
Guardat: A foundation for policy-protected data

Anjo Vahldiek Eslam Elnikety Aastha Mehta Deepak Garg Peter Druschel Ansley Post (MPI-SWS)

Rodrigo Rodrigues (CITI FCT/UNL) Johannes Gehrke (Microsoft/Cornell)

Technical Report: MPI-SWS-2014-002

January 31, 2014

Abstract
We present Guardat, an architecture that enforces rich
data access policies at the storage layer. Users, appli-
cation developers and system administrators can provide
per-file policies to Guardat. Guardat enforces these poli-
cies and provides attestations about the state of stored
files. With Guardat, the data integrity, confidentiality
and access accounting rules for a collection of files can
be stated as a single declarative policy. Policy enforce-
ment relies only on the integrity of the Guardat controller
and any external policy dependencies; it does not depend
on correct software, configuration and operator actions
in other parts of a system. Guardat allows developers,
system administrators and third-party hosting platform
providers to enforce concise, system-wide data protec-
tion policies based on a small trusted computing base
(TCB), and to demonstrate their compliance to any party
that trusts the Guardat layer. We present a design and
prototype implementation of Guardat, show experimen-
tally that the space and time overhead of making policy
checks is low, and discuss applications and policies.

1 Introduction

As the volume and value of digitally stored assets keep
increasing, so do the risks to the integrity and confiden-
tiality of said data. Computer and storage systems are
increasing in complexity, exposing data to risks from
software bugs, security vulnerabilities and human error.
In addition, data is increasingly stored on third-party
platforms, introducing additional risks like unauthorized
data use by a third party.

In today’s systems, data confidentiality and integrity
depend on the absence of design errors, bugs, malware
and operator mistakes in most components of a system.
Moreover, the applicable policies for a collection of data
files may be implicit in the code, and their specification
and enforcement spread over different subsystems, in-
creasing the risk of misconfigurations. For data stored on
third-party platforms, data confidentiality and integrity,
as well as proper accounting of data use, additionally de-
pend on the reliability of the third-party provider.

To address these challenges, we present Guardat, an
architecture that includes a policy interpreter, crypto and
enforcement logic at the storage layer. With Guardat,
users, developers and administrators can state the in-

tegrity, confidentiality, and accounting rules for a collec-
tion of data files using a concise, declarative policy lan-
guage. Applications communicate with Guardat through
secure channels, tunneling through untrusted system lay-
ers like storage servers or hosting platforms. Appli-
cations send policies, commands and evidence of pol-
icy compliance (e.g., proof of authentication) to Guardat
and request attestations of stored data and their policies
from Guardat. Guardat enforces the policies while rely-
ing only on its own interpreter, enforcement logic and
any explicit policy dependencies, thus minimizing the
size and attack surface of the computing base relied upon
for enforcement.

A Guardat policy specifies the conditions under which
a file may be read, updated, or have its policy changed.
These conditions, written in a declarative language, may
depend on client authentication, the initial and final states
of the file (size and content) in an update transaction, or
signed statements by external trusted components (certi-
fying, for instance, the current wall-clock time). Guardat
stores the policy as part of its own metadata and ensures
that each access to the file complies with the policy.

Following are some example Guardat policies that
mitigate important threats: System binaries can be pro-
tected from viruses through a policy that permits updates
only when signed by a trusted party; system log corrup-
tion and tampering can be avoided through a Guardat-
enforced append-only policy; accidental deletion or cor-
ruption of backup data can be prevented by a policy that
prevents modification for a specific period of time; con-
fidentiality of a user’s private data can be enforced by al-
lowing reads only in a session authenticated by the user’s
public key; and, accesses to a data file may require that a
corresponding record is added to an append-only log file,
enforcing mandatory access logging.

While these policies can be implemented in higher
software layers, with Guardat the policy applicable to
a collection of files can be specified using a concise,
declarative language, and enforced by a small trusted
computing base (TCB) with a small attack surface. Guar-
dat complements existing techniques for ensuring the re-
liability of data processing systems, including software
testing, verification, security auditing, sealed data and
trusted computing. While no technique can provide com-
prehensive protection, Guardat provides a safety net that
protects a system’s persistent data from a wide range of
threats. Moreover, Guardat can demonstrate compliance

with client and provider policies, as well as legal require-
ments, to any party that trusts Guardat.

The contributions of this work include (1) the Guardat
architecture and API; (2) a declarative policy language,
which balances expressiveness and efficient evaluation;
and, (3) an experimental evaluation of a Guardat proto-
type, which shows that Guardat policies can be enforced
with low overhead. Section 2 describes the design of
Guardat and its policy language. Section 3 presents ex-
ample policies and the guarantees they provide. In Sec-
tion 4, we present results from experiments with a proto-
type implementation in the iSCSI IET SAN server. We
cover related work in Section 5 and conclude in Sec-
tion 6.

2 Guardat design

The Guardat design is guided by three principles. First,
Guardat enforces policies entirely in the storage layer

to minimize the TCB and its attack surface. Second,
we keep policy specifications concise and separate from
code by expressing policies in a domain-specific declar-

ative policy language. Third, in the interest of a small
TCB, the Guardat policy language provides only a mini-
mal set of primitives sufficient to check a rich set of poli-
cies, but we rely on untrusted code to specify how to sat-

isfy a policy. We point out instances of such design econ-
omy throughout this section, as we describe the Guardat
API and policy language.

Design overview Guardat’s program logic, called the
Guardat controller or GDC, executes just above or in-
side the storage layer and enforces the file’s policy on
every read and write access to data. The GDC exports
an extended block-device API that allows users, applica-
tions and system administrators to (a) create, delete, read
and update files, (b) cryptographically authenticate and
establish secure sessions to tunnel commands and data
through other untrusted software and hardware, (c) asso-
ciate policies with files, (d) provide credentials and other
information to satisfy these policies during subsequent
access, and (e) obtain Guardat attestation on stored files
and their policies.

Data stored in Guardat is organized into files. For each
policy-protected file, Guardat maintains its own meta-
data, consisting of an ordered list of extents, a unique
numeric identifier, a textual name string (typically used
to store the file’s pathname), and a reference to a policy
in effect for the file. The set of numeric identifiers form
a flat namespace, while the set of names can encode a hi-
erarchy maintained by an untrusted filesystem. Each file
can have its own policy, but typically, a collection of files
share the same policy.

The policy of a file consists of four rules, one for each

of the permissions read, update, destroy and setpolicy.
Each rule specifies conditions on the context and envi-
ronment under which the respective permission holds.
Abstractly, the read rule represents the file’s confiden-
tiality policy; the update rule encodes the file’s integrity
policy; the destroy rule governs when the file’s identifier
(name) can be recycled; and the setpolicy rule describes
when the policy can be changed. API calls that read or
update a file or its metadata check conditions of the cor-
responding policy rules.

Besides a device for storing data, the GDC requires a
small amount of fast, persistent memory like Flash for
storing policies and other metadata. Flash memory is
widely available now; hybrid disks even combine a HDD
and Flash in a single enclosure [41]. To authenticate it-
self as a legitimate Guardat device, sign attestations and
encrypt data, the GDC includes a manufacturer-provided
unique key pair and certificate.

Implementation, threat model and scope Guardat
can be implemented in different ways depending on the
deployment. For example, the GDC can be implemented
(a) in a SAN server for use in a data center, or (b) inte-
grated with the microcontroller of a hybrid disk for use in
an individual machine. A possible third implementation
of the GDC is a (c) trustlet within a virtual machine mon-
itor or operating system, isolated using trusted hardware
features like Intel SGX [23] or ARM TrustZone [7].

In each implementation, the GDC, metadata and data
must be protected from unauthorized access and unde-
tected tampering. In implementation (a), which is the ba-
sis of our Guardat prototype described in Section 4, the
SAN server includes the GDC, data and metadata stor-
age devices, and must be physically protected, e.g., in a
machine room where access is restricted to trusted staff.
In this scenario, the Guardat policies are enforced de-
spite any bugs, misconfigurations, or security incidents
outside the SAN server, and regardless of actions by em-
ployees without access to the machine room.

In implementation (b), the GDC is implemented as
part of a microcontroller embedded in a hybrid disk.
Here, the metadata and data are encrypted and authen-
ticated to protect them from unauthorized access and un-
detected tampering. The microcontroller implements the
GDC and stores its private key in an embedded TPM. In
this scenario, the Guardat policies are enforced as long
as the microcontroller has not been physically tampered
with. While we have not attempted this implementation,
we believe it is feasible with a high-end microcontroller
that has on-chip hardware support for secure hashing and
cryptography, as well as a TPM. Implementation (c) has
similar security properties, except that the GDC executes
on the main CPU and trust is derived from this CPU’s
trusted isolation capabilities.

2

Deployment objective Guardat im-

plementation

Trust assumption Who

trusts?

How trust is discharged

A. User wishes to protect her data from
bugs, errors and opportunistic employ-
ees at a reputable Cloud provider

Cloud storage
servers

Only trusted staff
has physical access
to servers

User Provider restricts physical
access to servers

B. Data center wishes protection from
bugs, misconfigurations, disgruntled
employees

Storage servers ditto Data
center

Center restricts physical
access to servers

C. Service provider wishes to protect pro-
prietary content cached on user’s ma-
chine

Microcontroller
in user’s disk

User cannot com-
promise the con-
troller

Provider User is unable to tamper
with controller chip

D. User wants to protect data on her ma-
chine from bugs, viruses and mistakes

Microcontroller
in user’s disk

None needed – –

Table 1: Guardat deployment scenarios and trust assumptions

Table 1 lists examples of deployment scenarios, their
threat models and trust assumptions. For instance, if a
reputable Cloud provider deploys Guardat-enabled SAN
servers to protect user data from bugs and misconfigu-
rations in its infrastructure and from opportunistic ac-
cess by employees, then the user must trust the Cloud
provider to prevent physical access to the SAN by all but
trusted employees (line A in Table 1). Similarly, if a digi-
tal content provider locally caches copyrighted content in
a Guardat-enabled disk on a user’s machine, then it must
trust that the user is unable to tamper with the controller
chip, much in same way trusted computing applications
trust that users are unable to tamper with a TPM.

We also make standard assumptions about policies:
correct policies must be installed when data is first
stored, and external dependencies of policies (e.g., time
servers, client’s authentication keys) must be trustwor-
thy. Under these assumptions, Guardat defends against
threats to confidentiality and integrity of stored data
or to data in transit to storage. This includes threats
due to bugs and vulnerabilities in intermediate software
layers including operating systems, filesystems, storage
services built on top of Guardat, and networks, and
threats due to human negligence and opportunistic mal-
ice. Guardat is not concerned with data availability. To
mask the effects of a hardware or media failure, loss, or
destruction of a Guardat device, data must be replicated
on multiple devices with independent failure modes.

2.1 Guardat API

The Guardat API extends the standard block device API,
which is maintained for backward compatibility, with
means to establish sessions, provide policies, provide in-
formation to satisfy policies, and obtain attestations.
Session API: A user or an application (generically called
client) interacts with Guardat in a session. (To access
files whose policies do not require authentication, it is
possible to communicate with Guardat outside of a ses-

sion. Such communication is conceptually treated as part
of a default, untrusted session.)

A session is established with a handshake protocol
in which the client and Guardat authenticate each other
using their private keys. As part of the protocol, new,
session-specific keys are created. These keys are used to
encrypt and/or authenticate (through message authenti-
cation codes) all subsequent communication in the ses-
sion. This protects in-transit data and commands from
snooping and modification in intermediate layers. More-
over, the public key of the client (which acts as an iden-
tifier for the client) becomes available during every pol-
icy evaluation in the session; hence, Guardat can enforce
policies that restrict access to specific users. At the end
of the handshake, Guardat returns a unique session iden-
tifier that links later API calls to the session. The hand-
shake protocol and its API are described in the appendix
(Section 7).
Batch API:

The call openBatch(sessionId, objName) starts a new
batch on the file named objName. Generating the
objName is up to the (untrusted) higher layers, e.g., the
filesystem. If objName does not exist, a new empty file is
created and given this name (this is the only way to create
an file in Guardat). The call returns a batch id that links
later calls to the batch and the session. Subsequently, the
call readBatched(batchId, off, len, buf) reads len bytes of
the file starting at logical offset off in the file and returns
the result to the buffer buf. The read rule of the file’s pol-
icy is evaluated before writing to buf; if it denies access,
the call fails. This enforces data confidentiality. Note
that we allow byte-level addressing on files.

An file is updated by reusing content from its current

version and adding fresh content to create a new version.
The call reuse(batchId, off, len, off’) takes content in
the logical range [off,off+len-1] from the current version
and inserts it at offset off’ in the new version (insertion
is purely a metadata operation). The call fresh(batchId,
off, len, buf, off’) writes len bytes from buffer buf to the

3

extent starting at byte number off on disk and adds the
resulting extent to the new version at logical offset off’.
Before writing the extent, Guardat checks that it is not
occupied by any file (including the file being modified).
The new version of the file may be given a new policy
with the call setPolicy(batchId, new_policy).

The updates in a batch are committed with the call
endBatch(batchId). Guardat evaluates the update rule of
the file’s policy before committing the new version. This
enforces data integrity. The update rule has access to the
current and new content of the file, as well as relevant
metadata, e.g., the offsets and lengths of reads and writes
in the batch. Additionally, if the policy has been updated,
Guardat evaluates the setpolicy rule of the file’s policy;
this protects the policy from unauthorized changes.

The call destroy(objName) deletes objName and all its
metadata. The file’s destroy policy authorizes the call.
The call also requires that objName be empty. This de-
sign, following our goal of concise policy representation,
ensures that the integrity policy of an file is represented
entirely in the update permission; destroy only controls
removal of the file’s name from Guardat metadata.
Content caches: Two Guardat caches buffer file con-
tent for use in policy evaluation. There is a per-session
cache of two types of records: (obj,off,len,content),
where content is the sequence of len bytes stored
starting at offset off within the file obj; and
(obj,((off1,len1),...,(offn,lenn)),hash), where hash is the
32-byte SHA-256 hash over the bytes stored at the spec-
ified ordered list of (off,len) extents within the file.
The session cache reflects the current committed con-
tent of the referenced files. In addition, there is a sep-
arate per-batch cache of records (off,len,content) and
((off1,len1),...,(offn,lenn)),hash) which represent the new
uncommitted content of the file manipulated within the
batch. Records are inserted into the session cache as a
side-effect of the readBatched() call, while records are
inserted into the batch cache as a side-effect of the fresh()
call. Flags to these calls indicate whether content, hashes
or neither should be inserted (these flags are described in
Appendix 7). When a batch commits, any records in the
batch cache are moved into the session cache, and any
existing session cache records they supersede are evicted.
When a batch aborts, the records in the batch cache are
discarded.

All relevant file content must exist in the caches before
policy evaluation, else access is denied. We rely on the
untrusted client for this: The client must set appropriate
cache flags in readBatched() and fresh() calls. This is in
line with our principle of economy in design: denying
access for lack of content in the cache is safe, whereas
searching for that information on disk is inefficient and
can easily lead to DoS attacks. Policy-aware wrapper
libraries could alleviate the need for adding cache flags

in every application’s code.
Certificate API: The call setCertificate(certificate) for-
wards a third-party certificate to Guardat for use in sub-
sequent policy evaluations, whereas getNonce() returns
a fresh nonce, which can be embedded in a subsequent
certificate. Third-party certificates are described further
in Section 2.2.

The call attest(objName, nonce) returns a Guardat-
signed certificate that attests the existence of objName,
its extents and its policy. Optionally, the certificate also
includes a hash of any of the file’s data in the ses-
sion cache. The attestation certificate embeds a client-
provided nonce, which is useful for preventing replay at-
tacks in protocols built over Guardat. The read policy
rule authorizes this call.
Pickle API: The pickle APIs allows untrusted platform
software to securely manage the replication and migra-
tion of policy-protected files among Guardat devices,
without access to their cleartext contents. A file copy
succeeds only if the file’s policy allows it, and if the in-
tegrity of the file’s contents, name and policy are main-
tained during the transfer. The pickle operation invoked
at a source device encrypts a file and its policy for a spe-
cific target Guardat device, while the unpickle operation
installs the file at the target device. An attestation from
the target device can then be used to prove to the source
device that the file resides on the target device. A file’s
policy controls if, when and where a file can be migrated
or replicated.
Backwards compatibility: For compatibility with ex-
isting systems, Guardat supports the standard block-
device API calls read(blk,cnt,buf) and write(blk,cnt,buf).
The read() call reads cnt blocks sequentially from disk
starting at block blk and returns the data in buffer buf.
The write() call is dual. In executing these calls, Guardat
uses its metadata to find all files that intersect the extent
being read or written. It evaluates the respective read

or update policy rule of all these files, and fails with an
error if any evaluation denies access. Disk blocks not
associated with any file can be accessed without restric-
tion through the read() and write() calls. Hence, Guardat
may be configured to selectively protect only a part of a
storage disk. Also, Guardat can interoperate with exist-
ing, unmodified file systems using an application library.
More details can be found in the appendix (Section 7).

2.2 Guardat policy language

Guardat file access policies are specified in an expressive
and simple declarative language. Each file’s policy con-
tains four rules, one for each of the permissions read,
update, destroy and setpolicy. Each rule specifies the
conditions under which the respective permission holds.

A rule has the form (perm :- conds) and means that

4

permission “perm” is granted if the conditions “conds”
are satisfied. The conditions “conds” consist of atomic

facts connected with conjunction (“and”, written ∧) and
disjunction (“or”, written ∨). Operationally, policy rules
are clauses of constrained Datalog, with all atomic facts
in conditions treated as external [25]. Datalog is a stan-
dard foundation for writing access policies [8, 13, 36],
known for its clarity, high-level of abstraction and ease
of implementation.

Each atomic fact contains a predicate that relates file
names, content, public keys, extent lists, etc. to each
other. The expressiveness of the Guardat policy lan-
guage stems from the wide range of available predi-
cates. Universal predicates are available in all policy
rules. The predicate session_is(K) checks that the on-
going session is authenticated with the public key K and
�le_name_is(O) means that the file being accessed has
name O. The predicate (obj,off, len) says R provides ac-
cess to file data. It means that a record in the session data
cache states that file obj has content R at offset off. Sim-
ilarly, (obj,((off1, len1), . . . (offn, lenn))) hasHash H pro-
vides access to hashes of file data. Through these predi-
cates, a file’s policy may test the content of another file.
We find this useful in representing many policies, includ-
ing mandatory access logging (Section 3).

Additionally, contextual predicates provide informa-
tion specific to a policy rule. In read, this informa-
tion includes the length of the read and its logical and
physical offsets. As a result of such fine-grained in-
formation, confidentiality policies may be specified at
the granularity of bytes. In update, contextual pred-
icates provide information about the current and new
extents of the file, the current and new file sizes,
and access to the data cache through the predicates
(off, len) willsay R (the new content at offset off will be
R) and ((off1, len1), . . . ,(offn, lenn)) willHaveHash H (the
new bytes stored in the list of (off,len) pairs will have
hash H). This facilitates rich integrity policies that cor-
relate old and new file content as well as content across
two different parts of an file. Again, we find this handy
for many policies, including mandatory access logging.
All contextual predicates are described in the appendix
(Section 8).

Finally, Guardat policies may contain arbitrary unin-

terpreted predicates that are established through signed
third-party certificates. These include time-server certifi-
cates to establish wall clock time. When a third-party
certificate is provided to Guardat through the setCertifi-
cate() API call, Guardat checks its signature using stan-
dard certificate chain verification [12] and stores its con-
tent and its signer’s public key in a certificate cache. This
cache is available during policy evaluation, through two
types of uninterpreted predicates:
• Public key binding, key_is(k,a), which states that

public key k has attribute a. For example, a may be
“TimeServer”, suggesting that k is a time server’s pub-
lic key. The corresponding certificate must be signed by
a certifying authority (CA) or its delegatee.
• Signed relation, k signs r(t1, . . . , tn) at t: There is a

certificate verified by public key k and received at time t,
which contains the relation r(t1, . . . , tn).

The policy designer and certificate issuers must agree
on the meaning of the attribute a in the first point and of
the relation r in second point. Guardat treats both a and r

as bitstrings. Section 3 illustrates this further. To prevent
certificate replay attacks, each certificate must include a
Guardat-generated nonce, obtained through the API call
getNonce().

To enforce time-sensitive policies, Guardat relies on
time-server certificates and an internal timing counter.
When a time-server certificate is received, its cache en-
try is stamped with the value of the timing counter. Later,
clock time can be estimated by adding the difference of
the then-value of the timing counter and the value of this
stamp to the time mentioned in the time-server certifi-
cate. This timing counter need not be very precise be-
cause it can be reset periodically to prevent a large drift.
Whenever the timing counter is reset, all time-server cer-
tificates must be evicted from the cache.

Following our principle of economy in design, Guar-
dat does not include logic to contact third-parties to ob-
tain relevant policy certificates. Instead, populating the
cache with relevant certificates before access is the re-
sponsibility of the untrusted Guardat client. If required
certificates are missing, access is denied. (When a cer-
tificate issuer is offline, access to files that rely on certifi-
cates from that issuer may be denied, but access to other
files remains unaffected.)

3 Policy examples

We illustrate Guardat’s capabilities by presenting several
example policies. For brevity, we introduce the follow-
ing convention to omit default policy rules: If the rule for
the read or update permissions is omitted, then the per-
mission is always allowed and if the rule for the setpolicy

or destroy permission is omitted, then that permission is
never allowed.

Protected executables For a binary file, it is desirable
to defend against accidental or malicious overwriting or
rollback to a prior version. A representative Guardat pol-
icy to accomplish this is shown below. The policy states
that the new content of the binary after any update must
be signed by the software vendor (called “Vendor”) as
being version 10 or later. Moreover, any changes to the

5

policy must be certified with the administrator’s key, kad.

update :- �le_name_is(O) ∧ new_length_is(L) ∧
(O,L) willHaveHash Nh ∧ key_is(K,“Vendor”) ∧
K signs ok_hash(O,N,Nh) ∧ (N ≥ 10)

setpolicy :- �le_name_is(O) ∧
new_pol_hash_is(N ph) ∧
kad signs good_poli
y(O,N ph)

The first rule allows an update to the file only if there
is a public key K belonging to “Vendor” (condition
key_is(K,“Vendor”)), which signs that the file’s new
content hash, Nh, is the Nth version of the binary (con-
dition K signs ok_hash(O,N,Nh)) and N ≥ 10. The un-
interpreted predicates key_is(K,“Vendor”) and K signs

ok_hash(O,N,Nhash) are verified from client-provided
certificates signed by a certifying authority and the ven-
dor, respectively. Because the vendor’s certificate con-
tains a single hash over the entire file content, a batch
update is needed to satisfy this policy.

The second rule allows a change to the binary’s pol-
icy only if the hash of the new policy, called N ph, has
been certified by the administrator (condition kad signs

good_poli
y(O,N ph)).
Properties: As long as the integrity of the vendor’s and
admin’s keys is maintained, files protected by the pol-
icy cannot be overwritten except with content signed by
the vendor and version ≥ 10, even if the entire system
is compromised (write integrity). Moreover, a client op-
erating system can ensure it executes only trusted exe-
cutables despite a compromised storage service (read in-
tegrity) as follows: before executing a binary, it obtains
an attestation certificate for the file from Guardat, veri-
fies the policy and file name (full path name) in the cer-
tificate, and compares the hash of the data delivered by
the storage service with that manifest in the certificate.

Append-only logs The following policy specifies an
append-only file that may be extended by anyone but
modified in-place (e.g., rotated) only by an administrator
identified by the public key kad. The policy would pre-
vent accidental or malicious record deletion from system
log files.

update :- session_is(kad) ∨
(old_length_is(Lo) ∧ new_length_is(Ln) ∧ (Ln ≥ Lo) ∧
updated_lo
ations_are(M) ∧ disjoint(M, [0,Lo]))

The policy allows an update if either the ses-
sion is authenticated by the administrator (condition
session_is(kad)) or the file’s new length Ln exceeds its
current length Lo and the first Lo bytes of the file are not
modified.
Properties: As long as the integrity of the admin’s key
is maintained, append-only writes are ensured for any

file with the policy, even if the entire remaining system
is compromised.

Protected backup Backup files can be protected from
accidental or malicious modification for a fixed period of
time using the following policy.

update :- key_is(K,“TimeServer”) ∧
K signs time(T) at Ti ∧

time_is(Tj) ∧ (T +Tj −Ti > endT)

The policy allows modification to the file only if the
current time exceeds a pre-determined time endT. To
enforce such policies, Guardat relies on periodic cer-
tificates from time servers and a short-range internal
timing counter. In detail, the policy says that there
should be a key K belonging to a time server (condi-
tion key_is(K,“TimeServer”)), which issued a certifi-
cate that the time was T when the Guardat internal clock
had value Ti (condition K signs time(T) at Ti), the cur-
rent internal clock value is Tj (condition time_is(Tj)) and
the current time (calculated as T + Tj −Ti) exceeds the
backup end time endT.
Properties: As long as the integrity of the time server
and its signing key is maintained, a file with this policy
cannot be modified before the designated time, even if
the system, the admin’s and the file owner’s private keys
are compromised.

Mandatory access logging Legislation and organiza-
tional policies often mandate that all read and write ac-
cess to sensitive information like medical records be
logged to a separate file. Although application-level so-
lutions to enforce such mandatory access logging (MAL)
exist, enforcing the policy in Guardat is desirable be-
cause it would result in a smaller trusted computing base.

For this exposition, let P be the sensitive file which
must be protected by MAL and let L be its log file. We as-
sume that the log file is append-only, through the policy
described earlier. The MAL requirement is three-fold:
1) (Completeness) For every read on P, an entry in L

should describe who read and from where in P. For every
write, a similar entry must exist in L and it must addition-
ally contain a hash of the content written. 2) (Causality)
Given two write entries in L, the order in which they were
applied to P should be evident and, similarly for a read
and a write entry. 3) (Precision) Call a write entry in L

dangling if it does not correspond to an actual write on
P. Then, either dangling entries should not be allowed in
L or they should be detectable.1

1Dangling read entries are usually not a problem, because it is in the
client’s interest to establish that it did not read certain data and, hence,
not create dangling read entries. We also describe later how read entries
can be made precise.

6

We start with an obvious strawman policy for P, which
is complete, but does not provide causality and preci-
sion. We refine the design later. We define two kinds
of entries for L: may_read(K,S), which indicates that
the client with public key K has potentially read the set S

of (off,len) ranges from P; and
hange(K,S,H), which
states that content with hash H has been written to the
ranges in S. To force logging of reads, we require in the
read rule of P’s policy that if the range R is read by client
K, then an entry may_read(K,S) with R ⊆ S exist in L.
Similarly, write logging could be forced through P’s up-

date rule.
This strawman policy for P can be expressed in the

Guardat policy language because the set R of locations
read or updated is available through contextual predi-
cates in the policy language, the client K is available
through the predicate is_session(K) and L’s content is
available through the session cache (predicate says). The
policy can also be easily satisfied by the client: Prior to
reading or writing, the client could append an appropriate
entry to L and have it cached for P’s subsequent policy
evaluation. Even though this policy satisfies the MAL re-
quirement of completeness, it does not satisfy causality
and precision. Nothing in L’s policy prevents the client
from creating entries that are never used and such entries
cannot be distinguished from others (this violates preci-
sion). Moreover, nothing in P’s policy prevents use of
L’s entries out-of-order, which violates causality.

To obtain causality and precision, we refine this straw-
man design. We embed a counter in each entry in L and
enforce through L’s policy that the counter increase by 1
at each successive
hange entry and remain the same at
each may_read entry. We enforce through P’s policy that
the value of the counter in the last
hange entry that has
already been applied to P be written at a designated locus
in P. Further, the entry used to justify a read must have
a counter number that matches the current counter in P.
We describe below how we enforce these requirements.
Assuming that they have been enforced, both causality
and precision are satisfied. Causality holds because the
policies just described force that
hange entries apply
to P in increasing order of their counter numbers, and
that a read corresponding to a may_read is used after all

hange entries with smaller or equal counter numbers
have been applied. Precision holds because a
hange en-
try is dangling if and only if its counter number is higher
than the counter in P.

The log’s entries are revised to include counter num-
bers. They take the forms may_read(N,K,S) and

hange(N,K,S,H), where N denotes a counter. We re-
serve a fixed locus in P for a counter, called C. The log
is initialized with a dummy entry with N = 0 and P is
initialized with C = 0. We describe relevant policies of
L and P in words, omitting symbolic representations for

clarity. (We have formally represented these policies in
our prototype implementation; experimental results are
presented in Section 4.)
L’s update policy: Only appends are allowed and only
entries of the two designated forms may be added. If
the added entry has the form may_read(N, . . .), then N

must be copied from the previous entry and if the added
entry has the form
hange(N, . . .), then N must be one
more than the previous entry’s counter. (These require-
ments can be represented in the Guardat policy language
because the previous entry and the new entry are acces-
sible through the session and batch caches, respectively,
during evaluation of the update rule.)
P’s read policy: L must contain a may_read entry with
the same counter number as C and range set larger than
the actual range read. (L’s relevant entry and C are acces-
sible through the session cache during P’s policy evalua-
tion. In particular, C can be referenced because Guardat
supports byte-level addressing on files and the locus of C

is fixed in advance. The client is responsible for speci-
fying which entry of L in the session cache satisfies the
policy.)
P’s update policy: L must contain an entry describing
the update precisely. The counter in the entry must be
one more than C. The update must also increment C

by 1. (When evaluating P’s policy, L’s relevant entry
and the old value of C are accessible through the ses-
sion cache. The new value of C is accessible through the
batch cache.)
Properties: The policies enforce all MAL requirements
as long as the Guardat controller is not compromised.

3.1 Expressiveness and overhead

The example policies described in this section illustrate
the expressiveness of Guardat’s policy language and the
effort required to write policies. To the best of our knowl-
edge, with the exception of [15, 48], no prior work can
express any of these policies. The append-only log pol-
icy with administrator rotation and the MAL policy can-
not be expressed in any prior work.

Similar to Datalog, the worst case complexity for eval-
uating a Guardat policy is m(Dn) where m is the size of
the policy, D is the size of the domain of terms (bounded
by the size of Guardat’s cache) and n is the number of
variables in the policy. As we will show in Section 4,
however, policy evaluation has low overhead for reason-
able policies. To prevent DoS attacks, Guardat denies
access if a policy evaluation exceeds a certain time limit.

Policies can use external verifiers to “outsource” deci-
sions that cannot be expressed in the policy language or
exceed the computational resources of the Guardat pol-
icy interpreter. However, external verifiers come at the
cost of adding external dependencies to the TCB. An ex-

7

ample of a policy that can’t be expressed in our language
(without an external verifier) is an integrity policy that
requires that the content of a file is well-formed XML.

4 Experimental evaluation

In this section, we present results of an experimental
evaluation of a Guardat prototype.

4.1 Prototype Implementation

Our prototype is a modified iSCSI Enterprise Target
(IET) SAN server. IET implements the server-side iSCSI
protocol, which provides SCSI block storage access via
Ethernet. IET is in production use and available for many
Linux distributions, e.g., SUSE, RHEL and Debian.

IET consists of a kernel module, which implements
block accesses, and a user-level daemon process, which
implements iSCSI management functions. To imple-
ment Guardat, we extended the kernel module and added
a second user-level daemon process, which implements
the metadata structures, Guardat API and policy evalua-
tion. The kernel module performs upcalls to determine if
iSCSI block accesses should be allowed. The server has
access to an SSD for storing Guardat metadata and one
or more magnetic disks for payload data.

The Guardat daemon maintains two B-tree index
structures: a block-to-file index to find the file and pol-
icy associated with a given disk location (block id), and a
name-to-file index to retrieve the file information (set of
extents, policy, etc.) given a file name. For performance,
the Guardat daemon maintains a write-through DRAM
cache of B-tree nodes and policies, backed by the SSD.
Updates to these data structures are persisted on the SSD
during a batch commit.

When the kernel module receives a disk access re-
quest, it passes the access type (read/write) and loca-
tion (disk offset, length) to the multi-threaded Guardat
daemon, which consults the block-to-file index. If the
disk location is not associated with any file, the access
is granted. Otherwise, the daemon retrieves and evalu-
ates relevant policies, and returns the result to the kernel
module. For read requests, the disk read is performed
while checking the permission. This may result in some
wasted work if the read is denied, but results in lower la-
tency if it is not. During a write request, the disk write
must be deferred until the daemon grants the permission.

Our prototype’s attack surface consists of the IET
management interface, the block-device interface, the
Guardat interface extensions as well as the policy lan-
guage. Despite the relatively large IET codebase, which
includes a minimally configured Linux kernel, the result-
ing attack surface is likely to be significantly smaller than
that of the systems and applications built on top of Guar-

dat in most cases. Our Guardat implementation adds less
than 20,000 LOC to the existing IET codebase, plus the
OpenSSL and glib libraries it relies on.

4.2 Experimental setup

In our setup, the Guardat enhanced IET SAN server
(based on version 1.4.20.3-9.6.1) [47] runs on a separate
physical server connected to the client via 10Gbit Ether-
net links. The client software runs on OpenSuse Linux
12.1 (kernel version 3.1.10-1.16, x86-64). The Linux
iSCSI client connects to the IET server, and appears to
the Linux filesystems as a locally connected SCSI block
device.

The IET server and the Linux client each run on a Dell
Precision T1600 workstation with an Intel Xeon 3.1Ghz
quad core CPU (AES and AVX instruction set) and 8GB
main memory. The server has a 500GB disk drive with
the server OS installation, and two disks that are used
for Guardat. Data is stored on a Seagate Barracuda 2TB
7200 rpm hard drive with a 64MB cache [40], and the
Guardat metadata is stored on a OCZ Deneva 2 C SLC
60GB (raw 64GB) SSD [30]. Only 4GB of the SSD is ac-
tually used for Guardat metadata; the remaining capacity
is available for general use by clients. Reducing the size
of the SSD available for general use by 4GB is a small
cost for the added security.

The openSSL crypto library [31], Intel AES encryp-
tion library [21], and Intel’s fast SHA256 implementa-
tion [22] are used for Guardat cryptographic operations.

4.3 Microbenchmarks

We performed a series of microbenchmarks to quan-
tify the overheads incurred by the Guardat prototype in
terms of storage space, read/write latency and through-
put, policy-evaluation latency and Flash memory wear.

4.3.1 Space requirements for metadata

First, we quantify the metadata storage requirements.
Because the metadata size depends on the structure of
the payload data, we analyzed the metadata space re-
quirements for 70,825 filesystem snapshots collected by
Agrawal et al. [1]. The snapshots were taken from
Windows systems within Microsoft corporation between
2000 and 2004, and contain between 30k and 90k files
each with an average file size between 108KB and
189KB. For evaluation purposes, we give each file in
each snapshot an integrity policy that disallows modifi-
cation prior to a given date.

As a point of reference, the ratio of solid state to
magnetic disk capacity in commercially available hybrid
disks is at least 0.8% [41] at the time of this writing. At
this ratio, the required metadata can be accommodated

8

 0.01

 0.1

 1

 10

 100

RR LR SR RW LW SW

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Workload

iSCSI

Guardatempty

Guardatfile
Guardatpolicy

Figure 1: End-to-end I/O latency for synthetic workloads

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

RR LR SR RW LW SW

R
e

la
ti
v
e

 o
v
e

rh
e

a
d

Workload

iSCSI

Guardatempty

Guardatfile
Guardatpolicy

Figure 2: Normalized I/O latency for synthetic work-
loads excluding disk access latency

in the solid state memory for 99.99% of the snapshots.
Newer combinations of Flash/disk devices like Apple’s
Fusion Drive (128GB Flash/1TB HDD) achieve much
higher Flash to disk capacity ratios, and would easily ac-
commodate the metadata for all snapshots.

4.3.2 Read/write latency

Next, we examine the read/write latency of the Guar-
dat prototype under synthetic workloads. For this ex-
periment, we fill the 2TB disk with 3.8 million files,
each spanning a single 512KB extent, and compare the
read/write latency of the Guardat prototype with the orig-
inal IET under three different configurations:
iSCSI: The plain IET iSCSI implementation.
Guardat_empty: No files are protected by a policy. The
overheads are limited to the cost of communication be-
tween the kernel module and the Guardat daemon, and
the (negative) check for a policy.
Guardat_file: An “allow all” policy is associated with
each file. Each access to a disk block requires the Guar-
dat daemon to lookup the metadata associated with the
file and interpret the null policy.
Guardat_policy: Each file is protected by a policy se-
lected at random from a set of 40,000 different policies,
each of which allows access after a past date. The ad-
ditional overhead includes fetching and interpreting the
different policies.

Each configuration is exercised with three different ac-
cess patterns (Sequential: blocks accessed in order of
increasing block id, Local: each accessed block chosen

randomly within 40,000 block ids of the previous block,
Random: each accessed block chosen randomly on the
entire disk), and two access types (Read and Write).
Each access reads or writes a 512B disk block.

For the different configurations, access patterns and
types, Figure 1 show the absolute end-to-end access la-
tency. Five runs were performed with each configuration,
for a total of 100,000 accesses. Each run was started at
a randomly chosen location on the disk. The bars show
the average of the measured latencies; error bars indicate
the standard deviation.

The Guardat latency overheads for local and random
read/write accesses are negligible (below 1%), because
they are dominated by the access latency of the magnetic
disk. The Guardat overheads are more noticeable during
the much faster sequential accesses (2.9% for SR and
4% for SW in the Guardat_policy configuration). Dur-
ing read accesses, Guardat can partially hide the policy
check latency by issuing the disk read in parallel with
the policy check, and squashing the read if the check is
negative. Writes, on the other hand, cannot be scheduled
safely until the policy check completes, thus the higher
overhead. There is room for further optimization, for in-
stance, by caching the results of previous policy evalua-
tions in the kernel module while they remain valid, thus
avoiding upcalls in the common case.

To zoom in on the delays introduced by Guardat, Fig-
ure 2 shows the measured end-to-end latencies excluding

the disk access latency, and normalized to the latency
of the unmodified IET server without the disk access la-
tency. We see that the overheads relative to the origi-
nal IET are small, except during random writes and, to
a lesser extent, local writes. As noted above, the policy
checks cannot be overlapped with the disk access dur-
ing writes. Moreover, during random and local writes,
the Guardat metadata lookups tend to miss the cache
more often, leading to average latencies of up to 930
µs compared to the IET latency of 278 µs in the Guar-
dat_policy configuration on random writes (RW). How-
ever, this overhead has little impact on the end-to-end
latency, which is dominated by disk access latency, as
shown in Figure 1.

4.3.3 Read/write throughput

Next, we examine the read/write throughput of the Guar-
dat prototype, using the same configurations used in the
latency experiment. However, instead of issuing 512B
accesses sequentially, the test client issues four 64KB re-
quests concurrently, which suffices to achieve maximal
throughput in the experiment.

Figure 3 shows the absolute throughput of the various
configurations and workloads. The results shown are the
averages of 5 runs, each starting at a block id picked ran-

9

 0

 20

 40

 60

 80

 100

 120

 140

 160

RR LR SR RW LW SW

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Workload

iSCSI

Guardatempty

Guardatfile
Guardatpolicy

Figure 3: I/O throughput for synthetic workloads

Policy

size

Domain size (number of entries)

1 2 4 8 16

1 2.2 3.4 5.8 10.7 20.4
2 4.6 10.4 28.9 95.1 345.8
3 7.0 24.0 121.2 770.5 5,518.1
4 9.4 50.9 485.3 6,156.4 88,319.3
5 11.9 104.9 1,951.3 49,234.7 1,411,800.8

Table 2: Evaluation latency in µs for varying policy size
(number of predicates/variables) and domain size (num-
ber of cache entries per predicate/variable)

domly within the disk and comprising 20,000 accesses.
Error bars indicate the standard deviation of all 100,000
accesses. The Guardat overheads for all access patterns
are negligible (below 0.6%), because the Guardat policy
checks are largely overlapped by disk accesses.

4.3.4 Policy evaluation latency

As discussed in section 3.1, worst case policy evaluation
time is m(Dn), where m is the size of the policy, D is the
size of the Guardat cache and n is the number of variables
in the policy. In Table 2, we show the measured worst
case policy evaluation time for different D (in columns)
and different m and n (in rows; m = n in all experiments).
The results correspond to the formula m(Dn).

Although the table indicates (correctly) that policy
evaluation could be a substantial bottleneck for some
policies, in practice, we do not observe this bottleneck.
The average policy evaluation latency of our most com-
plex policy, MAL (Section 4.5) is only 27.7 µs, even
though the policy has m = 4, n = 4 and D = 40. This
is because of a careful implementation of the policy in-
terpreter to consider more recent cache entries first. Our
other example policies evaluate even faster; the average
evaluation time of Guardat_policy (Section 4.3.2) is only
3.7 µs.

4.3.5 Flash memory wear

Because Flash memory can endure only a limited num-
ber of erase/program cycles, it must not wear out before
the expected lifetime of the magnetic disk. To be con-

servative, we assume that the Flash must last at least 10
years. The lifetime is influenced by the size of the meta-
data, the rate of metadata updates (more updates require
more Flash writes), and the Flash capacity. (A smaller
capacity causes the Flash log to wrap around faster and
leads to higher utilization, which in turn reduces cleaning
efficiency and requires even more Flash writes.)

Under the configuration of Guardat_policy used above
in 4.3.2, we keep track of how much wear the Flash ex-
periences while presented with a series of metadata up-
dates, i.e., adding and removing extents to a content file
picked at random. Using only 4GB of Flash memory
with a nominal lifetime of 100,000 erase/program cycles,
we can accommodate up to 19.5M updates per day (225
per second). This is an extraordinarily high update rate
and can accommodate even the most write-intensive ap-
plications.

4.4 Use case: Web server

Next, we study the capabilities and performance of
the Guardat prototype as part of a Web server. The
server holds a 220GB static snapshot of English lan-
guage Wikipedia articles from 2008 [52] and images
from 2005 [51], containing 15 million files with an aver-
age file size of 15KB and maximum file size of ∼500KB.

We use three different machines connected by 10 Gbit
Ethernet links to run the IET storage server, the Apache
Web server (version 2.2.23)[4] and Apache HTTPAsync-
Client for Java (version 4.0-beta-1)[5]. The Web server
either fetches the contents from the mounted iSCSI de-
vice or from Linux’s buffer cache. Apache does not use
a dedicated disk cache.

The HTTP client asynchronously requests HTML
pages from the Web server, using a workload based on
the actual access counts of Wikipedia pages during one
hour on April 1, 2012 [53]. Because our snapshot is
much older and had fewer articles at the time, we ignore
accesses to non-existing pages. In total, about 350,000
different pages were accessed in the trace, of which
250,000 are part of the 2008 snapshot. Since we do not
have access to time stamps, we distributed the individ-
ual accesses evenly within an hour, and replayed the first
100,000 page requests.

We use the following Guardat policies: Static con-

tent pages: Allow updates signed by a fixed owner. We
use 40,000 different owner identities and randomly as-
sign them to the content files. System binaries: Allow
updates signed by a special vendor signature only.

The workload and policies used are particularly chal-
lenging for Guardat, due to the large number of small
protected files and a disk intensive workload.

Figure 4 shows the average throughput of three runs as
a function of the number of concurrent HTTP accesses.

10

 210

 220

 230

 240

 250

 260

 270

 280

 290

 0 10 20 30 40 50 60 70 80 90

T
h

ro
u

g
h

p
u

t
(R

e
q

u
e

s
ts

/s
)

Number of concurrent HTTP requests

iSCSI
Guardatcontent

Guardatcontent+binary

Figure 4: Throughput of 100,000 page loads, as a func-
tion of the number of concurrent accesses. Average of
five runs, variations were below 0.6%

Each run loads 100,000 Wikipedia pages. Results are
shown for four different configurations:
iSCSI: The plain IET iSCSI implementation.
Guardat_content: Guardat protecting content.
Guardat_content+binary: Guardat protecting content
and Apache binaries (e.g. apachectrl, httpd, libapr).

There is little difference (less than 1%) between the
throughput achieved by the unmodified IET server and
the Guardat_content and Guardat_content+binary con-
figurations, confirming that the Guardat overheads are
mostly hidden by disk access latencies.

To summarize, the use of Guardat in the Web server
use case has negligible performance overhead. In terms
of functionality, Guardat protects content files from tam-
pering and corruption by unauthorized parties, and pre-
vents intruders from modifying executables to install
Trojan horses.

4.5 Mandatory access logging (MAL)

In the final experiment, we perform accesses to a file with
a mandatory access logging policy. The MAL policy re-
quires adding the proper log entry to a separate log file in
order for an access to be allowed by Guardat. We use a
64MB file with or without the MAL policy in place. The
primary file and log file reside on different disks attached
to the same Guardat IET server. The version counter em-
bedded in the primary file is stored in a block of available
Flash memory. The client connects to the Guardat device
and accesses the file as follows:
no_log: the file is accessed without any logging.
log: the file is accessed and the accesses are logged with-
out policy enforcement.
Guardat_MAL: the policy-protected file is accessed
and the accesses logged, the policy is enforced by Guar-
dat.

Figures 5 and 6 show the access latency for sequential
4KB reads and writes, respectively, of the same location
within the file. We vary the number of accesses per log
entry. The bars show the average latency of 100,000 ac-
cesses and the error bars show the 98th percentile. In the

 0.1

 1

1 2 4 8 16 32 64 128 256 512

R
e

a
d

 l
a

te
n

c
y
 (

m
s
)

Reads per log entry

log
Guardat_MAL

no_log

Figure 5: Read latency with MAL, voluntary and no log-
ging

 0.1

 1

1 2 4 8 16 32 64 128 256 512

W
ri
te

 l
a

te
n

c
y
 (

m
s
)

Writes per log entry

log
Guardat_MAL

no_log

Figure 6: Write latency with MAL, voluntary and no log-
ging

case of a single read/write, voluntary logging increases
the latency from 0.20/0.16ms to 0.78/0.79ms, and policy
enforcement increases the latency to 0.87/1.19ms. The
higher cost of enforced logged writes reflects the need to
update the version number. The synchronous log write
contributes a significant part of the overhead; policy en-
forcement increases the read/write latency by 11.5% and
50.6%, respectively, for individually logged operations.
As shown, the cost of MAL can be amortized by logging
several operations with a single log entry.

4.6 Future Work

While clients connect directly to the Guardat prototype
server to issue Guardat API, we’re in the process of mak-
ing the Btrfs filesystem Guardat-aware. Given a Guardat-
aware filesystem, clients can access the Guardat API us-
ing I/O controls. As a result clients benifit from advanced
filesystem features such as prefetching or buffering for
better performance including Guardat API calls. Further-
more a Guardat-aware file system simplifies the access to
Guardat API and the general programmability of systems
using Guardat.

5 Related work

Storage work group specification. Although developed
independently, the Guardat architecture bears some re-
semblance to a set of specifications for storage devices

11

standardized by the storage work group of the trusted
computing group (TCG) [45]. Similar to Guardat, the
TCG standard prescribes session-based communication
with storage devices and access control on all calls to
them. This industry interest supports the case for Guar-
dat’s architecture. Unlike our work, however, the TCG
standard does not describe a concrete design, implemen-
tation, or policy language, leaving these to device ven-
dors; nor does it include certification of stored data by
the storage device. Implementations exist for a subset of
the TCG specification [44], providing full-disk encryp-
tion to preserve confidentiality of data upon device theft,
loss or end of life. They do not include secure sessions,
universal access checks or integrity policies, all of which
Guardat does.
Guardat vs. trusted computing. At a high level, trusted
computing (TC) relies on a trusted platform module
(TPM) attached to a computer’s motherboard to provide
a hardware root-of-trust [33], while Guardat relies on a
controller (GDC) attached to a storage device, enclosure
or server. While TC provides remote attestation of the
hardware/software executing on a computer, Guardat at-
tests the state of stored files, and enforces an application-
defined policy for read and write accesses to files. TC
provides sealed storage, where disk data is encrypted
with a key stored within the TPM and released only when
the computer runs a specific, trusted software configura-
tion. Guardat instead enforces a declarative policy on
all data accesses from untrusted client code. Compared
to TC, Guardat can reduce the size of the TCB and its
attack surface. Depending on the policy and implemen-
tation, the TCB can be as small as the Guardat controller.
Lastly, TC can complement Guardat: A Guardat policy
for access to a file can require that trusted software, veri-
fied via TC remote attestation, execute on the client com-
puter. Conversely, TC can be used to protect the GDC.
Related trusted computing proposals. Building on TC,
semantic attestation [18] enforces properties of a compu-
tation by a runtime verification substrate within a virtual
machine monitor. Guardat provides a limited form of se-
mantic attestation that enforces a data access policy, and
does not require machine virtualization.

Excalibur [38] extends sealed storage with a primitive
that binds cryptographically sealed data to a policy, such
that a node can decrypt the data only if a trusted author-
ity states that it obeys the policy (e.g., “this node is in
Europe” or “this node is running Xen”). Guardat can be
used to implement a similar capability, possibly with the
help of a trusted authority as required by the Excalibur
policy. However, Guardat can enforce many rich policies
directly, without requiring an external trusted authority to
map high-level policy descriptions to the nodes that meet
those requirements.

Pasture [24] is a messaging and logging library that

enables data to be stored on an untrusted client machine
while ensuring that a user cannot access the data without
logging that access. Furthermore, users can delete unac-
cessed data in a way that provably prevents future access.
The protocol relies on a TPM on the client machine. In
Section 3, we describe a Guardat policy that can enforce
the more general property of mandatory access logging
for a collection of files.
Protecting data integrity and confidentiality. Butler
et al. [9, 10, 11] describe storage devices that control
access to storage segments contingent on the presence
of a hardware token, or on successful remote attestation
of the host computer. In Guardat, these forms of access
control can be expressed as policies. Moreover, Guardat
supports richer and per-file policies that can additionally
depend on client authentication, wall-time clock or file
contents, and Guardat supports certification of file states.

Commercially available self-encrypting disks [39] en-
crypt data to ensure its confidentiality when the device is
lost or stolen. Guardat includes this capability as well,
and additionally enforces rich data access policies. Web
storage services like Amazon S3 [3] provide access con-
trol to a client’s data based on user identities, groups and
roles, encryption for secure data storage and transit, and
access logging. Guardat can enforce these (and many
other) policies and provides file attestations. Because it
operates at the storage layer, it does not require trust in
the Cloud provider’s remaining platform.

In capability-based network-attached storage
(NAS) [17, 2, 14], individual access requests in-
clude a capability, i.e., a tamper-proof description of
client access rights. This capability is created out of
band by a policy manager, a trusted component that
serves all storage devices in a data center. A Guardat
device, on the other hand, can interpret and enforce rich
policies without relying on an external policy manager;
thus, Guardat can operate in an otherwise untrusted
or offline environment (unless a policy specifically
delegates to an external verifier). Guardat can enforce
state-based policies and certify the state of files and their
policies, which capability-based NAS cannot.

Type-safe disks (TSD) [42] track the filesystem’s re-
lationship among disk blocks using an extended block
interface. Thus, a TSD can enforce basic filesystem
integrity invariants, such as preventing access to un-
linked blocks. A security extension called ACCESS adds
read and write capabilities to selected disk blocks, thus
enabling access control for entire files and directories.
Guardat additionally supports cryptography and secure
channels, which provides stronger security with respect
to compromised hosts, buggy filesystems and operator
mistakes. Also, Guardat’s policy language can support
rich policies beyond filesystem metadata integrity.

Storage systems such as Self Securing Storage

12

(S4) [46] and NetApp’s SnapVault [19] RAID storage
server retain shadow copies of overwritten data or dis-
able writes for a given period of time to address the spe-
cific problem of accidental or malicious corruption of
data. Guardat can enforce these and much richer integrity
constraints (Section 3), as well as confidentiality and ac-
countability.

jVPFS [50, 49] is a stacked, microkernel-based
filesystem that combines a small, isolated trusted com-
ponent with a conventional untrusted filesystem. jVPFS
uses encryption, hash trees and logging to ensure data
confidentiality and integrity. Guardat can provide simi-
lar functionality at the storage layer, and supports a much
richer set of policies.

The PCFS [15] and PFS [48] filesystems enforce in-
tegrity and confidentiality policies expressed in rich pol-
icy languages similar to Guardat’s. However, unlike
Guardat, PCFS and PFS trust the entire storage stack
below the filesystem, cannot enforce integrity policies
that depend on the content or size of files, do not certify
the state of stored files, and can be bypassed by booting
into a different configuration. PFS policies are expressed
in a formal logic similar in expressiveness to the Guar-
dat policy language. PCFS uses a formal logic that is
more expressive than the Guardat policy language, but
much more expensive (in terms of time and space) to
implement. The Guardat policy language deliberately
avoids policy features like recursive predicates that in-
crease complexity but are rarely used in practice.
Protecting data availability. Storage systems like
RAID [34], snapshotting filesystems [20, 32, 28] and
some backup utilities [6, 29] use redundancy to ensure
data availability. Guardat addresses the orthogonal prob-
lem of ensuring integrity, confidentiality and access ac-
counting in the face of human error, adversarial threats
and software bugs (e.g., a bug in a backup application
that overwrites backed up data [16]). In practice, Guar-
dat must be combined with redundant storage to ensure
the availability of data in case of a media failure, loss,
destruction or failure of a Guardat device.
Extended storage functionality. Commercial hybrid
disks [41] package a magnetic disk drive with a mod-
est amount of NAND Flash memory, used as a non-
volatile write-back cache to increase performance. Guar-
dat uses a comparable amount of Flash memory to store
its policy metadata but, in addition, protects data. Object-
based storage devices replace the traditional block-based
with an object-based interface [27]. These systems of-
fer capability-based security for whole objects, which we
already compared to. Part of the Guardat API is also
object-based, and could therefore be integrated with an
emerging object-based storage standard. Several stor-
age subsystems like active disks [37], semantically smart
disks [43] and differentiated storage services [26] in-

clude program logic to improve performance. Guardat
addresses the orthogonal concerns of data confidential-
ity, integrity and access accounting.

Pennington et al. [35] describe an intrusion detection
system (IDS) at the storage layer, which raises an alarm
when an access matches a per-file or global rule. Guardat
instead is able to enforce per-file security policies, and
these policies can be richer than the rules of an IDS sys-
tem. However, intrusion detection rules could be speci-
fied as Guardat policies that allow offending accesses but
log an alarm record.

6 Conclusion

To the best of our knowledge, Guardat is the first sys-
tem that enforces rich, per-file confidentiality, integrity
and access accounting policies at the storage layer, and
attests the state of files. Policies are expressed in a con-
cise declarative language and can be predicated on a wide
range of conditions, including client authentication, re-
mote attestation, physical authorization tokens, trusted
wall-clock time, and the state (content) of files, even
at sub-file granularity. Enforcing policies at the stor-
age layer reduces the attack surface and, in many cases,
the size of the TCB relied upon for enforcement. Exist-
ing techniques, on the other hand, either rely on a larger
TCB, spread the specification and enforcement of poli-
cies affecting a given data file over many different com-
ponents and layers of a system, or support a smaller set
of policies. The Guardat design is rich enough to en-
able powerful policies, primitives and applications, yet
is amenable to an efficient implementation, as demon-
strated by an experimental evaluation.

References

[1] AGRAWAL, N., BOLOSKY, W. J., DOUCEUR, J. R., AND

LORCH, J. R. A five-year study of file-system metadata. Trans.

Storage 3, 3 (2007).
[2] AGUILERA, M. K., JI, M., LILLIBRIDGE, M., MACCORMICK,

J., OERTLI, E., ANDERSEN, D. G., BURROWS, M., MANN, T.,
AND THEKKATH, C. Block-level security for network-attached
disks. In Proc. of the 2nd USENIX FAST (2003).

[3] Amazon simple storage service (S3). http://aws.amazon.

om/s3/.
[4] APACHE SOFTWARE FOUNDATION. Apache http server.

http://httpd.apa
he.org/, 2012.
[5] APACHE SOFTWARE FOUNDATION. Apache

httpasyncclient. http://h
.apa
he.org/

http
omponents-asyn

lient-dev/index.html, 2012.
[6] APPLE INC. Time Machine. http://www.apple.
om/osx/

what-is/.
[7] ARM. ARM Security Technology. http://

info
enter.arm.
om/help/topi
/
om.arm.do
.

prd29-gen
-009492
/PRD29-GENC-009492C_trustzone_

se
urity_whitepaper.pdf, ARM Technical White Paper,
2009.

[8] BECKER, M. Y., FOURNET, C., AND GORDON, A. D. Design

13

http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
http://httpd.apache.org/
http://hc.apache.org/httpcomponents-asyncclient-dev/index.html
http://hc.apache.org/httpcomponents-asyncclient-dev/index.html
http://www.apple.com/osx/what-is/
http://www.apple.com/osx/what-is/
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf

and semantics of a decentralized authorization language. In 20th

IEEE Computer Security Foundations Symposium (2007).
[9] BUTLER, K., MCLAUGHLIN, S., MOYER, T., AND MC-

DANIEL, P. New security architectures based on emerging disk
functionality. IEEE Computer Society.

[10] BUTLER, K. R. B., MCLAUGHLIN, S. E., AND MCDANIEL,
P. D. Rootkit-resistant disks. In Proc. of the ACM CCS (2008).

[11] BUTLER, K. R. B., MCLAUGHLIN, S. E., AND MCDANIEL,
P. D. Kells: a protection framework for portable data. In Proc.

of the ACSAC (2010).
[12] COOPER, D., SANTESSON, S., FARRELL, S., BOEYEN, S.,

HOUSLEY, R., AND POLK, W. Internet X.509 public key infras-
tructure certificate and certificate revocation list (CRL) profile.
RFC 5280. http://www.ietf.org/rf
/rf
5280.txt, 2008.

[13] DETREVILLE, J. Binder, a logic-based security language. In
Proc. of the S&P (2002).

[14] FACTOR, M., NAOR, D., ROM, E., SATRAN, J., AND TAL, S.
Capability based secure access control to networked storage de-
vices. In Proc. of the 24th IEEE MSST (2007).

[15] GARG, D., AND PFENNING, F. A proof-carrying file system. In
Proc. of the 31st IEEE S&P (2010).

[16] GARRET, R. A Time Machine time bomb. http://blog.

rongarret.info/2009/09/time-ma
hine-time-bomb.

html.
[17] GIBSON, G. A., NAGLE, D. F., AMIRI, K., BUTLER, J.,

CHANG, F. W., GOBIOFF, H., HARDIN, C., RIEDEL, E.,
ROCHBERG, D., AND ZELENKA, J. A cost-effective, high-
bandwidth storage architecture. In Proc. of the 8th ACM ASPLOS

(1998).
[18] HALDAR, V., CHANDRA, D., AND FRANZ, M. Semantic remote

attestation: A virtual machine directed approach to trusted com-
puting. In Proc. of the 3rd USENIX Virtual Machine Research

And Technology Symposium (2004).
[19] HAYAKAWA, M. WORM Storage on Magnetic Disks Using

SnapLock Compliance and SnapLock Enterprise. Tech. Rep. TR-
3263, Network Appliance, 2007.

[20] HITZ, D., LAU, J., AND MALCOLM, M. File system design
for an NFS file server appliance. In Proc. of the USENIX Winter

Technical Conference (1994).
[21] INTEL CORP. AESNI library. http://

software.intel.
om/en-us/arti
les/

download-the-intel-aesni-sample-library/ , 2011.
[22] INTEL CORP. Fast SHA256. http://download.intel.
om/

embedded/pro
essor/whitepaper/327457.pdf, 2012.
[23] INTEL CORP. Software Guard Extension Programming Ref-

erence. http://software.intel.
om/sites/default/

files/329298-001.pdf, 2012.
[24] KOTLA, R., RODEHEFFER, T., ROY, I., STUEDI, P., AND

WESTER, B. Pasture: Secure offline data access using commod-
ity trusted hardware. In Proc. of the 10th USENIX OSDI (2012).

[25] LI, N., AND MITCHELL, J. C. Datalog with constraints: A foun-
dation for trust management languages. In Proc. of the 5th Sym-

posium on Practical Aspects of Declarative Languages (2003).
[26] MESNIER, M., CHEN, F., LUO, T., AND AKERS, J. B. Differ-

entiated storage services. In Proc. of the 23rd ACM SOSP (2011).
[27] MESNIER, M., GANGER, G., AND RIEDEL, E. Object-based

storage. Communications Magazine 41, 8 (2003).
[28] MICROSOFT CORP. What is volume shadow copy ser-

vice? http://te
hnet.mi
rosoft.
om/en-us/library/

757854(WS.10).aspx.
[29] MICROSOFT CORP. Windows Backup and Restore. http://

www.mi
rosoft.
om/athome/setup/ba
kupdata.aspx#

fbid=l7X90d97alI .
[30] OCZ TECHNOLOGY INC. Deneva 2 data sheet.

http://www.o
zenterprise.
om/ssd-produ
ts/

deneva-2-
-sata-6g-2.5-sl
.html, 2011.
[31] OPENSSL CRYPTOGRAPHIC LIBRARY. http://www.

openssl.org/do
s/
rypto/
rypto.html, 2012.

[32] ORACLE CORPORATION. Solaris ZFS. http://www.

ora
le.
om/us/produ
ts/servers-storage/storage/

storage-software/031857.htm.
[33] PARNO, B., MCCUNE, J. M., AND PERRIG, A. Bootstrapping

trust in commodity computers. In Proc. of the 31st IEEE S&P

(2010).
[34] PATTERSON, D. A., GIBSON, G., AND KATZ, R. H. A case for

redundant arrays of inexpensive disks (RAID). In Proc. of ACM

SIGMOD (1988).
[35] PENNINGTON, A. G., GRIFFIN, J. L., BUCY, J. S., STRUNK,

J. D., AND GANGER, G. R. Storage-based intrusion detection.
ACM Trans. Inf. Syst. Secur. 13, 4 (Dec. 2010).

[36] PIMLOTT, A., AND KISELYOV, O. Soutei, a logic-based trust-
management system. In Proc. of the 8th International Symposium

on Functional and Logic Programming (FLOPS) (2006).
[37] RIEDEL, E., FALOUTSOS, C., GIBSON, G., AND NAGLE, D.

Active disks for large-scale data processing. IEEE Computer 34,
6 (2001).

[38] SANTOS, N., RODRIGUES, R., GUMMADI, K. P., AND

SAROIU, S. Policy-sealed data: A new abstraction for build-
ing trusted cloud services. In Proc. of the 21st USENIX Security

Symposium (2012).
[39] SEAGATE TECHNOLOGY LLC. Self-encrypting hard disk drives

in the data center. Tech. Rep. TP583, 2007.
[40] SEAGATE TECHNOLOGY LLC. Barracuda Data Sheet.

http://www.seagate.
om/files/stati
files/do
s/

pdf/datasheet/dis
/barra
uda-xt-ds1696.3-1102us.

pdf, 2011.
[41] SEAGATE TECHNOLOGY LLC. Momentus

XT Data Sheet. http://www.seagate.
om/

files/stati
files/do
s/pdf/datasheet/dis
/

momentus-xt-data-sheet-ds1704-4-1209-us.pdf,
2012.

[42] SIVATHANU, G., SUNDARARAMAN, S., AND ZADOK, E. Type-
safe disks. In Proc. of the 7th USENIX OSDI (2006).

[43] SIVATHANU, M., PRABHAKARAN, V., POPOVICI, F. I.,
DENEHY, T. E., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Semantically-smart disk systems. In Proc.

of the 2nd USENIX FAST (2003).
[44] STORAGE WORK GROUP OF THE TRUSTED COMPUTING

GROUP. Self-encrypting drives take off for strong data
protection. http://www.trusted
omputinggroup.org/

ommunity/2010/03/selfen
rypting_drives_take_

off_for_strong_data_prote
tion, 2011.
[45] STORAGE WORK GROUP OF THE TRUSTED COMPUTING

GROUP. TCG storage architecture core specification. http://

www.trusted
omputinggroup.org/resour
es/t
g_

storage_ar
hite
ture_
ore_spe
ifi
ation, 2011.
[46] STRUNK, J. D., GOODSON, G. R., SCHEINHOLTZ, M. L.,

SOULES, C. A. N., AND GANGER, G. R. Self-securing stor-
age: Protecting data in compromised systems. In Proc. of the 4th

USENIX OSDI (2000).
[47] THE ISCSI ENTERPRISE TARGET PROJECT. http://

is
sitarget.sour
eforge.net/, 2011.
[48] WALSH, K., AND SCHNEIDER, F. B. Costs of security in the

PFS file system. Tech. rep., Computing and Information Science,
Cornell University, 2012.

[49] WEINHOLD, C., AND HÄRTIG, H. VPFS: Building a virtual
private file system with a small trusted computing base. In Proc.

of the 3rd ACM/SIGOPS EuroSys (2008).
[50] WEINHOLD, C., AND HÄRTIG, H. jVPFS: Adding robustness

to a secure stacked file system with untrusted local storage com-
ponents. In Proc. of the USENIX ATC (2011).

[51] WIKIMEDIA FOUNDATION. Image Dump. http://ar
hive.
org/details/wikimedia-image-dump-2005-11 , 2005.

[52] WIKIMEDIA FOUNDATION. Static HTML dump. http://

dumps.wikimedia.org/, 2008.
[53] WIKIMEDIA FOUNDATION. Page view statistics April 2012.

14

http://www.ietf.org/rfc/rfc5280.txt
http://blog.rongarret.info/2009/09/time-machine-time-bomb.html
http://blog.rongarret.info/2009/09/time-machine-time-bomb.html
http://blog.rongarret.info/2009/09/time-machine-time-bomb.html
http://software.intel.com/en-us/articles/download-the-intel-aesni-sample-library/
http://software.intel.com/en-us/articles/download-the-intel-aesni-sample-library/
http://software.intel.com/en-us/articles/download-the-intel-aesni-sample-library/
http://download.intel.com/embedded/processor/whitepaper/327457.pdf
http://download.intel.com/embedded/processor/whitepaper/327457.pdf
http://software.intel.com/sites/default/files/329298-001.pdf
http://software.intel.com/sites/default/files/329298-001.pdf
http://technet.microsoft.com/en-us/library/cc757854(WS.10).aspx
http://technet.microsoft.com/en-us/library/cc757854(WS.10).aspx
http://www.microsoft.com/athome/setup/backupdata.aspx#fbid=l7X90d97alI
http://www.microsoft.com/athome/setup/backupdata.aspx#fbid=l7X90d97alI
http://www.microsoft.com/athome/setup/backupdata.aspx#fbid=l7X90d97alI
http://www.oczenterprise.com/ssd-products/deneva-2-c-sata-6g-2.5-slc.html
http://www.oczenterprise.com/ssd-products/deneva-2-c-sata-6g-2.5-slc.html
http://www.openssl.org/docs/crypto/crypto.html
http://www.openssl.org/docs/crypto/crypto.html
http://www.oracle.com/us/products/servers-storage/storage/storage-software/031857.htm
http://www.oracle.com/us/products/servers-storage/storage/storage-software/031857.htm
http://www.oracle.com/us/products/servers-storage/storage/storage-software/031857.htm
http://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/barracuda-xt-ds1696.3-1102us.pdf
http://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/barracuda-xt-ds1696.3-1102us.pdf
http://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/barracuda-xt-ds1696.3-1102us.pdf
http://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/momentus-xt-data-sheet-ds1704-4-1209-us.pdf
http://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/momentus-xt-data-sheet-ds1704-4-1209-us.pdf
http://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/momentus-xt-data-sheet-ds1704-4-1209-us.pdf
http://www.trustedcomputinggroup.org/community/2010/03/selfencrypting_drives_take_off_for_strong_data_protection
http://www.trustedcomputinggroup.org/community/2010/03/selfencrypting_drives_take_off_for_strong_data_protection
http://www.trustedcomputinggroup.org/community/2010/03/selfencrypting_drives_take_off_for_strong_data_protection
http://www.trustedcomputinggroup.org/resources/tcg_storage_architecture_core_specification
http://www.trustedcomputinggroup.org/resources/tcg_storage_architecture_core_specification
http://www.trustedcomputinggroup.org/resources/tcg_storage_architecture_core_specification
http://iscsitarget.sourceforge.net/
http://iscsitarget.sourceforge.net/
http://archive.org/details/wikimedia-image-dump-2005-11
http://archive.org/details/wikimedia-image-dump-2005-11
http://dumps.wikimedia.org/
http://dumps.wikimedia.org/

http://dumps.wikimedia.org/other/page
ounts-raw/

2012/2012-04/, 2012.

7 Details of Guardat API calls

This section summarizes the Guardat API calls and de-
scribes the session handshake protocol.

Session API We describe the handshake protocol that
authenticates the client and Guardat to each other and es-
tablishes session keys. We use some abbreviations. C

and G denote the client and Guardat respectively. For a
principal A, KA denotes its public key and K−1

A denotes its
corresponding private key. Guardat’s public key KG is as-
sumed to be known to everyone (through a manufacturer-
provided certificate). The client and Guardat use two
freshly chosen random nonces, denoted NC and NG re-
spectively. sig(K,M) denotes a message M and its signa-
ture with private key K. enc(K,M) denotes the encryp-
tion of message M with public key K. (M1,M2) denotes
concatenation of messages M1 and M2. A →B : M means
that A sends message M to B. Our handshake protocol is:

C → G : KC, sig(K−1
C , enc(KG, NC))

G →C : sig(K−1
G , (0, enc(KC, (NC, NG))))

C → G : sig(K−1
C , (1, enc(KG, (NC, NG))))

At the end of the protocol, both C and G have seen
their nonces signed by the other party; this authenticates
them to each other. The sequence numbers 0 and 1 in the
second and third messages distinguish the two messages
from each other, preventing a man in the middle from
causing confusion through replays. The session keys
are derived by the client and Guardat using key deriva-
tion functions on the concatenation of the two nonces,
(NC,NG).

This protocol is based on the station-to-station proto-
col and provides direct bidirectional authentication and
prefect forward secrecy. The handshake protocol is im-
plemented using two API calls, named handshake1 and
handshake2. The first call, handshake1, corresponds to
the first message in the protocol and its return value cor-
responds to the second message. The second call, hand-
shake2, corresponds to the third message and its return
value is just a confirmation that the session has been es-
tablished. (The return value is irrelevant to security of
the protocol, but it is needed to tell the client to proceed.)

- handshake1(message): The message should be of
the form of the first message in the protocol. If cor-
rect, the return value is the second message of the
protocol and a session id to link the second call.

- handshake2(sessionId, message): The message
should be of the form of the third message in the

protocol. The return value is either success or fail-
ure. If the value is success, then sessionId is used as
the identifier for the rest of the session.

The API call endSession(sessionId) ends a session.

Object API To allow flexible content hashing during
readBatched() and fresh() calls, Guardat provides hash
computation buffers to which the client can selectively
choose to add data during these calls. Once the client
has added all the data it needs to a buffer, it finalizes the
buffer, which moves the hash of the content in the buffer
to either the session cache or the batch cache (depend-
ing on whether the hash buffer has current or new object
content). In the implementation, each non-finalized hash
buffer is an open hash computation and newly appended
content is hashed immediately. Hash buffers are accessi-
ble through the following API.

- initHash(batchId, currOrNew): Initialize a new
hash buffer for the object associated with the open
batch batchId. The Boolean flag currOrNew indi-
cates whether the buffer will hold a hash of the ob-
ject’s current version or its updated version. This
choice is enforced in calls that add to the buffer. Re-
turns a unique identifier for the hash buffer, hashId.

- closeHash(hashId): Finalize the hash buffer hashId
and move the hash in it to the session cache if the
buffer has current object content or to the batch
cache if the buffer has new object content.

API calls to start and end batches and to read and update
objects were described in Section 2.1. We summarize
them below with details of caching flags that we omitted
from Section 2.1.

- openBatch(sessionId, objName): Start batch on ob-
ject with name objName in session identified by ses-
sionId. If objName does not exist, create it. Returns
a new batchId on success.

- readBatched(batchId, off, len, buf, cacheFlags,
cacheIntervals, hashId): Read len bytes from log-
ical offset off of the object associated with batchId
and return the result in buf. The cacheFlags indicate
whether or not the read content should be added to
the session cache and whether or not it should be
added to a hash buffer. If either is the case, then
cacheIntervals specifies which logical ranges of the
read content need to be added. If content is to be
added to a hash buffer, hashId identifies the buffer.
This call evaluates the read policy rule.

- reuse(batchId, off, len, off’): Take content in the
logical range [off,off+len-1] from the current ver-
sion of the object associated with batchId and insert
it at offset off’ in the new version.

15

http://dumps.wikimedia.org/other/pagecounts-raw/2012/2012-04/
http://dumps.wikimedia.org/other/pagecounts-raw/2012/2012-04/

- fresh(batchId, off, len, buf, off’, cacheFlags,
cacheIntervals, hashId): Write len bytes from buffer
buf to the extent starting at byte offset off on disk
and add the resulting extent to the new version at
offset off’. The arguments cacheFlags, cacheInter-
vals and hashId have roles similar to those in read-
Batched(), but the batch cache, and not the session
cache, is affected.

- setPolicy(batchId, new_policy): Set the policy of
the new version to new_policy.

- endBatch(batchId): Close the batch identified by
batchId. Evaluates the update policy rule and, if
the policy is being modified, also the setpolicy rule.

- destroy(objName): Destroy the metadata of the
empty object named objName. Evaluates the de-

stroy policy rule.

Certificate API The certificate API generates nonces,
attests content and forwards third-party certificates to
Guardat for policy evaluation.

- getNonce(sessionId): Return a new nonce that is to
be embedded in a third-party certificate later.

- setCertificate(sessionId, certificate): Provide certifi-
cate for use in later policy evaluation.

- attest(sessionId, objName, attestFlags, hashId,
nonce): Attest objName’s metadata and optionally
a hash of selected content. The argument attest-
Flags specifies which of the following need to be
attested: the list of physical extents, policy, policy
hash and content hash. If content hash is to be at-
tested, hashId points to an entry in the session cache
which has that hash. Guardat returns a single certifi-
cate containing all requested vectors and the client-
provided nonce. The read policy rule of objName
is evaluated.

Backwards compatibility Standard block-device API
calls read(blk,cnt,buf) (read cnt disk blocks starting at
block blk into buffer buf) and write(blk,cnt,buf) can be
used to read and write disk extents. The read or update

policy rule of all extents that overlap the accessed extents
is evaluated.

8 Details of the Guardat policy language

We summarize in this section predicates available in the
Guardat policy language. In addition to these predicates,
policies may use any uninterpreted predicates established
through third-party certificates.

The following universal predicates are available in all
policy rules.

- obje
t_name_is(O): The object being accessed has
name O.

- session_is(K): The current session has been authen-
ticated with public key K.

- time_is(T): The internal timing counter is currently
T .

- guardat_key_is(K): The public key of this Guardat
installation is K.

- Arithmetic, string comparison: t1 == t2, t1 < t2,
t1 ≤ t2.

- is_subset(R1,R2): Range set R1 is a subset of range
set R2.

- disjoint(R1,R2): Range sets R1 and R2 are disjoint.

- (obj,off, len) saysC: The content at offset off in ob-
ject obj is C. (Based on the session cache.)

- (obj,((off1, len1), . . . ,(offn, lenn))) hasHash H: The
bytes stored in the given list of (off,len) pairs in ob-
ject obj have hash H. (Based on the session cache.)

Specific contextual predicates are available in each
policy rule. We list these below, categorized by the pol-
icy rules. The destroy rule admits no contextual predi-
cates.

Read rule The following predicates are available in the
read policy rule.

- isAttest(): True if the read rule is being evaluated
in an attest() call, and false otherwise.

- a

ess_lo
ations_are(R): The set of logical
(off,len) pairs read from the object is R.

- a

ess_physi
al_extents_are(E): The set of physi-
cal extents read is E .

- a

ess_length_is(L): The number of bytes read is
L.

Update/setpolicy rule The rules for update and set-

policy evaluate in the same call, endBatch(), and, hence,
they admit the same contextual predicates with only one
exception that is shown later. When the update rule eval-
uates in the call write(), some of these predicates always
evaluate to false. These predicates are marked with ∗.

- isCreate

∗(): True if and only if the batch executed
on an object that did not already exist.

16

-
urrent_length_is(L): The length of the current ver-
sion of the object is L bytes.

- new_length_is

∗(L): The length of the new version
of the object is L bytes.

-
urrent_physi
al_extents_are(E): The current ver-
sion of the object spans the set E of physical extents.

- new_physi
al_extents_are

∗(E): The new version of
the object spans the set E of physical extents.

- updated_lo
ations_are(M): The set of logical (off,
len) pairs updated during the batch is M.

- read_lo
ations_are

∗(R): The set of logical (off, len)
pairs read during the batch is R.

-
urrent_pol_hash_is(H): The current policy has
hash H.

- new_pol_hash_is

∗(H): The new policy has hash H.

- (off, len) willsay∗ C: The new content at offset off is
C. (Based on the batch cache.)

- ((off1, len1), . . . ,(offn, lenn)) willHaveHash
∗ H: The

new bytes stored in the given list of (off,len) pairs
have hash H. (Based on the batch cache.)

The following predicate is available only in the update

policy rule, not the setpolicy rule, and can be used to
distinguish evaluation of update in the endBatch() call
from that in the write() call.

- isWrite(): True if and only if evaluation is part of
the write() call.

9 Compatibility with existing filesystems

We sketch how our Guardat prototype can be used with
an existing, unmodified filesystem, which is not aware of
Guardat and issues only ordinary block reads and writes.
In this compatibility mode, applications are linked with
a library, which implements the standard POSIX filesys-
tem interface, and provides additional operations for ap-
plications to authenticate, set a policy for a file, provide
certificates required by policies, and request attestations.
The library interacts with the Guardat userspace daemon
directly and makes API calls to associate block read and
write operations issued by the filesystem with an object,

client session and batch. We note that the library is un-
trusted and does not require extra privileges. In particu-
lar, the library only executes Guardat calls on behalf of
applications that the applications are allowed to execute
themselves.

To determine if a block read operation is allowed, the
Guardat daemon maps the requested block number to the
associated object (if one exists) using the block-to-object
B-tree. To further be able to map the read operation to an
authenticated session, we impose the limitation that only
a single batch or session can be open for a given object
at any given time in compatibility mode.

Write operations may refer to an extent not currently
associated with any object. (When a file is extended,
the filesystem allocates new blocks.) Therefore, prior to
writing new data to a file, the application library pro-
vides the Guardat daemon with a vector of hashes of
aligned blocks containing the new data. This vector en-
ables the daemon to associate subsequent writes issued
by the filesystem with the correct object, offset, session
and batch. In order to avoid ambiguity, two blocks with
the same hash value may not be outstanding at the same
time. The daemon enforces this condition by temporar-
ily refusing to accept a block hash vector that contains an
element that is already present among the current set of
outstanding vectors.

When the kernel module receives a write command, it
computes the hash of blocks to be written, and sends the
hash to the daemon along with the request. The daemon
matches write requests with the list of hashes provided by
the compatibility library. Computing hashes in the ker-
nel avoids sending data from the kernel to the userspace
daemon.

The compatibility mode has limitations. As mentioned
above, only a single session and batch may be active for
any given object, which can lead to some loss of per-
formance in workloads with concurrent accesses to the
same file. Also, because the filesystem is unaware of
Guardat, any attempt by the filesystem to relocate a file
with an associated integrity policy may fail. As a result,
defragmentation of an unmodified filesystem requires a
modified defragmentation utility. Object data encrypted
with a session key must be communicated between li-
brary and the Guardat daemon without going through the
iSCSI driver, to avoid polluting the filesystem’s buffer
cache with session-encrypted data. These limitations can
be lifted by modifying a filesystem to use the extended
Guardat API, which is a subject of ongoing work.

17

	Introduction
	Guardat design
	Guardat API
	Guardat policy language

	Policy examples
	Expressiveness and overhead

	Experimental evaluation
	Prototype Implementation
	Experimental setup
	Microbenchmarks
	Space requirements for metadata
	Read/write latency
	Read/write throughput
	Policy evaluation latency
	Flash memory wear

	Use case: Web server
	Mandatory access logging (MAL)
	Future Work

	Related work
	Conclusion
	Details of Guardat API calls
	Details of the Guardat policy language
	Compatibility with existing filesystems

