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Abstract
Independence preservation, a desirable property in real-
time locking protocols that isolates tasks from delays due to
unrelated critical sections, is formalized. It is shown that
independence preservation is impossible if temporary job
migrations are disallowed. The OMIP, a new, asymptotically
optimal, independence-preserving locking protocol for clus-
tered scheduling based on migratory priority inheritance, is
proposed and analyzed. By extending the OMIP to tolerate
budget overruns, it is shown that shared resources can be ab-
stracted into virtually exclusive resources (VXRs)—tasks can
be provisioned and composed as if they had exclusive access
to each resource, even when sharing resources with erro-
neous tasks. Several practical extensions and applications
of VXRs are described. Notably, VXRs enable predictable
resource sharing in mixed-criticality systems.

1 Introduction
Open real-time systems [10, 17], in which the final task set
composition and configuration is unknown at development
time, are of considerable economic importance. For example,
in size-, weight-, and power-constrained domains such as au-
tomotive systems or avionics, overall hardware costs may be
reduced by integrating independently-developed applications
of potentially multiple component vendors on a shared mul-
ticore processor. Such workloads are also frequently subject
to heterogenous timing constraints, that is, open real-time
systems often consist of a mix of hard real-time (HRT), soft
real-time (SRT), and best-effort (BE) tasks.

Both aspects, compositional system design and timing het-
erogeneity, require strict temporal isolation among tasks: the
real-time operating system (RTOS) must ensure that a com-
ponent’s temporal correctness depends only on its own re-
source consumption. For instance, critical HRT tasks should
clearly be immune to faults in tasks of lower importance,
even if erroneous tasks exhibit undue resource requirements.

Temporal isolation is typically achieved using reservation-
based scheduling, under which each task is carefully mon-
itored and policed to not exceed its provisioned processor
budget.1 Even under reservation-based scheduling, however,
temporal isolation is difficult to guarantee if tasks access
shared resources protected by locks (e.g., a shared network

1See Sec. 2 for a review of key concepts.

stack) since tasks may incur significant blocking when re-
quired resources are unavailable. Worse, even when em-
ploying a predictable real-time locking protocol that allows
bounding maximum blocking a priori, the ability to easily
compose tasks is lost: with existing locking protocols (see
below), it is not possible to determine fixed budgets at devel-
opment time that will always be sufficient at runtime because
worst-case blocking may increase when additional tasks are
admitted. In other words, existing locking protocols fail to
temporally isolate tasks that share resources, which renders
compositional system design exceedingly difficult.

This paper. The primary contribution of this paper is a new
resource-sharing environment that restores temporal isola-
tion by providing the illusion that each task has exclusive
access to each resource, which enables effortless, resource-
agnostic system composition. To this end, we study why
certain locking protocols are problematic in open real-time
systems (Sec. 2.3) and identify “independence preservation”
as a key property (Sec. 3), which, however, is only possible
if jobs may (temporarily) migrate to any processor. Based
on the observation that migrations are essential, we propose
and analyze a new asymptotically optimal, “independence-
preserving” locking protocol for clustered scheduling that
isolates tasks from unrelated critical sections (Secs. 3.2
and 3.3). This protocol is extended to tolerate budget over-
runs in Sec. 4, which yields the desired temporal isolation: a
task that requires a shared resource with maximum access
cost x can be provisioned as if it had a private, but slower
replica with maximum access cost (2m+ 1) ·x, where m de-
notes the number of processors (Theorem 3). Finally, several
extensions and applications are discussed in Sec. 5, among
them predictable locking in mixed-criticality systems [4, 25]
and average-case performance improvements (Sec. 5.3).

Related work. Predictable locking in multiprocessor real-
time systems has received considerable attention in recent
years. Numerous locking protocols have been proposed for
partitioned [14, 16, 22, 23], global [7, 11, 12, 18], and clus-
tered real-time multiprocessor scheduling [8]. However, in
the context of open, heterogeneous workloads, these proto-
cols for classic HRT systems are subject to two limitations:
they do not tolerate budget overruns, and tasks are not tem-
porally isolated (i.e., unrelated critical sections may cause
blocking, as explained in Sec. 2.3).

Closely related to this paper is the MSOS protocol pro-
posed by Nemati et al. [21], who similarly study the problem
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of composing independently-developed real-time applica-
tions. However, their approach differs strongly from ours:
whereas Nemati et al. require each component’s resource
requirements to be explicitly specified as part of its interface
and a non-linear optimization problem to be solved, we focus
on hiding the effects of resource sharing. Moreover, their
MSOS protocol is not resilient to budget overruns.

Our work is inspired in part by Faggioli et al.’s multipro-
cessor bandwidth inheritance protocol (MBWI) [13]. No-
tably, the MBWI is designed for reservation-based schedul-
ing and tolerates budget overruns (Sec. 2.2); we adopt similar
mechanisms in Secs. 3 and 4. Our protocol improves upon
the MBWI with asymptotically lower interference bounds
(Sec. 4.2) and by simplifying task set composition (Sec. 4.4).
Another difference is that the MBWI is a spin-based proto-
col, whereas our protocol is suspension-based since spinning
bears the risk of pathological capacity loss in open systems.

Finally, this paper reuses two protocols of the O(m)
locking protocol (OMLP) family [8] and the associated
“suspension-oblivious” analysis [7]. These prior results are
central to this paper and reviewed in detail next.

2 Background and Definitions
We consider a workload consisting of n sporadic tasks τ =
{T1, . . . , Tn} scheduled onm processors. We let Ti denote a
task with a worst-case per-job execution time and a minimum
job separation pi, and let Ji denote a job of Ti. The results
presented in this paper do not depend on the type of deadline
constraint; we assume implicit deadlines for simplicity.

Jobs are pending from the time when they are released
until they complete. A pending job can be in one of two
states: a ready job is available for execution, whereas a
suspended job cannot be scheduled. A job resumes when its
state changes from suspended to ready.

Under clustered scheduling [3, 9], processors are grouped
into m

c non-overlapping sets (or clusters) of c processors
each, where Ck denotes the kth cluster. For simplicity, we as-
sume uniform cluster sizes and that m is an integer multiple
of c. Each task is statically assigned to a cluster. Parti-
tioned and global scheduling are special cases of clustered
scheduling with c = 1 and c = m, respectively.

Each cluster is scheduled independently using a work-
conserving job-level fixed-priority (JLFP) scheduler, that is,
each job is assigned a unique base priority and the c highest-
priority ready jobs (w.r.t. each cluster) are scheduled at any
point in time. We consider clustered earliest-deadline-first
(C-EDF) scheduling as a representative policy of this class.

2.1 Real-Time Locking
Besides the m processors, tasks share r serially-reusable
shared resources `1, . . . , `r (e.g., network links, sensors, or
shared data structures). Access to shared resources is gov-
erned by a locking protocol that ensures mutual exclusion.

A job Ji requests a resource `q at mostNi,q times. If `q is

already in use, Ji incurs acquisition delay until its request for
`q is satisfied. In this paper, we focus on locking protocols in
which jobs wait by suspending. Once Ji has finished using
`q, its request is complete and Ji releases `q. We let Li,q
denote the maximum request length, that is, the maximum
time that Ji uses `q as part of a single request (or critical
section). We assume that Ji must be scheduled in order to use
`q; however, the analysis in Secs. 3 and 4 remains valid even
if critical sections contain suspensions (e.g., when accessing
a disk). For convenience, we define Lmax

q , maxi{Li,q}
and Lmax , maxq{Lmax

q }. We assume that tasks do not
hold resources across job boundaries and, in Secs. 3 and 4,
that jobs request at most one resource at any time. We discuss
supporting nested resource requests in Sec. 5.4.

When locks are used, bounds on priority inversion block-
ing (pi-blocking) are required during schedulability analysis.
Intuitively, pi-blocking occurs when a high-priority job that
should be scheduled is delayed because it incurs acquisition
delay. We let bi denote a bound on the total pi-blocking in-
curred by any Ji. Previous work has shown that there are two
notions of pi-blocking, depending on how job suspensions
are accounted for [7]. This work pertains to suspension-
oblivious (s-oblivious) schedulability analysis, where each
task’s execution cost ei is inflated by bi prior to applying a
schedulability test [7]. Pi-blocking is defined as follows.
Def. 1. A pending job Ji in cluster Ck incurs s-oblivious
pi-blocking if Ji is not scheduled and there are fewer than c
higher-priority pending jobs (w.r.t. tasks assigned to Ck).

Unless mentioned otherwise, “pi-blocking” refers to the
s-oblivious definition in this paper. We base our work on
s-oblivious analysis since it is well-suited to providing tem-
poral isolation, as will become apparent in Secs. 3 and 4.

Pi-blocking is considered bounded if bi can be expressed
as a function of Lmax . To ensure bounded pi-blocking, a
locking protocol may have to force a low-priority, resource-
holding job to be scheduled if it is causing other jobs to incur
pi-blocking. This is accomplished by temporarily raising
the resource holder’s effective priority using either priority
inheritance [24], where a resource holder’s effective priority
is the maximum priority of any job that it blocks, or priority
boosting [22, 23], where resource holders are uncondition-
ally prioritized over non-resource-holding jobs.

Real-time locking protocols aim to minimize bi; how-
ever, some amount of pi-blocking is unavoidable when using
locks. Prior work has shown that, under s-oblivious analysis,
Ω(m) maximum pi-blocking is generally unavoidable, that
is, there exist task sets such that maxi{bi} = Ω(m) under
any locking protocol [7, 8]. Note that Lmax and

∑
q Ni,q

are assumed to be constants (i.e., not a function of n or m)
in asymptotic blocking bounds [7, 8].

2.2 Reservation-Based Scheduling
The system model described so far, which underlies Sec. 3,
describes classical closed (hard) real-time systems for which
all task parameters are known a priori. For the heterogeneous
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Figure 1: Legend for Figs. 2–5. Up- and down-arrows denote
job releases and deadlines (resp.) in Figs. 2–4, and server budget
replenishments and server deadlines (resp.) in Fig. 5.

workloads considered in Secs. 4 and 5, it is ill-suited because
reliable execution cost estimates are likely not available
for SRT and BE tasks. Instead, specified parameters are
interpreted as permissible budgets (or reservations), which
are enforced by the RTOS to temporally isolate tasks.

Under reservation-based scheduling,2 each task Ti is en-
capsulated in a server Si with a specified budget Qi and a
replenishment interval Pi. Server Si is active when a job of
its client Ti is pending. Servers are scheduled like equivalent
sporadic tasks (server activation and budget replenishment
are analogous to job releases), but prevent client jobs from
imposing undue processor demand: if a job Ji requires more
than Qi processor time, it is preempted when Si exhausts its
budget and not scheduled until Si’s budget is replenished. Ji
depletes Si’s budget as follows.

Def. 2. An active server consumes its budget when it is (i)
scheduled and a client job is executing or (ii) among the c
highest-priority servers, but no client job is ready.

Clause (ii) is required to isolate tasks from suspension-
related scheduling anomalies. Def. 2 ensures that a HRT
task Ti will not miss a deadline if Si is provisioned with
Qi ≥ ei and Pi ≤ pi, provided that the set of servers passes
a schedulability test and that Ti does not share resources.

Reservation-based scheduling complicates locking since
even a high-priority resource holder may run out of budget,
that is, priority inheritance or boosting is insufficient. Instead,
bandwidth inheritance (BWI) [13, 17, 20] allows a resource
holder Jh to consume the budget of a waiting job’s server
Sw by making Jh temporarily a client of Sw. Such budget
transfers cause “interference” [13] because they reduce the
budget available to the waiting job, akin to pi-blocking.

Def. 3. Server Si experiences interference when it consumes
budget, but its client job Ji is not executing.

To appropriately provision Si such that Ti is temporally
isolated, it is necessary to bound worst-case interference.

2.3 The Global and the Partitioned OMLP
The protocol proposed in Sec. 3 reuses both the global and
the partitioned OMLP [7] (denoted as G-OMLP and P-
OMLP, resp.); we therefore review both variants in detail.

2 Reservation-based scheduling has been studied extensively for more
than 20 years (e.g., [20]) and a comprehensive review is beyond the scope of
this paper. For the sake of simplicity, we instead describe a basic approach
suitable for any JLFP scheduler and note that the protocol in Secs. 4 and 5
is compatible with more-sophisticated algorithms (e.g., CBS [1]).
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(a) Priority inheritance is ineffective across clusters.
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(b) Priority boosting causes pi-blocking for independent jobs.

Figure 2: Schedules of three jobs on two processors under
P-EDF scheduling (c = 1). Jobs J2 and J3 share a resource.

The G-OMLP combines priority inheritance with hybrid
wait queues [7]: requests for each resource `q are serialized
with a FIFO queue FQq of length at most m and a priority
queue PQq, which is used only when FQq is full. When a
job is dequeued from FQq, the highest-priority job in PQq

(if any) is transferred from PQq to FQq (i.e., PQq is the
tail of FQq). Key to the G-OMLP is that even if a job
waits for an extended time in PQq, it ceases to incur pi-
blocking afterm higher-priority jobs have entered FQq (since
the waiting job is no longer among the c = m highest-
priority jobs, recall Def. 1) [7, 8]. As a result, at most m− 1
requests for `q cause pi-blocking while a job Ji waits in
FQq, and at most m requests cause pi-blocking while Ji
waits in PQq. Maximum pi-blocking is thus bounded by
bi =

∑
q Ni,q · (2m− 1) · Lmaxq = O(m).

Unfortunately, priority inheritance does not generalize
to clustered scheduling with c 6= m if applied across clus-
ter boundaries. This limitation arises because priorities are,
from an analytical point of view, incomparable across clus-
ters. A simple example of this effect assuming P-EDF is
shown in Fig. 2(a), which uses the notation defined in Fig. 1.
In Fig. 2(a), even if J2 inherits J3’s priority (i.e., deadline),
J2 has insufficient priority to prevent preemption by J1; J3
thus incurs pi-blocking until J2 finishes. If priority boosting
is used instead as shown in Fig. 2(b), b3 is bounded by the
length of J2’s request, but a deadline is still missed in this
example (discussed below). Priority-boosting is the de facto
standard progress mechanism in real-time locking protocols
for partitioned scheduling (e.g., see [7, 16, 22, 23]).

However, as evident in Fig. 2(b), priority boosting may
cause pi-blocking as well and should be carefully controlled.
Under the P-OMLP, this is achieved with contention to-
kens, of which there is only one per partition. Each re-
source `q is protected by a FIFO queue FQq, but before
a job may enqueue in any FQq, it must first acquire its
local contention token. This ensures that at most m jobs
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(one per partition) compete globally at any time. A job
may incur additional pi-blocking due to competition for
its local contention token, but this can be managed to not
exceed the duration of m requests for any resource (see
[7, 8] for details). Maximum pi-blocking is thus bounded by
bi = m·Lmax+

∑
q Ni,q ·(m−1)·Lmaxq = O(m) under the

P-OMLP (if c = 1). In the case of clustered scheduling, a
similar bound is ensured by the clustered OMLP (C-OMLP)
using priority donation [8], which is a refinement of priority
boosting required for clusters of size c > 1.

Note that even though the G-OMLP and the P-OMLP
each ensure O(m) pi-blocking, the two bounds are struc-
turally quite different. Whereas independent tasks do not in-
cur any pi-blocking under the G-OMLP (since the G-OMLP
uses per-resource queues and priority inheritance), any job
may incur pi-blocking due to priority boosting under the
P-OMLP (and, similarly, under the C-OMLP). For example,
in Fig. 2(b), job J1 misses its deadline due to J2’s request
even though J1 does not require any shared resources.

As argued in Sec. 1, many applications cannot tolerate
such lack of isolation. Under global scheduling, it can be
avoided (e.g., with the G-OMLP), but all prior suspension-
based locking protocols for clustered and partitioned schedul-
ing expose independent tasks to pi-blocking. In the next
section, we explore this limitation and determine when it is
possible to avoid it, and then present a new locking protocol
that protects independent tasks for 1 ≤ c ≤ m.

3 Independence-Preserving Locking
The key limitation of the P-OMLP—and any other proto-
col using priority boosting—is that it creates a dependency
among a task’s pi-blocking bound and the maximum request
length of any other task. In contrast, under the G-OMLP,
tasks are shielded from requests for resources they do not
require. That is, the G-OMLP is “independence-preserving,”
whereas the P-OMLP is not, which we formalize as follows.

Def. 4. Let bi,q denote an upper bound on pi-blocking in-
curred by Ji due to requests by any job of any task for
resource `q . A locking protocol is independence-preserving
if and only if Ni,q = 0 implies bi,q = 0.

Unfortunately, independence preservation is not possible
in all circumstances. In fact, the examples shown in Fig. 2
demonstrate that independence preservation is generally im-
possible if job migrations are constrained.

Theorem 1. If c 6= m and jobs may not migrate across
cluster boundaries, then no locking protocol that prevents
unbounded pi-blocking is independence-preserving.

Proof. Consider Fig. 2. When job J3 issues its request at
time 2, any locking protocol has two options: either it forces
J2 to complete its critical section at the expense of delaying
J1, as shown in Fig. 2(b), or the locking protocol can isolate
J1 from any delays due to resource sharing, as shown in
Fig. 2(a). In the former case, the locking protocol is not
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Figure 3: In the same scenario as depicted in Fig. 2, no deadlines
are missed if job J3 temporarily migrates to job J2’s processor.

independence-preserving, in the latter case, J3 is subject to
unbounded pi-blocking because it depends on J1’s execution
requirement e1, which can be arbitrarily large in general.

For systems in which job migration is fundamentally
infeasible (e.g., if the processors in different clusters im-
plement incompatible instruction sets), Theorem 1 points
a bleak picture: besides using blocking-aware partitioning
heuristics, there is little that can be done to improve isolation.

However, this is emphatically not the case in shared-
memory systems in which global scheduling is technically
possible, but a non-global scheduling approach is preferred
for other reasons (e.g., to improve cache affinity or to reuse
existing uniprocessor algorithms). In such systems—where
job migrations are not impossible, but merely discouraged—
independence preservation is possible, as we show next.

3.1 Migratory Priority Inheritance
It is easy to see that migrations enable independence preser-
vation. For example, a straightforward “fix” for the scenario
shown in Fig. 2 is for J2 to migrate to J3’s assigned proces-
sor while it is blocking J3, as illustrated in Fig. 3.

This observation immediately leads to a simple extension
of priority inheritance for the case c 6= m: inheritance should
not only apply to scheduling priority, but also to a job’s
cluster assignment. That is, instead of inheriting priorities
across cluster boundaries, jobs should migrate to ensure that
priority inheritance occurs only locally within a cluster.

Def. 5. Let Wi denote the set of jobs waiting for a job Ji
to release a resource. Under migratory priority inheritance
(MPI), whenever Ji is not scheduled (but ready) and there
exists a job Jx ∈ Wi ∪ {Ji} such that Jx is eligible to be
scheduled in its assigned cluster (i.e., there are fewer than
c ready higher-priority jobs in Jx’s cluster), Ji migrates to
Jx’s cluster (if necessary) and inherits Jx’s priority.

Paraphrased, MPI moves resource holders among clusters
such that resource-holding jobs are always local to a waiting
job that would be eligible to be scheduled (if it were not sus-
pended), which is similar to BWI in the MBWI [13]. After
releasing all resources, jobs migrate back to their assigned
clusters (if necessary). Crucially, MPI ensures progress with-
out causing additional pi-blocking.

Lemma 1. Under MPI, if a job Jx incurs s-oblivious pi-
blocking at time t while waiting for a resource `q held by
job Ji and Ji is ready, then Ji is scheduled at time t.

4



Proof. Since Jx incurs s-oblivious pi-blocking at time t, it
is among the c highest-priority pending jobs in its cluster.
Hence, there are also fewer than c higher-priority ready jobs
in Jx’s cluster. Ji has thus either migrated to Jx’s cluster and
is inheriting Jx’s priority, or Ji is scheduled elsewhere.

The following lemma shows that MPI is suitable for the
design of independence-preserving locking protocols.

Lemma 2. In an MPI-based mutex locking protocol, a job
Ji incurs s-oblivious pi-blocking only if it is suspended.
Proof. Let Ck denote Ji’s assigned cluster. If Ji is ready
and not scheduled, then there are h ≥ c ready jobs with
higher effective priorities scheduled in Ck. Each of these
jobs either belongs to a task assigned to Ck, or is blocking a
higher-priority job of a task assigned to Ck. Thus, there exist
h ≥ c jobs of tasks assigned to Ck that have higher priorities
than Ji, which rules out pi-blocking (recall Def. 1).

Of course, MPI is by itself not sufficient to guarantee
bounded pi-blocking or independence preservation. For ex-
ample, if MPI is combined with the P-OMLP, requests of
otherwise independent jobs could still conflict due to the
limited number of available contention tokens. Similarly,
if the G-OMLP is applied across cluster boundaries using
MPI, the protocol would remain independence-preserving,
but it would not ensure O(m) pi-blocking since the OMLP’s
hybrid queues fundamentally require comparing priorities
among all queued jobs, which remains analytically mean-
ingless if jobs stem from multiple clusters even when using
MPI. A new locking protocol designed specifically to take
advantage of MPI is thus required.

3.2 An Independence-Preserving Locking Protocol
The O(m) independence-preserving multiprocessor locking
protocol (OMIP) combines aspects of both the G-OMLP and
the P-OMLP. From the P-OMLP, it borrows the concept of
contention tokens to limit access to global queues, but uses
them on a per-resource basis to preserve task independence.
Additionally, it reuses the G-OMLP, but only within each
cluster, to serialize requests for each contention token.
Structure. Each shared resource `q is protected by a global
FIFO queue GQq . The job at the head of GQq holds `q . Fur-
ther, for each resource and each cluster, there is a contention
token; we let CTq,k denote the contention token for `q in
cluster Ck. Each contention token is a virtual local resource
that is shared among local jobs using the G-OMLP.
Rules. Requests for each `q are satisfied as follows. Let Ji
denote a job of a task assigned to cluster Ck.

I1 To issue a request for `q , job Ji must first acquire CTq,k
according to the rules of the G-OMLP.

I2 Once Ji holds CTq,k, it is added to GQq. Ji’s request
for `q is satisfied when it becomes the head of GQq .

I3 While Ji holds `q , it benefits from MPI (with regard to
any job currently waiting to acquire `q , including those
not holding a contention token yet).
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Figure 4: C-EDF schedule of six jobs in two two-processor clus-
ters sharing one resource `1 under the OMIP.

I4 When Ji releases `q, it also releases CTq,k and is de-
queued from GQq. Ji ceases to benefit from MPI and
`q is passed on to the new head of GQq (if any).

Rules I1–I4 ensure O(m) s-oblivious pi-blocking, which is
established in Sec. 3.3 below after a brief example.
Example. Fig. 4 shows an example OMIP schedule under
C-EDF scheduling with m = 4 and c = 2. Job J3 acquires
CT1,1 and `1 at time 1 since `1 is uncontested. Job J6 re-
quests `1 shortly thereafter, acquires CT2,1, and enqueues in
GQ1, but must suspend since J3 holds `1. At time 2, J3 is
preempted due to the release of J1 and J2. As J3 holds `1,
it is subject to MPI and migrates to J6’s cluster, where it is
scheduled on Processor 3. J2 proceeds to request `1 as well,
but suspends without enqueuing in GQ1 because CT1,1 is not
available. At time 4, jobs J4 and J5 are released inC2, which
implies that J6 is no longer among the c = 2 highest-priority
jobs. J3 is thus preempted and migrates back to C1, where it
inherits J2’s priority instead. When J3 releases `1 and CT1,1

at time 5, J2 acquires CT1,1 and enqueues in GQ1. J2 does
not acquire `1 because it is preceded by J6. However, J6 is
not of sufficient priority to be scheduled inC2. Hence, due to
MPI, J6 also migrates to C1 to complete its critical section.
At time 6, J6 releases `1 and ceases to benefit from MPI; it
is thus not scheduled until time 7 when J5 completes. J2
finally acquires `1. Notice how MPI ensures resource holder
progress while J2 incurs pi-blocking and that jobs J1, J4,
and J5, which do not require `1, do not incur any blocking.

3.3 Schedulability Analysis
In general, Rules I1–I4 ensure O(m) pi-blocking under any
clustered JLFP scheduler with 1 ≤ c ≤ m. Due to the
nested structure of the OMIP, the following analysis pro-
ceeds in reverse order, starting with jobs already holding a
contention token. In the following, let Ji denote a job in
cluster Ck that has requested resource `q .

Lemma 3. Once Ji holds CTq,k, it incurs pi-blocking for
the length of at most mc − 1 earlier-satisfied requests for `q .

Proof. Due to MPI (Rule I3), the job holding `q is sched-
uled whenever Ji incurs s-oblivious pi-blocking (Lemma 1).
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Since each job in GQq holds a contention token (Rules I1
and I2), and because there is only one contention token for
`q per cluster, at most mc − 1 jobs precede Ji in GQq .

This in turn bounds the maximum time that a job will
hold a contention token if a waiting job incurs pi-blocking.

Lemma 4. Let Jh denote a job holding CTq,k (where Jh 6=
Ji). While Jh holds CTq,k, Ji incurs s-oblivious pi-blocking
for the length of at most mc requests for `q .

Proof. Analogously to Lemma 3, Ji incurs pi-blocking for
the length of at most mc − 1 requests while Jh traverses GQq .
Further, Ji incurs pi-blocking for at most the length of Jh’s
request while Jh holds `q . Hence, at most (mc − 1) + 1 = m

c
requests for `q delay Ji while Jh holds CTq,k.

In other words, the maximum request length with respect
to each virtual resource CTq,k is m

c · L
max
q .

Lemma 5. Ji incurs s-oblivious pi-blocking for at most the
length of (2m− 1) requests for `q each time it requests `q .

Proof. By Lemma 3, after Ji acquires CTq,k, it incurs pi-
blocking for the duration of at most mc − 1 request lengths
(with respect to `q). Additionally, before Ji acquires CTq,k,
job Ji incurs s-oblivious pi-blocking for the duration of at
most 2c − 1 “token request lengths” (i.e., request lengths
with regard to the virtual resource CTq,k) since access to
CTq,k is governed by the G-OMLP and because Ji’s cluster
contains c processors. By Lemma 4, the maximum “token
request length” (in terms of pi-blocking incurred by Ji) is
bounded by m

c requests for `q, for a total of (2c − 1) · mc
blocking requests due to CTk,q . Thus, maximum pi-blocking
is bounded by the lengths of (mc − 1) + (2c − 1) · (mc ) =
(mc − 1) + (2m− m

c ) = 2m− 1 requests for `q .

The OMIP is thus independence-preserving and asymp-
totically optimal under s-oblivious analysis.

Theorem 2. Under clustered JLFP scheduling (1 ≤ c ≤ m)
with the OMIP, any job Ji incurs at most bi =

∑
q Ni,q ·

(2m− 1) · Lmaxq = O(m) s-oblivious pi-blocking.

Proof. Follows from Lemmas 2 and 5 and the analysis as-
sumptions that

∑
q Ni,q and Lmaxq are constant.

As an aside, the presented analysis does not require the
employed JLFP policy to be the same in all clusters. It is not
assumed that deadlines are met (i.e., the presented analysis
is valid even if jobs are tardy).

The OMIP preserves independence among tasks and en-
sures predictable pi-blocking for non-independent tasks, pro-
vided that tasks do not hold resources across job boundaries
and that jobs do not exceed their specified execution cost.
The OMIP is hence well-suited for closed HRT and SRT
environments. However, as discussed in Sec. 1, stronger
resiliency to faults is required in open and heterogenous
real-time systems. We present a new OMIP-based solution
suitable for such demanding environments next.

4 The Illusion of Exclusive Access
Open and heterogenous real-time systems are challenging
from a resource-sharing perspective because the final task
set composition is unknown at analysis time (i.e., the number
of tasks n and some of the Ni,q parameters may be unknown
or wrong), and because shared resources may be accessed by
SRT and BE tasks for which only imprecise execution time
estimates are known (i.e., some of the ei and Li,q parameters
may underestimate actual demand). To guarantee temporal
isolation in such environments, each task must be protected
against unexpected resource requirements by any other task.

To this end, we introduce virtually exclusive resources
(VXRs)—a predictable resource-sharing environment that
ensures complete temporal isolation even if resources are
shared with erroneous or unpredictable tasks. In particular,
the VXR environment hides resource sharing and allows
tasks to be provisioned as if they had exclusive access to a
private (but slower) replica of each shared resource.

The VXR environment combines the OMIP with
reservation-based scheduling, which requires augmenting
MPI with BWI [13, 17] and adding rules to cope with budget
overruns, which we introduce next.

4.1 Tolerating Budget Overruns
Recall from Sec. 2.2 that reservation-based scheduling en-
forces temporal isolation by delaying the completion of a
job that overruns its specified execution cost until its server’s
budget is replenished. If a job Ji exhausts its server’s budget
during a request for a resource `q , there are two possibilities:
either Ji already holds `q (i.e., it is currently the head of
GQq), or it is still suspended and waiting to acquire `q . The
latter case is easier to handle since Ji has not yet started
executing its critical section; Ji can thus be safely dequeued.
In the former case, if Ji already holds a resource, then Ji’s
request must continue since the shared resource may be in
an inconsistent state. A resource holder must thus finish its
critical section using the budget of waiting jobs (if any).

Recall that each contention token CTq,k is protected by
the G-OMLP, which uses a FIFO and a priority queue to
serialize requests for CTq,k. In the following, let FQq,k

denote the FIFO and PQq,k the priority queue corresponding
to CTq,k. Budget overruns are handled as follows.

B1 If Ji’s server Si exhausts its budget while Ji is waiting
to acquire `q, then Ji’s request for `q is aborted. This
causes Ji to be dequeued from all queues related to `q
(i.e., GQq, FQq,k, and PQq,k), and to no longer partic-
ipate in BWI (i.e., the job holding `q may no longer
consume Si’s budget). When Si’s budget is replen-
ished, Ji’s request is automatically reissued (i.e., it is
processed as a new request).

B2 If Ji’s server Si exhausts its budget while Ji holds `q,
then Ji is removed from FQq,k without releasing CTq,k.
The highest-priority job in PQq,k (if any) is transferred
to FQq,k, but the new head of FQq,k (if any) does not
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yet enter GQq. Ji remains an eligible BWI recipient
until it releases `q , at which point it also releases CTq,k,
which allows the head of FQq,k (if any) to enter GQq .

Example. Rules B1 and B2 are illustrated in Fig. 5, which
shows a schedule of four servers under reservation-based P-
EDF scheduling sharing a resource in the VXR environment.
Job J3 (in server S3) acquires `1 at time 1, which causes
S1 to experience interference when its client job J1 requests
`1 at time 1.5. J2 (in S2) requests `1 shortly thereafter,
but cannot enter GQ1 since J1 holds CT1,2. At time 2, S3

exhausts its budget, which gives S4 a chance to be scheduled.
Since J3 holds `1, Rule B2 applies and J3 continues to
execute its critical section using S1’s budget on Processor 2.
This in turn exhausts S1’s budget at time 3. Since J1 does
not yet hold `1, Rule B1 applies and J1’s request is aborted.
Hence J2 acquires CT1,2 and enters GQ1 at time 3. J3
continues to execute since it now inherits budget from S2.
At time 4, J3 releases `1 and ceases to benefit from BWI. At
time 8, S1’s budget is replenished and J1’s request for `1 is
reissued. J1 acquires `1 immediately, but S1 is not scheduled
until time 9 since the higher-priority S2 must complete first.

Rules B1 and B2 prevent the accumulation of budget-less
jobs in queues, which limits interference for jobs that do not
exhaust their server’s budget, which we show next.

4.2 Bounding Interference
Recall from Sec. 2.2 that, under reservation-based schedul-
ing, interference reflects the budget loss that a server experi-
ences while its job waits for a resource. Since interference
is closely related to pi-blocking, the following analysis is in
large parts analogous to the analysis of the OMIP in Sec. 3.3,
with the key difference that budget overruns must be taken
into account. In the following, we let Ji denote a job that has
requested `q and assume that its server Si does not deplete
its budget during Ji’s request.

Lemma 6. While Ji is waiting in GQq, Si experiences in-
terference due to at most mc − 1 requests for `q .
Proof. If no job preceding Ji in GQq exhausts its server’s
budget, the bound follows analogously to Lemma 3. If a
preceding job is removed from GQq due to Rule B1, then Ji’s
acquisition delay and hence interference is only reduced. If
a job preceding Ji in GQq exhausts its budget while holding
`q , Ji’s worst-case interference is not affected since resource
holders are eligible to execute using Si’s budget anyway.

Budget overruns are thus unproblematic for jobs already
waiting in GQq. This allows bounding the amount of inter-
ference while Ji waits for CTq,k.

Lemma 7. While Ji is waiting in FQq,k, Si experiences
interference due to at most m− m

c + 1 requests for `q .
Proof. Analogously to Lemma 4, Lemma 6 implies that a
job Jh at the head of FQq,k holding CTq,k will release CTq,k
after Si experiences interference due to at most mc requests
while Jh traverses GQq. If Ji enters FQq,k normally (i.e.,

C2

C1

5 10 150

budget exhausted budget replenished

IF

IF

S1

S2

S3

S4

Figure 5: P-EDF schedule of four servers (S1–S4) sharing one
resource `1. Servers S1 and S3 have parameters Q1 = Q3 = 2 and
P1 = P3 = 7; servers S2 and S4 have parameters Q2 = Q4 = 10
and P2 = P4 = 14. The request of job J1 is aborted at time 3 and
reissued at time 8 (Rule B1).

not due to Rule B2), then at most c − 1 jobs precede Ji in
FQq,k (and fewer if any are removed due to Rule B1) and Si
experiences interference due to at most (c− 1) · mc requests
while jobs in FQq,k hold CTq,k. Otherwise, in the worst case,
Ji enters FQq,k when the current token holder is removed
from FQq,k without releasing CTq,k due to Rule B2. In this
case, Si experiences additional interference for at most one
request length until the resource holder relinquishes CTq,k.
Hence, in total, at most (c−1) · mc + 1 = m− m

c + 1 earlier-
satisfied requests interfere while Ji traverses FQq,k.

Finally, interference while Ji waits in PQq,k can be
bounded analogously to the argument given in [7].

Lemma 8. While Ji waits in PQq,k, Si experiences interfer-
ence due to at most m requests for `q .

Proof. Suppose Ji is still queued in PQq,k and that Si ex-
periences interference after at least c jobs in higher-priority
servers have entered FQq,k. Since both Rules B1 and B2
remove a job immediately from FQq,k when its server ex-
hausts its budget, each job in FQq,k implies the existence
of a higher-priority server in Si’s cluster. There are thus c
higher-priority servers in Si’s cluster, which precludes in-
terference (recall Defs. 2 and 3). Hence, while Ji waits in
PQq,k, Si does not experience interference after at least c
higher-priority servers have entered FQq,k, which requires
at most c · mc = m requests to complete.

Lemmas 6–8 together bound the maximum per-request
interference and hence yield the desired temporal isolation.

Theorem 3. In the VXR environment, if the set of servers is
schedulable, then all jobs of a real-time task Ti with worst-
case execution time ei and period pi meet their deadline if
Ti’s server Si is provisioned with parameters Pi ≤ pi and
Qi ≥ ei + Ii, where Ii =

∑
q Ni,q · 2 ·m · Lmax

q .

Proof. Since the OMIP is independence-preserving, servers
experience interference only when its client job waits for a
resource. By Lemmas 6–8, each time Ji requests a resource
`q, at most (mc − 1) + (m − m

c + 1) + m = 2m earlier-
satisfied requests for `q consume Si’s budget while Ji waits
for `q, assuming Si does not exhaust its budget before Ji
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completes. Since each Ji issues at most Ni,q requests for
each `q , Si experiences at most Ii =

∑
q Ni,q · 2 ·m ·Lmax

q

interference. Each Ji requires at most ei processor time to
complete; a budget of ei + Ii is thus sufficient to ensure that
each Ji finishes before Si exhausts its budget.

There are several points to observe. First, tolerating
budget overruns increases worst-case interference by only
one critical section length per request (in comparison to
s-oblivious pi-blocking under the OMIP), which seems a
low price to pay for the gain in robustness. Second, in-
terference is asymptotically optimal in the VXR environ-
ment since it is trivial to show that max{Ii} = Ω(m) is
unavoidable in the general case (analogously to s-oblivious
pi-blocking [7]). And finally, note that Rule B2 is essen-
tial: if a resource holder that overruns its budget were not
removed from FQq,k, then Lemma 8 would not be true; sim-
ilarly, if a resource holder would release its contention token
immediately, Lemma 6 would not hold.

Theorem 3 expresses strong isolation: maximum interfer-
ence is bounded regardless of (i) the number of tasks sharing
a resource, (ii) how many times other tasks request any re-
source, and (iii) whether any other task exceeds its allocated
budget. That is, the VXR environment allows provision-
ing a task’s server a priori, based alone on the number of
processors m and each maximum request length Lmax

q .
It is reasonable to assume that the target processor plat-

form, and hence m, is known at analysis time—this is re-
quired in any case to bound the execution cost ei, using either
worst-case execution time analysis or empirical estimates.
However, safely bounding Lmax

q a priori requires imposing
restrictions on how resources are accessed, as discussed next.

4.3 Bounding Lmaxq

Lock-based synchronization inherently implies trust, as other
tasks may fail to release locks in a timely fashion or even
entirely. In particular, if tasks have direct access, then it is
generally not possible to derive a safe upper bound on each
resource’s maximum request length Lmaxq in open real-time
systems (i.e., if the final task set composition is unknown in
advance). This implies that untrusted tasks should not have
direct access to shared resources, but rather issue requests
through a common, trusted mediation layer.

For example, suppose tasks share a device such as a sen-
sor or network link. In a UNIX-like RTOS (such as QNX
or Linux variants), tasks typically do not access a device di-
rectly; rather, they invoke system calls to perform operations
upon the device. The OS kernel and device driver provide a
trusted mediation layer that ensures, if implemented properly,
that the maximum request length can be bounded a priori,
regardless of which tasks access the device at runtime.

More generally, if resources are shared among mutually
untrusted tasks, each resource should be encapsulated in a
server process (in the microkernel sense) and only be ac-
cessed using a well-defined set of operations implemented
by the server process. Such a mediation layer can also en-

force access control policies and guard against certain logical
errors (e.g., it can reject nonsensical requests).

If resource access is mediated such that Lmaxq can be
determined at design time (or if all tasks are trusted), then
the VXR environment ensures strong temporal isolation that
greatly simplifies task admission in open real-time systems.

4.4 Resource-Agnostic System Composition

As pointed out in Sec. 1, the defining characteristic of an
open real-time system is that not all tasks are known at design
time. Instead, systems are composed from independently-
developed components, where each component consists of
one or more tasks encapsulated in servers. Strict temporal
isolation makes compositional system design possible: if
each to-be-added component passes an admission test (i.e.,
if the set of reservations remains schedulable), then a prop-
erly provisioned real-time task is guaranteed to satisfy its
temporal specification regardless of failures in other tasks.
Determining proper budgets for each server is thus essential.

However, using prior protocols, this is challenging if tasks
share resources. For example, the MBWI [13] uses FIFO
queuing and thus is fundamentally an Θ(n) protocol, that
is, the maximum interference depends on the number of
tasks sharing a given resource. This has major implica-
tions: if a task requires resources that might be used by other
components, then it is impossible to determine a budget in
advance that is sufficient in all cases (since the number of
tasks sharing a resource is unknown at design time). Instead,
each component must declare all its resource requirements
(which is tedious for developers) and the admission control
mechanism must determine appropriate budgets based on all
the specified resource requirements of all admitted servers.
Worse, admitting a new component may invalidate the bud-
gets of previously-admitted servers that share resources with
the newly-admitted server; adding one server may thus re-
quire changing the budgets of all servers, which in turn may
require load balancing (readjusting budgets at runtime is
itself a challenging problem [5]). Composition under the
MBWI is thus a fairly difficult affair.

In contrast, the VXR environment ensures firm bounds
on the maximum interference incurred due to resource shar-
ing regardless of the number of tasks sharing a particular
resource: a server’s budget provisioned according to Theo-
rem 3 is guaranteed to be sufficient in all cases. This sim-
plifies system composition greatly since a task’s resource
requirements do not have to be part of its public interface
and adding servers does not require changing any previously-
admitted server’s budget. That is, the VXR environment
provides the illusion that each task uses a private replica of
each resource that is 2m + 1 times slower than the shared
instance—sharing is hence effectively hidden within each
server as tasks access only (virtually) exclusive resources.
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5 Extensions and Applications
The high degree of predictability in the VXR environment
makes it an attractive choice for applications in which isola-
tion is paramount. To emphasize its versatility, we provide an
overview of practical extensions and possible applications.

5.1 Resource Sharing in Mixed-Criticality Systems
The VXR environment not only isolates tasks from temporal
faults, but also from (otherwise) incompatible differences
in analysis assumptions. For example, if a SRT task Ts
and a HRT task Th share a resource `q, it is possible to use
different estimates of Lmax

q when provisioning Ss and Sh
(e.g., observed maxima vs. analytic bounds). In the VXR
environment, Th’s temporal correctness is not at risk even if
the estimate used to provision Ss turns out to be wrong.

The option to mix components that were developed with
different levels of rigor is useful in many scenarios, ranging
from low-end SRT applications (e.g., isolating multimedia
playback tasks from GUI tasks) to safety-critical HRT sys-
tems subject to stringent certification requirements.

With regard to the latter, the VXR environment is applica-
ble to the emerging field of mixed-criticality systems [4, 25],
in which tasks of different criticalities (i.e., importance)
are co-hosted on a shared hardware platform. For exam-
ple, consider the hierarchical mixed-criticality scheduler pro-
posed by Anderson et al. [2, 15], which, inspired by avionics
workloads, supports five criticality levels (denoted A–E).
Higher-criticality tasks are subject to much more stringent
certification requirements (and hence use more pessimistic
cost estimates) than lower-criticality tasks (which may use
measured or even estimated parameters).

It is often (economically) infeasible to certify all tasks
at the highest level. Instead, certification seeks to establish
that level-X tasks are correct if each task’s actual execution
is consistent with level-X assumptions. For example, if
level-C assumptions are exceeded but level-B assumptions
are met, then level-C tasks may fail, but level-B tasks must
continue to function correctly. VXRs are well-suited for
such conditional guarantees: when provisioning servers of
level-X tasks using level-X estimates of Lmax

q , Theorem 3
implies temporal correctness if level-X estimates are met,
even when sharing resources with tasks of lower criticality.

To the best of our knowledge, the VXR environment is the
first to allow predictable sharing of resources among tasks of
different criticalities in multiprocessor systems. Notably, An-
derson et al.’s hierarchical mixed-criticality framework can
be interpreted as a JLFP scheduler since higher-criticality
servers are statically prioritized over lower-criticality servers,
and various JLFP policies may be used to schedule servers
within each level; VXR support can thus be easily integrated.

5.2 Resource Access for Budget-Less Tasks
The VXR environment as described so far allows real-time
and best-effort tasks to share resources, but only if best-effort

tasks are provisioned in servers with non-zero scheduling
budgets. However, practical systems often also contain best-
effort background jobs scheduled at idle priorities, which
are budget-less, that is, for the purpose of Rules B1 and B2,
their budget is “continuously exhausted.” Such jobs cannot
be queued in any FQq,k or PQq,k since the VXR analysis
does not allow budget-less waiters. It does, however, already
account for budget-less resource holders.

This allows background jobs to be integrated as follows.

B3 When a budget-less job Jb in cluster Ck requests a
shared resource `q, it immediately acquires CTq,k and
`q if `q is currently available and uncontested; other-
wise, Jb is enqueued in the background queue BQq (no
particular ordering of BQq is required).

B4 When a resource holder Jh (with or without budget)
releases `q, the global FIFO queue GQq is checked: if
GQq is empty after Jh releases `q and CTq,k (i.e., if
there are no unsatisfied requests by jobs with budgets),
then the head of BQq (if any) is dequeued and acquires
`q and the local contention token for `q .

Note that background jobs still benefit from bandwidth in-
heritance if they block jobs in servers with non-zero budgets.
Rules B3 and B4 ensure that budget-less background jobs
acquire a resource only if the resource would otherwise be
idle, which reflects their low priority. With this extension in
place, the VXR environment facilitates predictable resource
sharing among truly all tasks; it can thus be employed as the
sole locking protocol in an RTOS for mixed workloads.

5.3 Throughput and Interference Improvements
Since a majority of critical sections are short in practice,
throughput typically improves if jobs spin briefly before
suspending (e.g., Solaris uses such adaptive mutexes [19]).
While such a spin-first policy does not improve the worst case
(in which jobs are assumed to exceed the spinning threshold
and eventually suspend anyway), it likely improves average-
case resource access costs. The VXR is trivially compat-
ible with this throughput optimization: if the interference
definition (Def. 3) is augmented to include budget lost to
busy-waiting, then the interference bound derived in Sec. 4.2
remains valid, provided that waiting jobs cease spinning im-
mediately if the resource-holder is preempted. In an RTOS
such as LITMUSRT, this can be easily supported.

A reduction in worst-case interference is possible for re-
sources that are shared by fewer than 2c tasks in a given clus-
ter. Let Aq,k denote the set of tasks assigned to cluster Ck
that access `q . If all jobs wait simply in FIFO order for CTq,k
(instead of using the G-OMLP), then a request for CTq,k is
preceded by at most Aq,k earlier-issued requests. Thus, if
Aq,k < 2c, it is favorable to use a FIFO queue instead of
a hybrid queue. If resource access is mediated, the kernel
is typically aware of Aq,k since tasks must open “handles”
to shared resources; the kernel can thus adapt transparently
and switch from a simple FIFO queue to the G-OMLP when
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Aq,k exceeds 2c. This ensures that interference is no worse
than in a FIFO protocol like the MBWI.

A key advantage of the VXR environment is that it pro-
vides strict temporal isolation without making any assump-
tions about the composition and resource requirements of
a task set (Theorem 3). However, it is of course possible
to derive more accurate interference bounds using holistic
blocking analysis [6]. That is, by considering per-task maxi-
mum critical section lengths and the frequency of resource re-
quests, less-pessimistic, task-set-specific interference bounds
can be established. Such fine-grained bounds, expressed as a
linear program, can be found in Appendix A.

5.4 Nested Requests
The isolation provided by Theorem 3 implicitly supports
nested requests if deadlock is avoided, that is, if the nesting
graph is acyclic, which can be enforced by the mediation
layer. If a request for a resource `a may contain a request for
another resource `b, then Theorem 3 remains valid if Lmaxa

is inflated to account for 2 ·m · Lmaxb maximum transitive
interference. It is likely possible to reduce the pessimism
inherent in inflating request lengths for all nested requests;
this is an interesting opportunity for future work.

6 Conclusion
This paper breaks new ground in several ways. We have pre-
sented the OMIP, the first suspension-based independence-
preserving real-time locking protocol for clustered JLFP
scheduling. The OMIP generalizes the G-OMLP and re-
duces to it in the case of global scheduling (c = m). The
distinguishing feature of the OMIP is that it ensures O(m)
pi-blocking and independence preservation for any cluster
size. In contrast, the G-OMLP only applies if c = m, and
neither the P-OMLP nor the C-OMLP are independence-
preserving. Based on the OMIP, we have presented the
VXR environment, which is the first locking protocol for
reservation-based scheduling to ensure temporal isolation
with asymptotically optimal interference. This enables nu-
merous interesting applications: to the best of our knowledge,
the VXR environment is the first lock-based approach (i) to
enable resource-agnostic system composition, (ii) suitable
for mixed-criticality systems, and (iii) to allow budget-less
background jobs to share resources with real-time tasks.

In future work, we seek to improve support for nested
requests. Further, while implementation concerns had to
remain beyond the scope of this paper, they are clearly of
great importance. We plan to support the OMIP and VXRs
in LITMUSRT to evaluate the protocols under consideration
of realistic overheads in comparison with the MBWI [13].
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A Detailed Blocking Analysis
In this appendix, we derive task-set-specific bounds on s-
oblivious pi-blocking and interference. For many task sets,
these bounds are less pessimistic than the coarse-grained
bounds given in Secs. 3 and 4 because they take each task’s
resource requirements into account (i.e., they reflect each
Ni,q and Li,q). This avoids overestimating worst-case con-
tention if most resources are shared only among few tasks.

To obtain a task-set-specific bound, we derive a linear pro-
gram (LP) that, when maximized, yields a safe upper bound
on maximum blocking (resp., interference). We use linear
programming as the underlying formalism in the interest of
conciseness and to avoid using ad-hoc notation. We begin
with bounding pi-blocking under the OMIP.

A.1 Maximum PI-Blocking under the OMIP
Recall from Sec. 3 that we let bi,q denote the maximum
s-oblivious pi-blocking incured by an arbitrary job Ji due
to requests for a shared resource `q. Further, recall from
Lemma 5 that bi,q ≤ Ni,q · (2m − 1) · Lmax

q , assuming a
uniform cluster size c and that m is an integer multiple of
c. The bound derived in this section is both more accurate
and more general, in the sense that it is in many cases less
pessimistic and that it requires neither cluster sizes to be
uniform nor m to be a multiple of c. To account for the latter,
we redefine c to denote only the number of processors in
Ti’s assigned cluster Ck and make no assumption about the
number of processors in any of the other clusters.

We further assume that the “FIFO queue optimization”
from Sec. 5.3 is employed. That is, access to the contention
token CTq,k is governed by the OMIP if more than 2c tasks
assigned to Ck access `q, and by a simple FIFO queue oth-
erwise. Recall that we let Aq,k denote the number of tasks
assigned toCk that require `q . To simplify the LP constraints
given below, we define the following shorthand notation.

Def. 6. We let A′
q,k , min(Aq,k, 2c)− 1 denote the maxi-

mum number of jobs other than Ji that hold CTq,k while Ji
incurs pi-blocking (w.r.t. a single request of Ji).

Recall that the OMIP as described in Sec. 3 is primarily
targeted at systems in which jobs can be assumed to not
overrun their budget. The following analysis is based on this
assumption. We begin by expressing bi,q as a linear equation
to obtain an objective function for the LP that bounds bi,q .

A.2 Linear Program Setup
For an arbitrary, but fixed job Ji, the bound bi,q can be
expressed exactly as the sum of all pi-blocking that Ji incurs
due to each request issued by jobs of other tasks while Ji is
pending. This requires bounding the maximum number of
requests that are issued while Ji is pending. Let rx denote
the maximum response time of task Tx.

Lemma 9 (from [6], p. 406). At most
⌈
t+rx
px

⌉
distinct jobs

of a task Tx execute during any interval of length t.

Since Ji is pending during an interval of length at most
ri (i.e., Ti’s maximum response time), Lemma 9 bounds
the maximum number of conflicting requests. We use the
following shorthand notation.

Def. 7. Let N i
x,q , Nx,q ·

⌈
rx+ri
px

⌉
denote the maximum

number of requests for a shared resource `q issued by jobs
of Tx while Ji is pending.

This allows enumerating all conflicting requests.

Def. 8. Let Rx,q,v denote the vth request issued by jobs of
Tx while Ji is pending, where v ∈ {1, . . . , N i

x,q}.
To express bi,q as a linear function, we introduce the

concept of a “blocking fraction.” The blocking fraction
Xx,q,v denotes the amount of pi-blocking incurred by Ji due
to request Rx,q,v, expressed as a fraction of the maximum
request length Lx,q. For example, suppose Lx,1 = 3 and
that, in a specific, fixed schedule, Ji incurs pi-blocking for
two time units while Rx,1,1 is being executed: in this case
Xx,1,1 = 2

3 . Similarly, if a requestRx,q,v does not block Ji
at all (w.r.t. a specific schedule), then Xx,q,v = 0.

This formalization allows expressing bi,q as a function of
each Xx,q,v , with each Lx,q serving as a coefficient.

bi,q =

n∑
x=1
x 6=i

Ni
x,q∑
v=1

Xx,q,v · Lx,q (1)

Since Ji is an arbitrary job of Ti, and since no specific
assumptions are made about the fixed schedule under analy-
sis, a safe upper bound on bi,q for any Ji in any schedule can
be obtained by maximizing Eq. (1) while interpreting each
Xx,q,v as a variable with Xx,q,v ∈ [0, 1].

Of course, unless additional constraints are imposed,
Eq. (1) is maximized when each Xx,q,v = 1, that is, if
each request is assumed to block Ji in its entirety. To avoid
such pessimism, we next introduce linear constraints that
derive from the OMIP’s request rules.

A.3 OMIP Constraints
To begin, we restrict the maximum pi-blocking due to con-
flicting requests issued by jobs in remote clusters. In the
following, let Ck denote Ti’s assigned cluster, and let Cr
denote a remote cluster (i.e., Ck 6= Cr). Further, let τk and
τr denote the sets of tasks assigned to clusters Ck and Cr,
resp., and let τ ik , τk \ {Ti}.

Lemma 10. Let Q = min(
∑
Tl∈τ i

k
N i
l,q, Ni,q · A′

q,k). In
any schedule of τ under the OMIP:

∀Cr :
∑
Tx∈τr

Ni
x,q∑
v=1

Xx,q,v ≤ Ni,q +Q.

Proof. Suppose not. Then there exists a schedule such
that a job Ji incurs pi-blocking due to more than Ni,q +Q
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requests issued by jobs of tasks assigned to a remote cluster
Cr. Under the OMIP, a remote job Jx delays Ji only if it
precedes a job holding CTq,k in GQq (i.e., either Jx precedes
Ji directly or Jx precedes another job that holds CTq,k while
Ji is still waiting to acquire CTq,k). By definition of Ni,q,
Ji is at most Ni,q times enqueued in GQq .

Additionally, if Q =
∑
Tl
N i
l,q, then other local

jobs are at most
∑
Tl
N i
l,q times enqueued in GQq. If∑

Tx

∑
vXx,q,v > Ni,q +Q, then a single request of some

job in Ck is blocked by at least two requests of jobs in Cr.
Similarly, if Q = Ni,q · A′

q,k, then other local jobs are
at most Ni,q ·A′

q,k times enqueued in GQq while Ji incurs
pi-blocking. If

∑
Tx

∑
vXx,q,v > Ni,q + Q, then a single

request of some job in Ck is blocked by at least two requests
of jobs in Cr while Ji incurs pi-blocking.

Since GQq is FIFO-ordered, and since there is only one
CTq,r in Cr, a job in GQq is blocked by at most one request
from each other cluster. Contradiction.

Lemma 10 limits pi-blocking due to remote jobs only.
Next, we introduce two constraints that limit pi-blocking due
to local jobs. The first constraint applies in all cases, whereas
the second constraint applies only if Aq,k ≤ 2c. The general
case is constrained as follows.

Lemma 11. In any schedule of τ under the OMIP:

∑
Tx∈τ i

k

Ni
x,q∑
v=1

Xx,q,v ≤ Ni,q ·A′
q,k.

Proof. Suppose not. Then there exists a schedule such that a
job Ji is pi-blocked by more than Ni,q ·A′

q,k requests issued
by local jobs other than Ji. Since there is only one contention
token for `q in Ck, local jobs never block while Ji traverses
GQq . Hence, Ji is only pi-blocked while waiting to acquire
CTq,k, which it does at most Ni,q times.

IfAq,k ≤ 2c, and if more thanNi,q ·A′
q,k = Ni,q ·(Aq,k−

1) requests of local jobs cause Ji to incur pi-blocking, then
jobs of some Tx must acquire CTq,k at least twice while Ji
is waiting to acquire CTq,k, which is impossible since CTq,k
is protected by a FIFO queue if Aq,k ≤ 2c.

Otherwise, if Aq,k > 2c, CTq,k is shared according to
the rules of the G-OMLP. Hence, at most 2c − 1 requests
by local jobs cause Ji to incur pi-blocking each time that it
issues a request for `q , which contradicts the assumption that
more than Ni,q · A′

q,k = Ni,q · (2c − 1) requests by local
jobs cause Ji to incur pi-blocking.

Note that Lemma 11 does not constrain the number of pi-
blocking requests due to any individual task. In the general
case, if Aq,k > 2c, this cannot be avoided (without making
further assumptions about the underlying JLFP scheduling
policy) since Ji may be blocked by later-issued requests that
enter FQq,k while Ji is still waiting in PQq,k. However, if
Aq,k ≤ 2c, then the stronger FIFO progress guarantee can
be exploited to limit per-task pi-blocking.

Lemma 12. If Aq,k ≤ 2c, then in any schedule of τ under
the OMIP:

∀Tx ∈ τ ik :

Ni
x,q∑
v=1

≤ Ni,q.

Proof. Suppose not. Then there exists a schedule such
that some job Ji incurs pi-blocking due to more than Ni,q
requests for `q by jobs of a local task Tx. Hence, one of Ji’s
Ni,q’s requests must be preceded by at least two requests
issued by jobs of Tx, which is impossible since CTq,k is
protected by a FIFO queue if Aq ≤ 2c.

By maximizing Eq. (1) subject to the constraints stated
in Lemmas 10 and 11 and, if applicable, Lemma 12, a safe
upper bound bi,q is obtained that is suitable for use under s-
oblivious analysis. Note that the generated LP is not difficult
to solve; it is thus not necessary to use an LP solver in an ac-
tual implementation. However, specifying blocking bounds
as an LP has the distinct advantage that it is trivial to obtain
a correct reference implementation for testing purposes.

A.4 Maximum Interference in the VXR Environment
The bound on maximum interference experienced by Si
depends on the assumptions than can be reasonably made
about other tasks. If a resource `q is shared only among
HRT tasks for which all parameters are accurately known,
Lemmas 10–12 apply analogously since budget overruns
cannot occur (provided that the server of each task that Ti
shares resources with is appropriately provisioned).

In contrast, if a resource is shared with untrusted tasks
for which Nx,q cannot be determined with certainty, then
bounds more accurate than those presented in Sec. 4.2 cannot
be established without risking the temporal isolation of Ti.
We note, however, that Nx,q could also be enforced by the
access mediation layer by delaying unexpected requests,
which leads to the following scenario.

In the case that Nx,q and Lx,q are known (or enforced),
but jobs other than Ji may still overrun their budget (e.g., if
Ti shares a resource with SRT tasks that are provisioned
using average-case estimates), Lemma 11 remains valid
only if Def. 6 is slightly adjusted to take Rule B2 into ac-
count: if jobs holding `q might exhaust their budget, then
A′
q,k , min(Aq,k, 2c). This change accounts for CTq,k

being unavailable when Ji enters FQq,k, analogously to
Lemma 7. Lemmas 10 and 12 remain valid without change
even if budget overruns are possible.
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