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ABSTRACT
Sliding-window computations are widely used for data anal-
ysis in networked systems. Such computations can consume
significant computational resources, particularly in livesys-
tems, where new data arrives continuously. This is because
they typically require a complete re-computation over the
full window of data every time the window slides. There-
fore, sliding-window computations face important scalabil-
ity problems. In this paper, we propose techniques for im-
proving the scalability by performing sliding-window com-
putations incrementally. In this paradigm, when some new
data is added at the end of the window or old data dropped
from its beginning, the output is updated efficiently by reusing
previously run sub-computations, avoiding a complete re-
computation. To realize this approach, we propose Slider, a
novel framework that supports incremental sliding-window
computations transparently and efficiently by leveraging self-
adjusting computations principles of dynamic dependence
graphs and change propagation. We implemented Slider based
on the Hadoop MapReduce framework with a declarative
SQL-like query interface, and evaluated it with a variety
of applications and real world case studies from networked
system. Our results show significant performance improve-
ments for large-scale sliding-window computations without
any modifications to the existing application code.

1. INTRODUCTION
The complexity of modern networked systems makes

data analysis a fundamental component to understand
and monitor their behavior, e.g., to measure system per-
formance [21], perform capacity planning [24], detect
network anomalies [20], diagnose problems [14], pro-
vide accountability [16], or detect security threats [32].
Driven by the criticality and usability of these appli-
cations, the networked systems aggressively generate a
plethora of detailed raw data, which is collected on-the-
fly or in small batches for later analysis.
Since networked systems normally run continuously,

they generate massive amounts of data that growsmono-
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tonically over time. As a result, one of the most com-
mon workflows for data analysis is to continuously com-
pute over incrementally growing data set. In addition
to combining newly appended data, many applications
also consider the case of discarding older data when it
is less relevant compared to the recent data. In other
words, data analyses often compute over a sliding win-
dow of data.
The basic approach to sliding-window data process-

ing is to recompute the application-specific computation
whenever the window slides. Consequently, the arrival
of new data items cause a full re-computation, requir-
ing re-processing of the old, unchanged data items that
remain in the window. This complete re-computation
approach has two major drawbacks. First, it wastes
resources unnecessarily by processing unchanged data
items. Second, it fundamentally limits the timeliness
of results by performing this unnecessary computation.
Timeliness is important in time-sensitive applications
that rely on up-to-date information even under frequent
updates, e.g., applications detecting security threats by
scanning network streams for virus signatures [29].
One way to overcome the limitations of the basic

approach is by using incremental update mechanisms,
where the outputs are updated to accommodate the ar-
rival of new data instead of recomputed from scratch.
Such an incremental approach can be significantly—
often asymptotically—more efficient than the basic ap-
proach, because in the common case the size of the win-
dow is large relative to increment by which the window
slides. One way to support such incremental updates is
to rely on the users (programmers, network administra-
tors) to devise an incremental update mechanism. Un-
fortunately, this approach turns out to be difficult be-
cause it requires designing and implementing an incre-
mental algorithm (or dynamic algorithm) containing the
logic for incrementally updating the output. Research
in the algorithms community (e.g., for surveys [9, 27,
13]) shows that such dynamic algorithms can be quite
difficult to design even for problems that are simple in
the static (non-incremental) case where the data does



not change. Most of these algorithms also assumes a
uniprocessor computing model, as a result, they are not
easily parallelizable for parallel and distributed systems
(such as MapReduce, Spark, Dryad) typically employed
to process large-scale data.
In this paper we propose Slider, a novel framework

for incremental sliding-window computation for scalable
data analysis in networked systems. In Slider, the pro-
grammer expresses the computation to be performed
using MapReduce programming model by assuming a
static, unchanging input window, and we guarantee au-
tomatic and efficient updates as the window slides, e.g.,
due to the arrival of new data. We achieve efficiency
by automatically incrementalizing the computation and
require no changes to the user code: apart from specify-
ing the computation to be computed on static unchang-
ing data, the programmer need not design application-
specific incremental update mechanism.
Our approach to automatic incrementalization is based

on the principles of self-adjusting computation (e.g., [1,
2]). The idea behind self-adjusting computation is to
represent (reify) a computation with a dynamic data-
dependency graph that contains the input data of a
computation job, all relevant sub-computations, and
the data and control flow between them. When the
data changes, a change-propagation algorithm pushes
the change through the dynamic dependency graph by
re-executing all sub-computations that are transitively
affected by the change, reusing the sub-computations
that remain unaffected, and reconstructing an updated
dynamic dependency graph that can be used by fur-
ther updates. The efficiency of change propagation is
determined by the stability of the dynamic dependency
graph under changes—the less stable the graphs, the
more they change and more time change propagation
requires. We design algorithms and techniques that en-
sure that the dynamic dependency graph remains stable
for different variants of sliding-window computations.
We further enhance the self-adjusting-computation

approach by designing a split processing model that takes
advantage of the predictability of incoming input data
streams to minimize response times. To achieve this,
Slider splits the application processing into two parts: a
foreground and background processing. The foreground
processing takes place right after the update to the com-
putation window, and minimizes the processing time
by combining new data with pre-computed intermedi-
ate result. The background processing takes place after
the result is produced and returned, paving the way for
an efficient foreground processing by pre-computing the
intermediate result that will be used in the next incre-
mental update.
We built a prototype of Slider by extending the Hadoop

MapReduce framework. Slider allows for analyses us-
ing either the conventional MapReduce model or using

an interface for declarative query execution (like SQL).
We evaluated the effectiveness of Slider by applying it
to a variety of microbenchmarks and applications. We
also present three real world use cases of using Slider
to accelerate sliding-window computations in networked
systems: building an information-propagation tree [28]
for the Twitter Online Social Network (OSN), moni-
toring Glasnost [14] measurement servers for detecting
traffic differentiation, and providing peer accountabil-
ity in Akamai NetSession [4], a hybrid Content Dis-
tribution Network (CDN). Our experiments show that
Slider can deliver significant performance gains, while
incurring only modest overheads for the initial run.
The remainder of the paper is organized as follows.

We first present related work for incremental sliding-
window computation in networked systems (Section 8).
Next, we describe the design goals and challenges along
with overview of Slider (Section 2). We then cover the
design details and implementation (Sections 3 and 4).
Thereafter, we evaluate Slider experimentally (Section 5)
and apply it to three real-world case studies (Section 6).
We cover the declarative query interface for Slider in
Section 7. Finally, the analytical performance evalua-
tion is presented as part of the appendix A.

2. OVERVIEW
In this section, we present the motivation, design

goals, and an overview of Slider.

2.1 Data Analysis in Networked Systems
Sliding-window computations are used ubiquitously

in the analysis of networked systems; we discuss be-
low some representative examples. Traditionally, these
sliding-window computations re-compute results when
the data window changes, e.g., when new data arrives,
recomputing even old results that depend on unchanged
data.
One area where sliding-window computations are widely

employed is Internet measurements, where packet-, flow-
, or graph-level analyses are used to compute low-level
network flow characteristics, such as latencies, band-
width, and loss rates. These network-wide properties
are used by many applications, e.g., network coordinate
systems [11] or load balancing systems.
Another area that employs sliding-window computa-

tions to scan passing network traffic is network secu-
rity. For example, automated worm fingerprinting anal-
ysis [29] examine a packet stream in a sliding window to
compute worm signatures. These signatures are contin-
ually updated by determining the top-K substrings as
the computation window slides over the packet stream.
Another example is the detection of stepping stone at-
tacks [32], which involves identifying idle-to-active tran-
sitions by leveraging the correlation of multiple flows.
A third area is mapping large-scale systems, e.g.,



measurements to map the topology of the Internet [30]
or crawls of online social networks [28] to extract re-
lationship graphs or to track information flows. When
mapping such a system, the input data is collected over
a long period of time and potentially using multiple
different measurement methods. This can be seen as
an append-only, sliding-window computation, where the
window grows monotonically as new data arrives.
Finally, traffic monitoring tools for anamoly detec-

tion [20] or learning communication rules in the edge
networks [19] also use sliding-window computations. These
computations involve mechanisms for learning the evo-
lution of underlying link-level network traffic using tech-
niques like association-rule mining, or Principal Com-
ponents Analysis (PCA).

2.2 Design Goals
We aim to fulfill the following set of objectives.

Transparency. The developer of data-analysis jobs
should not have to invest additional effort to use the
framework, even when compared to a non-incremental
analysis. More concretely, the developer does not have
to design and implement an efficient dynamic algorithm
for performing incremental updates. Existing data pro-
cessing jobs should work without any changes.

Efficiency. The amount of work that is performed by
the incremental framework should be substantially less
than the non-incremental approach, i.e., recomputing
when data changes. In particular, the framework should
be able to achieve asymptotic performance gains.

Scalability. The framework should be capable enough
to support large-scale data analysis in clusters with a
large pool of compute nodes.

Expressiveness. The framework should enable ex-
pressing a broad range of computations on data and a
should not constraint how the window moves. It should
be possible to slide the window in either direction, and
to grow, and shrink the window at both ends.

Flexibility. The framework should be flexible in mak-
ing usage of low utilization periods in the compute clus-
ter. It should opportunistically perform pre-processing
at low-utilization periods so as to achieve low latency
incremental updates.

2.3 Basic Design Overview
To achieve high expressiveness, fault-tolerance, scal-

ability, and ease of use, we develop Slider based on the
MapReduce model. Given its success, and in particu-
lar the widespread use of the Hadoop framework for it,
we hope that choosing MapReduce will help us cover a
broad set of existing applications.
We first outline a basic design for Slider, and then

detail the limitations of the basic approach. For the
presentation, we assume that the reader is familiar with
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Figure 1: Basic architecture of Slider

the MapReduce model [12]. Without loss of generality,
we also assume for simplicity that each job includes a
single Reduce task (i.e., all mappers output tuples with
the same key). This assumption causes no loss of gener-
ality, because our techniques apply to multiple reducers
(and keys) by symmetry.

Basic design. Figure 1 shows the basic design of
Slider. Newly produced data items are always appended
at the end of the previous window and some data items
are dropped at the beginning. To update the output
incrementally, Slider launches a Map task for each new
“split” (a partition of the input that is handled by a
single Map task) holding new data. Thus, Map tasks
are launched only for the new data; for the remaining
input, Slider reuses the results from Map tasks from the
previous computation. This combination of reused and
newly computed results from Map tasks is then fed to
the Reduce task for computing the final output.

Limitations of the basic design. This basic design
of reusing the results of tasks previously performed suf-
fers from an important limitation: it cannot reuse any
work of the Reduce task. This is because the Reduce
task takes as input all values for a given key (< Ki >,
< V1, V2, V3, ...Vn >), and therefore a single change trig-
gers a recomputation of the entire Reduce task. Next we
provide a brief background on self-adjusting computa-
tion, which forms the basis of our approach to overcome
the limitations of the basic design.

2.4 Self-Adjusting Computation
Self-adjusting computations is a field that studies ways

to efficiently and transparently incrementalize sequen-
tial programs [1, 2]. At a very high level, self-adjusting
computations maintain a dynamic data-dependency graph
that contains the input data to a program, all sub-
computations, and the data flow between them, i.e.,
which outputs of sub-computations are used as inputs
to other sub-computations, successively until the final
output of the program is produced. Input changes are
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propagated through the dynamic-dependency graph by
re-executing all sub-computations that are transitively
affected by an input change, and re-using computations
via a form of computation memoization, until the final
result is updated. This change propagation approach
can often take full advantage of previously computed
results updating computations by performing optimal
work. As we describe in the next section, we apply
self-adjusting-computation principles to overcome the
limitations of the basic design by developing novel data
structures that can ensure efficiency in sliding window
computation by performing incremental updates.

3. SELF-ADJUSTING TREES
We present the design of Slider. We start by ex-

plaining how Slider breaks up the work of the reduce
task into sub-computations by using self-adjusting con-
traction trees. We first describe contraction trees (Sec-
tion 3.1), and then present change-propagation algo-
rithms to make them self-adjusting (Section 3.2).

3.1 Contraction Trees: Breaking up Reduce
Slider leverages Combiner functions of MapReduce

to break a Reduce task into smaller sub-computations.
Combiner functions originally aim at saving bandwidth
by offloading parts of the computation performed by
the Reduce task to the Map task. To use combiners,
the programmer specifies a separate Combiner function,
which is executed on the machine that runs the Map
task, and performs part of the work done by the Reduce
task in order to pre-process various <key,value> pairs,
merging them into a smaller number of pairs. The com-
biner function takes both as an input and output type
a sequence of <key,value> pairs.
We use Combiner functions to break up the work done

by the (potentially large) Reduce task into many appli-
cations of the Combiner. To achieve this, we split the
Reduce input into small groups, and apply the Combine
to pairs of groups recursively in the form of a balanced
tree until we have a single group left. We apply the Re-
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duce function to the output of the last Combiner. We
call this hierarchical structure consisting of combiner
applications as a contraction tree. The contraction tree
enables re-using the results of Combiners that remain
unaffected by allowing us to propagate only the changed
sub-computations down the contraction tree. At each
propagation, the final Reduce task will be executed but
only with the result of the Combiners that have now
condensed the data.

3.2 Change Propagation for Contraction Trees
To support efficient sliding-window computations, we

consider specific modes of sliding windows including
append-only monotonically growing windows, fixed-width
sliding windows, (Sections 3.2.1 and 3.2.2), as well as
the fully general variable-width sliding windows (Sec-
tion 3.2.3). For each case, we present a contract-tree
data structure and a change-propagation algorithm for
efficiently updating the results.
In each case, we consider two different modes of oper-

ation: 1) initial run where we consider the whole data
set as input to compute the initial contraction tree on
which subsequent changes will operate and 2) incre-
mental run, where new data is added and old data is
removed and the output is updated. A typical sliding-
window computation starts with an initial run and fol-
lows it with a sequence of incremental runs to incorpo-
rate data changes as they come.
To improve further the responsiveness of incremen-

tal runs in the monotonically growing, and fixed-width
computations, we also consider techniques for background-
processing of some of the work of an incremental up-
date. Such background-processing is optional and can
be performed during times at which the cluster is un-
derutilized.

3.2.1 Monotonically Growing Windows

Consider the case where new inputs are appended at
the end of previously data to be considered as input;
older data is never dropped from the beginning of the
window. To process this kind of workflow, which is
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also known as bulk-appended data processing, we pro-
pose what we call a coalescing contraction tree data
structure (see Figure2).

(a) Initial run. The first time the job is invoked, it
construct a one-level contraction tree by invoking the
Combiner function (C1 in Figure 2) to all Map outputs.
The output of this combiner is then used as input to ex-
ecute the Reduce task, which produces the final output
(R1 in Figure 2).

(b) Incremental run. To update the output effi-
ciently, Slider constructs a single-level contraction tree
on the outputs of the new Map tasks (e.g., C′

2
in Fig-

ure 2) and coalesces the output with the output of tree
from the previous step to form a new contraction tree
(e.g., C2 combines the outputs of C1 and C′

2). The
output of this root of the new tree then provided to a
Reduce task (e.g., R2), which produces the new output.

(c) Background processing. To improve efficiency
further, we notice that we can delay the construction of
the coalescing contraction tree until after we compute
the new output by background processing. This mod-
ified design is depicted in Figure 3. We perform the
final reduction (R2) directly on the union of the out-
puts of the combiner invocation from the previous run
(C1), and the combiner invocation that aggregates the
outputs of the newly run Map tasks (C′

2
). In the back-

ground, we then start the new combiner that will be
used in the next incremental run (C2) by applying, in
the background, the combiner function. We thus antic-
ipate the processing that will be necessary for the next
time that data is appended and prepare for it in the
background.

3.2.2 Fixed-Width Window Slides

In fixed-width sliding-window computation, new data
is appended at the end, and old data is dropped from
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the beginning. Concretely we assume that w (Map)
new chunks are appended and w old chunks are re-
moved. To perform such computations efficiently, we
cluster w chunks into a bucket and build a balanced
binary contraction-tree, whose leaves correspond to the
buckets. Since the number of buckets remains the same
during updates, we employ an evicting strategy that
rotates over the leaves in a first-in-first-out fashion to
perform efficient updates. We call this data structure a
rotating contraction tree (see Figure 4).

(a) Initial run. Given N buckets of data, we con-
struct a balanced contraction-tree by first combining
the chunks in each bucket and then combining their re-
sults in pairs hierarchically to form a balanced binary
tree of height ⌈log2(N)⌉. Figure 4 shows an example
with w = 2. At T1, N = 4 and the first level of the tree
(C00, C01, C10, C11) is constructed by invoking combin-
ers on the N buckets of size w = 2, whose results are
then recursively combined to form a balanced binary
tree. The output of the combiner at the root of the tree
is then used as input to the Reduce function.

(b) Incremental run. We organize the leaf nodes
of the contraction tree as a circular list. When w new
chunks arrive and w old chunk leave the data set, we re-
place the oldest bucket with the new bucket and update
the output by recomputing the path affected by new
bucket. For example, in Figure 4, at T2 the new bucket
(bucket 4) replaces oldest bucket (bucket 0), and we re-
compute the path to the root affected by the change.
Note that each step of this propagation takes as input a
combination of an old combiner output, and newly pro-
duced combiner output that depend on the new bucket.
For instance, in Figure 4, for propagating the change in
bucket B0, we reuse the outputs of combiners C01, and
C1. The update requires updating logarithmic number
of combiners.

(c) Background processing. We can further im-
prove the latency for incremental updates by combining
the known combiners outputs needed along the update
path. For example, in Figure 5, we can compute in the
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background the combiner outputs C01, and C1, which
are re-used, by running them through a combiner. The
incremental run only needs to invoke the Reduce task
with both the outputs of this background Combiner in-
vocation and the outputs of the newly run Map tasks.

3.2.3 Variable-Width Windows

As the most general sliding-window computation, we
consider the case where an arbitrary amount of old data
can be deleted at one end and an arbitrary amount of
new data can be inserted at the other end. In other
words, each updates changes the size of the window
varies arbitrarily. To perform efficient computations
in this general case, we present a data structure that
we call folding contraction tree (see Figure 6) that dy-
namically shrinks and expands by folding and unfold-
ing whole subtrees to accommodate the current window
size. The key idea behind the folding contraction tree is
to maintain a contraction-tree that is nearly complete—
i.e., nearly completely balanced—except at the two ends
where nodes are deleted and inserted.

(a) Initial run. In the initial run, the folding tree orga-
nizes the tree of Map outputs and combiner invocations
that process them in a complete binary tree. Unlike the
rotating tree, this tree does not organize Map outputs
into buckets, but instead builds the smallest complete
contraction tree with height ⌈log2(maps)⌉. Very impor-
tantly, the leaf nodes that cannot be filled in the com-
plete binary tree (adding up to 2height− maps nodes),
are marked as void nodes; these nodes will be occupied
by future Map tasks. To complete the output, we apply
Reduce to the root of the contraction tree. For exam-
ple, as shown in Figure 6, at time T1, for initial Map
outputs {0, 1, 2}, we construct a complete binary tree
of height 2 with a void node at location 3. Thereafter,
we apply combiners at the granularity of two nodes to
form {C0, C1, C2}.

(b) Incremental run. When the window slides and a
new run is started, the folding contraction tree shrinks
and expands to accommodate changes in the window
size by folding and unfolding complete subtrees. As
an example, consider inserting x items and deleting y

items from the window. To add items, we first try to fill
up the void nodes from the previous run. If those are
insufficient, then we create a complete contraction tree
whose size is equal to the largest full complete subtree of
the current tree. We then merge the two trees, resulting
in an increase of the height of the tree by one. To
remove items we discard the items from the beginning
of the tree by marking their nodes as void and fold all
empty complete subtrees by deleting them and their
parents that now have a single child.
Figure 6 shows an example where, at time T2, adding

two outputs of Map tasks (nodes 3 & 4) causes the
tree to expand to accommodate the overflowing node
(node 4) by constructing another tree of height two and
merging the new tree with previous tree. This increases
the overall height of tree from two to three. Conversely,
at time T3 the removal of three Map outputs causes the
tree height to decrease from three to two because all
leaf nodes in the left half of the tree are void. Overall,
as in the previous two categories, the changes in leaf
nodes are propagated to the root, causing the output
to be updated.

(c) Background processing. Since we have no a pri-
ori knowledge of how much data is being inserted and
deleted, it is not possible to take advantage of any back-
ground processing.

4. SLIDER ARCHITECTURE
We briefly present an overview of our implementa-

tion and describe some interesting components of the
architecture of Slider (Figure 7) such as the in-memory,
fault-tolerant caching, (Section 4.2) and locality-aware
scheduler in more detail (Section 4.3).

4.1 Implementation
We implemented our prototype of Slider based on

Hadoop-0.20.2. We implemented the three variants of
the self-adjusting contraction trees by inserting an ad-
ditional stage between the shuffle stage (where the out-
puts of Map tasks are routed to the right Reduce task)
and the sort stage (where the inputs to the Reduce task
are sorted). To prevent unnecessary data movement in
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the cluster, this stage runs on the same machine as the
Reduce task that will subsequently process the data.
Instead of building the trees directly as a distributed

data structure, we rely on a memoization layer to re-
member the inputs and outputs of various tasks and
the nodes of the self-adjusting contraction trees. A shim
I/O layer that we designed provides access the memo-
ization layer. The shim I/O layer transparently caches
data for fast access in an in-memory distributed data
cache, while also providing fault tolerance (Section 4.2).
To achieve this, the shim I/O layer maintains an index
at a designated master node, which is implemented us-
ing a wrapper around memcached1. The index tracks
the objects stored in the main memory and the HDFS
distributed file system, which replicates data as needed.
We implement the background pre-processing phase

with a hook to enable single-phase MapReduce execu-
tion for pre-processing the self-adjusting tree. Since the
Map and Reduce phase are not required for background
pre-processing, their execution is disabled in this mode
of operation.

4.2 In-Memory Distributed Data Caching
To provide fast access to memoized results, we de-

signed an in-memory distributed data caching layer.
Our use of in-memory caching is motivated by two ob-
servations: (i) main memory is generally underutilized
in data-centric computing [5]; and (ii) the number of
sub-computations that need to be memoized is limited
by the size of the sliding window. The distributed in-
memory cache is coordinated by a master node, which
maintains an index to locate the data items. The master
implements a simple cache replacement policy, which
can be changed in accordance with the workload charac-
teristics; the default is the Least Recently Used (LRU).
Storing memoized results in an in-memory cache is

beneficial for performance but is prone to machine or

1Memcached: http://memcached.org/

memory failures, which can wipe out the benefits, by
requiring unnecessary re-computation. We therefore
conduct a background replication of memoized results
to provide fault tolerance, by creating three replicas of
each memoized result. This way fault tolerance is han-
dled transparently: when a new task wants to fetch a
memoized result it reads that result from one of the
replicas. To ensure that the storage requirements re-
main bounded, we developed a “garbage collection” al-
gorithm that frees the storage used by results that fall
out of the current window.

4.3 Locality-Aware Scheduling
In Slider we modified Hadoop’s original scheduler to

be aware of the location of memoized results. Hadoop’s
scheduler chooses the first available node (machine) to
run a pending Reduce task, taking locality into account
only when scheduling Map tasks by biasing towards the
node holding the input. Slider’s scheduler adapts pre-
vious work in data-locality scheduling [7, 3], to run Re-
duce tasks on the machine that contains the results of
the combiner function that it uses. When the scheduler
detects that the favored node (of a Reduce tasks) is
overloaded, it migrates tasks from the overloaded node
to another node, taking care to migrate also the rele-
vant memoized results. Such migration is critical to pre-
vent significant performance degradation due to strag-
gler tasks [31], which can delay the completion of a job.

5. EVALUATION
In this section we evaluate a number of microbench-

marks before exploring how Slider performs with real-
world use cases of networked system analysis in the fol-
lowing section (§ 6). Our experiments using microbench-
marks aim at answering the following questions:

• What performance benefits does Slider provide for
incremental sliding-window computations compared
to recomputing over the entire window of data?

• What are the overheads imposed by Slider for a
fresh run of an application?

• How effective are the optimizations we propose in
improving the performance of Slider?

Our microbenchmarks, listed in Table 1, span five
data analysis tasks typically performed in networked
systems today. Two of them are compute-intensive tasks:
Clustering based on the Euclidean distance (K-Means)
and object classification usingK-nearest neighbors (KNN).
As input to these tasks, we use a set of points in a d-
dimensional space. We generate this data synthetically
by randomly selecting points from a 50-dimensional unit
cube. The remaining three tasks are data (I/O) in-
tensive computations: Histogram-based computations
(HCT), matrix computations (Matrix), and pattern match-
ing (subStr). As input, we use a publicly available
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(a) Work speedup for append only
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(b) Work speedup for fixed-width
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(c) Work speedup for variable-width
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(d) Time speedup for append only
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(e) Time speedup for fixed-width
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(f) Time speedup for variable-width

Figure 8: Performance gains of Slider for incremental runs
Class

(Abbrv.)
Application Description

Clustering
(K-Means)

K-means clustering for partitioning n data
points into k clusters based on Euclidean
distance

Histogram,
CDFs, Top-K
(HCT)

Computes histogram over all x and then
outputs CDF(x) and top-K items

Machine
learning(KNN)

K-nearest neighbors classifies objects based
on the closest training examples in a feature
space

Matrix com-
putations
(Matrix)

Co-occurrence matrix of size N×N matrix,
with N being the number of unique items in
the data-set. A cell mij contains the num-
ber of times item wi co-occurs with item
wj

Pattern
matching
(subStr)

Extracts frequently occurring sub-strings
(bi-gram count) from a given corpus

Table 1: Applications used in Microbenchmarks

dataset with the contents of Wikipedia2.
To ensure reasonable running times, we adjusted the

input sizes such that the running time of each job would
be around one hour for all five applications.

Experimental setup. Our experiments run on a clus-
ter of 25 machines, running Linux with kernel 2.6.32
in 64-bit mode, connected with gigabit ethernet. We
configured Hadoop so that the name node and the job
tracker ran on a master machine which was equipped
with a 12-core Intel Xeon processor and 48 GB of RAM.
The data nodes and task trackers ran on the remaining
24 machines equipped with AMD Opteron-252 proces-

2Wikipedia data-set: http://wiki.dbpedia.org/

sors, 4 GB of RAM, and 225 GB drives. We configured
the task trackers to use two Map and two Reduce slots
per worker machine.

5.1 Methodology
Using the microbenchmarks described above, we com-

pare the execution performance of Slider with the per-
formance of a pure MapReduce implementation.

Measurements. We consider two types of measures:
work and running time (or time). These are standard
measures for comparing efficiency in parallel and dis-
tributed computations. Work refers to the total amount
of computation performed by all tasks and is measured
as the total running time of all tasks. Time refers to
the amount of (end-to-end) running time to complete a
parallel computation. It is well-known that a computa-
tion with W work can be executed on P processors in
W

P
time plus some scheduling overheads. This is called

the work-time principle.
Note that the work measurements include the addi-

tional computational work performed by tasks that are
speculatively executed by the Hadoop framework (e.g.,
Hadoop can run the same task on two different machines
to improve performance if there is spare capacity on the
cluster). Therefore, a difference in the number of spec-
ulative tasks that are launched will be reflected in the
comparison of work.
Initial and incremental runs. For Slider, we distin-
guish two types of runs. First, the initial run refers to
a run starting with no memoized results. Such a run
executes all tasks and populates the memoization layer
by storing information about the sub-computations that
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Figure 9: Overheads of Slider for initial run

were performed and the location of their results. Sec-
ond, an incremental run refers to the runs of the same
job in the steady state, where the input is evolving and
Slider can usually avoid a full re-computation by using
previous results stored in the memoization layer.
To assess the effectiveness of Slider, we measure the

work and running time of each microbenchmark for
different dynamic update scenarios, i.e., with different
amounts of modified inputs, ranging from 5% up to 25%
of input data change. For the append-only case, a p%
incremental change of the input data means that p%
more data was appended to the existing data. For the
fixed-with and variable-width sliding window cases, the
window is moved by having p% of the input buckets
dropped from its beginning, and replaced with the same
number of new buckets in its end, containing newly gen-
erated content.
We then compare the work and running time of Slider

to an unmodified Hadoop implementation. The ratio
between the two is the speedup for work and running
time, respectively.

5.2 Microbenchmark Results
Our microbenchmark evaluation is structured by an-

swering the sequence of questions raised in the begin-
ning of the section.

5.2.1 Speedup

We begin by measuring the performance gains of Slider
in comparison to Hadoop. The results in Figure 8 show
that Slider achieves substantial performance gains for
all microbenchmarks, independently of the category of
sliding window computations.
The gains for computation-intensive microbenchmarks

(K-Means and KNN) are the most substantial, with
time and work speedups between 1.5 and 35-fold. As
expected, the speedup decreases as the overlap between
the old and the new window becomes smaller. Nonethe-
less, for these two benchmarks, even for a 25% input
change, the speedup is still between 1.5 and 8-fold.
Speedups for data-intensive microbenchmarks (HCT,

Matrix, and subStr) are between 8-fold and 1.5-fold.
Even though this is a very positive result, the speedup

figures are lower than in the case of microbenchmarks
with a higher ratio of computation to I/O. This is be-
cause the basic approach of memoizing the outputs of
previously run sub-computations is effective at avoiding
the CPU overheads but still requires some data move-
ment to transfer outputs of sub-computations, even if
they were memoized. For this set of micro-benchmarks,
the performance gains for variable-width sliding window
computations are lower than for the append-only and
fixed-width window cases. This is because, updates re-
quire rebalancing the self-adjusting tree, thus incurring
in a higher overhead.
The results also show that, for very small changes,

speedups in work are not fully translated into speedups
in running time. This is expected because decreas-
ing the total amount of work dramatically reduces the
amount of parallelism, leading to higher scheduling over-
heads. As the size of the incremental change increases,
the gap between the work speedup and time speedup
closes quickly.

5.2.2 Overhead

Slider adds two types of overhead. First, building
and maintaining the self-adjusting trees causes a run-
ning time and work overhead. Second, Slider introduces
a space overhead for memoizing intermediate results
that are used to speed up incremental computations.
Figure 9 plots the overhead we measured for different
microbenchmark applications and categories of sliding-
window computations. Note that the time and work
overheads are one-time costs for the initial computa-
tion. For subsequent incremental runs, Slider achieves
the speedups we described.

Performance overheads. Figure 9(a) and Figure 9(b)
show the work and running time overheads for the initial
runs of each microbenchmark, compared to a computa-
tion using a pure MapReduce implementation. This
essentially captures the overhead for constructing the
initial self-adjusting tree. Computation-intensive mi-
crobenchmarks show low overhead as their running time
is dominated by the actual processing time. Compared
to this, the extra computation Slider requires is small.
For data-intensive microbenchmarks running time is dom-



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

K-Means HCT KNN Matrix subStr

R
ed

uc
e 

N
or

m
al

iz
ed

 =
 1

 

Microbenchmark Applications

Background preprocessing
Foreground processing
Normalized update time

(a) Split processing in append-only
case

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

K-Means HCT KNN Matrix subStr

R
ed

uc
e 

N
or

m
al

iz
ed

 =
 1

 

Microbenchmark Applications

Background preprocessing
Foreground processing
Normalized update time

(b) Split processing in fix-width case

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

K-Means HCT KNN Matrix subStr

R
un

tim
e 

(H
ad

oo
p 

no
rm

al
iz

ed
 =

 1
)

Microbenchmark Applications

Hadoop scheduler
Slider scheduler

(c) Scheduling gains for Slider

Figure 10: Effectiveness of optimizations in Slider

inated by storing, retrieving and transferring input data.
The running time overhead is higher in this case as
memoizing intermediate results competes with the data
analysis job for I/O.
The overheads for variable-width are higher than those

for fixed-width computations, and significantly higher
than the append-only case. This overhead comes from
having more levels in the corresponding self-adjusting
tree. In particular, for the comparison between fixed
and variable-width windows, the leaf nodes correspond
to smaller buckets in the case of variable-width com-
putations, and this leads to a higher tree depth, and
therefore to running a larger number of Combiner func-
tions, which introduces more overhead.

Space overhead. Figure 9(c) plots the space over-
head normalized by the input size. Again, the variable-
width sliding-window computation shows the highest
overhead, requiring more space than the other compu-
tations, for the same reasons that were mentioned in
the case of the performance overheads.
Space overhead highly depends on the applications.

The Matrix computation has the highest space over-
head of 12X, while K-Means and KNN have almost no
space overhead. However, the garbage collector limits
the storage demands of Slider over time.

5.2.3 Effectiveness of Optimizations

We evaluate the effectiveness of the optimizations in
improving the overall performance of Slider by consid-
ering: (a) latency savings from splitting the execution
into foreground and background processing. (b) the
scheduler modifications to exploit the locality of mem-
oized results; (c) the performance gains of using an in-
memory distributed data caching layer.

Split processing. Slider is designed to take advan-
tage of the predictability of future updates to split the
work between a background pre-processing and fore-
ground processing, as described in Section 4. To evalu-
ate the effectiveness of this optimization, we compared
the cost of executing with and without it, for both
the append-only and the fixed-width window categories.
Figures 10(a) and 10(b) show the time required for

background preprocessing and foreground preprocess-
ing, normalized to the time for processing the update
without any background pre-processing. Figure 10(a)
shows this cost when a new input with 5% the origi-
nal input size is appended, for different benchmarking
applications, whereas Figure 10(b) shows the same cost
for a 5% input change in the fixed-width window model.
The results show that with the split processing model,
on average we are able to perform foreground updates
up to 25%-40% faster, while offloading around 36%-60%
of the work for background pre-processing.
The results also show that the sum of the cost of

background pre-processing and foreground processing
exceeds the normal update time, mostly because of the
extra merge operation performed due to split processing
model. Note that background pre-processing can be
performed during low cluster utilization periods, and
therefore the results confirm that the latency gains are
likely to be worth the extra overall processing time.

Scheduler modification. We now evaluate the effec-
tiveness of our scheduler modifications in improving the
performance of Slider. We compare the performance of
the Hadoop scheduler with the Slider scheduler in Fig-
ure 10(c), where the Y-axis shows the running time of
Slider, relative to using the Hadoop scheduler. As evi-
dent from the figure, the Slider scheduler saves around
30% of time for data-intensive applications, and almost
15% of time for compute intensive applications, which
supports the effectiveness of location aware scheduling
to avoid transferring memoized results.

In-memory distributed memoization caching. For
evaluating the effectiveness of performing in-memory
data caching, we compared our performance gains with
and without this caching support. In particular, we
disabled the in-memory caching support from the shim
I/O layer, and instead used the fault-tolerant memoiza-
tion layer for storing the memoized results. Therefore,
when accessing the fault-tolerant memoization layer, we
incur in an additional cost of fetching the data from the
disk or network. Table 2 shows the savings in Reduce
completion time with in-memory caching for the case of
a fixed-width window. This shows that we can achieve
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48.68% 56.87% 53.19% 67.56% 66.2%

Table 2: Reduction in average read time ( in %)
for Reducers with in-memory caching

50% to 68% savings in Reduce time by using an in-
memory memoization layer.

6. CASE STUDIES
In this section, we evaluate Slider with three real-

world use-cases of data analysis covering three modes of
operation (append only, fixed-with, and variable-width)
for sliding-window computations. Our case studies span
a variety of networked systems that includes Online So-
cial Networks (OSNs), network monitoring tool, and
hybrid Content Distribution Networks (CDNs).

6.1 Information Propagation in Twitter
Analyzing information propagation in online social

networks, such as Facebook or Twitter, is an active area
of research. We used Slider to analyze how web links
are spread in Twitter, repeating an analysis done by
Rodrigues et al. [28].
The propagation of URLs in Twitter is tracked by

building an information propagation tree for every posted
URL based on Krackhardt’s hierarchical tree model.
This tree tracks URL propagation by maintaining a di-
rected edge between a spreader of an URL and a re-
ceiver, i.e., a Twitter user “following” the Twitter ac-
count that posted the link. The root node of the tree
represents the original publisher of a web link.
We used the Twitter data in [28], which comprises

54 million user profiles, 1.9 billion follow-relations, and
all 1.7 billion tweets posted by Twitter users between
March 2006 and September 2009. To create a workload
where data is gradually appended to the input, we parti-
tioned the dataset in five non-overlapping time intervals
as listed in Table 4. The first time interval captures all
tweets from the inception of Twitter up to June 2009.
We then add one week worth of tweets for each of the
four remaining time intervals. For each of these inter-
vals, an average of 5% of new data is appended.
We present the performance gains of incrementally

building the information propagation tree using Slider
in Table 4. The speedups are almost constant for the
four time intervals, at about 8X for running time and
about 14X for work. The running time overhead for
computing over the initial interval is 22%. We also re-
peated other analyses performed in [28] and achieved
similar speedups. We omit the results due to space con-
straints. In summary, these results highglight that the
performance gains observed with our microbenchmarks
also hold for this particular use case.

Time
interval

Mar’06
-
Jun’09

Jul’09
1-7th

Jul’09
8-
14th

Jul’09
15-
21st

Jul’09
22-
28th

Number of
tweets

1464.3
M

74.2
M

81.5
M

79.4
M

85.6
M

Cummulative
change
(%)

- 5.1% 5.3% 4.9 % 5.0%

Time
speedup

- 8.9 9.2 9.42 9.25

Work
speedup

- 14.22 13.67 14.22 14.34

Table 4: Summary of the Twitter data analysis

6.2 Monitoring of a Networked System
Glasnost [14] is a system that enables users to de-

tect whether their broadband traffic is shaped by their
ISP. The Glasnost system is deployed on over 70 servers
around the globe and has been used by millions of users
since 2009. One of the features of the monitoring system
is that it tries to direct users to a close by measurement
server. Slider enabled us to evaluate the effectiveness of
this server selection.
For each Glasnost test run, a packet trace of the

measurement traffic between the Glasnost measurement
server and the user’s host is stored. We used this trace
to compute the minimum round-trip time (RTT) be-
tween the server and the user’s host, which represents
the distance between the two. Taking all minimum
RTT measurements of a specific measurement server,
we computed the median and 95th-percentile across all
users that were directed to this server. This gives a good
assessment of the quality of server selection in Glasnost.
For this analysis, we used the data collected by a

given Glasnost server between January and November
2011 (see Table 3). We started with the data collected
from January to March 2011. Then, we added the data
of one subsequent month at a time and compute the
median and 95th-percentile distance between users and
the measurement server for a window of the most recent
3 months. This particular measurement server had be-
tween 4, 033 and 6, 536 test runs per 3-month interval,
which translate to 7.8 GB to 18 GB of data per interval
that needs to be processed.
We measured the performance gains for both work

and running time as shown in Table 3. The results
show that we get an average speedup in the order of
2.5X , with small overheads of less than 5%. An anec-
dotal report that highlights the importance of these per-
formance gains is that our colleagues that maintained
Glasnost were, at the time of their work, not able to per-
form this useful analysis as frequently as they desired,
due to its high processing demands.

6.3 Accountability in Hybrid CDNs



Year 2011
Jan-
Mar

Feb-Apr
Mar-
May

Apr-Jun May-Jul
Jun-
Aug

Jul-Sep
Aug-
Oct

Sep-Nov

No. of pcap files 4033 4862 5627 5358 4715 4325 4384 4777 6536
Window change size 4033 1976 1941 1441 1333 1551 1500 1726 3310
% change size 100 % 40.65 % 34.50 % 26.89 % 28.27 % 35.86 % 34.22 % 36.13 % 50.64 %
Time speedup - 2.07 2.8 3.79 3.32 2.44 2.56 2.43 1.9
Work speedup - 2.13 2.9 4.12 3.37 3.15 2.93 2.46 1.91

Table 3: Summary of the Glasnost network monitoring data analysis

Content distribution networks (CDNs), recently started
working on hybrid CDNs, which employ peer-to-peer
(P2P) technology to add end user nodes to the distribu-
tion network, this way enhancing their existing server-
based infrastructure. Using this architecture, CDN providers
can cut costs as less servers need to be deployed. How-
ever, this also raises questions about the integrity of the
answers that are provided by these untrusted clients [4]:
their cooperation is required both to evaluate how much
data a client served (for billing purposes) and to ensure
that the data served by the client is correct.
Aditya et al. [4] presented a design of a hybrid CDN

that employs a tamper-evident logs to provide client
accountability. This log is uploaded to a set of servers
that need to audit the log periodically using techniques
based on the PeerReview [17]. Using Slider, we imple-
mented these audits as a variable-sized sliding-window
computation, where the amount of data in a window
varies depending on the availability of the clients in the
hybrid-CDN during a given time period. The MapRe-
duce data analysis application implements log consis-
tency checks which verify whether all clients report a
consist record of the network messages exchanged and
whether this record is plausible.
To evaluate the effectiveness of Slider, we used a syn-

thetic dataset generated using trace parameters avail-
able from the Akamai’s NetSession system, a peer-assisted
CDN operated by Akamai (which currently has 24 mil-
lion clients). From this data set, we selected the data
collected in December 2010. However, due to the lim-
ited compute capacity of our experimental setup, we
scaled down the data logs to 100, 000 clients. In ad-
dition to this input, we also also generated logs corre-
sponding to one week of activity with a varying per-
centage of clients (from 100% to 75%) uploading their
logs to the central infrastructure, so that the input size
varies across weeks. This allows us to create an analysis
with a variable-width sliding window by using a window
corresponding to one month of data and sliding it by one
week in each run.
Table 5 plots the performance gains for log audits for

a different percentage of client log uploads for the 5th
week. We observe a speedup of 2X to 2.5X for log up-
load probabilities between 75% and 100%. Similarly,
the running time speedups are between 1.5X and 2X .
This example highlights that Slider achieves impressive
speedups in a realistic scenario, even in the more chal-
lenging case where we cannot predict in advance how

Clients upload-
ing logs in the
5th week (in %)

100% 95% 90% 85% 80% 75%

Time speedup 1.72 1.85 1.89 2.01 2.1 2.24
Work speedup 2.07 2.21 2.29 2.44 2.58 2.74

Table 5: Summary of the Akamai NetSession
analysis

many items will be added when the window moves.

7. DECLARATIVE QUERY INTERFACE
As Slider is based on Hadoop, computations can be

implemented using the MapReduce programmingmodel.
While MapReduce is gaining in popularity, many pro-
grammers are more familiar with declarative query in-
terfaces, as provided by SQL or LINQ. To ease the
adoption of Slider, we also provide a declarative query
interface that is based on Pig3. Pig consists of a high-
level language, which is similar to SQL, and a compiler
that translates Pig programs to sequences of MapRe-
duce jobs. As Slider transparently extends MapReduce
without changing its programming model, Pig can use
Slider as an execution engine and needs no adjustments;
queries automatically use the incremental update mech-
anism provided by Slider.

 0

 2

 4

 6

 8

 10

 12

 14

Time Work

S
pe

ed
up

PigMix scalability benchmark

Append-only
Fixed-width

Variable-width

Figure 11: Query processing speedups using
Slider

To demonstrate the potential of incremental query-
based sliding-window computations, we evaluate Slider us-
ing the PigMix4 benchmark. We ran the benchmark in
our three modes of operation with changes in 5% of its
input. Figure 11 shows the resulting running time and
work speedups. As expected, the results are in line with
the previous evaluation, since ultimately the queries are
3Apache Pig: http://pig.apache.org/
4Apache PigMix: http://wiki.apache.org/pig/PigMix



compiled to a set of MapReduce analyses. We observe
an average speedup of 2.5X and 11X for time and work,
respectively. Finally, we observe an average overhead of
22% for the initial run, and space overhead of 2X the
input size.

8. RELATED WORK
Sliding-window computations and incremental com-

putations have been studied extensively but often inde-
pendently. In this section, we describe related work on
sliding-window data analyses in networked systems and
on incremental computations.

Dynamic algorithms. Algorithms researchers design
dynamic and data-streaming algorithms that permit changes
to their input dynamically while efficiently updating
their output. Several surveys discuss the vast litera-
ture on dynamic algorithms (e.g., [9, 27, 13, 6]). This
research shows that dynamic algorithms can be asymp-
totically faster (often by a near-linear factor) than their
conventional counterparts. Dynamic algorithms can,
however, be difficult to develop and implement even for
simple problems; some problems took years of research
to solve.

Programming language-based approaches. Pro-
gramming languages researchers developed incremental
computation techniques to achieve automatic incremen-
talization (e.g. [27, 1]). The goal is to incrementalize
programs automatically without significantly sacrific-
ing efficiency. Recent advances on self-adjusting com-
putation made significant progress towards this goal by
proposing general-purpose techniques that can achieve
optimal update times (e.g., [1, 2]). That work, however,
primarily targets sequential computations that are pri-
marily compute-intensive. We develop techniques to
perform sliding-window computations on big data by
adapting the principles of self-adjusting computation
for a large-scale parallel and distributed execution envi-
ronment. In this specific domain, we also achieve a full
transparency, requiring no work from the programmer
to annotate their code with special primitives.

Database systems. There is substantial work from
the database community on incrementally updating a
database view (i.e., a predetermined query on the database)
as the database contents change. The techniques they
use maintain views under incremental changes, or rely
on SQL queries to efficiently compute the modifications
to the database view [8]. Building on the experience of
database systems, we provide a declarative query inter-
face (similar to SQL) to improve usability. Our work
differs significantly from the view maintenance work in
databases because we consider large-scale computations
on big data, and allow sliding-window computations
rather than more structured changes to database ta-
bles.

Distributed systems. Since large-scale processing
of unstructured data sets is an increasingly common
and important task for Internet services, researchers
and practitioners have built a wide range of distributed
systems for incremental computations [26, 15, 22, 7,
23]. Slider is designed to operate at the same scale
and with a similar functionality for distributed exe-
cution, including a simple programming model, data-
parallelization, fault tolerance and scheduling. In par-
ticular, Slider builds on our own previous system called
Incoop [7], namely in its use of Combiner functions to
break up the work of Reduce tasks. However, none
of these approaches, including our own work, consider
sliding-window computations. Handling these required
several novel technical contributions, for example, in
terms of the data structures that are employed for prop-
agating changes.

Batched stream processing. Stream processing en-
gines [18, 10, 25] model the input data as a stream,
with data-analysis queries being triggered upon bulk
appends to the stream. These stream processing en-
gines exploit temporal and spatial correlations in recur-
ring queries by aligning the execution of multiple queries
together when new bulk updates occur, and thereby ex-
ploiting redundant I/O or computation across queries.
Stream processing systems are especially designed for
bulk-appended data processing, which is only a spe-
cial case of our more general sliding window model.
Slider also improves on Comet [18] and Nova [25] by
being not requiring the programmer to devise a dy-
namic algorithm, preserving the transparency relative
to a single-pass non-incremental data analysis. Hadoop
online [10] is transparent but does not attempt to break
up the work of the Reduce task, which is one of the key
contributions (and sources of performance gains) of this
work.

9. CONCLUSIONS
In this paper we presented Slider, a novel frame-

work for incremental sliding-window data analyses in
networked systems. Slider does not require the analy-
sis code to be rewritten, and contains several technical
contributions like novel data structures that enable ef-
ficient incremental updates. Our evaluation using mi-
crobenchmarks and three real world case studies shows
that Slider can significantly improve their performance.
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APPENDIX
A. ANALYSIS OF SLIDER

We analyze the asymptotic efficiency of Slider. We con-
sider two different runs: the initial run of an Slider compu-
tation, where we perform a computation with some input I ,
and a second run for dynamic update where we change the
input from I to I ′ and perform the same computation with
the new input. In the common case, we perform a single
initial run followed by many dynamic updates.

For the initial run, we define the overhead as the slow-
down of Slider compared to a conventional implementation
of MapReduce such as with Hadoop. We show that the
overhead depends on communication costs and, if these are
independent of the input size, which they often are, then it
is also constant. Our experiment evaluation confirms that
the overhead is relatively small. We show that dynamic up-
dates are dominated by the time it takes to execute fresh
tasks that are affected by the changes to the input data,
which, for a certain class of computations and small changes,
is logarithmic in the size of the input.

In the analysis, we use the following terminology to refer
to the three different types of computational tasks that form
an Slider computation: Map tasks, Self-adjusting balanced
tree (applications of the Combiner function for three differ-
ent modes of operation for sliding-window computations),
and Reduce tasks.

Our bounds depend on the total number of map tasks,
written NM , and the total number of reduce tasks writ-
ten NR. In addition, we also take in account the total
number of stages in self-adjusting balanced tree, denoted
as NC . We write ni and nO to denote the total size of
the input and output respectively, nm to denote the total
number of key-value pairs output by the Map phase, and
nmk to denote the set of distinct keys emitted by the Map
phase. The number of stages in self-adjusting balanced tree
is a property of sliding-window computation mode: append-
only (NCA = O(nmk)), fixed-width window slides (NCF =
O(nmk·⌈log2(buckets)⌉)), and variable-width window slides((NCV ) =
⌈O(nmk · log2(NM )⌉)).

For our time bounds, we will additionally assume that
each Map, Combine, and Reduce function performs work
that is asymptotically linear in the size of their inputs. Fur-
thermore, we will assume that the Combine function ismono-
tonic, i.e., it produces an output that is no larger than its
input. This assumption is satisfied in most applications, be-
cause Combiners often reduce the size of the data (e.g., a
Combine function to compute the sum of values takes mul-



tiple values and outputs a single value).

Theorem 1 (Initial Run:Time and Overhead).
Assuming that Map, Combine, and Reduce functions take
time asymptotically linear in their input size and that Com-
bine functions are monotonic, total time for performing an
incremental MapReduce computation in Slider with an in-
put of size ni, where nmkey-value pairs are emitted by the
Map phase is O(NM + (NR +NC)) = O(ni + nm). This re-
sults in an overhead of O(NC) = O(NCA||NCF ||NCV ) over
conventional MapReduce.

Proof. The number of Map and Reduce tasks in a par-
ticular job can be derived from the input size and the num-
ber of distinct keys that are emitted by the Map function:
the Map function is applied to splits that consist of one or
more input chunks, and each application of the Map func-
tion is performed by one Map task. Hence, the number
of Map tasks NM is in the order of input size O(ni). In
the Reduce phase, each Reduce task processes all previously
emitted key-value pairs for at least one key, which results
in at most NR = nmk reduce tasks. To bound the number
of self-adjusting balanced tree, we note that the tree leaves
are the output data chunks of the Map phase, whose inter-
nal nodes each has at least two children. Since there are at
most nmpairs output by the Map phase, the total number
of reduce tasks is bounded by nm. Hence the total num-
ber of stages in self-adjusting balanced tree is bounded by
NC ∈ O(nm). Since the number of reduce tasks is bounded
by nmk ≤ nm , the total number of tasks is O(ni +nm).

Theorem 2 (Initial Run: Space). Total storage space
for performing an Slider computation with an input of size
ni, where nmkey-value pairs are emitted by the Map phase,
and where Combine is monotonic is O(nm).

Proof. Slider requires additional storage space for stor-
ing the intermediatery output of the self-adjusting balanced
tree. Since Slider only keeps data from the most recent run
(initial or dynamic run), we use storage for remembering
only the task output from the most recent run. The output
size of the map tasks is bounded by nm. With monotonic
Combine functions, the size of the output of Combine tasks
is bounded by O(nm).

Theorem 3 (Dynamic Update: Space and Time).
In Slider, a dynamic update requires time, where F where
F is the set of changed or new (fresh) Map, Combiner, and
Reduce tasks, is

O

(

∑

a∈F

t(a)

)

.

The total storage requirement is the same as an initial run.

Proof. Consider Slider performing an initial run with
input I and changing the input to I ′ and then performing
a subsequent run (dynamic update). During the dynamic
update, tasks with the same type and input data will re-use
the memoized result of the previous runs, avoiding recom-
putation. Thus, only the fresh tasks need to be executed,

which takes O

(

∑

a∈F

t(a)

)

, where F is the set of changed or

new (fresh) Map, Contract and Reduce tasks, respectively,
and t(·) denotes the processing time for a given task.

In the common case, we expect the execution of fresh
tasks to dominate the time for dynamic updates. The time
for dynamic update is therefore likely to be determined by

the number of fresh tasks that are created as a result of
a dynamic change. It is in general difficult to bound the
number of fresh tasks, because it depends on the specifics
of the application. As a trivial example, consider, inserting
a single key-value pair into the input. In principle, the new
pair can force the Map function to generate a very large
number of new key-value pairs, which can then require per-
forming many new reduce tasks. In many cases, however,
small changes to the input lead only to small changes in the
output of the Map, Combine, and Reduce functions, e.g.,
the Map function can use one key-value pair to generate
several new pairs, and the Combine function will typically
combine these, resulting in a relatively small number of fresh
tasks. As a specific case, assume that the Map function gen-
erates k key-value pairs from a single input record, and that
the Combine function monotonically reduces the number of
key-value pairs.

Theorem 4 (Number of Fresh Tasks). If the Map
function generates k key-value pairs from a single input record,
and the Combine function is monotonic, then the number of
fresh tasks is at most O(k log nm + k).

Proof. At most k combine at each level of the self-adjusting
tree will be fresh, and k fresh reduce tasks will be needed.
Since the depth of the contraction tree is nm, the total
number of fresh tasks will therefore be O(k log nm + k) =
O(k lognm).

Taken together the last two theorems suggest that small
changes to data will lead to the execution of only a small
number of fresh tasks, and based on the tradeoff between
the memoization costs and the cost of executing fresh tasks,
speedups can be achieved in practice.
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