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Abstract. We study the class of relations implemented by nested word
to word (visibly pushdown) transducers. We show that any such rela-
tion can be uniformized by a functional relation from the same class,
implemented by an unambiguous transducer. We give an exponential
upper bound on the state complexity of the uniformization, generalizing
the known Schützenberger construction for the disambiguation of a non-
deterministic automaton from standard finite-state machines to nested
word (visibly pushdown) automata.
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1 Introduction

A central result in the theory of rational languages is the unambiguity theorem [1,
2], which states that every rational function can be implemented by an unam-
biguous transducer, that is, a transducer that has at most one successful run on
any input. Schützenberger [3] gave an elegant and direct proof of the unambigu-
ity theorem, by showing, for any rational function, a matrix representation which
can be made unambiguous. It was subsequently shown [2] that the construction
of Schützenberger can be used as the foundation for several results in the theory
of rational functions, most notably the rational uniformization theorem and the
rational cross-section theorem (see [4, 5, 2]).

In more detail, the construction of Schützenberger starts with a (possibly
non-deterministic) finite-state transducer T , and constructs a new finite-state
transducer with the property that any input string has at most one successful
run. The construction performs a cross product of the subset automaton with
the original automaton, and shows that certain edges in the cross product can
be removed to obtain unambiguity, while preserving the language. As a simple
consequence, the input-output relation that relates two words (u, w) if the trans-
ducer T can output w on input u, can be uniformized: for every u in the domain
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of T , we can pick a unique w that is related to it (the rational uniformization
theorem).

In this paper, we present an extension of the construction by Schützenberger
to transducers from nested words to words. A nested word consists of a word over
an alphabet, together with a matching relation that relates “call” positions in
the word with corresponding “return” positions. Nested word automata [6] were
introduced as a subclass of pushdown automata which are expressive enough for
many application domains but nevertheless retain many closure and decidabil-
ity properties of regular languages. Nested word automata distinguish between
“call,” “return,” and “internal” positions of the word, and informally, push a
symbol on the runtime stack on a call letter, pop a symbol on a return, and do
not touch the stack on an internal letter.

These automata were extended to nested word transducers by Raskin and
Servais [7] (under the name “visibly pushdown transducers”). The definition of
nested word transducers in [7] allows transitions with ε-marking, but ensures
that no transition can read and write symbols of different types (call, internal
and return symbols, in terms of visibly pushdown automata). We study a model
of nested-word to word transducers considered in [8, 9], in which the output
word carries no structural information (e.g., call, return, or internal). That is,
our transducers can be seen as transforming nested words into (normal) words.

Our main construction generalizes Schützenberger’s construction to give an
unambiguous transducer that is at most a single exponential larger than the
input transducer. This improves a doubly exponential construction of [10] based
on a notion of look-ahead. Our construction relies on a summarization of a
nested word automaton, which captures the available properly-nested computa-
tion paths between two states, as well as the standard determinization construc-
tion for nested word automata from [6]. We then show that the product of these
automata can be pruned in steps analogous to Schützenberger’s construction for
finite-state automata to get an unambiguous automaton.

As a consequence of our construction, we obtain a uniformization theorem
for nested-word to word transducers: any relation defined by a nested-word to
word transducer can be uniformized by a functional (i. e., single-valued) relation
implemented by an unambiguous transducer. A variant of our construction, not
described in detail in this extended abstract, also applies to so-called weakly
hierarchical nested word automata from [6, 11], which are restricted to record
only the current state on the stack.

For several other classes of algebraic (i. e., pushdown) transductions, uni-
formization theorems were obtained in [12]. However, the natural question of
uniformizing nested word transductions was still open.

2 Nested Words and Transducers

A nested word of length k over an alphabet Σ is a pair u = (x, ν), where x ∈ Σk

and ν is a matching relation of length k, that is, a subset ν ⊆ {−∞, 1, . . . , k} ×
{1, . . . , k, +∞} such that, first, if ν(i, j) holds, then i < j; second, for 1 ≤ i ≤ k
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each of the sets {j | ν(i, j)} and {j | ν(j, i)} contains at most one element; third,
whenever ν(i, j) and ν(i′, j′), it cannot be the case that i < i′ ≤ j < j′. We also
assume that ν(−∞,+∞) never holds.

If ν(i, j), then the position i in the word u is called a call, and the position
j a return. All positions from {1, . . . , k} that are neither calls nor returns are
internal. A call (a return) is matched if ν matches it to an element of {1, . . . , k}
and unmatched otherwise.

We shall call a nested word closed if it has no unmatched calls, and well-
matched if it has no unmatched calls and no unmatched returns. We denote the
set of all nested words over Σ by Σ∗n, the set of all closed nested words by Σ∗c,
and the set of all well-matched words by Σ∗w. Observe that Σ∗w ( Σ∗c ( Σ∗n.

The family of all non-empty (word) languages over the alphabet ∆ is denoted
by L(∆∗).

Define a (nested-word to word) transducer over the input alphabet Σ and
output alphabet ∆ as a structure T = (Q,P, δ,Qi, Qf , P i), where:

– Q is a finite non-empty set of (linear) states,
– P is a finite set of hierarchical states,
– δ = (δcall, δint, δret), where

• δint ⊆ Q× Σ×Q× L(∆∗) is a set of internal transitions,
• δcall ⊆ Q× Σ×Q× P × L(∆∗) is a set of call transitions,
• δret ⊆ P ×Q× Σ×Q× L(∆∗) is a set of return transitions,

– Qi ⊆ Q and Qf ⊆ Q are sets of initial and final linear states, and
– P i ⊆ P is a set of initial hierarchical states.

A path through a transducer T driven by an input word u = (a1 . . . ak, ν) ∈ Σ∗n

is a sequence of alternating linear states and transitions of T , where ith transition
leads from the current linear state to the next one, carries the letter ai ∈ Σ and
has type chosen according to the matching relation ν; furthermore, for every pair
of matched call and return, hierarchical states encountered in the corresponding
transitions are required to be the same (we say that they are sent and received
along the hierarchical edges). Note that we impose no requirement on unmatched
calls—as shown in [6], introducing a separate set of final hierarchical states does
not change the expressibility of the model (our automata are then called linearly
accepting).

The path is successful if it starts in a state from Qi, ends in a state from Qf ,
and all states received along the hierarchical edges in unmatched returns belong
to P i. A (successful) computation consists of a (successful) path and a sequence
of words wi taken from languages `i ∈ L(∆∗) in the transitions of the path in
the same order. The concatenation of these words gives a word w ∈ ∆∗, which
is said to be output by the transducer.

We say that the transducer T implements the transduction T ⊆ Σ∗n × ∆∗

that contains each pair (u, w) if and only if there exists a successful computation
of T driven by the input u and having the output w. When we are only interested
in the behaviour of T on closed words, we say that T weakly implements T c =
T ∩ (Σ∗c ×∆∗).
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3 Automata and Auxiliary Constructions

A nested word automaton (or simply an automaton below) A is defined similarly
to a transducer, with the only difference that it has no output, that is, all L(∆∗)
factors are dropped. Words u ∈ Σ∗n carried by successful paths are said to be
accepted by A, and the automaton itself is then said to recognize the language
L ⊆ Σ∗n of all such words. Two automata are equivalent if they recognize the
same language.

We call A (weakly) unambiguous if it has at most one successful path for
each (closed) word u ∈ Σ∗n (u ∈ Σ∗c). As usual, A is deterministic if, first, each
of the sets Qi and P i contains at most one element and, second, for every q ∈ Q,
a ∈ Σ, and p ∈ P , each of the three sets δint, δcall, and δret contains at most
one tuple of the form (q, a, q′), (q, a, q′, p), and (p, q, a, q′), respectively. Every
deterministic automaton is unambiguous, but not vice versa. Also recall that a
linear state q of an automaton A is called accessible if there exists a path in A
starting in some linear state q0 ∈ Qi and ending in q, in which all states received
along the hierarchical edges in unmatched returns belong to P i.
Determinization. Every automaton is known to be equivalent to a determinis-
tic one, by a variant of the well-known subset construction as defined in [6] (note
that the construction described in the print version of this paper is flawed, so
we refer the reader to the electronic document available on the Web). Given an
automaton A = (Q,P, δ,Qi, Qf , P i), construct the automaton with the following
components:

– the set of linear states is 2Q×Q (in this context pairs (q, q′) ∈ Q×Q are called
summaries and understood as available properly-nested path fragments be-
tween pairs of states);

– the set of hierarchical states is {p′0} ∪ (2Q×Q × Σ);
– for every input letter a and every state S ⊆ Q×Q, transitions lead from S

to states S′ defined as follows:
• for an internal transition, S′ contains all summaries (q, q′′) such that

there exists a summary (q, q′) ∈ S and an internal transition (q′, a, q′′) ∈
δint;

• for a call transition, S′ contains all summaries (q′′, q′′), for which there
exists a summary (q, q′) ∈ S and a call transition (q′, a, q′′, p) ∈ δcall;
along the hierarchical edge the pair (S, a) is sent;

• for a return transition upon the receipt of a hierarchical state H =
(S0, b), where S0 ⊆ Q × Q, the state S′ contains all summaries (q0, q

′′)
such that there exist summaries (q0, q1) ∈ S0 and (q, q′) ∈ S, a call
transition (q1, b, q, p) ∈ δcall and a return transition (p, q′, a, q′′) ∈ δret

with matching p ∈ P ;
• for a return transition upon the receipt of a hierarchical state p′0, the

state S′ contains all summaries (q, q′′) such that there exists a summary
(q, q′) ∈ S and a return transition (p0, q

′, a, q′′) ∈ δret with some p0 ∈ P i.
– the only initial linear state is {(q0, q0) | q0 ∈ Qi} (here we deviate from [6],

where the set Qi×Qi is used), and an arbitrary linear state S is final whenever
it contains some pair (q, q′) ∈ Q×Qf .
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– the only initial hierarchical state is p′0.

The accessible part of this automaton is called the determinization of A and de-
noted Adet. It is deterministic and can be proved equivalent to A. Also note that
Adet separates unmatched returns, in the sense that none of its call transitions
send an initial hierarchical state along the hierarchical edge.
Summarization. We shall also need another auxiliary automaton, closely re-
lated to that of Adet. This automaton will keep track of summaries instead of
single states, similarly to Adet, but still rely on nondeterminism rather than
subset construction to mimic the behaviour of A. In short, for any transition
in Adet, if it leads from a state containing a summary (q, q′) to some state S′,
this automaton will have transitions from (q, q′) to all summaries that can use
(q, q′) as a witness for their inclusion in S′. More formally, this summary-tracking
automaton has the following components:

– the set of linear states is Q×Q;
– the set of hierarchical states is {p′0} ∪ ((Q×Q)× Σ);
– for every input letter a and every state (q, q′) ∈ Q × Q, transitions from

(q, q′) are defined as follows:
• every internal transition (q′, a, q′′) ∈ δint of A is translated here into an

internal transition leading to (q, q′′);
• every call transition (q′, a, q′′, p) ∈ δcall is translated into a call transition

leading to (q′′, q′′), with ((q, q′), a) sent along the hierarchical edge;
• every pair of call and return transitions (q1, b, q, p) ∈ δcall and (p, q′, a, q′′) ∈

δret with matching p ∈ P is translated, for all q0 ∈ Q, into return tran-
sitions to (q0, q

′′) depending on the state ((q0, q1), b) received along the
hierarchical edge;

• every return transition (p0, q
′, a, q′′) ∈ δret with p0 ∈ P i is also translated

into a return transition to (q, q′′) with p′0 received along the hierarchical
edge;

– initial linear states are (q0, q0), for all q0 ∈ Qi, and the set of final linear
states is Q×Qf ;

– the only initial hierarchical state is p′0.

The accessible part of this automaton is called the summarization of A and
denoted Asum.
Product. Let us define the product of two nested word automata A1 = (Q1, P1,
δ1, Q

i
1, Q

f
1, P

i
1) and A2 = (Q2, P2, δ2, Q

i
2, Q

f
2, P

i
2) in the standard way:

– sets of linear and hierarchical states are Q1 ×Q2 and P1 × P2, respectively;
– whenever δ1 and δ2 contain transitions from q1 to q′1 and from q2 to q′2,

respectively, having the same type and carrying the same letter a ∈ Σ, this
results in a transition from (q1, q2) to (q′1, q

′
2) of the same type carrying

a ∈ Σ; the state sent or received along the hierarchical edge, if needed, is the
ordered pair of the hierarchical states carried by these transitions;

– sets of initial and final linear states are Qi
1 ×Qi

2 and Qf
1 ×Qf

2;
– the set of initial hierarchical states is P i

1 × P i
2.

The accessible part of this automaton is called the product of A1 and A2 and
denoted A1 ×A2.
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Separation. Finally, we shall use the following transformation, which we call
the separation of a nested word automaton. The purpose of this transformation
is to distinguish matched and unmatched call transitions, in the sense that sets
of transitions that can be (successfully) invoked on matched and unmatched calls
do not intersect. Assume that an automaton A = (Q, P, δ,Qi, Qf , P i) is known
to separate unmatched returns in the sense defined above.

Construct the automaton Asep as follows:

– every linear state q ∈ Q is annotated with symbols from {main, sub}, i. e.,
split into two, qmain and qsub;

– every hierarchical state p ∈ P is annotated with symbols from {z, n, uc, ur};
– transitions are replaced in the following way:

• (q, a, q′) ∈ δint with (qmain, a, q′main) and (qsub, a, q′sub);
• (q, a, q′, p) ∈ δcall with (qmain, a, q′main, puc), (qmain, a, q′sub, pz), and (qsub, a,

q′sub, pn);
• (p, q, a, q′) ∈ δret, p 6∈ P i, with (pn, qsub, a, q′sub) and (pz, qsub, a, q′main);
• (p, q, a, q′) ∈ δret, p ∈ P i, with (pur, qmain, a, q′main);

– sets of initial and final states are {qmain | q ∈ Qi} and {qmain | q ∈ Qf},
respectively;

– the set of initial hierarchical states is {pur | p ∈ P i}.

Claim. Sets of successful paths through Asep and A are set in bijection by the
mapping τ stripping annotations from states of Asep. Furthermore, for every
u ∈ Σ∗n accepted by A and every successful path through Asep driven by u, all
unmatched calls, unmatched returns, and matched calls and returns carry states
from disjoint sets Puc, Pur, and Pz ∪ Pn on the hierarchical edges, respectively.

4 The Schützenberger Construction for Nested Word
Automata

Suppose that B and A are nested word automata, and there exists a mapping
µ taking states and transitions of B to states and transitions of A so that,
first, for all linear states s′ of B, transitions arriving in (departing from) s′ are
mapped to transitions arriving in (departing from) µ(s′); second, initial and final
states are mapped to initial and final states, respectively; so that the image of a
successful path is always a successful path. Then the automaton B is said to be
an immersion in A, or immersed in A by µ.

We define a special operation eliminating some transitions of an automaton,
in the spirit of Schützenberger [3, 2]. Suppose that B is immersed in A by µ,
and δ′ is some subset of B’s transitions. For every state s′ of B, consider its
image µ(s′) in A and take an arbitrary transition t arriving at µ(s′). Denote the
set of all transitions arriving at s′ by in(s′). If the set µ−1(t) ∩ in(s′) ∩ δ′ has
cardinality 2 or greater, i. e., if the inverse image µ−1(t) contains more than one
transition from δ′ arriving at s′, then transform the automaton B by eliminating
all of these transitions but one, arbitrarily chosen. Repeat this procedure for all
states s′ of B and all transitions t arriving at their images µ(s′). We shall say
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that the resulting automaton is obtained from B by weeding transitions δ′ with
respect to the mapping µ.

Now everything is ready for describing our generalization of the Schützen-
berger construction to nested word automata. Suppose that we are given an
automaton A. First construct the automaton Asum ×Adet, where Asum and Adet

are the summarization and determinization of A. Let the mapping π take linear
states and transitions of Asum ×Adet to their projections in Adet. Weed the sets
of internal and return transitions of Asum × Adet with respect to π (note that
all call transitions are left intact), and then for every final state S of Adet, make
all but one state in π−1(S) non-final (this remaining final state should have the
form ((q, q′), S), where (q, q′) is final in Asum). Denote the obtained automaton
by S1.

Theorem 1. The automaton S1 is weakly unambiguous, equivalent to and im-
mersed in A.

The proof of this theorem is given in Section 6. The automaton S1 can be used
to obtain a uniformization of any relation weakly implemented by a transducer
whose underlying automaton is A. (Recall that this relation is defined as a subset
of Σ∗c ×∆∗.) If we cannot disregard non-closed words, then an auxiliary step is
needed.

Take the separation (S1)sep and consider the set δuc of all call transitions send-
ing a state of the form puc along the hierarchical edge. Define the mapping π0 on
the linear states of (S1)sep by the rule π0

(
((q, q′), S)main

)
= π0

(
((q, q′), S)sub

)
= S

and extend it to transitions in the straightforward fashion. Now weed the set of
transitions δuc with respect to the mapping π0 and denote the obtained automa-
ton by S2.

Theorem 2. The automaton S2 is unambiguous, equivalent to and immersed
in A.

The proof of this theorem is also given in Section 6.

5 Uniformization of Transductions

Return to the problem of uniformizing an arbitrary nested-word to word trans-
duction T . Recall that a relation U ⊆ A × B is a uniformization of a relation
T ⊆ A×B if U is a subset of T , single-valued as a transduction, and has the same
domain, that is, if U ⊆ T and for every u ∈ A, the existence of a w ∈ B such
that (u, w) ∈ T implies that there is exactly one w′ ∈ B such that (u, w′) ∈ U .

In this section, we show how to use the Schützenberger construction to obtain
a uniformization of an arbitrary nested-word to word transduction T . Take any
transducer T implementing T , and denote by A its underlying automaton, that
is, one obtained by removing the output labels from transitions. TransformA into
S1 or S2 as described in Section 4 (denote the result by S). By the “immersion”
part of Theorems 1 and 2, S is immersed in A by some mapping ρ, so that each
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transition t′ in S is projected onto a single transition ρ(t′) in A. Take the output
label ` ⊆ ∆∗ of ρ(t′) in T and specify any single word w ∈ ` as the output of t′.
The automaton S is thus transformed into a transducer U , which is claimed to
satisfy our needs.

Theorem 3. Let the transducer T (weakly) implement a transduction T . Then
the transducer U (weakly) implements a transduction U , which is a uniformiza-
tion of T .

Proof. We use the “equivalence” and “(weak) unambiguity” parts of Theorems 1
and 2. First observe that any nested word u belongs to the domain of T (or,
respectively, U) if and only if it is is accepted by A (or, respectively, S). It then
follows from the “equivalence” part that T and U have the same domain within
Σ∗n. Second, if (u, w′) and (u, w′′) with w′ 6= w′′ are in U , then U has at least
two successful paths driven by u. This is impossible for any (closed) word u by
the “(weak) unambiguity” part of Theorems 1 and 2. ut

We say that a relation U ⊆ Σ∗c ×∆∗ is a weak uniformization of a transduction
T ⊆ Σ∗n ×∆∗ if U is a uniformization of the transduction T c = T ∩ (Σ∗c ×∆∗).

Corollary. Any nested-word to word transduction T implemented by a trans-
ducer with n linear states has a weak uniformization implemented by a trans-
ducer with at most n2 2n2−1 linear and 1 + |Σ|n2 2n2−1 hierarchical states, and
a uniformization implemented by a transducer with at most n2 2n2

linear and
1 + 3 |Σ|n2 2n2−1 hierarchical states.

6 Proofs of Theorems 1 and 2

This section is developed as a series of lemmas. Our first lemma gives an upper
bound on the set of all accessible states of the automaton Asum ×Adet.

Lemma 1. If a state ((q, q′), S) is accessible in Asum×Adet, then (q, q′) belongs
to S and S is accessible in Adet.

Proof. It is clear that no state of the form ((q, q′), S) can be accessible in Asum×
Adet unless the state S is accessible in Adet. The fact that (q, q′) ∈ S is then
proved by induction on the length of the path leading from the initial state of
Adet to S. Indeed, {(q0, q0) | q0 ∈ Qi} is the only initial state of Adet and the
states (q0, q0), q0 ∈ Qi, are initial inAsum. This forms the induction base. Further,
suppose that ((q1, q2), S) is accessible and a transition leads from this state to
some state ((q, q′), S′). Then (q1, q2) ∈ S and, by the definition of Asum ×Adet,
there are transitions from S to S′ and from (q1, q2) to (q, q′). It remains to use
the fact that whenever a transition leads in Asum from (q1, q2) to (q, q′), any
corresponding transition in Adet from a state containing (q1, q2) can only lead to
a state containing (q, q′). ut
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Lemma 1 shows that every accessible state of Asum ×Adet can be regarded as a
set of summaries S with a distinguished element (q, q′) ∈ S. From now on we
shall only use the states of Asum ×Adet satisfying the conclusion of this lemma.
For our second lemma, recall that by π we denote the mapping taking every
state of Asum ×Adet to its projection in Adet.

Lemma 2 (in-surjectivity). For every accessible state ((q, q′), S) of Asum ×
Adet and every transition t arriving at its projection S in Adet, there exists at
least one transition in Asum ×Adet whose projection is t.

Proof. First apply Lemma 1 to note that (q, q′) ∈ S. Let the transition t arriving
at S depart from a state S0. We claim that there exists a summary (q1, q2) ∈ S0

and a transition from (q1, q2) to (q, q′) in Asum such that the inverse image π−1(t)
in Asum ×Adet contains a transition from ((q1, q2), S0) to ((q, q′), S).

Indeed, since (q, q′) ∈ S, it follows that there exists a summary (q1, q2) ∈ S0

that guaranteed the inclusion of (q, q′) into S by the definition of Adet. The
definition of Asum then ensures the existence of a transition of the same type
(internal, call, or return with the same input letter and the same state sent or
received, if at all, along the hierarchical edge) from this (q1, q2) to (q, q′). The
rest follows by the definition of Asum ×Adet. ut

Lemma 3 (partial in-bijectivity). For every state ((q, q′), S) of S1 and every
internal or return transition t arriving at its projection S in Adet, there exists a
unique transition in S1 whose projection is t.

Proof. Follows from Lemma 2, the definitions of S1 and the weeding operation.
ut

It follows from Lemma 1 and the definitions of Asum and Adet that the product
Asum × Adet and, therefore, the automaton S1 always send states of the form
((q, q′), b, S, b), where (q, q′) ∈ S, along the hierarchical edges. We shall hence-
forth always abbreviate this and write ((q, q′), S, b) instead.

Lemma 4. The automaton S1 is weakly unambiguous.

Proof. Consider any closed word u ∈ Σ∗c accepted by S1 and assume for the
sake of contradiction that there are two different successful paths driven by u.
Now observe that the projection by means of π of a successful path in S1 is a
successful path in Adet. Since the automaton Adet is deterministic and, therefore,
unambiguous, it follows that both successful paths in S1 are projected onto a
single path in Adet.

Consider the last position in this pair of paths, on which these paths disagree,
that is, ((q1, q

′
1), S) 6= ((q2, q

′
2), S) (note that the projection onto Adet should be

the same, hence the common component S). The successors of these two states
are the same in both paths, and the following segments up to the end of the
paths also coincide (both paths end in the same final state of S1, since for each
S at most one state from π−1(S) is final). Suppose that our chosen pair of paths
leads from this pair of states to some state ((q, q′), S′).
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Now consider the transition t leading from S to S′ in the (single) induced path
in Adet. This transition has at least two elements in its inverse image π−1(t), one
of them departing from ((q1, q

′
1), S) and another from ((q2, q

′
2), S). By the partial

in-bijectivity given by Lemma 3, this transition t can only be a (matched) call
transition. We shall show, however, that this conclusion leads to a contradiction.

Indeed, consider the remaining segments of the paths, which coincide ac-
cording to our initial assumptions. It follows that these segments take the same
return transition at the return position matching the call in question (recall that
our word is closed, so all calls are matched). This transition receives some state
((q0, q

′
0), S

0, a) along the hierarchical edge, and, according to the definitions of
S1, Asum ×Adet and Asum, it follows that the call in question can only originate
at the state ((q0, q

′
0), S

0). This contradicts the availability of the choice between
((q1, q

′
1), S) and ((q2, q

′
2), S) and establishes that one of the paths must be in-

valid. ut

Our next goal is to show that every successful path in Adet has an inverse image
in S1 that is also a successful path. To prove this fact, we need an auxiliary
lemma that describes the behaviour of Asum on well-matched words.

Lemma 5. Suppose that the automaton Asum can be driven by some well-matched
word u ∈ Σ∗w from a state (q0, q1) to a state (q2, q3). Then q0 = q2.

Proof. Any well-matched word is a concatenation of internal transitions and
well-matched fragments enclosed in matched pairs of symbols. By the definition
of Asum, internal transitions do not change the first component of a summary,
and every matched return always resets it to the state just before the matching
call. ut

Lemma 6. The automaton S1 is equivalent to A.

Proof. Since the projection of a successful path through S1 is a successful path
through Adet, it is sufficient to demonstrate that S1 always accepts whenever
Adet accepts. Consider a successful path c through Adet and construct a path
through S1 as follows. First choose the (unique) final state in the inverse image
of the last state of c. Second, reconstruct a path through S1 by the following
procedure. On each step, given a state of S1 and a transition t arriving at its
projection in Adet, choose a transition from the inverse image π−1(t) to obtain
the previous state in the path through S1. Lemmas 2 and 3 reveal that this
procedure will indeed yield a path in S1. Since all summaries from the initial
state of Adet are initial states of Asum, this path will begin in an initial state
of S1. However, we also need to show that one of these paths will indeed be a
correct path through S1, that is, states sent and received along the hierarchical
edges will match.

Consider a fragment of the input word of the form 〈bua〉, where u ∈ Σ∗w.
Suppose that the automaton Adet is driven by a〉 from a state S to a state S′, and
the reconstructed path in S1 distinguishes summaries (q, q′) ∈ S and (q0, q

′′) ∈
S′, with Asum driven by a〉 from the former to the latter. Also suppose that
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at this point a transition receiving a state ((q0, q1), S0, b) along the hierarchical
edge is chosen in S1. Now assume that the matching call drives Adet from S0

to some state S′′. We need to show that when the reconstruction of the path in
S1 reaches this call, the state S′′ will have been mapped to the state ((q, q), S′′)
and a transition to this state from ((q0, q1), S0) will be available.

The second of this claims is relatively straightforward. Indeed, by the defini-
tions of Adet and Asum, a transition from ((q, q′), S) to ((q0, q

′′), S′) driven by a〉
upon the receipt of ((q0, q1), S0, b) along the hierarchical edge is witnessed by a
pair of call and return transitions of the form (q1, b, q, p) ∈ δcall, (p, q′, a, q′′) ∈ δret

with matching p ∈ P . Since a call transition from S0 to S′′ is available in Adet

with an input letter b, it follows that a call transition with the same input letter
leads from ((q0, q1), S0) to ((q, q), S′′) in S1.

Now turn to the first of the claims. Recall that we are now dealing with
a fragment of the input word of the form 〈bua〉 with u ∈ Σ∗w. Observe that
our entire argument can be interpreted as a proof that the reconstructed path
segment induces a correct path segment in Asum. We now use induction to prove
this fact. The base case corresponds to words containing internal symbols only,
and does not require any analysis. The inductive step corresponds to words of
the form 〈bua〉 with u ∈ Σ∗w, as specified earlier. Here, since just before the
input symbol a〉 the automaton Asum is set to the state (q, q′) and the word u
is well-matched, one concludes with the help of the inductive hypothesis and
Lemma 5 that after reading the symbol 〈b the automaton Asum must have been
in some state of the form (q, q̄), where q̄ ∈ Q. Since this state (q, q̄) is taken from
S′′, and the state S′′ is the destination of some call transition in Adet, it follows
from the definition of Adet that q̄ = q. This concludes the proof of Lemma 6. ut

For the following lemma we need the mapping π0 defined earlier in Section 4. This
mapping strips annotations from states of S2 and then removesAsum-components
of states, thus sending states of S2 to states of Adet.

Lemma 7. The automaton S2 is unambiguous.

Proof. It follows from Lemma 4 and the properties of the separation construction
that S2 is at least weakly unambiguous. Now take any non-closed word u ∈
Σ∗n and consider any two paths through S2 driven by u. By the properties of
the separation construction, these two paths have different counterparts in S1.
However, their projections onto Adet by means of π0 are the same, since Adet is
deterministic and, therefore, unambiguous.

Consider the last position, on which these two paths disagree. Transitions
in these paths corresponding to this position are different, but projected to the
same transition in Adet. As shown in the proof of Lemma 4, this projection
cannot be an internal or a return transition, nor a matched call. It can only be
an unmatched call, but in this case two different unmatched call transitions are
sent by π0 to a single transition of Adet. This contradicts our definition of S2,
since one of these transitions must have beed weeded out. ut

Lemma 8. The automaton S2 is equivalent to A.
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Proof. Recall that by Lemma 6 the automaton S1 is equivalent to A, and the
automaton S2 is obtained by eliminating some transitions from (S1)sep. It is then
sufficient to demonstrate that S2 accepts whenever A accepts or, equivalently,
whenever Adet accepts.

Consider any successful path through Adet and construct a corresponding
path through S2, similarly to the proof of Lemma 6. Note that here annotations
of states are chosen unambiguously, according to the matching structure of the
input word. For matched call, internal, and return transitions, the existence of
an appropriate transition in S2 follows from the previous arguments. Among
unmatched calls, some of the transitions in S2 may have been weeded out, but
at least one option on each step is still available. ut
Lemma 9. The automata S1 and S2 are immersed in A.

Proof. Stripping annotations from the states of S2 turns them into states of S1.
Removing Adet-components maps them to the set of states of Asum. Transitions
are mapped to transitions of Asum accordingly. It remains to observe that Asum

is itself an immersion in A. ut
Theorem 1 follows from Lemmas 4, 6 and 9. Theorem 2 follows from Lemmas 7,
8 and 9.
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