
Technical Report MPI-SWS-2014-004

February 2014

GPS: Navigating Weak Memory with
Ghosts, Protocols, and Separation

Aaron Turon Viktor Vafeiadis Derek Dreyer
Max Planck Institute for Software Systems (MPI-SWS)

{turon,viktor,dreyer}@mpi-sws.org

Abstract
Weak memory models formalize the unexpected behavior that one
can expect to observe in multi-threaded programs running on mod-
ern hardware. In so doing, however, they complicate the already-
difficult task of reasoning about correctness of concurrent code.
Worse, they render impotent the sophisticated formal methods that
have been developed to tame concurrency, which almost univer-
sally assume a strong (i.e., sequentially consistent) memory model.

This paper introduces GPS, the first program logic to provide
a full-fledged suite of modern verification techniques—including
ghost state, rely-guarantee “protocols”, and separation logic—for
high-level, structured reasoning about weak memory. We demon-
strate the effectiveness of GPS by applying it to challenging exam-
ples drawn from the Linux kernel as well as lock-free data struc-
tures. We also define the semantics of GPS and prove its soundness
directly in terms of the axiomatic C11 weak memory model.

Contents

1 Introduction 2

2 The C11 memory model 2

3 GPS: a logic for release-acquire consistency 4

4 Case studies 8

5 The semantics and soundness of GPS 9

6 Related work 10

A Language 13
A.1 Syntax . 13
A.2 Semantics . 13
A.3 Memory model 13

B Logic 16
B.1 Semantic structures 16
B.2 Local safety . 16
B.3 Global safety . 18
B.4 Syntax and semantics 19
B.5 Proof theory . 19

C Metatheory 21
C.1 Basic properties of semantics domains and ghost

moves . 21
C.2 Proof rules: local soundness 22
C.3 Global soundness 22

D Examples 29
D.1 One-shot message passing 29
D.2 Spinlocks . 31
D.3 Ernie Cohen’s lock example 33
D.4 Michael-Scott queue 34
D.5 Circular buffer 39
D.6 Bounded ticket locks 44

1

1. Introduction
There are many good reasons to run code out of order. CPUs maxi-
mize productivity by scheduling instructions according to the avail-
ability of data. Write buffers mask memory latency by updating
caches asynchronously. Even mundane compiler optimizations like
common subexpression elimination change the ordering of reads.

These and other critical optimizations are expected, of course,
to respect the semantics—of sequential code. For concurrent code,
reorderings have a visible effect: they destroy the illusion of a sin-
gle memory shared between all threads, allowing different threads
to observe writes in different orders. Since the optimizations are
considered too important to give up, architectures and languages in-
stead codify their effect abstractly, in terms of weak memory models
that specify which observations are possible and which aren’t [2].

Weak memory complicates the already-difficult task of reason-
ing about correctness of concurrent code. Worse, it renders impo-
tent our most effective weaponry: the sophisticated formal methods
that have been developed to help tame concurrency, which almost
universally assume a strong (i.e., sequentially consistent) memory
model. Even basic techniques like history invariants and auxiliary
state seem to rely on threads witnessing events in the same order.

So we are left with a pressing question: is there any way to
retain the advances in modern concurrency verification when our
fundamental assumptions about memory have to change?

Recovering strong memory One answer that has emerged in re-
cent years is to try somehow to “recover” the assumption of strong
memory. Most memory models satisfy the so-called fundamen-
tal property [27]: they guarantee sequential consistency for “suffi-
ciently synchronized” code. (Synchronization operations like mem-
ory fences effectively thwart compiler and CPU optimizations.)
Thus, if a concurrency logic enforces a strong synchronization dis-
cipline, it can support strong memory reasoning [7, 10, 14, 24]. The
downside is that the logic can only be used to verify programs that
follow the discipline, and, of course, can only verify program mod-
ules whose behavior is sequentially consistent. That rules out some
of the more subtle (and thus important to verify) algorithms used in
practice, including several of the case studies in §4.

Another way of recovering strong memory is to explicitly model
low-level hardware details (e.g., per-processor write buffers) within
one’s logic [26, 30], or to transform the program being verified so
that interactions with write buffers, for instance, are made manifest
in its code [4]. While this type of approach can accommodate ar-
bitrary programs and enable the reuse of existing SC techniques, it
provides little abstraction or modularity: users of such an approach
must reason directly with the low-level hardware details, with rela-
tively little help given in structuring this reasoning.

Navigating weak memory Here we take a different approach:
rather than trying to recover strong memory, we embrace weak
memory as it is.1 Our goal is to develop a program logic with high-
level, structured reasoning principles for weak memory.

An important first step toward this goal is the recent work of
Vafeiadis and Narayan on Relaxed Separation Logic (RSL) [29],
the first logic for the C11 memory model [18, 19]. RSL supports
simple, high-level reasoning about resource invariants and owner-
ship transfer à la concurrent separation logic (CSL) [23]. But it does
not support some other useful features of modern concurrency log-
ics, such as “ghost” (auxiliary) state and rely-guarantee reasoning.

In this paper, we present GPS, the first logic to support ghost
state, rely-guarantee, and separation in a weak memory setting.

1 A similar perspective has recently been advocated in the context of model
checking (“Weakness is a virtue” [3]), albeit with a rather different motiva-
tion; here, we investigate its consequences for program logics.

A major obstacle to developing such a logic is the global nature
of weak memory models. For example, most language-level models
are given in terms of event graphs whose nodes include every read
and write performed in a program execution. To determine the val-
ues that might be returned by a given read operation, one may have
to in principle consider every write event in the graph, using the
model’s axioms to deduce whether the write is visible to the read
or not. Global axioms are well-suited to giving a precise language
semantics, but they do not easily yield thread-local reasoning.

Our key technique for coping with global graphs is to force rea-
soning to be even more local than in logics for strong memory. Be-
cause compilers and CPUs must respect the semantics of sequen-
tial code, they generally do not reorder writes to the same location.
Weak memory models therefore guarantee coherence: writes to any
single location will appear in the same order to all threads (the so-
called modification order). Thus, we can recover the full toolkit of
concurrency reasoning if we restrict it to a single location at a time.

GPS encodes such location-local reasoning through per-location
protocols (PL-protocols), which govern the writes to a single loca-
tion according to an abstract state transition system (§3). Although
seemingly focused on single locations, PL-protocols are in fact the
key to cross-location reasoning: by discovering that one location `
is in a state s in its protocol, one can learn that another location `′ is
at least in some state s′ in its protocol. This kind of “transitive vis-
ibility” is at the heart of weak memory models, and PL-protocols
provide a structured, thread-local way to reason about it.

PL-protocols are modeled after similar mechanisms in recent
SC concurrency logics [28], and as such, support a flexible combi-
nation of rely-guarantee (by abstractly characterizing interference
between threads), ghost state (by tracking the history of writes to
a location), and CSL-style resource invariants. GPS also offers two
other facilities for ghost instrumentation—ghosts and escrows—
which we explain in §3. The need for multiple mechanisms stems
from the fact that ghost state is not sound in general under a weak
memory semantics because it induces additional synchronization to
the program, which at the extreme can be used to regain SC. Adapt-
ing ghost state to weak memory thus required us to isolate several
different usage patterns that do not induce additional synchroniza-
tion and do remain sound under weak memory assumptions.

GPS targets the recent C11 [18, 19] memory model, which of-
fers portable but fine-grained control over memory consistency
guarantees. To keep the presentation focused, we consider the
two most important consistency modes—nonatomic and release-
acquire (see §2). The logic is, however, sound under the full axioms
of C11. We have defined its semantics and proven its soundness di-
rectly in terms of the axioms of C11, as summarized in §5. The
supplementary materials [1] provide many further details, as well
as a Coq mechanization of the soundness proof of GPS.

To evaluate GPS, we have applied it to several challenging case
studies drawn from the Linux kernel and lock-free data structures,
as we describe in §4. We conclude in §6 with related work.

2. The C11 memory model
Memory models answer a seemingly simple question: when a
thread reads from a location, what values can it encounter?

• Sequential consistency (SC) provides an equally simple answer:
threads read the last value written. SC leads naturally to an
interleaving semantics of concurrency, where threads interact
through a global heap holding each location’s current value.
• In weaker consistency models, the “last value written” to a lo-

cation plays no special role—it may not even be well-defined.
Instead, threads can read out-of-date values reflecting the pos-
sible reorderings performed by the CPU or compiler.

2

The C11 memory model [18, 19] strikes a careful balance between
these extremes by offering a menu of consistency levels. Broadly,
memory operations are classified as either nonatomic (the default)
or atomic. Nonatomic accesses are intended for “normal data”,
while atomic accesses are used for synchronization.

Nonatomics are governed by a peculiar contract: the program-
mer can assume them to be SC, but must (under this assump-
tion!) never create a data race—roughly, a thread must never write
nonatomically if another thread might access the same location
concurrently. The lack of data races effectively prevents the pro-
gram from observing reorderings, so nonatomic accesses can enjoy
the full suite of compiler/CPU optimizations and still appear SC.

Atomics offer the opposite tradeoff: concurrent threads may
race to e.g., update a location atomically, but the memory model
provides weaker guarantees (and admits fewer optimizations) for
atomic accesses in general. The precise guarantees are determined
by an “ordering annotation”, ranging from SC to fully relaxed.
In this paper, we focus on the release-acquire ordering, which is
the primary building block for non-SC synchronization. As such,
we will use two ordering annotations, O ∈ {at, na}, for atomic
(release-acquire) and nonatomic accesses, respectively.

Examples Before introducing C11 formally, we build some in-
tuition through two classic examples. The first is a simplified ver-
sion of Dekker’s algorithm, which provided the first solution to the
mutual-exclusion problem [12]:

[x]at := 1
if [y]at == 0 then
/* crit. section */

[y]at := 1
if [x]at == 0 then
/* crit. section */

We presume at the outset that x and y are pointers to distinct loca-
tions, both with initial value 0.2 The two threads race to announce
their intent to enter a critical section; each thread then checks
whether it announced first. In this simplified version, even under
SC, it is possible for both threads to lose. Unfortunately, in the C11
model, it is also possible for both threads to win! The intuition is
that C11 allows the reads to be performed before the writes have
become visible to all threads: the two threads can read stale values.

The second example illustrates a case where C11 atomics do
enforce some ordering. The goal is to pass a data structure from
one thread to another (here represented as a single value, 37):

[x]na := 37;
[y]at := 1;

repeat [y]at end;
[x]na

Again, we presume x and y are pointers to distinct locations,
initially 0. The repeat construct executes an expression repeatedly
until its value is nonzero, so the second thread will “spin” until it
sees the write to y by the first thread. Unlike in Dekker’s algorithm,
here C11 will guarantee that the subsequent read from x will re-
turn 37. The key difference is that reading 1 from y yields positive
information about what the first thread has done: if an atomic (re-
lease) write by a given thread is seen by another thread, so is every-
thing that “happened before” the write, including all the writes that
appear prior to it in the thread’s code. Dekker’s algorithm, by con-
trast, draws conclusions from not seeing a write by another thread.

In general, then, release-acquire in C11 does not guarantee
that threads see the globally-latest write to a location, but it does
guarantee that (1) if a thread sees a particular write, it also sees
everything that happened before it, and (2) of the writes a thread
sees for a location, it can only read from the latest.

A final point about the message-passing example: its use of y
guarantees that the write to x by the first thread happens before—
not concurrently with—the read of x by the second thread. Thus
the code is data-race free, despite its nonatomic accesses to x.

2 We are using here the program logic notation for pointer dereferencing,
[−], which avoids ambiguity with the ∗ of separation logic.

Event graphs We now present the C11 model formally, follow-
ing Batty et al. [6] and subsequent simplifications [7, 29]. Our pre-
sentation makes several further simplifications due to our focus on
release-acquire atomics, but GPS is also sound for the full-blown
C11 axioms. The appendix includes more details [1].

Since weak memory models allow threads to see stale values,
they must track the history of an execution and use it to specify
the values a read can return. The C11 model takes the axiomatic
approach: it treats each step of a program execution as a node in a
graph, and then constrains the graph through a collection of global
axioms on several kinds of edges. Each node is labeled with one of
the following actions:

α ::= S | A(`..`′) | R(`, V,O) | W(`, V,O) | U(`, V, V)

The actions are Skip (no memory interaction), Allocate, Read,
Write, and atomic Update. Reads and writes record the location,
value read/written, and ordering annotation. An atomic update
U(`, Vo, Vn) simultaneously reads the value Vo from location ` and
updates it with the new value Vn (used for e.g., compare-and-set).

We assume an infinite set of event IDs; an action mapA is then a
finite partial map from event IDs to actions, which defines the nodes
(and node labels) of a graph. An event graph G = (A, sb,mo, rf)
connects the nodes with three kinds of (directed) edges:

Sequenced-before (sb ⊆ dom(A) × dom(A)), which records
the order of events as they appear in the code (i.e., “program
order”). For convenience, sb is not transitive: it relates each node
only to its immediate successors in program order (see [29]).

Modification order (mo ⊆ dom(A) × dom(A)), which is a
strict, total order on all the writes to each location, but does not
relate writes to different locations. It determines which of any pair
of (possibly concurrent) writes to a location is considered to “take
effect” first—a determination that is agreed upon globally.

Reads-from (rf ∈ dom(A) ⇀ dom(A)), which maps each read
to the unique write, if any, that it is reading from. It is undefined for
reads from uninitialized locations.

The goal of the C11 axioms is to constrain the rf relation so that it
provides the guarantees mentioned informally above. The axioms
rely on a pair of derived relations:

Synchronized-with (sw ⊆ dom(A) × dom(A)) defines those
read-write pairs that induce “transitive visibility”, as in the message-
passing example above. In the release-acquire fragment of C11,
these include any read/write pair marked as atomic:

sw , {(a, b) | rf(b) = a, isAtomic(a), isAtomic(b)}

Happens-before (hb , (sb ∪ sw)+) is the heart of the model:
hb(a, b) means that if a thread has observed event b, then it has
observed event a as well; it is a bound on staleness.

Axioms Only the sb order is determined by the program as writ-
ten. The other orders are chosen arbitrarily—except that they must
satisfy C11’s axioms. These axioms include some sanity checks:

• hb is acyclic (an event cannot happen before itself),
• a location cannot be allocated more than once,
• rf maps reads to writes of the same location and value, and it is

not possible to read a value from a write that happens later:3

rf(b) = a =⇒ ∃`, V. writes(a, `, V), reads(b, `, V), ¬hb(b, a)

• atomic updates must, in fact, be atomic: the update must imme-
diately follow the event it reads from in mo:

isUpd(c), rf(c) = a =⇒ mo(a, c), @b. mo(a, b), mo(b, c)

3 The reads and writes functions extract the locations and values from
normal read/writes as well as atomic updates.

3

Syntax
v ::= x | V where closed values V ∈ N
e ::= v | v + v | v == v | v mod v
| let x = e in e | repeat e end
| if v then e else e | fork e
| alloc(n) | [v]O | [v]O := v
| CAS(v, v, v)

K ::= [] | let x = K in e

T ∈ N fin
⇀ (ActName× Exp)

Event steps e
α−→ e

K[e]
α−→ K[e′] if e

α−→ e′

alloc(n)
A(`..`+n−1)−−−−−−−−−→ `

[`]O
R(`,V,O)−−−−−−→ V

[`]O :=V
W(`,V,O)−−−−−−→ 0

CAS(`, Vo, Vn)
U(`,Vo,Vn)−−−−−−−→ 1

CAS(`, Vo, Vn)
R(`,V ′,at)−−−−−−−→ 0 if V ′ 6= Vo

Machine steps 〈T ;G〉 −→ 〈T ′;G′〉

e
α−→ e′ consistentC11(G′)
G′.A = G.A] [a′ 7→ α]

G′.sb = G.sb] (a, a′) G′.mo ⊇ G.mo
G′.rf ∈ {G.rf, G.rf] [a′ 7→ b]}

〈T] [i 7→ (a, e)];G〉 −→ 〈T] [i 7→ (a′, e′)];G′〉

〈T] [i 7→ (a,K[fork e])];G〉 −→
〈T] [i 7→ (a,K[0])]] [j 7→ (a, e)];G〉

Figure 1. Syntax and semantics of a language for C11 concurrency

But the heavy lifting of the C11 model is done by a final axiom,
called coherence, which connects mo, rf, and hb:

hb(a, b) =⇒ ¬mo(b, a), ¬mo(rf(b), a),
¬mo(rf(b), rf(a)), ¬mo(b, rf(a))

To see how coherence formally ensures the intuitive guarantees we
gave above, we apply it to the simple message-passing example,
this time in graph form:

a:W(x,0,na)

b:W(x,37,na)

d:R(y,1,at)

e:R(x,?,na)

c:W(y,1,at)

 sb

sb sb

rf

rf

rf

sb

(Initialization
of y elided.)

In the depicted execution, the event d in the second thread reads
from the event c in the first thread (which writes 1 to y).4 We want
to use coherence to deduce that the subsequent read of x in event e
must read from event b (which writes 37 to x):

• Since sb(a, b), and hence hb(a, b), we have ¬mo(b, a). But mo
is a total order on writes to each location, so mo(a, b).
• Because rf(d) = c, we have sw(c, d) and thus hb(c, d). By

transitivity of hb, we know that hb(b, d) and hence hb(b, e).
• Coherence then says that ¬mo(rf(e), b), i.e., that e cannot read

from any write earlier (in mo) than b; in particular, e cannot
read from a. It must read from b.

The key is the second step, where we deduce the existence of an sw
edge (and thus the transitive visibility, by hb, of previous writes). In
Dekker’s algorithm, by contrast, when one thread reads the other’s
flag, there are no hb edges that ensure it sees the “latest” write.

Altogether, we write consistentC11(G) to say that a graph G
satisfies the axioms above (plus one more for uninitialized reads).
The full set of axioms is in the technical appendix [1].

A language for C11 concurrency Figure 1 gives a simple lan-
guage of expressions e with allocation, pointer arithmetic, thread
forking and order-annotated memory operations. To keep the se-
mantics streamlined, we adopt A-normal form [15], which requires
intermediate computations to be named through let-binding,
which is the only evaluation context K. The if expression takes
the then branch when its guard is non-zero. Similarly, repeat ex-
ecutes the given subexpression until it produces a non-zero value,
which is then returned.

The semantics is given in two layers. First, expressions e freely
generate actions α through the relation e α−→ e′. Pure expressions
generate the S action (e.g., let x = V in e

S−→ e[V/x]), while ex-
pressions that interact with memory generate corresponding mem-

4 Formally, rf(d) = c; graphically, we draw an rf edge from c to d, so that
the arrow points in the direction of hb.

ory model actions. Note that reading generates an R action for an
arbitrary value. The actual value read is constrained by the second
layer, which governs machine configurations 〈T ;G〉.

Machine configurations track the current pool of threads, T ,
and the event graph built up so far, G. For each thread, the pool
maintains (1) the identity of the last event produced by the thread
and (2) an expression giving the thread’s continuation. To take a
(non-fork) step, a thread’s continuation must generate some action
α, which is then incorporated into an updated event graph G′,
where it is placed in sb order after the thread’s previous event. The
mo order for G′ can arbitrarily extend the one for G, but because
it is a strict total order on writes, the extension will only add
relationships to the new node. The rf order can likewise only add
a read for the new node, which must read from some previously-
existing write. Finally, the new graph G′ is assumed to satisfy the
C11 axioms, constraining both the possible events and edges. The
validity of this semantics for C11 is discussed in the appendix [1].

We write JeK for the set of final values e can produce, starting
with a single-node event graph (where the start node is action S). If
at any point e creates a data race or memory error (defined formally
in the appendix [1]), then JeK = err; the C11 semantics leaves such
programs undefined. Any expression verified by GPS is guaranteed
to be free of data races on non-atomic locations and memory errors.

3. GPS: a logic for release-acquire consistency
The C11 memory model successfully serves as a contract between
compiler and programmer, making it possible—in principle—to re-
solve disputes (can a read of x here return 0?) by reference to global
axioms. These axioms—again, in principle—also support certain
intuitions about, e.g., transitive visibility. But, even with an exam-
ple as simple as one-shot message passing (§2), the intuitions are
not directly captured by the axioms. Rather, they emerge through
chains of subtle reasoning showing that certain edges must, or must
not, exist. Axiomatic reasoning is also relentlessly global: a read
event can potentially read from any write in the graph, so the ax-
ioms must be applied to each write to rule it in or out.

Our goal is to supplement the (release-acquire) C11 memory
model with a program logic that (1) captures intuitions about transi-
tive visibility more directly and (2) supports thread-local reasoning.
This section presents GPS, which achieves both goals through

• per-location protocols that abstract away event graphs, and
• ghosts and escrows, which govern logical permissions in the

style of recent separation logics.

Setup GPS is a separation logic for an expression language. Its
central judgment is the Hoare triple, {P} e {x. Q}, which says that
when given resources described by P , the expression e is memory
safe and data-race free. If, moreover, e terminates with a value V ,
it will do so with resources satisfying Q[V/x]. We will introduce
assertions P gradually. For now, we assume they include the basic

4

operators of multi-sorted first-order logic:
P ::= t = t | P ∧ P | P ∨ P | P ⇒ P | ∀X.P | ∃X.P | · · ·

where θ ranges over sorts (for now, just Val) and t ranges over
terms. We write t : θ if t has sort θ, and assume that variables X
are broken into classes by sort (`, x, y, z for variables of sort Val).

Per-location protocols We start with a twist on message passing:

[x]at := 37;
[y]at := 1;

· · · [x]at := 37;
[y]at := 1;

repeat [y]at end;
[x]at

Intuitively, this variant, with multiple threads sending the same
same message (37), works for the same reason the original does:
transitive visibility. We want to articulate this common intuition in
a way that doesn’t depend on how many threads are sending the
message 37 or involve global reasoning about the event graph.

A tempting starting point is to simply say that the values that
x and y point to progress from (0, 0) to (37, 0) to (37, 1). Alas,
this kind of reasoning is unsound for weak memory in general: it
assumes that all threads will see writes to different locations in the
same order. In actuality, independent (i.e., hb-unrelated) writes to
different locations can appear to threads in different orders, which
is why Dekker’s algorithm fails. If we want thread-local reasoning,
we need an approach that accounts for what our thread may see,
while capturing the happens-before relationship between writes.

The key insight of GPS is that we can constrain the evolution
of values if we focus on one location at a time: mo provides a
linear order, seen by all threads, on the writes to a given location.
Toward this end, GPS provides per-location protocols, which are
state transition systems governing a single shared location. Using
protocols, we can express the changes to x and y independently:

x : 0 37 y : 0 1

These transition systems offer an abstraction of the event graph:
each state represents a set of write events, while edges represent mo
relationships between them. Thus, for x, we see that all of the writes
of 37 are mo-later than the initial write of 0. But these independent
constraints alone are not enough: we must ensure that y can only
be in state 1 if x is “known” to be in state 37.

In general, protocol states are abstract; the labels on the tran-
sition systems above are merely suggestive. Each state is given an
interpretation, which constrains the values that may be written to
the location in that state, but may also impose other constraints—
including, as we will see, constraints on other protocols. (Treating
states abstractly allows us to, in effect, associate a ghost variable
with each memory location, as §4 will show.)

Formally, we assume a sort State of protocol states, ranged over
by variables s. GPS is parameterized by (1) the grammar of terms
of sort State and (2) a set of protocol types (metavariable τ). For
each protocol type τ , the user of the logic specifies:

• A transition relation vτ , which is a partial order on states.
• A state interpretation τ(s, z), which is a resource assertion in

which s and z appear free (i.e., it is a predicate on s and z). The
assertion represents what must be true of a value z for a thread
to be permitted to write it to the location in state s.

For the message passing example, we introduce a protocol type
Dat governing location x. Writing abstract states in bold, we say
0 vDat 0, 0 vDat 37, 37 vDat 37, and define

Dat(s, z) , (s = 0 ∧ z = 0) ∨ (s = 37 ∧ z = 37)

To give the protocol for y, however, we need a way of talking about
the protocol for x in its state interpretations. For this purpose, GPS
offers protocol assertions, ` : s τ , which say that location ` is
governed by the protocol type τ , and has been observed in state s,
thus giving a lower bound on the current protocol state.

{P} e {x. Q}
{P ∗R} e {x. Q ∗R}

{P} e {x. Q} ∀x. {Q} e′ {y. R}
{P} let x = e in e′ {y. R}

{Q} e {true}
{P ∗Q} fork e {P}

{P} e {x. (x = 0 ∧ P) ∨ (x 6= 0 ∧Q)}
{P} repeat e end {x. Q}

P ′ V P {P} e {x. Q} ∀x. QV Q′{
P ′
}
e
{
x. Q′

} P ⇒ Q

P V Q

P V Q

P ∗R V Q ∗R

Figure 2. A selection of basic logical rules for GPS

We can now give the protocol for y. We introduce a protocol
type Flg(`) that is parameterized over a location ` (which we will
instantiate with x). Again writing abstract states in bold, we say
0 vFlg 0, 0 vFlg 1, 1 vFlg 1, and

Flg(`)(s, z) , (s = 0 ∧ z = 0)

∨ (s = 1 ∧ z = 1 ∧ ` : 37 Dat)

Thus, to move to state 1 in Flg(x), a thread must (1) write 1 to
y and (2) have already observed that x : 37 Dat , which it can
ensure by first writing 37 to x itself.

What happens when a thread reads y? GPS supports the follow-
ing Hoare triple for atomic reads of a location `:5

∀s′ wτ s. ∀z. τ(s′, z)⇒ Q{
` : s τ

}
[`]at

{
z. ∃s′. ` : s′ τ ∧Q

}
The Hoare triple takes as a precondition some pre-existing knowl-
edge about `’s protocol. (For the message receiver, this knowledge
will be y : 0 Flg(x) .) The pre-existing knowledge gives a lower
bound on the possible writes the read could read from: they must
be at least as far as state s in the protocol.

The premise of the rule then quantifies, abstractly, over the write
we might be reading from: it must have moved to some future state
s′ in the protocol, and have written some value z such that τ(s′, z)
holds. From all such possible writes, we derive a common assertion
Q—but note that s′ and z can appear inQ, so it can tie together the
value read and the state observed.

Altogether, we have:{
y : 0 Flg(x)

}
[y]at

{
z. y : 0 Flg(x) ∧ z = 0

∨ y : 1 Flg(x) ∧ z = 1 ∧ x : 37 Dat

}
So if a thread reads 1 from y, it learns a lower bound on the protocol
state for x. If it subsequently reads x, it is guaranteed to see 37.

Before describing the rest of GPS, we briefly consider the con-
nection to the C11 model. GPS assertions say what is known at
each point in a thread’s code, with each such point corresponding
to a node in the event graph. A thread will only be able to claim
` : s τ if a write moving ` to (abstract) state s happens before the

corresponding node in the event graph. But because writes to ` in
mo order correspond to moves within the protocol, the thread can
subsequently read only from a write in some state s′ wτ s. Finally,
PL-protocols have allowed us not just to abstract away from the
event graph, but also to reason thread-locally: the thread receiving
the message does not need to know anything about the code/events
of the sending threads except that they follow the protocols.

Physical resources GPS makes the simplifying assumption that
each location is either always used nonatomically (i.e., for data),

5 This rule is sound only for the assertions we have introduced so far; the
general rule is given in “Ownership transfer through protocols”, below.

5

or always used atomically (i.e., for synchronization).6 Atomic lo-
cations can be freely shared between threads, which can only make
protocol assertions about them; since protocol assertions are just
lower bounds, they are invariant under interference from other
threads. Nonatomic locations, on the other hand, must be treated
as resources to ensure that only one thread can write to them at a
time, in order to avoid data races. GPS thus includes the assertions

P ::= · · · | uninit(`) | ` ↪→ v | P ∗ P
which resemble traditional separation logic, except that locations
begin uninitialized. The heap assertion ` ↪→ v means that ` is
classified as nonatomic, and currently points to value v. We thus
get the usual separation logic axioms for nonatomic locations:

{true} alloc(n) {x. uninit(x) ∗ · · · ∗ uninit(x+ n− 1)}
{uninit(`) ∨ ` ↪→ −} [`]na := v {` ↪→ v}

{` ↪→ v} [`]na {x. x = v ∗ ` ↪→ v}

The separating conjunction P ∗ Q requires that resources claimed
by P are disjoint from those of Q, e.g.,

uninit(`) ∗ uninit(`′) ⇒ ` 6= `′ ` ↪→ v ∗ `′ : s τ ⇒ ` 6= `′

but since atomic locations are shared, separation enforces only that
different observations about the state of `’s protocol are coherent:

` : s τ ∗ ` : s′ τ ′ ⇒ τ = τ ′ ∧ (svτ s′ ∨ s′vτ s)

In addition to these axioms, GPS supports the usual rules for a
concurrent separation logic; see Figure 2.

Ghost resources Our earlier presentation of protocols implicitly
assumed that all threads can make the same moves within a pro-
tocol. But we often want to say that only certain threads have the
right to make a particular move. To do so, we add non-physical
resources—ghosts—to GPS. These purely logical resources are
used to express arbitrary notions of permission that can be divided
amongst threads. Here we explain what ghosts are; the subsequent
subsections explain how they are used together with protocols.

Following recent work in separation logic [13, 20, 21], we
model ghosts as partial commutative monoids (PCMs). In partic-
ular, GPS is parameterized by a collection of PCMs µ, such that

• There is a sort PCMµ for each µ,
• Terms of sort PCMµ include the unit εµ and composition ·µ.

The unit represents the empty permission, while t·µ t′ combines the
permissions t and t′. In general, we do not want all compositions to
be defined: we want certain permissions to be exclusive. So com-
position is a partial function, but is commutative and associative
where defined (and εµ ·µ t = t for any t).

Within the logic, we add ghost assertions, γ : t µ , which
claim ownership of the ghost permission t drawn from some
PCM µ. Since we may want to use many instances of a partic-
ular PCM, ghosts have an identity γ. Being nonphysical, ghosts
are manipulated entirely through the rule of consequence, which is
generalized to allow ghost movesV, rather than just implications;
see Figure 2. These moves allow new ghosts t to appear out of thin
air, with a fresh identity: true V ∃γ. γ : t µ . Once a ghost is
created, it can be split apart using ∗, as follows:

γ : t ·µ t′ µ ⇔ γ : t µ ∗ γ : t′ µ

We take γ : t ·µ t′ µ to be false if t ·µ t′ is undefined.
A very simple but useful kind of permission is a token, which is

meant to be owned by exactly one thread at a time. We can model

6 This assumption is in line with the C and C++ standards, which require
variable declarations to specify whether the variables will be accessed
atomically or nonatomically.

this as a PCM, Tok, with two elements, ε and � (the token), with
ε · � = � = � · ε. We leave the composition � · � undefined, so that

γ : � Tok ∗ γ : � Tok ⇒ false

Hence, GPS ensures the token for ghost γ cannot be owned twice.
(We use this PCM in an example at the end of the section.)

Taking stock: resource ownership versus knowledge We have
now seen the full complement of resource ownership assertions
(physical and ghost) provided by GPS, with ∗ combining or sepa-
rating them. Ownership can be divided by the fork rule (Figure 2),
which allows the parent thread to donate some of its resources to the
child thread. But we will also need to transfer ownership between
already-running threads—while ensuring, of course, that claims of
ownership are not duplicated in the process. GPS provides two
mechanisms for doing so, one physical and the other nonphysical,
described in the next two subsections.

Both mechanisms rely on a fundamental distinction between
assertions possibly involving resource ownership (like ` ↪→ v)
and assertions only involving knowledge (like t = t′). GPS has
a modality� for knowledge, where�P holds if P is true and does
not depend on resource ownership. Knowledge includes assertions
that are “pure” in the parlance of separation logic, like equalities on
terms, but it also includes protocol observations:

t = t′ ⇒ �(t = t′) ` : s τ ⇒ � ` : s τ

Knowledge does not include ownership: �(` ↪→ v) ⇒ false. But
knowledge can be shared freely, while resource ownership must be
carefully managed to avoid duplication. Thus, we have

�P ⇒ P �P ⇔ �P ∗�P
where the second axiom can be used, together with the frame rule,
to show that knowledge is retained no matter what an expression
does. Finally, the � modality distributes over ∧, ∨, ∀, and ∃.

Ownership transfer through protocols To explain physically-
based ownership transfers, we consider a simple spinlock:

newLock() , let x = alloc(1) in [x]at := unlocked; x

lock(x) , repeat CAS(x, unlocked, locked) end

unlock(x) , [x]at := unlocked

where unlocked = 0 and locked = 1. We want to reason about this
lock in the style of concurrent separation logic [23], i.e., we want
to be able to prove the following triples:

{P} newLock {x. �isLock(x)}
{isLock(x)} lock(x) {P}

{isLock(x) ∗ P} unlock(x) {true}
Here, the assertion P is an arbitrary resource invariant (e.g.,
nonatomic locations) protected by the lock, while isLock repre-
sents the permission to use the lock. These triples reflect a transfer
of ownership of the resources satisfying P , first upon creation of
the lock, and then between each successive thread that acquires
the lock. But the whole point of the lock is to ensure that when
multiple threads race to acquire it, only one will win—and it is the
use of CAS that guarantees this, by physical atomicity. We want to
leverage the fact that CAS physically arbitrates races to logically
arbitrate ownership transfers.

To do so, we revise our understanding of protocol state interpre-
tations: rather than just a way to communicate knowledge between
threads, they are more generally a way to transfer resource own-
ership between threads. For the spinlock, we can get away with a
simple protocol type LP having a single state Inv, where

LP(Inv, z) , (z = unlocked ∗ P) ∨ z = locked

Intuitively, whenever a thread releases the lock, it must have
reestablished the resource invariant P , which it then relinquishes,

6

allowing P to be transferred to the next thread acquiring the lock.
We can then define isLock(x) , x : Inv LP .

To initialize an atomic location ` with state s and value v, a
thread must relinquish resources τ(s, v):

{uninit(`) ∗ τ(s, v)} [`]at := v
{
` : s τ

}
which is reflected in the triple for newLock above.

Subsequently, we can reason about CAS as follows:
∀s′ wτ s. τ(s′, Vo) ∗ P V ∃s′′ wτ s′. τ(s′′, Vn) ∗Q

∀s′′ wτ s. ∀y 6= Vo. τ(s′′, y) ∗ P ⇒ �R{
` : s τ ∗ P

}
CAS(`, Vo, Vn)

{
z. ∃s′′. ` : s′′ τ ∗
((z = 1 ∗Q) ∨ (z = 0 ∗ P ∗ �R))

}
The two premises of the rule correspond to the CAS succeeding or
failing, respectively. In the successful case, we observe the proto-
col in some state s′, and choose a new state s′′ that is reachable
from it. To make the move from s′ to s′′, we (1) gain the resources
τ(s′, Vo), because we won the race to CAS, but (2) must relinquish
resources τ(s′′, Vn), which can be transferred to the next success-
ful CAS on `. We can use any resources P we owned beforehand,
and we get to keep any leftover resources Q.

The failure case works like an atomic read, except that we do not
learn the exact value observed; we know only that it differs from the
expected value Vo. Since multiple threads can read from the same
write, it should not be possible to gain resources by reading alone—
but it should still be possible to gain knowledge. Thus, in general,
reading works as follows:

∀s′ wτ s. ∀z. τ(s′, z) ∗ P ⇒ �Q{
` : s τ ∗ P

}
[`]at

{
z. ∃s′. ` : s′ τ ∗ P ∗ �Q

}
This rule differs from the version we gave earlier in two respects.
First, the assertion Q is placed under the � modality, ensuring that
readers only gain knowledge, not resources, through the protocol.
Second, the precondition includes an arbitrary assertion P , which
we combine via ∗with the interpretation of the state we are reading.

The inclusion of the assertion P enables rely-guarantee reason-
ing through protocols. For the protocol to be in state s′, some thread
must have written z to ` while also giving up resources τ(s′, z). If
we read from this write, we know that the resources involved must
be disjoint from any resources P we currently own. We can there-
fore rule out certain protocol states on this basis. The typical way
to do so is through ghosts: we can require that, to move to a certain
protocol state s′, a thread must give up a ghost t (e.g., a token).
Thus, if a thread owns some ghost t′ such that t · t′ is undefined,
then the thread knows that the protocol cannot be in state s′. We
illustrate this kind of reasoning in the next subsection.

Finally, we have a rule for atomic writes:
P V τ(s′′, V) ∗Q ∀s′ wτ s. τ(s′,−) ∗ P ⇒ s′′ wτ s′{

` : s τ ∗ P
}

[`]at :=V
{
` : s′′ τ ∗Q

}
Writes are surprisingly subtle. Prior to writing, our thread knows
some lower bound s on the protocol state. But because the write
may be racing with unknown other writes (or CASes), we do not
know (or learn!) the “current” state of the protocol. Instead, we
must move to a state s′′ that is reachable from any state s′ wτ s
that concurrent threads may be moving to. As with reads and
CASes, though, we know that any such state s′ must be satisfiable
with resources disjoint from our resources, P . In particular, if
τ(s′,−) ∗ P ⇒ false, then we do not have to show that s′′ wτ s′.

In summary:
• Reads relinquish nothing and gain knowledge.
• Writes relinquish ownership and gain nothing.
• CASes both relinquish and gain ownership when successful,

and behave like reads when unsuccessful.

Ownership transfer through escrows We have just seen how
GPS axiomatizes the intrinsic, physical synchronization offered by
CAS, but of course programs can and do build up their own means of
synchronization without using CAS (which is relatively expensive).
Take the following algorithm, related to us by Ernie Cohen:

[x]at := choose(1, 2);
repeat [y]at end;
if [x]at == [y]at then
/* crit. section */

[y]at := choose(1, 2);
repeat [x]at end;
if [x]at != [y]at then
/* crit. section */

If we extend the language with choose (for nondeterministic
choice), this algorithm guarantees mutual exclusion between crit-
ical sections under C11’s memory model, without using CAS. The
key is that the two threads have agreed on a logical condition for
synchronization: the first thread wins if the values pointed to by x
and y are equal, and the second wins if they are not.

In GPS terms, we again imagine some resource invariant P to
which the critical sections provide access—but we need some way
to reflect the logical synchronization condition of the algorithm.
More generally, we need a way for threads to gain ownership of
resources not because they won a physical, CAS-mediated race, but
because they have met some logical condition. But if we are to
avoid duplication of ownership, we must ensure that the logical
condition is “exclusive”, so that it can be met at most once.

Thus we are led to the final concept in GPS: escrows.7 The idea
is that resources are placed “under escrow” (i.e., temporarily given
up) until some exclusive, logical condition is met, at which point
the thread meeting the condition gains ownership of the resources.
GPS is parameterized over a set of escrow types (metavariable
σ) and definitions, written σ : P Q. Here Q represents the
resource to be placed under escrow, while P represents the transfer
condition, and must be exclusive: P ∗ P ⇒ false. Escrows are
created and used via ghost moves, where the assertion [σ] says that
an escrow of type σ is known to exist:

σ : P Q

QV [σ]

σ : P Q

P ∧ [σ]V Q
[σ]⇒ �[σ]

The first rule allowsQ to be put under escrow; ownership is lost, in
exchange for the knowledge [σ]—and because [σ] is knowledge, it
can be learned about through reading (as we will see in §4). When
later extracting the resourceQ from the escrow [σ], the condition P
is consumed; this fact, together with the exclusivity of P , ensures
that an escrow can only be used to transfer ownership once.

Returning to the above example, we can now apply the full
apparatus of GPS. First, we have a protocol Choice(γ) with states
0, 1 and 2 (here we pun abstract states and concrete numbers):

0

1

2

Choice(γ)(s, z) ,

s = z ∗ (s = 0 ∨ γ : � Tok)

This protocol captures not just the irreversible choices made for x
or y, but also control over who can make these choices; we do so
through a ghost token �, where the identity γ is taken as a parameter
to the protocol. Only the owner of γ : � will be able to transition
from the 0 state to the 1 or 2 states.

Second, we have an escrow type PE(γx, γy) for P :

PE(γx, γy) : ∃i, j > 0. x : i ∗ y : j ∗

(
γx : � ∗ i = j

∨ γy : � ∗ i 6= j

)
 P

Here we have elided the protocol and ghost types, which are
Choice and Tok respectively. The escrow condition says that a
thread must know that x and y are both in nonzero states, and that
either the states are equal and the γx token is owned, or they are

7 As we discuss in Section 6, escrows are closely related to Bugliesi et al.’s
notion of “exponential serialization” [9].

7

distinct and the γy token is owned. The fact that the escrow con-
dition is exclusive follows from the combined use of tokens and
protocol assertions; the latter dictate that the existentials can only
be instantiated in one way.

We assume at the outset that we are given ownership of P ,
which we then want to allow the two threads to race for. We can
create ghost tokens and put P under escrow using ghost moves (we
elide the ∃ quantifers):

P V γx1 : � ∗ γx2 : � ∗ γy1 : � ∗ γy2 : � ∗ [PE(γx1 , γ
y
1)]

where the 1 subscript is for escrow tokens, while the 2 subscript is
for protocol tokens. We then have

{uninit(x)} [x]at := 0
{
x : 0 Choice(γx2)

}
when initializing x, and likewise for y. Finally, we give the first
thread ownership of γx1 : � ∗ γx2 : � and give the other tokens
to the second thread. With this setup, the rest of the proof is
straightforward; it, along with the other examples in this section,
can be found in detail in the appendix [1].

4. Case studies
We have applied GPS to three challenging case studies for weak
memory reasoning: Michael and Scott’s lock-free queue [22], as
well as circular buffers [17] and bounded ticket locks [11] (both
drawn from the Linux kernel). Note that the first two of these
exhibit non-SC behavior (cf. §1). For space reasons, we focus here
on the proof for circular buffers, which we describe in some detail.
For full details of all three examples, see our appendix [1].

Circular buffers (Linux kernel) Figure 3 shows the code for a
simplified variant of the circular buffer data structure drawn from
the Linux kernel. It is a fixed-size queue, implemented using an
array that “wraps around”. Specifically, the queue pointed to by q
consists of an N -cell array (at q + buf), together with a reader
index (at q + ri) specifying the array offset of the next item to
be consumed, and a writer index (at q + wi) specifying the array
offset of the next item to be produced. The “active” part of the
queue consists of the array elements starting at the reader index and
ending at the one prior to the writer index, wrapping around modulo
N . Hence, if the two indices are equal, then the buffer is empty, and
if the writer index is one before the reader index (modulo N), then
the buffer is full (with N − 1 elements).

The tryProd and tryCons operations first check the two in-
dices to see whether the buffer is full or empty, respectively. If so,
they return 0. Otherwise, they proceed by writing/reading the el-
ement at the writer/reader index and then incrementing that index
(moduloN). Since accesses to the actual data in the buffer are com-
pletely synchronized, the cells comprising the array itself can be
read and written non-atomically. All synchronization is performed
through the reader/writer indices. Note, however, that (as in Co-
hen’s example from the previous section) this synchronization is
entirely logical: the algorithm uses plain writes, not CAS, to incre-
ment the indices. While this is an efficiency win (e.g., on x86, the
algorithm requires no fences), it means that only one producer and
one consumer can be operating simultaneously.

A spec for circular buffers We will prove the following spec:
{true} newBuffer() {q. Prod(q) ∗ Cons(q)}

{Prod(q) ∗ P (x)}tryProd(q, x){z. Prod(q) ∗ (z 6= 0 ∨ P (x))}
{Cons(q)} tryCons(q) {x. Cons(q) ∗ (x = 0 ∨ P (x))}

The spec is parameterized over a predicate P that should hold of
all the elements in the buffer; it guarantees that P (x) holds of all
elements x that the consumer consumes so long as it holds of all
elements x that the producer produces. This predicate can thus

be used in typical separation-logic style to transfer ownership of
data structures from producer to consumer.8 The spec also employs
two predicates Prod(q) and Cons(q), which describe the privilege
of acting as producer or consumer, respectively. These predicates
are exclusive resources, ensuring that there can only be one call
to tryProd and one call to tryCons running concurrently. Their
definitions (in Figure 3) are described below.

Note that this spec is rather weak because it does not enforce
that the buffer actually implements a queue. This is merely for
simplicity—it is easy to generalize our proof to handle a stronger
spec, e.g., in which P , Prod, and Cons are allowed to keep track of
the entire sequence of elements produced thus far.

High-level picture Our proof of the above spec (excerpted in
Figure 3) depends on all the features of GPS working in concert.

First, we use protocols PP and CP to govern the states of the
writer and reader indices, respectively. The state of each of these
protocols tracks the “absolute state” of the corresponding index,
meaning the total number of writes/reads that have ever occurred,
which can only increase over time (the state ordering is ≤). The
state interpretation of PP/CP then dictates that the “physical state”
of the writer/reader index equal the absolute state modulo N .

Second, since the buffer does not use CAS, it is not possible to
use the PP and CP protocols to directly transfer ownership of the
cells in the buffer between the producer and consumer. Fortunately,
we can indirectly exchange ownership of the buffer cells instead,
by (a) placing the cells under escrows, and (b) using PP and CP
as a conduit for the knowledge that these escrows, once created,
exist. Specifically, after filling a buffer cell with a new element, the
producer will pass control of the cell to the consumer via the CE
escrow (see Step 10 in the proof of tryProd); upon consumption,
the consumer will pass control of the cell back to the producer via
the PE escrow. The state interpretations of PP and CP provide a
way to communicate awareness of these escrows back and forth.

Third, we use ghost tokens in a manner similar to the proof
of Cohen’s example from the previous section. The protP(i) and
protC(i) tokens are needed in order to transition to (absolute) state
i of the PP and CP protocols, respectively, while the escP and
escC tokens are used as transfer conditions for the aforementioned
PE and CE escrows. In both cases, the producer and consumer each
start out with all the tokens they will ever need (i.e., restP(0) and
restC(0)) as part of their exclusive resource predicates Prod(q)
and Cons(q), and they proceed to “spend” one protocol token and
one escrow token upon each call to tryProd/tryCons. All these
tokens are defined in Figure 3 as elements of the ghost PCM ℘(N)4

(with composition defined as componentwise]).
Finally, tying everything together, Prod(q) and Cons(q) assert

bounded knowledge about the states of the PP and CP protocols,
thus enforcing the fundamental invariant of circular buffers:

The absolute state of the writer index is at least 0 and less than N
cells ahead of the absolute state of the reader index.

Now, the reader (of this paper, not the buffer) may rightly wonder:
how can this fundamental invariant possibly be enforced in the
weak memory setting, given that it concerns the states of two
separate cells being updated by different threads? The answer is
that, although neither the producer nor the consumer can fully
assume or maintain this invariant themselves, they are each able
to enforce a piece of it sufficient to verify their own correctness. In
particular, the consumer controls the progress of the reader index,
and can therefore assume and maintain the invariant that the reader
index never overtakes the writer index (the “at least 0” part), while
the producer controls the progress of the writer index, and can

8 In the case that the buffer is full, i.e., return value z = 0, the tryProd
operation simply returns ownership of P (x) to the caller.

8

therefore assume and maintain the invariant that the writer index
never leaves the reader index more than N − 1 cells behind (the
“less than N” part). Together, these piecemeal enforcements of the
fundamental invariant are enough to perform the full verification.

Proof outline for tryProd Figure 3 displays the proof outline
for tryProd(q, x). (The proof for tryCons is almost dual, and the
proof for newBuffer is comparatively simple; see the appendix.)
We explain here some of the most important steps in the proof.
Throughout, note that assertions under� are only written once and
then used freely in the rest of the proof since they hold true forever.

Step 1: By unfolding Prod(q), we gain access to our piece of
the fundamental invariant, namely that the absolute writer index i
is less than N past the absolute reader index, which is at least j0.

Step 2: The reason we know exactly what i is—but merely have
a lower bound on j0—is that we own the protocol tokens protP(k)
for all k > i, constraining the possible “rely” moves that other
threads can make in the PP protocol. In this step, we exploit that
knowledge to assert that the value w we read is exactly i mod N .

Step 3: Here we read the current reader index r, whose absolute
state j must be at least j0 (as mentioned already). From the read
of protocol CP at state j, we also gain knowledge of the escrows
PE(γ, q, k) for all k < j +N .

Step 4: Since i < j0 +N ≤ j+N , the escrows we just learned
about in the previous step include PE(γ, q, i), which we need later.

Step 5: If the buffer is full, i.e., r = (w + 1) mod N , then the
operation is a no-op and we simply return P (x) back to the caller.

Step 6: Otherwise, r 6= (w + 1) mod N . We know from Step 4
that i < j +N , and we want to show i+ 1 < j +N because this
is the piece of the fundamental invariant that we are responsible
for maintaining when we bump up the writer index at the end of the
operation (Step 12). To prove this, we must establish i+1 6= j+N .
So suppose the opposite is true: i + 1 = j + N . Then, since
w = i mod N , we obtain (w + 1) mod N = (i+ 1) mod N =
(j +N) mod N = j mod N = r. Contradiction.

Step 7: From our stash of tokens (restP(i)), we peel off a
protocol token (protP(i+ 1)) for advancing to the (i+ 1)-th state
of the PP protocol, and an escrow token (escP(i)) for accessing
the escrow PE(γ, q, i) that we learned about in Step 4.

Step 8: We access the escrow, thereby gaining ownership of the
buffer cell at index w.

Step 9: We non-atomically write x to the buffer cell.
Step 10: We pass control of the buffer cell back to the consumer

by placing it under the consumer escrow CE(γ, q, i).
Step 11: We advance the absolute writer index (i.e., the state of

the PP protocol) to i+ 1, which we can do because (a) we own the
token protP(i+ 1), and (b) we have knowledge of CE(γ, q, i).

Step 12: Thanks to Step 6, we have preserved the “less than N”
part of the fundamental invariant, as demanded by Prod(q).

5. The semantics and soundness of GPS
Axiomatic models like C11’s pose a challenge for the semantics
and soundness of program logics: they do not provide the global
notion of “current state” that such logics usually depend on, making
it difficult to even define the meaning of a Hoare triple.

Here we briefly summarize the semantics and soundness of
GPS. The supplementary material [1] includes a technical appendix
containing the complete semantics, a decomposition of our sound-
ness theorem into key lemmas, and further details about its proof. It
also includes a Coq development mechanizing the entire logic and
its soundness proof.

Overview Reasoning in GPS is compositional: we prove triples
about each expression, and link them together using the let and
fork rules. But the expression semantics is global: it assumes a
whole, closed program. The semantics of GPS must bridge this gap.

newBuffer()

let q = alloc(N+2)
[q + ri]at := 0;
[q + wi]at := 0;
q

where wi , 0,
ri , 1, buf , 2

tryProd(q, x)

let w = [q + wi]at
let r = [q + ri]at
let w′ = w + 1 mod N
if w′ == r then 0
else

[q + buf +w]na :=x;
[q + wi]at :=w′; 1

tryCons(q)

let w = [q + wi]at
let r = [q + ri]at
let r′ = r + 1 mod N
if w == r then 0
else
let x = [q + buf + r]na
[q + ri]at := r′; x

Prod(q) , ∃γ, i, j. i < j +N

∗ q + wi : i PP(γ, q)

∗ q + ri : j CP(γ, q)

∗ γ : restP(i)

Cons(q) , ∃γ, i, j. j ≤ i
∗ q + wi : i PP(γ, q)

∗ q + ri : j CP(γ, q)

∗ γ : restC(j)

PP(γ, q)(i, x)

, γ : protP(i)

∧ �x = i mod N
∧ �∀j < i. [CE(γ, q, j)]

CP(γ, q)(j, x)

, γ : protC(j)

∧ �x = j mod N
∧ �∀i < j +N. [PE(γ, q, i)]

PE(γ, q, i) : γ : escP(i) uninit(q + buf + (i mod N))

∨ (q + buf + (i mod N)) ↪→ −

CE(γ, q, j) : γ : escC(j) ∃x. P (x) ∗ (q + buf + (j mod N)) ↪→ x

all , (N,N,N,N)

restP(i) , ({j | j > i}, {j | j ≥ i}, ∅, ∅)
restC(i) , (∅, ∅, {j | j > i}, {j | j ≥ i})

protP(i) , ({i}, ∅, ∅, ∅)
escP(i) , (∅, {i}, ∅, ∅)
protC(i) , (∅, ∅, {i}, ∅)
escC(i) , (∅, ∅, ∅, {i})

Proof outline for tryProd(q, x):{
Prod(q) ∗ P (x)

}
(1)

{
γ : restP(i) ∗ P (x) ∗ �

(
i < j0 +N ∧ q + wi : i PP(γ, q)

∧ q + ri : j0 CP(γ, q)

)}
let w = [q + wi]at

(2)
{
γ : restP(i) ∗ P (x) ∗ �(w = i mod N ∧ ∀k < i. [CE(γ, q, k)])

}
let r = [q + ri]at

(3)

{
γ : restP(i) ∗ P (x) ∗ �

(
r = j mod N ∧ q + ri : j CP(γ, q)

∧ j0 ≤ j ∧ ∀k < j +N. [PE(γ, q, k)]

)}
(4)
{
γ : restP(i) ∗ P (x) ∗ �(i < j +N ∧ [PE(γ, q, i)])

}
let w′ = w + 1 mod N{
γ : restP(i) ∗ P (x) ∗ �(w′ = w + 1 mod N)

}
if w′ == r then{

γ : restP(i) ∗ P (x)
}

0
(5)

{
z. Prod(q) ∗ z = 0 ∗ P (x)

}
else{

γ : restP(i) ∗ P (x) ∗ �(w′ 6= r)
}

(6)
{
γ : restP(i) ∗ P (x) ∗ �(i+ 1 < j +N)

}
(7)

{
γ : restP(i+ 1) ∗ γ : protP(i+ 1) ∗ P (x) ∗ γ : escP(i)

}
(8)

{
γ : restP(i+ 1) ∗ γ : protP(i+ 1) ∗ P (x)

∗ (uninit(q + buf + w) ∨ (q + buf + w) ↪→ −)

}
[q + buf +w]na :=x;

(9)
{
γ : restP(i+ 1) ∗ γ : protP(i+ 1) ∗ P (x) ∗ (q + buf + w) ↪→ x

}
(10)

{
γ : restP(i+ 1) ∗ γ : protP(i+ 1) ∗ [CE(γ, q, i)]

}
[q + wi]at :=w′;

(11)
{
γ : restP(i+ 1) ∗ q + wi : i+ 1 PP(γ, q)

}
1

(12)
{
z. Prod(q) ∗ z = 1

}
Figure 3. Proof excerpt for the circular buffer case study

9

This kind of gap is always present in concurrent program logics,
but one normally bridges it by appeal to the heap (thereby assuming
SC semantics). In particular, threads view each other’s activities
through constraints on heap evolution—either simple invariants, or
rely/guarantee relations—and bounding the possible heaps is all
that is needed to determine e.g., what reads will return.

Fortunately, the rules of GPS point the way forward: rather than
mediate thread activity through a global heap, we can understand it
through the various kinds of ownership and knowledge introduced
in §3, which give us a purely logical way of predicting e.g., what
reads will return—a form of rely/guarantee reasoning that does not
depend on a global heap. We therefore formulate a notion of local
safety for a thread, which says that the actions it controls conform
to its guarantee, assuming that the actions its environment controls
(e.g., the contents of a read event) follow its rely. We can then easily
show that the proof rules of GPS preserve local safety.

We are then left with another gap: local safety makes no refer-
ence to the C11 axioms; it instead just assumes that the events it
observes obey the rely constraints. We therefore formulate a notion
of global safety for an event graph, which includes a labeling of the
edges of the event graph with resource/knowledge transfers from
the point of view of GPS. By imposing appropriate constraints on
the labeling, global safety connects the logical assumptions made
in local safety with the physical reality of the event graph.

The heart of the soundness argument is then to show that if
a whole program is locally safe, it is globally safe. We do this
by building up the C11 event graph step-by-step (much like the
expression semantics), showing for each new event that (1) the
existing labeling implies the rely for the event, and (2) the event’s
guarantee, which we know by local safety, implies that we can
extend the labeling to include it.

Resources In the semantics of GPS, a resource r is a tuple
(Π, g,Σ) of a physical location map Π, a ghost identity map g,
and known escrow set Σ. Resources form a PCM with composition
⊕, and assertions are interpreted as sets of resources, e.g.,

r ∈ JP1 ∗ P2K , ∃r1, r2. r = r1 ⊕ r2, r1 ∈ JP1K , r2 ∈ JP2K

The structure of resources and definition of ⊕ are designed to
support the axioms on assertions we gave in §3.

Local safety With resources in hand, we can define a semantic
version of ghost moves r V P , which says that from resource r
it is possible to take a ghost move to resources described by the
(semantic) assertion P . We can also define two functions

rely, guar : Resource× Action→ ℘(Resource)

that describe the rely and guarantee constraints on updating re-
sources, given that we are performing some action α. For example,
if α = R(`, V, na) and r claims that ` ↪→ V ′, then

rely(r, α) = if V = V ′ then {r} else ∅
and similarly for atomic locations, where the protocol state is al-
lowed to advance. We can then define local safety:

rpre ∈ LSafe0(e,Φ) , always
rpre ∈ LSafen+1(e,Φ) ≈ (simplified; see appendix)

If e ∈ Val then rpre V Φ(e)
If e = K[fork e′] then rpre ∈ LSafen(K[0],Φ) ∗ LSafen(e′, true)

If e α−→ e′ then ∀r ∈ rely(rpre, α). ∃P. r V P and
∀r′ ∈ P. ∃rpost ∈ guar(r′, α). rpost ∈ LSafen(e′,Φ)

which is indexed by the number of steps for which we demand
safety. (An expression is “locally safe” if LSafen holds for all n.)
Local safety can be understood as giving weakest preconditions:
LSafen(e,Φ) is the set of starting resources for which e can safely
execute for n steps with postcondition Φ (a semantic predicate). We
then define |= {P} e {x.Q} , ∀n, r ∈ JP K . r V LSafen(e, Jx. QK).

Theorem 1 (Local soundness). All of the proof rules given in §3
are sound for this semantics of Hoare triples.

Theorem 1 has been mechanized entirely in Coq; see GpsLogic.v.

Global safety We then define global safety GSafen(T , G,L)
over an instrumented thread pool T , an event graph G, and a la-
beling L. The instrumented thread pool maps each thread to a tuple
(a, e, r,Φ) giving the thread’s last event a in the graph, its con-
tinuation e, its current resources r, and its postcondition Φ. Global
safety at n assumes that each thread is locally safe for nmore steps,
given its resources and postcondition. The labeling L annotates hb
edges of the graph with resource transfers between the nodes, and
is constrained to ensure that each node obeys the corresponding
guar condition. Finally, the labeling must globally ensure:

• Compatibility: any set of concurrent resource transfers must be
composable, i.e., resources are never duplicated.
• Conformance: if mo(a, b) for two atomic writes/updates to `

with protocol τ , the labeled protocol states are related by vτ .

The key theorem is a kind of simulation between the expression
semantics and global safety:

Theorem 2 (Instrumented execution). If GSafen+1(T , G,L) and
〈erase(T);G〉 −→ 〈T ′;G′〉 then there is some T ′,L′ such that
erase(T ′) = T ′ and GSafen(T ′, G′,L′).

Theorem 2 has been mechanized in Coq; see GpsAdequate.v for
details.

Our main result, adequacy, is an easy corollary; it connects the
proof theory all the way to the C11 execution (for closed e):

{true} e {x. P} =⇒ JeK ⊆ {V | JP [V/x]K 6= ∅}

6. Related work
Direct influences
The closest related work to GPS is the recent Relaxed Separation
Logic (RSL) introduced by Vafeiadis and Narayan [29], which is
the only prior program logic for the C11 memory model. The goal
of RSL is to support simple CSL-style reasoning about release-
acquire accesses: it is possible for a release write to directly transfer
resource ownership to an acquire read. To manage such transfers,
RSL employs release/acquire permissions describing the resources
to be transferred upon a write to a given location. The choice of
resources depends solely on the value being written, and so a given
value can only be used to perform a transfer once per location.

While GPS draws inspiration from RSL, there are many sig-
nificant differences. Most importantly, GPS offers a much more
flexible way of coordinating ownership and knowledge transfers
between threads—including rely-guarantee reasoning—through its
protocols and ghosts. This fact, together with escrows, allows us
to lift several restrictions from RSL, including the one on repeated
writes of the same value—crucial for handling the indices in the
circular buffer, and the ticket numbers in the bounded ticket lock.
To our knowledge, none of our case studies can be verified in RSL.

The semantics of GPS is also structured differently from that of
RSL, which does not employ an intermediate step like local safety,
and must therefore deal with compositionality directly at the level
of event graphs using “contextual executions”. We expect the two-
step factoring of GPS to be easier to extend in the future.

As explained in the introduction, the various logical mecha-
nisms employed by GPS are not fundamentally new: they are all
either descendants or restrictions of mechanisms proposed in prior
logics for strong concurrency.

Per-location (PL) protocols are inspired by CaReSL [28], an-
other recent concurrency logic (for strong memory), which includes
abstract STSs for governing shared state. The primary difference

10

http://plv.mpi-sws.org/gps/coqplain/GpsLogic.html
http://plv.mpi-sws.org/gps/coqplain/GpsAdequate.html

is that our PL-protocols govern a single location, while CaReSL’s
STSs govern arbitrary heap regions. CaReSL also couples a notion
of “tokens” directly with STSs, while GPS supports ghost state sep-
arately using ghost PCMs [13, 20, 21]. GPS’s separation of orthog-
onal mechanisms has the side benefit of lifting CaReSL’s “token
purity” restriction—e.g., in the circular buffer example from Sec-
tion 4, we did not require any side condition on the per-item pred-
icate P (x), whereas an analogous proof in CaReSL would have
required that P (x) be a “token-pure” (i.e., duplicable) assertion.

Escrows are very similar to “exponential serialization”, a mech-
anism recently proposed by Bugliesi et al. [9] as part of an affine
type system for verifying cryptographic protocols. Bugliesi et al.
employ this mechanism for much the same reasons we do—namely,
as a way of indirectly transferring control of a non-duplicable re-
source from one thread to another across a duplicable, “knowledge-
only” channel. However, in their case the channel takes the form of
a cryptographic signing key, whereas for us it is a shared memory
location. Logically, the main difference between escrows and expo-
nential serialization is that the precondition of escrow creation—
i.e., that the escrow transfer condition P is exclusive—is estab-
lished semantically (by proving P ∗P ⇒ false in the logic of GPS).
In contrast, since the primitive affine predicates of Bugliesi et al.’s
type system have no underlying semantic interpretation, exponen-
tial serialization requires a more complex and syntactic “guarded-
ness” check on contexts.

Our use of names for protocol and escrow types is inspired
by Gotsman et al. [16], who use named lock invariants. In both
cases, the motivation for names is to break what would otherwise
be a semantic circularity: statements about protocols (respectively,
lock invariants) can appear within assertions, but their definitions
involve arbitrary assertions. See [16] for more details.

Finally, while not directly related to our work on program logic,
recent work suggests that model checking can also benefit by em-
bracing weak memory as-is, rather than reducing it to SC [3, 5].

Alternative approaches
As we discussed in §1, most existing approaches to reasoning about
weak memory rely in some way on recovering strong memory
assumptions, either by imposing a synchronization discipline or by
reasoning directly about low-level hardware details.

Recovering SC by synchronization discipline
• Owens [24] proves that data-race free and “triangular-race” free

programs on x86-TSO have SC behavior.
• Batty et al. [7] prove that for C11 restricted to nonatomics and

SC-atomics, data-race freedom ensures SC behavior.
• Cohen and Schirmer [10] prove that programs following a cer-

tain ownership discipline and flushing write buffers at certain
times on TSO models have SC behavior.
• Ferreira et al. [14] prove that concurrent separation logic is

sound for a class of weak memory models satisfying a data-race
freedom guarantee.

All of these disciplines force programs to use enough synchroniza-
tion to keep weak memory behavior unobservable. We view them
as complementary to our work with GPS: they delimit an important
subset of programs for which SC reasoning is sound within a weak
memory model. Ultimately, our goal is to derive such disciplines
within a logic like GPS. Our treatment of locks in §3 already does
this for the simple case of recovering CSL-style reasoning within
weak memory: our lock spec provides the key concurrency rules
for CSL as a derived set of rules in GPS.

Recovering SC through low-level reasoning We are also aware
of two program logics for reasoning about weak memory by di-
rectly incorporating a hardware memory model into the logic.

Ridge [26] provides a program logic for x86-TSO that supports
rely-guarantee reasoning. The logic works directly with the oper-
ational x86-TSO model [25], and includes assertions about both
program counters and write buffers. Rely constraints must be sta-
ble under the (nondeterministic) flushing of write buffers.

Wehrman and Berdine [30] propose a separation logic for x86-
TSO which directly models store buffers and provides both tem-
poral and spatial separating conjunctions, as well as resource in-
variants in the style of CSL. Unfortunately, the logic as proposed
has some (known) soundness gaps, and to our knowledge a sound
version has not yet been developed.

Both of the above logics permit SC-like reasoning, but this
reasoning applies only indirectly, since writes are actually routed
through explicit write buffers. GPS, by contrast, provides proof
rules whose restrictions directly and abstractly encompass the ef-
fect of reordering on local reasoning.

Acknowledgments
We gratefully acknowledge support by the EC FP7 FET project
ADVENT.

References
[1] Supplemental material for this paper: http://plv.mpi-sws.org/

gps/.
[2] S. Adve and K. Gharachorloo. Shared memory consistency models: a

tutorial. Computer, 29(12):66–76, 1996.
[3] J. Alglave. Weakness is a virtue. In EC2, 2013.
[4] J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig. Software verif-

ication for weak memory via program transformation. In ESOP, 2013.
[5] J. Alglave, D. Kroening, and M. Tautschnig. Partial orders for efficient

bounded model checking of concurrent software. In CAV, 2013.
[6] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing

C++ concurrency. In POPL, 2011.
[7] M. Batty, K. Memarian, S. Owens, S. Sarkar, and P. Sewell. Clarifying

and compiling C/C++ concurrency: From C++11 to POWER. In
POPL, 2012.

[8] M. Batty, M. Dodds, and A. Gotsman. Library abstraction for C/C++
concurrency. In POPL, 2013.

[9] M. Bugliesi, S. Calzavara, F. Eigner, and M. Maffei. Logical founda-
tions of secure resource management. In POST, 2013.

[10] E. Cohen and B. Schirmer. From total store order to sequential
consistency: A practical reduction theorem. In ITP, 2010.

[11] J. Corbet. Ticket spinlocks, 2008. http://lwn.net/Articles/
267968/.

[12] E. W. Dijkstra. EWD123: Cooperating Sequential Processes. Techni-
cal report, 1965.

[13] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. J. Parkinson, and
H. Yang. Views: compositional reasoning for concurrent programs.
In POPL, 2013.

[14] R. Ferreira, X. Feng, and Z. Shao. Parameterized memory models and
concurrent separation logic. In ESOP, volume 6012 of LNCS, 2010.

[15] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of
compiling with continuations. In PLDI, 1993.

[16] A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local
reasoning for storable locks and threads. In APLAS, 2007.

[17] D. Howells and P. E. McKenney. Circular buffers. https://www.
kernel.org/doc/Documentation/circular-buffers.txt.

[18] ISO/IEC 14882:2011. Programming language C++, 2011.
[19] ISO/IEC 9899:2011. Programming language C, 2011.
[20] J. Jensen and L. Birkedal. Fictional separation logic. In ESOP, 2012.
[21] R. Ley-Wild and A. Nanevski. Subjective auxiliary state for coarse-

grained concurrency. In POPL, 2013.

11

http://plv.mpi-sws.org/gps/
http://plv.mpi-sws.org/gps/
http://lwn.net/Articles/267968/
http://lwn.net/Articles/267968/
https://www.kernel.org/doc/Documentation/circular-buffers.txt
https://www.kernel.org/doc/Documentation/circular-buffers.txt

[22] M. M. Michael and M. L. Scott. Nonblocking algorithms and
preemption-safe locking on multiprogrammed shared memory mul-
tiprocessors. J. Parallel Distrib. Comput., 51(1):1–26, 1998.

[23] P. O’Hearn. Resources, concurrency, and local reasoning. Theoretical
Computer Science, 375(1):271–307, 2007.

[24] S. Owens. Reasoning about the implementation of concurrency ab-
stractions on x86-TSO. In ECOOP, 2010.

[25] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-
TSO. In TPHOLs, 2009.

[26] T. Ridge. A rely-guarantee proof system for x86-TSO. In VSTTE,
volume 6217 of LNCS, 2010.

[27] V. A. Saraswat, R. Jagadeesan, M. Michael, and C. von Praun. A
theory of memory models. In PPoPP, 2007.

[28] A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and Hoare-
style reasoning in a logic for higher-order concurrency. In ICFP, 2013.

[29] V. Vafeiadis and C. Narayan. Relaxed separation logic: a program
logic for C11 concurrency. In OOPSLA, 2013.

[30] I. Wehrman and J. Berdine. A proposal for weak-memory local
reasoning. In LOLA, 2011.

12

A. Language
A.1 Syntax

Val V ::= n
OVal v ::= x | V
Exp e ::= v | v + v | v == v | v mod v | let x = e in e | repeat e end | fork e

| if v then e else e | alloc(n) | [v]O | [v]O := v | CAS(v, v, v) | FAI(v)
OrderAnn O ::= at | na
EvalCtx K ::= [] | let x = K in e
Action α ::= S | A(`..`′) | W(`, V,O) | R(`, V,O) | U(`, V, V)
ActName a (an infinite set)
ActMap A ∈ ActName fin

⇀ Action
Graph G ::= (A, sb,mo, rf) sb,mo ⊆ dom(A)× dom(A), rf ∈ dom(A) ⇀ dom(A)

ThreadMap T ∈ N fin
⇀ (ActName× Exp)

A.2 Semantics

Event steps e
α−→ e

n + m
S−→ k k = n+m

n mod m
S−→ k k = n mod m

n == m
S−→ 1 n = m

n == m
S−→ 0 n 6= m

let x = V in e
S−→ e[V/x]

repeat e end
S−→ let x = e in if x then x else repeat e end

if V then e1 else e2
S−→ e1 V 6= 0

if V then e1 else e2
S−→ e2 V = 0

alloc(n)
A(`..`+n−1)−−−−−−−−→ `

[`]O
R(`,V,O)−−−−−→ V

[`]O :=V
W(`,V,O)−−−−−−→ 0

CAS(`, Vo, Vn)
U(`,Vo,Vn)−−−−−−−→ 1

CAS(`, Vo, Vn)
R(`,V ′,at)−−−−−−→ 0 V ′ 6= Vo

FAI(`)
U(`,V,V ′)−−−−−−→ V V ′ = (V + 1) mod C

K[e]
α−→ K[e′] e

α−→ e′

Machine steps 〈T ;G〉 −→ 〈T ′;G′〉

e
α−→ e′ consistentC11(G′)

G′.A = G.A] [a′ 7→ α] G′.sb = G.sb] (a, a′) G′.mo ⊇ G.mo G′.rf ∈ {G.rf, G.rf] [a′ 7→ b]}
〈T] [i 7→ (a, e)];G〉 −→ 〈T] [i 7→ (a′, e′)];G′〉

〈T] [i 7→ (a,K[fork e])];G〉 −→ 〈T] [i 7→ (a,K[0])]] [j 7→ (a, e)];G〉

We discuss the validity of these operational rules in section A.3 below.

execs(e) ,
{

(e′, G)
∣∣ 〈[i 7→ (start, e)]; ([start 7→ S], ∅, ∅, ∅)〉 −→∗ 〈[i 7→ (, e′)]] T ;G〉

}
JeK ,

{
err ∃(, G) ∈ execs(e). dataRace(G) ∨memoryError(G)

{ V | (V,) ∈ execs(e) } otherwise

A.3 Memory model
A.3.1 The C11 atomic access modes
The C11 standard [18, 19] includes several kinds of atomic accesses: sequentially-consistent, release-acquire, release-consume, and fully
relaxed. We have focused on release-acquire, because:

• Sequentially-consistent accesses are already well-understood.
• Release-consume atomics are useful only for specific architectures (PowerPC and Arm), but substantially complicate the memory model.

13

• Fully relaxed accesses, as formalized by Batty et al. [6], suffer from several known problems. First, they allow out-of-thin-air reads,
which the text of the standard explicitly forbids [18, 19]—but it is not known how to rule out these reads without also obstructing key
compiler optimizations. On the other hand, even as formalized, fully relaxed access do not permit certain basic optimizations [29]. They
also pose severe problems for compositional reasoning [8, 29].

As we explain in section A.3.4, however, GPS is sound for the full C11 model as formalized by Batty et al. [6].

A.3.2 The formal C11 model
The C11 memory model we use is based on the formalization of Batty et al. [6], as simplified by Batty et al. [7] in the absence of release-
consume atomics. We also incorporate the following simplifications introduced by Vafeiadis and Narayan [29]:

• The sb and sw orders are not transitive; e.g., sb relates each event only to its immediate successors in program order. This simplifies both
the operational semantics of the language and the semantics of GPS. Since hb is transitively closed, this has no effect on the memory
model axioms.
• The “additional synchronized with” edges are incorporated into sb rather than sw, which again makes no difference for the axioms but

simplifies the semantics.
• For uniformity, the sw edges include sb-related events, whereas in [7] these are ruled out. Since hb includes both sw and sb, this makes

no difference to the axioms.

In addition to these simplifications, our formalization of the memory model drops release sequences, instead requiring sw edges only between
immediate atomic read/write pairs. Consequently, our axioms are strictly weaker than those in e.g., Batty et al. [6], since we require strictly
fewer sw edges. GPS does not have proof rules that take advantage of release sequences, so it is sound with or without them. See section A.3.4.

A.3.3 Justifying the operational semantics
The C11 axioms are generally understood to apply to an entire program execution, but the operational semantics we have given assumes that
we can construct the event graph in a step-by-step fashion while guaranteeing consistency with C11 at every step. It also assumes that we
can introduce read events in such an order that they always read from write events already appearing in the event graph. It does not assume,
however, that new write events appear at the end of mo sequences.

These assumptions are justified by the fact that, in the absence of release-consume and relaxed operations, we know that for any complete
execution satisfying the C11 axioms:

• The hb order is acyclic, and
• If rf(b) = a then hb(a, b).

Since the sb order is dictated by the program text and is a sub-order of hb, there is some sequence of events in program order that is also
in hb order. Based on the second bullet above, we know we can generate the event graph of the complete execution step-by-step using an
operational semantics, while assuming that new nodes read only from previous nodes. Finally, because the event graphs generated in each
step are prefixes of the complete event graph that are closed under rf and hb-predecessors, we know that if the axioms hold of the complete
graph, they hold of the prefixes.

It is therefore also possible to instead work with the usual semantics, in which consistency is only assumed for the entire execution, which
is how soundness of RSL is proved [29]. We chose to check prefix consistency mainly to simplify the soundness proof for GPS, and in
particular the statement of the instrumented execution theorem (i.e., Theorem 5).

A.3.4 Soundness for the full C11 model
Despite all of the above-mentioned simplifications, GPS is trivially sound for the full C11 model: any program verified by GPS is guaranteed
to only use release-acquire atomics, which formally justifies most of the simplifications made above [see 7]. The additional simplification we
have made here of dropping release sequences is easy to justify: doing so strictly weakens the axioms, so any execution consistent under the
semantics of [7] is consistent under the axioms given below.

A.3.5 Axioms
consistentC11(A, sb,mo, rf) ,
∀a, b. mo(a, b) =⇒ ∃`. writes(a, `,−), writes(b, `,−) (ConsistentMO1)
∀`. strictTotalOrder({a | writes(a, `,−)},mo) (ConsistentMO2)
∀b. rf(b) 6= ⊥ ⇐⇒ ∃`, a. writes(a, `,−), reads(b, `,−), hb(a, b) (ConsistentRF1)
∀a, b. rf(b) = a =⇒ ∃`, V. writes(a, `, V), reads(b, `, V), ¬hb(b, a) (ConsistentRF2)
∀a, b. rf(b) = a, (isNonatomic(a) ∨ isNonatomic(b)) =⇒ hb(a, b) (ConsistentRFNA)
∀a, b. hb(a, b) =⇒

a 6= b, ¬mo(rf(b), rf(a)), ¬mo(rf(b), a), ¬mo(b, rf(a)), ¬mo(b, a) (Coherence)
∀a, c. isUpd(c), rf(c) = a =⇒ mo(a, c), @b. mo(a, b), mo(b, c) (AtomicCAS)
∀a 6= b, ~̀, ~̀′. A(a) = A(~̀), A(b) = A(~̀′) =⇒ ~̀ t ~̀′ (ConsistentAlloc)

where hb , (sb ∪ sw)+

sw , {(a, b) | rf(a) = b, isAtomic(a), isAtomic(b)}
reads(a, `, V) , A(a) ∈ {R(`, V,−),U(`, V,−)}
writes(a, `, V) , A(a) ∈ {W(`, V,−),U(`,−, V)}
strictTotalOrder(S,R) , (@a. R(a, a)),

(∀a, b, c. R(a, b), R(b, c) =⇒ R(a, c)),

14

(∀a, b ∈ S. a 6= b =⇒ R(a, b) ∨R(b, a))

dataRace(A, sb,mo, rf) , ∃`. ∃a 6= b ∈ dom(A).
accessesLoc(a, `), accessesLoc(b, `), writes(a,−,−) ∨ writes(b,−,−),
isNonatomic(a) ∨ isNonatomic(b), ¬hb(a, b), ¬hb(b, a)

where hb , (sb ∪ sw)+

memoryError(A, sb,mo, rf) , ∃`. ∃b ∈ dom(A).
accessesLoc(b, `),
@a ∈ dom(A). A(a) = A(~̀), ` ∈ ~̀, hb(a, b)

where hb , (sb ∪ sw)+

15

B. Logic
B.1 Semantic structures
B.1.1 Parameters
We assume:

• The following domains, with associated metavariables:

s ∈ State (a set)
σ ∈ EscrowTy (a set)

τ ∈ ProtTy (a set)
µ ∈ PCMTy (a set)

• For each µ, a partial commutative monoid JµK with unit εµ, multiplication ·µ, and a homomorphism | − | : JµK→ JµK such that
(1) m ·µ m′ = εµ =⇒ m = m′ = εµ, (positivity)
(2) m = m ·µ |m|, (duplicability)
(3) m ·µ m′ ≤µ m =⇒ |m′| = m′, and (maximality)
(4) m ·µ m1 = m ·µ m2 =⇒ |m1| = |m2| (partial cancellativity)
where m ≤µ m′ iff ∃m′′. m ·µ m′′ = m′.
• For each τ a partial order vτ ⊆ State× State.

B.1.2 Domains

π ∈ Prot ::= ⊥ | uninit | na(V) | at(τ, S) where S ∈ Trace(τ)

r ∈ Resource ,
{

(Π, g,Σ)
∣∣ Π ∈ N→ Prot, Σ ⊆ EscrowTy

}
Trace(τ) ,

{
S

fin
⊆ State | S totally ordered by vτ

}
Ghost ,

{
g ∈

∏
µ∈PCMTy N→ JµK

∣∣ ∀µ ∈ PCMTy. g(µ)(n) = εµ for infinitely many n
}

B.1.3 Resource composition
Protocol composition is given by the following partial commutative operator:

⊥⊕ π = π ⊕⊥ , π

na(V)⊕ na(V) , na(V)

at(τ, S1)⊕ at(τ, S2) , at(τ, S1 ∪ S2) when well-typed

and is lifted pointwise to protocol maps. Composition on ghosts is likewise defined pointwise.

(Π, g,Σ)⊕ (Π′, g′,Σ′) , (Π⊕Π′, g ⊕ g′,Σ ∪ Σ′)

r[`] , r.Π(`)

(Π, g,Σ)[` := π] , (Π[` := π], g,Σ)

emp , ((λn. ⊥), (λµ. λn. εµ), ∅)
r ≤ r′′ , ∃r′. r ⊕ r′ = r′′

r#r′ , r ⊕ r′ defined

B.1.4 Resource stripping

|(Π, g,Σ)| , (|Π|, |g|,Σ) |g| , λµ. λn. |g(µ)(n)| |Π| , λ`.

{
Π(`) Π(`) = at(−,−)

⊥ otherwise

B.1.5 Propositions

Prop ,
{
P ⊆ Resource

∣∣ ∀r ∈ P. ∀r′#r. r ⊕ r′ ∈ P }
brc ,

{
r ⊕ r′

∣∣ r′ ∈ Resource
}

P1 ∗ P2 , { r1 ⊕ r2 | r1 ∈ P1, r2 ∈ P2 }

B.1.6 Escrow and protocol type interpretations
We assume we are given the following interpretation functions:

interp(τ) ∈ State× Val→ Prop interp(σ) ∈ Prop× Prop

where if interp(σ) = (P,P ′) then P ∗ P = ∅.

B.2 Local safety
B.2.1 Protocols

at(τ, S) vat at(τ, S′) , ∀s ∈ S. ∃s′ ∈ S′. s vτ s′

π ≡at π
′ , π vat π

′ ∧ π′ vat π

rrf ∈ envMove(r, `, V) , ∃τ, s. rrf ∈ interp(τ)(s, V), r[`] vat rrf[`] ≡at at(τ, {s}), rrf#r

(rsb, rrf) ∈ atGuar(r, `, V) , ∃τ, s, S. rrf ∈ interp(τ)(s, V), (rsb ⊕ rrf) = r[` := at(τ, S ∪ {s})], rsb[`] = rrf[`]

either r[`] = uninit, S = ∅ or r[`] = at(τ, S), ∀s0 ∈ S. s0 vτ s

16

B.2.2 Rely/guarantee

α r′ r′ ∈ rely(r, α) if
R(`, V, na) r r[`] = na(V ′) =⇒ V = V ′

R(`, V, at) r ⊕ |rrf| r[`] = at(−) =⇒ rrf ∈ envMove(r, `, V)
U(`, V, V ′) r ⊕ rrf r[`] = at(−) =⇒ rrf ∈ envMove(r, `, V)
W(`, V, at) r r[`] = at(−) =⇒ ∃V ′. envMove(r, `, V ′) 6= ∅
otherwise r always

α (rsb, rrf) ∈ guar(rpre, r, α) if
S rrf = emp, rsb = r
A(`..`′) rrf = emp, rsb = r[`..`′ := uninit]
R(`, V, na) rrf = emp, rsb = r, r[`] = na(−)
R(`, V, at) rrf = emp, rsb = r, r[`] = at(−)
W(`, V, na) rrf = emp, rsb = r[` := na(V)], r[`] ∈ {uninit, na(−)}
W(`, V, at) (rsb, rrf) ∈ atGuar(r, `, V ′), ∀rE ∈ envMove(rpre, `,−). rE [`] vat rrf[`]
U(`, V, V ′) (rsb, rrf) ∈ atGuar(r, `, V ′), r[`] = at(−)

B.2.3 Ghost moves

r ∈ P
r V P

r0 V P ∀r ∈ P. r V P ′

r0 V P ′
m ∈ JµK

r V brc ∗ {(⊥, [µ 7→ [i 7→ m]], ∅) | i ∈ N}
∀gF#g. gF#g′

(Π, g,Σ)V b(Π, g′,Σ)c

interp(σ) = (P,P ′) r′ ∈ P ′

(Π, g,Σ)⊕ r′ V b(Π, g,Σ ∪ {σ})c

interp(σ) = (P,P ′)
σ ∈ r.Σ r ∈ P
r0 ⊕ r V br0c ∗ P ′

B.2.4 Protocol equivalence for writes

α (rpre, r
′) ∈ wpe(α) if

A(`1..`n) ∀i.1 ≤ i ≤ n⇒ r′(`i) = ⊥
W(`,−, at) rpre[`] = at(−) ∧ r′[`] = at(−) =⇒ ∃rE ∈ envMove(rpre, `,−). rE [`] = r′[`]
U(`,−,−) rpre[`] = at(−) =⇒ r′[`] ≡ rpre[`]
otherwise always

B.2.5 Local safety

r ∈ LSafe0(e,Φ) , always
r ∈ LSafen+1(e,Φ) ,

If e ∈ Val then r V Φ(e)

If e = K[fork e′] then r ∈ LSafen(K[0],Φ) ∗ LSafen(e′, true)

If e α−→ e′ then ∀rF#r. ∀rpre ∈ rely(r ⊕ rF , α). ∃P. rpre V P and
∀r′ ∈ P. (rpre, r

′) ∈ wpe(α) =⇒ ∃rpost. (rpost ⊕ rF ,−) ∈ guar(rpre, r
′, α), rpost ∈ LSafen(e′,Φ)

17

B.3 Global safety
B.3.1 Domains

Tag(G) ::= {(sb, a, b) | (a, b) ∈ G.sb ∨ b = ⊥} ∪ {(esc, a, b) | (a, b) ∈ G.hb ∨ b = ⊥}
∪ {(rf, a, b) | G.rf(a) = b ∨ b = ⊥} ∪ {(cond, a,⊥)}

L ∈ Labeling(G) , Tag(G)→ Resource

I ∈ EscrowIntros , ℘fin(EscrowTy× Resource)

T ∈ IThreadMap , N fin
⇀ (ActName× Exp× Resource× (Val→ Prop))

B.3.2 Valid ghost moves
r VI r′ , ∃g. r′ = (r.Π, g, r.Σ ∪ {σ | (σ,−) ∈ I})

B.3.3 Valid edge labels for a node
b ∈ valid(G,L, N) , ∃r, I.
L ∈ Labeling(G)
in(sb)⊕ in(rf)⊕ in(esc)VI r ⊕ out(esc)⊕ out(cond)
(out(sb), out(rf)) ∈ guar(in(sb)⊕ in(rf), r, α)
(∀c ∈ N. isUpd(c) ∧ rf(c) = b =⇒ L(rf, b, c) = out(rf))
(@c ∈ N. isUpd(c) ∧ rf(c) = b) =⇒ L(rf, b,⊥) = out(rf)
|L(rf, b,⊥)| = |out(rf)|
∀(σ, rE) ∈ I. interp(σ) = (Q,Q′) =⇒ rE ∈ Q′

L(esc, b,⊥) =
⊕{

rE

∣∣∣∣ (σ, rE) ∈ I, interp(σ) = (P,P ′),
rE ∈ P ′, (@c. hb=(b, c) ∧ L(cond, c,⊥) ∈ P)

}
where
G = (A, sb,mo, rf)
α , A(b)

in(x) ,
⊕
{L(x, a, b) | (x, a, b) ∈ dom(L)}

out(x) ,
⊕
{L(x, b, c) | (x, b, c) ∈ dom(L)}

B.3.4 Concurrent compatibility
compat(G,L) , ∀E ⊆ dom(L). tgt(E);G.hb∗ t src(E) =⇒

⊕
η∈E L(η) defined

B.3.5 Protocol conformance
conform(G,L, N) , ∀`. ∀a, b ∈ N. G.mo`,at(a, b) =⇒ out(L, a, rf)[`] vat out(L, b, rf)[`]

B.3.6 Global safety
GSafen(T , G,L) ,

valid(G,L, N) = N
compat(G,L)
conform(G,L, N)
∀a ∈ N. L(sb, a,⊥) =

⊕
{r | ∃i. T (i) = (a,−, r,−)}

∀i. T (i) = (a, e, r,Φ) =⇒ r ∈ LSafen(e,Φ)

where N , dom(G.A)

18

B.4 Syntax and semantics
B.4.1 Parameters
We assume:

• A syntax of states and PCM terms, with appropriate sorting rules, as part of the term syntax given below.
• A term interpretation function JtKρ for state and PCM terms.

B.4.2 Syntax

Sort θ ::= Val | State | PCMµ

Var X ::= ` | x | s
Term t ::= X | n | εµ | t ·µ t | · · ·
Proposition P ::= t = t | P ∧ P | P ∨ P | P ⇒ P | ∀X : θ. P | ∃X : θ. P

| �P | P ∗ P | uninit(t) | t ↪→ t | t : t τ | t vτ t | t : t µ | [σ]

B.4.3 Proposition semantics

R r ∈ JRKρ iff

t = t′ JtKρ = Jt′Kρ

t vτ t′ JtKρ vτ Jt′Kρ

P ∧Q r ∈ JP Kρ ∩ JQKρ

P ∨Q r ∈ JP Kρ ∪ JQKρ

P ⇒ Q brc ∩ JP Kρ ⊆ JQKρ

∀X. P r ∈
⋂
d∈sort(X) JP Kρ[X 7→d]

∃X. P r ∈
⋃
d∈sort(X) JP Kρ[X 7→d]

R r ∈ JRKρ iff

�P |r| ∈ JP Kρ

P1 ∗ P2 r ∈ JP1Kρ ∗ JP2Kρ

uninit(t) r.Π(JtKρ) = uninit

t ↪→ t′ r.Π(JtKρ) = na(Jt′Kρ)

t : t′ τ r.Π(JtKρ) ≥ at(τ, {Jt′Kρ})

t : t′ µ r.g(µ)(JtKρ) ≥ Jt′Kρ

[σ] σ ∈ r.Σ

B.4.4 Ghost move semantics

ρ |= P V Q , ∀r ∈ JP Kρ . r V JQKρ

B.4.5 Hoare triple semantics

LSafe(e,Φ) ,
⋂
n

LSafen(e, ϕ)

ρ |= {P} e {x. Q} , r ∈ JP Kρ . r V LSafe(e, λV. JQKρ [x 7→ v])

B.5 Proof theory
B.5.1 Necessitation

�P ⇒ P �P ⇒ ��P �P ∗Q⇔ �P ∧Q t = t′ ⇒ �t = t′ t : t′ τ ⇒ � t : t′ τ
t ·µ t = t

γ : t µ ⇒ � γ : t µ

[σ]⇒ �[σ]

B.5.2 Separation

γ : t µ ∗ γ : t′ µ ⇔ γ : t ·µ t′ µ ` : s τ ∗ ` : s′ τ ′ ⇒ τ = τ ′ ∧ (s vτ s′ ∨ s′ vτ s)

B.5.3 Ghost moves

P ⇒ Q

P V Q

P V Q

P ∗RV Q ∗R
P V Q QV R

P V R

σ : P Q

QV [σ]

σ : P Q

P ∗ [σ]V Q

P1 V Q P2 V Q

P1 ∨ P2 V Q

P V Q

∃X.P V Q
trueV ∃γ. γ : t µ

∀tF : PCMµ. t1#µtF ⇒ t2#µtF

γ : t1 µ V γ : t2 µ

B.5.4 Hoare logic
Allocation

{true} alloc(n) {x. x 6= 0 ∗ uninit(x) ∗ · · · ∗ uninit(x+ n− 1)}

19

Acquire/release protocol rules

∀s′ wτ s. ∀z. τ(s′, z) ∗ P ⇒ �Q{
` : s τ ∗ P

}
[`]at

{
z. ∃s′. ` : s′ τ ∗ P ∗�Q

} {uninit(`) ∗ τ(s, v)} [`]at := v
{
` : s τ

}

P V τ(s′′, v) ∗Q ∀s′ wτ s. τ(s′,−) ∗ P ⇒ s′′ wτ s′{
` : s τ ∗ P

}
[`]at := v

{
` : s′′ τ ∗Q

}
∀s′ wτ s. τ(s′, vo) ∗ P V ∃s′′ wτ s′. τ(s′′, vn) ∗Q

∀s′′ wτ s. ∀y 6= vo. τ(s′′, y) ∗ P ⇒ �R{
` : s τ ∗ P

}
CAS(`, vo, vn)

{
z. ∃s′′. ` : s′′ τ ∗ ((z = 1 ∗Q) ∨ (z = 0 ∗ P ∗�R))

}
∀s′ wτ s. ∀z. τ(s′, z) ∗ P V ∃s′′ wτ s′. τ(s′′, (z + 1) mod C) ∗Q{

` : s τ ∗ P
}
FAI(`)

{
z. ∃s′′. ` : s′′ τ ∗Q

}
Nonatomics

{uninit(`) ∨ ` ↪→ −} [`]na := v {` ↪→ v} {` ↪→ v} [`]na {x. x = v ∗ ` ↪→ v}

Structural rules
P ′ V P {P} e {x. Q} ∀x. QV Q′{

P ′
}
e
{
x. Q′

} {P} e {x. Q}
{P ∗R} e {x. Q ∗R}

Axioms for pure reductions
{true} v {x. x = v}
{true} v + v′ {x. x = v + v′}
{true} v == v′ {x. x = 1⇔ v = v′}

{P ∗ v 6= 0} e1 {x. Q}
{P ∗ v = 0} e2 {x. Q}

{P} if v then e1 else e2 {x. Q}
{P} e {x. Q} ∀x. {Q} e′ {y. R}
{P} let x = e in e′ {y. R}

{P} e {true}
{P} fork e {true}

{P} e {x. (x = 0 ∗ P) ∨ (x 6= 0 ∗Q)}
{P} repeat e end {x. Q}

20

C. Metatheory
The metatheory of GPS has been formalized in Coq and mechanically checked. The README.txt file explains the contents of the various
Coq files. Below we report on the main conceptual effort of the soundness proof: finding a decomposition of global soundness into a sequence
of lemmas.

C.1 Basic properties of semantics domains and ghost moves
This subsection gives a few of the basic lemmas about our semantic domains and ghost moves. All of these claims, and many others besides,
have been formalized and mechanically checked in GpsModel.v, GpsModelLemmas.v, and GpsLogic.v.

C.1.1 Resources
Lemma 1. Protocols and resources form partial commutative monoids.

Corollary 1. If (r ⊕ r′)#r′′ then r#r′′.

Lemma 2. If r#r′ then |r ⊕ r′| = |r| ⊕ |r′|.
Lemma 3. ||r|| = |r|.
Lemma 4. r = r ⊕ |r|.
Lemma 5. |r| = |r| ⊕ |r|.

C.1.2 Propositions
Lemma 6. JP Kρ ∈ Prop.

Lemma 7. Prop forms a BI algebra.

Proof. Follows immediately from Lemma 1.

C.1.3 Protocols
Lemma 8. If π vat π

′ vat π
′′ then π vat π

′′.

Lemma 9. If π#πF then π vat (π ⊕ πF).

Lemma 10. If π ⊕ π′ = at(τ, S) then either π ≡at at(τ, S) or π′ ≡at at(τ, S).

C.1.4 Ghost moves
Lemma 11. r V brc.
Lemma 12. If r V P and rF#r then r ⊕ rF V P ∗ brF c.

21

http://plv.mpi-sws.org/gps/coqplain/GpsModel.html
http://plv.mpi-sws.org/gps/coqplain/GpsModelLemmas.html
http://plv.mpi-sws.org/gps/coqplain/GpsLogic.html

C.2 Proof rules: local soundness
Theorem 3 (Local safety for ghost moves). If P V Q then for all closing ρ we have ρ |= P V Q.

Proof. Checked entirely in Coq; see GpsLogic.v.

Theorem 4 (Local safety for Hoare triples). If {P} e {x. Q} then for all closing ρ we have ρ |= {P} e {x. Q}

Proof. Checked entirely in Coq; see GpsLogic.v.

C.3 Global soundness
The proof of global soundness breaks into two pieces:

• First, we prove a sequence of easy “visibility” lemmas: given that we know global safety for a graph constructed so far, resource
knowledge at any point in the graph connects to some associated fact about happens-before visibility. For example, if a given node b
claims to know that an atomic location ` is in a particular state s, then there must be some node a such that hb(a, b) and a wrote to `
while moving to s. These lemmas are given in section C.3.1.
• Second, we prove a sequence of lemmas that lead to the main instrumented step theorem (Theorem 5). Each of these lemmas accounts

for a piece of the definition of local safety: rely (§C.3.2), ghost moves (§C.3.3), protocol equivalence for writes (§C.3.4) and guarantee
(§C.3.5). We set up (“prepare”) for taking a step with a final lemma in section C.3.6. Each of these lemmas takes an existing labeling of
the graph and transforms it by labelling the associated edges:

Step preparation: labels the incoming sb edge
Rely: labels any incoming rf edges
Ghost: labels hb edges for all escrow-related activity, including transferring the escrowed resource and consuming the escrow
condition
Guarantee: labels the outgoing sb and rf edges.

Outgoing resources from a new node initially go to a sink node ⊥. These resources are subsequently moved to label e.g., rf edges as
further nodes are added to the graph.

C.3.1 Visibility
Definition 1. We say that a set of nodes N ⊆ dom(G.A) is G-prefix closed (written N ∈ prefix(G)) if ∀b ∈ N. ∀a. G.hb(a, b) =⇒ a ∈
N .

Lemma 13 (Allocation visibility). If

consistentC11(G)
N ∈ prefix(G)
N ∪ {b} ∈ prefix(G)
N ⊆ valid(G,L, N ′)
in(L, b, all)[`] 6= ⊥

then ∃a.
G.hb(a, b)

G.A(a) = A(~̀)

` ∈ ~̀

Proof. See visible allocation in GpsVisible.v.

22

http://plv.mpi-sws.org/gps/coqplain/GpsLogic.html
http://plv.mpi-sws.org/gps/coqplain/GpsLogic.html
http://plv.mpi-sws.org/gps/coqplain/GpsVisible.html#visible_allocation
http://plv.mpi-sws.org/gps/coqplain/GpsVisible.html

Lemma 14 (Nonatomic protocol visibility). If

consistentC11(G)
N ∈ prefix(G)
N ∪ {b} ∈ prefix(G)
N ⊆ valid(G,L, N ′)
compat(G,L)
in(L, b, all)[`] = na(V)

then ∃a.
G.hb(a, b)
G.A(a) = W(`, V, na)
∀a′ ∈ N. G.A(a′) = W(`,−,−) =⇒ (G.hb=(b, a′) ∨G.hb=(a′, a))

Proof. See visible na in GpsVisible.v.

Lemma 15 (Uninitialized visibility). If

consistentC11(G)
N ∈ prefix(G)
N ∪ {b} ∈ prefix(G)
N ⊆ valid(G,L, N ′)
compat(G,L)
in(L, b, all)[`] = uninit
a ∈ N
G.A(a) = W(`,−,−)

then

G.hb=(b, a)

Proof. See visible uninit in GpsVisible.v.

Lemma 16 (Atomic protocol visibility). If

consistentC11(G)
N ∈ prefix(G)
N ∪ {b} ∈ prefix(G)
N ⊆ valid(G,L, N ′)
compat(G,L)
in(L, b, all)[`] = at(−)

then ∃a, S′.
G.hb(a, b)
writes(G.A(a), `,−)
isAtomic(a)
out(L, a, sb)[`] ≡at in(L, b, all)[`]

Proof. See visible atomic in GpsVisible.v.

23

http://plv.mpi-sws.org/gps/coqplain/GpsVisible.html#visible_na
http://plv.mpi-sws.org/gps/coqplain/GpsVisible.html
http://plv.mpi-sws.org/gps/coqplain/GpsVisible.html#visible_uninit
http://plv.mpi-sws.org/gps/coqplain/GpsVisible.html
http://plv.mpi-sws.org/gps/coqplain/GpsVisible.html#visible_atomic
http://plv.mpi-sws.org/gps/coqplain/GpsVisible.html

Lemma 17 (Escrow visibility). If

consistentC11(G)
N ∈ prefix(G)
N ∪ {b} ∈ prefix(G)
N ⊆ valid(G,L, N ′)
compat(G,L)
σ ∈ in(L, b, all).Σ

then ∃a.
G.hb(a, b)
σ /∈ in(L, a, all).Σ
σ ∈ out(L, b, all).Σ

Proof. See visible escrow in GpsVisible.v.

24

http://plv.mpi-sws.org/gps/coqplain/GpsVisible.html#visible_escrow
http://plv.mpi-sws.org/gps/coqplain/GpsVisible.html

C.3.2 Rely
Lemma 18 (Rely step). If

G.A(a) = α
dom(G.A) = N] {a}
N ∈ prefix(G)
N ⊆ valid(G,L, N)
in(L, a, all) = out(L, a, all) = emp
compat(G,L)
conform(G,L, N)
consistentC11(G)
in(L, a, rf) = emp
in(L, a, esc) = emp
out(L, a, all) = emp

then ∃L′.
N ⊆ valid(G,L′, dom(G.A))
compat(G,L′)
conform(G,L′, N)
in(L′, a, sb)⊕ in(L′, a, rf) ∈ rely(in(L′, a, sb), α)
in(L′, a, esc) = out(L′, a, all) = emp
∀b, c. L′(sb, b, c) = L(sb, b, c)
∀b. L′(sb, b,⊥) = L(sb, b,⊥)

Proof. See rely step in GpsRelyGhost.v.

25

http://plv.mpi-sws.org/gps/coqplain/GpsRelyGhost.html#rely_step
http://plv.mpi-sws.org/gps/coqplain/GpsRelyGhost.html

C.3.3 Ghost moves
Lemma 19 (Ghost step). If

dom(G.A) = N] {a}
consistentC11(G)
N ∈ prefix(G)
N ⊆ valid(G,L, dom(G.A))
compat(G,L[(esc, a,⊥) := L(esc, a,⊥)⊕ r])
conform(G,L, N)

rbefore , in(L, a, sb)⊕ in(L, a, rf)⊕ in(L, a, esc)

rafter , r ⊕ out(L, a, esc)⊕ out(L, a, cond)
rbefore VI rafter
|r0| ≤ r
∀c. L(esc, a, c) = emp
∀(σ, rE) ∈ I. interp(σ) = (Q,Q′) =⇒ rE ∈ Q′

L(esc, a,⊥) =
⊕{

rE

∣∣∣∣ interp(σ) = (Q,Q′), rE ∈ Q′,
(@b. hb=(a, b) ∧ L(cond, b,⊥) ∈ Q)

}
then ∃L′, I′, r′, r′before, r′after ∈ P.

N ⊆ valid(G,L′, dom(G.A))
compat(G,L′[(esc, a,⊥) := L′(esc, a,⊥)⊕ r′])
conform(G,L′, N)

r′before , in(L′, a, sb)⊕ in(L′, a, rf)⊕ in(L′, a, esc)

r′after , r′ ⊕ out(L′, a, esc)⊕ out(L′, a, cond)
r′before VI′ r

′
after

∀b. L′(sb, b,⊥) = L(sb, b,⊥)
∀b. L′(rf, b,⊥) = L(rf, b,⊥)
∀b, c. L′(sb, b, c) = L(sb, b, c)
∀b, c. L′(rf, b, c) = L(rf, b, c)
∀c. L(esc, a, c) = emp

∀(σ, rE) ∈ I′. interp(σ) = (Q,Q′) =⇒ rE ∈ Q′

L(esc, a,⊥) =
⊕{

rE

∣∣∣∣ (σ, rE) ∈ I′, interp(σ) = (Q,Q′), rE ∈ Q′,
(@b. hb=(a, b) ∧ L(cond, b,⊥) ∈ Q)

}
Proof. See ghost step in GpsRelyGhost.v.

26

http://plv.mpi-sws.org/gps/coqplain/GpsRelyGhost.html#ghost_step
http://plv.mpi-sws.org/gps/coqplain/GpsRelyGhost.html

C.3.4 Protocol equivalence for writes
Lemma 20 (Protocol equivalence for writes). If

dom(G.A) = N] {a}
consistentC11(G)
N ∈ prefix(G)
N ⊆ valid(G,L, dom(G.A))
in(L′, a, sb)⊕ in(L′, a, rf) ∈ rely(in(L′, a, sb), α)
compat(G,L[(esc, a,⊥) := L(esc, a,⊥)⊕ r])
conform(G,L, N)
in(L, a, all)VI r ⊕ out(L, a, esc)⊕ out(L, a, cond)
|in(L, a, sb)⊕ in(L, a, rf)| ≤ r

then

(in(L, a, sb)⊕ in(L, a, rf), in(L, a, all)) ∈ wpe(G.A(a))

Proof. See pwpe in GpsGuarPrep.v and wpe in GpsGuarPrep.v.

C.3.5 Guarantee
Lemma 21 (Guar step). If

α = G.A(a)
dom(G.A) = N] {a}
N ∈ prefix(G)
N ⊆ valid(G,L, dom(G.A))
consistentC11(G)
compat(G,L[(esc, a,⊥) := L(esc, a,⊥)⊕ r)
conform(G,L, N)
rpre = in(L, a, sb)⊕ in(L, a, rf)
rpre ∈ rely(−, α)
in(L, a, all)VI r ⊕ out(L, a, esc)⊕ out(L, a, cond)
∀(σ, rE) ∈ I′. interp(σ) = (Q,Q′) =⇒ rE ∈ Q′

L(esc, a,⊥) =
⊕{

rE

∣∣∣∣ (σ, rE) ∈ I′, interp(σ) = (Q,Q′), rE ∈ Q′,
(@b. hb=(a, b) ∧ L(cond, b,⊥) ∈ Q)

}
|in(L, a, all)| ≤ r
out(L, b, rf) = emp
out(L, b, sb) = emp
(rsb, rrf) ∈ guar(rpre, r, α)
wpe(α, rpre, in(L, a, all))

then ∃L′.
dom(G.A) = valid(G,L′, dom(G.A))
compat(G,L′)
conform(G,L′, dom(G.A))
∀b 6= a. L′(sb, b,⊥) = L(sb, b,⊥)
L′(sb, a,⊥) = rsb

Proof. See guar step in GpsGuarPrep.v.

27

http://plv.mpi-sws.org/gps/coqplain/GpsGuarPrep.html#pwpe
http://plv.mpi-sws.org/gps/coqplain/GpsGuarPrep.html
http://plv.mpi-sws.org/gps/coqplain/GpsGuarPrep.html#wpe
http://plv.mpi-sws.org/gps/coqplain/GpsGuarPrep.html
http://plv.mpi-sws.org/gps/coqplain/GpsGuarPrep.html#guar_step
http://plv.mpi-sws.org/gps/coqplain/GpsGuarPrep.html

C.3.6 Step preparation
Lemma 22 (Step preparation). If

consistentC11(G)
consistentC11(G′)
dom(G′.A) = dom(G.A)] {b}
L(sb, a,⊥) = r ⊕ rrem
dom(G) ⊆ valid(G′,L, dom(G.A))
compat(G,L)
conform(G,L, dom(G))
∀c ∈ dom(G.A). G.A(c) = G′.A(c)
G′.sb = G.sb] {[a, b)}
∀c ∈ dom(G.A). G.rf(c) = G′.rf(c)
G′.mo ⊇ G.mo

then ∃L′.
valid(G′,L′, dom(G.A)) = dom(G)
compat(G′,L′)
conform(G′,L′, dom(G′))
L′(sb, a,⊥) = rrem
in(L′, b, sb) = r
in(L′, b, rf) = emp
in(L′, b, esc) = emp
∀a′ 6= a. L′(sb, a′, b) = emp
out(L′, b, all) = emp
∀a′ 6= a. L′(sb, a′,⊥) = L(sb, a′,⊥)

Proof. See prepare step in GpsGuarPrep.v.

C.3.7 Instrumented execution and adequacy

We define functions erase : IThreadMap→ ThreadMap and post : IThreadMap→ N fin
⇀ Val→ Prop as follows:

erase(T) , λi. (a, e) if T (i) = (a, e,−,−)

post(T) , λi. P if T (i) = (−,−,−,P)

Theorem 5 (Instrumented execution). If GSafen+1(T , G,L, dom(G.A)) and 〈erase(T);G〉 −→ 〈T ′;G′〉 then there exist T ′,L′ such that
erase(T ′) = T ′ and GSafen(T ′, G′,L′, dom(G′.A)) and post(T) ⊆ post(T ′).

Proof. See gsafe pres in GpsAdequate.v.

Theorem 6 (Adequacy). If e is closed and {true} e {x. P} then JeK ⊆ {V | JP K[x 7→V] 6= ∅}.

Proof. See adequacy in GpsAdequate.v.

28

http://plv.mpi-sws.org/gps/coqplain/GpsGuarPrep.html#prepare_step
http://plv.mpi-sws.org/gps/coqplain/GpsGuarPrep.html
http://plv.mpi-sws.org/gps/coqplain/GpsAdequate.html#gsafe_pres
http://plv.mpi-sws.org/gps/coqplain/GpsAdequate.html
http://plv.mpi-sws.org/gps/coqplain/GpsAdequate.html#adequacy
http://plv.mpi-sws.org/gps/coqplain/GpsAdequate.html

D. Examples
D.1 One-shot message passing
D.1.1 Code
let x = alloc(1) in
let y = alloc(1) in
[x]na := 0;
[y]at := 0;
fork [x]na := 1; [y]at := 1;
repeat [y]at end;
[x]na

D.1.2 Proof setup
A ghost PCM for tokens We set up a ghost PCM named Token with carrier ℘({1}) and] as composition. Let � denote {1}.

Escrows We define a single escrow, XE(γ, x), as follows:

XE(γ, x) : γ : � x ↪→ 1

Protocols We define a single protocol, YP(γ, x), with states 0 and 1 and transition relation ≤. State interpretations are as follows:

YP(γ, x)(0, z) , z = 0

YP(γ, x)(1, z) , z = 1 ∗ [XE(γ, x)]

29

D.1.3 Verification{
true

}{
∃γ. γ : �

}
let x = alloc(1) in{
γ : � ∗ uninit(x)

}
let y = alloc(1) in{
γ : � ∗ uninit(x) ∗ uninit(y)

}
[x]na := 0;{
γ : � ∗ x ↪→ 0 ∗ uninit(y)

}
[y]at := 0;{
γ : � ∗ x ↪→ 0 ∗ y : 0 YP(γ, x)

}
fork{

x ↪→ 0 ∗ y : 0 YP(γ, x)

}
[x]na := 1;

{
x ↪→ 1 ∗ y : 0 YP(γ, x)

}{
[XE(γ, x)] ∗ y : 0 YP(γ, x)

}
[y]at := 1;{
y : 1 YP(γ, x)

}{
γ : � ∗ y : 0 YP(γ, x)

}
repeat [y]at end;{
γ : � ∗ y : 1 YP(γ, x) ∗ [XE(γ, x)]

}{
y : 1 YP(γ, x) ∗ x ↪→ 1

}
[x]na{
z. z = 1

}

30

D.2 Spinlocks
D.2.1 Parameters
Fix some assertion P for the resources protected by the lock.

D.2.2 Code
newLock ,
let x = alloc(1) in
[x]at := 1;
x

spin(x) ,
repeat [x]at end

lock(x) ,
repeat spin(x); CAS(x, 1, 0) end

unlock(x) ,
[x]at := 1

D.2.3 Proof setup
Top-level spec

{P} newLock {x. �isLock(x)}
{isLock(x)} lock(x) {P}

{isLock(x) ∗ P} unlock(x) {true}

Protocols We assume a protocol LP with a single state Inv, interpreted as follows:

LP(Inv, x) , (x = 1 ∗ P) ∨ x = 0

High-level predicates

isLock(x) , x : Inv LP

D.2.4 Verification of newLock{
P
}

let x = alloc(1) in{
P ∗ uninit(x)

}
[x]at := 1;{
x : Inv LP

}
x{
�(isLock(x))

}
D.2.5 Verification of spin{
x : Inv LP

}
repeat [x]at end

{
x : Inv LP

}
D.2.6 Verification of lock{

isLock(x)
}{

x : Inv LP

}
repeat

{
x : Inv LP

}
spin(x);{
x : Inv LP

}
CAS(x, 1, 0){
z. x : Inv LP ∗ (z = true⇒ P)

}
end{
P
}

D.2.7 Verification of unlock{
isLock(x) ∗ P

}
31

{
x : Inv LP ∗ P

}
[x]at := 1{

true
}

32

D.3 Ernie Cohen’s lock example
D.3.1 Parameters
Fix some assertion P for the resources to be raced for.

D.3.2 Code
[x]at := choose(1, 2);
repeat [y]at end;
if [x]at == [y]at then
/* critical section */

[y]at := choose(1, 2);
repeat [x]at end;
if [x]at != [y]at then
/* critical section */

D.3.3 Proof setup
Protocols

0

1

2

Choice(γ)(s, z) ,
s = z ∗ (s = 0 ∨ γ : � Tok)

Escrows We have an escrow type PE(γ1, γ2) for the resource P :

PE(γx, γy) : ∃i, j > 0. x : i ∗ y : j ∗

(
γx : � ∗ i = j

∨ γy : � ∗ i 6= j

)
 P

D.3.4 Proof {
P
}

let x = alloc(1){
P ∗ uninit(x)

}
let y = alloc(1){
P ∗ uninit(x) ∗ uninit(y)

}{
P ∗ uninit(x) ∗ uninit(y) ∗ ∃γx1 , γx2 , γy1 , γ

y
2 . γ

x
1 : � ∗ γx2 : � ∗ γy1 : � ∗ γy2 : �

}{
uninit(x) ∗ uninit(y) ∗ γx1 : � ∗ γx2 : � ∗ γy1 : � ∗ γy2 : � ∗�([PE(γx1 , γ

y
1)])

}
[x]at := 0{

uninit(y) ∗ γx1 : � ∗ γx2 : � ∗ γy1 : � ∗ γy2 : � ∗�
(
x : 0 Choice(γx2)

)}
[y]at := 0{
γx1 : � ∗ γx2 : � ∗ γy1 : � ∗ γy2 : � ∗�

(
y : 0 Choice(γy2)

)}{
γx1 : � ∗ γx2 : �

}
[x]at := choose(1, 2);{
γx1 : � ∗ ∃i > 0. �

(
x : i Choice(γx2)

)}
repeat [y]at end;{
γx1 : � ∗ ∃j > 0. �

(
y : j Choice(γy2)

)}
if [x]at == [y]at then{

γx1 : � ∗ i = j
}{

P
}

/* critical section */

{
γy1 : � ∗ γy2 : �

}
[y]at := choose(1, 2);{
γy1 : � ∗ ∃j > 0. �

(
y : j Choice(γy2)

)}
repeat [x]at end;{
γy1 : � ∗ ∃i > 0. �

(
x : i Choice(γx2)

)}
if [x]at != [y]at then{

γy1 : � ∗ i 6= j
}{

P
}

/* critical section */

33

D.4 Michael-Scott queue
D.4.1 Parameters
Fix some per-element predicate P (x).

Let head = 0, tail = 1, data = 0, link = 1. We will use these values as field offsets.

D.4.2 Code
newBuffer ,
let s = alloc(2) /* initial sentinel node */
[s + link]at := 0;
let q = alloc(2); /* queue = head and tail pointers */
[q + head]at := s;
[q + tail]at := s;
q

findTail(q) ,
let n = [q + tail]at
let n′ = [n + link]at
if n′ == 0 then n
else [q + tail]at :=n

′; 0

tryEnq(q, x) ,
let n = alloc(2);
[n + data]na :=x;
[n + link]at := 0;
let t = repeat findTail(q) end
if CAS(t + link, 0, n)
then [q + tail]at :=n; 1

else 0

tryDeq(q) ,
let s = [q + head]at
let n = [s + link]at
if n == 0 then 0
else if CAS(q + head, s, n) then [n + data]na
else 0

Note that the use of release-acquire operations causes the Michael-Scott queue to exhibit behavior that is not sequentially consistent.
This places it out of reach for the type of verification methods (mentioned in the Introduction to the paper) that recover SC reasoning by
demanding the use of strong synchronization disciplines. In particular, suppose we have two queues, q and r, both initially empty, and then
we run the following:

repeat tryEnq(q, 1) end;
let x = tryDeq(r)

repeat tryEnq(r, 2) end;
let y = tryDeq(q)

Using our release-acquire implementation of the queue, there is an execution in which both threads return x = y = 0 (i.e., observing each
other’s queue to be empty). But that is not a possible SC execution. This is really just a simple encoding of the canonical example where
release-acquire differs from SC, but lifted to a higher-level data structure rather than just using primitive reads/writes.

34

D.4.3 Proof setup
Top-level spec

{true} newBuffer() {q. �Queue(q)}
{Queue(q) ∗ P (x)} tryEnq(q, x) {z. z 6= 0 ∨ P (x)}

{Queue(q)} tryDeq(q) {x. x = 0 ∨ P (x)}

A ghost PCM for tokens We set up a ghost PCM named Token with carrier ℘({1}) and] as composition. Let � denote {1}.

Escrows We define a single escrow, DEQ(`, γ, γ′), defined as follows:

DEQ(`, γ, γ′) : γ : � ∃x. ` ↪→ x ∗ P (x) ∗ γ′ : �

Protocols We have a protocol Link(γ) for link pointers with states Null, Linked(`) and transitions from Null to Linked(`) for any ` (plus
the usual reflexive, transitive closure), with state interpretations:

Link(γ)(Null, x) , x = 0

Link(γ)(Linked(`), x) , x = ` 6= 0 ∗ ∃γ′. [DEQ(`+ data, γ, γ′)] ∗ `+ link : Null Link(γ′)

We also have two protocols, Head and Tail, each with a single state called Inv, interpreted as:

Head(Inv, x) , ∃γ. x+ link : Null Link(γ) ∗ γ : �

Tail(Inv, x) , ∃γ. x+ link : Null Link(γ)

High-level predicates

Queue(q) , q + head : Inv Head ∗ q + tail : Inv Tail

35

D.4.4 Verification of newBuffer{
true

}{
∃γ. γ : �

}
let s = alloc(2){
γ : � ∗ uninit(s+ data) ∗ uninit(s+ link)

}{
γ : � ∗ uninit(s+ link)

}
/* leak memory */

[s + link]at := 0;{
γ : � ∗ s+ link : Null Link(γ)

}
let q = alloc(2);{
γ : � ∗ s+ link : Null Link(γ) ∗ uninit(q + head) ∗ uninit(q + tail)

}
[q + head]at := s;{
q + head : Inv Head ∗ s+ link : Null Link(γ) ∗ uninit(q + tail)

}
[q + tail]at := s;{
q + head : Inv Head ∗ q + tail : Inv Tail

}
q{
q. �Queue(q)

}
D.4.5 Verification of findTail{
�(Queue(q))

}{
q + tail : Inv Tail

}
let n = [q + tail]at{
�
(
∃γ. n+ link : Null Link(γ)

)}
let n′ = [n + link]at{
n′ 6= 0⇒ ∃γ′. n′ + link : Null Link(γ′)

}
if n′ == 0 then{

true
}

n{
n. �Queue(q) ∗ ∃γ. n+ link : Null Link(γ)

}
else{
∃γ′. n′ + link : Null Link(γ′)

}
[q + tail]at :=n

′;{
true

}
0{
z. z = 0 ∗�Queue(q)

}

36

D.4.6 Verification of tryEnq{
P (x) ∗�(Queue(q))

}
let n = alloc(2);{
P (x) ∗ uninit(n+ data) ∗ uninit(n+ link) ∗�(n 6= 0)

}
[n + data]na :=x;{
P (x) ∗ (n+ data) ↪→ x ∗ uninit(n+ link)

}{
P (x) ∗ (n+ data) ↪→ x ∗ uninit(n+ link) ∗ ∃γ′. γ′ : �

}
[n + link]at := 0;{
P (x) ∗ (n+ data) ↪→ x ∗ n+ link : Null Link(γ′) ∗ γ′ : �

}
let t = repeat findTail(q) end{
P (x) ∗ (n+ data) ↪→ x ∗ n+ link : Null Link(γ′) ∗ γ′ : � ∗ ∃γ. t+ link : Null Link(γ)

}
if CAS(t + link, 0, n) then{

t+ link : Linked(n) Link(γ) ∗ n+ link : Null Link(γ′)

}{
n+ link : Null Link(γ′) ∗ q + tail : Inv Tail

}
[q + tail]at :=n;{

true
}

1{
z. z = 1

}
else{

P (x) ∗ t+ link : Null Link(γ)

}
0{
z. z = 0 ∗ P (x)

}

37

D.4.7 Verification of tryDeq{
Queue(q)

}{
�
(
q + head : Inv Head

)}
let s = [q + head]at{
∃γ. s+ link : Null Link(γ)

}
let n = [s + link]at{
n 6= 0⇒ ∃γ′. [DEQ(n+ data, γ, γ′)] ∗ n+ link : Null Link(γ′)

}
if n == 0 then{

true
}

0{
x. x = 0

}
else{

q + head : Inv Head ∗ [DEQ(n+ data, γ, γ′)] ∗ n+ link : Null Link(γ′)

}
if CAS(q + head, s, n) then{

q + head : Inv Head ∗ ∃x. n+ data ↪→ x ∗ P (x)
}

[n + data]na{
x. P (x)

}
else{

q + head : Inv Head

}
0{
x. x = 0

}

38

D.5 Circular buffer
D.5.1 Parameters
• Fix some choice of buffer size N > 1; the actual capacity is N − 1.
• Fix some per-element predicate P (x).

Let wi = 0, ri = 1, buf = 2. We will use these values as field offsets.

D.5.2 Code
Based on circular buffers from the Linux kernel [17].

newBuffer() ,
let q = alloc(N + 2) /* queue = writer index, reader index, buffer */
[q + ri]at := 0;
[q + wi]at := 0;
q

tryProd(q, x) ,
let w = [q + wi]at
let r = [q + ri]at
let w′ = w + 1 mod N
if w′ == r then 0
else [q + buf +w]na :=x;

[q + wi]at :=w
′;

1

tryCons(q) ,
let w = [q + wi]at
let r = [q + ri]at
if w == r then 0
else let x = [q + buf + r]na

[q + ri]at := r + 1 mod N ;
x

In real implementations, this data structure provides an operation returning a bound on the size of the buffer, which can then be used to
efficiently batch a series of reads/writes without checking the indices each time. It would be straightforward to generalize our proof to handle
such an operation.

Note also that this data structure exhibits non-SC behavior for essentially the same reasons as the Michael-Scott queue does. (One can
construct a similar example to the one given in §D.4.2.)

39

D.5.3 Proof setup
Top-level spec

{true} newBuffer() {q. Prod(q) ∗ Cons(q)}
{Prod(q) ∗ P (x)} tryProd(q, x) {z. Prod(q) ∗ (z 6= 0 ∨ P (x))}

{Cons(q)} tryCons(q) {x. Cons(q) ∗ (x = 0 ∨ P (x))}

A ghost PCM for natural numbers We set up a ghost PCM with carrier ℘(N)4 with composition] component-wise. We define the
following terms over this PCM:

all , (N,N,N,N)

restP(i) , ({j | j > i}, {j | j ≥ i}, ∅, ∅)
restC(i) , (∅, ∅, {j | j > i}, {j | j ≥ i})
protP(i) , ({i}, ∅, ∅, ∅)
escP(i) , (∅, {i}, ∅, ∅)

protC(i) , (∅, ∅, {i}, ∅)
escC(i) , (∅, ∅, ∅, {i})

Escrows We define two escrows, PE(γ, q, i) and CE(γ, q, i), as follows:

PE(γ, q, i) : γ : escP(i) uninit(q + buf + (i mod N))

∨ (q + buf + (i mod N)) ↪→ −
CE(γ, q, j) : γ : escC(j) ∃x. P (x) ∗ (q + buf + (j mod N)) ↪→ x

Protocols We assume STS states for every natural number. We assume two protocols, PP(γ, q) and CP(γ, q) over natural number states,
with transition relations

vPP , vCP , ≤
and state interpretations

PP(γ, q)(i, x) , �(x = i mod N ∗ ∀j < i. [CE(γ, q, j)]) ∗ γ : protP(i)

CP(γ, q)(j, x) , �(x = j mod N ∗ ∀i < j +N. [PE(γ, q, i)]) ∗ γ : protC(j)

High-level predicates

Prod(q) , ∃γ, i, j. i < j +N ∗ q + wi : i PP(γ, q) ∗ q + ri : j CP(γ, q) ∗ γ : restP(i)

Cons(q) , ∃γ, i, j. j ≤ i ∗ q + wi : i PP(γ, q) ∗ q + ri : j CP(γ, q) ∗ γ : restC(j)

40

D.5.4 Verification of newBuffer{
true

}{
∃γ. γ : all

}
let q = alloc(N + 2){
γ : all ∗ uninit(q) ∗ · · · ∗ uninit(q +N + 1)

}{
γ : all ∗ uninit(q) ∗ · · · ∗ uninit(q +N + 1)

}{
γ : all ∗ uninit(q + wi) ∗ uninit(q + ri) ∗ [PE(γ, q, 0)] ∗ · · · ∗ [PE(γ, q,N − 1)]

}
[q + ri]at := 0;{
q + ri : 0 CP(γ, q) ∗ γ : restC(0) ∗ γ : protP(0) ∗ γ : restP(0) ∗ uninit(q + wi)

}
[q + wi]at := 0;{
q + ri : 0 CP(γ, q) ∗ q + wi : 0 PP(γ, q) ∗ γ : restC(0) ∗ γ : restP(0)

}
q{

Prod(q) ∗ Cons(q)
}

41

D.5.5 Verification of tryProd{
Prod(q) ∗ P (x)

}{
γ : restP(i) ∗ P (x) ∗�

(
i < j0 +N ∧ q + wi : i PP(γ, q) ∧ q + ri : j0 CP(γ, q)

)}
let w = [q + wi]at{
γ : restP(i) ∗ P (x) ∗�(w = i mod N ∧ ∀k < i. [CE(γ, q, k)])

}
let r = [q + ri]at{
γ : restP(i) ∗ P (x) ∗�

(
r = j mod N ∧ ∀k < j +N. [PE(γ, q, k)] ∧ j0 ≤ j ∧ q + ri : j CP(γ, q)

)}{
γ : restP(i) ∗ P (x) ∗�(i < j +N ∧ [PE(γ, q, i)])

}
let w′ = w + 1 mod N{
γ : restP(i) ∗ P (x) ∗�(w′ = w + 1 mod N)

}
if w′ == r then{

γ : restP(i) ∗ P (x)
}

0{
z. Prod(q) ∗ z = 0 ∗ P (x)

}
else{

γ : restP(i) ∗ P (x) ∗�(w′ 6= r)
}{

γ : restP(i) ∗ P (x) ∗�(i+ 1 < j +N)
}{

γ : restP(i+ 1) ∗ γ : protP(i+ 1) ∗ P (x) ∗ γ : escP(i)

}{
γ : restP(i+ 1) ∗ γ : protP(i+ 1) ∗ P (x) ∗ (uninit(q + buf + w) ∨ (q + buf + w) ↪→ −)

}
[q + buf +w]na :=x;{
γ : restP(i+ 1) ∗ γ : protP(i+ 1) ∗ P (x) ∗ (q + buf + w) ↪→ x

}{
γ : restP(i+ 1) ∗ γ : protP(i+ 1) ∗ [CE(γ, q, i)]

}
[q + wi]at :=w

′;{
γ : restP(i+ 1) ∗ q + wi : i+ 1 PP(γ, q)

}
1{
z. Prod(q) ∗ z = 1

}

42

D.5.6 Verification of tryCons{
Cons(q)

}{
γ : restC(j) ∗�

(
j ≤ i0 ∧ q + wi : i0 PP(γ, q) ∧ q + ri : j CP(γ, q)

)}
let w = [q + wi]at{
γ : restC(j) ∗�

(
w = i mod N ∧ ∀k < i. [CE(γ, q, k)] ∧ i0 ≤ i ∧ q + wi : i PP(γ, q)

)}{
γ : restC(j) ∗�(j ≤ i)

}
let r = [q + ri]at{
γ : restC(j) ∗�(r = j mod N ∧ ∀k < j +N. [PE(γ, q, k)])

}
if w == r then{

γ : restC(j)

}
0{

x. Cons(q) ∗ x = 0
}

else{
γ : restC(j) ∗ w 6= r

}{
γ : restC(j) ∗�(j < i)

}{
γ : restC(j + 1) ∗ γ : protC(j + 1) ∗ γ : escC(j)

}{
γ : restC(j + 1) ∗ γ : protC(j + 1) ∗ ∃x. P (x) ∗ (q + buf + r) ↪→ x

}
let x = [q + buf + r]na{
γ : restC(j + 1) ∗ γ : protC(j + 1) ∗ P (x) ∗ (q + buf + r) ↪→ x

}{
γ : restC(j + 1) ∗ P (x) ∗ γ : protC(j + 1) ∗ [PE(γ, q, j +N)]

}
[q + ri]at := r + 1 mod N ;{
γ : restC(j + 1) ∗ P (x) ∗ q + ri : j + 1 CP(γ, q)

}
x{
x. Cons(q) ∗ P (x)

}

43

D.6 Bounded ticket locks
D.6.1 Parameters
• Fix some resource invariant P to be protected by the lock.
• C is a constant representing the maximum unsigned integer value of the machine.
FAI increments modulo C (see the semantics of the language in Appendix §A.2).

Let ns = 0, tc = 1. We will use these values as field offsets.

D.6.2 Code
newLock() ,
let x = alloc(2)
[x + ns]at := 0;
[x + tc]at := 0;
x

lock(x) ,
let y = FAI(x + tc)
repeat
let z = [x + ns]at
y == z

end

unlock(x) ,
let z = [x + ns]at
[x + ns]at := (z + 1) mod C

Ticket locks [11] are a fair locking mechanism employed by the Linux kernel. The data structure involves two atomic locations, one
(x + tc) storing a “ticket” counter, and the other (x + ns) a “now-serving” counter. Both are initially 0. To acquire the lock, a thread first
atomically obtains the current value t of the ticket counter and increments it (using a fetch-and-add), and then spins until the now-serving
counter is equal to the “ticket” t that it received. To release the lock, the thread just increments the now-serving counter to t+ 1.

Ticket locks rely crucially on the invariant that no two threads trying to acquire the lock at the same time have the same ticket. If the
ticket counter is modeled as an unbounded natural number, this invariant is easy to ensure. But in reality, ticket counters are bounded by the
maximum unsigned integer value C of a machine word, and they wrap around to 0 once hitting C−1. Ticket locks thus only behave correctly
if the number of threads concurrently trying to acquire the lock is at most C.

We have proven correctness for an implementation of bounded ticket locks, where the updates to the ticket counter are performed using a
physically atomic fetch-and-increment operation FAI, but the reads and writes to the now-serving counter are release-acquire. By arranging
for the acquire operation to consume a MayAcquire permission, and by only giving the client a fixed budget of C such permissions, our
spec restricts the client from spawning more than C threads to acquire the lock at one time. While similar in certain ways to the proof of the
circular buffer, the proof of bounded ticket locks is surprisingly subtle and employs a somewhat more elaborate ghost PCM. It also relies on
the following “frame-preserving update” rule for ghost moves, which we have proven sound:

∀tF : PCMµ. t1#µtF ⇒ t2#µtF

γ : t1 µ V γ : t2 µ

This rule, familiar from recent work on separation logic [13, 20, 21], enables one to make an arbitrary update to one’s ghost resource, so
long as the update is guaranteed to preserve compatibility with arbitrary frame resources. It is used in the proof of the (UseUnPerm) and
(GetTicket) axioms below.

To our knowledge, this is the first formal proof of correctness for bounded ticket locks in a weak memory setting.

D.6.3 Proof setup
Top-level spec

{P} newLock()
{
x.∗i<C

MayAcquire(x)
}

{MayAcquire(x)} lock(x) {P ∗MayRelease(x)}
{P ∗MayRelease(x)} unlock(x) {MayAcquire(x)}

Default sorts of variables

• t, n range over N.
• i, j range over Ids = {0, . . . ,C− 1}, where C is the word size (the modulus of FAI).
• T ranges over ℘(N).
• M ranges over N⇀ Ids such that ∃t. dom(M) = {t′ | t′ < t}.
• I ranges over Ids ⇀ N.

Abstract predicates For purposes of modularity, we give the following axioms about a set of abstract ghost predicates, which are all you
need in order to do the proof. Later on, we will show that these predicates are implementable (and axioms satisfiable) in terms of a suitable
ghost PCM.

44

Permsγ≥(t)⇒ LkPermγ(t) ∗ UnPermγ(t) ∗ Permsγ≥(t+ 1) (GetPerms)
LkPermγ(t) ∗ LkPermγ(t)⇒ ⊥ (LkPermExclusive)
UsedUPγ<(t) ∗ UnPermγ(t′)⇒ t ≤ t′ (UnusedUnPerms)
UsedUPγ<(t) ∗ UnPermγ(t)V UsedUPγ<(t+ 1) (UseUnPerm)
UsedUPγ<(t)⇒ �(UsedUPγ<(t)) (UsedPermsPure)
MyTktsγ(i, T) ∗ AllTktsγ(M)⇒ (∀t. M(t) = i⇔ t ∈ T) (MyAllCoherence)
MyTktsγ(i, T) ∗ AllTktsγ(M) ∗ t = |dom(M)|

V MyTktsγ(i, T] {t}) ∗ AllTktsγ(M] [t 7→ i]) (GetTicket)

trueV ∃γ. AllTktsγ(∅) ∗
(∗i<C

MyTktsγ(i, ∅)
)
∗ Permsγ≥(0) ∗ UsedUPγ<(0) (NewGhost)

Escrows We define one resource escrow Esc(γ, n), which is used to pass control over the lock-protected resource from the lock-releaser
to the next lock-acquirer (with ticket n).

Esc(γ, n) : LkPermγ(n) P

Protocols The protocol NSP(γ) describes a protocol on the now-serving counter x + ns, with states for every natural number n and the
usual ordering (≤) on states. Here, n represents the “absolute” value of the counter, as opposed to the actual value, which is n mod C.

NSP(γ)(n, z) , �(z = n mod C ∗ UsedUPγ<(n) ∗ [Esc(γ, n)])

The protocol TCP(γ, x) describes an invariant protocol on the ticket counter x+ tc, with single state Inv.

TCP(γ, x)(Inv, y) , ∃t, n,M. (t = |dom(M)|) ∗ (y = t mod C) ∗ (t ≤ n+ C)

∗ x+ ns : n NSP(γ) ∗ (∀t1 < t2 < t. M(t1) = M(t2)⇒ t1 < n)

∗ Permsγ≥(t) ∗ AllTktsγ(M)

Derived predicates Here are some useful predicates defined in terms of the above predicates.

UsedTktsγ(x, T) , x+ tc : Inv TCP(γ, x) ∗ ∀t ∈ T. x+ ns : t+ 1 NSP(γ)

HoldingTktγ(i, T, t) , LkPermγ(t) ∗ UnPermγ(t) ∗MyTktsγ(i, T] {t})
MayAcquireγ(x, i, T) , �(UsedTktsγ(x, T)) ∗MyTktsγ(i, T)

MayReleaseγ(x, i, T, t) , �(UsedTktsγ(x, T)) ∗MyTktsγ(i, T] {t}) ∗ UnPermγ(t) ∗ x+ ns : t NSP(γ)

MayAcquire(x) , ∃γ, i, T. MayAcquireγ(x, i, T)

MayRelease(x) , ∃γ, i, T, t. MayReleaseγ(x, i, T, t)

D.6.4 Verification of newLock{
P
}{

P ∗ ∃γ. UsedUPγ<(0) ∗ Permsγ≥(0) ∗ AllTktsγ(∅) ∗
(∗i<C

MyTktsγ(i, ∅)
)}

let x = alloc(2){
P ∗ uninit(x+ ns) ∗ uninit(x+ tc) ∗ UsedUPγ<(0) ∗ Permsγ≥(0) ∗ AllTktsγ(∅) ∗

(∗i<C
MyTktsγ(i, ∅)

)}{
[Esc(γ, 0)] ∗ UsedUPγ<(0) ∗ uninit(x+ ns) ∗ uninit(x+ tc) ∗ Permsγ≥(0) ∗ AllTktsγ(∅) ∗

(∗i<C
MyTktsγ(i, ∅)

)}
[x + ns]at := 0;{
x+ ns : 0 NSP(γ) ∗ uninit(x+ tc) ∗ Permsγ≥(0) ∗ AllTktsγ(∅) ∗

(∗i<C
MyTktsγ(i, ∅)

)}
[x + tc]at := 0;{
x+ tc : Inv TCP(γ, x) ∗

(∗i<C
MyTktsγ(i, ∅)

)}{
�(UsedTktsγ(x, ∅)) ∗

(∗i<C
MyTktsγ(i, ∅)

)}
x{∗i<C

MayAcquireγ(x, i, ∅)
}{∗i<C

MayAcquire(x)
}

45

D.6.5 Verification of lock{
MayAcquire(x)

}{
∃γ, i, T. MayAcquireγ(x, i, T)

}{
MyTktsγ(i, T) ∗�(UsedTktsγ(x, T))

}{
MyTktsγ(i, T) ∗ x+ tc : Inv TCP(γ, x) ∗ ∀t ∈ T. x+ ns : t+ 1 NSP(γ)

}
let y = FAI(x + tc){
∃t, n0. �

(
x+ ns : n0 NSP(γ) ∗ (y = t mod C) ∗ (t < n0 + C)

)
∗ HoldingTktγ(i, T, t)

}
repeat

let z = [x + ns]at{
∃n. �

(
x+ ns : n NSP(γ) ∗ (z = n mod C) ∗ (n ≥ n0) ∗ UsedUPγ<(n) ∗ [Esc(γ, n)]

)
∗ HoldingTktγ(i, T, t)

}{
�(n ≤ t < n0 + C ≤ n+ C) ∗ HoldingTktγ(i, T, t)

}
y == z{
b. (b = 0 ∗ HoldingTktγ(i, T, t)) ∨ (b = 1 ∗ HoldingTktγ(i, T, t) ∗ (t mod C = n mod C))

}
end{

HoldingTktγ(i, T, t) ∗ (t mod C = n mod C)
}{

HoldingTktγ(i, T, t) ∗�(t = n)
}{

MyTktsγ(i, T] {t}) ∗ UnPermγ(t) ∗ LkPermγ(t) ∗ [Esc(γ, t)]
}{

P ∗MyTktsγ(i, T] {t}) ∗ UnPermγ(t)
}{

P ∗MayReleaseγ(x, i, T, t)
}{

P ∗MayRelease(x)
}

D.6.6 Verification of unlock{
P ∗MayRelease(x)

}{
P ∗ ∃γ, i, T, t. MayReleaseγ(x, i, T, t)

}{
P ∗ UnPermγ(t) ∗MyTktsγ(i, T] {t}) ∗�

(
UsedTktsγ(x, T) ∗ x+ ns : t NSP(γ)

)}
let z = [x + ns]at{
P ∗ UnPermγ(t) ∗MyTktsγ(i, T] {t}) ∗�(z = t mod C ∗ UsedUPγ<(t))

}{
[Esc(γ, t+ 1)] ∗ UnPermγ(t) ∗MyTktsγ(i, T] {t})

}
[x + ns]at := (z + 1) mod C{
x+ ns : t+ 1 NSP(γ) ∗MyTktsγ(i, T] {t})

}{
�(UsedTktsγ(x, T] {t})) ∗MyTktsγ(i, T] {t})

}{
MayAcquireγ(x, i, T] {t})

}{
MayAcquire(x)

}

46

D.6.7 Substantiating the axioms about the abstract predicates
Here we define the abstract predicates that we used in the above proof in terms of a suitable ghost PCM. It is easy to check that the axioms
about these predicates that we used are sound w.r.t. the PCM. In the case of the ghost “transition” axioms (UseUnPerm) and (GetTicket),
i.e., where there is a “state change” (using up an unlock permission, or assigning the next ticket to a particular index i), the soundness of
the axiom relies on the frame-preserving ghost update rule. For the ghost allocation axiom (NewGhost), soundness follows from the ghost
allocation rule.

The ghost PCM is a Cartesian product of three sub-PCMs:

Ticket Allocations T ::= My(I)
| All(I,M) ∀t. ∀i ∈ dom(I). t ∈ I(i)⇔ i = M(t)

Lock Permissions L ::= L L ⊆ N

Unlock Permissions U ::= (U, n) U ⊆ N ∧ ∀t ∈ U. t ≥ n
A ticket allocation is either My(I)—which asserts the right to lock for the indices in dom(I), as well as the knowledge of all tickets allocated
to those indices (I itself)—or else All(I,M), which asserts the right to lock for the indices in dom(I), as well as the knowledge of all tickets
allocated so far. There is a side condition on well-definedness of All(I,M) insisting that I and M are coherent.

The unit of the ticket allocation monoid is My(∅). Composition is defined as follows:

My(I1) ·My(I2) , My(I1] I2)

My(I1) · All(I2,M) , All(I1] I2,M) if that is well-defined
All(I1,M) ·My(I2) , All(I1] I2,M) if that is well-defined

Lock permissions are the usual powerset monoid with disjoint union as composition and ∅ as unit. The set L represents the set of lock
permissions one holds.

Unlock permissions (U, n) are similar, except that here we have the possibility of using a ticket up, after which point the “knowledge” that
it is used up becomes a boxable (permanently true) assertion. The U represents the set of unlock permissions one holds, while n represents
a lower bound on the unlock permissions that anyone can hold. (All unlock permissions less than n are to be viewed as “used up”.) The side
condition on well-definedness of monoid elements enforces that one cannot own an unlock permission that one knows has already been used
up.

The unit of the monoid is (∅, 0). Composition is defined as follows:

(U1, n1) · (U2, n2) , (U1] U2,max(n1, n2)) if that is well-defined

We are now ready to define the abstract predicates used in the proof:

Permsγ≥(i) , γ : (My(∅), {j | j ≥ i}, ({j | j ≥ i}, 0))

LkPermγ(i) , γ : (My(∅), {i}, (∅, 0))

UnPermγ(i) , γ : (My(∅), ∅, ({i}, 0))

UsedUPγ<(i) , γ : (My(∅), ∅, (∅, i))

MyTktsγ(i, T) , γ : (My([i 7→ T]), ∅, (∅, 0))

AllTktsγ(M) , γ : (All(∅,M), ∅, (∅, 0))

47

	1 Introduction
	2 The C11 memory model
	3 GPS: a logic for release-acquire consistency
	4 Case studies
	5 The semantics and soundness of GPS
	6 Related work
	A Language
	A.1 Syntax
	A.2 Semantics
	A.3 Memory model

	B Logic
	B.1 Semantic structures
	B.2 Local safety
	B.3 Global safety
	B.4 Syntax and semantics
	B.5 Proof theory

	C Metatheory
	C.1 Basic properties of semantics domains and ghost moves
	C.2 Proof rules: local soundness
	C.3 Global soundness

	D Examples
	D.1 One-shot message passing
	D.2 Spinlocks
	D.3 Ernie Cohen's lock example
	D.4 Michael-Scott queue
	D.5 Circular buffer
	D.6 Bounded ticket locks

