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Abstract

A number of research systems enable analysts to ag-
gregate user data that is distributed across user de-
vices while preventing online tracking and providing
users with differential privacy guarantees. These sys-
tems rely on pre-defined string values to release rele-
vant user data in a controlled fashion. Unfortunately,
many string values (e.g., tags in a photo application)
may not be easily predicted. Existing private aggre-
gation systems that can be used to discover strings
for private analytics purposes exhibit serious short-
comings, such as heavy client-side operations and an
inability to deal with malicious clients supplying in-
correct data. In this paper, we present a practical and
privacy-preserving string discovery system that pro-
vides analysts with previously unknown strings and
limits the effects of malicious clients, while support-
ing a variety of user devices with varying computation
and bandwidth resources. To achieve these goals, our
system employs the exclusive-OR (XOR) operation
as its crypto primitive, and utilizes a novel method
to determine the equivalence of two XOR-encrypted
strings without revealing them. We present our de-
sign, analyze its privacy properties and evaluate its
feasibility. Our results show that our system outper-
forms the closest system by several orders of mag-
nitude for client-side computations and one order of
magnitude for server-side computations.

1 Introduction

Tracking users on the web benefits analysts and data
aggregators. For instance, web publishers learn more
about their users via web analytics, and aggregators
help them monetize their content by mediating be-
tween publishers and advertisers. This arrangement
comes with a price for user privacy: Aggregators can
build profiles about individual users [45] with the sen-
sitive information they obtain. Users’ trust in aggre-
gators not to misuse this information has been vio-
lated in many cases [8–10]. As a response, researchers
and industry have proposed methods to detect and
prevent tracking [3, 4, 6, 11, 13, 15, 45]. While these
methods protect privacy, they significantly reduce the
benefits of analytics by limiting the information an-
alysts get about their users.

Recent proposals avoid this inherent trade-off by
providing analysts with the same aggregate analyt-
ics data they obtain from data aggregators today,
but without tracking [16, 23, 24, 33, 37]. The com-
mon approach utilized in these systems is to store
the user data at the user device and release it with
the help of a client software in a controlled fashion,
using either proxies [16,23,24,33], or restricted inter-
faces [37]. While aggregating user data, these systems
add differentially-private noise [27, 28] to protect in-
dividual user privacy.

One disadvantage of these systems, however, is
that they require a set of pre-defined string values
that are relevant to the user data they want to ag-
gregate, such that the client only releases data re-
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garding those values. These string values are either
used as potential answers in analysts’ queries over
user data [16, 23, 24], or as counter names [33, 37].
This requirement on the string values limits the ap-
plicability of these systems. For instance, imagine a
scenario where the developer of a photo gallery ap-
plication would like to gather statistics about the tag
values its users are assigning to their photos. For
better functionality, the developer allows the users
to enter free text as tag values. In this case, defin-
ing a list of potential tag values in advance may be
difficult or impossible.
Some previous systems [17, 20] do not suffer from

this drawback because they provide private data
aggregation with unknown strings, but have other
limitations that make them unsuitable for analyt-
ics scenarios that are similar to our example. First,
and most importantly, these systems either employ
general-purpose secure multiparty computation pro-
tocols [20], or rely on expensive cryptographic oper-
ations [17], such as oblivious transfer [43], public-key
cryptography or zero-knowledge proofs [32]. These
operations put a significant burden on the clients,
whose computing resources may be limited in large-
scale, distributed environments such as the web. For
example, users increasingly access the web via mobile
devices [5, 7], which have limited capabilities com-
pared to personal computers.
Second, these systems cannot detect whether an

adversarial client participating in the data aggrega-
tion is trying to manipulate the results. The purpose
of this manipulation may be to breach the privacy
of other clients, and/or to reduce the utility of re-
sults by supplying incorrect data. In an environment
in which there are millions of clients who cannot be
generally trusted to provide correct data, this issue
significantly reduces the suitability of these systems
for private analytics.
Third, these systems are designed for aggregat-

ing and correlating network events across big orga-
nizations (e.g., ASes). This specialization limits the
length of strings these systems can aggregate because
of the underlying cryptographic operations. For ex-
ample, Sepia [20] assumes a string size of 32-bits (i.e.,
an IP address). In our example scenario, the strings
can be much longer. Furthermore, these systems only

deal with one type of string, which may be limiting in
a web setting (e.g., many different applications with
different string types).
Finally, to reveal an unknown string, these systems

require that its count is above a threshold [17], sim-
ilar to k-anonymity [51]. This property opens the
attack in which an adversary creates k − 1 instances
of a rare string (using adversarial clients as above)
to expose the existence of a user. In fact, previous
private analytics systems [16, 23, 24, 33, 37] preferred
using differential privacy in part to defeat this trivial
attack.
In this paper, we present the design and evaluation

of a practical and private string discovery system.
Our system can discover unknown strings belonging
to a wide-range of string types (e.g., photo tags, appli-
cations installed, products viewed, websites visited),
and provide analysts with string values that can be
used in various analytics systems. While achieving
this goal, our system places very little overhead on
the clients.
In our system, the user data resides at a user de-

vice running our client software. The client periodi-
cally participates in string discovery procedures run
by the aggregator (the entity providing the string dis-
covery service), and supplies encrypted strings using
a low-cost (XOR) form of encryption. With the help
of two honest-but-curious proxies, the aggregator ag-
gregates encrypted strings. The aggregator then pro-
vides the analysts with discovered strings of various
string types.
Care must be taken while discovering a string.

From a client’s perspective, rare strings shared by
few clients may leak privacy, and thus, should not be
discovered. For example, the tag “Alex Finkelmeier
getting drunk” is rarer than “Mom’s birthday”, and
can leak a client’s identity if discovered. From an
analyst’s perspective, the discovered strings are pre-
sumably more useful if they belong to a relatively
large client population. In our photo application ex-
ample, the developer may only be interested in tags
that are used by a substantial number of clients. For
these reasons, our system discovers a string only if
there are sufficient clients: strings with fewer clients
than a discovery threshold are not discovered.
Using a fixed threshold value, however, is problem-
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atic due to the k − 1 sybils attack described above.
Note that just adding differentially-private (or any
kind of) noise does not address this attack: if the
threshold is applied before adding noise, k − 1 sybils
attack would still succeed, because the mere report-
ing of a string (even with a noisy count) would in-
dicate that there exists at least one client with that
string: if not, the string would not have passed the
threshold, noise would not have been added to its
count, and it would not have been reported. Our sys-
tem deals with this problem by employing differential
privacy mechanisms to add noise to a string’s count
before applying the threshold, and thus, producing
uncertainty in the adversary’s view: is it a client or
is it just noise? In other words, only strings whose
differentially-private noisy counts pass the threshold
are discovered.
To determine whether a particular string should

be discovered with our noise-before-threshold mecha-
nism, we first need to count the number of clients
with that string value. The key challenge here is
to count the clients without revealing their strings,
which in turn requires determining the equivalence of
encrypted strings. One approach would be to rely on
heavy crypto operations (e.g., oblivious transfer [43])
as suggested by Applebaum et al. [17]; however, this
approach creates problems with low-power clients. A
low-cost alternative would be for the clients to hash
their strings with a secure function using a secret
shared with a component (e.g., SHA-1 with a se-
cret salt). Unfortunately, a component could easily
run a fake client to learn the secret and utilize rain-
bow tables to determine the existence of clients with
specific strings. Our system uses a blind compari-

son method to distinguish (encrypted) client strings
and count them without knowing their actual val-
ues. This method utilizes low-cost primitives (XOR
and hash), and significantly reduces the burden on
the clients by avoiding expensive crypto operations.
This blind comparison also enables our system to de-
tect malicious clients and limit their effects on the
string counts without violating the privacy of honest
clients.
The contributions of this paper are as follows. To

the best of our knowledge, we propose the first prac-
tical and private analytics system that enables an-

alysts to discover previously unknown string values
with differentially-private counts. We describe and
analyze a novel design that creates little overhead on
the client, but nevertheless provides a method to dis-
tinguish and count distinct strings without revealing
them. Finally, we demonstrate our system’s feasibil-
ity using simulations with generated data sets that
are based on the distributions of real-world data:
website popularity from Quantcast [12] and recent
search phrases from a large search engine.

The next section presents our assumptions and
goals. We give an overview of our system in Sec-
tion 3, and describe the primitives we use in Sec-
tion 4. Sections 5, 6 and 7 present the details of our
system, detection of malicious clients trying to skew
the string counts and optimizations, respectively. We
analyze our system’s privacy properties in Section 8
and evaluate its feasibility in Section 9. We discuss
related work in Section 10, and conclude in Section
11.

2 Assumptions & Goals

2.1 Components & Trust Assump-
tions

There are three types of components in our sys-
tem: client, aggregator and proxies. These com-
ponents already exist in today’s aggregation infras-
tructure, except for the proxies. Proxies, however,
have been widely proposed for aggregation purposes
[17, 23, 24, 33], and we also adopt this approach.

Client. The client is a piece of software that stores
user data locally, similar to other systems [16,23,24].
The client participates in the aggregator’s string dis-
covery procedures by sending encrypted strings it
has. Besides the strings, the client also keeps some
metadata regarding the string types. A generic string

type may be of interest to many analysts. Examples
of generic string types include websites visited, exten-
sions installed and search phrases. An analyst-specific

string type may be useful to only one or a few ana-
lysts. An example of an analyst-specific string type
is the tag values in a specific application (e.g., tags
in a photo app). How exactly the client obtains these
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data is outside our scope; however, we note that the
browser already sees much of these data.
The client typically runs on a user device, but may

also run on a different, trusted device. We assume
that the user trusts the client to safeguard the data
it stores and its operation, just as users trust their
browsers for operations such as certificate manage-
ment or TLS connections. We do not protect against
the case in which a client’s device is infected with
malware: such malware can violate user privacy in
many ways our system does not cover. We also as-
sume that fake clients can be run by other compo-
nents to violate an honest client’s privacy. A client
can also act maliciously against the aggregator and
try to skew string counts by sending the same string
multiple times.
Aggregator. The aggregator is an entity that
provides the string discovery service. This ser-
vice reports previously unknown strings and their
differentially-private counts. These strings may be
used by analysts that want to query distributed user
data with other systems, such as [16, 23, 24]. We as-
sume that the aggregator is honest-but-curious: it
follows the protocol and does not collude with the
proxies. However, it may operate fake clients to try
to link or deanonymize client strings.
Proxies. The proxies act as anonymizing proxies
between clients and the aggregator, and enable the
aggregation of encrypted user data and discovery of
strings. They also help the aggregator in detect-
ing and limiting malicious clients trying to skew the
counts. We assume that the proxies are also honest-
but-curious: They do not lie about string counts,
and do not collude with the aggregator nor with each
other; however, like the aggregator, they can run fake
clients to link or deanonymize client strings.
Although our assumption about honest-but-

curious aggregator and proxies is weaker than a more
general model, in which these entities could be mali-
cious, we think that it reflects the reality on the Inter-
net: The aggregator operates a business by provid-
ing string discovery service for analysts. The proxies
can be operated by independent companies and/or
privacy watchdogs. All of these entities would put
their non-collusion statement in their privacy poli-
cies, making them legally liable. Furthermore, any

Noisy string counts

Pre-defined string values

C

C

...

AnalystsClients

An

An

...A
Aggregation 
system

Selected, encrypted
strings

Figure 1: An overview of existing private analytics
systems.

entity not following the protocol would risk losing
reputation and customers. Previous systems also
make similar assumptions [16, 17, 23, 24, 26, 33].
Finally, we assume the aggregator and the proxies

are not impersonated, and all point-to-point connec-
tions use TLS (i.e., messages cannot be eavesdropped
upon and modified in flight).

2.2 Functionality Goals

Figure 1 shows an overview of existing private analyt-
ics systems [16, 23, 24, 33, 37], which provide analysts
with differentially-private aggregate analytics infor-
mation. However, they require analysts to pre-define
a list of potential string values, which can be difficult
for many analytics scenarios (e.g., tags). Our main
functionality goal is to discover unknown strings and
report them to the analysts with their noisy counts.
Our system should scale well, both on the server

and the client side. There are potentially millions of
clients with tens of millions of strings. Thus, opera-
tions to discover strings should be fast. Additionally,
the clients can run across a diverse set of user de-
vices from smartphones to powerful desktop comput-
ers, possessing different computation and bandwidth
resources. To support such a diverse client popula-
tion, the client-side operations should not incur much
overhead.
Finally, our system should detect malicious clients

and limit their effect on the string counts. An inac-
curate count may cause our system’s utility to suf-
fer, because the discovered strings may not be bene-
ficial for the analysts. It can also cause the discovery
threshold to be ineffective, and thus, can be a privacy
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issue: in order to infer honest clients’ strings, other
components may run fake clients and skew string
counts.

2.3 Privacy Goals

Our system has two main privacy goals: (i) Only
discover strings reported by a sufficient, noisy num-
ber of clients, and (ii) Report discovered strings with
differentially-private counts.

Our first goal requires us to define the term ‘suffi-
cient’. Unfortunately, this definition varies: one an-
alyst may be interested only in strings reported by
at least 1K clients, whereas another may set a much
smaller threshold. Nevertheless, the system should
impose a threshold of some kind. Our goal is not to
find a ‘one-size-fits-all’ threshold, but rather to find a

method to only discover the strings that satisfy some

‘sufficient’ definition. In other words, any string not
satisfying the condition must not be revealed to any
component—not even to the aggregator.

A subgoal of this goal is that the method to dis-
cover strings should not reveal the string values until
they are deemed discovered. Furthermore, a discov-
ered string should not reveal any information about
any other string. For example, guessing a common
string value should not leak any information about a
rare string during the discovery process.

To satisfy our second goal, we need to add
differentially-private noise to the counts of the discov-
ered strings. At the same time, no component should
be able to learn the noise-free count of a string—
the components should be oblivious to the total noise
added to a string count.

At all times during this process, the system should
ensure that clients participate in string discovery pro-
cedures in an anonymous and unlinkable fashion.
This participation should be anonymous, such that
given a string value or a string type, no component
should be able to associate it with a client. The
participation should also be unlinkable, such that
given two string values or string types, no compo-
nent should be able to tell if they come from the
same client.

Proxies Aggregator
Clients

1. Poll String Types

2. String Discovery
Parameters

3. Encrypted
Strings

4. Count Distinct 
Strings & Add Noise
& Filter
& Decrypt

Figure 2: Overview of our system’s operation.

3 System Overview

Figure 2 shows an overview of our system’s operation.
All string discovery procedures are periodically run
by the aggregator. The aggregator handles all inter-
actions with the analysts, who may express their in-
terest in learning strings of a specific string type. The
aggregator controls access to the discovered strings.
For example, strings of an analyst-specific string type
can only be learned by that analyst.

To participate in discovery procedures, clients pe-
riodically send encrypted polling requests to the ag-
gregator with their string types (step 1 in Figure 2).
Our system uses exclusive-OR (XOR) as the crypto
primitive, similar to SplitX [23] (§4.1). Using XOR
enables our system to support low-power and low-
bandwidth client devices, significantly reducing the
burden on the clients compared to previous systems.

After the polling request is XOR-encrypted, it is
sent via the proxies to provide clients with anonymity
and unlinkability regarding their string types. In
other words, the aggregator cannot associate clients
with string types, and cannot determine if any two
requests come from the same client. Because of the
encryption, the proxies also cannot learn a client’s
string types.

After receiving the polling request for a string type,
the aggregator returns the associated string discov-
ery parameters to the client via the proxies (step 2).
These parameters include the string type, the discov-
ery period and the ǫ value that will be used for the
differentially-private noise (§5.1). The discovery pe-
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riod is used by the aggregator to synchronize the be-
ginning and end times of string discovery procedures
for many string types. This synchronization enables
our system to detect malicious clients (§6) as well as
provide some additional privacy guarantees for clients
by grouping aggregation of multiple string types (§8).
Like the polling requests, the discovery parameters
are also XOR-encrypted before being sent.
After obtaining the discovery parameters, the

client retrieves the strings associated with the string
type from its local database. Each distinct string is
XOR-encrypted by the client before being returned
for aggregation (step 3) (§5.2).
Besides reducing the burden on the clients com-

pared to previous systems, using XOR as the crypto
primitive also enables our system to aggregate en-
crypted client strings without revealing them (step
4). This aggregation utilizes a low-cost comparison
method that only reveals if any two XOR-encrypted
strings are equivalent (§4.2). With this method, our
system counts distinct strings, adds differentially-
private noise and applies the discovery threshold—
all without learning the actual string values (§5.3).
Once it is determined which encrypted strings have
counts above the threshold and should be revealed,
our system decrypts those strings. The aggregator
then reports those strings along with their associated
noisy counts to the appropriate analysts (not shown
in Figure 2).
Note that all the components in the system should

be oblivious to the total noise added to each string
count, such that no single component can determine
the noise-free count of a string. Our system ensures
this property by employing two proxies: each proxy
compares and counts the strings of approximately
half of the clients in parallel, and adds noise to dis-
covered strings independently, making the final noise
added to a given string value oblivious to all compo-
nents (§5.4).
To ensure the accuracy of the counts, our sys-

tem checks for duplicate strings that may have been
reported by malicious clients (§6) before proceed-
ing with the above counting protocol. This dupli-
cate detection utilizes the same low-cost comparison
method, and limits a malicious client’s effect on the
string counts without violating the privacy of honest

Source Dest.
sid, X

sid, R

sid, X

sid, R
X=XOR(S,R) S=XOR(X,R)

Relay2

Relay1

Figure 3: Splitting and joining. String S is split into
{X,R}. These split messages are then sent over two
relays with the same sid, such that the destination
can pair matching X and R values, and join them to
obtain S.

clients.

The next section presents our system’s building
blocks, including the XOR-encryption and our blind
comparison method. Section 5 provides the details of
our system’s operation.

4 Building Blocks

We first describe the low-cost XOR-encryption
that enables our system to support a variety of
clients, including resource-constrained mobile de-
vices. We then introduce our novel blind compari-
son method that determines the equivalence of two
XOR-encrypted strings without revealing their val-
ues. Finally, we give some background on differential
privacy.

4.1 XOR-Encryption: Splitting and
Joining

Our system utilizes XOR as the underlying crypto
primitive, similar to SplitX [23]. Splitting is the
equivalent of encryption, and joining is the equiva-
lent of decryption. These operations enable a source
to anonymously send a string to a destination using
two different relays, without the relays learning the
string because of the encryption. At the same time,
the crypto operations for the source and destination
are low-cost, because they are based on XOR (see
Figure 3).

When a source wants to send a string (S) to a
destination, it splits S to obtain two split messages,
X and R. Let L be the length of S. The source first
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generates a random string, R, of length L using a
Pseudo Random Number Generator (PRNG) with a
secure seed, and then encrypts S with R:

R = PRNG(seed, L)

X = S ⊕R

The source also generates a split identifier (sid). The
split identifier is a large value (e.g., 128 bits) and en-
sures the two parts of the split message are uniquely
paired by the destination with high probability. The
source sends X and R to the relays:

Source → Relay1 : sid,X

Source → Relay2 : sid,R

The relays then forward the split messages to the
destination. Borrowing notation from [23], we denote
the split message pair {X,R} as S (underlined S),
and write this action as:

Source
Relay1

−−−−→
Relay2

Destination : S

The destination then decrypts the split messages to
obtain S:

S = X ⊕R

For efficiency purposes, the source can send the
〈seed, L〉 tuple instead of R. The destination can
first generate R using the 〈seed, L〉, and then obtain
S as above.

4.2 Blind Comparison via pairwise-
XOR Hash (PXH)

To count distinct string values without revealing
them, our system utilizes a blind comparison method
to determine the equivalence of any two XOR-
encrypted messages.

Consider two strings Si and Sj with corresponding
split message pairs {Xi, Ri} and {Xj, Rj} and split
identifiers sidi and sidj , respectively. Recall that the
split messages are held by two different relays (i.e.,
Relay1 holds Xi and Xj , and Relay2 holds Ri and

Rj). Let H be a secure hash function (e.g., SHA-
1). For Relay1 and Relay2 respectively, we define the
pairwise-XOR hash (PXH) operation as:

PXHRelay1
(sidi, sidj) := H(Xi ⊕Xj)

PXHRelay2
(sidi, sidj) := H(Ri ⊕Rj)

Remember that Xi = Si ⊕ Ri and Xj = Sj ⊕ Rj .
Therefore, the above equations can be rewritten as:

PXHRelay1
(sidi, sidj) = H((Si ⊕Ri)⊕ (Sj ⊕ Rj))

PXHRelay2
(sidi, sidj) = H(Ri ⊕Rj)

If Si = Sj , then PXHRelay1
= PXHRelay2

=
H(Ri ⊕ Rj). Thus, by comparing PXHRelay1

and PXHRelay2
, our system can blindly determine

whether Si and Sj are equivalent.
The secure hash ensures that neither string can be

obtained, even if the other string is guessed (e.g., a
common string).

4.3 Differential Privacy

We rely on differential privacy for adding noise to (en-
crypted) string counts. After adding noise, our sys-
tem decrypts the strings whose noisy counts pass the
discovery threshold. A computation, C, provides ǫ-
differential privacy [27,28,30] if the following inequal-
ity is satisfied for all data sets, D1 and D2, that differ
on one record, and for all outputs of O ⊆ Range(C):

Pr[C(D1) ∈ O] ≤ exp(ǫ)× Pr[C(D2) ∈ O] (1)

Namely, the probability of a computation produc-
ing a given output is almost independent of the exis-
tence of any individual record in the data set. This
property is achieved by adding noise to the output of
the computation using the privacy parameter ǫ: the
smaller ǫ, the greater the privacy.

5 Design Details

In this section, we present our system’s details. The
discovery procedure starts with the client receiv-
ing the string discovery parameters (§5.1). After-
wards, encrypted strings are collected from the clients
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Section V-C: Counting
Distinct Strings

C C C

A

P1

Relaying Collecting Comparing

Section V-B: Collecting
Encrypted Strings

...

Sync P2

P2

P1

P2

Figure 4: Mirror operation 1. The vertical, dashed
lines separate the roles of each component: relay-
ing, collecting, and comparing. The arrows labeled
with section numbers represent the information flow
in each step (Collecting Encrypted Strings (§5.2) and
Counting Distinct Strings (§5.3)).

(§5.2). Finally, these strings are blindly compared
and counted, after which differentially-private noise
is added to the counts (§5.3).

Throughout these steps, there are three separate
roles that each component can perform: relaying, col-
lecting, and comparing. These roles are separated by
the vertical, dashed lines in Figure 4. The aggregator
only assumes the role of collecting, whereas the prox-
ies assume all three roles (though not on the same
data at the same time). Both proxies assume the role
of relaying between the clients and the aggregator.

As stated in Section 3, to ensure that all compo-
nents in the system are oblivious to the total noise
added to a string count, our system employs two
proxies, Proxy1 and Proxy2: Proxy1 compares and
counts the strings of roughly half the clients while
Proxy2 compares and counts the strings of the other
half. Both proxies independently add differentially-
private noise to the counts of the distinct strings. In
other words, for half the clients, Proxy1 and Proxy2
swap their roles. We refer to this role swap as “mirror
operations”, which are shown in Figure 5 separated
by the horizontal, dashed line. The mirror operations
enable us to obliviously add noise to string counts

C C

C C
C P2

P2

A

C

A

P1

P2

P1

Relaying Collecting Comparing

Mirror Operation 2

Mirror Operation 1

...

...

P1

Sync

Detecting Duplicates
               (Section VI)

P1

P1

Sync

P2

P2

Sync

Figure 5: Depiction of our complete system. The hor-
izontal, dashed line separates the mirror operations:
Proxy1 and Proxy2 swap their roles for collecting and
comparing across the line. Components involved in
duplicate detection are shown within the rectangular
shape (§6).

(§5.4).

The mirror operations are generally concurrent.
There are only two times there is any interaction be-
tween them: The first interaction is during the de-
tection of duplicates (§6), requiring synchronization
between the proxies that relay to the collecting proxy
in their respective mirror operations (i.e., Proxy2 in
mirror operation 1 and Proxy1 in mirror operation 2).
The second interaction is at the end of the counting
step, when the comparing proxies send independently
discovered strings to the aggregator, which is present
in both mirror operations.

For clarity, we describe our protocol’s steps in mir-
ror operation 1, in which Proxy2 assumes the com-
paring role (Figure 4). The arrows in Figure 4 show
the flow of information in the collection and count-
ing steps: from clients to the collecting components
(Proxy1 and the aggregator), and between the col-
lecting components and the comparing component
(Proxy2).
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C A
P1

P2

ST

SDP

Figure 6: Initialization of string discovery. For each
of its string types (ST), the client periodically sends
a split request to the aggregator. The aggregator
returns the associated string discovery parameters
(SDP) after splitting them.

5.1 Initializing String Discovery

To start participating in ongoing string discovery pro-
cedures, the client uses an anonymous polling mech-
anism similar to SplitX [23]. The client periodically
polls the aggregator for string discovery parameters

(SDP) by submitting each of its string types (ST)
present in its local database (Figure 6). For each
ST , the client creates a separate request, splits it,
and sends it to the aggregator using the proxies as a
relay:

C
P1
−−→
P2

A : ST

The aggregator retrieves the parameters associated
with each ST , splits them and sends them to the
client via the proxies:

A
P1
−−→
P2

C : SDP

The client joins the split messages to obtain the pa-
rameters.
There are three parameters: ST , DTEnd, and ǫ.

ST represents the string type of the discovery proce-
dure. DTEnd denotes the end time of the discovery
(i.e., the last time a client can submit its strings).
Discovery procedures are run in discovery epochs,
such that their start and finish times are synchro-
nized. A discovery procedure spans only one epoch,
but can be repeated. ǫ defines the privacy parameter
and is set to provide sufficient noise to the counts.
Optionally, the aggregator can add a fourth parame-
ter, which is a list of hashes of previously discovered

C

sid, X

P2
sid, X, pIP

P1

P2

P1

sid || R || ST

A

Figure 7: Collection of encrypted strings in mirror
operation 1. The client splits each string S and ob-
tains {X,R}. EachX is sent to the collecting compo-
nent (Proxy1) via the relaying (Proxy2). The client
also splits sid,R, ST and sends it to the aggregator
via the two relaying proxies.

strings, such that the client will only send strings not
in this list. If there is no discovery procedure for
a string type in the current epoch, its SDP will be
empty.

5.2 Collecting Encrypted Strings

The client records the ǫ value for the aggregator
and retrieves all strings of type ST from the local
database. For each distinct string (S), the client cre-
ates a split message pair ({X,R}) and a split iden-
tifier (sid). These split messages, along with their
sid, will need be sent to the collecting components:
Proxy1 will receive sid and X , and the aggregator
will receive sid and R. The aggregator also needs to
receive the ST value. The ST will be used to identify
the type of each client string, and to group encrypted
client strings into comparison lists (§5.3). The client
uses the same collecting components throughout the
current discovery epoch (i.e., the client participates
in one mirror operation per epoch).
Figure 7 shows the details of the collection. To

anonymously send X to Proxy1, the client uses
Proxy2 as a relay:

C → P2 : sid,X (2)

Proxy2 assigns the client a pseudo IP address (pIP )
that is only valid for the current discovery epoch (i.e.,
will change in the next epoch). The pIP value will
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be used to distinguish strings from the same client in
the duplicate detection (§6).
After attaching the pIP value, Proxy2 relays each

X value the client sends to Proxy1:

P2 → P1 : sid,X, pIP

To prevent the aggregator from linking the client
with a particular ST value, the sid, R and ST values
are concatenated (shown as ||), split and sent to the
aggregator via both proxies:

C
P1−→
P2

A : sid||R||ST (3)

The aggregator then joins the split messages to ob-
tain the sid, R and ST values.

5.3 Counting Distinct Strings & Com-
parison by a Third Party

At this point, the collecting components in mirror
operation 1 (Proxy1 and the aggregator) each have
one split message of the XOR-encrypted string paired
with its sid value. To ensure that both components
have the same set of sid values, they exchange their
sid sets and discard any unpaired split messages.
They then proceed with the counting process.
The counting process involves the computation and

comparison of PXHA and PXHP1
values for each

possible 〈sid, sid〉 tuple. Although the comparison is
blind and does not reveal the strings being compared,
knowledge about one string can be used to infer the
other string, if PXHA and PXHP1

values are equal.
We need to ensure that no component can exploit
this property and deanonymize a client’s string.
Recall that either of the collecting components can

easily operate fake clients. For example, Proxy1 can
run a fake client to send a known string for a discovery
procedure, and identify this encrypted string via its
sid value. If Proxy1 has both the PXHA and PXHP1

values involving this known string and finds that it
is equivalent to an honest client’s string, Proxy1 can
deanonymize the honest client’s string. Similarly, the
aggregator can also perform the same attack, making
it unsafe for either of these components to make the
comparison.

As a result, the comparison must be performed by
a third component, Proxy2. Although Proxy2 can
also operate fake clients and send known strings with
known sid values, Proxy1 and the aggregator can pre-
vent it from launching the same attack: They share
a random secret, Rs, valid for one discovery epoch,
and modify the original sid values in a deterministic,
but pseudorandom fashion. Let H be a secure hash
function (e.g., SHA-1). To prevent Proxy2 from iden-
tifying its strings via sid values, they are overwritten
as:

sid′i = H(sidi||Rs)

Another way for Proxy2 to identify its strings is
to use the R values of encrypted strings. Consider
that Proxy2’s clients report two strings using Rk

and Rm with sidk and sidm, respectively. When
Proxy2 receives the PXHA(sid

′

k, sid
′

m), it can iden-
tify H(Rk ⊕ Rm) value, and deduce that sid′k and
sid′m correspond to sidk and sidm (or vice versa).
To prevent Proxy2 from exploiting the R values,

Proxy1 and the aggregator need to modify the PXH

values, just like the sid values, but without affect-
ing the comparison result. They achieve this goal by
first XORing the same shared secret, Rs, with the
pairwise-XOR output, and then hash it:

P1 : PXH ′

P1
(sid′i, sid

′

j) = H((Xi ⊕Xj)⊕Rs)

A : PXH ′

A(sid
′

i, sid
′

j) = H((Ri ⊕Rj)⊕Rs)

By modifying both the sid and PXH values,
Proxy1 and the aggregator can prevent Proxy2 from
deanonymizing honest client strings by exploiting the
comparison result.

To continue, the aggregator first groups the sid

values regarding their ST values and compiles com-

parison lists. A comparison list consists of either a
generic string type (e.g., websites), or a few differ-
ent, analyst-specific string types (e.g., photo app tags
and health app tags). This mixing of analyst-specific
string types provides clients with additional privacy
guarantees regarding their string types (see §8 for de-
tails).
Figure 8 shows how distinct strings in each com-

parison list are counted. The aggregator sends each
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Figure 8: Counting and revealing distinct string val-
ues.

list to Proxy1 (step 1):

A → P1 : CL1, CL2, ..., CLn

Proxy1 and the aggregator then compute PXH ′

values for each possible 〈sid′i, sid
′

j〉 tuple in each com-
parison list, CLi, and use the 〈sid′i, sid

′

j〉 tuple as the
identifier for the PXH ′ values. Let PXHL′

P1,i
and

PXHL′

A,i represent the list of PXH ′

P1
and PXH ′

A

results for CLi. Proxy1 then sends the PXHL′

P1
to

Proxy2. Similarly, the aggregator sends the PXHL′

A

and ǫ values to Proxy2 (step 2):

P1 → P2 : PXHL′

P1,1, ..., PXHL′

P1,n

A → P2 : PXHL′

A,1, ..., PXHL′

A,n, ǫ1, ..., ǫn

Proxy2 then determines the equivalence of the en-
crypted strings for each tuple by comparing PXH ′

P1

and PXH ′

A values, and creates equivalence lists con-
sisting of sid′ values of equivalent strings. For exam-
ple, if strings with sid′i and sid′j are equivalent, sid′i
and sid′j are put in the same list.
From each equivalence list ELi, Proxy2 randomly

selects a sid′i value as a representative string and
records it with the count of equivalent strings.
Proxy2 then adds differentially-private (DP) noise to
each count using the ǫ parameter received with the
PXHL′

A, and discards the representative sid′ values
whose noisy counts are below the discovery threshold
(step 3).
Let ci be the noisy count of the representative

string sid′i from equivalence list ELi. Proxy2 sends

the representative sid′ values and their noisy counts
to the aggregator whereas it sends only the represen-
tative sid′ values to Proxy1 (step 4):

P2 → A : {〈sid′i, ci〉, 〈sid
′

j , cj〉, 〈sid
′

n, cn〉}

P2 → P1 : {sid′i, sid
′

j , ..., sid
′

n}

Proxy1 sends the corresponding split messages of the
encrypted strings (i.e., the X values) to the aggrega-
tor (step 5):

P1 → A : {sid′i, Xi, sid
′

j , Xj, ..., sid
′

n, Xn}

The aggregator joins the matching split messages
(i.e., Xi and Ri) and obtains the strings. In the fu-
ture, it can ask clients not to send already discovered
strings (§5.1).

5.4 Mirror Operation and Oblivious
Noise

So far, we have described mirror operation 1 in Figure
5, in which Proxy2 performs the comparison task for a
client’s strings. Recall that for other clients, Proxy1
may perform the comparison task while Proxy2 as-
suming the collecting role. Both proxies count, add
noise and filter distinct strings independently. These
strings are then sent to the aggregator.
It is possible that the aggregator receives a partic-

ular string from only one proxy. Imagine it receives
a string with a noisy count from Proxy2, but not
from Proxy1. If this single-noisy count is published,
Proxy2 can associate it with the string, subtract the
noise it added, and get the string’s noise-free count.
In this case, the aggregator may also add noise

to the string’s already noisy count and publish the
double-noisy result. However, Proxy2 may still be
able to correlate some strings and their noisy counts:
Assume a discovery threshold of 100. If no noise
was added, each discovered string would have a total
count of (at least) 200, because each proxy operates
independently. A count below 200 (or 200 ± noise)
would indicate that the threshold was crossed at only
one proxy. Proxy2 could use the order of the noisy
counts it reported, associate them with the strings
(or eliminate most possible cases), and obtain the
noise-free count by removing its noise.
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For these reasons, the aggregator only publishes a
string value if it receives the string from both prox-
ies, and publishes the sum of both noisy counts. This
double-noisy count prevents each proxy from obtain-
ing the noise-free count of any string: even if a proxy
somehow removes its own noise, the count will still
contain the other proxy’s noise. As a result, all com-
ponents will be oblivious to the final noise added to
a string’s count.

5.5 Other Issues & Discussion

Preventing Traffic Analysis. To prevent traffic
analysis, proxies relay split messages after randomly
ordering and delaying them. Each client sends a fixed
number of strings for each string type (e.g., 25). If a
client has more strings, it randomly selects enough
strings to send. If a client does not have enough
strings, it generates random strings as filler strings,
and modifies the actual string type to indicate this
modification (e.g., “websites FS”). The aggregator
filters these messages during synchronization with
Proxy1. Each string is a fixed size. If the string is
not long enough, the client pads the string determin-
istically (e.g., with SHA-1 of string) before splitting.

Generic vs. Analyst-specific. For analyst-specific
string types, the client prepends the string type to the
string in its database. Therefore, even if the actual
string value is the same for two analyst-specific string
types, they will not be equivalent when compared, for
instance, when the aggregator mixes multiple string
types in a comparison list. An analyst-specific dis-
covery procedure enables each analyst to obtain more
specific information about its clients. A generic dis-
covery procedure may produce strings that might go
undiscovered within a specific client population. In a
generic discovery, each client sends its strings once for
many analysts rather than once per analyst-specific
discovery, decreasing the number of strings the sys-
tem handles. Additionally, each client’s privacy loss
would be reduced, because the number of discovery
procedures each client would participate in would be
reduced. We envision that both discovery types will
be useful for analysts.

6 Detecting Duplicates

In our system, malicious clients can try to skew the
counts of a string by sending the same string multi-
ple times. This section describes how our system can
detect such clients before distinct strings are counted
(§5.3). For consistency, we again describe the proto-
col in mirror operation 1.
Figure 5 shows a rectangular shape around the

components involved in this step. This step requires
synchronization between the two mirror operations
(i.e., the relaying Proxy2 from mirror operation 1
and the relaying Proxy1 from mirror operation 2).
The high-level idea is to run the same blind com-
parison protocol described earlier, but this time only
among all the strings received from the same client:
Any equivalent strings found will be duplicates, be-
cause they come from the same client. As a result,
the malicious client will be detected without reveal-
ing honest clients’ strings.
Recall that the client uses Proxy2 as a relay for

sending X values to Proxy1. In this role, Proxy2 at-
taches a pseudo IP address (pIP ) for each client IP
and forwards the X values to the (collecting) Proxy1
(Figure 7). Our duplicate detection protocol lever-
ages the pIP values assigned by the (relaying) Proxy2
and works in two stages.
Stage 1: The (relaying) Proxy2 in mirror operation
1 and the (relaying) Proxy1 in mirror operation 2 ex-
change the real client IP addresses each has. If each
client followed the protocol and used the same col-
lecting components in the current discovery epoch,
the intersection of both lists will be empty. If not,
the clients with IP addresses appearing in both lists
might have sent the same string using different col-
lecting components. Strings that these clients sent
are invalidated by sending the corresponding pIP

value to the collecting component. In mirror oper-
ation 1, the (relaying) Proxy2 would send the pIP

values to the (collecting) Proxy1, who would then
discard the associated X values. Alternatively, one
proxy can be randomly selected to invalidate the
strings, while the other does not.
Stage 2: After the strings coming from the clients
detected in Stage 1 are invalidated, the collecting
components (Proxy1 and the aggregator) share a ran-
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dom secret that is valid for one discovery epoch, Rsdd.
This secret is different from Rs used in the count-
ing phase (§5.3), but has a similar purpose: to pre-
vent Proxy2 from correlating the strings it relayed
to Proxy1 during the collection of encrypted strings
(§5.2) with the strings it checks for duplicates, and
also from linking strings checked during the dupli-
cate detection to the strings compared in the counting
phase (§5.3). Proxy1 and the aggregator then modify
the sid values, such that sid′i = H(sidi||Rsdd).

Additionally, Proxy1 independently modifies the
pIP values it received from Proxy2 and gets a pIP ↔
pIP ′ mapping. For each pIP ′, it sends the list of sid′

values, sidL′, to Proxy2:

P1 → P2 : pIP ′

1, sidL
′

1, ..., pIPp, sidL
′

p

The aggregator also independently modifies the ST

values to obtain the ST ↔ ST ′ mapping. For
analyst-specific string types, multiple ST values can
correspond to the same ST ′ value. In other words,
the aggregator mixes multiple analyst-specific string
types into one list. The comparison between strings
with different analyst-specific ST values will not
cause any problems, because the actual strings are
prepended with the ST value (§5.5). For each ST ′,
the aggregator sends the list of sid′ values to Proxy2:

A → P2 : ST ′

1, sidL
′

1, ..., ST
′

t , sidL
′

t

Using both pIP ′ → sidL′ and ST ′ → sidL′ map-
pings, Proxy2 divides the sid

′ values into groups, each
of which correspond to a unique 〈pIP ′, ST ′〉 pair.
The created groups are then sent to Proxy1 and the
aggregator, such that they can compute the PXH ′

values within each group:

P2 → P1 : G1, G2, ..., Gn

P2 → A : G1, G2, ..., Gn

Note that Proxy1 does not learn the ST ′ values of
the strings in each group; only that the strings might
have different ST ′ values. Similarly, the aggregator
does not learn the pIP ′ values of the strings in each
group; only that the strings might have different pIP ′

values (§8.5 & §8.6).

Proxy1 and the aggregator compute the PXH ′ val-
ues using Rsdd for each possible 〈sid′i, sid

′

j〉 tuple in
each group:

P1 : PXH ′

P1(sid
′

i, sid
′

j) = H((Xi ⊕Xj)⊕Rsdd)

A : PXH ′

A(sid
′

i, sid
′

j) = H((Ri ⊕Rj)⊕Rsdd)

They send the resulting PXHL′

P1
and PXHL′

A to
Proxy2:

P1 → P2 : PXHL′

P1,1, PXHL′

P1,2, ..., PXHL′

P1,n

A → P2 : PXHL′

A,1, PXHL′

A,2, ..., PXHL′

A,n

For each PXHL′, Proxy2 checks for duplicates (i.e.,
equivalent strings). If there are any duplicates, their
sid′ values are reported to the aggregator.
Afterwards, Proxy1 and the aggregator proceed to

count the distinct strings (§5.3). During the count-
ing phase, the aggregator modifies the PXH ′

A results
involving the duplicates independent of Proxy1, for
instance, by XORing the pairwise-XOR with a ran-
dom nonce. As a result, the comparison with other
strings will not yield an ‘equivalent’ result, and the
duplicates will not affect the counts of their respec-
tive strings.

6.1 Considering NATs

During this step, the IP address is used to identify a
client. This assumption creates a bias in the counts,
when many clients use the same IP address (e.g.,
home gateway, business firewall), and some dupli-
cates may be legitimate. To decrease this bias, some
duplicate strings may be randomly selected to be in-
cluded in the counting phase depending on the aggre-
gator’s policy. Distinguishing such clients is outside
the scope of this paper and left for future work.

7 Optimizations

Our blind comparison method is effective to learn
if two encrypted strings are equivalent, but it re-

quires N×(N−1)
2 pairwise comparisons (i.e., PXH op-

erations) to count the distinct strings in a compari-
son list, where N is the number of reported strings
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in the list. Although PXH utilizes low-cost opera-
tions (i.e., XOR and hash), the total cost can still be
prohibitive. Here, we outline some optimizations to
substantially lower this cost in practice without vi-
olating our privacy goals. In Section 9, we evaluate
the effectiveness of these optimizations.

7.1 Short Hashes

One simple heuristic to reduce the number of PXH

operations is to distinguish different strings before
they are even collected. The high-level idea is that
the strings deemed different before the collection will
not need to be pairwise compared. One way to
achieve this separation is that the clients map their
strings into a bucket (B) using a hash function with
a small number of buckets (e.g., last byte of SHA-1).
The clients send each string’s B value along its ST

value to the aggregator, who then compiles the com-
parison lists using the distinct 〈ST,B〉 tuples instead
of just ST . As a result, fewer strings will be pairwise
compared in each comparison list.
To determine the number of hash buckets, the ag-

gregator starts a discovery procedure with one bucket
and samples the collected strings. The strings in the
sample are compared with each other. The number of
distinct strings in the sample will give the aggregator
an idea of how many distinct strings to expect, and
determine how many buckets to use without creating
a privacy issue. To build confidence, the aggregator
can take more samples or increase the sample size.
After selecting the number of buckets (e.g., 256), the
aggregator starts a new discovery procedure and re-
quest clients to send their strings with the appropri-
ate B value.
We think this heuristic offers a reasonable trade-off

between privacy and computational cost: The pri-
vacy loss is small, because with a small number of
bucket values many distinct string values will map
to the same bucket. In other words, there will be
many hash collisions, and thus, the information that
can be gained about the actual string by knowing its
bucket will be small. On the other hand, as we show
in Section 9, the number of PXH operations will be
significantly reduced, because strings with different
bucket values will not need to be compared.

A P2

1. CL’

9. EL’(p)

6. sid1’,
sid2’, ...

2. Sample

P1

3. S

4. PXHL’(S)

5. Identify p
most common
in S

7. PXHL’(sid1’, CL),
PXHL’(sid2’, CL), ...

8. Count
equivalent
to p most
common10. 

CL’ = CL’ - EL’(p)

Figure 9: The operation of our sample-identify-count-
filter optimization.

7.2 Sample-Identify-Count-Filter

Another heuristic is to use random samples and iter-
atively shorten the comparison lists. The high-level
intuition is that, like many natural phenomena, the
string distributions will show power law character-
istics, and thus, a few strings will dominate in the
comparison list. These few, very common strings can
be identified using a small random sample. After-
wards, the strings that are equivalent to these identi-
fied strings can be filtered from the comparison list,
significantly shortening it.

This process can continue iteratively until 1)
enough strings are discovered (i.e., similar to top-
k most common strings), 2) the counts of most re-
cently discovered strings fall below a threshold (i.e.,
k is a function of the string count in the top-k al-
gorithm), 3) the number of remaining strings in CL′

falls below a threshold, or 4) until Proxy2 does not
discover any more new strings during step 8. When
any of these conditions is satisfied, the counting pro-
tocol can stop: most common strings will have al-
ready been discovered, and the remaining undiscov-
ered strings will probably have small counts. Stop-
ping the counting protocol may cause false negatives,
so that some strings above the threshold may go
undiscovered; however, with increasing sample size,
the probability of this event should decrease. Alter-
natively, the counting protocol can resume pairwise
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comparing the remaining strings: at this point, pair-
wise comparison should be more affordable, because
the comparison list will be much smaller.

Figure 9 shows one iteration in mirror operation 1:
The collecting components (Proxy1 and the aggrega-
tor) first send the comparison list with modified sid

values (CL′) to the comparing component (Proxy2)
(step 1). Proxy2 selects a random sample (S) (step 2)
and sends it to Proxy1 and the aggregator (step 3).
Proxy1 and the aggregator compute and send back
PXH ′ values for the strings in S (step 4). Proxy2
then identifies the distinct (encrypted) strings in S,
and selects one representative sid′ value from each
of the longest p equivalence lists in the sample (i.e.,
most common p distinct strings) (step 5). These sid′

values are sent to Proxy1 and the aggregator (step 6),
who compute PXH ′ values for these p strings with
all other strings in the CL′ and send them to Proxy2
(step 7). Proxy2 counts all equivalent strings to each
of these p strings (step 8), stores them in equivalence
lists, and sends them to Proxy1 and the aggregator
(step 9). Afterwards, they filter these sid′ values from
the CL′ (step 10).

Our intuition about the privacy of this heuristic is
the following: To filter equivalent strings and shorten
the comparison list, Proxy1 and the aggregator learn
the comparison results between some strings. If one
of these string values is known by them (e.g., because
the string was sent by one of their fake clients), the
comparison result may enable them to deanonymize
honest clients’ strings. However, Proxy1 and the ag-
gregator learn many sid′ values that are equivalent
to any one of the p common strings, and thus, cannot
be certain which strings are actually equivalent. Fur-
thermore, these comparison results are only for the p

most common strings in the random sample, which
essentially reflects the string counts in the original
CL′: to expose a string with a few clients, an ad-
versary would need to send the string a huge num-
ber of times, such that it would become one of the
p most common strings in the random sample! We
think that this heuristic is reasonable in terms of the
reduced computational cost, and the difficulty and
practicality of this potential attack.

8 Analysis

In this section, we present an analysis of our sys-
tem. First, we informally show how our noise-before-
threshold mechanism deals with the k − 1 sybils at-
tack, where k represents the discovery threshold. We
then place the adversary at each component, and de-
scribe how our system raises the bar for the adversary.
We again assume mirror operation 1 in Figure 5.

8.1 Noise-before-Threshold

The discovery threshold k is a known parameter. To
learn the existence of a client with a rare string, an
adversary can run k − 1 fake clients and send the
rare string in a discovery procedure. After counting
and the addition of noise, if the noisy count passes
the threshold, the string is discovered. According
to differential privacy, the probability of producing a
given output (e.g., the noisy count being k or k − 1,
and thus, the string being discovered or not) is almost
independent of the existence of any individual record
in the data set (§4.3). In other words, whether the
real client exists does not affect whether the string
with k−1 sybils is discovered. For example, the client
may exist, in which case the noise-free count would
be k. However, the noise may be negative, making
the noisy count go below the threshold, and thus, the
string may not be discovered. On the other hand,
the client may not exist, in which case the noise-free
count would be k − 1. However, the noise may be
positive, making the noisy count pass the threshold,
and thus, the string may be discovered.

For a pattern to emerge, the discovery procedure
would need to be repeated. The number of repeti-
tions depends on the ǫ value, with lower ǫ values re-
quiring more repetitions. Akkus et al. showed via
simulations that many repetitions (e.g., 100s) are
needed to cancel out the noise [16]. Additionally, the
aggregator may request the clients not send already
discovered strings (§5.1), increasing the number of
discovery procedures required for this attack to suc-
ceed, because the rare string will not be sent again
for a while after the first discovery.
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8.2 Client

A malicious client can lie in the strings it sends; how-
ever, each string count will change only by one. A
client can send the same string twice to different col-
lecting components, but the relaying proxies will de-
termine the common IP addresses in the first stage
of the duplicate detection and conservatively discard
this client’s strings. A client can send the same string
multiple times with the same collecting components,
but will be detected in the second stage of the du-
plicate detection (§6). False ST or B values for the
heuristic in §7.1 will not affect any counts, because
the strings will not be equivalent to others.

8.3 Relaying Proxies (Proxy1 and
Proxy2)

Discovery Initialization. The client periodically
polls the aggregator to participate in string discovery
procedures. The polling requests are split and relayed
over both proxies, preventing them from learning the
string types of a client (§5.1).

Collection. Both proxies relay the sid, R and ST

values to the aggregator; however, these values are
split, and thus, illegible.

8.4 Relaying Proxy & Comparing
Proxy (Proxy2)

Collection. When Proxy2 is used for the comparison
task, it also relays the sid and X values to Proxy1
after attaching a pseudo IP (pIP ) to each client (Eqn
2 in §5.2). Proxy2 also sees sid||R||ST values from
the same client while relaying them to the aggregator
(Eqn 3 in §5.2). It can determine the part of the
random string used to split sid by brute-forcing all
sid values of the same client; however, this part does
not indicate any information about the parts used
to split R and ST , preventing Proxy2 from learning
them (§5.2).

Comparison & Counting. Proxy2 is in a posi-
tion to expose a client’s string using the comparison
result with a known string. Proxy2 cannot correlate
the strings it compares to the pIP values it assigns to

each client while relaying the X values to Proxy1, be-
cause Proxy1 and the aggregator modify the sid and
the PXH values. This modification also prevents
Proxy2 from identifying the strings its clients send,
and thus, it cannot exploit the comparison result to
deanonymize client strings (§5.3). Proxy2 cannot cre-
ate a known string and compare it with a client’s
string, because it does not receive individual split
messages. Proxy2 cannot obtain the exact count of a
string, because the aggregator only publishes a string
if it receives the same string value from both prox-
ies, and thus, the final count will contain the other
proxy’s noise (§5.4).
Duplicate detection. Proxy1 modifies the pIP val-
ues to pIP ′ values, preventing Proxy2 from correlat-
ing the client IP addresses to the pIP ′ values it re-
ceives for duplicate detection. Proxy2 also cannot
associate the number of strings received from each
client to pIP ′ values, because the clients send a fixed
number of strings. Proxy2 also receives ST ′ → sidL′

mapping from the aggregator. Proxy2 can run clients
to send a specific number of duplicate strings for cer-
tain string types, such that these duplicates will sig-
nal Proxy2 that a sidL′ belongs to a specific string
type. However, these sidL′ lists have strings either
for generic string types, which are present at every
client, or for multiple analyst-specific string types,
which creates uncertainty in Proxy2’s guess for the
string type of a sidL′ (§6). Thus, Proxy2 cannot learn
much about the (anonymous) clients. Proxy2 also
cannot exploit the comparison result to deanonymize
a client’s string, because strings from the same client
are only compared with each other.
A dishonest Proxy2 can relay fake duplicate strings

from its own clients as if they come from an honest
client, use the number of duplicates as a signature to
correlate the pIP ′ value to the client, and deduce the
client’s string if there are more duplicates than the
signature. Because the client sends a fixed number
of strings, Proxy1 will notice the added fake strings.
Proxy2 can drop real client strings, but its possibil-
ities to form a signature from the duplicate count
will be reduced. To detect such a dishonest proxy,
the aggregator can employ an auditing mechanism,
similar to Akkus et al.’s proposal [16]: Clients would
probabilistically send random nonces to Proxy1 over
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Proxy2 and nonce reports to the aggregator over the
proxies as if real strings. Proxy1 and the aggregator
would cooperate and expect to receive the nonces; if
not, they suspect Proxy2.

8.5 Collecting Proxy (Proxy1)

Collection. Proxy1 receives sid values after Proxy2
relays them (Eqn 2 in §5.2). Proxy1 also sees
sid||R||ST values when it relays the split R and ST

to the aggregator (Eqn 3 in §5.2). Proxy1 can try to
correlate the pIP values to the clients by trying to
determine the random string used to split sid, and
correlating the split messages to the client. However,
unlike the relaying Proxy2, it sees the client directly
only when receiving sid||R||ST , and not both sid and
sid||R||ST . Thus, it cannot brute-force all sid values
from the same client to determine the random string,
and cannot correlate the sid||R||ST values to the pIP
values (§5.2).
Comparison & Counting. Proxy1 receives the
comparison lists (CLs) from the aggregator, but not
their ST values. Proxy1 can run fake clients with
certain string types and send strings, such that these
strings would signal the string type of a CL. Proxy1
then can correlate clients whose strings are present
in that CL. However, a CL can be for a generic
string type, which is present at every client, render-
ing the knowledge of the ST value less useful. On
the other hand, the aggregator also mixes multiple
analyst-specific string types into one CL, effectively
creating uncertainty in Proxy1’s guess for the string
type of a CL (§5.3). Furthermore, any uncertain
information Proxy1 obtains will be anonymous and
short-lived, because Proxy2 acts as an anonymizing
proxy for the clients while relaying the X values, and
the pIP values it assigns are only valid for one dis-
covery epoch (§6).
After strings are discovered, Proxy1 receives the

sid′ values of the representative strings and sends the
corresponding X values to the aggregator. Proxy1
knows if any two representative sid′ values are from
the same client (i.e., they have the same pIP ). How-
ever, it cannot correlate the X values to the strings
published by the aggregator (unless there are only
a few strings, in which case the aggregator may

not publish them). Additionally, strings for analyst-
specific string types will only be available to specific
analysts. Finally, if there are many discovered strings
and many clients, the probability of two representa-
tive sid′ values being from the same client is low.
Proxy1 cannot expose client strings via comparison

results, because it does not learn them from Proxy2,
except for the optimization (§5.3).
Sample-Identify-Count-Filter. With this opti-
mization, Proxy1 learns some comparison results to
shorten the comparison lists. These results, however,
are for the most common p strings. To expose a rare
string, Proxy1 would need to send it via fake clients
and make its count in the sample surpass other com-
mon strings. Our duplicate detection raises the bar
significantly and forces Proxy1 to use more clients.
The strings in the sample are selected by Proxy2. A

dishonest Proxy1 may replace the original split mes-
sages in the sample with messages of known strings;
however, it cannot manipulate the matching split
messages held by the aggregator, and thus, the com-
parison results will not be meaningful.
Duplicate detection. For each pIP ′, Proxy1 re-
ceives groups of sid′ values from Proxy2 that dif-
ferentiate between different string types a client has
(§6). Proxy1 already knows howmany different string
types an anonymous client has, because it knows the
number of messages received from each client and the
maximum number of messages a client sends. How-
ever, it does not know which string types a client has.
A dishonest Proxy1 can include a known string’s

sid′ in the list of a pIP ′ value. If Proxy1 receives
this sid′ in the same group as the client’s strings, it
can deduce the string type of this anonymous client.
Generic string types will not leak any information,
because every client has them. For analyst-specific
string types, Proxy1 has to correctly guess the client’s
string type; otherwise, the fake string will be in a
different group by itself. A dishonest Proxy1 can
also include known strings for generic string types
as if they are coming from an honest client. How-
ever, Proxy1 never receives the duplicate detection
result (§6). The aggregator can detect such a dis-
honest proxy by mapping the duplicate sid′ values
to the original sid values and by cooperating with
Proxy2: Proxy2 sees the original sid values while re-
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laying them to Proxy1, and can detect whether the
original sid values were attached the same pIP val-
ues. If not, Proxy1 must have added them.

8.6 Aggregator

Collection. An aggregator using large values of ǫ for
low noise can be detected by clients, privacy watch-
dogs and proxies who add noise using those values.
All interactions between the clients and the aggre-
gator are mediated by the proxies, providing clients
with network anonymity (§5.1 & 5.2).

Comparison & Counting. When strings are dis-
covered, the aggregator receives the corresponding
X values for the representative strings from Proxy1;
however, it does not know whether these X values,
(and thus, the strings) belong to one client. The ag-
gregator cannot expose client strings via comparison
results, because it does not learn them from Proxy2,
except for the optimization (§5.3).

Sample-Identify-Count-Filter. Like Proxy1
(§8.5), the aggregator would need many clients to ex-
ploit this optimization.

Duplicate detection. The aggregator learns sid′

groups belonging to unique 〈pIP ′, ST ′〉 tuples from
Proxy2, but does not learn whether any two groups
belong to the same pIP ′; thus, it cannot deduce a
given client’s string types. Running clients to send
known strings is also not useful: Each client has a
separate pIP ′. Thus, honest clients’ strings will be
in different groups and will not be compared with the
aggregator’s fake strings, preventing it from exposing
client strings.

9 Evaluation

In this section, we show the benefits of our optimiza-
tions through simulations, report on microbenchmark
results, and evaluate our system’s feasibility via ex-
ample scenarios. To establish a point of reference, we
use Applebaum et al. [17] rather than [20] or [25], be-
cause it is the most similar system to ours: it has cen-
tralized components, has some protection against ma-
licious clients, assumes components can run clients,

and is designed for large-scale environments (e.g., the
web).
In Applebaum et al.’s system, there are three com-

ponents: client, proxy and database. The client runs
an encrypted oblivious transfer protocol with the
proxy to obtain obliviously-blinded version of its keys
(i.e., Fs(k)). It encrypts them with the database’s
public key (i.e., EDB(Fsk)) and sends them to the
database over the proxy. The client also sends its key
in a double-encrypted form (i.e., EDB(EPRX (k))).
The database decrypts the blinded keys collected
from all clients and records each key’s count. If
a key’s count is above a threshold, the double-
encrypted key is decrypted first by the database, and
then the proxy. Note that we leave out some opera-
tions (i.e., batched oblivious transfer [34]) to simplify
the comparison.

9.1 Data Sets

In our simulations, we use data generated accord-
ing to the distributions of two real-world data sets.
In the first data set, the strings are website names
from a snapshot of Quantcast’s top 1M sites in April
2013 [12]. Excluding hidden website names, there
are 996,934 websites ranked by their visitor counts.
We label simulation data generated with this data set
“quantcast”.
In the second data set, the strings are anonymized

search phrases obtained from a large search engine,
whose name we cannot disclose for confidentiality.
The data set covers 90 consecutive days within the
last two years, and contains about 13 million unique
search phrases. A user may have issued the same
phrase more than once, but we conservatively assume
that each occurrence of a phrase is from a unique
client. We label simulation data generated with this
data set “search engine”.

9.2 Benefits Of The Optimizations

Before we compare our system with Applebaum et
al.’s system, we show the benefits of the optimizations
in isolation.
Hash buckets: We plot the speedup as a function of
the number of hash buckets used. The speedup is the
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Figure 10: Speedup as a function of the number of
hash buckets used.

ratio of the time required to count the distinct strings
without hash buckets to the time required with hash
buckets distinguishing the strings. Essentially, it is
the ratio between the number of PXH operations
the collecting components have to perform, without
and with hash buckets. Let N be the total number
of strings, ni be the number of strings in hash bucket
i, and H be the number of hash buckets used. The
speedup is given as:

S =
N×(N−1)

2
H∑

i=1

ni×(ni−1)
2

Figure 10 shows that the speedup increases with
the number of hash buckets as expected: Strings in
different buckets need not be pairwise compared, be-
cause they are already deemed different; thus, the
number of PXH operations is reduced. After 256
buckets, however, the speedup starts to decline for
the following reason: The power law characteristics
of our data produce large counts for some strings, in-
creasing their respective buckets’ string counts. As
a result, buckets with large counts start to domi-
nate in the sum of PXH operations, and thus, lower
the speedup. By contrast, with a uniform distribu-
tion, the speedup does not decline after 256 buckets.

Figure 11: Percentage of discovered strings versus
the percentage of strings that are filtered with our
sample-identify-count-filter optimization with 99%
confidence level, 3% margin of error, and p = 20.
The discovery threshold is 100. The counting process
stops after 10 rounds of no new discovered strings.

Different total number of strings did not change the
speedup values much, and thus, are not shown not to
clutter the plot.
Using hash buckets results in some privacy loss,

but it is quite small. For instance, with 256 buckets,
the average number of distinct strings per bucket is
about 3.9K for websites, and about 50.5K for search
phrases. Thus, knowing a string’s bucket value does
not provide much information about it.
Sample-Identify-Count-Filter: We tested our op-
timization with 10M strings distributed according to
our real-world data. The discovery threshold was set
to 100. The sample size was computed according to
99% confidence level and 3% margin of error param-
eters, and the number of most common strings iden-
tified (p) was set to 20. We stopped counting after
10 consecutive rounds no new discovered strings.
Figure 11 shows the percentage of discovered

strings versus the percentage of strings filtered with
our optimization (i.e., common strings are identified
and then filtered from the comparison list), validates
our assumptions that the string distributions follow
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a power law. For example, 10% of the strings above
the threshold correspond to about 36% and 31% of
all the strings in the Quantcast and search data sets,
respectively. Our system discovered 97.5% and 93.3%
of the strings that were above the threshold for these
data sets, and the effective speedups are 335.5 and
219.6, respectively.

9.3 Microbenchmarks

We implemented our split/join and PXH operations
as well as Applebaum et al.’s operations, except for
the batched oblivious transfer. All tests were run on
a PC with an Intel I3 3.1 GHz CPU and 8GB RAM
running Linux 3.2.42 kernel, and on a smartphone
with a 1GHz CPU running Android 2.3.5.

We assume a string length of 100, including the
padding used for short strings. The average and max-
imum length of the websites in Quantcast data is 17
and 63, respectively. A study of approximately 40
million queries found that around 97% of English
search phrases contain up to 7 terms with an av-
erage of 3.1 terms [52]. Previous studies reported
similar values [36, 48]. Assuming an average of 5.1
characters for an English word [2], a search phrase
would be about 36 bytes. Note that previous ap-
proaches [17,20] were assuming much shorter strings
(e.g., 32-bits).

Applebaum et al. require the generation and verifi-
cation of zero-knowledge proofs (ZKP) to ensure that
a client supplies a 0 or 1 for a key, so that the total
count is not distorted. However, it is not clear how
such ZKPs would prevent malicious clients from send-
ing the same key multiple times. Even if this attack
could be prevented with ZKPs, the client would need
to generate the proof, and the database would need
to verify it, causing a high computational overhead
for both.

The client and server microbenchmarks are written
in Javascript and Java, respectively. Table 1 shows
that our system’s operations are quite fast, and the
client overhead is several orders of magnitude less
than Applebaum et al.’s system. Our PXH opera-
tion can be performed about 1.1M times per second
(i.e., XOR and SHA-1).

9.4 Example Scenarios

In this section, we analyze the memory, computa-
tional and bandwidth overhead of our system’s com-
ponents. The client bandwidth overhead is impor-
tant because clients may possess limited resources.
By contrast, the bandwidth overhead at the servers
is not a big concern because bandwidth is generally
cheap. For example, data outgoing from Amazon S3
is about $0.09 per GB up to 40TB, and even free
when incoming [1].

For our simulations, we assume that each client
sends 25 (real and filler) strings of length 100 for a
discovery procedure. The split identifier and seed are
16 bytes each, and the string type, epoch end time
and ǫ are 8 bytes each. Applebaum et al.’s system
uses El Gamal encryption with a 1024-bit key [17].

Memory Overhead. Applebaum et al.’s batched
oblivious transfer (BOT) achieves the highest
throughput when the client uses 5K keys in a batch
[17]. With 32-bit keys, the memory overhead is about
39MB at the client. To handle 100 clients, the proxy
would require 3.8GB memory. Note that if the num-
ber of keys in a batch is decreased, the throughput
of the BOT is significantly reduced (i.e., < 1 key per
sec. [17]).

In our system, to send a total of 5K 100-byte
strings, the client’s memory overhead would be about
0.97MB. To handle 100 clients, the proxy/aggregator
would require roughly 97MB.

Computational Overhead. To show the compu-
tational overhead of our system, we vary the number
of strings in our simulation data from 10M to 100M,
and plot the CPU time for discovering strings. In
our system, PXH operations consume CPU time.
In Applebaum et al.’s system, the decryption of the
obliviously-transferred key by the database consumes
CPU time. Note the time for BOT of clients’ keys is
not included.

We report the computational overhead at the ag-
gregator, because it is the bottleneck: to compute
the PXH values, it synchronizes with both proxies
in both mirror operations. Each proxy’s overhead
would be half of the aggregator. We use both our op-
timizations: 256 hash buckets and random samples
(99% confidence level, 3% margin of error, p=20).
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Table 1: Microbenchmarks. String size of 100. Applebaum et al. use El Gamal crypto with a 1024-bit key.
Operations per second. Client (PC) is Chromium, and Client (Phone) is Webkit. (g) = generation, (v) =
verification.

Splitting/ Join/

Component Encryption Decryption SHA-1 ZKP

This Client (PC) 361,627 1,181,512 118,959 -

paper Client (Phone) 2,922 22,695 1,761 -

Aggregator 1,819,459 8,300,335 1,273,204 -

Apple- Client (PC) 21.54 - - 3.22 (G)

baum et Client (Phone) 0.52 - - 0.08 (G)

al. [17] Database - 270.20 - 19.23 (V)

Figure 12: Total CPU time as a function of num-
ber of strings. Our system uses 256 hash buck-
ets and the sample-identify-count-filter optimization
with 99% confidence level, 3% margin of error, and
p = 20. The discovery threshold is 100. For Ap-
plebaum et al., we assume that only the obliviously-
transferred key is decrypted, and do not include the
batched oblivious transfer time.

We also include the duplicate detection time.
Figure 12 shows that our system outperforms Ap-

plebaum et al.’s system by about one order of mag-
nitude: For 100M strings, Applebaum et al. require
about 103 CPU hours, whereas our system requires
less than 9 and 13 CPU hours for the Quantcast and
search data sets, respectively. Our system discovered
almost all (99.995%) strings above the threshold.
Bandwidth Overhead: In Applebaum et al.’s
system, the client sends the obliviously-blinded
key encrypted with the database’s public key (i.e.,
EDB(Fs(k))) and the double-encrypted key (i.e.,
EDB(EPRX(k))) for each string. For 25 strings, the
total bandwidth cost is about 9.38KB. The proxy re-
ceives client’s encrypted keys and forwards them to
the database. With 50M strings, the cost is about
35.8GB and 17.9GB for the proxy and database, re-
spectively. Note that these numbers are optimistic,
because they do not include the cost of the BOT and
the ZKP.
In our system, the client sends 204 bytes for each

string (i.e., a total of 4.98KB for 25 strings). The
cost of the discovery initialization is negligible (i.e,
0.12KB per string type per poll). The total cost of
a proxy (including the relaying and collecting roles
in both mirror operations) for discovery initialization
and collection of encrypted strings is about 12.54GB.
The aggregator’s total overhead is about 4.32GB.
The duplicate detection costs about 54.04GB for each
proxy and about 35.40GB for the aggregator for both
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mirror operations in total. The biggest bandwidth
cost is due to the PXH operations. The cost for
each proxy is about 1.35TB and 1.71TB for Quant-
cast and search data sets, respectively. The cost for
the aggregator is about 0.90TB and 1.14TB for the
corresponding data sets.

10 Related Work

To achieve anonymous communication, some systems
use XOR [21, 49, 53] and matrix multiplication [35]
as lightweight crypto operations. These systems do
not focus on aggregating distributed user data with
differential privacy.

Most database privacy research assumes a trusted
database [27, 38, 51]. We refer the readers to a sur-
vey [31]. McSherry et al. [39] proposed discovering
common payloads in network traces by iteratively in-
crementing the length of the queried string and choos-
ing strings to increment regarding their differentially-
private noisy counts. More recently, Chen et al. [22]
proposed a method for publishing sequential data via
variable-length n-grams while providing differential
privacy. However, like the previous systems, these
systems also assume a central database storing the
data. In contrast, user data in our system resides on
the user device in a distributed setting.
Some systems try to decrease the trust in the

database by encrypting user data before it is stored,
and enabling queries over the encrypted data [41,46,
50]. However, these systems do not provide differen-
tial privacy for the results, and thus, allow a malicious
analyst to obtain sensitive user data.
The trust in the storage entity can be also de-

creased by using more databases. Chow et al. [25]
propose a two-entity model for privacy-preserving
queries over distributed databases. One entity shares
a secret with the databases to obfuscate results, and
the other entity aggregates obfuscated data. How-
ever, if one database shares the secret with the ag-
gregating entity (similar to the aggregator running
fake clients), the privacy properties are lost. In con-
trast, our system’s threat model allows the compo-
nents to run their clients and prevents them from
breaching privacy. Furthermore, Chow et al. assume

that a database (a client in our system) supplies cor-
rect data, which may not be true in our analytics
scenarios.
Secure Multiparty Computation (SMC) can also

be used to aggregate private data from distributed
databases. Burkhart et al. introduce Sepia [20], an
SMC framework specialized for aggregating network
events without a centralized entity. Input peers pro-
vide information to the system, and privacy peers
run computations over them in a privacy-preserving
way. Sepia’s primitives are used to provide results for
correlating network events and top-k queries [18,19].
By using carefully optimized comparison operations,
Sepia scales much better than other SMC frame-
works; however, it is limited to small keys (32-bits)
and a small number of participants (i.e., < 100), and
thus, cannot be directly applied to analytics scenar-
ios.
Rather than databases, user data can also reside

on users’ own devices. Anonygator [42] provides pri-
vacy properties while aggregating sensitive informa-
tion; however, it assumes that the shared data is not
going to leak privacy. P3 [40] is a privacy-preserving,
distributed personalization system, but requires a
method to determine which data is safe to supply
for personalization. Both systems assume that the
clients use an anonymizing network such as TOR [14].
In contrast, our system utilizes differential privacy
for the discovered strings to protect privacy and uses
centralized proxies for anonymity.
The common limitation of these systems is that

they do not provide differential privacy (DP) for
the participants. Although DP was originally de-
signed for centralized databases [27], researchers have
also attempted to provide DP in distributed settings.
Some of these systems rely on complex cryptographic
operations, putting too much computational over-
head on the clients [29]. Other systems rely on dis-
tributed key distribution protocols, which reduce the
computational overhead at the clients [44, 47], but
suffer from churn in large-scale environments. To ad-
dress the churn problem, Hardt et al. [33] propose
that clients generate DP noise, such that available
clients would compensate for the noise unavailable
clients cannot add. The aggregation is performed by
two honest-but-curious servers for scalability. All of
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these systems [33,44,47] suffer from the attack where
a malicious client skews the results arbitrarily. P4P
[26] uses light-weight zero-knowledge proofs to pre-
vent such clients; yet, the overheads are still too high
to be practical.

To address both issues regarding scalability and
malicious clients, recent distributed DP systems uti-
lize pre-defined string values and use centralized en-
tities. πBox [37] utilizes pre-defined counter names
and leverages a trusted platform to restrict the in-
terface how much and how often a malicious app
instance (i.e., client) can update the counter value.
The trusted platform adds DP noise to counter values
before releasing them to developers (i.e., analysts).
Other systems [16, 23, 24] provide DP in analytics
scenarios and prevent tracking of users via centralized
entities to distribute queries and add noise, either us-
ing a dedicated, honest-but-curious proxy [24], or ex-
isting entities such as the websites of publishers [16].
Compared to these systems using public-key cryp-
tography, SplitX [23] scales much better by utilizing
XOR as its crypto primitive, similar to our system.
However, these systems [16,23,24] rely on the knowl-
edge of pre-defined answer values to limit the effect
of malicious clients as well as for adding DP noise
blindly. Our system complements all above systems
by discovering unknown strings to be used as counter
names or answer values, while providing DP counts
for those strings.

11 Conclusion

We presented a practical and privacy-preserving
string discovery system that provides analysts with
unknown strings and their noisy counts. To preserve
the privacy of the clients, our system utilizes a dis-
covery threshold as well as differential privacy. Our
system utilizes XOR as its crypto primitive, reduc-
ing the client overheads significantly. To count client
strings without revealing them, we use a novel blind
comparison method that determines the equivalence
of two XOR-encrypted client strings. While achieving
these goals, our system also protects the accuracy of
the string counts by detecting malicious clients sub-
mitting duplicate strings. Our evaluation shows that

our system reduces the client computation overheads
by several orders of magnitude compared to previous
private aggregation systems. Simulations using real
world data for website popularity and search phrases
show that the computational overhead for server side
computations is also reduced by about one order of
magnitude.
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