
Concurrent Self-Explaining Computation
MPI-SWS Technical Report 2013-004 (July 2013)

Roly Perera

University of Edinburgh

rperera@inf.ed.ac.uk

Deepak Garg

MPI-SWS

dg@mpi-sws.org

Umut Acar

Carnegie Mellon University

umut@cs.cmu.edu

Abstract
Self-explaining computation is an approach to program execution

in which every value comes with an explanation of how it was

computed. The explanation can be used to reverse the computation

and to slice the original program relative to any part of the output

of interest. As a result, self-explaining computation is a suitable

foundation for o�ine dynamic program analyses such as taint

analysis and algorithmic debugging.

Building on prior work in the functional setting, we develop the

foundations of concurrent self-explanation for a higher-order pro-

cess calculus. We represent explanations as traces, which record

inter-process synchronisation as well as intra-process functional

evaluation. We show that any part of the state of a concurrent

computation can be accounted for by a unique minimal slice of

the initial con�guration. This result is established using a Galois

connection describing forward and backward executions of a con-

current program that share a synchronisation structure. As our

main practical result, we provide a reverse operational semantics

for processes which computes the lower adjoint of the Galois con-

nection.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.2.5 [Software Engineer-
ing]: Testing and debugging—Tracing; D.3.4 [Programming Lan-
guages]: Processors—Debuggers

Keywords concurrency; reversible computation; program slic-

ing

1 Introduction
We explore concurrent self-explaining computation, a paradigm

in which the evaluation of a concurrent program yields not just

outputs but also an explanation of how each output was com-

puted. This explanation, represented as a trace, can be used to ex-

ecute backwards to obtain, for any particular part of the output,

the least slice of any prior state which is able to compute it. Self-

explaining computation has immediate applications in debugging,

provenance analysis and other forms of o�ine dynamic analysis

where relying on re-execution as means of recovering computa-

tional history is not always practical. Building on prior work on

self-explaining computation for sequential programs [12, 13], we

develop the mathematical foundation of self-explanation for con-

current computation, including a tracing semantics, and a reverse

operational semantics based on traces.

Our formal setting is a higher-order process calculus with an

instrumented reduction semantics that records inter-process syn-

chronization events (send-receive events) in a causality graph, a

form of dependence graph. This simple structure allows us to

reverse execution whilst preserving causal consistency with the

original execution, usually considered an essential feature of re-

versible process calculi [4, 5, 9, 14].

More interestingly, if we restrict attention to any speci�c part

of an output (say, because it is the focus of interest when debug-

ging), then there exists a unique minimal part of any prior con-

�guration that computes this part exactly. The broad intuition is

that computing least dynamic slices is decidable when a language

exhibits su�cient sequentiality to allow for the existence of the

required minima, and non-trivial when it exhibits enough paral-
lelism to permit parts of the program to be independent.

Formally, the existence of unique minimal parts in prior con�g-

urations is established as a Galois connection. We consider the par-

tial order over con�gurations induced by erasure (a more erased

con�guration is smaller) and establish that evaluation, extended

in a natural way to partial con�gurations, preserves meets. Hence,

evaluation has a lower adjoint, termed unevaluation, whose image

on a con�guration is the unique minimal slice. We then generalise

this result to causally equivalent runs of a concurrent program,

forming the foundation of our work. A priori, a Galois connection

for concurrency is not particularly plausible, because reduction

is non-deterministic. However, by restricting reduction to com-

ply with a given causality graph, we obtain enough determinism

to de�ne the Galois connection, yet retain enough internal non-

determinism to permit an e�cient concurrent implementation.

To implement unevaluation, we de�ne a tracing semantics

which augments the causality graph with traces of internal func-

tional evaluations and other information about process states

which if discarded would be a source of irreversibility. Unevalua-

tion is then implemented as concurrent, but deterministic, back-
ward execution along the trace, starting from the output, com-

puting the minimum necessary information at each prior step and

merging information where forward evaluation forked. For slicing

through functional computation within a process, we use Perera

et al.’s work on self-explaining computation for the sequential

functional setting [12, 13] with only minor changes.

In summary, our work studies the mathematical foundations

of self-explaining concurrency and establishes the existence and

computability of least program slices for concurrent systems. We

make the following contributions.

• We characterise the existence of unique minimal backward

slices of concurrent computations as Galois connections, �rst

on single reductions, and then on causally equivalent runs of

a concurrent program (§3).

• We introduce a form of trace suitable for explaining non-

deterministic concurrent computations. By design syntactic

identity on traces coincides with causal equivalence for a given

program (§4.2).

1



• We de�ne a concurrent reverse execution semantics for pro-

cesses, based on traces, and prove that it implements the un-

evaluation lower adjoint (§4.3).

We also improve on [13] in some minor ways: we dispense with

both types and environments, neither of which prove essential;

and we specify the abstract requirements on pluggable compo-

nents, showing how to extend our system in a modular way with-

out compromising precision or correctness.

§5 compares self-explaining computation to prior work on dy-

namic slicing and debugging of concurrent programs, reversible

process calculi, and distributed provenance and tracing. §6 sum-

marises our �ndings and identi�es some important future work.

The Appendix contains a treatment of mutually recursive func-

tions which improves on earlier work, plus proofs and other tech-

nical details omitted from the paper. Colour is useful, but not es-

sential, for reading the paper.

2 Concurrent setting
The language that will form the setting for the rest of the paper

is a process calculus with an embedded call-by-value functional

language. We describe the functional part �rst.

2.1 Expressions
Expressions e, de�ned in Figure 1, include the usual functional

constructs, plus suspended processes, written {P}, which can be

ignored for the moment. Terms are identi�ed up to renaming of

bound identi�ers. The only notable feature of the syntax is the

form vx , which represents a value v which was substituted for a

variable x; we will use this later to implement a reversible form of

substitution.

Expression e ∶∶= () ∣ x ∣ vx ∣ λx.e ∣ e1 e2 ∣ (e1, e2) ∣ fst e ∣ snd e ∣

inl e ∣ inr e ∣ case e {inl x1.e1; inr x2.e2} ∣ {P}

Value u, v ∶∶= c ∣ () ∣ λx.e ∣ (v1, v2) ∣ inl v ∣ inr v ∣ {P}

Figure 1. Expressions and values (processes omitted)

Figure 1 also de�nes the values u, v of the language. Values

include suspended processes {P}, as well as channels c.

Expression evaluation Expression evaluation is big-step, and

de�ned as the deterministic relation e⇒ v given in Figure 2. Rules

for snd and inr are omitted. One important detail is that a process

suspension {P} evaluates immediately to the suspended process

{P} as a value; there is no evaluation of P itself, so the expression

language remains deterministic.

We write e{v/x} for the expression e with v substituted for x .

The de�nition of substitution is mostly standard; we mention only

three rules. The variable case has x{v/x} = vx , preserving the iden-

ti�er in the substituted expression; the value case has uy{v/x} =
uy, ignoring the variable annotation on the value even when x = y.

Again the signi�cance of these rules will become apparent later.

The suspended process case has {P}{v/x} = {P{v/x}}. (Values

are closed.)

2.2 Processes
The syntax of processes is given in Figure 3, and includes the stop

process 0, channel creation νx.P , parallel composition P1 ∥ P2,

asynchronous send e1⟨e2⟩ to send the value of e2 on the channel

computed by e1, receive e(x).P to wait for a value on the channel

computed by e, and run e which runs P if e evaluates to the

suspended process {P}.

e⇒ v

()⇒ () vx ⇒ v λx.e⇒ λx.e

e1 ⇒ λx.e3 e2 ⇒ v2 e3{v2/x}⇒ v
e1 e2 ⇒ v

e1 ⇒ v1 e2 ⇒ v2
(e1, e2)⇒ (v1, v2)

e⇒ (v1, v2)
fst e⇒ v1

e⇒ v
inl e⇒ inl v

e⇒ inl v1 e1{v1/x1}⇒ v
case e {inl x1.e1; inr x2.e2}⇒ v {P}⇒ {P}

Figure 2. Expression evaluation

Process P ∶∶= 0 ∣ νx.P ∣ P1 ∥ P2 ∣ e1⟨e2⟩ ∣ e(x).P ∣ run e
Process id α, β ∶∶= ` ∣ α.1 ∣ α.2 ∣ α.β
Con�guration C,D ∶∶= JP1K

α1 , . . . , JPnK
αn

Figure 3. Processes, process ids and con�gurations

A con�guration is a collection of processes with unique process
ids α . Formally, a con�guration is a �nite map C from process ids

to processes C(α) is called a con�guration. For a set of process

ids Γ, we write Γ ⊢ C to indicate that C has domain Γ. We

often write out a con�guration explicitly as JP1K
α1 , . . . , JPnKαn ,

in which case α1, . . . , αn are assumed to be distinct. Process ids

allow syntactically equal processes to be distinguished; this will

be important later for ensuring that reverse execution respects the

synchronisation structure of the original computation. Forgetting

the ids recovers a standard multiset con�guration.

Process evaluation. The operational semantics of processes are

small-step, and given in Figure 4. The relation ↠ de�nes a de-

terministic notion of reduction for con�gurations C , where C is

a redex. If C ↠ C ′
we say that C reduces to C ′

. We separately

specify how to non-deterministically choose a redex from a larger

con�guration.

The reduction rules are mostly self-explanatory; we discuss

only the rules that modify the domain of the con�guration, i.e. the

set of active process ids. stop kills α ; killed processes are deleted

from the con�guration. fork kills α and spawns α.1 and α.2
to run P1 and P2 respectively. join kills α and β, which are

waiting to send on c and waiting to receive on c respectively,

and spawns α.β to run the body of the receiver. For the new rule,

we also note that terms are identi�ed up to renaming not just of

bound identi�ers, but also of channels, which we treat as global.

Therefore the selection of a fresh c is deterministic; in fact the

only non-con�uent source of non-determinism in our language is

inter-process synchronisation.

To obtain a full concurrent execution semantics, we lift the↠
relation to operate on an arbitrary con�guration JP1K

α1 , . . . , JPnKαn
and to take multiple steps. (Note that the multiset P1, . . . , Pn is

a typical con�guration of the chemical abstract machine [2]. Our

system can always be viewed as operating on this multiset, and

so structural rewrite rules such as P1 ∥ P2 ↝ P2 ∥ P1 are not

required.)

First, we introduce the notion of a causality graph. A causality

graph is used to capture the “causal” or (observable) “happens-

before” relation for a concurrent computation [5], and comes in

one of two forms. An atomic causality graph ∆ captures the causal

structure of an individual reduction, and has one of the forms

given in Figure 5 below; with one exception (corresponding to a

2



C ↠ C ′

stop where:

J0Kα ↠ ∅

new

Jνx.PKα ↠ JP{c/x}Kα c fresh

fork

JP1 ∥ P2K
α
↠ JP1K

α.1, JP2K
α.2

send-on

Je1⟨e2⟩K
α
↠ Jc⟨e2⟩K

α e1 ⇒ c

send-ready

Jc⟨e⟩Kα ↠ Jc⟨v⟩Kα e⇒ v

rcv-ready

Je(x).PKα ↠ Jc(x).PKα e⇒ c

join

Jc⟨v⟩Kα , Jc(x).PKβ ↠ JP{v/x}Kα.β

run

Jrun eKα ↠ JPKα e⇒ {P}

C ↠∆ C ′

C Ð→ C ′

C Ð→∆ C
′ in(∆) ⊢ C ′, out(∆) ⊢ C ′′

C Ð→G C ′

C Ð→● C
C Ð→G D ⊎D′ D↠∆ D

′′

C Ð→G;∆ D ⊎D′′

Figure 4. Process evaluation

stop reduction), nodes are labelled with process ids. A (general)

causality graphG is then a �nite graph in which every neighbour-

hood is an atomic causality graph. The purpose of casuality graphs

will become clear as we explain the semantics.

α
α.2

α.1
α α α.β

α

β
α

Figure 5. Atomic causality graphs ∆ (directed from left to right)

Next, writing in(∆) for the labels on the roots of ∆, and out(∆)
for the labels on its leaves, we de�ne, as a notational convenience,

a family of relations ↠∆ indexed by atomic causality graphs ∆,

which only perform a ↠ reduction when the redex matches ∆.

The de�nition is also given in Figure 4. We then use this to de�ne

the family of relations Ð→G indexed by general causality graphs

given at the bottom of Figure 4. If C Ð→G C ′
we say that C steps to

C ′ via G.

The last rule of Figure 4 extends an existing computation,

which we suppose to have the form C Ð→G D ⊎ D′
. Here D is

a redex non-deterministically chosen from the current con�gura-

tion, and⊎ is an auxiliary operation which forms the con�guration

D ∪ D′
as long as the domains of D and D′

are disjoint. The re-

duction of D yields a reduct D′′
, which is merged back into what

remains of the con�guration, and ∆, which is appended to the

existing causality graph G. The resulting composite graph is an

output of the judgement.

To append ∆ to G, we use a monoidal composition operator ;
for causality graphs, reminiscent of strategy composition in game

semantics, with unit ●, the empty graph. Composition is parallel,

except for matching inputs and outputs, which are connected se-

quentially.

De�nition 1 (G ; G′
). If G and G′ are causality graphs, de�ne

G ; G′ to be the smallest graph G′′ satisfying

1. G and G′ are (isomorphic to) subgraphs of G′′;
2. every α ∈ in(G) ∩ out(G′) labels exactly one node in G′′.

Example 1. The causality graph

α α
α.2

α.1

β
β.2

β.1 (α.2).(β.2)

can be decomposed in the following three ways:

α α ; α
α.2

α.1
; β

β.2

β.1
; (α.2)(β.2)

β.2

α.2

α α ; ;β
β.2

β.1
α

α.2

α.1
; (α.2)(β.2)

β.2

α.2

β
β.2

β.1
; α α ; α

α.2

α.1
; (α.2)(β.2)

β.2

α.2

The essential feature of causality graphs is that there are mul-

tiple interleavings consistent with the same G, as shown above.

This gives us a way to disregard observationally irrelevant non-

determinism and instead deal with sequences of reductions which

are equal modulo permutations that preserve causal structure. It

is easy to see that the transition system induced by all the possible

interleavings (for a �xed G) on an initial state Γ ⊢ C is con�uent,

and therefore has a unique terminal state. (Γ should contain only

atomic process ids ` , so that there is no risk of the ids that arise

during execution inadvertently colliding.)

Lemma 1 (Determinism ofÐ→G ).
If C Ð→G C ′ and C Ð→G C ′′ then C ′ = C ′′.

This ability to determinise, but not overly determinise, a con-

current program is essential to the technical development that fol-

lows. Other sources of observable non-determinism, such as ex-

plicit choice operators, can be dealt with by annotating the causal-

ity graph with additional information; for simplicity we omit such

features from our language.

3 Problem de�nition
As mentioned in the introduction, Perera et al. [12, 13] formalise a

notion of “explanation” for traces of values, based on a novel order-

theoretic characterisation of dynamic program slicing. Their no-

tion of explanation is tied to the ability to compute backwards from

a value to a program that produced that value. Speci�cally, a trace

explains a computed value v whenever it can be used to “uneval-

uate” v back to a partial program, or program slice, which is su�-

cient to compute v using an enriched semantics that allows eval-

uation of partial programs. Traces thus “explain” when they en-

able a round trip – from values to programs and back to values –

which preserves the output. Unevaluation need not recover all of

the original program e, but only enough of it to recompute v . In-

deed, to underwrite a useful notion of explanation, unevaluation

3



should recover only those parts of e which are necessary for the

computation of v .

In a concurrent setting, we are not dealing with deterministic

computations that run to completion. Rather, the computations

of interest are classes of causally equivalent possible evolutions

C Ð→G C ′
of a non-deterministic system, and the “explananda” –

the objects in need of explanation – are the terminal con�gura-

tions C ′
. (We will sometimes refer to C as the “input” con�gura-

tion and C ′
as the “output” con�guration of the transition.) In §4

we will formalise how a con�guration trace “explains” C Ð→G C ′

if it supports a round trip which preserves the terminal con�gu-

ration, i.e. can be used to compute backwards from the output C ′

to recover some part, or slice, of the input C which is su�cient

to compute forwards again to C ′
, utilising any sequence of reduc-

tions consistent with G.

In this section we establish the preliminaries for §4. We will see

that for such a transition there is always a unique minimal slice of

C which su�ces to compute C ′
. In fact there is always a least slice

of C which su�ces to compute any particular slice of C ′
, a gener-

alisation which is needed for compositionality. We shall give these

least slices a purely extensional characterisation, considering �rst

a single reduction under the ↠∆ rules, and then extending the

analysis to full computations under the Ð→G semantics. The basic

idea will be to extend the semantics of our concurrent language

with an unde�ned element �, which is a stub for syntax that has

been deleted during slicing, and rules that conservatively prop-

agate �. Doing so exposes parallel structure in the computation,

allowing us to reason about the relative independence of parts of

the program by replacing parts of it with � and observing how �
propagates. The parallel structure is made manifest by the exis-

tence of extremal forward and backward slices.

3.1 Partial con�gurations
We start by introducing the order structure of partial con�gura-

tions, or con�guration slices, already alluded to, and extending our

operational semantics to accommodate partial con�gurations.

Meet-semila�ice of processes. We extend processes with an

empty, or unde�ned, process �, and similarly for expressions and

values. From now on we mention only processes in the de�nitions;

analogous notions arise for expressions and values.

Expression e ∶∶= . . . ∣ �
Value u, v ∶∶= . . . ∣ �
Process P ∶∶= . . . ∣ �

De�ne ⊑ to be the partial order which has P ⊑ P ′
whenever we

can obtain P from P ′
by replacing some parts by �. We say that

P is a pre�x, or slice, of P ′
. Processes extended with � form a

meet-semilattice with � as bottom element; the meet P ⊓P ′
is the

greatest common pre�x of P and P ′
.

La�ice of pre�xes. Moreover, the joinP⊔P ′
exists wheneverP

and P ′
are “compatible”, i.e. pre�xes of a common process, which

we write as P ↑ P ′
. The existence of such joins means that the

down-set Prefix(P) of pre�xes of P forms a �nite distributive

lattice (hereafter, simply lattice) with bottom element � and top

element P .

Pointwise order on functions. Functions between partial or-

ders are ordered pointwise. In particular given con�gurations Γ ⊢
C and Γ ⊢ C ′

, then C ⊑ C ′
when C(α) ⊑ C ′(α) for every α ∈ Γ.

The down-set Prefix(C) also forms a lattice with meet and join

given pointwise and the con�guration �Γ ≜ {α ↦ � ∣ α ∈ Γ} as

bottom element.

Example 2. Con�gurations C , C ′ are compatible, with the join as given.

C ≜ J�⟨(3,�)⟩Kα , Jc(x).� ∥ P2K
β

C ′ ≜ Jc⟨(�,4)⟩Kα , J�(x).P1 ∥ �Kβ

C ⊔ C ′ = Jc⟨(3,4)⟩Kα , Jc(x).P1 ∥ P2K
β

Semantics of partial con�gurations. We extend the ↠ rela-

tion with the following �-propagation behaviour. (For now on by

↠ we shall mean the extended de�nition.)

bot with side-conditions:

�Γ ↠ �Γ′

join-bot-chan

Jc⟨v⟩Kα , Jc′(x).PKβ ↠ J�Kα.β c = � or c′ = �

join-bot-send

J�Kα , Jc(x).PKβ ↠ J�Kα.β

join-bot-rcv

Jc⟨v⟩Kα , J�Kβ ↠ J�Kα.β

join

Jc⟨v⟩Kα , Jc(x).PKβ ↠ JP{v/x}Kα.β c ≠ �

Figure 6. Process evaluation (�-propagation rules)

The bot rule sends least con�gurations to least con�gurations.

The join-bot-chan rule permits any sender or receiver to syn-

chronise with a process communicating on the � channel, and

join-bot-send and join-bot-rcv permit a synchronisation when

either sender or receiver is unde�ned. These rules help ensure that

pre�xes of con�gurations which are not stuck are not themselves

stuck (Lemma 2 below), but have the e�ect of rendering ↠ non-

deterministic, so the↠∆ variant becomes important here as a way

of �xing ∆. The join rule is as before except for a side-condition

that requires c ≠ �, which is explained in Example 3 below.

Existence of required minima. Our goal is to show that for

a given transition C Ð→G C ′
and a given part of the output C ′

,

there is a least slice of the input C which, utilising any chain of

reductions consistent with G, is large enough to compute that

part of C ′
. We will show that our generalisation above of the

Ð→G semantics to pre�xes of C gives rise to input minima of the

desired kind. More precisely, it gives rise to a monotonic function

stepC,G from Prefix(C) to Prefix(C ′) such that for any D′ ⊑ C ′
,

the set SD′ ≜ {D ∣ D ⊑ C and stepC,G(D) ⊒ D′} has a least

element. Such a function is stable in the sense of Berry [1]. If such

minima always exist, then clearly there is a process “unevaluation”

function, which we call unstepC,G , from Prefix(C ′) to Prefix(C)
which takes any D′ ⊑ C ′

to the least element of SD′ .
In our setting, where the domains are �nite lattices, the exis-

tence of such minima is equivalent to stepC,G preserving meets,

since then SD′ is closed under meets, with least element ⊓SD′ .
The function unstepC,G preserves joins, and together with stepC,G
forms a Galois connection. Therefore our general strategy will

be to generalise each component of evaluation from §2 to pre-

�x lattices, showing that each preserves meets. We �rst derive

a family of meet-preserving functions reduceC,∆ from Prefix(C)
to Prefix(C ′) for every reduction C ↠∆ C ′

. We then do a sim-

ilar thing for the Ð→G relation, and show how we obtain meet-

preserving functions which feature the reduceC,∆ functions as

components. The central role of Galois connections will become

apparent as we go along.

4



3.2 Least process slices
Galois connection for an individual reduction. First con-

sider the C ↠∆ C ′
judgement, which is deterministic, but not

total. This relation induces a family of meet-preserving functions

indexed by its domain.

De�nition 2 (reduceC,∆ function). Suppose C ↠∆ C ′. Then de�ne
the function reduceC,∆ from Prefix(C) to Prefix(C ′) to be ↠∆
domain-restricted to Prefix(C).

Lemma 2. If C ↠∆ C ′ then reduceC,∆ is total and preserves ⊓.

Proof. (1) is straightforward case analysis, using the �-propagation

rules when the redex would otherwise get stuck. For (2), see Ap-

pendix, §C.1.

This property depends on expression evaluation and substitution

also giving rise to families of meet-preserving functions on pre�x

lattices, which we return to in §3.3 below. The following example

shows how not having the c ≠ � side-condition on the join rule

would violate meet-preservation.

Example 3. Suppose

C ≜ Jc⟨(3,4)⟩Kα , Jc(x).PKβ ↠∆ JP{(3,4)/x}Kα.β

for some c ≠ �. Then D,D′ ⊑ C below both reduce to J�Kα.β , but without a
c ≠ � side-condition on the join rule, their meet would reduce to something
larger, making the transition highlighted in red:

D ≜ J�⟨(3,�)⟩Kα , Jc(x).PKβ ↠∆ J�Kα.β

D′ ≜ Jc⟨(�,4)⟩Kα , J�(x).PKβ ↠∆ J�Kα.β

D ⊓D′ = J�⟨(�,�)⟩Kα , J�(x).PKβ ↠∆ JP{(�,�)/x}Kα.β

Instead the join-bot-chan rule should apply.

Meet-preservation guarantees the existence of the minima we

want, so we can de�ne the following family of “reverse reduction”

functions.

De�nition 3. Suppose C ↠∆ C ′. Then de�ne the following func-
tion from Prefix(C ′) to Prefix(C).

unreduceC,∆(D′) ≜⊓{D ∣ D ⊑ C and reduceC,∆(D) ⊒ D′}
This function preserves joins; the pair (reduceC,∆,unreduceC,∆)
form a Galois connection, with reduceC,∆ and unreduceC,∆ its so-

called upper and lower adjoints.

The pointwise order on functions will be useful for concisely

expressing the relationship between reduceC,∆ and unreduceC,∆ .

In particular, writing ide for the identity function on Prefix(e),

we can state that an endo-function f ∶ Prefix(e) → Prefix(e) is

in�ationary (has f(e′) ⊒ e′ for any e′ ⊑ e) by simply stating that

f ⊒ ide. Analogously f is de�ationary i� f ⊑ ide.

Lemma 3 ((reduceC,∆,unreduceC,∆) form a Galois connection).
1. unreduceC,∆ ○ reduceC,∆ ⊑ idC
2. reduceC,∆ ○ unreduceC,∆ ⊒ idC ′

We can read Lemma 3 as follows: unreduceC,∆ goes back from

parts of the reduct to parts of the redex in a necessary and suf-

�cient way, identifying for any particular part of the reduct just

that part of the redex required to reconstruct it using reduceC,∆ .

More precisely, for any D′ ⊑ C ′
, let D ≜ unreduceC,∆(D′).

Then property (1) of the lemma implies that D is “necessary”,

i.e. smaller than any slice of C large enough to reduce to D′
, and

property (2) implies that D is “su�cient”, i.e. large enough itself

to reduce to D′
. There is a dual reading of Lemma 3 for reduceC,∆ ,

which states that it computes the largest slice of the reduct that it

can given only some pre�x of the redex.

Example 4. The following shows a reduction C ↠∆ C ′ using the join
rule. Here the receiving process is a fork which will attempt to send the
received value on two further channels. Recall that vx means that v was
previously substituted for x . (We omit variable annotations on the channels.)

Jc1⟨(3,4)⟩K
α , Jc1(x).c2⟨x⟩ ∥ c3⟨x⟩K

β
↠∆ Jc2⟨(3,4)x⟩ ∥ c3⟨(3,4)x⟩K

α.β

Consider the following two slices of the reduct C ′:
D ≜ J� ∥ c3⟨(3,�)x⟩K

α.β D′ ≜ Jc2⟨(�,4)x⟩ ∥ c3⟨(3,�)x⟩K
α.β

and the corresponding slices of the redex C obtained by unreduceC,∆ :

unreduceC,∆(D) = Jc1⟨(3,�)⟩K
α , Jc1(x).� ∥ c3⟨x⟩K

β

unreduceC,∆(D
′
) = Jc1⟨(3,4)⟩K

α , Jc1(x).c2⟨x⟩ ∥ c3⟨x⟩K
β

The second case illustrates the interaction with substitution: the full pair
(3,4) is retained in the sender, since we need to approximate both values
of x in D′, namely (�,4) and (3,�). We will see in §4 how the unreduceC,∆
function can be implemented.

Galois connection for a concurrent computation. Now we

de�ne a similar Galois connection for aÐ→G step, and observe that

Galois connections of the form (reduceC,∆,unreduceC,∆) appear

as a component.

De�nition 4. Suppose C Ð→G C ′. Then de�ne the Galois connec-
tion (stepC,G ,unstepC,G) between Prefix(C) and Prefix(C ′) where
stepC,G isÐ→G domain-restricted to Prefix(C).
To see that stepC,G is indeed the upper adjoint of a Galois connec-

tion (i.e., that stepC,G is meet preserving), we need only unpack

the de�nition ofÐ→G and observe that stepC,G satis�es

stepC,● = idC (1)

stepC,G′;∆ = (reduceD,∆ ⊎ idD′) ○ stepC ′,G′ (2)

where in Equation 2, we have C Ð→G′ D⊎D
′
withD↠∆ D′′

. Here

⊎ lifts pointwise to functions. Meet-preservation of stepC,G is then

a straightforward induction on the size ofG using Lemma 2. Then

it is equally easy to see that the lower adjoint unstepC,G satis�es

unstepC,● = idC (3)

unstepC,G′;∆ = unstepC ′,G′ ○ (unreduceD,∆ ⊎ idD′) (4)

In these equations, the decomposition of G into G′ ; ∆ is not

unique, and thus there are multiple ways of decomposing (stepC,G ,unstepC,G).

However they all denote the same Galois connection by Lemma 1,

with ⊎ acting at the level of functions as parallel composition,

permitting some of the sequential compositions to commute.

De�nition 4 canonically captures the relationship between for-

ward and backward slices for a particular class of causally equiv-

alent concurrent executions. There is an asymmetry, however:

whereas the de�nition of the forward-slicing function stepC,G is

readily interpreted as a non-deterministic but con�uent algorithm

(expressed as it is in terms of Ð→G and ↠∆), its backward-slicing

counterpart unstepC,G lacks an obvious operational interpretation.

Although we know that it takes any output slice D′ ⊑ C ′
to the

meet of all the input slices D ⊑ C large enough to compute D′

using stepC,G , there is no obvious e�cient procedure for calculat-

ing the required meet. In section §4, we show that such a proce-

dure naturally arises as a form of reverse computation. We give a

reverse operational semantics for processes, called process uneval-
uation, which utilises a trace of the concurrent computation, and

prove that it agrees extensionally with unstepC,G . First, we attend

to some other components of our system that the Galois connec-

tions just introduced depend on.

5



3.3 Modular components for reversible concurrency
The development in the previous section relies on the fact that if

C ↠∆ C ′
then reduceC,∆ is total and meet preserving (Lemma 2).

Since processes contain nested expressions and reduction involves

substitution, the proof of this fact relies on similar meet preserva-

tion results for expressions and substitutions, which we describe

here brie�y. The existence of unevaluation functions that compute

least slices for expressions and substitutions are corollaries.

Galois connection for an expression evaluation. For expres-

sion evaluations, we rely on the approach of [13], which we brie�y

recapitulate here. For every terminating computation e ⇒ v ,

we derive a meet-preserving function evale from Prefix(e) to

Prefix(v) by extending the big-step evaluation relation e ⇒ v
with the additional �-propagation rules given in Figure 7.

�⇒ �

e1 ⇒ �

e1 e2 ⇒ �

e⇒ �

fst e⇒ �

e⇒ �

case e {inl x1.e1; inr x2.e2}⇒ �

Figure 7. Expression evaluation (�-propagation rules)

The unde�ned expression � evaluates to the unde�ned value

�; eliminating the value � also results in �. Note that � cannot

be treated as synonymous with a divergent computation, at least

not under a standard sequential call-by-value semantics, because

it does not stop parts of the computation which do not depend

on it from proceeding. For example if e evaluates to � then inl e
evaluates to inl �, capturing the fact that the inner and outer

computations are independent. Similarly a case analysis where the

scrutinee evaluates to inl � does not get stuck, but takes the left

branch with x1 bound to �. Only under a more parallel operational

semantics can � as treated here be uni�ed with divergence; we

revisit this at the end of the paper.

De�nition 5 (evale). Suppose e⇒ v . De�ne evale to be⇒ domain-
restricted to Prefix(e).

Lemma 4. If e⇒ v then evale is total and preserves ⊓.

Proof. Similar to the one given in [13], using the �-propagation

rules and Lemma 5 below for the substitution cases.

The existence of a unique function unevale, adjoint to evale, is

immediate.

Corollary 1 (Existence of least expression slices). If e⇒ v there
exists a unique function unevale from Prefix(v) to Prefix(e) such
that (evale,unevale) is a Galois connection.

Galois connection for a substitution. Substitution easily �ts

into this approach, since it is total and preserves all meets, not just

compatible meets. (Substitution also preserves compatible joins,

but here we are only concerned with meet-preservation.)

Lemma 5. (e1 ⊓ e2){v1 ⊓ v2/x} = e1{v1/x} ⊓ e2{v2/x}

Then once again, the existence of a family of Galois connections

indexed by the domain of substitution is immediate. Each Galois

connection is degenerate, in that the lower adjoint is a retraction:

unsubste,v,x ○ subste,v,x = id(e,v).

Corollary 2. Suppose e{v/x} = e′, and write subste,v,x for
−{−/x} domain-restricted to Prefix(e, v). Then there is a unique
function unsubste,v,x from Prefix(e′) to Prefix(e, v) such that
(subste,v,x ,unsubste,v,x) is a Galois connection.

Galois connection for a primitive operation. Primitive oper-

ations and external modules written in di�erent languages can be

safely added to our system, so long as those operations give rise,

in the way we have just seen, to families of stable functions when

restricted to pre�xes of their arguments. The provider of the op-

eration must supply not only an implementation of the operation,

but also of the implied lower adjoints. We brie�y explain now how

the stability requirement constrains the amount of parallel struc-

ture that the operation can exhibit with respect to its arguments.

Consider extending our system with a commutative primitive

operation with an annihilator, such as × on natural numbers. One

might think it reasonable for × to satisfy both 0 × � = 0 and

�×0 = 0, but also �×� = �. However such an operation is unstable:

there are two minimal pre�xes of 0 × 0 which are large enough to

compute 0. Another example is Plotkin’s parallel or [15], which

is similarly non-strict in both arguments and therefore unstable.

(It was this observation which motivated Berry’s work on stable

functions.)

In general to be stable an operation must be sequential, i.e. con-

sume its arguments in a deterministic order. For an internal opera-

tion implemented purely in our language, this sequentiality arises

automatically from the operational semantics, but an external op-

eration – because it essentially provides its own semantics – must

take care to implement the required sequentiality itself.

4 Implementing reversible concurrency
We now equip our language with a reverse operational seman-

tics called process unevaluation. Process unevaluation implements

unstepC,G , the unique lower adjoint of the �-propagating stepC,G
forward-slicing function de�ned in §3, making use of a trace
recording the history of the computation. Unevaluation is a form

of concurrent backward slicing, but will form the basis of our

notion of correctness for traces.

The trace of a concurrent computation is called a con�guration
trace (§4.1). Con�guration traces are built by tracing versions of

the ↠ and Ð→ relations, which we write as ◽↠ and ◽Ð→ respec-

tively (§4.2). Utilising the trace, we are able to de�ne deterministic

reversing versions of these relations, written ↞◽ and ←Ð◽ (§4.3),

which perform backward �-propagation. Each relation gives rise

to a family of total functions on the principal down-sets of its

domain, and we show how these assemble algorithmically into a

concurrent but deterministic implementation of unstepC,G for any

C Ð→G C ′
. We omit the details of reverse execution for expres-

sions, as speci�ed by the lower adjoint unevale, and instead refer

the reader to [13].

4.1 Con�guration traces
A con�guration trace is simply a causal graph annotated with ex-

tra information to allow reverse execution. Thus by construction,

all executions of a given program which have the same synchro-

nisation structure have the same trace.

Con�guration traces come in two forms, re�ecting the struc-

ture of causality graphs. (Atomic) redex traces R , de�ned in Fig-

ure 8, record the reduction of an individual redex, in particular

any process constructor that was eliminated, and any expression

that might have been evaluated via a side-condition on the reduc-

tion rule. A redex trace has as “inputs” its root process ids, and as

“outputs” any holes of the form ◾α . For example the redex trace

[c⟨v⟩]α , [c(x).◾α.β]β has two inputs α and β and a single output

6



α.β. We write R ∶ ∆ to mean that R has the input-output shape

speci�ed by ∆.

Redex trace R ∶∶= [�.◾α]α ∣ [0]α ∣ [νx.◾α]α ∣ [◾
α.1
∥ ◾

α.2
]
α
∣

[c⟨v⟩]α , [c(x).◾α.β]β ∣ [�.◾α.β]β ∣

[e.◾α]α ∣ [run e.[�]α]α

Figure 8. Redex traces (atomic)

Least redex traces record �-propagation. The redex traces [0]α
and [◾α.1 ∥ ◾α.2]α are the only redex traces of their shape, and are

therefore already their own least pre�x; for the remaining forms,

we introduce special syntax for the least redex trace of that shape.

For join reductions, [�]α , [�.◾α.β]β is the least trace form; for all

other reductions, [�.◾α]α is the least trace form. To allow a single

bot rule to subsume multiple cases, we write �∆ to denote the

least redex trace of shape ∆, with the exception of [0]α , which has

a slightly di�erent semantics.

A (general) con�guration trace T is then any �nite graph which

has been built by composing redex traces. The composition opera-

tor ; for traces is analogous to the one for causal graphs. We write

T ∶ G to mean that T has causal graph G. For any T ∶ G and

any R ∶ ∆, the notation T ; R means the con�guration trace with

causal graph G ; ∆ that results from composing T and R are in

parallel, except for inputs of R which match outputs of T , which

are composed sequentially. The ◾ in each output of T is replaced

by the information on the corresponding input of R . Example 6

below illustrates.

4.2 Traced evaluation
The trace syntax is best understood by seeing how traces are

assembled by the tracing semantics. Lemma 6 relates the tracing

semantics to the reference semantics.

Tracing reductions. A ↠ reduction is traced via the traced

reduction relation ◽↠ de�ned in Figure 9. (The ◽ at the beginning

of the arrow indicates that it is the “tracing” counterpart of ↠.)

The judgement C ◽↠ R[C ′] states that C ↠∆ C ′
, with the

redex trace R ∶ ∆ recording the reduction. The bot rule is the

tracing analogue of the bot rule for ↠; it takes a least input

con�guration to a least output con�guration, using the least trace

with the appropriate input-output shape to record the reduction.

Again, this rule means traced reduction is non-deterministic (bot

applies for any ∆ whose inputs match Γ) and so we sometimes

make use of a variant ◽↠∆ which has been determinised by �xing

∆ in advance.

For any T ∶ G and any out(G) ⊢ C , the notation T [C] denotes

any T andC such that the outputs of T are exactly the inputs ofC .

Such a pair is called a traced con�guration (or traced reduct, when

T happens to be a redex trace T ). We use a notation for T [C] that

plugs the outputs of T with the corresponding inputs of C . The

following illustrates.

Example 5.
“Plugged” notation... ...for traced con�guration T [C]

(a) [�.JP1 ∥ P2K
α
]
α

([�]
α
)[JP1 ∥ P2K

α
]

(b) [JP1K
α.1
∥ JP2K

α.2
]
α

([[�]
α.1
∥ [�]

α.2
]
α
)[JP1K

α.1, JP2K
α.2

]

(c) [[0]α.1 ∥ [0]α.2]α ([[0]α.1 ∥ [0]α.2]α)[∅]

In (a) and (b) the trace component T is the least trace of its shape.

In (c) the trace has no holes and so the con�guration component

C is empty.

Tracing concurrent computations. To lift traced reduction to

entire concurrent computations, we now de�ne a tracing analogue

C ◽↠ R[C ′]

bot where:

�Γ ◽↠ �∆[�Γ′ ] Γ ⊢ ∆ ∶ Γ′

stop

J0Kα ◽↠ [0]α

new

Jνx.PKα ◽↠ [νx.JP{c/x}Kα]α

fork

JP1 ∥ P2K
α
◽↠ [JP1K

α.1
∥ JP2K

α.2
]
α

send-on

Je1⟨e2⟩K
α
◽↠ [e1.Jc⟨e2⟩K

α
]
α e1 ⇒ c

send-ready

Jc⟨e⟩Kα ◽↠ [e.Jc⟨v⟩Kα]α e⇒ v

rcv-ready

Je(x).PKα ◽↠ [e.Jc(x).PKα]α e⇒ c

join

Jc⟨v⟩Kα , Jc(x).PKβ ◽↠ [c⟨v⟩]α , [c(x).JP{v/x}Kα.β]β c ≠ �

join-bot-chan

Jc⟨v⟩Kα , Jc′(x).PKβ ◽↠ [�]
α , [�.J�Kα.β]β c = � or

c′ = �
join-bot-send

J�Kα , Jc(x).PKβ ◽↠ [�]
α , [�.J�Kα.β]β

join-bot-rcv

Jc⟨v⟩Kα , J�Kβ ◽↠ [�]
α , [�.J�Kα.β]β

run

Jrun eKα ◽↠ [run e.JPKα]α e⇒ {P}

C ◽Ð→ T [C ′]

C ◽Ð→ [C]

C ◽Ð→ T [D ⊎D′] D ◽↠ R[D′′]
C ◽Ð→ (T ; R)[D′′ ⊎D]

Figure 9. Traced evaluation of processes

of the stepping relation Ð→, written ◽Ð→, given at the bottom of

Figure 9. The judgement C ◽Ð→ T [C ′] states that C Ð→G C ′
with

the unique trace T ∶ G recording the evolution of C to C ′
. The

�rst rule lifts any con�guration to a traced con�guration where

the trace is empty. The second rule de�nes how to extend an

existing traced computation with a new reduction. First, a redexD
is non-deterministically selected from the output con�guration of

the existing computation. The redex is reduced, obtaining a traced

reduct R[D′′]. The redex trace R is appended to the existing trace,

and D′′
merged back into what remains of the con�guration.

Example 6. Suppose e⇒ {P′} and consider how the following derivation
extends an existing computation.

C ◽Ð→ [Jrun eKα.1 ∥ JPKα.2]α Jrun eKα.1 ◽↠ [run e.JP′Kα.1]α.1

C ◽Ð→ [[run e.JP′Kα.1]α.1 ∥ JPKα.2]α

Suppose the input con�gurationC has run to a state with processes Jrun eKα.1, JPKα.2

in its output con�guration, with T ≜ [◾
α.1
∥ ◾

α.2
]
α recording its history. The

redex Jrun eKα.1 is chosen non-deterministically. The output of the reduction
is reduct JP′Kα.1 and trace R ≜ [run e.◾α.1]α.1. Then R is appended to T

7



R[C]↞◽ C ′

bot

R[�Γ′ ]↞◽ �Γ Γ ⊢ R ∶ Γ′

stop

[0]α ↞◽ J0Kα

new

[νx.J{c/x}PKα]α ↞◽ Jνx.PKα P ≠ �

fork

[JP1K
α.1
∥ JP2K

α.2
]
α
↞◽ JP1 ∥ P2K

α

send-on

[e1.Jc⟨e2⟩K
α
]
α
↞◽ Js1⟨e2⟩K

α c⇐e1
s1

send-ready

[e.Jc⟨v⟩Kα]α ↞◽ Jc⟨s⟩Kα v ⇐e s

rcv-ready

[e.Jc(x).PKα]α ↞◽ Js(x).PKα c⇐e s

join

[c⟨v⟩]α , [c(x).J{u/x}PKα.β]β ↞◽ Jc⟨u⟩Kα , Jc(x).PKβ P ≠ �, c ≠ �
and u ⊑ v

run

[run e.JPKα]α ↞◽ Jrun sKα P ≠ � and

{P}⇐e s

T [C]←Ð◽ C ′

[C]←Ð◽ C
R[D]↞◽ D′′ T [D′′ ⊎D′]←Ð◽ C

(T ; R)[D ⊎D′]←Ð◽ C

Figure 10. Traced unevaluation of processes

yielding T ; R = [[run e.◾α.1]α.1 ∥ ◾α.2]α , which becomes the trace of the
updated con�guration JP′Kα.1, JPKα.2.

Lemma 6 (Agreement with reference semantics).
1. C ↠∆ C ′ ⇐⇒ exists R ∶ ∆ with C ◽↠ R[C ′].
2. C Ð→G C ′ ⇐⇒ exists T ∶ G with C ◽Ð→ T [C ′].

Finally, we take some time to explain the e.◾α trace form. (The

run e.◾α , νx.◾α and ◾α.2 ∥ ◾α.2 trace forms should be reasonably

clear.) The e.◾α form only arises during sending and receiving, and

records evaluated expressions. By the time a sender is in the form

Jc⟨v⟩Kα , its trace will (via send-on and then send-ready) be of the

form [e1.[e2.◾α]α]α , where e1 and e2 record the computation of c
and v respectively. Similarly, by the time a receiver is in the form

Jc(x).PKα , its trace will (via rcv-ready) be of the form [e.◾α]α ,

where e records the computation of c. While it is true that the run

rule also evaluates an expression, it must emit the run constructor

into the trace as well as e, because it performs the constructor

elimination and the expression evaluation in the same step. The

next example illustrates sender and receiver traces.

Example 7. We trace the execution of a con�guration with a single process
with id α . The process allocates a channel c, and then forks into two sub-
processes. The �rst computes the factorial of 4 and sends the result on c; the
second waits on c for the result and then stops.

Jνx.x⟨fact 4⟩ ∥ x(y).0Kα

[νx.Jcx⟨fact 4⟩ ∥ cx(y).0Kα]α (recall that x{c/x} = cx )

[νx.[Jcx⟨fact 4⟩Kα.1 ∥ Jcx(y).0Kα.2]α]α

[νx.[[cx .Jc⟨fact 4⟩Kα.1]α.1 ∥ Jcx(y).0Kα.2]α]α

[νx.[[cx .[fact 4.Jc⟨24⟩Kα.1]α.1]α.1 ∥ Jcx(y).0Kα.2]α]α

[νx.[[cx .[fact 4.Jc⟨24⟩Kα.1]α.1]α.1 ∥ [cx .Jc(y).0Kα.2]α.2]α]α

[νx.[[cx .[fact 4.[c⟨24⟩]α.1]α.1]α.1 ∥ [cx .[c(y).J0Kα.2]α.2]α.2]α]α

[νx.[[cx .[fact 4.[c⟨24⟩]α.1]α.1]α.1 ∥ [cx .[c(y).[0]
α.2

]
α.2

]
α.2

]
α
]
α

The name “fact” here should not be read as a variable but rather as shorthand
for a variable-annotated value of the form vfact, where v is a recursive function
de�ning factorial.

4.3 Traced unevaluation
We now give a reverse operational semantics for processes called

process unevaluation, that relies on the trace, and show that it

implements the function unstepC,G for any transition C Ð→G C ′
.

Reversing reductions. We start by de�ning a deterministic re-

lation↞◽, given in Figure 10, that reverses a traced reduction. For

any R ∶ ∆ the judgement R[C]↞◽ C ′
states that the reduct C can

unreduce to the redex in(∆) ⊢ C ′
, consuming the redex trace R in

so doing.

The bot rule implements backward �-propagation. It says least

output con�gurations map to least input con�gurations, discard-

ing all the information in the redex trace. The exception is the

empty output con�guration, which is its own least pre�x; this can

only be unreduced by the stop rule. Side-conditions of the form

P ≠ � ensure that the other rules are disjoint from bot. (The fork

rule overlaps with bot when P1 and P2 are both �, but in a com-

patible way.)

The v ⇐e s side-conditions arise because ↞◽ must be able to

reverse any expression evaluations it encounters in the trace. Op-

erationally, to reverse e ⇒ v requires an implementation of the

lower adjoint unevale; here we intentionally rely only on its exis-

tence (Corollary 1). The expression unevaluation algorithm given

in [13], which is also based on traces, can be easily extended to ac-

commodate suspended processes and reused here. To assert that

the required lower adjoint exists and is de�ned for the value we

wish to unevaluate, we use the following shorthand, emphasising

the symmetry with the corresponding ◽↠ side-conditions.

De�nition 6 (⇐e).

u⇐e s ⇐⇒ e⇒ v with u ⊑ v and unevale(u) = s
In Lemma 8 below we will verify that the post-conditions of ◽↠∆
always satisfy the pre-conditions of↞◽.

To reverse a substitution e{v/x} = e′, we use the lower ad-

joint unsubste,v,x , which exists by Corollary 2. To emphasise the

symmetry with substitution, we use an “adjoint pattern-matching”

notation {u/x}s which matches any s′ ⊑ e′, and has the e�ect of

binding meta-variables s and u to the the result of unsubste,v,x(s′).

Again we only rely on the existence of the lower adjoint, although

at the end of this section, we sketch an operational de�nition

which is given in full in the Appendix, §A.

The following example shows the role of the ↞◽ bot rule in

implementing the lower adjoint, which must satisfy the “minimi-

sation” property unreduceC,∆ ○ reduceC,∆ ⊑ idC .

Example 8. Consider the redex C ≜ Jrun eKα , where e⇒ {P}, which we
reduce as shown below. Now consider the �-propagation behaviour of ◽↠∆ .

Jrun eKα ◽↠∆ [run e.JPKα]α

J�Kα ↠∆ J�Kα

[run e.J�Kα]α ↞◽ Jrun sKα

Since ◽↠∆ preserves least elements, it maps J�Kα to J�Kα . However if the run
rule for↞◽ were applicable here (as shown in red), it would use the trace to

8



recover the redex Jrun sKα , using {�} ⇐e s. (Here {�} is a suspended �
process.) Yet run s ⋤ �, violating the requirement that the unreduceC,∆ ○

reduceC,∆ round-trip is de�ationary.

Reversing concurrent computations. We now follow the usual

pattern to derive a full concurrent unevaluation relation←Ð◽ from

our local notion of unreduction ↞◽. The informal explanation of

←Ð◽, de�ned at the bottom of Figure 10, is dual to that of ◽Ð→.

First, a traced reduct R[D] is non-deterministically selected from

the traced con�guration. The reduct is unreduced to a slice D′′

of the original redex, which is spliced back into what remains of

the con�guration. Then the reverse execution continues with the

remaining trace R and the updated con�guration. The following

example illustrates.

Example 9. We reverse the step taken in Example 6, where we had e ⇒
{P′}. Before reversing, we replace P′ in the con�guration by a smaller (but
non-�) process P′′. Since e ⇒ {P′} and P′′ ⊑ P′, there exists s such that
P′′ ⇐e s by De�nition 6, and we can derive

[run e.JP′′Kα.1]α.1 ↞◽ Jrun sKα.1 [Jrun sKα.1 ∥ JPKα.2]α ←Ð◽ C ′

[[run e.JP′′Kα.1]α.1 ∥ JPKα.2]α ←Ð◽ C ′

having non-deterministically chosen [run e.JP′′Kα.1]α.1 as the part of the
traced con�guration to unreduce. The �nal state C ′ is a slice of the original
con�guration C .

The essential property of ←Ð◽ is that the R ∶ ∆ which is non-

deterministically chosen for unreduction at each step is a su�x of

the trace T ∶ G, implying that ∆ is a su�x ofG. Thus by construc-

tion the portion U of the trace that remains to be unevaluated has

a causality graphG′ ⊑ G, and in particular every “unsynchronisa-

tion” is the reversal of a prior synchronisation.

The reverse-evaluation relations just de�ned give rise to fam-

ilies of functions over con�guration pre�xes indexed by the do-

main of the relations. When such a function has as its domain the

codomain of an upper adjoint identi�ed in §3, we will show that it

is in fact the corresponding lower adjoint. Construed algorithmi-

cally, these functions constitute an implementation of unstepC,G
for any C ◽Ð→G C ′

.

Implementing unreduceC,∆. We start by de�ning a family of

†unreduce functions indexed by the domain of ↞◽. The † super-

script is to indicate that the functions are a candidate implementa-
tion of the family of lower adjoints of the same name.

De�nition 7 (
†unreduceR[C] function). Suppose R[C] ↞◽ C ′.

Then de�ne the following function from Prefix(C) to Prefix(C ′).
†unreduceR[C] ≜ {D ↦ D′ ∣ R[D]↞◽ D′}

From the de�nition of ↞◽, it should be clear that
†unreduceC,∆

has, as components, lower adjoints of the form unevale and

unsubste,v,x ; from these we can derive totality and monotonicity.

Lemma 7. †unreduceR[C] is total and monotonic.

The post-conditions of C ◽↠ R[C ′] are such that R[C ′] is in

the domain of↞◽. In particular, for each ◽↠ rule which involves

expression evaluation, the ⇒ side-condition ensures that the ⇐e
side-condition on the corresponding↞◽ rule is satis�ed. This es-

tablishes what is in essence the key correctness property for traced

reduction: that it produce a trace that enables a reduction to be

reversed. In isolation this may not seem like much, but recall that

a lower adjoint, when post-composed with the upper adjoint, al-

ready has the property of being in�ationary on the output. Thus

in this lattice-theoretic setting, reversibility is a natural notion of

“su�ciency” for traces, and avoids saying anything concrete about

their actual structure.

Perera et al. use a similar, but big-step, notion of correctness for

expression tracing; there they call it the ability of a trace to explain
a result. We adapt that notion here to our small-step setting, and

show how it relates the correctness of tracing to the suitability of

the trace for implementing the lower adjoint.

De�nition 8 (Local explanation).
R locally explains C i� R[C] ∈ dom(↞◽).

Lemma 8 (Correctness of ◽↠).
If C ◽↠ R[C ′] then R locally explains C ′.

Theorem 1 (Implementation of unreduceC,∆).
If C ◽↠ R[C ′] with R ∶ ∆ then †unreduceR[C ′] = unreduceC,∆ .

Proof. Because of the uniqueness of the lower adjoint, it su�ces to

show that (reduceC , †unreduceR[C ′]) is a Galois connection. See

Appendix, §C.2.

Implementing unstepC,G . Now we take a similar approach to

the ←Ð◽ relation, and show that we obtain an implementation of

unstepC,G for any C ◽Ð→G C ′
, in which implementations of the

form
†unreduceR[C] appear as components.

De�nition 9 (
†unstepT ,C function). Suppose T [C] ←Ð◽ C ′. Then

de�ne the following function from Prefix(C) to Prefix(C ′).
†unstepT [C] ≜ {D ↦ D′ ∣ T [D]←Ð◽ D′}

By unpacking the de�nition of ←Ð◽, it is easy to see that these

functions satisfy

†unstep[C] = idC (5)

†unstep
(T ;R)[D⊎D′] =

†unstepT [D′′⊎D′] ○ (
†unreduceR[D] ⊎ idD′)

(6)

where in Equation 6 we have (T ; R)[D ⊎ D′] ←Ð◽ D′′ ⊎ D
and R[C] ↞◽ D′′

. As in De�nition 4 earlier, the decomposition

T ; R is non-deterministic and thus there are multiple implemen-

tations of
†unstepT ,C , one for each possible interleaving. We show

that all implementations are observationally equivalent by simply

showing that they all implement the same lower adjoint, which is

a straightforward induction on the size of the trace using Equa-

tions 5 and 6 and Theorem 1.

Theorem 2 (Implementation of unstepC,G ).
If C ◽Ð→ T [C ′] and T ∶ G then †unstepT ,C ′ = unstepC,G .

Finally, given Theorem 2, the correctness of traced evaluation

is immediate: it produces traced con�gurations which “explain

themselves”, in that the trace explains the con�guration.

De�nition 10 (Explanation). T explains C i� T [C] ∈ dom(←Ð◽).

Corollary 3 (Correctness of ◽Ð→).
If C ◽Ð→ T [C ′] then T explains C ′.

Implementing unsubste,v,x . We close this section with a brief

discussion on substitution. Although the existence of “unsubsti-

tution” functions is trivial, their computation is somewhat less so,

relying on the variable-annotated values of the form vx , which can

be thought of as traces of substitutions x{v/x}. Since variables x

9



are non-linear there will in general be multiple values of the form

vx in the scope of an unsubstitution.

The idea behind a procedure for unsubstitution for x is to

use the variable annotations to locate all such values, and then

compute their join using ⊔. Clearly, unsubstitution is only de�ned

when these various uses are compatible, i.e. for anyux and vx in the

scope of the unevaluation, u ↑ v and therefore u⊔v is de�ned. This

is always the case when an unsubstitution is applied to a pre�x of

a substituted expression, since all occurrences of x were initially

substituted with the same value vx . Example 4 in §3 illustrated the

behaviour of unsubstitution; in the interests of space we omit the

de�nition, and refer the interested reader to the Appendix, §A.

5 Related work
Reversible process calculi. Interest in reversible process calculi

has grown recently, with applications including speculative execu-

tion, debugging, transactions, and other distributed protocols that

require backtracking. A key challenge is to permit backwards exe-

cution to leverage concurrency, whilst ensuring causal consistency,

the property that every state reached during backwards execution

is computable by a pre�x of the forward execution.

The key di�erence between existing reversible calculi and ours

is that we are able to execute partial con�gurations – forwards and

backwards – in order to compute extremal slices. Beyond this obvi-

ous di�erence, there are minor di�erences in emphasis and tech-

nique. Danos and Krivine’s reversible CCS (RCCS) [5] was early

work in this area, recording fork and join actions in thread-local

memories and using them for synchronisation during reverse ex-

ecution, guaranteeing causal consistency. We achieve causal con-

sistency somewhat more directly, since forward execution literally

constructs a causality graph, and backward execution proceeds by

(non-deterministically but con�uently) consuming su�xes of that

graph.

Lanese et al. [9] extend the RCCS approach to the higher-order

pi (HOπ) calculus in a language they call ρπ (“reversible pi”).

A chief concern of theirs is supporting structural congruences,

such as associativity of parallel composition, which do not hold

in RCCS. A di�erence between their approach and ours is that we

de�ne composition of traces in such a way that it abstracts over

causally irrelevant interleavings, so that syntactic equivalence of

traces coincides with causal equivalence of executions. Lanese

et al. have to de�ne a non-trivial causal equivalence relation for

traces.

Phillips and Ulidowski propose a method for deriving a “revers-

ing” process calculus from any calculus de�nable using structured

operational semantics of a certain kind [14]. They show how to

reformulate each operator of the language into a reversible coun-

terpart. Instead of thread-local memories, they use a trace-based

approach, similar to ours, retaining process syntax whose elimina-

tion would be a source of irreversibility, such as parallel composi-

tion, and tagging this residual syntax with synchronisation infor-

mation. Again the chief di�erence is that reverse computation is

“on the nose”, rather than up to a Galois connection.

In recent work, Cristescu et al. [4] develop a compositional

semantics for the reversible pi calculus, focusing in particular on

name mobility. In our calculus, we forgo pi-calculus style names

and use global channels bound by lexically scoped identi�ers. Thus

we side-step the complexity of “undoing” scope extrusion during

backwards execution, at a possible loss in expressivity.

Concurrent dynamic slicing and debugging. An early exam-

ple of concurrent dynamic slicing is the work of Duesterwald et

al., who consider a language with synchronous message-passing

[6]. They give a notion of correctness with respect to a slicing cri-

terion, but �nd that computing least slices is undecidable.

Inspired by Cheng’s in�uential graph-theoretic formulation of

concurrent slicing [3], most subsequent work has, not unreason-

ably, recast dynamic slicing as a dependency-graph reachability

problem. (Indeed our unevaluation semantics for traces does es-

sentially the same thing.) However, in the literature to date there

is a notable lack of correctness and minimality properties for sys-

tems for concurrent dynamic slicing. For example Goswami and

Mall consider a language with shared-memory concurrency [7],

and Mohapatra et al. tackle slicing for concurrent Java [11], but

both present only algorithms, with no formal guarantees. Tallam

et al. also develop an approach based on dependency graphs, but

again o�er only algorithms and empirical results [18]. Moreover in

most of this work, the slicing criteria are typically restricted to the

(entire) values of particular variables, rather than arbitrary parts

of con�gurations or values.

These limitations makes existing dynamic slicing approaches

unsuitable for many important applications, such as o�ine analy-

sis and provenance tracking, which need to work safely and accu-

rately within a portion of a larger computation. Most other work

on concurrent slicing is static rather than dynamic, for which the

applications are rather di�erent. However least slices are usually

undecidable in the static setting.

Other debugging solutions for concurrency also make use of

dependency/causal graphs. For example Kahlon and Wang’s con-
current trace program format [8] orders events from the same

thread by their execution order, and events from di�erent threads

via the causal relations implied by fork-join, as happens with our

causality graphs. The goal is essentially the same: to eliminate re-

dundant interleavings from consideration.

Distributed provenance and tracing. Souilah et al. introduce a

provenance-tracking semantics for distributed systems [17] which

is somewhat related to our approach. Every value in their system

accumulates a provenance record specifying where it came from,

including how it was passed between agents. This provenance

information can be used by an agent as a form of guarded choice, in

order to decide whether to accept a value from a particular sender.

Applications include authentication, auditing, and collaborative

software. This is an interesting twist on our philosophy, where

at the application level “explanations” are completely hidden.

Llorens et al. de�ne an instrumented semantics for CSP which

produces a trace (which they call a “track”) alongside the output

[10]. Their contribution consists of the tracing semantics and a

proof of correctness; they leave developing applications such as

slicing and debugging for future work. An interesting point of

comparison is in the correctness criterion for traces. In their sys-

tem, a “track” is correct if it faithfully captures the reduction se-

quence; in ours, if it can be used to unevaluate the �nal con�gura-

tion. In fact these amount to much the same thing: in our system,

by construction, the unevaluation semantics must reverse exactly

the steps recorded in the trace of the forward computation, al-

though not necessarily in the exact reverse order.

6 Conclusion
The key observation underpinning this paper is that computing

least dynamic slices is decidable when a language exhibits su�-

cient sequentiality to allow for the existence of the required min-

ima, and non-trivial when it exhibits enough parallelism to per-

mit the relative independence of parts of the program. To show

that this is possible even in the presence of non-determinism, and

moreover that such slices can be calculated without foregoing the

bene�ts of a concurrent implementation, are two of our main con-

tributions.

To the best of our knowledge, the order-theoretic “problem def-

inition” we presented in §3 is the �rst purely extensional account

10



of least dynamic slices for concurrency. Often in dynamic slic-

ing, the notion of su�ciency is tied to a particular dependency

graph or technique for calculating them (e.g. [16]). Our account

is tied to a modest �-propagating extension of the semantics; we

intuitively construe this as a “deterministically parallel” evalua-

tion scheme, where every forward computation is informationally

maximal, producing as much output as it can even in the presence

of blocking or pending sub-computations.

We close by mentioning one important topic for future work.

Like programs, traces may be ordered under erasure. Unevaluation

yields a natural criterion for su�ciency of a trace with respect

to some part of the output: we have de�ned a trace to explain
a sliced output if and only if the trace lies in the domain of the

unevaluation function for that output. So one future plan is to use

a variant of backwards execution to calculate a least explanation of

a given part of the output, the smallest trace still able to unevaluate

it.

Acknowledgments
We are grateful to James Cheney for comments on earlier drafts.

The �rst author acknowledges support from the Air Force O�ce

of Scienti�c Research, Air Force Material Command, USAF, under

grant number FA8655-13-1-3006.

References
[1] G. Berry. Stable models of typed λ-calculi. In Proceedings of the Fifth

Colloquium on Automata, Languages and Programming, pages 72–89,

London, UK, 1978. Springer-Verlag.

[2] G. Berry and G. Boudol. The chemical abstract machine. In Proceed-
ings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’90, pages 81–94, New York, NY, USA,

1990. ACM.

[3] J. Cheng. Slicing concurrent programs: A graph-theoretical approach,

1993.

[4] I. D. Cristescu, J. Krivine, and D. Varacca. A compositional semantics

for the reversible pi-calculus. In Proceedings of Twenty-Eighth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS 2013), June

2013.

[5] V. Danos and J. Krivine. Reversible communicating systems. In

P. Gardner and N. Yoshida, editors, CONCUR 2004 - Concurrency The-
ory, volume 3170 of Lecture Notes in Computer Science, pages 292–307.

Springer Berlin Heidelberg, 2004.

[6] E. Duesterwald, R. Gupta, and M. L. So�a. Distributed slicing and

partial re-execution for distributed programs. In Proceedings of the
5th International Workshop on Languages and Compilers for Parallel
Computing, pages 497–511, London, UK, 1993. Springer-Verlag.

[7] D. Goswami and R. Mall. Dynamic slicing of concurrent programs. In

M. Valero, V. Prasanna, and S. Vajapeyam, editors, High Performance
Computing – HiPC 2000, volume 1970 of Lecture Notes in Computer
Science, pages 15–26. Springer, Berlin / Heidelberg, 2000.

[8] V. Kahlon and C. Wang. Universal causality graphs: a precise

happens-before model for detecting bugs in concurrent programs.

In Proceedings of the 22nd international conference on Computer
Aided Veri�cation, CAV’10, pages 434–449, Berlin, Heidelberg, 2010.

Springer-Verlag.

[9] I. Lanese, C. A. Mezzina, and J.-B. Stefani. Reversing higher-order pi.

In Proceedings of the 21st International Conference on Concurrency The-
ory, CONCUR ’10, pages 478–493, Berlin, Heidelberg, 2010. Springer-

Verlag.

[10] M. Llorens, J. Oliver, J. Silva, and S. Tamarit. A tracking semantics

for CSP. In Proceedings of the 10th international conference on Math-
ematics of program construction, MPC’10, pages 248–270, Berlin, Hei-

delberg, 2010. Springer-Verlag.

[11] D. Mohapatra, R. Mall, and R. Kumar. An e�cient technique for

dynamic slicing of concurrent Java programs. In S. Manandhar,

J. Austin, U. Desai, Y. Oyanagi, and A. Talukder, editors, Applied
Computing, volume 3285 of Lecture Notes in Computer Science, pages

255–262. Springer, Berlin / Heidelberg, 2004.

[12] R. Perera. Interactive Functional Programming. PhD thesis, University

of Birmingham, Birmingham, UK, July 2013. http://etheses.bham.ac.

uk/4209/.

[13] R. Perera, U. A. Acar, J. Cheney, and P. B. Levy. Functional programs

that explain their work. In Proceedings of the 17th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’12, pages

365–376, New York, NY, USA, 2012. ACM.

[14] I. Phillips and I. Ulidowski. Reversing algebraic process calculi. In

FOSSACS ’06, Lecture Notes in Computer Science, pages 246–260.

Springer, 2006.

[15] G. D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5(3):223–255, 1977.

[16] J. Silva and O. Chitil. Combining algorithmic debugging and program

slicing. In Proceedings of the 8th ACM SIGPLAN International Confer-
ence on Principles and Practice of Declarative Programming, PPDP ’06,

pages 157–166, New York, NY, USA, 2006. ACM.

[17] I. Souilah, A. Francalanza, and V. Sassone. A formal model of prove-

nance in distributed systems. In First workshop on on Theory and prac-
tice of provenance, TAPP’09, pages 1:1–1:11, Berkeley, CA, USA, 2009.

USENIX Association.

[18] S. Tallam, C. Tian, and R. Gupta. Dynamic slicing of multithreaded

programs for race detection. In 24th IEEE International Conference
on Software Maintenance (ICSM 2008), September 28 - October 4, 2008,
Beijing, China, pages 97–106. IEEE, 2008.

11

http://etheses.bham.ac.uk/4209/
http://etheses.bham.ac.uk/4209/


Appendix
A Unsubstitution

De�nition 11 (
†unsubstx ). Suppose e{v/x} = e′. Then de�ne the

following function †unsubste,v,x from Prefix(e′) to Prefix(e, v):
†unsubste,v,x(s′) ≜ (θ{x}(s′), φ{x}(s′))

where the auxiliary partial functions θΓ(−) and φΓ(−) are de�ned
in Figure 11.

In Figure 11 we abuse notation somewhat and write Γ∖ x to mean

Γ∖{x} and Γ∖Ð→g to mean Γ∖{g1, . . . , gn}. So that φΓ(−) is well-

de�ned (albeit partial), when the right-hand side of any equation

takes a join u ⊔ v , the reader should assume an implicit guard on

the left-hand of the equation asserting u ↑ v .

This function implements the lower adjoint unsubste,v,x iden-

ti�ed in §3.3.

Lemma 9 (Implementation of unsubste,v,x ). Suppose e{v/x} = e′.
Then †unsubste,v,x = unsubste,v,x .

B Mutual recursion
The functional language presented in Perera et al. supports mutual

recursion, but only as an explicit encoding via additional func-

tional arguments. In a more realistic language, one would prefer

to introduce blocks of mutually recursive functions, without the

need to pass additional arguments. Here we show how to extend

the expression language introduced in §2 with letrec-style mutual

recursion.

To add mutual recursion to our language, we introduce a letrec
form which de�nes a collection

ÐÐ→gx.e of mutually recursive func-

tions, where the identi�ers in
Ð→g are distinct. A functional value

additionally carries the collection
ÐÐ→gx.e of function de�nitions with

which it was mutually de�ned. The new syntax and evaluation

rules are given in Figure 12.

Expression e ∶∶= . . . ∣ letrecÐÐ→gx.e in e′

Value u, v ∶∶= . . . ∣ ⟨ÐÐ→gy.e, λx.e′⟩
e⇒ v

. . .
e1 ⇒ ⟨

ÐÐ→gy.e, λx.e3⟩ e2 ⇒ v2 e3{
ÐÐ→gy.e/Ð→g }{v2/x}⇒ v

e1 e2 ⇒ v

e1{
ÐÐ→gx.e/Ð→g }, e1 ⇒ v

letrecÐÐ→gx.e in e1 ⇒ v

Figure 12. Mutually recursive functions

A simultaneous form of substitution e′{ÐÐ→gx.e/Ð→g } is used for

recursive de�nitions:

De�nition 12.

e′{ÐÐ→gx.e/Ð→g } ≜ e′{⟨ÐÐ→gx.e, λx1.e1⟩/g1} . . .{⟨ÐÐ→gx.e, λxn.en⟩/gn}
Simultaneous substitution preserves meets when domain-restricted

to pre�x-lattices, and induces a family of Galois connections.

Lemma 10.
(e1{ÐÐÐ→gx.e1/Ð→g }) ⊓ (e2{ÐÐÐ→gx.e2/Ð→g }) = (e1 ⊓ e2){ÐÐÐÐÐÐ→gx.e1 ⊓ e2/Ð→g }

Corollary 4. Suppose e′{ÐÐ→gx.e/Ð→g } = e′′. Overloading subste′,ÐÐ→gx.e
to mean −{−/Ð→g } domain-restricted to Prefix(e′,ÐÐ→gx.e), there ex-

ists a unique monotonic function unsubste′,ÐÐ→gx.e from Prefix(e′′) to
Prefix(e′,ÐÐ→gx.e) satisfying
1. unsubste′,ÐÐ→gx.e ○ subste′ ,ÐÐ→gx.e = id

(e′,ÐÐ→gx.e)
2. subste′ ,ÐÐ→gx.e ○ unsubste′ ,ÐÐ→gx.e ⊒ ide′′

The lower adjoint forms can be implemented as follows. The

goal for simultaneous unsubstitution with respect to a set of si-

multaneous function names
Ð→g in e′ must recover a set of recur-

sive de�nitions
ÐÐ→gx.e, where each recursive de�nition is the least

upper bound of all the uses of that function that occur in e′. “Uses”

include not only direct uses of the function body ei for a functional

value ⟨ÐÐ→gx.s, λxi.ei⟩gi but also indirect uses of the set of recursive

functions with which gi was mutually de�ned. First we de�ne the

following partial function.

De�nition 13. For any sequence of variablesÐ→g , de�ne the partial
function †unsubstÐ→g to take an expression e′ to the expression s and
recursive de�nitionsÐÐ→gx.e such that

gixi.ei = (giyi.s′i) ⊔ (⊔
Ð→δ )i

where

e′ = {⟨δn, λyn.s′n⟩/gn}. . .{⟨δ1, λy1.s′1⟩/g1}s
The partiality arises because both the joins and the individual un-

substitutions of each gn are not necessarily de�ned. But suitably

restricted, this de�nition does indeed give the required lower ad-

joints.

Lemma11 (
†unsubste′ ,ÐÐ→gx.e = unsubste′,ÐÐ→gx.e). Suppose e

′{ÐÐ→gx.e/Ð→g } =
e′′, and write †unsubste′ ,ÐÐ→gx.e for †unsubstÐ→g domain-restricted to
Prefix(e′′). Then †unsubste′,ÐÐ→gx.e = unsubste′,ÐÐ→gx.e.

Proof. See §C.3.

To illustrate De�nition 13, we again adopt an “adjoint pattern-

matching” notation so that, given a substitution e′{ÐÐ→gx.e/Ð→g } =
e′′, the pattern {ÐÐ→gx.s/Ð→g }s′ matches any expression s′′ ⊑ e′′, with

(s′,ÐÐ→gx.s) = †unsubste′ ,ÐÐ→gx.e(s
′′).

Example 10. Mutual recursion example.

C Proofs
Here we give longer proofs omitted from the main body of the

paper.

C.1 Proof of Lemma 2
Proof. Suppose C ↠∆ C ′

where Γ ⊢ ∆Γ′, and consider any D,

D′ ⊑ C . If D = �Γ then D ↠ �Γ′ . But then D ⊓ D′ ↠ �Γ′ . If

D′ = �Γ a similar argument applies by commutativity. Otherwise

we proceed by case analysis, considering only the cases when

D,D′ ≠ �Γ, using Lemma 4 for the cases involving expression

evaluation, and Lemma 5 for the cases involving substitution.

Case stop. The conclusion is immediate since D = J0Kα = D′
.

Case new. We have

Jνx.PKα ↠ JP{c/x}Kα

Jνx.P ′Kα ↠ JP ′{c/x}Kα

12



θΓ(�) = �

θΓ(vy) = {
y if x = y
vy otherwise

φΓ(()) = ()

θΓ(λx.e) = λx.θΓ∖x(e)
θΓ(e1 e2) = θΓ(e1) θΓ(e2)

θΓ(letrec
ÐÐ→gx.e in e′) = letrecÐÐ→gx.e in θΓ∖Ð→g (e′)

θΓ((e1, e2)) = (θΓ(e1), θΓ(e2))
θΓ(fst e) = fst θΓ(e)
θΓ(inl e) = inl θΓ(e)

θΓ(case e {inl x1.e1; inr x2.e2}) = case θΓ(e) {inl x1.θΓ∖x1(e1); inr x2.θΓ∖x2(e2)}

θΓ(�) = �
θΓ(0) = 0

θΓ(run e) = run θΓ(e)
θΓ(P1 ∥ P2) = θΓ(P1) ∥ θΓ(P2)
θΓ(νx.P) = νx.θΓ∖x(P)

θΓ(e1⟨e2⟩) = θΓ(e1)⟨θΓ(e2)⟩
θΓ(e(x).P) = θΓ(e)(x).θΓ∖x(P)

φΓ(�) = �

φ{x}(vy) = {
v if x = y
� otherwise

φΓ(()) = �
φΓ(λx.e) = φΓ∖x(e)
φΓ(e1 e2) = φΓ(e1) ⊔ φΓ(e2)

φΓ(letrec
ÐÐ→gx.e in e′) = φΓ∖Ð→g (e′)

φΓ((e1, e2)) = φΓ(e1) ⊔ φΓ(e2)
φΓ(fst e) = φΓ(e)
φΓ(inl e) = φΓ(e)

φΓ(case e {inl x1.e1; inr x2.e2}) = φΓ(e) ⊔ φΓ∖x1(e1) ⊔ φΓ∖x2(e2)

φΓ(�) = �
φΓ(0) = �

φΓ(run e) = φΓ(e)
φΓ(P1 ∥ P2) = φΓ(P1) ⊔ φΓ(P2)
φΓ(νx.P) = φΓ∖x(P)

φΓ(e1⟨e2⟩) = φΓ(e1) ⊔ φΓ(e2)
φΓ(e(x).P) = φΓ(e) ⊔ φΓ∖x(P)

Figure 11. Expression θΓ(−) and value φΓ(−) components of unsubstitution with respect to Γ, where Γ = ∅ or Γ = {x}.

where D = Jνx.PKα and D′ = Jνx.P ′Kα . By congruence D ⊓D′ =
Jνx.P ⊓P ′Kα , and then by the de�nition of↠

Jνx.P ⊓P ′Kα ↠ J(P ⊓P ′){c/x}Kα

Then J(P ⊓P ′){c/x}Kα = JP{c/x}Kα ⊓ JP ′{c/x}Kα by Lemma 5

and congruence.

Case fork. We have

JP1 ∥ P2K
α ↠ JP1K

α.1, [P2]α.2

JP1
′ ∥ P2

′Kα ↠ JP1
′Kα.1, [P2

′]α.2

where D = JP1 ∥ P2K
α

and D′ = JP1
′ ∥ P2

′Kα . By congruence

D ⊓D′ = JP1 ⊓P1
′ ∥ P2 ⊓P2

′Kα , and then by the de�nition of↠
JP1 ⊓P1

′ ∥ P2 ⊓P2
′Kα ↠ JP1 ⊓P1

′Kα.1, [P2 ⊓P2
′]α.2

Then we have JP1 ⊓P1
′Kα.1, JP2 ⊓P2

′Kα.2 = (JP1K
α.1, JP2K

α.2) ⊓
(JP1

′Kα.1, JP2
′Kα.2) by congruence.

Case send-on. We have

Je1⟨e2⟩Kα ↠ Jc⟨e2⟩Kα

Je1
′⟨e2

′⟩Kα ↠ Jc′⟨e2
′⟩Kα

where D = Je1⟨e2⟩Kα and D′ = Je1
′⟨e2

′⟩Kα , with e1 ⇒ c and

e1
′ ⇒ c′. By congruence D ⊓ D′ = J(e1 ⊓ e1

′)⟨e2 ⊓ e2
′⟩Kα , and

then by the de�nition of↠
J(e1 ⊓ e1

′)⟨e2 ⊓ e2
′⟩Kα ↠ J(c ⊓ c′)⟨e2 ⊓ e2

′⟩Kα

with e1 ⊓ e1
′ ⇒ c ⊓ c′ by Lemma 4. Then J(c ⊓ c′)⟨e2 ⊓ e2

′⟩Kα =
Jc⟨e2⟩Kα ⊓ Jc′⟨e2

′⟩Kα by congruence.

Case send-ready. We have

Jc⟨e2⟩Kα ↠ Jc⟨v⟩Kα

Jc′⟨e2
′⟩Kα ↠ Jc′⟨v ′⟩Kα

where D = Jc⟨e2⟩Kα and D′ = Jc′⟨e2
′⟩Kα , with e2 ⇒ v and

e2
′ ⇒ v ′. By congruenceD⊓D′ = J(c ⊓ c′)⟨e2 ⊓ e2

′⟩Kα , and then

by the de�nition of↠
J(c ⊓ c′)⟨e2 ⊓ e2

′⟩Kα ↠ J(c ⊓ c′)⟨v ⊓ v ′⟩Kα

with e2 ⊓ e2
′ ⇒ v ⊓ v ′ by Lemma 4. Then J(c ⊓ c′)⟨v ⊓ v ′⟩Kα =

Jc⟨v⟩Kα ⊓ Jc′⟨v ′⟩Kα by congruence.

Case rcv-ready. We have

Je(x).PKα ↠ Jc(x).PKα

Je′(x).P ′Kα ↠ Jc′(x).P ′Kα

where D = Je(x).PKα and D′ = Je′(x).P ′Kα , with e ⇒ c and

e′ ⇒ c′. By congruence D ⊓ D′ = J(e ⊓ e′)(x).P ⊓P ′Kα , and

then by the de�nition of↠
J(e ⊓ e′)(x).P ⊓P ′Kα ↠ J(c ⊓ c′)(x).P ⊓P ′Kα

with e ⊓ e′ ⇒ c ⊓ c′ by Lemma 4. Then J(c ⊓ c′)(x).P ⊓P ′Kα =
Jc(x).PKα ⊓ Jc′(x).P ′Kα by congruence.

Cases join-bot-sendand join-bot-rcv. IfD = J�Kα , Jc(x).PKβ

or D = Jc⟨v⟩Kα , J�Kβ then D ↠ J�Kα.β , and we reason simi-

larly to when D = �, since we also have D ⊓ D′ ↠ J�Kα.β . If

D′ = J�Kα , Jc(x).PKβ or D′ = Jc⟨v⟩Kα , J�Kβ a similar argument

applies by commutativity.

Case join-bot-chan. Otherwise, D = Jc⟨v⟩Kα , Jc′(x).PKβ and

D′ = Jc′′⟨v ′⟩Kα , Jc′′′(x).P ′Kβ . If c = �, then D is stuck in virtue of

the side-condition on the join rule. But thenD⊓D′ = J�⟨v ⊓ v ′⟩Kα ,
J(c′ ⊓ c′′′)(x).P ⊓P ′Kβ , which is stuck for the same reason. If

c′ = �, then D is again stuck in virtue of the side-condition. But

thenD⊓D′ = J(c ⊓ c′′)⟨v ⊓ v ′⟩Kα , J�(x).P ⊓P ′Kβ , which is stuck

for the same reason. In either case step(D) ⊓ step(D′) = � =
step(D ⊓D′). If c′′ = � or c′′′ = � a similar argument applies by

commutativity.

Case join. We have

Jc⟨v⟩Kα , Jc(x).PKβ ↠ JP{v/x}Kα.β

Jc⟨v ′⟩Kα , Jc(x).P ′Kβ ↠ JP ′{v ′/x}Kα.β

13



where c ≠ �, and also D = Jc⟨v⟩Kα , Jc(x).PKβ and D′ =
Jc⟨v ′⟩Kα , Jc(x).P ′Kβ . ThenD⊓D′ = Jc⟨v ⊓ v ′⟩Kα , J(c)(x).P ⊓P ′Kβ

by congruence, and by the de�nition of↠
Jc⟨v ⊓ v ′⟩Kα , Jc(x).P ⊓P ′Kβ ↠ J(P ⊓P ′){(v ⊓ v ′)/x}Kα.β

Then J(P ⊓P ′){(v ⊓ v ′)/x}Kα.β = JP{v/x}Kα.β ⊓ JP ′{v ′/x}Kα.β
by Lemma 5.

Case run. We have

Jrun eKα ↠ JPKα

Jrun e′Kα ↠ JP ′Kα

where D = Jrun eKα and D′ = Jrun e′Kα , with e ⇒ {P} and

e′ ⇒ {P ′}. By congruence D ⊓ D′ = Jrun e ⊓ e′Kα , and then by

the de�nition of↠
Jrun e ⊓ e′Kα ↠ JP ⊓P ′Kα

with e ⊓ e′ ⇒ {P} ⊓ {P ′} by Lemma 4. Then JP ⊓P ′Kα =
JPKα ⊓ JP ′Kα by congruence.

C.2 Proof of Theorem 1
Proof. Suppose Γ ⊢ C and Γ ⊢ R ∶ Γ′ with C ◽↠ R[C ′].
(1) reduceC ○†unreduceR[C ′] ⊒ idC ′ . Consider anyD′ ⊑ C ′

; we

proceed by case analysis on R[D′]↞◽ D.

Case bot.

R[�Γ′]↞◽ �Γ

The conclusion is immediate.

Case stop.

J0Kα ↞◽ [0]α

By the de�nition of↠
[0]α ↠ J0Kα

Case new.

[νx.JPKα]α ↞◽ Jνx.P ′Kα

where P = {c′/x}P ′
. By the de�nition of↠
Jνx.P ′Kα ↠ JP ′{c/x}Kα

with P ′{c/x} ⊒ P by Corollary 2.

Case fork.

[JP1K
α.1 ∥ JP2K

α.2]α ↞◽ JP1 ∥ P2K
α

By the de�nition of↠
JP1 ∥ P2K

α ↠ JP1K
α.1, JP2K

α.2

Case send-on.

[e1.Jc⟨e2⟩Kα]α ↞◽ Js1⟨e2⟩Kα

with c⇐e1 s1. Since s1 ⊑ e1, by the de�nition of↠
Js1⟨e2⟩Kα ↠ Jc′⟨e2⟩Kα

with s1 ⇒ c′. Then c′ ⊒ c by Corollary 1.

Case send-ready.

[e2.Jc⟨v⟩Kα]α ↞◽ Jc⟨s2⟩Kα

with v ⇐e2 s2. Since s2 ⊑ e2, by the de�nition of↠
Jc⟨s2⟩Kα ↠ Jc⟨v ′⟩Kα

with s2 ⇒ v ′. Then v ′ ⊒ v by Corollary 1.

Case rcv-ready.

[e.Jc(x).PKα]α ↞◽ Js(x).PKα

with c⇐e s. Since s ⊑ e, by the de�nition of↠
Js(x).PKα ↠ Jc′(x).PKα

with s⇒ c′. Then c′ ⊒ c by Corollary 1.

Case join.

[c⟨v⟩]α , [c(x).JPKα.β]β ↞◽ Jc⟨u⟩Kα , Jc(x).P ′Kβ

where P = {u/x}P ′
and c ≠ �. Since c ≠ �, by the de�nition of↠

Jc⟨u⟩Kα , Jc(x).P ′Kβ ↠ JP ′{u/x}Kα.β

with P ′{u/x} ⊒ P by Corollary 2.

Case run.

[run e.JPKα]α ↞◽ Jrun sKα

with {P}⇐e s. Since s ⊑ e, by the de�nition of↠
Jrun sKα ↠ JP ′Kα

with s⇒ {P ′}. Then {P ′} ⊒ {P} by Corollary 1 and so P ′ ⊒ P .

(2) †unreduceR[C ′] ○ reduceC ⊑ idC . Consider any D ⊑ C .

If D is stuck then reduceC(D) = �∆′ by de�nition and then

†unreduceR[C ′](�∆′) = �∆ also by de�nition. Otherwise we pro-

ceed by case analysis on D ◽↠ R[D′].
Case bot.

�Γ ◽↠ �∆[�Γ′]
By the de�nition of↞◽

�∆[�Γ′]↞◽ �Γ

Case stop.

[0]α ◽↠ J0Kα

By the de�nition of↞◽
J0Kα ↞◽ [0]α

Case new.

Jνx.PKα ◽↠ [νx.JP{c/x}Kα]α

Note thatP{c/x} = {c/x}P by Corollary 2. Then by the de�nition

of↞◽
[νx.J{c/x}PKα]α ↞◽ Jνx.PKα

Case fork.

JP1 ∥ P2K
α ◽↠ [JP1K

α.1 ∥ JP2K
α.2]α

By the de�nition of↞◽
[JP1K

α.1 ∥ JP2K
α.2]α ↞◽ JP1 ∥ P2K

α

Case send-on.

Je1⟨e2⟩Kα ◽↠ [e1.Jc⟨e2⟩Kα]α

with e1 ⇒ c. Since c ∈ dom(unevale1), by the de�nition of↞◽
[e1.Jc⟨e2⟩Kα]α ↞◽ Js1⟨e2⟩Kα

with c⇐e1 s1. Then s1 ⊑ e1 by Corollary 1.

Case send-ready.

Jc⟨e2⟩Kα ◽↠ [e2.Jc⟨v⟩Kα]α

with e2 ⇒ v . Since v ∈ dom(unevale2), by the de�nition of ◽↠
[e2.Jc⟨v⟩Kα]α ↞◽ Jc⟨s2⟩Kα

with v ⇐e2 s2. Then s2 ⊑ e2 by Corollary 1.

14



Case rcv-ready.

Je(x).PKα ◽↠ [e.Jc(x).PKα]α

with e⇒ c. Since c ∈ dom(unevale), by the de�nition of↞◽
[e.Jc(x).PKα]α ↞◽ Js(x).PKα

with c⇐e s. Then s ⊑ e by Corollary 1.

Case join.

Jc⟨v⟩Kα , Jc(x).PKβ ◽↠ [c⟨v⟩]α , [c(x).JP{v/x}Kα.β]β

Note that P{v/x} = {v/x}P by Corollary 2. By the de�nition of

↞◽
[c⟨v⟩]α , [c(x).JP{v/x}Kα.β]β ↞◽ Jc⟨v⟩Kα , Jc(x).PKβ

Case join-bot-chan, join-bot-send and join-bot-rcv. If we

have any of the following traced reductions

Jc⟨v⟩Kα , Jc′(x).PKβ ◽↠ [�]α , [�.J�Kα.β]β

J�Kα , Jc′(x).PKβ ◽↠ [�]α , [�.J�Kα.β]β

Jc⟨v⟩Kα , J�Kβ ◽↠ [�]α , [�.J�Kα.β]β

then by the de�nition of↞◽
[�]α , [�.J�Kα.β]β ↞◽ J�Kα , J�Kβ

Case run.

Jrun eKα ◽↠ [run e.JPKα]α

where e ⇒ {P}. Since {P} ∈ dom(unevale), by the de�nition of

↞◽
[run e.JPKα]α ↞◽ Jrun sKα

with {P}⇐e s. Then s ⊑ e by Corollary 1.

C.3 Proof of Lemma 11
Proof. First we show

†unsubste′ ,ÐÐ→gx.e ○ subste′,ÐÐ→gx.e = id
(e′ ,ÐÐ→gx.e).

Suppose e′{ÐÐ→gx.e/Ð→g } = {ÐÐ→gy.s/Ð→g }s′. We want to show that

(s′,ÐÐ→gy.s) = (e′,ÐÐ→gx.e). We have:

= e′{ÐÐ→gx.e/Ð→g }
= e′{⟨ÐÐ→gx.e, λx1.e1⟩/g1} . . .{⟨ÐÐ→gx.e, λxn.en⟩/gn} De�nition 12

= {⟨ÐÐ→gx.e, λxn.en⟩/gn}. . .{⟨ÐÐ→gx.e, λx1.e1⟩/g1}e′ Corollary 2

By De�nition 13 we have s′ = e′, and giyi.si = gixi.ei ⊔ (ÐÐ→gx.e)i =
gixi.ei for every i.

Now we show subste′,ÐÐ→gx.e ○
†unsubste′,ÐÐ→gx.e ⊒ ide′′ . Suppose

e′′ = {ÐÐ→gx.e/Ð→g }e′. We want e′{ÐÐ→gx.e/Ð→g } ⊒ e′′. By De�ni-

tion 13, we have e′′ = {⟨δn, λxn.s′n⟩/gn}. . .{⟨δ1, λx1.s′1⟩/g1}e′,
where gixi.ei = (gixi.s′i) ⊔ (⊔

Ð→
δ )i. By Corollary 2, which also

implies monotonicity, e′{⟨δ1, λx1.s′1⟩/g1} . . .{⟨δn, λxn.s′n⟩/gn} ⊒
e′′. Since

ÐÐ→gx.e ⊒ δi and ei ⊒ s′i for every i, we also have

e′{⟨ÐÐ→gx.e, λx1.e1⟩/g1} . . .{⟨ÐÐ→gx.e, λxn.en⟩/gn} ⊒ e′′ by mono-

tonicity. Then e′{ÐÐ→gx.e/Ð→g } ⊒ e′′ by De�nition 12.

15


	Introduction
	Concurrent setting
	Expressions
	Processes

	Problem definition
	Partial configurations
	Least process slices
	Modular components for reversible concurrency

	Implementing reversible concurrency
	Configuration traces
	Traced evaluation
	Traced unevaluation

	Related work
	Conclusion
	Unsubstitution
	Mutual recursion
	Proofs
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Lemma 11


