6.3: Message exchange for Pub-Sub ad dissemination. Ex(M) repre-
sents the encryption of message M under key x. B is the bro-
ker’s public. K is a per-subscription symmetric key generated
by the client.

a privacy-preserving publish-subscribe (Pub-Sub) mechanism between the bro-

ker and clients to disseminate ads.

The main idea behind Pub-Sub mechanism is to map all ads into generic

interest categories and to define subscription channels as an interest category

combined with broad demographics (such as geographic region, gender, and

language). This must be done in such a way that no sensitive information is

leaked in the subscriptions. In other words, channel definitions must be broad

enough to accommodate a large number of legitimate subscribers (to guarantee

k-anonymity), and yet keep overhead to a minimum to achieve an acceptable

scalability. The set of channels is assumed to be pre-defined by the broker and

distributed to all clients in advance (i.e., by hosting a signed copy of the com-

plete set of channels at the dealer).

The Pub-Sub message exchange proceeds as shown in Figure 6.3. First, the

client generates a request to join a channel. The join request is encrypted with

the broker’s public key (B) and transmitted to the dealer. The request contains

the Pub-Sub channel id (Channel), and a per-subscription symmetric key K gen-

erated by the client. Key K is later used by the broker to encrypt the stream

of ads sent in response to the client. When the dealer receives a join request, it

generates a subscription ID (Sid). It also stores the mapping between Sid and
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Figure 6.4: Message exchange for view/click reporting and click-fraud de-
fense. B is the public key of the broker. Aid identifies the ad. Pid
identifies publisher website or application where the ad was
shown. Rid uniquely identifies the report at the dealer.

the client, and appends the Sid to the message forwarded to the broker. The

broker then tags all ads published on this subscription channel with Sid, which

the dealer uses to look up the intended recipient to forward the ads to.

Since clients generate unique (random) symmetric keys for each subscrip-

tion, the broker is unable to link multiple subscriptions to the same user and

therefore cannot reconstruct interest profile of the user. Additionally, to pre-

vent the broker from correlating subscriptions based on their time of arrival, the

system adds some amount of jitter by requiring the clients to arbitrarily delay

subscription requests.

View/Click Reporting

In addition to ad delivery, Privad requires a second communication channel

between the client and the broker in order to report views and clicks as well

as other ad-initiated user actions (i.e., conversions). Reports communicate to

the broker the minimum information required for billing and accounting: the

type of event (view, click, etc.), the ad id (Aid) and publisher id (Pid). The

Aid uniquely identifies the ad, and the Pid identifies the advertising inventory

(e.g., a webpage, an application) where the ad was displayed. Similarly to the
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subscription request, the report is encrypted with the broker’s public key and

blindly relayed by the dealer (Figure 6.4). As mentioned before, the dealer also

can help mitigate click-fraud attacks. Towards this end, for every report the

dealer generates a unique id (Rid), records the mapping of Rid to the client and

forwards Rid to the broker along with the original message. As a result, fraudu-

lent reports can be traced back to the clients who generated such reports.

In certain cases, the client might have multiple reports to send at once (for

example, when multiple ads appear on the same webpage). To prevent the bro-

ker from correlating such reports, the client needs to stagger them by adding

random delays.

User Profiling

A user’s profile consists of a collection of attributes that characterize the user.

As mentioned previously, the client software agent is tasked with compiling a

profile by monitoring user activity. Privad relies on three basic approaches to

accommodate client-side profiling: crawling, scraping, and metadata [33].

Crawling: This approach requires the broker to first crawl the web and pre-

classify webpages in a way similar to classification performed by existing cloud-

based crawlers. The client then can retrieve the attributes associated with a vis-

ited webpage from the broker in a private manner. The attribute query protocol

is almost identical the pub-sub used for ad dissemination. The protocol follows

a simple request-response pattern: the request contains the website URL and

the response returns associated profile attributes. The main advantage of this

approach is that it allows the broker to employ complex algorithms to assign
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attributes to arbitrary content. On the flip side, backend classification clearly

will not work for webpages that require the user to log in as well as for offline

and desktop applications.

Scraping: There are a number of opportunities for the client software to

locally scrape profile information from webpages and desktop applications.

These include websites (and applications) that contain structured information,

which can be mapped directly to user attributes. For example, user profile can

be scraped from online social networks, purchase history from shopping, and

travel sites, etc. To facilitate client-side scraping, Privad envisions a modular

architecture with website- and application-specific plugins provided and regu-

larly updated by the broker. Since scraping works with websites that require

the user to log in, it can be used complementary to crawling. However, map-

ping unstructured content (e.g. blogs, search terms, text documents) to user

attributes on the client requires complex machine learning algorithms. Imple-

menting this functionality in the client alone is not feasible due to the practical

limits on the complexity of the client. Instead, a middle ground approach can

be taken to address this challenge. In this approach, some pre-processing can

be carried out at the client and then the output can be mapped to attributes at

the backend using the previously described privacy-preserving querying mech-

anism.

Metadata: Privad argues that the broker can create additional incentives for

website owners to provide the Privad client with profile attributes in the web-

page metadata. Similarly, local applications can also communicate profile at-

tributes directly to the client. As an incentive, the broker could offer a portion

of the ad revenue to the website or application providing profile information.
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This can be done by keeping track of sources of profile attributes leading up to a

click and including these sources as a part of the anonymous click report. In ef-

fect, this may create a new ecosystem, where websites are rewarded for highly

targeted content leading to better profiling, fewer ads and ultimately a better

user experience.

Click-Fraud Defense

While neither Privad nor current ad networks have a silver bullet against click-

fraud, the private-by-design architecture makes click-fraud defense more chal-

lenging. This is the inevitable cost an ad network has to pay when it gives up di-

rect control over the client-side in order to achieve better privacy. Nonetheless,

Privad addresses this challenge by proposing a number of techniques to detect a

fraudulent client. These range from rate-limiting according to per-client thresh-

olds on the number of subscriptions, and view and clicks reports, keeping his-

torical statistics on per-advertiser and per-publisher performance and looking

for anomalies, building honeyfarms that attract and identify click-fraud mal-

ware, and dealers blocking compromised hosts that appear in various public

blacklists.

One novel technique first proposed by Privad and later extended in [35] is

termed “bait ads”. Bait ads can be intuitively described as CAPTCHAs for ads

– they contain targeting parameters that are completely unrelated to the actual

content (ad body, graphics, flash animation) displayed to the user. For example,

a bait ad may advertise a “dog collar” to “cat lovers”. Normally, such mis-

targeted ads should produce extremely low click-through rates. However, a bot

would trigger multiple baits, as it would be unable to distinguish them from
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normal ads. As a result, an unusually high rate of clicks on bait ads would help

verify that an attack is underway and also help identify the fraudsters. Bait ads

and other click-fraud detection mechanisms complement each other: deployed

in parallel they will significantly raise the bar for an attacker. A more detailed

discussion of click-fraud defense in Privad can be found in [32].

Once an ongoing click-fraud attack is detected, identifying and blocking

fraudulent clients is straightforward. To do so, the broker notifies the dealer of

the Rid’s of reports suspected of being involved in click-fraud. The dealer traces

the Rid back to the client. If the dealer receives a threshold number of notifica-

tions for a given client, it blocks subsequent reports from that client. Moreover,

the dealer itself can monitor clients to see if they have an unusually high volume

of views or clicks, and flag them accordingly.

Reference Monitor

In order to allow for proprietary closed-source client agents, Privad provides a

sandboxed environment with a trusted reference monitor. The reference mon-

itor is the only communication gateway between the client and the server-side

components in the Privad architecture. In other words, only the reference mon-

itor is allowed to perform network I/O. It exposes a thin set of APIs to the sand-

boxed client, allowing it to generate symmetric subscription keys, encrypt and

decrypt messages, and communicate with an authorized dealer. This API set is

designed to be extremely small so that the correctness of the reference monitor

can be easily verified.
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The reference monitor validates message contents to ensure that the client

adheres to the protocol specifications. It also ensures that no sensitive informa-

tion is leaked in the message content or through covert channels. For example,

by having the monitor generate keys and perform the encryption Privad re-

duces the possibility of the client passing information through random bits in

generated keys, or through the randomized padding in the encrypted message.

Additionally, the monitor is allowed to add random delays or jitter to further

reduce the possibility of exploiting timing as a covert channel. For this reason,

Privad is designed to be delay tolerant – all operations are asynchronous, and

no message requires an immediate response. Finally, the reference monitor pro-

vides a hook for auditing the client software.

6.2 PDDP Overview

Privad is carefully designed to provide only the minimum information needed

by the broker, advertisers, and publishers to run the ad business: requests for

ads and anonymous reports of clicks and views (i.e., which clicks and views

occurred on which ads at which publishers). This minimum information, how-

ever, is not sufficient if the goal is to get deeper insight into user behavior and

system performance. For instance, key players may want to know more, in the

aggregate, about what activity leads the profiler to detect an interest in the first

place. They may wish to know the level of interest, or correlations between in-

terests. They may wish to know whether certain publisher websites led to better

conversions, and so on. With centralized (non-private) tracking, this informa-

tion is all available locally, and can simply be mined. With Privad, this infor-

mation is all tucked away on user computers, which precludes broad statistical
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Figure 6.5: Traditional deployment model for Differentially Private sys-
tems

analysis of user data. Moreover, once Privad is deployed, it would be virtually

impossible for the system designers themselves to debug the system without in-

fringing on user privacy. To address this issue, Privad needs to provide support

for privacy-preserving statistical queries over distributed user data.

One approach to supporting privacy-preserving statistical queries is to add

noise to the answers of queries, in such a way that the privacy of individual

users is protected. An instance of this approach popular in the research com-

munity is differential privacy (DP) [23, 24]. Specifically, DP adds noise to the

answers for queries to statistical databases so that the querying system cannot

infer the presence or absence of a single user or a set of users. DP provides a

provable foundation for measuring privacy loss regardless of what information

an adversary may possess.

The traditional deployment model for DP assumes a centralized database

(see Figure 6.5). The system operating the database is trusted with its content,

and is also trusted to add noise to the information released from the database.

The private-by-design advertising scenario is different in several respects. First,

there is no trusted centralized database; individual clients maintain their own

data. Second, the information is distributed among potentially millions of
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clients. Therefore, the private-by-design advertising settings call for a practi-

cal mechanism that provides some form of distributed differential privacy.

As it turns out, the existence of the dealer in Privad, trusted not to collude

with other components of the system, can be leveraged to accommodate the

Practical Distributed Differential Privacy (PDDP) system [19]. Figure 6.6 shows

how PDDP can be deployed on top of the Privad dealer. Now, an analyst (e.g., a

broker, an advertiser), who wishes to make statistical queries over some number

of Privad clients, can formulate a query and transmit it to the dealer, which in

turn forwards it to the required number of clients.

Each query comes with a number of buckets that specify possible answer

ranges. A client locally executes the query, and for each bucket it produces a

binary value indicating whether the query result fell within the range of that

bucket. Then, the resulting bit vector is encrypted with the analyst’s public key

(using Goldwasser-Micali bit-cryptosystem [30]) and uploaded to the dealer.

Meanwhile, the dealer and clients, using the XOR homomorphic property of the

GM cryptosystem, collaboratively and blindly generate noisy answers that mimic

a number of additional client responses to produce the required amount of dif-

ferentially private noise. Finally, the dealer mixes received client answers with

noisy answers, and forwards everything together to the analyst, who then de-

crypts the received answers and computes the statistical result under the differ-

entially private guarantee.

A major issue with DP in practice is that systematically repeated queries can

be used to eliminate the noise and reveal the true answer. Traditional DP sys-

tems deal with this through the notion of a budget. Each query deducts from

the budget, and when the budget is spent, the additional queries are simply
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Figure 6.6: Differential privacy in the context of private-by-design adver-
tising

not allowed. However, this approach is not practical in the advertising context,

which requires longitudinal analytics. Rather than setting a hard limit on the

cumulative privacy loss, PDDP treats it as an ongoing measure referred to as

the privacy deficit. The notion of the privacy deficit makes it possible to address a

number of open issues. First, it provides a quantitative measure of the privacy

cost incurred as a result of a meaningful statistical analysis of the user popu-

lation. Second, as described in Section 9.5, the accumulated deficit can be ana-

lyzed under a worst-case scenario to determine whether it theoretically allows a

malicious analyst to discover a number of sensitive user attributes. Indeed one

question we address in this study is “How far from actual reality is differential

privacy’s worst-case model?”

6.3 Related Work

In this section, we describe previous attempts at building and deploying a

private-by-design system.

64



Among the systems cited in Section 1.2, two were never implemented: Pi-

CoDa [49] used simulations to evaluate timing performance for the protocol

data, MobiAd [36] deferred the effort required to build and deploy a prototype

to future work. Only three systmes (Adnostic [58], RePriv [29] and Privad [32])

have been built as a functional research prototype.

The core targeting system of Adnostic [58] is available as a Firefox addon.

The user profile in this implementation is a weighted list of categories derived

from Google Ads Preferences. In order to build a profile, Adnostic monitors user

browsing activity and for each visited page assigns a number of most relevant

categories. These categories are then aggregated in the user interest profile with

weights reflecting number of page visits, number of clicks and the page viewing

duration. The categorisation is based on computing similarity scores between

the webpage metadata and interest categories, which uses a pre-computed ma-

trix of cosine similarity between category words and most common bookmark

tags from delicious.com. While the addon also contains ad rendering and even

ad scraping functionality, these modules were only used to compute bench-

marks reported in the paper. Beyond that, unfortunately, the system was never

deployed and evaluated with actual users.

RePriv [29] describes a research prototype, built on top of C3, an experi-

mental browser developed in .NET [17]. In RePriv, the user profile is also con-

structed locally in the browser by mining user browsing data to infer personal

interests. Additionally, RePriv allows service providers to register verified site-

specific miners, thereby improving the quality of inferred information. The re-

lease of sensitive information is controlled by the user, who determines how

much private information can leave the browser, and what exactly is shared
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with each party. Once explicit user consent has been granted, RePriv sends rele-

vant portions of the user profiling information directly to the ad network. Func-

tionality implemented in the prototype includes a behavior mining algorithm, a

communication protocol for secure dissemination of profile information, and an

extension framework for loading third-party software that utilizes user profile.

Behavior mining is based on classification of visited webpages using a hierar-

chical taxonomy of document topics derived from the Open Directory Project

(ODP).1 For each visited page RePriv assigns topic probabilities using a Naı̈ve

Bayes classifier trained over a set of documents from each category of the first

two levels of the ODP taxonomy. Classification information for each page is

stored locally alongside with the browsing history. Profile information exposed

by RePriv consists of a list of taxonomy categories together with an indication

of the interest level for each category (computed as a fraction of browsing his-

tory classified with that category). However, the authors do not elaborate on the

extent this information can be leveraged for ad targeting, neither do they report

any results regarding deployment or evaluation in the advertising context.

A proof-of-concept implementation and a pilot deployment of Privad was

described in [32]. In this experiment, the client component was distributed as

a stand-alone Firefox addon to 2083 Mechanical Turk2 workers, who were re-

munerated for having the addon installed for at least one week. User profiling

in the prototype implementation was based on scraping users’ Facebook profile

and Google Ads Preferences. However, the extracted profile information was

never used, the system simply scraped and republished Google ads without any

targeting. Overall, the system was in continuous operation for a year, retaining

a fifth of its original user base. During this time there were 217K ad views, 238
1http://dmoz.org
2https://www.mturk.com
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ad clicks. Admittedly, the main goal of that deployment was to evaluate tech-

nical aspects of the architecture, and as such it provides little insight into the

advertising utility of the system. In contrast, the purpose of this work is to ex-

ercise the private-by-design advertising in realistic settings. Towards this end,

we bring profiling and targeting several steps closer to that of a commercially

deployable system. Our prototype does real targeting based on user searches

and products browsed on shopping sites, and delivers real ads by pulling them

from online shopping APIs. Moreover, alongside with the advertising system,

we deployed a private analytics component providing a deeper insight into user

behavior and system performance.
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CHAPTER 7

PROTOTYPE DETAILS

While Privad establishes a basic private-by-design architecture described in

the previous section, to put together a fully functional ad system prototype we

had to fill in a number of gaps. Due to the experimental nature and small scale

of our system, we cannot work directly with advertisers or ad networks. In-

stead, we use product information from major shopping engines to as a proxy

for creating Privad ads. Given such product-oriented ads, for profiling and tar-

geting we focus exclusively on the user purchasing intent. We rewrite Google

ad iframe requests and repurpose resulting adboxes to render Privad ads, which

prevents exposing users to more ads than they would normally see.

In the rest of this chapter, we describe in detail the challenges we tackled

while building a private-by-design ad system prototype without support from

the ad industry. We also discuss ways in which the private system design

evolved to meet practical concerns. Then, we report privacy issues identified

and addressed along the way. Finally, we describe implementation details spe-

cific to our prototype.

7.1 User Profiling

Our approach to profiling combines aspects of both crawling and scraping de-

scribed in Section 6.1. Since we can only generate product-related ads, our main

goal with respect to user profiling is to identify and capitalize on the user trans-

actional (purchasing) intent [38]. Therefore, we focus on two main signals: user

browsing activity on shopping websites (product-based targeting) and product-
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related searches on major search and shopping engines (search-based targeting).

Towards this end, we compiled a whitelist of shopping websites containing al-

most 14K entries by crawling retailers on Shopping.com that also appear in

Alexa’s top 1M [1]. The whitelist also includes Alexa’s top 500 websites for a

number of top-level shopping categories (such as “Clothing”, “General Mer-

chandise”, “Gifts”, etc.), as well as the 5 largest search engines. Additionally,

we built a dictionary of product-related terms by crawling a random set of ca.

80 million products offered on Google Products, Amazon and Shopping.com.

From the collected set of 10M terms appearing in product titles, we removed

terms with fewer than 100 occurrences, resulting in 180K whitelisted keywords.

Each time a user issues a search query on one of the whitelisted websites,

Privad client captures the query, extracts search terms and filters stemmed key-

words through the product-related dictionary. The resulting list of keywords is

then used to establish an ad channel. Additionally, the identified keywords are

cached and used to deduplicate future product searches.

We profile user shopping activity by monitoring browsing behavior on

whitelisted websites and applying customized scrapers to identify specific

products the user is interested in. The fundamental challenge of this approach is

the effort required to build specialized product scrapers for the majority of pop-

ular online retailers. In our experimental prototype, we sidestep this challenge

by leveraging scraping functionality developed by InvisibleHand [7]. Invisi-

bleHand tries to identify a product the user is browsing for, and then displays a

notification if there are better deals available for the product. At the moment, In-

visibleHand scrapers identify products on 670 shopping websites. As described

in Section 7.6, neither the whitelists nor the scraping functionality is hard-coded
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Figure 7.1: Ad generation pipeline. C is client, D is dealer, B is broker

in the client. Instead, clients periodically check with the broker and download

updated lists of scrapers and whitelisted domain names as soon as they become

available.

7.2 Ad Generation

The experimental nature of our system dictates that we neither work with any

commercial advertising companies nor generate any revenue by displaying ads.

Instead, we create mock-up1 ads using product listings from three major shop-

ping engines: Amazon.com, Shopping.com and Semantics3.com.2

The series of steps performed to generate Privad ads is shown in Figure 7.1.

Once the Privad client detects a new product or product-related search, it uses

product title or whitelisted search keywords to establish a new interest channel

and request ads from this channel. We do not rely on any predefined interest

hierarchy to map profiling information to channels. On the contrary, the interest

channels are generated at runtime and are fully defined by the associated prod-

uct information. As such, we distinguish between two channel types according
1The generated ads look like legitimate Google ads and link to real products. We call them

‘mock-up’ only because they are not handcrafted.
2While we initially started out with Google.com/shopping as our third product provider,

over the course of the prototype development Google’s Search API for Shopping was depre-
cated and then eventually sunset.
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to targeting parameters (product and search targeted channels). Targeting in-

formation associated with each channel is used to request a number of ads from

the broker in an anonymous, privacy-preserving manner. The ad request (step

1 in Figure 7.1) is relayed by the dealer to hide the client’s identity. The en-

cryption mechanism described in Section 7.4 is used to prevent the dealer from

eavesdropping.

The dealer batches requests from multiple clients into a single RPC request,

which is uploaded to the broker once every 30 seconds (step 2). Upon receiving

an ad request, the broker forwards targeting information to the ad grabbing ser-

vice (in step 3), which then uses it to make a product search on one of the three

shopping engines (steps 4 and 5). Up to 20 most relevant product offers from

the result set are converted into textual ads and returned to the broker. The con-

version is straightforward and consists of removing stop words and excessive

punctuations from the product title and description, distributing the remaining

terms together with a price tag over ad head and body (25 and 70 characters

long), and adding a short display URL. Most of the auto-generated ads pro-

duced this way are intelligible and look almost indistinguishable from AdSense

ads. However, in some cases products-to-ads conversion fails to produce mean-

ingful output (see examples in Figure 7.2). Finally, the broker bundles the re-

sulting set of text ads into a single ad channel and ships it back to the dealer

(step 6). The ad channel is stored at the dealer until it is eventually retrieved by

the client (step 7).

Shopping engines proved to be the major bottleneck in the ad generation

pipeline (with requests to Shopping.com taking on the order of several seconds).

Additionally, they tend to impose a limit on the number of allowed search re-

71



Figure 7.2: Examples of auto-generated Privad ads

quests per IP. To address this scalability challenge we replicated the ad grabbing

service on a number of machines and placed a simple round-robin load-balancer

(Scheduler in Figure 7.1) in between the Ad Grabbers and the broker.

7.3 Ad Selection and Placement

Since we lack real publishers, we render Privad ads in the existing Google Ad-

Sense adboxes (i.e., adboxes that contain contextual ads and appear on pub-

lisher websites). While we modify Google ad frame requests to display more

textual advertising (as opposed to flash and image ads), we avoid exposing

users to more ads than they would normally see. Google allows publishers

to specify style parameters for textual ads so that ads have the same look and

feel as the publisher website. Instead of fully re-writing adbox html code, we

leverage this functionality by identifying and surgically replacing only relevant

ad content (head, body, click URL, etc.). As a result, apart from a small logo

indicating a Privad adbox, Privad ads look almost indistinguishable from Ad-

Sense text ads. However, while preserving ad style preferences, this approach is

ad hoc in nature and depends on cues in the html code characteristic to various
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ad elements; once html code is modified our ad serving modules might fail to

render Privad ads.3

Our client implementation allows us to experiment with different placement

strategies: control mode (only Google ads), full-on Privad mode (only Privad

ads), mixed mode (a mixture of Privad and Google ads in the same multi-slot

adbox) and random mode (uniform distribution of adboxes filled with either

Privad or Google ads). Additionally, our client respects user preferences and

does not request or display any ads in Private Browsing Mode, since uploading

ad requests or view/click reports in PBM would clearly violate user expecta-

tions. Also, it does not display Privad ads if it detects any adblocking mecha-

nisms (browser addons or DNS-based blocking).

Unfortunately, we lack bid information to run a full-fledged second price

auction. Instead, we conjecture that the click probability, and hence the user

score [54], is inversely related to the amount of time passed since an interest

was detected. In other words, the click probability on an ad from a particular

channel decreases over time. To verify this observation, the Privad client allows

experimentation with three ranking mechanisms according to the age of an ad

channel: most recent first, uniform random and binomial (pick the most recent

with probability 1/2, second most recent with 1/4 and so on).

7.4 Message Exchange

Following the original Pub-Sub model [32], the dealer uses an asynchronous re-

lay protocol to forward messages between the clients and the broker. Each new
3Unluckily, as described in Section 8.1, this is exactly what happened during our deployment.
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Privad client is bootstrapped by requesting a unique client id from the dealer.

This Uid then is sent to the dealer alongside the encrypted message payload.

For every incoming request that requires an explicit reply from the broker, the

dealer generates a unique request ID (Rid). It replaces Uid with Rid in the client’s

request and also stores the mapping between them. Finally, multiple client re-

quests are batched together and uploaded to the broker at regular intervals. The

broker then attaches the Rid to every response it sends back, which the dealer

uses to look up the intended client and save the broker’s response tagged with

the client’s Uid. A client uses its Uid to periodically poll the dealer for any new

messages from the broker.

As opposed to the original Privad design, which relies on a predefined set

of channels to map user attributes to ads, in our prototype channels are es-

tablished on the fly in response to an ad request (as long as the result set

of the corresponding product search is non-empty). This allowed us to re-

duce the original Pub-Sub ad dissemination mechanism to an asynchronous

request-response, which operates as follows. Client requests take the form

(EPKbroker (Kshared), EKshared (request)) where the actual message payload is encrypted

with a randomly generated 128-bit AES key Kshared, and the symmetric key it-

self is encrypted with the 1024-bit public RSA key of the broker PKbroker. Ran-

domized padding is added to defend against dictionary attacks. The response

from the broker is then EKshared (reply) encrypted with the symmetric key from the

corresponding request. The request and response messages of this form serve

as building blocks for all client-broker communications, which include ads de-

livery, click and view reporting, as well as the new communication channels

required for distributing scrapers, website and keywords dictionaries and ex-

perimental configurations (Section 7.6).
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7.5 Privad Implementation

We built a fully functional Privad system. Following the architecture described

in Section 6.1, our prototype comprises three principal components: the client,

the dealer and the broker. The client is implemented as a 154KB Firefox ad-

don written entirely in JavaScript (8.5K lines of code not counting the pidCrypt

library and autogenerated RPC client code). All backend components are im-

plemented in Java, totaling 14K lines of code with the dealer, broker, and ad

generation infrastructure taking roughly equal parts. All Privad datatypes and

interfaces between system components are defined in 600 lines of Apache Thrift

IDL [3], producing 48K and 6K lines of Java and JavaScript code respectively.

We chose to implement the client as a browser addon to enable us to scrape

highly-dynamic AJAX web applications, which would have been impossible

with a standalone daemon or local browser proxy. Concerned with Javascript

performance for cryptographic operations, we delegated all CPU-intensive pro-

cessing to two independent web workers (one responsible for Privad-related

functionality, the other for PDDP). These background Javascript threads have

no access to the DOM and communicate with the main browser thread via asyn-

chronous message passing. Also, they serve as the single gateway between the

client and the dealer. By outsourcing cryptographic operations, data serializa-

tion and network communication to background workers, we ensured that there

was no negative impact on the user’s browsing experience.

These web workers expose a thin set of predefined API and thus serve as a

proof-of-concept reference monitor that performs the encryption and network

I/O, but does not validate message contents. Potentially our client could get
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around this reference monitor and establish additional communication chan-

nels to the broker (in that sense the web workers are not the only point of com-

munication between the client and the backend components). But in contrast

to the proprietary closed source clients anticipated by Privad, our implementa-

tion is open source. It can be easily validated through manual inspection4 and,

therefore, does not have to be sandboxed.

All client-dealer communication is performed over HTTP to accommodate

clients behind firewalls and proxies. We use JSON since it is the only format

currently supported by the JavaScript Thrift library. While the dealer is written

as a Jetty [57] server handler, other backend components are built on top of

Thrift servers and communicate using binary Thrift format.

7.6 Client Details

In addition to the two communication channels between the client and the bro-

ker (ad delivery and view/click reporting) required by vanilla Privad, we also

introduced a distribution and update mechanism for product scrapers, shop-

ping websites and product term whitelists. To keep their whitelists and scrapers

up-to-date, clients periodically issue and upload a request containing the hash

of the currently active whitelist. As long as the hashes of the client’s and bro-

ker’s lists match, the request is ignored by the broker. If hashes do not match

(e.g., entries were added or removed from the whitelist), the new whitelist is

sent in response.
4Which is the case – our client code has been vetted by Mozilla reviewers

76



A similar mechanism is used to disseminate experiment configurations. In

addition to the hash of the configuration in place, clients also include their con-

figuration class in the request. This class is randomly selected from 16 avail-

able values during the client’s first launch. By dividing client’s population

into 16 groups, we are able to run multiple experiments in parallel. An experi-

ment configuration contains a number of parameters that specify start and end

timestamps and regulate ad placement strategy (none, everywhere, mixed, ran-

dom), channel ranking mode (random, most recent, binomial), targeting mode

(product-based, search-based, random) and various channel-related attributes

(max channels in place, max channel lifetime, max view opportunities, etc.).

7.7 Practical Privacy Issues

Running a ‘real’ ad system requires a number of functions not anticipated in

Privad’s design. Consequently, to build an operational private-by-design sys-

tem, we had to address several practical privacy-related concerns that arose as

a result of the added functionality.

Search terms in ad requests. The original Privad design envisioned that

relatively broad product or interest categories would be conveyed in ad re-

quests. In practice, however, we had to use search terms and product names

derived from potentially error-prone web page scraping. To mitigate possible

privacy loss through these search terms and product names, we implemented

the whitelist described in Section 7.1. In spite of this, in rare cases, it may be pos-

sible to identify users through the ad request. This is an unanticipated problem

that needs further consideration.
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Timestamps in ad requests and reports. In order to select relevant configu-

ration parameters when serving a client’s ad request, the broker needs to know

both the client’s configuration class and the timestamp at which the request

was made. Moreover, view/click/conversion reports are also timestamped,

which allows us to find the delay between the interest detection and the sub-

sequent view/click/conversion events as well as the temporal distribution of

these events. However, revealing unobscured client timestamps constitutes a

major privacy leak. First, the broker may exploit these timestamps and try to

fingerprint clients based on their clock skew. Second, sending timestamps in

the client’s local timezone breaks channel unlinkability (e.g., when there are

very few online users in a particular timezone sending view/click reports for

ads from different channels).

We prevent this privacy leakage by uploading client timestamps converted

to the same timezone (UTC) across all clients. To be able to compute event dis-

tribution over time, we add a timestamp in the client’s timezone and an event

subtype (ad request, view, click, conversion) as the meta-info of the encrypted

message uploaded to the dealer, and store it there without forwarding it to the

broker. To hide potential clock skew, we currently use timestamp granularity of

5 minutes. Additionally, it is possible to add some amount of noise to the times-

tamps, introduce longer (currently only 30 seconds) upload cycles and jitter (i.e.,

delay random messages for several upload cycles) at the dealer.

Publisher info in view reports. Using the publisher domain from the view

reports, the broker can track all websites where an ad (or ads from the same

channel) were displayed, as long as ad and channel ids are unique across all

clients. However, in a commercial Privad deployment the broker must not gen-
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Figure 7.3: PDDP - the private analytics system

erate unique ids for subscriptions to the same channel, and it should be easy to

detect when this assumption is violated. The problem will come up only when

there are very few users subscribed to a channel. Reporting publisher domain

together with a view timestamp also breaks channel unlinkability (e.g., when

there are multiple adboxes on a page filled with ads from different channels).

In our prototype, only click and conversion reports contain publisher info. We

break the view report into two parts, one containing ad specific information and

the other publisher data, and upload them to the broker independently with a

random delay.

Adbox id in view reports. To discover which ads are displayed together, a

randomly generated adbox id is included in view reports. Unlinkability then

can only be ensured, if we populate each adbox exclusively with ads from a

single channel.
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7.8 PDDP Implementation

Following the design described in [19], we built the PDDP private analytics sub-

system by retrofitting Privad components with additional PDDP functionality.

In our implementation, the broker takes the role of an analyst, the dealer acts

as the PDDP proxy, and the Privad addon as a client. The query processing

funnel contains the following steps (as illustrated in Figure 7.3). First, the bro-

ker submits a PDDP query to the dealer (step 1). A query includes a number

of SQL statements, buckets definitions (ids, and lower and upper bounds), pri-

vacy parameter �, and start and end timestamps. Additionally, it can specify

the required number of answers (no less than 10) and the target configuration

class. The dealer verifies that the query does not modify the client database

(queries containing keywords like ‘create’, ‘pragma’, ‘delete’, etc. are rejected),5

and adds it to the list of pending queries.

For every pending query the dealer maintains a set of clients who already

uploaded an answer to the query. Clients periodically poll the dealer and re-

trieve a new (random) PDDP query that they have not yet answered (step 2).

We allow clients to process only one query at a time to avoid overloading the

user machine and adversely impacting browsing experience. Thus, a client can

request the next query only after it has finished executing the current query and

uploaded the answer.

Upon receiving a query, the client executes it over its local database and pro-

duces a list of numerical answers, which it then maps to buckets by assigning a

‘1’ or a ‘0’ to each bucket, depending on whether or not one of the answers fell
5However, we allow PDDP queries to store intermediate results as key-value pairs in a ded-

icated table, which is wiped clean after every query execution.
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within the range of the bucket. Then the client encrypts each per-bucket binary

value using the broker’s Goldwasser-Micali (GM) [30] public key. The resulting

set of bucket ids together with encrypted bits make up a PDDP answer that is

submitted to the dealer (in step 3).

After receiving a client’s answer, the dealer validates the answer (Jacobi sym-

bol of a valid GM-encrypted value equals to ‘+1’) and stores it locally. Once the

dealer collects the required number of answers or the query expires, it adds a

number of randomly flipped bits or coins to each bucket to ensure differential

privacy (step 4). Given privacy parameter � and the number of answers c, the

minimum number of per-bucket coins required to achieve (�, δ)-differential pri-

vacy is [19]:

n = �64 ln(2c)/�2� + 1

Finally, the dealer shuffles clients’ answers and random coins together and up-

loads the resulting set of (bucket id, encrypted bit)-pairs together with the value

of n to the broker. Upon receiving this message, the broker decrypts and sums

up all binary values for each bucket id (step 5). It then subtracts n/2 from

each per-bucket sum to compute a (noisy) per-bucket count (i.e., the number of

clients that fall within this bucket, under the guarantees of differential privacy):

count =
c+n�

i=1

biti − n/2

By answering a PDDP query a client ultimately reveals a bit of private in-

formation, which over a large number of trials can potentially allow an attacker

to average out noise and discover private user attributes. In other words, each

PDDP query has an implicit privacy cost associated with it, which clients pay

when they answer the query. Over time, this leads to accumulation of a privacy

deficit (i.e., privacy loss across all queries). We keep a record of the per-client
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privacy deficit at the dealer. To err on the conservative side, we make no as-

sumptions about possible correlations between buckets and effectively treat in-

dividual buckets as separate queries bundled together. Thus, for every client

that contributed an answer the dealer adds

(�, 1/c) × number of buckets

to the client’s privacy deficit. While this is an overly pessimistic approach to

tracking deficit, it allows us to have both overlapping bucket ranges and queries

producing multiple results that are mapped to multiple buckets. To further re-

duce the privacy cost, we implemented PDDP queries keyed on experimental

configuration classes to target only relevant groups of users.

Dogfooding PDDP enables us to collect various advertising related metrics

that cannot be conveyed through Privad without breaking its privacy guaran-

tees. For example, using PDDP we can find per-user click-through performance

of Google AdSense ads and compare it with Privad’s. Moreover, using various

client-side stats, PDDP allows us to peek beyond simple views and clicks and

analyze user engagement with the advertising content.

In addition to storing information related to core Privad functionality (ex-

perimental configuration, captured searches and products, ad requests, active

ad channels, view and click stats, etc.), we also collect a number of additional

metrics. These include performance stats for several types of Google ads (text,

banner, flash), user engagement (time spent actively browsing a landing page),

browsing session and click-chains (series of visited URLs after an ad click). Our

client also captures user’s shopping activity (products placed in the shopping

cart, purchases made), browsing, and bookmarking behavior. Additionally, we

store general user information including geographical location and timezone,
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OS, language, adblocking addons, as well as overall browser usage. All cap-

tured information is stored in a local SQLite database using Firefox’s Storage

API, thus allowing the PDDP analytics system to query for that information in

a differentially private manner.
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CHAPTER 8

LARGE SCALE DEPLOYMENT

One major challenge in deploying the Privad prototype is incentivizing users

to install it. Since Privad does not provide immediate tangible benefits for the

end users, the most viable deployment model is bundling with existing freeware

applications with a well-established user-base. In this chapter, we describe our

experience in deploying Privad by bundling it with a popular Firefox addon

and present various deployment statistics collected by the backend servers.

8.1 Deploying Privad at Scale

The backend component of our Privad deployment contained 9 servers: one

dedicated to each of the dealer, the broker, and the scheduler and 6 ad grabbing

replicas in order to avoid hitting the per-IP limit on the shopping API request

rates.

Deploying the client component of our Privad prototype proved to be a ma-

jor logistical challenge. First, it required finding addon developers with an es-

tablished user base (of at least 10K daily active users), who were actively sup-

porting and maintaining their addons and who were also willing to bundle Pri-

vad client as a part of their addon. Second, to make the bundle automatically

available to users as a part of the addons update mechanism we had to pass the

Mozilla review process. Finally, we had to craft an appealing request to prompt

the users to opt into the study. Overall, we successfully deployed the Privad

client by bundling with two Firefox addons.
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In a pilot deployment, we bundled Privad client with iFamebook [6], an ad-

don with 10K daily active users that shows visitors to a user’s Facebook profile.

During an 8 week deployment, 40K users installed the bundle, 2800 opted into

the experiment, and at peak we registered 500 online users. Overall, our pilot

deployment generated 315K views, 162 clicks and 2 conversions. We believe

that the low opt-in rate was caused by an inconspicuous participation request,

which was presented to the users as a drop-down notification bar at the top of

the browser window. This notification bar did not retain focus and could be

easily ignored by the users.

Second time, we deployed Privad client by bundling it with Google Docs

Viewer1 [5] – a Firefox addon that uses Google Docs to render online docu-

ments (pdf, doc, ppt, etc.) in the browser without downloading them. When a

user right-clicks on a document URL, this addon appends a context menu entry

to open selected document using Google Docs Viewer [4]. We decided to bun-

dle with Google Docs Viewer mainly because the addon is actively supported

and extended, and therefore maintains a sizable population of almost 80K daily

active users. In an attempt to improve the opt-in rate, we modified the partic-

ipation request (shown in Figure 8.1) to be displayed in a modal dialog, which

does not allow switching browser windows until it is closed by clicking one of

the buttons.

Experimental ethics. Participation in the Privad experiment follows an opt-

in model.2 When users update their addon to the version containing the Pri-

vad bundle, they are presented with a participation request dialog and are free

to choose to join the experiment or not. The participation request contains a
1No affiliation with Google Inc.
2Mozilla’s No Surprises policy requires a opt-in with non-default user action to activate an

“unexpected feature”, such as Privad.
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Figure 8.1: Privad’s participation request

link to a webpage, which provides a comprehensive description of the experi-

ment and informs the users that a fraction of the Google AdSense ads will be

replaced with Privad ads during the experiment. Each adbox containing Privad

ads is clearly labeled with a distinct PrivadAds icon, which when clicked leads

to the experiment homepage. In case an opted-in user is no longer willing to

participate in the study, the Privad client provides an easy way to opt-out. Ad-

ditionally, Privad honours adblocks and PBM, everything is wiped clean if the

plugin is removed.

The system was in continuous operation for more than two months in

September and October 2013 with a two-week gap during which it did not

serve any Privad ads. This hiccup was caused by a major Google AdSense re-

design [8], which changed the html code that ad servers produce to display

AdSense ads. As a result, Privad’s ad rendering modules were no longer func-

tioning properly and we had to push an update to address issues triggered by

the new AdSense design.
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Overall, 13K users opted into the study3 and after an initial bootstrapping

period the system was used daily by over 4800 users on average, with more

than 2000 users online at peak. In October alone, the Privad backend received

1.1M ad requests, generating 960K channels with 9.5M ads in total. We reg-

istered 790K ads views, 417 ad clicks and 4 Amazon purchases (including a

“Flower Power Hippie” Halloween costume, among others). During that time

the dealer served on average 7.9M daily RPC requests, and forwarded 950K

messages from clients to the broker and 60K messages in the reverse direction

on a daily basis. In terms of the network utilization, this corresponds to 1.2 GB

and 115 GB of daily traffic received and sent to clients. On average, the broker

processed 32K search-based and 5.5K product-based daily ad requests, gener-

ating 280K and 39K ads respectively. At peak, the load on broker reached 286

requests per second.

To measure the communications overhead at the clients we parsed server-

logs generated by the dealer in October and selected 6.5K Uids that appear in

logs on at least 7 different days. Figure 8.2 plots the distributions of per-client

daily volume of messages exchanged with broker, including ad requests and re-

ports, as well as the daily bandwidth consumption. While detailed information

logged by the dealer must not be directly available to the broker, the aggregate

stats presented here can safely be made publicly available as part of a monthly

operational summary. Surprisingly, we found that the median value for the

number of daily ad requests is around 3.2, 11% of the users in our sample never

requested any ads, and almost 60% did not generate any ad views. To uncover
3No pings are sent to the backend before a user has opted in, as a result we do not know the

exact opt-in rate. But based on the number of daily Google Docs Viewer users, we estimate it at
around 1 in 15.
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Figure 8.2: CDFs of per-client daily communications overhead

the reasons for the observed behavior, we turned to PDDP analysis, as described

later in Section 9.1.

8.2 Privad Advertising

In this section, we report various advertising related stats computed using re-

ports collected by the Privad broker (i.e., not with PDDP). In total, 87% of all

requests generated a channel (with 89% and 79% for search- and product-based

requests respectively), producing on average 9.8 ads per channel. Overall, we
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Figure 8.3: Hourly distributions of ad requests, views and clicks

calculated Privad CTR at 0.05%. While this value may seem discouragingly low,

as we discovered using PDDP analysis (see Section 9.2), in terms of advertising

performance Privad ads are comparable with text ads on Google Display Net-

work.

With slightly more than 400 clicks, we did not observe stark variations

in CTRs corresponding to different configuration parameters (e.g., placement

mode, channel lifetime, channel selection mode, etc.; all produced roughly

equal CTRs). However, we found that the CTR for product-targeted ads is 2.6

times higher than that for search-targeted ads (0.12% versus 0.046%). We also

found that more than 70% of the Privad clicks were registered in single-slot ad-

boxes (with corresponding CTR of 1.1%), with another 14% in the first position

in multi-slot adboxes (where we observed an exponential decrease in CTR in

lower positions).

Figure 8.3 shows hourly distributions of ad requests (both search and prod-

uct based), views and clicks. To plot this distribution we used event timestamps

recorded in the local to the client time zone. This information is only available at

the dealer, it is uploaded as the message metadata alongside with the encrypted

request or report and not forwarded to the broker. As expected, there’s a no-
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Figure 8.4: CDFs of delays between ad requests and ad views, and be-
tween ad views and ad clicks

ticeable trough corresponding to nightly hours – all distributions exhibit a clear

diurnal pattern.

Figure 8.4 plots the distributions of delays between an ad request and the

first ad view for the generated channel, and between and ad view and the

corresponding ad click. The former is an inherent attribute of the private-by-

design architecture and depends on the delays between system components.

Additionally, the request-view delay is affected by the channel selection and ad

placement policy at the client and is subject to the availability of the adboxes.

Overall, our prototype was able to generate, deliver and display an ad within

an hour of establishing a new interest for 60% of all channels. With the most

aggressive configuration parameters (channel selection = ’most recent’ and ad

placement = ’everywhere’) the 60th percentile of the delay is below 30 minutes.

We believe this to a large extent comes from the time it takes for an adbox to

show up.

Additionally, using PDDP we measured the delay between sending an ad

request and receiving ads from the generated channel (this information is only
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recorded locally at the client). This delay for all responded clients was <10 min-

utes. There are several contributing factors to the request-response delay: length

of the upload cycle at the dealer, polling interval at the client and the ad gener-

ation latency. While the first two are configurable, the latter is implementation-

specific. In our experiments, the observed average ad generation latency was

below 2 seconds (with 99th percentile of 7 second).

While, as Figure 8.4 shows, the majority of the clicks happen within min-

utes after an ad view (the 90th percentile is less than 10 minutes), we do not

have enough data points to establish the relationship between CTR and time

elapsed since identifying a new user interest. Nonetheless, we found that CTR

is affected by the number of times an ad was shown (so-called, ‘opportunities to

see’ or ots), with the first, the second and the third ots accounting for 70%, 14%

and 10% of all clicks respectively.

To evaluate the relevance of Privad ads to user interests, we compute the

cosine similarity using terms from the generated ad content and from the cor-
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responding ad request for all clicked and viewed ads. With even such a sim-

ple metric, which does not take into account semantic relevance, it is clear that

clicked ads tend to better match the original request than non-clicked ads. As

Figure 8.5 shows, almost 40% of the clicked ads have 0.4 similarity coefficient

with ad requests, whereas for viewed ads this number is slightly more than 20%.

We manually inspected clicked ads with similarity lower than 0.1 and found

that the majority of corresponding requests contain terms from non-English lan-

guages and do not appear in the actual ad content.

Overall, we find the achieved CTR to be encouraging given the fact that

we fully relied on shopping engines to match ad requests to relevant products

and that our ad content was produced automatically from resulting products

(which, despite our best effort, sometimes did not look as intelligible and ap-

pealing as handcrafted ads). Naturally, we could have seen higher CTR by ren-

dering our ads only in top positions. Apart from this, we believe that Privad

CTR can be increased by improving targeting heuristics (e.g., reducing noise

in search-based targeting), investing in better request matching algorithms and

serving advertising content designed by hand, not auto-generated.
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CHAPTER 9

COLLECTING DATA WITH PDDP

As opposed to the aggregate performance stats maintained by Privad using

view and click reports, PDDP provides a privacy preserving mechanism to col-

lect per-user stats and perform user-centric analysis. In this chapter, we describe

our experience exploring the extent to which a differentially private data collec-

tion system can be used to understand what is going on behind the scenes in

the private-by-design ad deployment.

Towards this end, we start out by building confidence in the differentially

private results by collecting attributes that characterize the Privad’s user popu-

lation and comparing them with the data available at the server-side. We then

exercise PDDP functionality to get better visibility into the client-side and un-

derstand the reasons for the observed view and click rates. We also analyze

advertising performance for Google ads and compare it with Privad’s. We ex-

amine the difference between search and display ads in terms of the before-

and after-click user behavior. Additionally, we attempt to discover the behav-

ioral differences between clicking and non-clicking users. Finally, we look at the

privacy deficits accumulated as a result of our analysis and study the privacy

implications for the end users.
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In general, our primary goal in evaluating PDDP was not to arrive at any

definite conclusion per se (our user population is not sufficiently large for this

purpose), but to demonstrate the types of analysis made possible with PDDP.

9.1 Aggregate User Characteristics

We start our PDDP data collection with two simple queries, one retrieving the

user timezone, the other the user geographical region. Timezone information is

available to addons as a part of the Firefox API. To obtain the geographical data

the clients call the Maxmind GeoIP API. Both values are updated whenever the

browser restarts and are stored in the client’s SQLite database. The respective

queries are simple one-line select statements with buckets enumerating all pos-

sible timezones in one case, and the top 20 most represented countries (in terms

of the volume of IPs that appear in the dealer’s logs) in the other. Both queries

were active throughout a 24-hour time interval (which means that their result

sets contain answers from all clients who remained online long enough to re-

ceive and execute the query, and encrypt and submit the answer). In total, we

collected 4852 answers for the timezone query with 588 random coins added

to each bucket,1 which corresponds to a standard deviation of 12.12. For the

geographical region we obtained 4604 answers with 585 per-bucket coins (with

stdev = 12.09).

Figure 9.1 shows the distribution of users over timezones collected using

PDDP, together with the distribution of messages received by the dealer dur-

ing the same 24-hour time span constructed using the local timestamp from

the message meta-info field. The two clusters in the histograms center around
1For all PDDP queries in our analysis we use � = 1.
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Figure 9.1: Timezone distribution. Error bars correspond to two standard
deviations = 0.5% (95% confidence interval).

the EDT (UTC-04:00) and CEST (UTC+02:00) timezones, which correspond to

American and European user populations. While both distributions generally

have the same form, a few individual histogram bars diverge by up to 4%. One

possible explanation is the fact that the volume of generated messages varies

from user to user, with an adblocked user generating only a fraction of mes-

sages generated by a non-adblocked user (no view and click messages). Also,

the number of messages depends on the browsing behavior (e.g., performing

searches vs. following links) and on the duration of online activities.

Figure 9.2 plots two distributions of Privad users over a list of countries. One

is based on the noisy answers from the second PDDP query, the other is com-

puted using 4607 IPs extracted from the dealer’s logs from the same 24-hour

period. The tallest bar on the figure corresponds to the US users, and the more

sizable European population is spread over a number of countries including

Germany, Russia, Great Britain, France and others. Almost all values computed

from back-end data lie within the 95% confidence interval of respective PDDP

values, with the exception of the Spain and NA ratios. The reason for this mi-

95



0

5

10

15

20

25

30

NA US IN DE ID RU BR GB FR CA IT IR CN PL NL ES BD JP AU VN TW

R
at

io
 (

%
)

Country code

IPs (Dealer)
Users (PDDP)

Figure 9.2: Geographical distribution. Error bars correspond to two stan-
dard deviations = 0.5% (95% confidence interval). NA repre-
sents countries not included in the top-20 list.

nor mismatch is likely to be that local GeoIP info is captured as soon as the

browser starts and is not updated until the next browser restart, therefore it can

be somewhat stale by the time a client received the PDDP query. For example,

if a user enabled a proxy or joined a different network, the IP address recorded

in the dealer’s log can be different from the one used to retrieve local GeoIP

info. Overall, we find that the back-end data confirms trends discovered using

the differentially private mechanism, which serves as a practical validation of

PDDP results.

We use the rest of this section to describe our experience in exercising the

PDDP functionality to the widest extent possible in order to learn everything

we could about our deployment.

To build a better picture of Privad users, we used PDDP to query the operat-

ing system installed on the user machine (also available as a part of Firefox API).

We found that among the 4428 clients who responded to the query, 64.2% run

Windows, 21.6% use OSX and 14.4% have a Linux installed. Clearly, with the
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Figure 9.3: User attributes collected with PDDP. 95% confidence interval is
±0.6%. PBM stands for private browsing mode.

ratio of Linux users significantly higher than in the general population (1.73%

according to [59]), this sample is representative of a set of technically savvy

power users.

Finally, we executed a query to find the percentages of adblocked users as

well as users with views and clicks for all types of ads (both Google and Pri-

vad). The query was active for 96 hours and accumulated a total of 5909 an-

swers. Among the users who submitted their answers ca. 709 spent less than

two weeks with the system and their values were not included in the query

results. Figure 9.3 shows the distribution of the remaining user answers over

queried attributes. Consistent with the previous observation about the tech-

savvy user population, we found the ratio of ad-blockers among Privad users

to be twice the rate for Firefox users reported by [20]. Surprisingly, despite a

large number of adblocked users, the vast majority still receive ad views (mainly

because popular ad-blocking addons consider Google Search ads to be “accept-

able” [2] and by default do not remove them; by contrast, no Privad ads are

displayed if our client detects an adblock). Moreover, more than 63% of users in
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Figure 9.4: Ratios of users with views and clicks. Timespan = 96 hours,
total answers = 5584, 95% confidence interval = ±0.7%.

the sample have ad clicks (for users who block ads this ratio is only marginally

smaller – 60%). Additionally, 40% and 28% of users have views and clicks regis-

tered only during private browsing mode (PBM). This suggests that more than

a third of Privad users have PBM enabled most of time, during which Privad

client will neither request nor display any ads.

Overall, our PDDP-enabled analysis reveals a technically advanced user

base, where a large fraction have ad-blocking addons and browse in private

mode. The outcome is far from unexpected, given our “bundling” deployment

mechanism. On top of that, the users who opt into a study of private-by-design

advertising are likely to be aware of the privacy concerns related to online ad-

vertising and to use all means available to minimize their privacy exposure on

the web.
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9.2 Comparing Privad and Google Performance

In this section, we present the results of PDDP analysis performed to compare

and contrast Privad and Google ads performance. Figure 9.4 plots the ratios

of users with views and clicks for both Privad and Google ads. It shows that

less than 5% of sampled users have Privad clicks, whereas more than 30% have

non-PBM Google clicks. We did not store any details about events that occurred

in PBM apart from the type of event (i.e., ‘view’, ‘click’, ‘search’, etc). But since

no Privad ads are displayed in PBM, all ad-related PBM events are attributed

to Google. In total, we found that more than 60% of all queried users have

registered Google clicks. Due to lack of information about events in PBM and

to be apples-to-apples with Privad, unless otherwise stated, we exclude PBM

views and clicks from further analysis.

To learn which Google ads are most popular, we break down users with

clicks into groups according to the type of the clicked ad. As Figure 9.5a shows,

among the approximately 1387 users with Google clicks in this sample, the vast

majority registered a click on a search ad. Display with almost 40% of all clickers

is runner-up. Figure 9.5b further breaks down search ads according to location,

where top ads (displayed above organic search results) take the lead with more

than 90% of 1227 users with search ad clicks. Finally, among display ads (Fig-

ure 9.5c), text and image have roughly equal shares each with 40% of users with

display clicks (ca. 524 users in the sample).

To estimate the distribution of per-user Google click-through rates, we is-

sued a query computing the ratio of views to clicks that occurred in October

2013 for all Google ads (including ads displayed in PBM). Since every bucket in
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Figure 9.5: Breakdown of users with at least one Google click by type of
the clicked ad. Timespan = 24 hours, total answers = 4624.
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Figure 9.6: Distribution of per-user Google click-through rates. Timespan
= 96 hours, total answers = 5392. Error bars denote 95% con-
fidence interval. Labels along X-axis represent corresponding
bucket ranges.

a PDDP query incurs a penalty in terms of the added privacy deficit, we gen-

erally strove to use as few buckets as possible. In particular, in order to cover

the whole range of possible CTR values in this query we used exponentially

increasing bucket sizes (with every bucket covering twice the range of its pre-

cursor). Among 5392 user who responded to the query, 865 did not have any

views, CTR values for the remaining ca. 4527 users are distributed as shown in

100



(0, 0.1) [0.2, 0.4) [0.8, 1.6) [3.2, 6.4)

CTR (%)

[0.1, 0.2) [0.4, 0.8) [1.6, 3.2) [6.4, 100]

-1%

0%

1%

2%

3%

4%
Privad

Display text

Figure 9.7: Distributions of per-user click-through rates for Privad and
Display text ads. Timespan = 96 hours, total answers = 6317.
Zero-CTR ratios (90±1.5% for Privad, 85±1.3% for display text
ads) not shown.

Figure 9.6. The first histogram on the figure represents the ratio of users with

no clicks, while the last – the ratio of users with CTR values ≥ 6.4%. Using the

lower endpoint of a bucket range as a conservative estimate of the CTR value

for a user within the bucket, we compute a lower bound on the average Google

CTR across all users – 1.53%.

Privad is an inherently asynchronous system designed for behavioral adver-

tising, not search advertising. The prototype we built generates and displays

only contextual ads. Therefore, it is most reasonable to compare performance

of Privad ads and text ads on the Google Display Network (which we refer to

as display text ads). To do so, we executed a query computing per-user CTR val-

ues for both types of ads. The results of this query are presented in Figure 9.7,

excluding the ratios corresponding to zero-CTR. While dominated by differen-

tially private noise, both CTR are generally quite similar.
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To verify this observation, we used PDDP to compare the Privad and display

text CTR values of each individual user. We collected 4844 answers with 588

coins added to each bucket (stdev = 12.1), among which 2994 had no Privad or

display text views, and 1460 had no clicks. Among the remaining 391 users, we

found that in 210 cases the display text CTR was higher, and in 181 the Privad

CTR was higher.

In addition to detecting views and clicks, Privad clients use a number of

heuristics to identify conversion (i.e., purchases made after a click). Towards

this end, clients tag all pages visited after an ad click with the ad id and try to

detect online payments (e.g., credit cards numbers in post request parameters

that pass through Luhn’s validation) issued on pages tagged with a valid ad

id. To compare how Privad, with 4 actual conversions, fares against Google, we

executed a PDDP query counting the number of detected Google conversions.

From 6022 users who responded, 107 users made a purchase following a click

on a Google ad (stdev = 12.3), 23 made a conversion while in PBM and 29 had

more than one conversion. However, the majority of conversions (ca. 92) were

generated by search ads, with display ads accounting for only 7 conversions

(well below the noise level).

In general, using PDDP we found that both in terms of the click-though rates

and conversions Privad ads perform on a par with text ads on Google Display

Network. While recommendation systems and ad targeting are well studied in

as long as they are performed in the cloud, it still remains a challenging and

open question how to do targeting on the client using only the local profile in-

formation. The preliminary results reported here suggest that even with a few

simple heuristic for targeting from the localhost Privad is as effective as the ad
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Figure 9.8: Distributions of per-user click-through rates for Search and
Display Google ads (all subtypes). Timespan = 72 hours, to-
tal answers = 5272. Zero-CTR ratios (40 ± 1.2% for Search,
74.4 ± 1.3% for Display) not shown.

network, which has a global view of the user profiles and employs complex

machine learning algorithms.

9.3 Comparing Search and Display Performance

As mentioned in the previous section, our PDDP analysis reveals a difference

in the number of conversions attributed to search and display ads. The dis-

similarity between these ad types is even more prominent when we compare

the distributions of per-user click-through-rates (Figure 9.8). More than half of

roughly 2200 users with search ad views have CTRs ≥ 0.8%, whereas display ad

CTRs for almost all users do not exceed this value. Also, all search clicks were

generated by text ads, but half of the display clicks comes from text ads and half

from image ads.
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Figure 9.9: Distributions of per-user average view-click delay for Search
and Display text ads. Timespan = 48 hours, total answers =
5239.

After observing a stark difference in performance between search and dis-

play ads, one of the remaining questions was whether these two ad types differ

in terms of the before- and after-click user behavior. In other words, we want

to find out how long users linger before clicking on an ad and whether they

remain interested in and engaged with the landing page content a long time or

leave soon after the click. Our primary goal here was to exercise the PDDP func-

tionality to the widest extent possible without making any significant claims

regarding observed results. Therefore, we compare search and display focus-

ing only on text ads. In order to increase size of the population with display

text clicks, we include Privad clicks in this category, since both display text and

Privad ads are visually similar and share the same performance characteristics.

Figure 9.9 plots the distribution of the average per-user delay between an

ad view and the subsequent click on the ad. The mean delay for display ads

is around 30 seconds to 1 minute, while for search ads it is between 8 and 30

seconds. In part, this difference could be explained by the fact that we register
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Figure 9.10: Distributions of per-user average click-chain length for Search
and Display text ads. Timespan = 48 hours, total answers =
4895.

a view at the time of the page load, and not when an ad is within the visible

area of the browser window. And while top search ads appear immediately on

the screen, oftentimes a user has to scroll down to see a number of display ads

hidden outside of the visible area.

Another metric we use to analyze post-click behaviour is the length of the

“click-chain” – the number of pages visited by following links on the adver-

tiser’s webpage. The distributions of the average click-chain length are shown

on Figure 9.10. On average, the majority of users visit only the landing page

of a display text ad (click-chain length = 1) and rarely follow 1-2 additional

links (counts corresponding to buckets with more than 3 visited pages are dom-

inated by differentially private noise). The same distribution for search ads is

more evenly spread with bucket counts corresponding up to 7 visited pages

well above the noise level.

Finally, Figure 9.11 presents the distributions of time spent actively browsing

advertiser’s content for both ad types. Again, the figure clearly shows a shift
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Figure 9.11: Distributions of per-user average engagement for Search and
Display text ads. Timespan = 48 hours, total answers = 5059.

between distributions with the average engagement reaching a peak at 10 to 20

seconds for display ads and 40 to 80 seconds for search ads.

9.4 Clickers vs. Non-clickers

In addition to comparing performance characteristics for different types of ads,

PDDP also enabled us to analyze online behavior of different user groups.

Specifically, we attempted to discover correlations between clicking and a num-

ber of other online activities. For example, using PDDP we compared users

with zero-clicks (aka non-clickers) and users with two or more clicks (aka click-

ers) in terms of the frequency of online shopping. For each user we computed

the number of items placed in a shopping cart (i.e., shopping events) divided

by the total active browsing time. Figure 9.12 plots the distributions of this ratio

for both user groups. On average, as the figure shows, clickers tend to shop

online more often than non-clickers. Unfortunately, we did not find any strong
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correlations that would allow to classify a user as a clicker or non-clicker based

only on the locally available information about user’s online activities.
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9.5 Analysis

Overall, we executed 159 PDDP queries, collecting 790017 answers from 9395

unique clients. Figure 9.13 plots the CDF of the fraction of answers collected

by the dealer within a certain period after issuing a PDDP query. The figure

shows that a half of all answers were received within 5 hours after launching a

query. The majority of these answers come from the European user population

located not farther than a few timezones away from the dealer. Not surprising,

to reach more users around the globe we had to specify query lifetime of at least

24 hours.

For all queries we used � = 1 and added a number of coins to satisfy the

δ < 1/c requirement [19]. As already mentioned, we treat individual buckets

as separate queries and, therefore, compute the (�, δ)-privacy cost of a query

as (1, 1/c)× number of buckets. The cumulative privacy deficit for each client is

recorded at the dealer. This dataset shows that the maximum per-client pri-

vacy cost of our PDDP analysis is (� = 3006, δ = 0.6). Moreover, as shown in

Figure 9.14a 20% of the clients who participated in the analysis accumulated a

deficit of more than 97% of the maximum. One way to understand this amount

of privacy deficit is to estimate how many user attributes it will allow an at-

tacker to learn under a worst-case scenario assumption.

Isolation attack (averaging out the noise). Let’s assume that an attacker

can isolate a single client (for instance, by constructing a query in such a way

as to single out one user) and repeatedly pose the same query to this client (or

alternatively a single query with a large number of identical buckets). If the

system adds at least n coins to an answer, the noise generated in a single trial is

108



�n
i xi − n/2, where x is value of an individual coin (0 or 1). The expected value

of the noise in a single trial is 0 (noise is distributed binomially with success

probability p = 0.5). The average noise value after t trials is 1
t
�t

k(
�n

i xi − n
2 ) =

1
t (
�nt

i xi− nt
2 ), which according to the central limit theorem follows approximately

normal distribution N(0, n/4t). 95% of the values of this distribution lie within

two standard deviations of the mean: [−√n/t,
√

n/t]. The noise is effectively

cancelled out when the width of this interval is < 1. In other words, if after t

trials an attacker observes average PDDP value from (−0.5, 0.5) interval, it infers

that the true user value is 0 with 95% confidence (similarly a value from (0.5, 1.5)

interval corresponds to the user value of 1). Solving
√

n/t < 0.5 for t, gives that

if t > 4n the noise is cancelled out with 95% confidence (for 99% confidence t

> 9n).

The maximum (�, δ)-privacy deficit of (3006, 0.6) in our dataset allows an

attacker a single query with t = 3006 identical buckets and n = 590 coins added

to each bucket. This enables the attacker to learn a single sensitive user attribute

with confidence >97% (alternatively, using two queries with 1503 buckets the

attacker can learn two attributes with confidence >89%). Figure 9.14b plots the

attacker’s confidence across all users, based on the number of answers produced

by each user. This shows that, according to the differentially private model, an

attacker could have predicted a single attribute for 40% of the users with 95%

confidence (or two attributes with 83%).

We cannot, however, conceive of any query that would have allowed us to

learn what Figure 9.14b suggests. Imagine that we had enough auxiliary in-

formation about one of the clients to formulate a query that isolated that client

from all the others. Then using a malicious 3006-bucket query, we could have
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Figure 9.14: Accumulated privacy deficit and its practical implications

learned one thing about our victim. But we would have learned nothing about

the other clients that answered the query, even though theoretically those clients

experienced privacy loss.

In other words, not only does the differential privacy worst-case model give

a poor reflection of the actual privacy loss experienced by our client population

(i.e. none!), it is a poor reflection even for the best attack we can conceive. A

conservative interpretation of differential privacy would suggest that we should
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have made fewer queries than we made. In practice, this would have unneces-

sarily hampered the utility of our system. Somehow this gap between theory

and practice needs to be reduced. For example, by introducing a number of ad-

ditional privacy mechanisms which range from simple tricks like limiting the

number of buckets in a query [10], to running taint analysis to ensure that the

same attribute is not used to answer repeated queries. While not provably dif-

ferentially private, these practical mechanisms will nevertheless raise the bar

for attackers.
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CHAPTER 10

SUMMARY AND FUTURE DIRECTIONS

In the first part of this thesis, we addressed the challenge of designing an

online advertising auction for a private-by-design advertising system that lever-

ages user profile information while keeping the user profile private. We broadly

explored the design space, proposing three types of auctions, and analyzing

their properties with respect to privacy, auction quality and vulnerability to

attack. Overall, we found that two of the systems, Rank-at-Client (RaC) and

Rank-at-3rd-Party (Ra3), are very acceptable designs. RaC is simpler and more

efficient, but has the drawback that information about ad quality and bid is

leaked. On the other hand, this is information that can today be determined by

placing ads and monitoring the resulting ranking. Finally, noting that our auc-

tion designs suffer delays that cause out-of-date bid information to be used in

rankings, we use Bing advertising system auction trace to determine the effect

of these delays. We find the effect to be very minimal, and so conclude that our

auction designs are viable.

In the second part, we described our experience and challenges involved in

building, deploying and operating a private-by-design ad system. Much of this

work is empirical in nature, and as such is full of experimental warts and id-

iosyncrasies (mostly acknowledged), but in a sense that was the point. Overall,

we believe that the process we went through to see our prototype deployed and

used by thousands of users is as much a contribution of this work as the results

we obtained. This experiment provided us with ample evidence and helped

answer several key questions such as: is the private-by-design technology a

non-starter, what can a researcher do to evaluate a private-by-design system,
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short of an actual start-up, and what compromises are made in the process. We

learned several lessons from this experiment.

First, Search ads, which reflect user interests in real-time, clearly perform

better than Display ads. Therefore, technologies like Privad, which delay ad

delivery, face a serious limitation. On the other hand, compared with Display

text ads, Privad performed surprisingly well. A number of additional improve-

ments can be made to achieve even higher click-through rates.

Second, using PDDP analytics we learned that the population of users who

opted into the study was biased towards technically advanced power users,

many of whom have ad blocking software, browse in private mode and tend to

rarely click on ads. Therefore, we believe that the observed performance is an

overly conservative estimate of the click-through-rates in general.

Third, when used with Privad’s threat model, which assumes an honest-but-

curious adversary, differential privacy produces an excessively pessimistic esti-

mate of privacy loss. In reality, we came nowhere near learning any attributes

about any specific individual. Additionally, an expected, but still negative re-

sult of this study is that, without additional measures to raise the attack bar,

differential privacy is inadequate for long-running analytics.

Unfortunately, our experiments do not allow us to address one important

question: what is required to incentivize adoption of the private-by-design

technologies. Nonetheless, since the private-by-design model was proposed

in response to public concerns over ever increasing online tracking, we be-

lieve that the most realistic path towards wide-spread adoption of this model

goes through establishing and enforcing sensible privacy policies on the Inter-
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net. These policies must create sufficient regulatory pressure on the advertising

industry, so that it will abandon its current privacy invasive practices and start

looking for alternative technologies. In this sense, our experiments with private-

by-design model serve as an argument in the “tracking versus targeting” debate

and show that a viable alternative indeed exists.

There are still a number of open challenges in the space of private-by-design

advertising. These include developing better algorithms for profiling and tar-

geting from the localhost, protecting after-click user privacy (i.e., privacy from

advertisers), and reducing inherent delays in the architecture in order to serve

real-time search ads. A fully functional auction component requires a mecha-

nism to compute user score. Such a mechanism is yet to be designed and eval-

uated in terms of the effectiveness of predicting click-through rates. A mea-

surement study of ads served by a major search engine could help determine

to what extent advertisers can reverse-engineer each otherś bids in today’s sys-

tems. This will quantify how much advertiser privacy loss is incurred by the

Rank-at-Client scheme.

Each of the private-by-design advertising schemes so far proposed makes

the tacit assumption that there is only a single broker, and a single profiler oper-

ating at each client. It is unclear what happens if there are multiple brokers with

competing profilers in each client. In particular, the profilers should be able to

dynamically compete for ad boxes in real time, thus adding a new element to the

auction that is not unlike the way ad exchanges operate today. Moreover, these

clients may also need to compete with existing tracking advertising systems in

real-time auctions run by existing ad exchanges.
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The last step in Privad’s evolution is to build an auction component and de-

ploy the system within an ad exchange. However, we do not believe this is fea-

sible in a purely research setting. Rather, a commercial deployment is needed.
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