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Abstract

Relation Transition Systems (RTSs) have recently been proposed as a foundation for reasoning effectively about
program equivalence in higher-order imperative languages like ML. RTSs fruitfully synthesize the coinductive style
of bisimulation-based methods with the treatment of local state in recent work on step-indexed Kripke logical
relations (SKLRs). Like SKLRs, RTSs are designed to have the potential to scale to inter-language reasoning; but
unlike SKLRs, RTS proofs are also transitively composable, which is of critical importance for applications such
as multi-stage verified compilation.

In a POPL’12 paper [6], we presented the first RTS model for an ML-like core language, F/*', supporting
higher-order functions, recursive types, abstract types, and general mutable references, and we proved soundness
of the model w.r.t. contextual equivalence. In addition, we briefly sketched the proof that RTSs are transitively
composable, but our proof only covered a restricted fragment of the language/model omitting abstract types and
mutable state. Here, we present the transitivity proof for the full RTS model of the full F*' language. The proof
is highly intricate, requiring a number of technical innovations. We have mechanized all our results in Coq.
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I. INTRODUCTION

A longstanding problem in semantics is to find effective
methods for reasoning about program equivalence in ML-
like languages supporting both functional and imperative
features. In recent years, considerable progress has been
made on this problem, primarily by advancements to two
different classes of proof methods—bisimulations [12, 18| 9]
and step-indexed Kripke logical relations (SKLRs) [2, |4]].

In a paper appearing in POPL’12 [6], we proposed a
new method for proving equivalences in ML-like languages,
which we call Relation Transition Systems (RTSs). RTSs
draw inspiration from—and join together some of the best
features of—bisimulations and SKLRs. In particular, RTSs
support reasoning about recursive features in a convenient
(step-index-free) coinductive style, as bisimulations do; but
they also provide a very flexible treatment of “local” state,
closely following recent work on SKLRs, in which invariants
on the evolution of a piece of local state are expressed and
enforced using a state transition system [2,, 4].

Our ulterior motivation for developing RTSs was to over-
come some basic limitations of bisimulations and SKLRs
with regards to their potential for inter-language reasoning,
i.e., reasoning compositionally about equivalences between
programs written in different languages, such as the source
and target of a verified compiler [3 5. Existing bisim-
ulation methods for higher-order stateful languages—e.g.,
environmental and normal form bisimulations [8, [10}, O]—
rely crucially on “syntactic” devices (e.g., context closure) in
order to deal properly with unknown higher-order values that
may be passed in as function arguments. These syntactic de-
vices are appropriate for proving “contextual” properties—
including but not limited to contextual equivalence [11]—
but they bake in the assumption that the programs being
related share a common syntactic notion of “context”, which
is clearly not a valid assumption in the inter-language setting.

In contrast, SKLRs have been successfully generalized
to the inter-language setting—specifically, to the goal of
establishing “compositional compiler correctness” [3| [5]—
but they suffer from an orthogonal limitation, namely that
in general they are not transitively composable. Ahmed
grappled with this issue in her first paper on binary step-
indexed logical relations [[1]: her solution involved building
the model over syntactically well-typed terms, an option
that is not available, in general, when constructing relational
models over low-level languages (e.g., assembly). Moreover,
her technique only helped in proving transitivity of her
model for a simply-typed A-calculus with recursive types,
and has not been shown to scale to richer languages/models.

SKLRs’ lack of transitivity has not been a major point of
concern in prior work on proving contextual equivalences,
since the latter are (by definition) transitively composable.
However, in the inter-language setting, one can no longer
rely on contextual equivalence as a crutch. For example, the

correctness of a realistic, multi-stage compiler is only fea-
sible to establish by transitively composing the correctness
results for its constituent stages, but those correctness results
cannot generally be phrased as contextual equivalences.
RTSs avoid the aforementioned limitations by means of
a new technique, which we call global vs. local knowledge.
The idea is to distinguish one’s “local knowledge” about
program equivalence (i.e., the terms whose equivalence one
wishes to prove) from the “global knowledge” (i.e., the
relation defining when unknown higher-order values passed
in from the context are equivalent), and to parameterize
the proof of correctness for the former over the latter.
By parameterizing over the global knowledge instead of
attempting to characterize it directly, RTSs (a) sidestep the
need for any “syntactic” devices that would preclude inter-
language reasoning, and (b) become transitively composable.
In our previous paper [6], we presented an RTS model
for an ML-like core language, F*', supporting higher-
order functions, recursive types, abstract types, and general
mutable references. We proved soundness of the model
w.r.t. contextual equivalence, and gave several interesting
examples of its use. We also briefly sketched the proof that
RTSs are transitively composable, but our proof only covered
a restricted fragment of the language/model omitting abstract
types and mutable state. Extending the proof to handle those
features turns out (unsurprisingly) to be highly non-trivial.
In this paper, we generalize the proof of RTS transitivity to
account for the full RTS model of the full F#* language. This
is a critical stepping stone on the path toward generalizing
RTSs to support effective inter-language reasoning. We
begin in Sections [[I] and [II] by reviewing the details of
our language/model. In Section we describe the high-
level structure of our transitivity proof. The proof divides
into two major parts, presented in Sections [V] and
respectively. The proof is highly intricate, requiring several
tricky auxiliary constructions. In these sections, we highlight
the key technical challenges, explain carefully the central
constructions and the intuitions behind them, and sketch the
proofs of the main lemmas. The complete proof is then given
in the appendix. It has been fully machine-checked in Coq,
and our Coq source files are available at the following URL:

http://www.mpi-sws.org/~dreyer/papers/rts-trans/

To give a rough sense of the complexity of the transitivity
proof, it required approximately 3200 lines of Coq, versus
1500 lines to formalize the language, 400 lines to formalize
the model, and 2000 lines to prove soundness of the model
w.r.t. contextual equivalence.

II. THE LANGUAGE F*!

Figure |1| gives the syntax of F*, along with its static and
dynamic semantics judgment forms. F*' is equipped with a
standard type system, as well as a standard CBV dynamic
semantics using evaluation contexts (aka continuations) K,


http://www.mpi-sws.org/~dreyer/papers/rts-trans/

Thase = unit | int | bool
B=Q | Towe | I X T2 | LT | T T2 | paT |
(n € TyNam)

7 € Type
Vo.7 | Ja.7 | refT | n

veVal u=zx| )| n|tt|ff]| (v,ve) |injfv|rollv]|
fix f(x).e | A.e | packv | ¢
e€Exp u=wv|ifethene;elsees | (e1,e2) | e |

inj'e | (caseeofinj' & = eq |injz = e2) |
rolle | unrolle | ey ez | €]] |
pack e | unpack e1 as x in ez |
refe|le| el =e | e1 ==e
K € Cont ::= e | if K then e else e | (K, e) | (v, K) | K.i |
inj' K | (case K of inj' @ = e1 |inj® z = e2) |
roll K |unroll K | Ke|v K | K[] |
packK | unpack K aszine | ref K | K |
—e|v =K |K==¢|v==K
fLocACVal Loc = {{1,£2,...}
=] A« I:=
Typing: A; I'Fe:7 Small-step semantics: h,e — h' e

h € Heap :

S TaT
!/

Figure 1. The language F*'.
CTypeF := { (11 = 72) € CType } U{ (Va.7) € CType } U
{n € TyNam } U {ref 7 € CType }
VRel := CType — P(CVal x CVal)
VRelF := CTypeF — P(CVal x CVal)
ERel := CType — P(CExp x CExp)
Figure 2. Flexible types (CTypeF) and other semantic domains.

and finite heaps h. Memory allocation is deterministic,
according to an unknown strategy (see [[6] for details).

Here, following Ahmed [1]], we only show the syntax of
type-erased terms (aka expressions) e, over which both the
dynamic semantics and our RTS model are constructed. The
typeful syntax of F#' programs p is given in the appendix.
We distinguish between type variables («) and type names
(n). The latter appear only in the model and are like type
constants with no primitive intro/elim forms. CType is the
set of closed types (with no free variables).

III. RELATION TRANSITION SYSTEMS

Figures display our relation transition systems (RTS)
model for F#'. We only provide here a brief review of the
model. For a fuller exposition, see [6].

Worlds. Proving that two terms are equivalent using our
model (A;T'F ey ~ ey : 7) involves constructing a “world”
W, which codifies (a) the invariants on the state maintained
by e; and eo, and (b) the relational interpretations of any
abstract types they define. In order to model equivalence of
terms whose local state evolves over time (e.g., “generative”
classes/ADTs, whose instances/inhabitants grow dynami-
cally when certain of their methods are invoked), the world
W takes the form of a state transition system (STS). As
shown in Figure [4] this consists of a preorder C on some
state set S, together with a set of “owned” type names
N (recording which abstract types are defined semantically

R(7) = R(7) if 7 € CTypeF
E(Tbaﬂe) = ( 7'U) ‘ Fo: 7'base}
R(mx72) = {((v1,v1), (v2,v2)) | _
(v1,v2) € R(m1) A (Ui,véle (2) }
|nJ v, injtv2) | (vi,v2) € R(11) YU

E(,U,OC.T) roll vy, roll v2) | (v1,v2) € R(7[ua. 7/a)) }
R(3a. 1) pack vy, packvg) | 37'. vo) € R(7[7'/a]) }

Figure 3. Inductive def. of value closure (if R € VRelF, then R € VRel).

{

{
R(mi+m) = {( )ER

{ (inj> v, inj*> v2) | (v1,v2) € R(m2)

= {( ) €

= {( (v1,

beta(e) e if Vh. h,e = h,¢e
erale "] undef otherwise
WiKnow(N) := { R € VRelF |Vn ¢ N. R(n) =0

A (Y71, m2. Y(f1, f2) € R(T1 — T2). Vi, v. beta(f; v) defined)
A (Yo, 7. V(f1, f2) € R(Va. 7). Vi. beta(f;]]) defined) }
World:={ W= (S,C, N, L, H) € SetxPreord(S) xP(TyNam) x
(S = VRelF — VRelF) x (S — VRelF — HRel) |
L monotone in 1st, 2nd args w.r.t. C, C A
Vs, R. L(s)(R) € WfKnow(N) A
H monotone in 2nd arg w.r.t. C }

Figure 4. Definition of worlds.

by the world) and two state-dependent relations: H, which
says what heaps are related (i.e., obey the “current” state
invariant), and L, which describes what values are known to
be equivalent, at any given state s € S. (We call L the “local
knowledge” of W, and discuss it in more detail below.)

In our original RTS model [6], worlds actually contain two
preorders on the state set S—one “public”” and one “private”.
As Dreyer et al. [4] have shown, this is useful for reasoning
about “well-bracketed” state change. We have chosen to
drop the second preorder here in this extended abstract
to streamline the presentation, and because it does not
introduce any challenges into the proof of RTS transitivity,
our present focus. (The proof in the appendix handles the
full public/private model.)

Local Worlds and W,.;. To account for the ref type of F*',
we require that the world W € World be a combination of a
fixed “shared world” W,¢s and a proof-specific “local world”
w € LWorld (Figure [3)). The idea is that TW,er governs the
semantics and invariants of the ref type, which are the same
in all proofs; whereas w describes the invariants associated
with e;’s and es’s local state, as well as the relational
interpretations of any abstract types they define. The local
w is joined together with Wi to form the full W by the
“lifting” operator w7, which is defined in Figure [6] using a
simple product construction of w’s and Wyee’s STSs.

An important point of note here is that the local world w
is allowed to depend on the state s'' of the shared world
Wyer. The shared state s'f is a partial bijection between
(globally visible) memory locations, with each pair of related
locations associated with the type 7 of their contents, and the
L and H components of w take s'f € W,.S as a parameter
in addition to the local state s € w.S. Consequently, the
definition of RTS equivalence (bottom of Figure [/)) includes



dom[l](srf) = {El ‘ E'T,eg. (7’7 51742) e srf}
domyz () := { o | 3, (1. (7,41, 62) € 5™ }
Wiet.S := { 5™ € Pan(CType x Loc x Loc) |
V(1 b1, €a), (7', 05, 05) € s (lh=0) = T=7 Nloa=0}) A
L :El — = //\K :él
Wref~; = g Wref.N = @ ( 2 2 T=T ! 1)}

Wref.L(srf)(R)(ref 7') = { (f1,£2) ‘ (7'7 61762) S Srf }
Wiet. H(s™)(R) := { (h1, h2) | Vi. dom(h;) = domy;(s™) A
V(1 b1, 02) € 8. (hi(f1), h2(£2)) € R(T) }
LWorld:={w=(S,C, N, L,H) € SetxPreord(S)xP(TyNam) x
(Wrer.S—=S—VRelF—VRelF) X (Wiet.S—S—VRelF—HRel) |
L monotone in 1st, 2nd, 3rd args w.r.t. Weer. T, T, C A
Vs s, R. L(s™)(s)(R) € WfKnow(N) A
H monotone in 3rd arg w.r.t. C }

Figure 5. Definitions of Wi¢¢ and local worlds.

H@H' :={(h1 Why,haWhj) | (h1,ha) € H A (hi, hy) € H'}

wt.S = Whiet.S X w.S
wt.C ={(pp)|p1Cp1Ap2Cp .2}
wT.N = w.N

wh.L(s™,8)(R) := Wier.L(s™)(R) Uw.L(s™)(s)(R)
wh.H(s™, s)(R) Weet H(s™)(R) @ w.H(s™)(s5)(R)
Lifting (T € LWorld — World) of worlds.

Figure 6.

a side condition checking that w is stable—i.e., roughly,
that if two “local” heaps are related by w.H(s')(s), and the
shared state s*f advances to some §f 3 s*f, then there must
exist some § _J s such that the local heaps continue to be
related by w.H(5™)(). This stability condition is needed to
ensure that, when different modules in a program update the
state of the shared Wi.¢, they do not cause bad “interference”
with one another’s local state invariants. Although for most
practical purposes the extra parameterization of w over s' is
unnecessary—in which case stability of w is trivial to show
by choosing 5§ := s—it will turn out to be critically useful
in our transitivity proof (see Section [VI).

Global vs. Local Knowledge. RTS proofs are much like
bisimulation proofs in that they require one to declare up
front all the equivalences between terms/values that one
needs to know in order to establish the equivalence of the
terms e; and es in question. We call this set of putative
equivalences the “local knowledge” of the proof, which
constitutes the L component of the world W.

The object is then to demonstrate that this local knowledge
is “consistent,” as defined in Figure[7} which implies that the
equivalence is semantically justified. In particular, for any
function values (fi, f2) related by W.L (at any given state
s € W.S), we must show that f; and f, behave equivalently
when applied to “related arguments”. But from what relation
do we draw these “related arguments”?

Since the related arguments are passed in from somewhere
in the program context, they might very well not be related
by our local knowledge. Rather, we say they are drawn from
the “global knowledge” about program equivalence. In the
higher-order setting, characterizing this global knowledge
directly is quite difficult; intuitively, it is as hard as coming

up with a good model of program equivalence in the first
place! Bisimulation-based approaches [8, 9] deal with this
challenge by giving a syntactic characterization of the global
knowledge, which (as we explained in the introduction)
we do not want to do. Our approach instead is to avoid
the problem altogether: rather than try to define the global
knowledge directly, we parameterize our model over it.

We only require that the global knowledge G “respect”
the world (G € GK(W), Figure [7), namely that: it must
include the local knowledge, it must be monotone w.r.t. state
changes, and it must not alter the meaning of the reference
type nor of any abstract type name owned by the world.
Otherwise, we place no restrictions on GG. Notably, G may
relate two arbitrary values at any function type, even values
that are not functions! This seemingly perverse liberality is
in fact essential to our transitivity proof (see Section [V-A).

Flexible Types and Value Closure. The local and global
knowledges only declare which values are related at the so-
called “flexible” types, CTypeF, which include type names,
as well as function, universal, and reference types (Figure 2)).
Such value equivalences at flexible types, R € VRelF, are
extended to all (closed) types by the inductively-constructed
value closure, R € VRel, in Figure [3, which defines the
meaning of the remaining “rigid” type constructors. Note
that while existentials (3. 7) are rigid, the witness 7 for
a can be a type name, which W.L can define semantically
via an arbitrary state-dependent value relation. In this way,
RTSs support relationally parametric reasoning [[7, [12]].

Local Term Equivalence. We say that two closed terms
e1 and e are locally equivalent at a given type T w.r.t. a
world W, a global knowledge (G, and the current state of
the world s—and denote this as (e1, e2) € Ew (G)(s)(7)—
if, when they are executed with related initial heaps (i.e.,
satisfying the world’s invariants), one of these cases holds:

(Case 1) they both diverge; or

(Case |) they both reduce to related values; or

(Case %) they both reduce to related “stuck” configu-
rations (S), such as function calls, where related function
values are applied to related argument values inside locally
equivalent evaluation contexts, i.e., contexts which, when
filled with related values, result (coinductively) in locally
equivalent terms. In all cases, “related” values are drawn
from the value closure of the global knowledge, G, and we
require that the final heaps also satisfy the world’s invariants.

Observe that, in cases || and 4, we are permitted to
advance to a future state s’ J s. Correspondingly, in the
4 case, we must show that the continuations K; and Ko
are related in any future state s” O s'—as the function
call may further advance the state of the world—and in
any (pointwise) larger global knowledge. Also note that our
definition bakes in a notion of “framing” (like in separation
logic) by quantifying over frame heaps h} and h¥.

Two open terms are locally equivalent (OEyy,) if, for



Rl ref R
GK(W)
Ew (G)(s)(7)

R D RAVT. R'(ref7) = R(ref ) AVn € N. R'(n) =
{G € W.S = VRelF | G is monotone w.rt. C A Vs. G(s) >N W.L(s)(G(s)) }
= {(61,62) W(hl,hQ) € W.H(s )(G( )) Vh . hi WA defined A ho WhY defined =

R(n)

hl:h27v17v27K17K276176278 7'
Case 1): (h1Uh1,€1)‘—> /\(hQUhg,eg) —“

V Case |J: (hy WhY e;)

—* (R WA, v1) A (haWhY,es)

—* (hh W hS, v0)

A s Js A (hy,hy) € WH(s)(G(s")) A (vi,v2) € G(s')(T)

V Case 4: (hy WhY e;)

S(Rfv Rv)(T)

(f1v1, f2 v2) | 3.

OEw (G)(s)(A;TFT) =

<" (M Whi, Kilef]) A (haWh3,e2) =
A 8" Js A (hi,hy) € WH(S')(G(s') A
A Vs" 3. VG D G. V(vi,v3) € G'(s
{ (f1,f2) € Ry(7! = 7) A (v1,02) €
{ (Al L) |37 0.7 =7[0/a] A (1, f2) € Ry (Vo 7') }
{(e1,e2) | Vo € A — CType. V71,72 € dom(T") — CVal.

=" (hy W hy, Kales))

(e1,€3) € 8(G(5"), G(s")(7")
s")(r'). (Ka[vi], Ka[va]) € Bw (G')(s")(7) }
€ Ry(r') } U

(Vo' € T. (m1(x),v2(x)) € G(s)(67")) = (71€1,72e2) € Ew (G)(s)(67) }
inhabited(W) = VG € GK(W). 3so. (0,0) € W.H(s0)(G(s0))
consistent(W) = VG € GK(W). Vs. V7. V(e1,e2) € S(W.L(s)(G(s)),G(s))(T). (beta(er), beta(ez)) € Ew (G)(s)(7)
stable(w) = VG € GK(wt). Vs, 5. V(hi, he) € w H( () (G (s, 5)).
vst O st vt hrf) € Wiet H(8) (G (5™, 5)). hif why defined A hE W hy defined =
35 3 5. (hn, he) € wHE) ()G, 3))

AT ke ~wea:T inhabited (W

Figure 7.
local world stability, and program equivalence.

) A consistent(W) A VG € GK(W
A;Thep~vesr: T := VN € P(TyNam). N countably infinite —> Jw. w.N C N A stable(w) A A; T+ eq

). Vs. (61,62) (S OEw(G)(S)(A,F I T)

~Nwt €2 1T

Coinductive definition of local term equivalence, Ey, € GK(W) — W.S — ERel, plus definitions of world inhabitation, world consistency,

all closing substitutions of related values at the appropriate
types, the substituted (closed) terms are locally equivalent.

Program Equivalence. Finally, two programs are equivalent
(A;T F eq ~ eq : 7) iff there exists a local world w such
that (a) w is parametric in the particular choice of names
to represent its abstract types; (b) w is stable; and (¢) wt
is inhabited and consistent, and relates e; and ey under any
global knowledge G € GK(w?). A world is inhabited iff its
heap invariant is satisfied by the empty heaps in some state;
it is consistent iff any functions it relates do indeed behave
locally equivalently when applied to G-related arguments.

We conclude this section with a key lemma about E.
Given a consistent world, if the global knowledge extends
the world’s local knowledge W.L with some additional
external knowledge R, then the third case in the definition
of E can be restricted so that it applies only to external
function calls (i.e., calls to functions related by R, not by
W.L). This holds essentially because we can “inline” the
equivalence proofs for any internal calls.

Lemma 1 (External call). For any W s.t. consistent(W),
G € GK(W) and R € W.S — VRelF, we have
(Vs. G(s)=W.L(s)(G(s)) UR(s)) = Ew(G)=ER(G)
where the definition of ET is the same as Ey except that
S(G(s"),G(s")) is replaced by S(R(s"), G(s")).

IV. STRUCTURE OF THE TRANSITIVITY PROOF

Giventhat A;T'F ey ~ ey :7and A;T' F ey ~e3: 7, our
goal is to show A; ' F e; ~ ez : 7. Unfolding the definition
of our goal, we are given a countably infinite set of type
names N and must construct a stable local world w such

that (a) A;T F €1 ~ypt €3 : 7 and (b) w.N C N (e, w.L
defines no names outside of AV). To do so, we split A into
three disjoint (and also countably infinite) pieces: N7, Na,
and N3. The first two pieces will be used to instantiate the
assumptions regarding e; ~ e; and ey ~ eg3, respectively,
thus yielding two stable local worlds w; and ws such that

AT Feg ~ypea: T (D
and A;l'Feg ~yyrez: T )

as well as wi.N C N; and wo.N C N>. Keeping N; and
N> disjoint is a matter of basic hygiene: it ensures that w,
and wy, which we will be using in the construction of w,
do not step on each other’s toes by defining the same type
name in incompatible ways. As for the names in N3, we
reserve them for a special purpose to be explained later.

At this point, the proof divides into two separate parts. In
the first part, we use w; and ws to directly construct a full
world W such that A;T'F ey ~y e3 : 7 (and W.N C N).
While the proof of this part is quite subtle, it is essentially an
extension of the transitivity proof for a restricted fragment of
F~ that we sketched in our previous paper [6], and which
we present here in much greater detail. The main novelty
over that previous proof is that we now deal with abstract
types; reference types do not cause much of a problem.

However, the second part of the proof has all to do with
references. Specifically, the world W that we create in the
first part does not have the required shape of a lifted local
world wt. Thus, in the second part, we (i) develop a theory
of weak isomorphisms between worlds and prove that they
preserve term equivalence, and (ii) construct a stable local
world w such that w1 is weakly isomorphic to W.



V. FIRST PART: CONSTRUCTING THE FULL WORLD W
A. High-Level Explanation

As mentioned above, this first part of the proof is essen-
tially agnostic as to whether the language/model supports
mutable state. To ease the presentation, we therefore gloss
over any state-related details at first; we will be more precise
in Section We also write W; as shorthand for w;?.

We want to construct W such that A;T"' - ey ~y e3: 7.
The proofs of consistency of W and relatedness of (eq, e3)
by OE turn out to be very similar, so let us focus on the
latter here. We are given a global knowledge G € GK(W)
and related substitutions y; and ~3. These substitutions map
each variable bound in T to related values (v1,v3) € G(77).
In order to make use of (I)) and (2), we want to be able to:
(i) “decompose” G into global knowledges G'(1) € GK (W)
and G (3) € GK(W?) that would be suitable for instantiating
(I) and @), and (ii) find a mediating substitution ~, s.t. for
each = € dom(I), it is the case that G(q) relates (v, y2)
and G (o) relates (y2x,737). Formally, we want:

G(1) € Gy(T)) © G2 (7)) G)
where o is ordinary relational composition. (Pretend for now
that 7(;) = 7. We will soon see why that’s not good enough.)

If we have this, we can instantiate (I) and (@), thus
obtaining (y1e1,7v2e2) € E(G(1))(7(1)) and (y2e2,73€3) €
E(G(2))(7(2))- It thus remains for us to show (y1e1,73e3) €
E(G)(7). In other words, we must (unsurprisingly) show
some kind of transitivity property for E:

Ew, (G))(71)) o Ew, (G2))(7(2)) € Ew (G)(T)  (4)
Proving this will certainly require us to prove the analogous
transitivity property for values, which is the inverse of (3):

G(1) 2 Gy(Tn)) © G2y (T2)) ®)
Since global knowledges extend the corresponding local
ones, this in turn means that VW.L must at least include the
composition of W7.L and W5.L:

W.L(G)(T) 2 W1.L(G1))(1(1)) © Wa.L(G(2))(T(2)) (6)

In order to see what else we want to put into W, and how
to define G'(;y and 7(;), let us consider proving (3) and @
For a flexible type 7’ the conjunction of and () is:

G(1") = G(1)(1(1)) © G(2) (T(2))-
One simple (but inadequate) choice for G'(;y would be to
define it as the minimal global knowledge in GK(W;)—
i.e., as the least fixed-point of W;.L. But there is no reason
to believe that for any (v1,v3) € G(7'), there magically
happens to be a “mediating” value ve such that Wi .L relates
(v1,v2) and Wh.L relates (vg,vs3), as required by the C
part of the above equation. To work this magic, we will
explicitly add such mediating values to G(;) and G(y)!
Concretely, we define Gy as the smallest global knowledge
in GK(W) that relates (v1, I(7,v1,v3)) at 7(1) whenever G
relates (v1,v3) at 7, and similarly G5y as the smallest global

knowledge in GK(W>) that relates (I(7,v1,v3),v3) at 7(9)
whenever G relates (vq,v3) at 7.

Now, what is this magic I? For proving (3), it could be
anything that maps to CVal. But for (), it is crucial that each
mediating value uniquely encodes the corresponding value
pair (v1,vs). We therefore require I to be injective. Since
all involved sets are countably infinite, such an encoding
function exists and we do not care about the particular
choice—except that we will choose its range to be of rigid
type, specifically int, for reasons we will explain shortly.

The proofs of (3) and (5) are by induction on the value
closure (recall that it is constructed as a least fixed-point).
The reason why we must add more to W.L than just the
composition in @, and why 7(;) cannot just be 7 in general,
has to do with abstract types. We illustrate the issue here for
existential types, but the same problem arises for universals
(although in a different place, namely in the proof of (@)).

Suppose 7(;) were the identity and consider @) at
some type da.7: We would have to show that if
(pack vy, pack v2) € G(1)(3a. 7) and (pack vg, pack vs) €
G(2)(3av. 7), then (pack vy, pack v3) € G(Ja. 7). Unfolding
the value closure, this means: Given some 7y, 75 such that
(v1,v2) € Gy(7[r{/a]) and (v2,v3) € G(z)(7[r3/a]), we
must come up with 7/ such that (vy,v3) € G(7[7'/a]). Now,
if the two given representation types happen to be the same
(11 = 75), then we could proceed by just picking 7’ := 7.
But of course in general 7; and 75 will be different!

The intuition behind our solution is quite simple: we pick
7' to be a fresh rype name, which we use to represent the
semantic composition of 7{ and 75. More concretely, we
use a type name n from N3 (which we reserved for exactly
this purpose) to uniquely encode 7] and 74, then define n’s
meaning in W to be precisely G 1)(7{)oG 2)(74), and finally
choose 7’ to be n. Since we don’t know what 7{ and 75 are,
we simply have to encode all pairs of types this way. To
pick the names, we use an injective function

A € CType x CType — N3

which, like I, exists because all involved sets are countably
infinite (and, as with I, we do not care about its concrete
definition). It should be clear by now what 7'(’1.) does and that
it is crucial for making the induction go through: it decodes
7/ by traversing its structure and replacing each type name
n that equals A (7, 7o)—for some 71, o—with 7.

That’s the intuition; the reality is a bit more complex. It
turns out that, in order to prove (3) and (5), the decoding
must in fact be bijective, but the one sketched above is
not injective. For instance, A (int,int) and int are obviously
distinct types but both decode to int (by either projection).
Fortunately, there is an easy way to obtain the desired
bijectivity: we only encode a type pair (71, 72) directly as
a name A(1y,72) if 7 and 72 are “sufficiently different”.
If they share some structure, however, we keep the parts
that are the same and only apply A to the parts that are




different. To take a simple example: to encode (int,bool),
we would use the type name A(int, bool), but to encode
(int — int,int — bool), we would pick int — A(int, bool)
instead of A(int — int,int — bool).

Finally, property () is shown by coinduction. Recalling
that E comprises three cases ({, |}, and 4), the key here is
that the case of E by which the first and second terms—call
them e} and e),—are related should match the case by which
the second and third terms—e/, and e;—are related. In other
words, out of the 3 x 3 possible cases, 6 should never arise.
As a representative example, consider the situation where e}
and €/, are related because they reduce to related values (case
1), and €/, and e} because they reduce to related function
calls with related continuations (case 7). By Lemma E] we
can assume that these calls are to external functions related
by G (s). But this means that the function called in e5 must
be of the form I(7,v1,vs), i.e., not a function at all (recall
that we required I to map to rigid values)! Hence, e}, gets
stuck, contradicting the assumption that it reduced to a value.

The remaining possibilities (where the cases of relatedness
for (¢}, ¢e}) and (e}, e5) match) are handled as follows:

Case ). Then both €] and ef diverge, so we are done.

Case |}. Then ¢}, €}, and e} reduce to values vy, vg, and
v3, such that G(l) relates (vq,v2) and G(g) relates (v2,v3).
Thus, by (5), G relates (v1,v3) and we are done.

Case 4. We know that €] and €}, reduce to related function
calls in related continuations, and that the same applies to
e}, and eg. Using Lemma [1| as above, we know that all four
function calls are actually stuck. Since, by determinacy, e}
cannot get stuck in two different ways, we have a unique
function call and a unique continuation in the middle. So,
it suffices to show a corresponding transitivity property for
S and for continuations. The one for continuations follows
from (3) and the coinductive hypothesis. The one for S
follows from and injectivity of I; when reasoning about
type instantiations (f;[]), we must also make use of our type
encoding A—dually to how we handle pack in proving (3).

B. The Gory Details

We first formalize the syntactic encoding of types. The
previously motivated notion of two types being “sufficiently
different” is defined as the negation of similarity.

Definition 1. Similarity, written ==, is defined inductively:

n ¢ N3 T~O T~Oo (x=p,Y3)

NN AR Q Toase ~ Toase ref 7 ~refo *Q. T R *QL. O

T~o T ~0 (x=x,+,—) T,0€CType T=o
T*xT = 0*0o! T~O T~O

Two closed dissimilar types are encoded as a type name

from N3 using a bijection
A € {(r,m) € CType x CType | 71 & 72 } — N3.

The encoding of two arbitrary closed types is a natural
lifting of A. Instead of defining it explicitly, we find it

simpler to define the decoding and then state the existence
of a corresponding encoding.

Definition 2. We recursively define decoding projections
(=) € Type — Type for i = 1,2 as follows. Note that
if 7 is closed, then so is T(i)-

o {Ti if n = A(m,72) for some 71,72
(1) = n

otherwise, i.e., n ¢ N3

Q) = o Thase (i) = Tbase (refT)(i) = refT(i)
(*xa. 7)) = %0 T ), (where x = p,V, 3J)
(T*7") @) = Ty x (i) (Where % = X, +, =)

The encoding of two arbitrary closed types is now implicit
in the surjectivity part of the next lemma.

Lemma 2. ((—)q),(—)(2)) € CType — CType x CType
is bijective.

Proof: Injectivity (generalized to open types) can be easily
shown by induction on types using two sub-lemmas:

(@) V7. T(1) ~ T(2), which is shown by straightforward
induction on 7.
(b) V7. (1) R T(2) <= 7 & N3, which is shown by case
analysis on 7 using (a).
Surjectivity is generalized as follows:
VT, T2. T~ To = 37 7(1) = T1 AT@2) = T2

(Note that if 7 and 75 are closed, the premise holds trivially.)
This property can be proven by induction on 7. In each case
we ask if 71 = 75 holds. If it does, we use the inductive
hypothesis; otherwise, the premise implies that 71,7 are
closed and thus we can pick 7 to be A(7y,72). |

Now, let us define the decomposition of value relations.
This will eventually be used to decompose a global knowl-
edge that respects the yet-to-be-defined W into one that
respects WW; and one that respects Ws.

Definition 3. Given R € VRelF, we define R{i} € VRelF
and R, € W;.S — VRelF (for i = 1, 2) as follows.

(@)

Ry :={(rqy, v1, I(7, v1,v3)) | TECTyF\rCf (v1,v3) € R(T)}
Ry :={(72), I(7,v1,v3),v3) | 7'€CTyF\ref (v1,v3) €R(T)}
Riy(s) = Wil ()]l

Here,

. CTyst\eff means CTypeF \ (N U {ref 7 € CType}),

e [F]} denotes the least fixed-point of the monotone func-
tion F(—) U R, thus making R{;) the smallest global
knowledge that both respects W; and contains Ry;y, and

« I is an injective function in CType x CVal x CVal — N.

With the help of this, we can now construct the world
W in Figure [§] Its well-formedness is easy to check. Note
that, although T only actually defines names from N3, we
declare that it owns the larger set N in order to reduce the
set of global knowledges that we have to worry about.

Next, some notation for decomposing a global knowledge.

Definition 4. Given G € GK(W), we define



W.N =
W.S = >< WQ
w.C :{ )Ipl1Ep 1Ap2Ep .2}
(1) (s1) 7'(1) ) 0 Ry (s2)(7(2)) if 7 € N3
WL(51752 81 R(l 81))(7’(1)) if 7 Q./\/‘g
OW2 82 R(Z)(Sg))(T(g))
W.H(s1,52)(R) H(s1)(R{y)(s1)) © Wa.H(s2)(R(y (s2))

Figure 8. Construction of W € World.

G‘Ef) € W1.S — VRelF for s; € W3.S,
and Gfé) € W9.S — VRelF for s; € W;.S as follows:
G () :=G(s,52)(1)(5)  Giy(s) := Gs1,8)(3)(s)
Note that if the global knowledge argument R in the
definition of W.L and W.H is of the form G(sy,s2) for
G € GK(W), then the global knowledge passed to TW;.L
and W7.H is exactly Gf%(sl) (and similarly for Ws). It

remains to show that fo) s1) and Gfé)(52) are in fact valid
global knowledges that respect W7 and W5, respectively:

Lemma 3. VG € GK(W).

Vss. GSQ) S GK(Wl) A Vsq. Gsé) S GK(WQ)
Proof: We show the first conjunct (the second is analo-
gous). Monotonicity of fo) is proven by fixed-point in-
duction using the fact that G, (—)¢1y and W;.L are mono-
tone. fo)(sl) >N W L(s )(G‘Ef)(sl)) follows from
Gy (s1)(m) = Wil(s1)(G 7y (s1))(7) U G(s1,82)(13(7).
(Note that G(s1, s2){1}(7) = (Z) if 7 is a reference type or a
name in W1.N = N; CN) [ ]

We now come to the main lemma of this part, namely the
conjunction of properties (3) and (5) from Section

Lemma 4. VG € GK(W). V1 € CType. Vs1, s3.

Gy (s1)(1(1)) 0 Gz (82) (12)) = G851, 82)(7)
Proof: The D part is proven by fixed-point induction on

G(s1,52) (recall that (—) is defined as a least fixed-point).
The C part is equivalent to

Giy(s1)(r) <€ {(v1,v2) | Vo, vs.

(T=00)A(v2,03) €G3 (52)(0(2))) = (v1,v3) €G(s1,82)(0) }
which is proven by (generalized) induction on %
Base cases. In both parts, the base cases follow from

VG € GK(W). V1 € CTypeF. Vs1, sa.
G5 (s1)(T(1)) 0 G5 (s2)(T(2)) = G(s1, 82)(7)
which we now show by case analysis on 7. If 7 € A3, then
G(s1,82)(1) = W.L(s1,82)(G(s1, $2))(7) (G € GK(W))
=G} (s1)(1(1)) 0 G(5)(s2)(7(2))  (def. of W.L)

and we are done. Otherwise (7 € CTypeF \ N3), we have:

G (s1) (1)) © Gl (52) (7))

=G (s1)(rn)) o <2>( 2)(7(2))

= (Wi.L(s1)(G (1)(81))(T<1>) G(s1,82)(13(T(1))) ©
(Wa.L(s2)(G(5(s2))(7(2)) U G (51, 82) 23 (1(2))  (7)

Now, if 7 is a reference type or a name from N7 W N3, we
finish by rewriting (7) as follows:
= (Wi.L(s1)(G{F)(s1)) (1)) UD) o
(Wa.L(s2)(G(5(52))(7(2)) U D)
= W.L(s1,52)(G(s1,52))(T)
G(s1,52)(T)

Otherwise (7 € CTyF\ref), we continue by distributing o
over U in H
Wi.L

(def. Of (7){1-})
(def. of W.L)
(G € GK(W))

(W1 L(s1)(GR) (51))(m1)) © Wa.L(s2) (G5 (52)) (7(2)))
u (G (817 s2){13(7(1)) © G(s1,52) {23 (7(2))) )
U (W1.L(s1)(G(3)(s1))(T(1)) © G(s1, 82) {23 (T(2)))

@] (G(Sl 82){1}(7'(1)) o WQ.L(SQ)(G‘(Sé)(82))(7'(2)))
The first disjunct equals W.L(s1,s2)(G(s1,582))(7) by
construction of W; the second equals G(s1,s$2)(7) by
construction of (—)y;}, injectivity of I and the injec-
tivity part of Lemma [2} and the third and the fourth
are empty by construction of (—){;; and the fact that
W;.L(s)(R) € WfKnow (W;.N) for any s, R. So, (8)) becomes
W.L(s1,82)(G(s1,52))(T)UG(s1,52)(T). As G € GK(W),
the second disjunct contains the first, and we are done.
Inductive cases. In both parts, the inductive cases boil down
to showing that for any R;, Ry, R € VRelF and 57,5, €
VRel and 7 ¢ CTypeF the equation

Fr, (51)(7(1)) © FRr, (52)(7(2)) = Fr(S1 ® S2)(7)

holds, where Frp € VRel — VRel denotes the monotone
generating function of R (i.e., the function of which R is
least fixed-point), and (S1 @ S2)(7) := S1(7(1)) 0 Sa(7(2)).
This is straightforward to show by case analysis on 7. The
only really interesting case is for existential types, where
(in one direction) we are given two witness types 7, and 7
and then apply Lemma 2] to find a witness type 7 satisfying
(1) =T1 and T(2) = T2. |

Finally, we can prove transitivity of E and then the
original goal of this first part.

Lemma 5. VG € GK(W). V7 € CType. Vs1, so.

Ew,(G2) (1) (1) o BG4, ) (52) r2) € Byl Q) (51,50)(7)
Proof: By coinduction, following the sketch in Section
(and choosing the middle frame heap, h%, to be empty). ®

Lemma 6. A;T'Fe; ~yes: T

Proof: Inhabitation of W follows easily from that of W and
Wy and the construction of W.H. The proofs of consistency
and relatedness of (e1,e3) by OEy, are very similar and
straightforward, using Lemmas [4] and [3 ]

VI. SECOND PART:
CONSTRUCTING THE CORRESPONDING LOCAL WORLD w

We now come to the second part of our transitivity proof.
Conceptually it is quite simple, but the formal details are
very subtle. Recall that we basically want to create a world
that relates the same things as W from the previous section,
but has the shape of a lifted world, i.e., has the form w.



hi ha = ho h3 R hy = hh h’
A~ AN NN A~ A~ AN NS A~

hlc lc hlc h2 s I hs h lc hlc
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h3 o a h3
R N e hgfb ng hgf ITTrYY- — ey TETET
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hoy | s2 | ha

lc lc Ic lc lc lc

hlsi|hzal|f~-"T T 1 h st haalF--1-F--1

1 1 1 1 1 1

hay | 53 | hs hay | 53 | hs

Heap structure enforced by W

Heap structure enforced by w?

w.N:= W.N w.S:=W.S w.C = W.C
w.L(s™)(s)(R)(7) := {(vl,vs) € WL(s)(R)(T) | T # ref( )}
wH(s) (55, 816, 5, 515) (R) = { (5, 15) | s = siF @ 5 A
303, i, h3a, Pisa, hay, hisy, BS, B
Ry = hS WA A RS, WhY, = h3, WhX ARy =hSWhE A
dom(h¥,) N domiy (si) = dom(hlgcb) N dompy(s5) = 0 A
(hS,h3a) € Weet. H(Sl)(R(l)(sl O
(h3y, hg) € Wier H(s3)( R(z)(52 75126)) A
(hY", hs) € wi.H(s 5)( )(R(1>(81 ,811 ) A
(hy, hs) € wa.H(s)(s3) (R (2)(52 , 5 ))}
where s ={(7, (1, (2) €si' | £; & domp; (s e s)} for i=1,2

Figure 9. Construction of a stable local world w € LWorld such that w1 is weakly isomorphic to W.

By definition, the state space of a lifted world is of the form
Wiet.S X ..., and thus cannot be the same as W’s state
space (Wier.S X w1.S) X (Wiet.S X w2.S). Recall further
that a world’s local knowledge and heap relation are state-
dependent. So, in order to characterize what it means for two
worlds with different state spaces to “relate the same things”,
we need to introduce a notion of world isomorphism.

A. World Isomorphisms

Roughly, two (full) worlds W,, W} are isomorphic iff
they declare the same type names, and each state of W,
corresponds to a state of W; (and vice versa) such that
the the same values and heaps are related at corresponding
states. Different kinds of isomorphism arise depending on
what counts as a correspondence. For our purpose, a one-
to-one correspondence is too strong. If, say, W}, contains an
“inconsistent” state (i.e., a state at which W}’ s heap relation
is empty), then we should not have to worry about finding a
similarly irrelevant state in W,. So, instead of a full one-to-
one correspondence, we use a partial one, wherein a state
s in one world is permitted to have no correspondent in the
other iff s is inconsistent. This plays a crucial role in our
transitivity proof, as we will see in a moment.

Definition 5. For any W,, W, € World, a pair of functions
e W,S — P(W,.S) and v € W,,.S — P(W,.S) form a
weak isomorphism, written ¢ : W, =2 W}, : 1, if:
(1) Wy.N=W,.N
(2a) Vsq,s,.Vsp € ¢(Sa),sp, € O(s., ) Sq C s, => 5, C s
(Ba) Vs,.Ysp € P(sq). Wa.L(se) = Wy.L(sp)
(4a) Vs,.VG € GK(W,).

Wo.H(5a)(G(s0)) € Us,ep(5.) Wo-H(50)(G(54))
(52) Vs,.Vsp € ¢(84).Vsl, € ¥(sp). 84 C 8,
(2b)—(5b) symmetric to (2a)—(5a)
Note that full worlds and weak morphisms—i.e., ¢ satisfying
(1), (2a), (3a), and (4a)—form a category.

Theorem 7. If ¢ : W, =2 W, : 4, then: VA, ', 7, e, es.
ATEep ~w, ea:7 <= AT'Fep ~w, ea: 7
Proof: See Theorem [84] in the appendix. [ |

B. Defining w

Recall that lifting a local world means linking it with the
shared world W,.¢, which provides the meaning of reference
types. Accordingly, the to-be-constructed local world w’s
knowledge must not relate anything at reference types, and,
in order for w? to be isomorphic to W, must correspond
to W.L at all other types. This is easy to achieve by
just choosing w’s state space to be the same as W’s and
then defining w.L(s')(s) to be W.L(s) for non-reference
types. Regarding reference types, we have to satisfy (by the
definition of lifting):

Wiet L(s")(R)(ref 7) = W.L(s)(R)(ref 7)

This is problematic. Note that s really has the form
((stF, s1), (83, sK)) (we Will later omit the inner parentheses
for convenience), with s1 ,32 being states of Wy, and
si¢, sk¢ being states of wy,wo, respectively. Unfolding the

definition of W.L, the above equation is equivalent to
Wiet-L(s™) (R) (ref 7) = Wit L(s7)( (1)(S§f75110))(ref (1))
o ref.L(82 )(R* (s5f, sl ))(ref 7(2))

— orf
= sif o s5f, where

(7’7 51, £3) ‘ 345. (7(1),81, Zg) c 81 /\(7’(2)7 EQ, 53) S ng}.
This clearly cannot be true in general as all three states may
be arbitrary. Remember, however, that we do not have to
worry about inconsistent states! So the solution is easy: in
the states where the equation holds—i.e., where s and s
are coherent—we are fine; we just need to make sure that
in any other case the heap relation is empty. And since w’s
heap relation may depend on the shared state s'f, this can
be easily done. Accordingly, the w1 state corresponding to
s will be (sif e sif s), and the W state corresponding to
(s™, s) will be s—but only if s happens to be st e sif,
What should w.H relate when s'f = s:f @ sif does hold?
For such states, we want the following equation to be true
(ignoring the global knowledge parameter to avoid clutter):

wh.H(s, s) = W.H(s) 9)
Let us look at what we know about heaps (hq, hs3) related
by W.H(s). First, by construction of W, there is some ho

mediating between w171 and wyT. By definition of lifting, hq
and hy can be split between Wier.H(s5F) and w . H(s3f) (s1°),

which in turn reduces to s*f

rf  rf
s] @Sy 1=



and similarly ho and hs3 can be split between Wier.H(s5)
and wsy.H(s3)(s¥). Of course, in general the two splits of
ho may be arbitrarily different. This situation is depicted in
the first diagram of Figure [9]

Note that wt.H(s'f,s) in (9) unfolds to Wier.H(s')
w.H(s™)(s). So basically all we have to do is to define
w.H(s")(s) to be the “septraction” [13] of Wie¢.H(s™) from
W.H(s). The way we do this is essentially by describing,
in the definition of w.H, the situation from the figure but
leaving out the pieces related by We¢.H(s'f). This is shown
in the second diagram of Figure [0} w.H relates heaps k', h;
iff b, = hiWhS, where h$ is the sub-heap of h:f not covered
by s = sif e sif. The missing pieces, h and hS$, are then
going to be related by Wyer.H(s™) when w is lifted.

Formally, w.H is defined as shown on the right in Figure 9]
together with the other components of w. As explained, it is
empty whenever s™ is not compatible with s%f and sf. The
sub-heap h{ (and similarly h3) is characterized by saying
that it is related by Wit to a sub-heap hS, of hif at the
state obtained by essentially subtracting those parts from s}f

that are involved in s:f e sif.

C. Showing w’s Stability

The well-formedness of w is fairly easy to check, but
proving w stable is non-trivial (because w.H’s dependency
on s is non-trivial). Recall that stability is crucial for
soundness, as it ensures that a local world’s dependency on

the shared state is compatible with any changes to that state.

Definition 6. For G € GK(w?), we define G € W.S —
VRelF as follows:

rf _lc rf _lc

& of of _le _rf
G (81,817,582 ,5%)

G(sl hd ng, (81 815 52 7312C))

Note that the fact that s‘if ° sgf is a valid W, state (i.e., a
partial bijection) relies on the injectivity part of Lemma [2]

Lemma 8. VG € GK(wt). G € GK(W)

Lemma 9. stable(w)
Proof: Suppose that G € GK(wt), s = (stf, sl i sk),

§f 3 5™, defined (R} W he), defined(h} & hS),
(h1,hy) € wH(s™)(s)(G(s,5))  (10)
(h$,h3) € Wit HEH(G(5™,5). (D
Our goal is to find 5§ = (8,5, 55, 8°) O s such that
(R, h%) € w.H(8")(5)(G (8", 5)). The main idea is to use
stable(w;) to obtain 8¢ for i = 1,2.

In order to do so, we must first construct states and heaps
needed for instantiation. From (10) we know s = sif @ sif
and that h}, h% are structured as depicted in the diagram of
Figure |10, From 5" J s we know 5™ = s"fws™ for some s*.
Thus by 1i hs, ﬁg can be split as }AL: = h? Wh! such that

(h1,h3) € Wit H(s)(G(5",5))  (12)
and  (h{,h3) € Wit H(s")(G(5,5),  (13)
as depicted in the left part of the diagram in Figure [I0]

and
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hi hy = hy h hi hy = hj hi
o o 1 1 1 o o 1 1 1
hi ] si |hsa'|| hap | 557 | RS Ri’] st [haa |l hay | s5 | hs
P hi i siesh (=s") h3ilinlisti h3  is3ing
o [e] o (e}
lc lc lc h2b 2 h3 lc 1 lc th = h3
) 313%: c 20 22 |
hl 51 hQa i 71(? i 7107 lc hl 51 h2a lc lc lc
hay | s2 | hs hay | 52| ks

T s T | T A T
i hy i s ths tlihy is1:  ho 183t hs
Figure 10. “Horizontal” decomposition of 8*f in proof of stable(w).

We will now “horizontally” decompose s* and s, as
shown in the right part of Figure Since s D 82,
there is s? such that sif = s W s?; consequently we have
domiy(s}) = dompj(s3) and s} e s3 = sif e stf = o,
To decompose sT, we choose a set of fresh locations L
(of appropriate size) for the middle, i.e., we define s} such
that s7 @ s3 = s and dompy(s}) = domy(s3) = L.
We can then define $if (used to instantiate stable(w;)) as

8t i= 59 W st WsT, so we have 55 o 35f = s b s = &',

The mediating heaps hj (with domain L) and h$ are
constructed as follows. Since §tf D sif, we know
F
G (81, s, 85, s5) = G(8™, (81, s, 85, s5)) 2 G(85) (14)
by monotonicity of G. From (I2)), (I3), (I4), monotonicity

of Wher.H, and Lemmas [8]and ] we can then find mediating
values to construct h$ and hj satisfying (for x € {e, +})

S35 55 ar
(h,h3) € WierH(sD)(GS ") (811, 51))  (15)
(gt gle r c
and (h3,h5) € WierH(s3)(G 5} " (35, 55)). (16)

We will now prepare to instantiate stable(w;), starting
< §rf slc
with stable(w, ). First, observe that GES #2) ¢ GK(w11),
thanks to Lemmas [§| and [3] Next, by monotonicity of G, we
have that (for « € {5, s1f})
= §rf13}c = AT * r *
G (o s1) = G (s, 85,850 2 GG, 90ty

and thus (I0), along with monotonicity of Wies.H and wq.H
and the definition of w.H in Figure [9} gives us:
[e] o o % §rf7‘ Y AT C
(h,h3,) € Wrer H(s3)(G 33" (3, s1) a7
le glc rf lc <_(§§fﬁslgc) rf _lc
and (hY', h3,) € wiH(sT)(s)(G (572 (s1,57)). (18)

Thus, by (15), (17), (18), and sif D sif, we can instantiate

stable(wy ), yielding $;° 3 si¢ such that

(Rl hk,) € wi HEDE)(@S @ 80). 19)
In a similar manner, stable(ws) yields 85 3 sk such that
lc lc arfy 7 alc <_(§§f73110) arf  4lc
(hop, ') € w2 H(85)(82)(G o) 7 (85, 85)).  (20)

Let 5 := (84,3, 51f 5). Finally, by monotonicity of

G, Wie.H, and w;.H, arg by definition of w.H, we get
(h1,hy) € wHE)(E)(G(3) = wHEB3)(G(ET, )
from (T0), (19), and @0), as desired. [



D. Proving W and wt Isomorphic

We now show that W and w? are weakly isomorphic,
and then put all the pieces together, arriving at our goal and
thereby finishing the proof of transitivity.

Lemma 10. 3¢, ¢. ¢ : W =Z wt : ¢

Proof: We define ¢ € W.S — P(w?.S) and ¢ € wt.S —
P(W.S) as follows.

o(st, 517, 85, s5) = { (s1 o 85, (51, 57", 85, 5%)) }
oot = (T o) G0 ST e
Showing that ¢ and v form a weak isomorphism is mostly
straightforward, but for conditions (4a) and (4b) quite te-
dious. The key idea behind the proofs of these is the same
as that behind Lemma 0} splitting the given heaps as depicted
in the diagrams of Figure [0} In particular, the proof of (4b)
is very similar to that of Lemma [9] in the way it uses the
construction G and Lemma Iﬂ [ |

Theorem 11 (Transitivity). A;T'Fe; ~e3: 7T
Proof: We have A;T' I e ~y4 e3 : 7 by Lemmas @ and
and Theorem [7] The result then follows from Lemma[0 m

VII. CONCLUSION

In this paper, we have focused on establishing transi-
tive composability of RTSs in a traditional single-language
setting—because it is already challenging enough!—but our
ultimate goal is to provide a foundation for inter-language
reasoning. We believe strongly that RTSs should be gener-
alizable to inter-language reasoning because, like SKLRs,
RTSs are inherently “semantic” (or ‘“relational”), always
quantifying over “related” terms/values without assuming
that the related entities share a common syntax. As a starting
point, we believe it should be possible (straightforward,
even) to adapt Hur and Dreyer’s SKLR relating ML and
assembly programs [5]] to a formulation using RTSs instead.

As for generalizing our RTS transitivity proof to the inter-
language setting, we are quite optimistic. The transitivity
proof is direct—i.e., it does not exploit contextual equiva-
lence internally—and the first part of the proof makes few
assumptions about the “middle” language (from which e is
drawn) except that it is capable of encoding the I function
from Section [V-A] The key challenge will be in adapting the
second part of the proof to the case where the Wi et’s in the
proofs of e; ~es and e ~ e3 are of different shapes (because
the languages involved have different memory models).
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APPENDIX

A. Language
We define the language F*'.
1) Syntax.
¢ € Loc
x € Var
a € TyVar
o€ Typ u==a|unit]|int]|bool| oy x0og]|01+02|01 02| pa.o|Va.o|Ia.o|refo
v € Val =z | ()| n|tt]ff| (v,ve) |inj'v |inj?v | rollv |
fix f(z).e | A.e | packv | £
ecExp u=uv|ifegthene;elseey | (e1,e0) | el |e2]injle|inje |
(caseeofinj'z = e; |inj*z = e3) | roll e | unrolle | e1 ey | €]] | pack e |
unpack ey asxziney |refe|le| e :=es | e1 == €2

K € Cont ::=we |if Kthenejelsees | (K,e) | (v, K) | K1 | K.2|inj' K | inj* K |
case K of[inj'z = ¢;] | roll K | unroll K | K e | v K | K[| | pack K |
unpack K aszine |[ref K | |K | K:=e|v:=K | K==e¢|v==K
p€Prog u=x | ()| n|tt|ff|ifpythenpy elseps | (p1,p2) | p1|p2|inj,p | inp |
(casepofinj' & = p1 |inj>x = po) | roll, p | unroll p | fix f(z:01):09.p | p1 p2 | Ac.p |
plo] | pack (o,p) as Ja. o’ | unpack py as («,z) inpy | ref p | Ip | p1:=p2 | p1 == p2
h € Heap := Loc I CVal
2) Dynamic Semantics.
h,if tt then ey else eg — h,e;
h,if ff then e else e3 — h, ey
h, <U17’02>.Z' — h,’U,j
h,caseinj’ vof(inj' z = ;] < h,ej[v/]
h, (fix f(x).e) v = h,e[(fix f(x).e)/f,v/x]
hy(A.e)]] — h,e
h,unpack (pack v) asz ine < h,e[v/x]
hyunroll (roll v) < h,v
h,ref v — hW[l—v],¢ where £ ¢ dom(h)
h [—v],I — hW[l—v],v
!

h [l—v], 0 :=v — hd =], ()
h,t ==/ < h,tt
ht ==/ < h,ff where £ # ¢/
h,Kle] — b/, K|[e] where h,e — b/, ¢
3) Static Semantics.
Type environments A == | A«
Term environments I' == | T, z:0
AFo
fv(c) CA  names(c) =0
Ato
AFT
Veioel. AkFo
AFT
AFT zw0€el AFT
ATFx:o AT F e Toase
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A;TEpriop AT Eps:oo AT Ep:op X oo A;TEp:op X oy

AT F (p1,p2) : 01 X 02 AT Epl:oy AT HEpP2:og
AL, z:01Fp:og ATEpriop =09 A;TEpy:og
AT E Axioy.p: oy — oo AT Fpypo oo
Aa;TEp:o AT Ep:Va.op Ak og
A;THAa.p:Va.o A;T F plos] : o1][o2/q]
Atoy A;TFp:osfor/q] A;TEpyida.oy AT, a0 Fpsioa Al oo
A;T F pack (o1, p) as Ja. o : Jav. 09 A; T F unpack py as (@, ) in pa : 09

AT Fp:ofpa.o/a] A;TEp:paco

AT Frollyg. o p:poo A;T Funroll p : ofpa. o/a]

ATEp:o A;TEpy:refo AT Epy:o
A;THrefp:refo A;T F py:=ps : unit

A;TEp:refo A;TEpr:refo A;TEps:refo
A;THEIp:o A;T' F p; == py : bool

‘ FC:(AT;0) ~ (AT 07)

ACA T CI
Fe:(AT;0)~ (AT 0)

FC: (AT 0) ~ (AT 01) AT Fpy oy
FA(C,p2) : (A;T;0) ~ (AT 01 X 03)

FC: (A T;0)~ (AT 01 X 03) FC:(AT;0) ~ (AT 01 X 02)
FC1:(A;T;0)~ (AT 01) FC2:(A;T;0) ~ (AT 03)

FC: (AT 0) ~ (AT, xi01;02)
FAz:01.C: (AT 0) ~ (AT 01 — 02)

FC: (A T;0) ~ (ATV;00 = 02) AT Epy:on
FCpsy: (A;T;0) ~ (AT 09)

FC:(AT;0)~ (AT 01) AT Epr o — o9
Fpi C:(A;T;0) ~ (AT 09)

FC:(AT;0)~ (A, o;T;0q) FC:(AT;0) ~ (AT, Va. oq)
FAa.C: (A T;0) ~ (AT Va. o) F Cloa] : (A;T50) ~ (AT 01[o2/a))

FC:(AT;0) ~ (AT 02]01/al)
F pack (o1,C) as Ja. o3 : (A;T;0) ~ (A TV 3a. 02)
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FC:(A;T;0)~ (AT 3a.01) A ;T zo1 b pa:iog Aoy
F unpack C as (o, ) in pa : (A;T;0) ~ (AT 09)

A:TVEpy:daor FC: (AT 0) ~ (A oy T xi01;02) Aoy
F unpack p1 as {(a,x) in C: (A;T;0) ~ (AT 09)

FC:(AT;0) ~ (AT 01 [po. 01 /al)
Frolly. o C: (AT 0) ~ (AT pa. o)
FC:(A;T;0) ~ (AT paeop)
Funroll C: (A;T50) ~ (AT 01[pa. 01/a)

FC:(A;T;0) ~ (AT 0q)
Fref C: (A;T0) ~ (AT ref oq)

FC:(A;T;0) ~ (AT refoy) AT Eops oy
FC:i=ps: (A;T;0) ~ (AT unit)

AT Fppirefo; BFC: (AT 0) ~ (AT 0q)
Fpri=C: (AT 0) ~ (AT unit)

FC:(AT;0) ~ (AT ref o)
FIC: (A;T0) ~ (AT 01)

FC:(A;T;0)~ (AT refoy) AT Fpso:refoy
FC ==psy:(A;T;0)~ (A;T";bool)

A:T'Epy:refor BC:(A;T;0)~ (AT refoq)
Fpp==C:(A;T;0)~ (A;T7;bool)

4) Contextual Equivalence.

Definition 7 (Contextual equivalence).

Let A;T'Fpy:0 and A;T'F ps : 0. Then:
AT Epp ~ex p2 i 0 :=VC hy1. EC: (A T50) ~ (457) = (h, |Clp1]| =¥ <= h,|C[p2]| —=¥)
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B. Model

Various Relations..

beta(e) = { e if Vh. h,e <! h,¢
' undef otherwise
FunVal := {f e CVal|VYuv. beta(f v) defined }
GenVal := {v e CVal]| beta(v]]) defined }
n € TyNam
Names := {N € P(TyNam) | NV is countably infinite }
oc€Type ==mn|a]unit]|int]|bool| oy xXo9|0o1+02 |01 09| pe.o|Va.o|Ia.o|refo
CType = {7 € Type| ftv(r) =0}
CTypeF := { (1 = 1) € CType } U{ref 7 € CType } U{ (Va.0) € CType } U TyNam
VRelF := CTypeF — P(CVal x CVal)
VRel := CType — P(CVal x CVal)
ERel := CType — P(CExp x CExp)
KRel := CType x CType — P(CCont x CCont)
HRel := P(Heap x Heap)

Note that as a notational convention we use o to range over possibly open types and 7 over closed types.

Value Closure.. We define the closure R € VRel for R € VRelF as the least fixpoint of the following equation.

E(Tbase) = IDq,,, .
B(roxma) = {{((vy,01), (v2,03)) | (v1,v2) € B(m) A (07, 03) € ( 2) }
R(ri +72) = { (inj* vy, injt va) | (v1,v2) € R(11) } U{ (inj>vy,inj?v2) | (v1,v2) € R(m) }
R(pa.o) = {(roll vy, roll va) [ (v1,v2) € R(o[pa.o/a))} -
R(Ja.0) = {(pack v, pack v2) | 37 € CType. (v1,v2) € R(o[r/a]) }
R(T1 — TQ) = R(Tl — TQ)
R(ref7) = R(ref )
R(n) = R(n)
R(Va. o) = R(Va.o)
Dependent World.. For a preordered set P = (Sp,Cp) we define

DepWorld(P) :=

{ (Nv Sv E; Epuba L7 H)
€ P(TyNam) x Set x P(S x S) x P(S x S) x
(Sp =S — VRelF — VRelF) x (Sp = S — VRelF — HRel) |
C,Cpub are preorders A
Cpub is a subset of T A
L is monotone in the first argument w.r.t. Cp, in the second w.r.t. C, in the third w.r.t. C A
H is monotone in the third argument w.r.t. C A
(Vs1,82. VR. Vn ¢ N. L(s1)(s2)(R)(n) = 0) A
(VSl, s9. VR. V(Tl — T9, fl, fg) € L(S1)(82)(R) fl, f2 S FunVal) A
(Vs1,82. VR. V(Va. 0,v1,v2) € L(s1)(s2)(R). v1,v2 € GenVal) }
Here we write C for the pointwise lifting of the usual subset ordering C to function spaces.
Also we write U for the pointwise lifting of the usual set union U to function spaces.

Full World.. We define

World := { W € DepWorld({*}, {(,%)}) }
and for W € World and s € W.S often write just W.H(s) for W.H(x)(s) (and similar for the L component).
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World for Mutable References.. We define the reference world Wy € World as follows.
Weet.N =10
Weet.S := { syt € Psn(CType x Loc x Loc) |
V(T, 61, €2)7 (7'/, éll, 6/2) € Syf.
(b=t = 7=7" Nl =U)N{le =0y = T=T7" N1 =0])}
sle J Syt iff s; D syt
S;f gpub Srf iff 8£~f 2D Syt
Wref.L(Srf)(R) = { (ref T, él,fg) | (T, £17£2) S Srf}
Wiet-H(see)(R) := { (h1,h2) | dom(h1) = domyy(ser) A dom(hz) = domyg)(se) A
V(T, 61, 62) € Syf. (’7’, hl (ﬁl), hQ(EQ)) S R}
where
domgy;(s) {41 | 3,8y, (1,01,02) €8},
dOI’H[Q](S) = {62 | 3T,£1. (T,gl,gg) GS} .

Local World.. We define
LWorld := { w € DepWorld(Wyes.S, Wiet. C) | Vsyit, s, R, 7. w.L(sy5)(s)(R)(ref 7) =0 }
Product World.. For wy,ws € LWorld, we define w; ® we € LWorld as follows.

N = wi.NWwsy.N

S = wl.S X ’U.)Q.S

(sh,85) 3 (s1,82)  iff sl 81 Ashdsg

(s, 85) Jpub (s1,82) Mff 8§ Tpup s1 A 85 Jpub S2
L(see) (51, 82)(R) = wi.L(s:)(51)(R) U wa.L(sef)(s2)(R)
H(sif)(s1,52)(R) = wi.H(s:t)(s1)(R) ® wa.H(s:5)(52)(R)

where
Hi® Hy := {(hlL‘!‘Jh/l,hQH'Jhlz) | (hl,hg) EHl/\( ll,hlz) EHQ}

Note that wy ® ws is undefined iff w;.N and ws.N is not disjoint.

Lifting of a Local World.. For w € LWorld, we define wt € World as follows.
N = w.N
S = Wiet.S X w.S
(ste,8") 3 (8ut, 8) iff s’ i 2 s As Os
(S:fv S/) gpub (srfa 3) iff s rf gpub ENEA s ;pub S
L(s:t,$)(R) = Whiet.L(spe)(R) Uw.L(se)(8)(R)
H(s:t, ) (R) = Weet H(8:£) (R) @ w.H(s:£)(5)(R)

mon mon

Single-State Worlds.. Given a local knowledge L € VRelF — VRelF and a heap relation H € VRelF' — HRel such
that

VR. V(Tl — 79, f1, fg) € L(R) f1, fo € FunVal A

VR. V(V()é T, fl, fg) S L(R) fl, f2 € GenVal

we define the single-state local world wsingle(L H) € LWorld as follows.
Wsingle(L, H).N 0
wsingle(La H)S {
* 1 %
* gpub *
Wingle (L, H).L(s:6)(+)(R) = {(7" = 7, f1, f2) € L(R) } U{ (Va. 7, f1, f2) € L(R) }
wsingle(L7 H)'H(Srf) (*)(R) H(R)
Global Knowledge.. We define the ref-name-preserving order Zﬁ\éf between R, R’ € VRelF as follows.
R >N.R iff V1. R'(1) 2 R() A
V7. R/ (ref 7) = R(ref 7) A
Vn € N. R'(n) = R(n)

}

Note that R’ Zfe/f R — R DR
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We define GK(W) for W € World as follows.
GK(W) = {G e WS — VRelF | G is monotone w.r.t. T AVs. G(s) >W:NW.L(s)(G(s)) }

“ref
Expression and Continuation Equivalence.. We define the following notation.
s' O [so,s] iff s JpupsoAs Is

For W € World, we coinductively define Eyy € GK(W) — W.SxW.S — ERel and Ky € GK(W) — W.SxW.S — KRel
as follows.

Ew (G)(s0, s)(7) = {(e1,e2) | V(h1, ha) € WH(s)(G(s)). VAT, hy.
((h1, Ry, e1), (ha, b, e2)) € Ow (Kw)(G)(s0,5)(T) }
Kw (G)(s0,8)(11,72) = { (K1, K2) | V(v1,v2) € G(s)(11). (Ki[v1], K2[va]) € Ew (G)(s0,5)(72) }
Ow (R¥)(G)(s0,5)(T) := {((h1,h,e1), (ha,hE,e2)) | h1 WAY defined A hy W hY defined =
(h] &) hlf,el <Y Ahy W hg,eg %w)
V (Eh’l,hé,vl,vg. h1 ] hlf,el —* hll ] hI;‘,Ul A hg (] hg,eg —* hlg ] hg,’UQ A
3s’ O [s0, 8]. (b}, hy) € WH(s)(G(s")) A (v1,v2) € G(s')(7))
\% (Eh/hh/QvT/thKQae/l?e,Q'
hl (] h‘f,el —* hll (] hlf,Kl[e/l] A h2 (] hg,eg —* hlz (] hg,KQ[G/Q] A
Js' Js. (h’l,h’) € WH(s)(G(s")) A (7, e}, eh) € S(G(s"),G(s")) A
Vs pub s'. VG’ 2 G. (Kl,KQ) S RK(GI)(807SI/)(T/,T))}
{(7, f1v1, fa 02) | 37", (f1, f2) € Rp(17" = 7) A (v1,v2) € Ry(7') }
{(o[r/al, fll; f2[]) | 7 € CType A (f1, f2) € Ry (Va.0) }

S(Ry, Ry) =
U
Program Equivalence..
For w € LWorld, we define:
stable(w) = VG € GK(w?). Vsyg, 5. V(h1, he) € w.H(sut)(s)(G (511, 5))-
Vsle 3 see. V(hiops h2) € Wier H(sh) (G(5kg, 8)). hios W by defined A hZ
3" Jpub 5. (h1, he) € wH(s()(s) (G (s, 8))
For W € World, we define:
inhabited(W) = VG e GK(W). 3sg. (0,0) € W.H(s0)(G(s0))
consistent (W) VG € GK(W). Vs. ¥(T,e1,e2) € S(W.L(s)(G(s)), G(s)).
(7, beta(er), beta(ez)) € Ew (G)(s, s)
We define program equivalence A;T'F ey ~ e : o
TyEnv(A) :={0]0€A— CType}

Env(T, R) = {(71,7%) | 11,72 € dom(T") — CVal AVz. (T'(x),y1(x),y2(x)) € R}

AT ey ~w eg i 0 = inhabited(W) A consistent(W) A
VG € GK(W). Vs. V6 € TyEnv(A). V(y1,72) € Env(dT, G(s)).
(00, 7v1€1,72€2) € Ew (G)(s,5)

AT ey~ eg:0 = stable(w) NAT ey~ €210

A:ThFe ~ey:0 = VN € Names. Jw € LWorld. w.NCN AA; T Fel ~yen:0

W ho defined =—

ref
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C. Metatheory
1) Basic Properties.

Notation.. For a monotone function F' € VRelF — VRelF and R € VRelF, we define [F|}, as the least fixpoint of the

monotone function F(—) U R:
[Flp = pX. F(X)UR .

For W € World, we define [IW] € W.S — VRelF as follows:
(W](s) == [W.L(s)lp -
Lemma 12. If G’ D G and s’ J s, then:
D G'(s") D G(s)
2) Env(T',G'(s")) 2 Env(T', G(s))
Proof:

1) By definition of GK we know G'(s') 2 G'(s). And since G’ O G we also know G'(s) D G(s).
2) Follows immediately from (1).

Lemma 13. VIV € World. [W] € GK(W)

Proof: We must establish four properties:

a) To show: [W] is monotone w.r.t. C.
Follows from monotonicity of W.L.

b) To show: Vs, 7. [W](s)(T) 2 W.L(s)([W](s))(T).
Immediate after unrolling fixpoint once.

¢) To show: Vs, 7. [W](s)(ref 7) = W.L(s)([W](s))(ref 7).
Easy fixpoint induction.

d) To show: Vs,n € W.N. [W](s)(n) = W.L(s)([W](s))(n).
Easy fixpoint induction.

Lemma 14. VIV € World, G € GK(W). [W] C G
Proof: Easy fixpoint induction. [ ]

Lemma 15. If

o hy h{;,el —* hh W h’];,e’l,

o hoWhl ey —* hlyWhi e,

e s’ Js, and

® (T’ ( /17 h{’ ell)v ( /27 hg? 6/2)) € OW(RK)(507 Sl)?
then (7, (h1, ], e1), (ha, h}, e2)) € Ow (R¥)(s0, 5).
Proof: Follows easily from the definition of Oyy. [ ]
Lemma 16. G(s) C G(s) C Ew (G)(s, s)
Proof: The first inclusion holds immediately by definition; the second by choosing the final state to be s. [ ]
Lemma 17. (1,7,0,0) € Ky (G)(s, )
Proof: We need to show (7,v1,v2) € Ew (G)(s, s) for (1,v1,v2) € G(s), which holds by Lemma [ |
Lemma 18. If s; Jpu1 So, then:

1) Ew (G)(sp,s) € Ew(G)(s0, 5)
2) Kw(G)(sp,s) € Kw(G)(s0, )

Proof: We define Ej;, and K, as follows:

Eyy (G)(s0,8) = { (7, €1, €2) | 3. 85 Tpun s0 A (7, €1, €2) € Ew (G)(sp,5) }
K{/V(G)(So,s) = {(’7’1,7‘2,K17K2) | 386. 86 :Ipub So A\ (Tl,TQ,Kl,KQ) c Kw(G)(867S)}
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If E’ C Ew and Ky, C Ky, then for s{, O, so we have
Ew (G)(s0,8) € Ey (G)(s0,5) € Ew (G)(s0,5)
(and similar for Ky ).
We now prove EQ,V C Ew and K’W C Ky by coinduction. Concretely, we have to show:

1) Vey,eq,G, s0,8,T.

(e1,e2) € Eyy (G)(s0, 8)(1) =

V(hhh?) € WH( ) ( ) 'Vhf‘?hg" ((h17hf761)7 (h27h57€2)) € OW(K/I/I/>(G)(S()’8)(T)
2) VK1, K>,G,sg,s,7,T.

(K1, K2) € Kiy (G)(s0,8) (7, 7) =

Y(v1,v2) € G(s)(7'). (Ki[v1], Ka[va]) € Eyy (G)(s0,8)(7)

For (1):

« Suppose (€1, €2) € By, (G)(s0,5)(7) and (hy, ha) € WH(s ( (5))-

We must show ((hl,hlf,el), (hg,hz,eg) S OW(K%/)( ) So ( )

By definition of Ef;, we know (e1,e2) € Ew (G) (s, s)(7) for some s Jpup So-
Hence ((h1,hy, e1), (h2, b3, e2)) € Ow (Kw)(G)(sp, 5)(7).

o It is easy to see that this implies ((h1,h}, e1), (ha, b, e2)) € Ow (Kiy)(G)(s0, 8) (7).

For (2):

o Suppose (K1, Ks) € Ky (G)(s0,8) (7', 7) and (v1,v2) € G(s)(').

o We must show (K;[v1], K2[va]) € Efy (G)(s0, 8)(T).

» By definition of K{;, we know (K1, K3) € Ky (G) (s, s)(7/,7) for some sy Jpub So-
e« Hence (Kl[’Ul],KQ[’UQ]) € EW(G)(SEM )( ) C E/ (G) S0, S )(T)

Lemma 19. If w;, we € LWorld, then VG € GK((w; @ wa)?1). Vsa € we.S. G(—, —, s2) € GK(w11).
Proof: We must establish four properties:

a) To show: G(—, —, s3) is monotone w.r.t. C.
This follows directly from the definition of 1, ® and the monotonicity of G.
b) To show: Vs, s1,7. G(Sut, $1,92)(7) 2 wiT.L(sre, 51)(G (et S1,82)) (7).
We know G(syf,51,82)(7) 2 (w1 @ wa)t.L(sys, 51, 82)(G (8, 51, 82))(T).
By definition, the latter equals w1.L(sc, 51)(G(spt, $1,52))(T) U wa.L(sye)(s2)
c) To show: Vs, s1, 7. G(8uit, 81, $2)(ref 7) = wiT.L(s:t, $1)(G (Srf,Sl,SQ))(refT)
We know G(syt, 1, 52)(ref 7) = (w1 @ wa)T.L(syt, 51, 2)(G (8, 1, 52)) (ref 7).
By definition, the latter equals wy1.L(s, $1)(G(spt, 51, 52))(ref 7) U wa.L(spe)(52) (G (Spt, 51, S2)) (ref 7).
Since wy € LWorld, we are done.
d) To show: Vs, s1,n € wit.N. G(s¢, 51, 82)(n) = wiT.L(seg, 1) (G(8:t, 81, 82)) (n).
We know G(syf, 51, 82)(n) = (w1 @ wa)T.L(sst, 51, 82)(G (841, 1, $2)) (n).
By definition, the latter equals wy1.L(s, $1)(G(syt, 51, $2))(n) U wa.L(s)(52) (G (84, 1, 52))(n).
Since n ¢ wy.N by definition of 1, ®, we are done.

( (Srf’ 51, 32))( )

Lemma 20. If wy,wy € LWorld, then VG € GK((w; ® wa)?1). Vs € w1.S. G(—, s1,—) € GK(wa1).
Proof: Similar to Lemma [T9] [ |

Lemma 21. If w = w1 @ wy with wl, wo € LWorld and stable(ws), then for all G € GK(w?) and for all s%, s;¢ € Wiet.S,
89,81 € wy.S, 89,50 € wy.S with so 3 Tpub 59

1Y) EwlT(G(_a _732))((89fa5(1))7 (srf’sl)) CEy, (G)((S?f, 5?788)7 (srf’slv‘s?))
2) KunT(G(_a > 32))((59f5 3(1))7 (Srfv 51) CK UT(G)((ng’ S?? Sg)? (Srfv 51, 52))

20



Proof: We define E;m and Kﬁm as follows:

E;T(G)((S?fas(l)vsgL (Srfvsla 82)) = {(T 61’62) |
52 gP‘Jb 8(2) A (Tv €1, 62) € E (G(_a — 82))((881‘3 3(1))7 (Srfv 51))}

KM(G)((S?faS?»Sg)’ (Srfvsla 32)) = {(7/77-7 Ky, K3) ‘
52 gpUb 8(2) A (7—/77—7 Ky, KZ) € leT(G(_7 ™ 82))((39f7 S?)v (Srfv 31)) }

We now prove E’wT C E,+ and K/w'r C Kt by coinduction. Concretely, we have to show:

1) Vey,ea, G, %, s, 89,89, 81,50, 7.
(61’62) € EwT<G)<(SEf5 3(1)’5(2)) ( Srf 81752))(T> =
V(hi, ha) € wh.H(s:t, 51, $2) (G (82t 31, $2)). Vhl , hF
((h1, hlfv 61)’ (h27 hg» 62)) € OwT( )(G)(( Srfs 81, Sg) (srfv 51, 82))(7—)
2) VKl,Kg,G,sEf,srf,s(f,58,51,52,7 T
(Klv K2) € K;T(G)((s?fa 8(1)7 58)» (srfa 51, 52))(7/1 T) =
v(vlv v2) € G(sif, 51, 52)(7—/)' (K4 [’Ul]ﬂ K [’Ug]) € E;UT(G)((S?ﬁ 8(1), 88)7 (828, 51, 82))(7—)
For (1):
o Suppose (e1,e2) € E;T(G)((s?f,s?,sg), (S, $1,82))(7) and (hy, he) € wi.H(syt, $1,52)(G(sit, 81, 82)).
« By definition of E; , we know sz Jpup, 59 and (e, e2) € By 1 (G(—, —, 52))((s%, 8Y), (sef, 51)) (7).
We must show ((hy, hY,e1), (he, hY,e2)) € OwT(KwT)(G)((s?f,s?,sg), (Srf, S1,82)) (7).
o So suppose defined(h; & ht') and defined(hy W AY).
From (hy, hs) € wl.H(syt, 51, 82)(G (81, 81, 82)) and the definition of 1, ®, we know h; = k] Wh! and hy = h) W hY
with (hf,h}) € wlT.H(srf,sl)(G( vf5 81, 82)) and (hY, hY)) € wa.H(swe)(82)(G (541, 81, 82)).
o Hence ((hy,h{ @AY, e1), (R, hy Why, e2)) € Ouy1(Kuyp)(G(—, =, 52)) (% 89), (815, 51)) (7).
« Consequently at least one of the following three properties holds:
A) h1 Uh1,€1 —“ and h2 Uh2,€2 v
B) a) hl Uh1,€1 * h/ Uh”Uh , V1 and hQUh2,62 ¥ h/ Uh//Uh2,U2
b) (s:,51) 3 [(ng’s(l))v (Srf751)]
c) (hy, hy) € witH(ser, $1)(G(51, 51, 52))
d) (?)1,’1)2) € G(:S‘;f,/é:l,SQ)(T) N
C) a) hl (] hlf, €1 —* h/1 ] hlll (] hlf, Kl [6’1} and hg (] hg, €2 o hIQ (] hg (] hg7K2[6/2]
b) (%7;9’:1/) | (Srfvsl)
©) (hy,hy) € wit.H(ser, $1)(G(51, 51, 52))
d) (e),¢eh) € S(G(51%, 3, 52), G511, 3, 52))(T)
e) V( rf,Sl) :Ipub (§E7s~1) vG' 2 G(_a _7S2>' (KviQ) € leT(G/)((S(r)fvs(l))v (gr\fﬂg\l))(?’ T)
o If (A) holds, then we are done.
o If (B) holds:
— By stable(ws) there is §3 Jpyup S2 such that
(h], hY) € wa.H(sr1)(52)(G(5e, 51, 82)) -
By monotonicity of ws.H, from G(sy, s1, s2) C G(Syt, $1, Stg), we have
(B}, hy) € wa.H(s7)(52) (G531, 51, 52)) -
From (Bc) and monotonicity we also know (hN’17 hy) € witH(s:, 51)(G (548, 51, 52)).-
Thus by the definition of T, ®, we get (b} WA, hl, W hY)) € wi.H(sy, 51, $2)(G (54, $1, 52))-
From (Bb) and the definition of 1, ®, we get (syf, 51,52) 3 [(s%, 7, 89), (811, 51, S2)].
Together with (Ba) (Bd) we are done.
« If (C) holds:

— By stable(ws) there is 3 Jpup S2 such that

(WY h3) € wa.H(5:1)(82)(G (518, 51, 82)) -
— By monotonicity of ws.H, from G(s¢, s1,82) C G(E},sﬁ,gtvg), we have

(hY, h3) € waH(s3)(52) (G (53, 51, 512)) -
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From (Cc) and monotonicity we also know (hf, hy) € wiT.H(s:t, 51)(G (548, 51, 52))-
Thus by the definition of 1, ®, we get (R} W AT, h W hY) € wt.H(sy, 51, 52) (G (s, $1, 52)).
From (Cb) and the definition of 1, ®, we get (syf, 51, 52) 3 [(s%, 59, 89), (s:f, 51, 52)]-
Now it remains to show:
V(5. 81, 82) Dpub (551, 81, 82)- VG 2 G- (K1, Ks) € Ko (G) (5%, 87, 89), (55, 1, 62)) (7, 7)
So suppose (5f,51,52) Jpub (5:1, 51, 52) and G' D G.
Note that (S, 51) Jpub (i, $1) and, by monotonicity, G'(—, —, §2) 2 G(—, —, s2).
From (Ce) we therefore get (K1, Ka) € Koy 1+(G'(—, —,52))((s%, 8?), (52, 51)) (7, 7).
By definition of K ; this implies

(K1, K2) € Ky (G (53, 81, 83), (511, 51, 52)) (7, 7)

For (2):
« Suppose (K1, K») € KﬁUT(G)((s?f,s?,sg), (8,81, 82)) (7', 7) and (v1,v2) € G(8it, 81, 82)(77).
« By definition of K/, we know s2 Jpup 55 and (K1, Ka) € Kyt (G(—, =, 52)) (8%, 59), (521, 51)) (77, 7).

o We must show (K [v1], Kalvs]) € E;T(G)((s?f,s(f,sg), (Sut, 51, 82)) (7).
« By definition of E/ , it suffices to show

(KI [Ul]a Ky [U2]) S EwlT(G(_v ) 82))((89f7 5(1))7 (Srf’ 31))(7—)
o Since (v1,v2) € G(syt,81,82)(7"), we are done.
||

Lemma 22. If w = wy ® wo With wl, wy € LWorld and stable(w ), then for all G € GK(w?) and for all s%, s,s € Wiet.S,
89,81 € w1.S, 89,50 € we.S with s 3 Toub 89

1) sz( ( » 51, _))(( Srfs 82)7 (Srfv 52)) - EwT(G)((sEf’ 8(1)7 5(2))7 (srf’ 51, 52))

2) sz(G( » 51, —))((ng, 8(2))’ (Srfv 52) - KwT(G)((SEﬂ 8(1)7 5(2))7 (Srf’ 51, 52))

Proof: Similar to Lemma [21] n

Lemma 23. If w = w; ® wy with wy,ws € LWorld and stable(w,), stable(ws), then:
1) stable(w)
2) If inhabited(w11) and inhabited(wa1), then inhabited(wt).
3) If consistent(w;?T) and consistent(wsy1), then consistent(wt).

Proof:
1) o Suppose G € GK((w1 ® wa)?1), (h1,ha) € (w1 ® wa).H(sre) (81, 52)(G(sxe, 81, 2)) and s’ T syp.
o Further suppose (h],h5) € Wier.H(sL)(G(sl¢, s)) and defined(h) W hy) and defined(hb W ho).
o We must show that there is (s}, s5) Jpub (51, S2) such that

(h17 h2) € (wl ® w2)'H(S;f)(s/1’ Sé)(G(Sif’ Sll? 3/2))
o Decomposing (w; ® wg).H gives us ki, hi, h? h3 such that:
— hy = hiWh? and hy = hd W h3
- (h%vh%) € wl‘H(srf)(Sl)( (8rf7517 82))
— defined(h} W hi) and defined(h W hi)
- (h3,h3) € wa.H(s:)(52)(G(5x5, 51, 52))
- defined(h} W h?) and defined(h, & h3)
e From this, Lemmas and the assumptions, we get s} —pub S1 and sh —pub S2 such that:
) (hi,hy) € wiH(sy)(s1)(G(syy, 81, 52))
b) (h1,h3) € wa.H(s}¢)(s5)(G (s}, 51, 85))
« Using monotonicity and then composing this gives us
(h1,ha) € (w1 ® w2).H(s) (51, 55) (G (8%, 81, 53)).
2) « Suppose G € GK(w?).
o From the assumptions, Lemma @ and definition of 1 and W,.t we get s, so such that
(0,0) € wi.H®)(s1)([w1](D, s1)) and
(0,0) € wa.H(D)(s2) ([w21](D, 52)).

22



o From Lemmas [13] we know [w11] C [wt](—, (=, s2)) and [wa1] C [wh](—, (s1,—))-
 Hence (0,0) € wt.H(0, (s1, s2))([wt] (D, (s1,52))) by monotonicity and definition of ®, 1.
3) « We suppose
a) s = (S, 1, 82) € wh.S
b) G € GK(wt)
¢) (1,e1,e3) € S(wt.L(s)(G(s)),G(s))
and must show (7, beta(eq), beta(ez)) € Eyur(G)(s, 9)).
o From (c) and the definitions of 7, ® and S we know:
(7’7 e, 82) S S(Wref.L(Srf
(T, e, 62) S S(wl.L(Srf§E

o This implies:
(1,e1,e2) € S(wrT.L(s:t, $1)(G(5)),G(s)) V
(1,e1,e2) € S(waT.L(syg, 82)(G(s)), G(s))

o If the former is true, the goal follows from consistent(w;71) with the help of Lemmas [19| and
« If the latter is true, the goal follows from consistent(wy1) with the help of Lemmas [20] and

Lemma 24. For G € GK(W), s, sp,s € W.S, 7,7’ € CType, K1, Ky € Cont, if
vs' (s, 8].VG' 2 G. (7,7, K1, K2) € Kw(G')(s0,5),
then:

1) (7', e1,e2) € Ew(G)(sy, s) implies (7, Ki[e1], Kz2[ea]) € Ew (G)(s0, $).
2) (7", 7', K1, K}) € Kw(G)(sy, s) implies (777, 1, K1 [K]], K2[K}]) € Kw (G)(s0, 5).

Proof: We define Ej;, and K, as follows:

Ey (G)(s0,5) = { (7, Ki[e1], Ka[e2]) | 37, 55 (77, €1, e2) € Ew (G)(sp, 8) A
Vs’ 3 [sp, s].VG' 2 G. (7', 7, K1,K2) € K (G')(s0,5") }

Ky (G)(s0,8) = { (7", 7, K1[K1], K2 [K3)) | 377, s0. (77,7, K1, K3) € Kw (G)(s0,8) A
Vs 3 [sg, s].VG' D G. (7,7, K1, K2) € Kw (G')(s0,5") }
It suffices to show EQ,V C Ew and KQ,V C Ky, which we do by coinduction. Concretely, we have to show:
l) VKIJ K27 €1,€2, G7 50,5, T.
(Kiled], Kalea]) € By (G)(s0,8)(1) =
V(hy,he) € W.H(s)(G(s)).VhY hE.
((h1, by, Kile]), (he, b5, Kalea])) € Ow (K ) (G)(s0, 5)(7)
2) VKla K27 Kiv Kéa G7 S0, S, T”a T.
(Kq[K1], K2[K3)) € Kiy (G) (s0,8)(77, 1) =
V(v1,v2) € G(s)(7"). (K1[K{][v1], K2[K3][v2]) € Efy (G)(s0,5)(7)
For (1):
o Suppose (K1[e1], Kales]) € Ey (G)(s0,s)(T) and (h1, o) € W.H(s)(G(s)).
« By definition of Ej;, we know (e1,e2) € Ew (G)(s(,s)(7’) and
Vs’ 3 [sy, 8].VG' D G. (K1, Ka) € Ky (G')(s0,5) (7', 7)

for some s;, and 7.
We must show ((hy, b, Ki[e1]), (he, by, Ksles])) € Ow (Kiy ) (G)(s0, 8)(T).
So suppose defined(h; W hY) and defined(hy W AY).
We know ((h1,hY, e1), (ha, kY, e2)) € Ow (Kw ) (G)(sh, s)(7).
Hence at least one of the following three properties holds:
A hi W hf,el —“ and hy W hg,eg v
B) a) hl (] hlf,el ¥ hll W hlf,vl and hg (] hg,eg ¥ h/2 W hg,vg
b) s 3 [sp, 9
¢) (hy, hy) € WH(s')(G(s"))
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d) (vi,v2) € G(s')(")
C) a) hy WhE e; —* b, WhF, K![¢}] and hy W AE, e5 <—* Ry W AE, Kb[e)]
b) s’ Os
©) (hh,hy) € WH(s')(G(s'))
d) (ef,e3) € S( ('), G(s)(7)
e) Vs" Jpup 8. VG' D G. (K1, K5) € Ky (G')(sy,s")(T,7)
o If (A) holds:
— Then hy WhY | Ki[e;] =% and hy & hY, Ka[ea] <—¥, so we are done.
o If (B) holds:
Then hq W hlls‘, Ky [61] ¥ hll H h]i:‘,Kl [’Uﬂ and ho W hg,Kg[eg] ¥ h/2 H hg, Kz[vz] from (Ba).
Since (K1, K2) € Kw(G)(s0, ") (7', 7) from (Bb), we get (K1[v1], K2[v2]) € Ew (G)(so, s")(7) from (Bd).
Using (Bc), this implies ((h}, hY, K1[v1]), (R, Y, Ka[vs])) € Ow (Kw ) (G) (50, 8") (7).
We show Ow (Kw )(G)(s0,5")(T) € Ow (K, )(G)(s0,8")(7):
It suffices to show Ky C K.
* By definition of the latter, this follows from Lemmas [I§] and [I7}
Consequently, ((h}, kY, Ki[v1]), (hh, hY, Ka[vs])) € Ow (K ) (G)(s0, 8") (7).
We are done by (Bb) and Lemma [T3]
o If (C) holds:
— Then hy WA ey —* by whY K [K}]le}] and ho W hY ey —* bl W hE, Ky[K))[eb] from (Ca).
Due to (Cb—d) it remains to show:
Vs" Jpub 8. VG’ D G. (K1[K1], K2[K}5)) € Ky (G')(s0,8") (T, T)
So suppose s” Jpup 8" and G’ 2 G.
By definition of K7, it suffices to show (K7, K3) € Kw (G')(sp, s”)(7,7') and
vs" 3 [sp,8"|VG" 2 G'. (K1, K2) € Ky (G")(s0, 8" ) (7', 7).

The former follows from (Ce).
For the latter, recall that

Vs’ 3 [sp, 8].VG' D G. (K1, Ka) € Ky (G')(s0,8)(7/, 7).
- Since s” Jpup 8’ D s and G” 2 G’ O G, we are done.
For (2):
o Suppose (K;[K}], Ko[K5)) € Ky (G)(s0,8) (7", 7) and (v1,v2) € G(s)(1").
« By definition of K{;, we know (K1, K}) € Ky (G)(sy,s)(7",7') and
Vs’ 3 [sp, 8].VG' 2 G. (K1, Ka) € Ky (G')(s0,8) (7', 7)

for some s;, and 7.
o We must show (K7 [K]][v1], K2[K5][ve]) € Ely (G)(s0, )(T).
« By definition of Ef;, it suffices to show (K{[v1], K}[v2]) € Ew (G)(sp, s)(7') and

Vs 3 sy, s].VG' 2 G. (K1, Ks) € Kw(G')(s0,8) (7', 7).
« The latter is given and the former follows from (K71, K3) € Kw (G)(s(, s)(7”,7') and (v1,v2) € G(s)(7").

Lemma 25. If inhabited(wa1), consistent(wsy?), stable(ws), and defined(w; ® ws), then:
AT ep ~y,e2:0 = AjT'Fer ~pgu, €2:0
Proof:

o Using the assumptions and Lemma we get inhabited((w; ® we)T) and consistent((wy ® wa)T) as well as
stable(wy ® wa).

o Now suppose G € GK((w; ® we)1) and 6 € TyEnv(A), (71,72) € Env(oT, G(s:t, s, 8")).

o We must show (v1e1,72€2) € B, @uw,)1(G)((s:1, 8, 8"), (s:£, 8, 8")) (60).

o From A;T'F e ~y,, €2 : 0 and Lemma we know:

(71617 7262) S E’LU1T(G(_7 > Sl))((srfv S)v (Srfv 5))(50)
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o We are done by Lemma 21}

Lemma 26. If Vw. (Vi€ {1...n}. AiTiF e~y €):0;) = A;TF e~y e o, then
(Vie{l...n}.Ai;FiFeime;:Ui) = A;TFe~é:0.

Proof:

o Suppose Vw. (Vi e{l...n}. ATk e~y el ai) = A;TFen~y e :oand
Vi € {].Tl} AZ,FZF€1 Ne;:a’
o Given N € Names, since A is countably infinite, we can split it into N;’s such that N'= N7 W ... W N,.
Thus by the premise we have w;’s such that for all i, w;.N C N; and A;;T; = e; ~y, e o
« Since w;.N’s are disjoint, by applying Lemma [25| repeatedly, we have A;;T; F e; ~u, 0. 0w, € : o; for all i.
o By the assumption we thus have A;T'F e ~(y,0...guw, )t € 1 0.
Using Lemma [23| we get stable(w; ® ... w,) and thus A;T'F e~y . guw, € 10
« By definition of ®, we have (w1 ® ... w,).NC N W...6N, =N, and thus A;TFe~eé : o

Lemma 27. If VW. (Vi € {1...n}. Aj;Tibe~w e :0;) = A;THe~w e o, then:
(Vie{l...n}. Ai;FiFeiNe;:Ji) = A;TFe~eé:0o

Proof: Immediate consequence of Lemma 26]

Lemma 28. If VG, s. V6 € TyEnv(A). V(y1,72) € Env(éT, G(s)). (11 K1,72K2) € Kw(G)(s, s)(d0’,d0) then
A;F"Gl ~W 6220'/ — A;Fl—Kl[el] ~W KQ[@Q]:O—

Proof:

o Suppose G € GK(W), § € TyEnv(A) and (71, 72) € Env(éT, G(s)).
o We must show ((71K1)[v1e1], (12K2)[2€2]) € Ew (G) (s, 5)(d0).

o From the premise we get (y1e1,726e2) € Ew (G)(s, s)(do’ )

« By Lemma [24] it suffices to show

(11K1,72K2) € Kw (G') (s, 5°) (00", 00)

for s° Jpup s and G’ D G.
By Lemma [I§]it then suffices to show

('YIKla 72K2) S KW(G/)(SOa SO)(éala 60)a

which follows from Lemma [I2] and the assumption.

Lemma 29 (External call). For any G € GK(W) and R € W.S — VRelF, if
consistent(W) A Vs. G(s) = W.L(s)(G(s)) UR(s) ,
then we have
V(7 e1,e2) € Ew(G)(s0,5). V(h1,he) € W.H(s)(G(s)).
VAY hY. hy w bl defined A ho W RE defined =—
(hl W hf,el —“ A hQ W hg,eg ‘—)w)
V (3R, kY, v1,v9. hy WAY Jep % By WhY vg A ha WhAE eq —* by WhE vy A
s’ 1 [so, s]. (b, hy) € WH(s")(G(s')) A (v1,v2) € G(s')(7))
vV (Hh’l,h’Q,T’,Kth,e’l,e’Q.
hiWhY eg —=* by WAl Kile]] Aha WhE, ea —* hh W hY | Kaleb] A
s’ 3 s. (b, hh) € WH(s)(G(s) A (7', €], e5) € S(R(s),G(s")) A
Vs" Jdpup 8'. VG’ 2 G. (K1, K32) € Kw(G')(s0,8") (7', 7))

Proof:
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« We prove the following proposition by induction on n.
V(7,e1,e2) € Ew(G)(s0, ). V(h1,ha) € W.H(s)(G(s)).
VAY hE. hy W hY defined A hy W hY defined =

(hl V] hll:, e1 =" ANhy W hg, €2 %n)
V (Hh/l, hIQ,’Ul, Va. h1 (] h?,el ¥ hll ) hjli, v1 A hg (] hg, €9 ¥ h,Q (] hg, vy A\
s 3 [s0,8]- (. hy) € WH(')(G(s)) A (v1,v2) € G(s')(7)) @
V (Hh/l, hIQ, 7'/, K1, KQ, 6/1, 6/2.
hl (] h?, €1 —* hll ] hlf, K1 [6’1] A h,g (] hg, €9 —* h/2 (] hg, KQ[BIQ] AN
s’ T s. (], hy) € WH(s)(G(s')) A (7', €}, e5) € S(R(s),G(s")) A
Vs ;pub s’ VG’ D G. (Kh Kg) € Kw(G/)(So, 8”)(’7”,7’))
When n = 0, the first case holds vacuously.
o When n > 0, we assume that the goal (ZI) holds for n — 1. Then we need to show that the goal (2 holds for n.
« By definition of Ey (G)(so, ), we have three cases.
In the first two cases, the goal (Z1) is trivially satisfied.
« In the third case, we have
Hh/h /27T/7K1,K2,€/176/2.
hi W h]i:‘, e; —* hll %) hll:‘, Kl[e’l] Aho W hg, ey —* h/2 W hg, Kz[e/ﬂ N
s’ J's. (b}, hh) € WH(s)(G(s")) A (7, €}, €e5) € S(G(s'),G(s')) A
Vs” Jdpup 8'. VG’ 2 G. (K1, K3) € Kw (G')(s0,8") (7', 7)
e As G(s') = W.L(s")(G(s")) UR(s"), by definition of S, we have
(7', €1, €5) € S(G(s), G(s)) = SW.L(s)(G(s)), G(s")) US(R(s"), G(s")) -
If (7/,¢),e5) € S(R(s'),G(s")), then the goal is satisfied.
If (7,€},¢es) € S(W.L(s')(G(s")),G(s")), then by consistent(W), we have that h} W hf' Kj[e]] <! b} W
hY, Ki[beta(e})] and hhy W hY, Koeh] <1 bl W hE, Ko[beta(eh)] and (77, beta(e)), beta(eh)) € Ew (G)(s',s").
By Lemma 24] we have (7, K1 [beta(e})], Ka[beta(eh)]) € Ew (G)(s0, 8').
As (R, hb) € W.H(s")(G(s")), by induction hypothesis we have that b} WA K [beta(e})] and bl W hE | Ko[beta(eh)]
satisfy the goal for n — 1 wrt. (sg,s’).
o As hiwWhY e; =T i whY Ki[beta(e))] AhaWhY, ea T+ hhwWhE | Ko[beta(eh)] and s O s, we have that hy WA e;
and ho W hY, ey satisfy the goal for n w.r.t. (sg, s), so we are done.
« The original goal is obtained from the sub-goal (2I) by pushing the quantification over n inside the first case and then
observing that Vn. h,e —™ is equivalent to h,e —“.

Corollary 30. If
o consistent(W)
o Vs. G(s) = W.L(s)(G(s))
e (1,e1,e2) € Ew(G)(s0, )
o (hi,h2) € WH(s)(G(s)) and hy & hY' | hy W hY defined
then one of the following holds:
1) h1 W hf,el =Y Aho W hg762 v
2) 3hy, hh,v1,v9, 8.
h1 U:Jhlf,el ¥ hll &Jhlf,vl A ha L‘th,ez ¥ hIQ H’Jhg,vg A\
s" Jpub [0, 8] A (B, hy) € WH(s')(G(s")) A (T,v1,v2) € G(s)
Proof: Follows from Lemma 29 for R = \s.0. ]
2) Compatibility.

Lemma 31 (Compatibility: Var).
AFT zi0€el
ATFx~z:0

Proof:
o Let wig = Wsingle(AR.0, AR{(0,0)}) (so wig.N C N for any N).
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o We are done if we can show A;T'F 2 ~,,, 2 : 0.

o It is obvious that stable(wiq) (the dependency is vacuous) and that consistent(wiq1) (neither Wier nor wiq relates any
functions).

o inhabited(wiq?) is witnessed by state ((, *).

o Now suppose G € GK(wiq?) and 6 € TyEnv(A), (y1,72) € Env(dT, G(s)).

« We must show (71(2),7(2)) € By 1(G) (s, ) (50).

o From (v1,72) € Env(0T, G(s)) we know (v1(z),v2(x)) € G(s)(d0).

o We are done by Lemma [I6]

|
Lemma 32.
1) If (Ta U17U2) € G(S)’ then (TlvT X 7_/7 <U13 .>7 <027 >) € KW(G)(Sv 5)
2) If (7', €], e5) € Ew (G)(s0, s), then (1,7 x 7/, (e, €]), (o, e5)) € Ky (G)(s0, 9)-
Proof:
1) « Suppose (vi,v4) € G(s)(7').
o We need to show ((v1,v]), (v, v5)) € Ew (G)(s,s)(T x 7').
e By Lemma it suffices to show ({v1,v]), (va,v5)) € G(s)(T x 7).
o Hence it suffices to show (vi,v2) € G(s)(7) and (v}, v}) € G(s)(7’), which we both already have.
2) o Suppose (v1,v2) € G(s)(7).
o We need to show ((v1,€}), (va,eh)) € Ew (G)(s0,s)(T x 7').
« By Lemma [24] it suffices to show
(<U1, .>7 <U27 .>) € KW(G/)(307 S/)(Tl7 T X 7—/)
for s J [sg,s] and G' 2 G.
o By Lemma 18] it suffices to show ((v1,e), (v2, 8)) € Ky (G') (s, s')(7/, 7 x /).
o By part (1) it then suffices to show (v1,v2) € G'(s)(7), which follows from (v1,v2) € G(s)(T) by Lemma
|
Lemma 33 (Compatibility: Pair).
ATher~ey:o AT FHep~ehy:o
AT F (eq,€)) ~ (e2,eh) 10 x o’
Proof:
o By Lemmas [27| and 28] it suffices to show VG, s. V6 € TyEnv(A). V(v1,72) € Env (T, G(s)),
((o,71€1), (8, 72€3)) € Kw (G)(s,5)(00, 60 x d0”)
assuming A;T' F e} ~y el 1 o'
« By Lemma [32] it suffices to show (y1€},72¢5) € Ew (G)(s,s)(d0”), which follows from the assumption.
|
Lemma 34 (Compatibility: Fst (Snd analogously)).
ATFe ~ey:oxo
A;TFeil~egl:o
Proof:
o By Lemmas 27) and 28] it suffices to show VG, s. V6 € TyEnv(A). ¥(y1,72) € Env(éT, G(s)),
(o.1,0.1) € Ky (G)(s, 8)(do x §0’,d0) .
« Suppose (v9,v3) € G(s)(d0 x do”).
o We need to show (v5.1,v5.1) € Eyw (G)(s, s)(00).
o Suppose (h1,ha) € W.H(s)(G(s)) as well as defined(h; W hl') and defined(hs & hY).
o We know v§ = (v1,v]) and vg = (va,vh) with (v, v2) € G(s)(do).
e Hence h; Uhl,vl 11— h W hl ,v1 and hg &Jhg,vg.l — ho W hg“,@.
« Since s J [s, s], we are done.
|
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Lemma 35 (Compatibility: Inl (Inr analogously)).
A;TEep ~ 62 :
A;TFinjley ~injles:o+0'

Proof:
o By Lemmas 27| and 28] it suffices to show VG, s. V6 € TyEnv(A). V(v1,72) € Env (T, G(s)),
(inj* o, inj' ®) € Ky (G)(s, 5)(d0, 00 + do’) .
Suppose (v1,v2) € G(s)(d0).
We need to show (inj' v1,inj' vy) € Ew (G)(s, s)(60 + d0”).
By Lemma it suffices to show (inj' v1,inj' v2) € G(s)(d0 + d0).
o This follows from (v1,v2) € G(s)(d0).

|
Lemma 36 (Compatibility: Case).
A;THep ~eg:o +0” AT xio' el ~eyio AFma”l—elweQ:U
A;T Fcasee; ofinj' & = ¢) |inj2x = ¢ ~ caseeyof inj' & = ¢ |inj z = ¢}
Proof:
o By Lemmas [27) and 28] it suffices to show VG, s. V6 € TyEnv(A). ¥(y1,72) € Env(éT, G(s)),
(case o of inj' = i€} |inj>x = y1e, case ® of inj' & = yaeh |inj? z = Yael) € Ky (G)(s,5) (50" + 50", d0) .

assuming A; T, x:0’ e} ~w e : 0 and A;T, x:0” b el ~w el 1 o.

« Thus it suffices to show that V(v1,v2) € G(s)(do” + d0”),
(casev; of inj* 2 = vi¢€] |inj* x = y1e], case vy of inj' & = yaeh | inj? z = Y2ey) € Ew (G)(s,5)(d0)

e By deﬁnition of G(s )(50’ + d0"), we have v/, v} such that either

1) vy = |nJ vl Avg = |nJ v2 A (vi,vh) € G(s)(d0"); or

2) vy = inj> v} Avy = injvh A (v),v) € G(s)(60”).
« We show the former case (the latter case can be done analogousely).
o Let 4] := v1,x—v] and 5 = o, z—0).
o Now suppose (h1, ha) € W.H(s)(G(s)) and ht' | hY € Heap with hy & hY, ho W AE defined.
e We have

hi W hY casev; of inj' = i€ |inj?z = yie] < hy W AY ~le)
and
ho W Y casevy of injt & = o€l |inj* & = yoely < hy WAL ~he),
o Thus by Lemma [T3] it suffices to show
(50/7 (h17 h]i:‘v’%e/l) (h27 h2 ) 7262» € OW(EW)(G)(S7 8) :
« This follows from the assumption and (v1,7%) € Env(§(T, z : o), G(s)).
|

Lemma 37 (Compatibility: Fix).
AT, fio! v o,2:0'Feg~exy: 0

AT HAix f(x). ey ~fixf(z).ea: 0" =0

Proof:
« For any N, from the premise we have w such that w.N C A and A;T, f:0! — 0,2:0" - €1 ~y €3 : 0.
o Let w' = Wgingle(AR. {(60" — do, nifix f(x). e1, yofix f(x). e2) |
§ € TyEnv(A), (71,72) € Env(dT, R)}, AR. {(0, @)})
o Since (w @ w').N = w.N C N, it suffices to show A; T fix f(x). €1 ~pguw fix f(z).e2: 0 — 0.
« To do so, we first prove inhabited((w ® w’)?T) and consz’stent((w ® w’)T):
— inhabited(w'?) is witnessed by state (0, %), so inhabited((w ® w')T) holds by Lemma 23]
— The part of consistent((w ® w’)T) concerning universal types follows from consistent(w?) by Lemma [23] because
w’.L doesn’t relate anything at universal types.
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Regarding the part concerning arrow types, we suppose
1) G e GK((w®w")T) B
2) (vi,v2) € (W w)T.L(srt,5,8)(G(sr1,5,8)) (0" = T)
3) (vi,vh) € G(syt,8,8)(0")
and must show:
(beta(vy v)), beta(va v3)) € Equgw )t (G)((s:t,5,5"), (511, 5,5"))(T)

— From (2) and the definition of 1 and ® we know:
(v1,v2) € wh.L(s:t, 8)(G(5et, 8, 8")) (0" — ) V
(v1,v2) € W.L(8:£)(8")(G(8xt, 8,8")) (0! — T)
— If the former is true, the claim follows from consistent(w?) with the help of Lemmas |19 and
— So suppose the latter.
- Then ¢/ — & = do’ — do and vy = yifix f(x).e1 and vy = Yofix f(x). ez for § € TyEnv(A) and (y1,72) €
Env(dT, G(syt, 8,5")).
— Let v = 71, fomfix f(x). er, z—v] and 74 = 79, fioefix f(x). eq, 2—0)
— It remains to show (y{e1,v5e2) € Eqpguw )+ (G)((set, 5,5"), (5:, 5, 5")) (o).
— By Lemmas (19| and [21] it suffices to show (vie1,v4e2) € Euwt(G(—, —, ")) ((8e1, 8), (81, 8)) (00).
— This follows from the premise if we can show (v1,v4) € Env((oT, f:60" — do,x:60"),G(s¢,8,5")).
— This reduces to showing (v}, v}) € G(sst, s, s')(d0”) and
(7afix f(z). e1, vofix f(x). e2) € G(syt, 8,8 ) (60" — d0).

— The former is given as (3).
— For the latter, note that by definition of GK it suffices to show

(1fix £ (2). €1,72ix f(2). €2) € (w0 @ w1 L(su5,5,5') (G501, 5, 8)) (00" — 60).
By definition of 1 and ® it then suffices to show

(mfix f(z). eq, yafix f(x). e2) € w'.L(s)(s") (G (8ut, 8, 8)) (60" — d0).
Since § € TyEnv(A) and (v1,72) € Env(6T, G(syt, s, 8')), this holds by construction.
o Now suppose G € GK((w ® w')?T) and 0 € TyEnv(A), (v1,72) € Env (T, G(syt, s, 8")).
o We must show (v1fix f(z). e1,72fix f (). e2) € E(wguw )1 (G)((sif, 8,5), (811, 5,8")) (60" — do).
« By Lemma [16] it suffices to show (y1fix f(z). e1,V2fix f(2). €2) € G(syf, 5,8') (60" — b0).
o By definition of GK it suffices to show:
(1fix £ (2). e1,72ix f(2). €2) € (w @ 0 T-L(syt, 5,8') (Glsut, 5,5)) (60" — 50

« By definition of 1 and ® it suffices to show (v1fix f(x). e1, yofix f(x). e2) € W' .L(sct)(8") (G (et 8, 8")) (00" — do).
« Since § € TyEnv(A), (11,72) € Env(dT', G(syt, s, ")), this holds by construction of w’'.

Lemma 38.

D) If (7" — 7,v1,v2) € G(s), then (77, 7,01 0,05 @) € Ky (G)(s, ).
2) If (77, ¢}, ¢5) € Ew(G)(so0,5), then (77 — 7, 7,0 ¢),0 ¢,) € Ky (G)(s0, 5).

Proof:
1) o Suppose (vi,v5) € G(s)(7').
o We need to show (vy v}, vs v5) € Ew (G)(s, s)(7).
o By definition of Eyy it suffices to show the following:

a) (v1,v2) € G(s)(7! — 1)
b) (u],0}) € Gls)(7)
¢) Vs’ Jpup s.VG' D G. (e,0) € Ky (G')(s,5)(,7)
e (a) and (b) are already given.
e (c) follows by Lemmas [T7] and [T8]
2) o Suppose (v1,v2) € G(s)(7" — 7).
o We need to show (vy €),v2 €}) € Ew (G)(s0, )(T).
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By Lemma [24] it suffices to show

(v1 @, v @) € Ky (G') (30,8 ) (7, 7)

for s J [sg,s] and G' 2 G.

By Lemma [18]it suffices to show (v1 ®,v3 ®) € Ky (G')(s',s')(7/, 7).
By part (1) it then suffices to show (vy,v2) € G'(s')(7/_ = 7).

« This follows from (v1,v2) € G(s)(7/ — 7) by Lemma

Lemma 39 (Compatibility: App).
A;The ~ey:o —o A;THel ~ey:o

A;Thej e ~exey:o

Proof:
« By Lemmas [27) and 28] it suffices to show VG, s. V6 € TyEnv(A). V(v1,72) € Env(oT, G(s)),
(e y1€], 0 Yaeh) € Ky (G) (s, 8)(60" — da,00)
assuming A;T' F e} ~y eh 1 o'
o By Lemma [38] it suffices to show (y1€},7v2€5) € Eyw (G)(s,s)(dc”), which follows from the assumption.

Lemma 40 (Compatibility: Roll).
AT ey ~eq:ofpa.o/al

A;T Frolleg ~rolleg : pa. o

Proof-
« By Lemmas [27) and [28] it suffices to show VG, s. V6 € TyEnv(A). V(v1,72) € Env(dL, G(s)),
(roll e, roll @) € Ky (G)(s, s)(do|ua. do/a], pa. do) .

Suppose (v1,v2) € G(s)(do[pa. do/al).

We need to show (roll vy, roll v3) € Ew (G)(s, s)(ua. do).

By Lemma it suffices to show (roll vy, roll v3) € G(s)(ua. d0).
This follows from (vq,v2) € G(s)(do[pa. do/al).

Lemma 41 (Compatibility: Unroll).
A;TFep ~es: pa.o

A;T Funroll eg ~ unroll ey : ofpa. o/al

Proof:
« By Lemmas [27) and 28] it suffices to show VG, s. V6 € TyEnv(A). V(v1,72) € Env(oT, G(s)),
(unroll e, unroll ) € Ky (G)(s, s)(ua. o, doua. do/al) .

Suppose (v],v9) € G(s)(pa. do).

We need to show (unroll v$, unroll v9) € Ew (G)(s, s)(do|ua. do /).

Suppose (hi,ha) € W.H(s)(G(s)) as well as defined(h; W hY) and defined(hy W AY).
o We know v$ = roll v; and v§ = roll v with (v1,v2) € G(s)(do[uc. do/al).

o Hence hy WhAY unroll v¢ < hy WhAY vy and ho W AS unroll v§ < ho W AL .

Since s 1 [s, s], we are done.

Lemma 42 (Compatibility: Ref).
AT'Fey~ey:o

A;TFrefeg ~ref ey :refo

Proof:
« By Lemmas [26] and [28] it suffices to show VG, s,¢,s. V6 € TyEnv(A). V(v1,72) € Env(0T, G(s)),
(ref o, ref o) € K4 (G)((s1, 5), (2, §)) (00, ref §o) .
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Suppose (v1,v2) € G(s¢, 5)(60).

o We need to show (ref vy, ref va) € Byt (G)((Set, S), (Set, ) (ref 60).

Suppose (h1, h2) € wi.H(se, 8)(G(srt, s)) as well as defined(hy W hY) and defined(hy @ hY).
o We know hl W hlf, ref v — hl (] [fli—ﬂjl] (] hlf,fl for 61 ¢ dom(h1 (] hll:\)

Similarly, ho W hg, ref vg — ho W [62'—>U2] (G} hg,fg for /o ¢ dOm(hg G} hg)

» By definition of E,, it suffices to find (s.1,5) 3 [(s:, $), (ut, §)] such that:

1) (h1 W [l1—=v1], he W [la—v2]) € w.H(s:t, §)(G(5:1, 9))

2) (51,62) S G(E}?,E’)(ref 60’)

e From (hy,ha) € wt.H(sy, $)(G(se,8)) we know h; = h} W h for some hi,hY, kb, hY with (R}, h}) €
Wies - H(se£) (G (81£, 8)) and (RY, hY) € w.H(s:£)(8)(G(8st, 9))-

o Since ¢; ¢ dom(h}) and ¢o ¢ dom(h}), we therefore know that s,; W {(d0,¢1,¢2)} is well-defined and that s,; &
{((50’, El,fz)} € Whet.S.

o We choose 55 = sy W {(d0,1,02)}.

o Note that s,¢ pub St and that (hll (] [fp—)’ul], h/2 (] [égl—ﬂ)z]) € Wref.H(SA;f)(G(Srf, S))

By dependent monotonicity we also get § Jpup, s such that (A, h%) € w.H(s:¢)(5)(G (8¢t 5)).

« Together this yields (hy W [¢1—=v1], ha W [la—=v3]) € w.H(5:¢, $)(G (s, s)) and then (1) by monotonicity.

« To show (2) it suffices, by definition of GK, to show ({1, ¢3) € wt.L(S:¢, $)(G(8:t, 8))(ref d0).

o By definition of 1 and W, this in turn reduces to showing (dc, £1,£3) € s;¢, which holds by construction.

Lemma 43 (Compatibility: Deref).
AT Hey ~eq:refo

A;THley~les:o

Proof:
« By Lemmas [26] and [28] it suffices to show VG, s,¢, s. V6 € TyEnv(A). V(v1,72) € Env(0T, G(s)),
(le,10) € Kyt (G)((Sef, 8), (Sif, 8))(ref 6o, 00) .

« Suppose (v1,v2) € G(sy4, s)(ref 60).

o We need to show (lv1,!v2) € Eyt(G)((se1, 8), (8et, 5))(00).

o Suppose (h1,ha) € wi.H(syt, 5)(G (81, 5)) as well as defined(hy W hY) and defined(he W hd).

o From (vy,v2) € G(841, s)(ref dc) we know by definition of GK and Wy that (60, v1,v2) € Syt

e From (hy, ha) € wl.H(syt, 8)(G (8, ) we know (R}, hy) € Wier H(s:£) (G541, 8)) for some hj C hy and hh C ho.
o From the definition of Wyer we thus get (h](v1), hh(v2)) € G(sit, $)(00).

o Hence we know hy & h' lv; < hy W hY R (v1) and ho W AL vy < ho W A B (vs).

By definition of E,, it suffices to find (5:+,5) Jpub (Sit, s) such that:
D) (h1,h2) € wh.H(syt, 8) (G511, 5))

2) (hh(vn), Iy (v2)) € Glsiz,3)(30)

o We choose (s,¢,5) = (s, s) and are done.

Lemma 44.
1) If (ref 7,v1,v2) € G(841, S),
then (7, unit, v := e, vy := @) € K4 (G)((811, 8), (S, 9))-
2) If (1, €}, €h) € Eur(G)((Sef, 8), (Sef, 5)),
then (ref 7, unit, @ := ¢/, @ := ¢€5) € Kyt (G)((8t, S), (et 5))-

Proof:
1) o Suppose (v],v5) € G(yt,8)(T).
o We need to show (vy := v}, va := v}) € Eyr(G)((Set, ), (e, ) (unit).
o Suppose (h1,h2) € w.H(sy, 5)(G (51, 5)) as well as defined(hy W hY') and defined(he @ hY).
From (v1,v2) € G(sy¢,5)(ref 7) we know by definition of GK and Wit that (7,v1,v2) € Sif.
e From (hy,h2) € wi.H(sw,s)(G(se,8)) we know h; = h} W hY for some hi,hY, hi, hY with (R}, hh) €
Wiet H(sp£)(G(84£, 8)) and (hY, hY) € w.H(s:t)(3)(G (84t 9))-
o From the definition of Wi we thus get v; € dom(h)) and ve € dom(h5).
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o Hence hy WhAY vy := v} < hy[vp—vi] W hY, () and ho W A vy := v < haofva—vh] W AE ().
o By definition of E, it suffices to find (sy¢,5) Jpub (Sif, s) such that:

D) (b [or—04], hafos—uh)) € whH(s, 3)(G5r, )

b) (0, () € G(s:1,5)(unit)
o We choose (5.¢,5) = (sif, §).
o Note that (b) is immediate.
« Showing (a) reduces to showing (v{,v5) € G(s¢,5)(7), which is given.

2) o Suppose (v1,v2) € G(8¢t, s)(ref 7).
o We need to show (v1 := €}, v2 := €) € Byt (G)((Sef, 8), (S, 8)) (unit).
o By Lemma [24] it suffices to show
(v1 := 0,03 := @) € Kyt (G") (548, 8), (Srt, $)) (7, unit)

for (syt,8) Jpub (Sif,8) and G’ 2 G.
o By Lemma [18] it suffices to show (v := e, v; := @) € Koy (G') (551, 5), (5:¢, 5)) (7, unit).
o By part (1) it then suffices to show (Ul,’l}g) € G'(5r¢,5)(ref 7).
o This follows from (v1,v2) € G(sys, s)(ref 7) by Lemma

Lemma 45 (Compatibility: Assign).
A;Tke ~ey:refo ATHey~ey:o

A;TFep =€) ~eg:=¢h:unit

Proof:
o By Lemmas [26] and 28] it suffices to show VG, s,1, s. V6 € TyEnv(A). V(71,72) € Env(dT, G(s)),
(ref 6o, unit, ® := y1e], @ := yaeh) € Kyt (G) (548, 9), (Se£, 8))
assuming A;T' €] ~yp €5 : 0.
« By Lemma [44] it suffices to show (y1€],7v2e5) € Euwt(G)((sit, 8), (i, 8)) (o), which follows from the assumption.
|

Lemma 46.

1) If (ref 7,01, v9) € G(81, 8),

then (ref 7, bool,v; == e, vy == @) € Kyt (G)((51, ), (S, 5))-
2) If (ref 7, €}, eh) € Eur(G)((Set, ), (Sif, 8)),

then (ref 7, bool, @ == ¢}, e == ¢/) € K4 (G)((s1, 9), (Sif, 9))-

Proof:
1) o Suppose (v],v5) € G(syt,s)(ref 7).
o We need to show (v; == v}, v == v5) € Ey1(G)((rt, 5), (St 5))(bool).
o Suppose (h1,h2) € w.H(syt, 5)(G (s, 5)) as well as defined(hy W hY') and defined(he @ hY).
o From (v{,v5) € G(s:t, s)(ref 7) we know by definition of GK and W, that (ref 7,v7,v5) € sy.
e From (v1,v9) € G(syt, s)(ref 7) we know by definition of GK and Wit that (ref 7,v1,v2) € Syt.
« By definition of W,.S this yields v = v] <= wvo = v5.
o Hence either hywhl' vy == v} — hiwhY tt and howhl vy == v} — howhy ttor hyWhY vy == v] — hywhl ff
and ho W hg,’l}z == U/2 — ho W hg,ff
« By definition of E,, it suffices to find (Sy¢,5) Jpub (S, $) such that:
a) (b1, h2) € wi.H(s:e, ) (G511, 5))
b) (tt,tt) € G(5:,5)(bool)
c) (ff,ff) € G(s,5)(bool)
o We choose (sf,5) = (s:,5), and are done.
2) o Suppose (v1,v2) € G(8¢t, s)(ref 7).
o We need to show (v1 == €], v2 == €5) € Eyt(G)((S:f, 5), (Sef, 5)) (bool).
o By Lemma [24] it suffices to show

(v == o, 05 == ) € Ko (G') (511, 5), (511, 3)) (ref 7, bool)
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for (s:t,5) Jpub (i1, 8) and G’ 2 G.

By Lemma [18]it suffices to show (v; == e, vy == @) € Ky (G')((51t, 3), (5:1, 5)) (ref 7, bool).
By part (1) it then suffices to show (v1,v2) € G'(55, 5)(ref 7).

This follows from (v1,v2) € G(sqyg, s)(ref 7) by Lemma

Lemma 47 (Compatibility: Refeq).

Proof:

A;T'Fep ~eg:refo AT el ~ely:refo

A;TFep ==¢) ~eg == ¢, : bool

« By Lemmas [26] and 28] it suffices to show VG, s,1, s. V6 € TyEnv(A). V(v1,72) € Env(sT, G(s)),

(ref 6o, bool, @ == 1€}, 8 == v2¢h) € Kyt (G)((Set, 8), (S1£, 8))

assuming A;T' €] ~yp € : ref o.
« By Lemma@ it suffices to show (y1€}, v2€5) € Eyt (G)((rt, 8), (Sit, 5))(ref do), which follows from the assumption.

Lemma 48 (Compatibility: Gen).

Proof:

Aa;T'Hep~ey:o
A;THEA ep ~Aes:Va.o

o For any N, from the premise we have w such that w.N C N and A, ;T Fe1 ~y €3 : 0.

o Let w' = wgingle(AR. { (Vav. 00, A.y1e1, A y2e2) | § € TyEnv(A), (71,72) € Env(dT, R)}, AR. {(0,0) }).
e Since (w ® w').N = w.N C N, it suffices to show A;T F A.e; ~pgw A.es: Va.o.

« To do so, we first prove inhabited((w ® w’)?T) and consistent((w @ w')?1):

inhabited(w'?) is witnessed by state (0, %), so inhabited((w ® w')?T) holds by Lemma 23]
The part of consistent((w ® w’)?T) concerning arrow types follows from consistent(w?) by Lemma because
w’.L doesn’t relate anything at arrow types.
Regarding the part concerning universal types, we suppose
1) G e GK((w® w")T)
2) (v1,v2) € (w @ w)T.L(sst, 8,8 ) (G (811, 8, 8")) (V. 7)
and must show:
V1 € CType. (beta(vi]]), beta(va[])) € Ewgw)1(G)((sit,5,5'), (s:¢, 5, 8"))(@[r/a])
From (2) and the definition of 1 and ® we know:
(v1,v2) € wT.L(set, $)(G(8xt, 8, 8)) (V. 7) V
(v1,v2) € w'.L(s¢)(8")(G (518, 8,8)) (V. o)
If the former is true, the claims follow from consistent(w?) with the help of Lemmas |19| and
So suppose the latter.
Then V.o = Va. do and vy = A.y1eq and vy = A.yqes for 6 € TyEnv(A) and (y1,72) € Env(oT, G(sy¢, 8, 8")).
Let ¢’ := 6, av—.
It remains to show (y1e1,72€2) € E(ygw)t(G)((5i1,5,5"), (s:t, 5, 8))(0'0) since o[1/a] = dolr/a] = d'o.
By Lemmas (19| and [21] it suffices to show (y1e1,7v2e2) € Euwt(G(—, —, ) (81, 8), (81, 8)) (8’ 0).
This follows from the premise since §' € TyEnv(A,«) and (v1,7%2) € Env(oT,G(s,s8,8)) =
Env(d'T, G(svt, 8, 8)).

o Now suppose G € GK((w ® w')1) and ¢ € TyEnv(A), (y1,72) € Env(dT, G(sy¢, s, 8')).
o We must show (A.7yie1, A.y2e2) € Euguw )t (G)((8i1,5,8"), (5:8, 5, 8")) (V. 00).

« By Lemma [16] it suffices to show (A.7yie1, A.v2e2) € G(sy, 8, 8')(Vau. 60).

« By definition of GK it suffices to show:

(A.y1e1, A yae2) € (w @ W )T.L(sys, 8,8 ) (G (548, 8, 8")) (V. do)

« By definition of 1 and ® it suffices to show (A.7ye1, A.y2e2) € w'.L(s") (G511, 8, 8")) (Va. o).
« Since § € TyEnv(A), (v1,72) € Env(oT, G(syt, s, s)), this holds by construction of w’.
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Lemma 49 (Compatibility: Inst).
AT'Fe ~e:Va.o AFo
AT Feg]] ~esf] s olo’/a]

Proof:
o By Lemmas 27) and 28] it suffices to show VG, s. V& € TyEnv(A). ¥(y1,72) € Env (6T, G(s)),
(o[],0]]) € Kw (G)(s,5)(Va. da, da[dc’ /a])

« Suppose (v9,v5) € G(s)(Va. do).
o We need to show (v5[],v3]]) € Ew (G)(s, s)(do[do’/al).
« Since (v§,v5) € G(s)(Va. d0), by definition of Eyy, it suffices to show

Vs' Jpup 5. VG' D G. (e,0) € Ky (G')(s, 8")(d0[d0’ /a],do[dc’ /o))
which holds by Lemma [T7]

Lemma 50 (Compatibility: Pack).
At AThe ~ey:olo’/al
A;T I pack e; ~ pack es : da. o

Proof:
o By Lemmas [27) and 28] it suffices to show VG, s. V6 € TyEnv(A). ¥(y1,72) € Env (T, G(s)),
(pack e, pack @) € Ky (G)(s, s)(dc([d0’ /o], Ja. 6a) .
Suppose (v1,v2) € G(s)(do[dc’/a]).
We need to show (pack vq, pack vz) € Ew (G)(s,s)(3a. o).

By Lemma it suffices to show (pack vy, pack vg) € G(s)(Ja. do).
« This follows from (v1,v2) € G(s)(dc[d0’/a).

Lemma 51 (Compatibility: Unpack).
A;TFe~ey:dao Aa;Tiz:obe) ~ey:o At o’

/

A;T - unpack e as x in €] ~ unpackes aszine: o

Proof:

o By Lemmas [27) and 28] it suffices to show VG, s. V6 € TyEnv(A). ¥(y1,72) € Env (T, G(s)),

(Ja. 80, 50", unpack e as x in yie],unpack e asx in y2eh) € Ky (G)(s, s)

assuming A, ;' x:obef ~weyio.
o Thus it suffices to show that V(v1,v2) € G(s)(3a. d0),
(60’ unpack vy as = in 1€}, unpack vy as z in y2¢5) € Eyw (G)(s, s)
« By definition of G(s)(3a. do), we have v, v} and 7 € CType such that
v = pack v} A vy = pack vj A (v],v5) € G(s)(do[T/a))

e Let &' := 6, a7 and ] := 71, 0] and v 1= ya, 05,

o Now suppose (hl,hg) € W.H(s)(G(s)) and hY, hY € Heap with hy W hY hy W AE defined.

o We have hy W hY, unpack vy as z in e} — h1 whl' y1e] and ho W hg,unpack Vg as T in Yoeh < hy WhAY ~bel and
thus by Lemma [[3] it suffices to show

(50/7 (h17 h?;Wiea)a (hQa hga 7&6/2)) € OW(EW)(G)(Sa S) :
« This follows from the assumption and do’ = §’0’, ¢’ € TyEnv(A, a), (v1,7%) € Env(d' (T, z : 7), G(s)).
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3) Soundness.

Theorem 52 (Fundamental Property). If A;T F p: o, then A;T - |p| ~ |p| : o
Proof: By induction on the typing derivation, in each case using the appropriate compatibility lemma. [ ]
Lemma 53 (Weakening). If A;TFe; ~ex:o0and ACA'AT CTY, then A;TV Fep ~es:o.
Proof: One can easily see that the goal is a direct consequence of the definition from the following observation:

for i =1,2, VR. ¥6 € TyEnv(A'). Vv; € Env(éI”, R).

[6]a € TYEnv(A) A [Vi]domr) € Env([0]aT, R) Aviei = |Vi]dom(r)€i
where | f |4 denotes the restriction of the function f on domain d. ]
Lemma 54 (Congruence). If A;T'Fe; ~ey:0 and FC: (A;T;0) ~ (A;TV;07), then

AT F(Cler] ~ |Cle2] = o .

Proof: By induction on the derivation of the context typing: in each case using the corresponding compatibility lemma. For
a context containing subterms we also need Theorem [52] The rule for an empty context requires Lemma [53] [ ]

Lemma 55 (Adequacy). If -;- €7 ~ es : 7, then
1) Vhq, hs. neither hq,e; nor ho,eq gets stuck.
2) Vhl,hg. h1,€1 = hg,eg —,

Proof-
e We know ;- F ey ~y, es : 7 for some w with w.N C TyNam.
o Hence we have consistent(w?) and inhabited(w?).
o Thus, using Lemma [13] there is so such that (0,0) € wt.H(so)([w1](s0)).
o We also have (e, ez) € Eyqy([wh])(so, s0)(7).
o Since consistent(w?), (B,0) € wh.H(so)([wt](so0)) and Vs. [wt](s) = w.L(s)([w?](s)), by Corollary [30] for any
heaps hi, ho both hy,e; and ho, es diverge or both terminate without getting stuck.

|
Theorem 56 (Soundness). If A;T'F p; : 0 and A;T F psy : o, then:
AT pi| ~ [p2|i0 = AT Fpr~expaio
Proof:
e Suppose A;T' F |py| ~ |p2] : o0 as well as = C: (AT 0) ~ (4557).
« By congruence (Lemma [54), we have -;- - [Clp1]| ~ |C[ps]| : 7
« By adequacy (Lemma [55), we have h,|C[pi]| =* <= h, \C[p ]| < for any h, so we are done.
|
4) Symmetry.
Definition 8. Given R € VRel (or VRelF), we define R~ € VRel (or VRelF) as follows:
R™':=\r. R(1)™*
Lemma 57. (R)™!' = R-!
Proof: Easy to check by induction. [ ]
Lemma 58. S(R;', R,!) = (S(RJHRU))71
Proof: Easy to check. [ ]
Definition 9. Given w € LWorld, we define w—! € LWorld as follows:
w~ LN = w.N
w™L.S = w.S
w3 = w.d
wt Dpu == w. Jpub
_ _ i1
w L L(s:)(s)(R) = (w.L(sz')(s)(R™)) B
w L H(sit)(s)(R) = (w.H(s)(s)(R™))
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where s;' 1= AT sy(7)7!

Lemma 59. w™1.H(s.¢,s)(R) = (wh.H(sy ,3)(3_1))_1

Proof:
w1 H (s, 5) (R)
= Wiet-H(se) (R) @ w™ ' H(s rf)( )(R)
= (Wt M) ()™ © (w H(si) () (R) )
= (Wret HGs ) (R @ wH(sy () (RT)
= (whH(s; ,s><R*1>)‘1
Lemma 60. w='1.L(s,, s)(R) = (wi.L(s5",s)(R™1)) ™"
Proof: Analogous to Lemma [59]
Definition 10. If G € GK(w™'1), we define G™! := \s,p,s. G(s;,5) 7L
Lemma 61. If G € GK(w™!1), then G~ € GK(w?).
Proof:

1) Monotonicity of G~! follows immediately from monotonicity of G.
2) It remains to show Vs,¢, 5. G~ (5, 8) >N wh.L(sye, $)(G (su, 8)):
G (s, 8)
= G(srifl’ 5)71
2;”6?'\' (w_lT.L(sr}l, s)(G(s;', s)))
= wT'L(srfa S)(G(sr_fla 5)71)
= wh.L(s:t,8) (G (508, 8))

-1

Lemma 62. If stable(w), then stable(w™!).

Proof:
« We suppose
1) G € GK(w™'1)
2) (h1,ha) € w.H(s:) () (G (8¢, 8))
3) 8;{ - st
4) (h%efa h?ef) € Wret-H(s1¢) (G(s4, 5))
5) h%ef W hy defined A hfef W ho defined
and must show: 3s" T,y s. (hy, ha) E w L H(sL) () (G,
From (2) we know (hg, h1) € w.H(s; Hs)a (Srf, 5)7h = w.

) o
H(srf )(8)(G7 (Srf ﬂs))'
From (3) we know s/, ' Js.
From (4) and Lemma we know (h2, hl

ter) € Wer H(sir 1) (G(sl,8)™1) = Waee H(sip (G (557, 5)).-
Hence, using Lemma |61} the assumption yields s’ J,up s such that

(h2, 1) € wH(s ) ()G (s 8)).
o This implies (h1,h2) € w™L.H(s)(s')(G(5, 8')).

Lemma 63. If inhabited(w?), then inhabited(w='7).

Proof:

o We suppose G € GK(w~!1) and must show Jsq. (0,0) € w=1.H(s0)(G(s0)).
« Using the assumption and Lemma [61] we get (syf, s) such that ((,0) € wt.H(syt, 8)(G7 (s, 8))-
o Lemma [59| implies (0, 0) € w™'t.H(s;", s)(G (s, 5)).
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Lemma 64. If G € GK(w™'1), then:

(Euwt(G™) (55" 50): (555)) " € Bypm14(G) (51505 50), (51, )
Proof: Let
E,-11(G)((s:£0, 50), (52, 8)) (T = (Bur(GH)((s5" g 50), (5575 9))(7)
K, 11 (G) (50, 50), (5, 9)) (7, 7) 1= (Kup(G1)((555" 0 50), (5555 9)) (7, 7))
By coinduction, it suffices to show:
1) Vea,e1,G, Sytg, S0, Sefy S, T-
(e2,€1) € B 11 (G)((s1£0: 50), (826, 8))(T) =
V(ho, h1) € w™.H(s.t, 8)(G (51, 5)). VRY, AY.
((hQa hg’ 62)7 (h17 hllq‘v 61)) € Ow 1T(Kw 1T)(G)((51~f07 50)) (SI'f’ 5))(7—)
2) VKo, K1, G, 580, 50, Stf, S, T, T.
(K2, K1) € K| -1 (G)((s1¢0, 50), (set,9)) (7, 7) =
V(v2,v1) € G(8vs,8)(T7).
(Ka[vo], Ki[v1]) € B, -1 (G)((srt0, 50), (1t 8))(T)
For (1):
« By deﬁnition of E| ., and Lemma suppose (e1,es) € EwT(Gfl)((S;flo,so),(5;173))(7) and (hy, ha) €
whH(s ! 8)(G7 (s 5))-
« By definition of E,,+ we have ((hq, kY, e1), (ho, b, e2)) € OwT(KwT)(G_l)((sr}lo7 50), (s;fl, $))(7).
« Using all the lemmas above, it is easy to check that this implies
((h27 h2 ’ 62) <h17 hl ) 61)) € walT(Kg;*lT)(G)((Srfm SO)) (Srf’ S))(T) .
For (2):
» By definition of K ., and Lemma suppose (K1, Ks) € Kup (G (55", 50), (557,8)) (7, 7) and (v1,v2) €
G=1(s;', 8)(7).
« By definition of K4 we have (K1[v1], K2[va]) € Eur (G (s s 50)s (555 8)) (7).
» By definition of E| ., it implies that (K3 [va], K1[v1]) € Ej 1, (G)((s1t0, 50), (511, 8))(T).

Lemma 65. If consistent(w?), then consistent(w=11).

Proof:
e We suppose G € GK(w™'1) and (e1,e2) € S(w'1.L(set, 8)(G(8u1,5)), G(ser,8))(7), and must show
(beta(er), beta(es)) € Byy1(G) (501, ), (521, 9)) (7).
« By Lemmawe know (eg,e1) € S(wt.L(s;', 8) (G (s, 8)), G (s, 8))(7).
« Using the assumption and Lemma we get (beta(ez), beta(er)) € Eupr (G (5541, 5), (51, 8))(T).
o We are done by Lemma [64]

Theorem 66. If A;T'Fey ~ey:0,then A;T ey ~eq: 0o
Proof: Suppose A;T' = e1 ~y, eg : o with stable(w). By Lemma [62] it suffices to show A;T  eg ~,-1 €1 : 0. Using
Lemmas [63] and [63] this in turn reduces to showing:
VG € GK(w™). Vsup, 5. V8 € TyEnv(A). Y(y1,72) € Env(6T, G(sy1, 5)).
(11€2,72€1) € Eyym14(G) (15, 5), (11, 5)) (60)

From (v1,72) € Env(0L, G(s,t,s)) we have (y2,71) € Env(él, G(s rf7 5)71) = Env(oT, G (s, 9)). Lemma and
the assumption thus yield (y2e1,v1e2) € Eur (G (s 8), (55, 5))(d0). We are done by Lemma [ |
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D. Examples

1) World Generator.
NLWorld := { W € Names — LWorld | YA". W(N).N C N}

Definition 11. We define G : NLWorld — NLWorld as follows.
G(W)(N).N =N
G(W)(N).S = {(s1,...,8,) | nENAVie{l...n}. 5, e WWN;).S}
GOW)N).L(see) (51, 8n)(R) = Useqr..ny WNG)-Ls2e) (50) (R)
GOWV)WN).H(s:t)(s1, -, 5n)(R) = ®ieqr..nyWNi)H(srs) (s:)(R)
where { N; } is a countably infinite splitting of N i.e., N' = N; W Ny W N3 W
The transition on G(W)(N) is generated by the following rule.

(8153 Sk Skt1) Tpub (815 -+, Sk)
(shy-.58%) Jpub (S15---58K)  if s Tpub s1 Ao A s, Dpub Sk

(shy...8,) D (s1,...,85) if sEdsi AL /\skgsk

(81,---,85) D (s1500w58K) i (S, 8%) Tpup (51, -, k)
We define the following notation.

{n\i} == {1,...,i—1i+1,...,n}
G({sk}ke{n\i}) = G(—, 81,y 8i—1,— Sit1y--3Sn)
Lemma 67.
VG € GK(GOV)(N)1). Vs1 ... 8i—1,8i41 - - - Sn- G({Sk keqn\i}) € GKW(WN;)T)

Proof:

o We need to show G({5s } e{n\i}) is monotone w.r.t. C, which follows directly from the definition of C and monotonicity

of G.
« We have
G {3k refn\i})(5et, 54)
= G (8,81 .- Sn
>N GOW)N)T.L(Set, 51 - - - 80) (G (825,51 - - 50))
2 W(M)T~L(srfaSi)(G(srfvslv~~~7Sn))
= WWN)T.L(sit, 5:)(G({ sk tregnviy) (5if, 8i) -

« Now it suffices to show that the latter inequality is contained in >fe/f, which follows from Vi. W(N;) € LWorld and

the fact that Ny, ..., N, are disjoint.
|

Lemma 68. If W = G(W)(N)?T and VN'. stable(W(N”)) and G € GK(W), then:

D) Eywnvit (G({snk reqn\iy)) (8% 59), (ser, 8i)) € B (G) (8%, 81+ 811,57, Siq1 -+ 8n), (Se£, 51 -+ - 5n))
2) Kyt (G{skteemiy)) (5%, 89), (se5,80)) © Kw (G) (8%, 81+ -+ 8i-1, 50, Sig1 -+ 5n), (Sef, 51+ -+ Sn))
Proof: We define Ej;, and K, as follows:
Ey (G) (8%, 87 - 80, )5 (set, 81+ 80)) = { (7, e1,€2) |
(VEk € {no\i}. sk Tpun s3) A (75 €1, €2) € Bypniyr (G({5k ke mriy)) (5%, 89), (sef, 80)) }
K (G)((s%, s ... 820), (Sefy S1---8n)) ={ (7,7, K1, K3) |
(Vk € {no\i}. sk Tpub s3) A (77,7, K1, K2) € Kyyniyr (G{skteegn\iy)) (555 57), (sp550)) }
Then it suffices to show E{,V C Ew and K@V C Ky by coinduction. Concretely, we have to show:
1) Vey,es, G, 5%, s¢ .sgo,srf,sl...sn,r.
(e1,62) € By (G) (50,59 .+ 80.), (sut, 51 50)(7) —>
V(hi,ho) € WH(Srf,Sl...Sn)(G(Srf,Sl. 5n)).VAY hE.
((ha, Y, e1), (ha, b, es)) € OW(K'w)(G)(( 5%, 59 .. SOO) ($1£, 81+ 50))(T)
2) VK1, K2, G, 8%, s ...80 s, 810 80,7, T
(K1, K2) € Kiy (G)((s%, 8Y ... 80,), (sag, 81 - s)) (7, 7) =
V(v1,v2) € G(Srf, 81 .- 80) (7). (Ki[v1], Kalva]) € Efy (G) (sff, SO 5910)7 (Spfy 81 .- 8n))(7)
For (1):
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Suppose (€1, e2) € Efy (G)((s%, 87 ...8% ), (e, 81 - ..8,))(7) and (hy, ha) € W.H(seg, 81 ... 8n) (G (St 81 - - Sn)).

By definition of Ef;, we have (Vk € {noii}. Sk Jpub S9) and
(7,e1,€2) € Eyyniyt (G{sirermin)) ((sh 50, (5ur, 54)) -
We must show ((hy, hY',e1), (ho, hY, e2)) € OW(K%,V)(G)((sl(r)f7 sV 520), (Sef, 81+ --8n))(T).
So suppose defined(h; W hY) and defined(hy W AY).
From (h1,ha) € W.H(sp, 81 ... 80) (G (S, 81 - - - Sn)), we have hqy = b} WhAY and hy = hl W hY with (h],h}) €
WN)TH(set, 50) (G(ee, 51 -+ - 5n)) and (b, hy) € Qpe it W(Ni)-H(s:t) (58) (G (e, 51 - - - 5n)).
Hence ((hy, R @ hi,e1), (hy, B3 ¥ hi, e2)) € Oynit (Kwniyt) (G({skremip)) (s 87), (11, 50)) (7).
Consequently at least one of the following three properties holds:
A) h1 ] hlf,€1 v andA@ ] hg,€2 ¥ N
B) a) hl ] hf,el ¥ hll ) h/ll ] hf,vl and hg (] ]’Lg,eg ¥ h/2 (] h/Q/ (] ]’Lg,vg
b) (%7/5:1/) | [(ngv S?)’ (Srfv 51)]
c) (hll, hl2) € W(M)TH(%, §;)(G(§\r¥7 S1...8i—-1, §;, Sit1 .- Sn))
d) (vi,v2) € G(Sr¢,81 -+ 8i—1, 805 Sit1---5n)(T) N
C) a) hl (] hlf,el —* hll ] hlll (] hlf,’l}l and hQ (] hg,eg —* h/2 (] hg (] hg,v2
b) (5:,5:) 3 (8, i)
c) (hy,hh) € WN)T.H(sit, $i)(G(Sxy 81 - - - Sim1, Siy Sit1 -+ - Sn))
d) (6/1, 6/2) S S(G(é}, S1...8i—1, évi, Sit1 .- Sn), G(g\r-%, S1...8i—1, 51‘, Sid1 .- Sn))(;)
e) V(5:1,5:) Jpub (52, 80). VG' 2 G({sk}trefnriy)- (K1, K2) € Koy (G (s, 89), (5c¢, ) (T, 7)

o If (A) holds, then we are done.
o If (B) holds:

- For all k € {n\ i}, iteratively applying stable(WW(N})) and using monotonicity gets us S; Jpup Sk such that:
(1Y, hy) € ®re(mipy WWNk)-H(s:5) (58) (G (51, 51 - - 50))

— Thus from (Bc), monotonicity, and the definition of W we get
(W, &Y, 1y & h5) € WH(S, 51 5) (Gsit, 51 - 50)

— From (Bb) we get (Sy¢, 51 ...5,) 2 [(s¥,87...80 ), (e, 81 ... 80)].

— Together with (Ba), (Bd), and monotonicity we are done.

o If (C) holds:

For

- For all k € {n\ i}, iteratively applying stable(WW(N})) and using monotonicity gets us S, Jpup Sk such that:
(WY, 1) € @refn\iyWWNi)-H(s0t) (55) (G (58, 81 - - - 50))

Thus from (Cc), monotonicity, and the definition of W we get
(Wy WY, Wy W hy) € WH(sit, 51 ... 50)(G (5, 61 - .. 50))

From (Cb) we get (Syf, 51 ... 5n) 2 [(8%, 89 ...82 ), (Set, 81 80)]-

After applying monotonicity to (Cd), it remains ?c;) show:
V(Srfs 81 -+ 5m) Jpub (828,81 ..5,). VG’ 2 G.
(K17 K2) € K%/V(G/)((s?ﬁ 8(1) s 3910)7 (51;7 ‘§\1 s g’r\n))(Fv T)
So suppose (Syf, 51 - .- S5m) Jpub (Sef, 81 ... 8,) and G’ D G.
- By monotonicity we have G'({5% }refm\i}) 2 G({Sk}re(n\i})-
From (Ce) we therefore get (K1, K2) € Ky (G ({8 b refmit) (5%, 89), (5i1, 8)) (7, 7).

- By definition of K{;, this implies (K1, K2) € Ky, (G')((s%, 87 ... 80 ), (55,51 ... 5m)) (T, 7).
(2):

o Suppose (K1, K2) € Kiy (G)((%, sV ...8% ), (sef, 81...8,)) (7', 7) and (vi,v2) € G(Spt, 81 - .. 8n) (7).

no

« By definition of K{;, we have (Vk € {no\i}. s Jpup %) and

(7,7, K1, K2) € Kyt (G{sk tre i) (%, 89), (st 80)) -p

o We must show (7, K;[v1], K2[v2]) € Efy (G)((s%, 8Y...50 ), (Scf, 81+ 8n))-
« By definition of Ej; it suffices to show

no

(7, K1[v1], Ka[va]) € By (G({sk e tnniy)) (5, 87), (515, 80)) -
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o Since (v1,v2) € G(Sf,81-..5n)(7'), we are done.

Lemma 69. Suppose VN stable(W(N)).
1) YN. stable(G(W)(N))
2) If VN. consistent(W(N)1T), then YN consistent(G(W)(N)T).
Proof:
o We suppose
@) G € GK(GOW)(N)1)
(b) (7,e1,e2) € S(GW)(N)T.L(set, 81 - - S ) (G(Sp£,81 - - 80)), G(Suf, 81 - - - Sn))
and must show (7, beta(e1), beta(ez)) € Eqonyan)t(G)((Sef,51 -+ 5n), (Sef, 81+ - 8n)).
e From (b) and the definition of S we know: for some i,

(1,e1,e2) € SOW(N)T.L(ses, 85 ) (G506, 81 - - - 80)), G(Se£, 81 - - - Sn))
o The claim follows from consistent(W(N;)1) with the help of Lemmas [67] and

Lemma 70. inhabited(G(W)(N)1)

Proof: Tt is easy to check that (0,0) € G(W)(N)T.H(,())(R) for any R.
2) Substitutivity.

Theorem 71.
AT, xz0’' ke ~e:o AT Fov ~vg:of

AT Feqfuy /2] ~ egfva/a] : o

Proof: By Lemma [27] it suffices to show:
AT, x0' el ~yex:o AT o~y vg o

AT Fegfv /2] ~w ealva/z] i o

This boils down to showing
(00, 1 (er[vr/x]), 12 (e2lv2/2])) € Ew (G)(s, s)

for 6 € TyEnv(A) and (v1,72) € Env(oT', G(s)).
o So suppose (hi,he) € W.H(s)(G(s)) and hY', hY € Heap.
o We must show (0, (h1, kY, y1(e1[v1/7])), (ha, b5, 72 (e2v2/z]))) € Ow (Kw)(G)(s, s).
« From the second premise we get (do’,v1v1,7202) € Ew (G)(s, ).
o As a consequence of this, there is s —pub s such that:

D) (60’1101, 7202) € G(8)
2) (h1,he) € WH(s')(G(5"))
o Let 71 := 1, m—=y1v1 and 75 := 72, 137202,
« By monotonicity and (1) we have 7' € Env(§(T', z:0”), G(s)).
« The first premise then yields (do,vie1,v4e2) € Ew (G)(s, §).
By Lemma [1§| we get (60,7{e1,75e2) € Ew (G)(s, s').
o This implies (5o, (h1, hY, 71 (e1[v1/x])), (h2, b, Ya(eav2/z]))) € Ow (Kw)(G)(s,s).
o We are done by Lemma [I5] and (2).

3) Expansion.

Theorem 72. , , , ,
A;THel ~ehy:o Vh,~v. h,ve1 —* h,ye] Vh,v. h,vea —* h,ve;

A;TFep~ey:o

Proof: By Lemma [27] it suffices to show:
A;THel ~yeh:o Vh,~y. h,ver —* h,ve} Vh,y. h,ves —* h,vel

A;TFey ~wes:o
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This boils down to showing
(60-3 (hh hfa 7161)7 (h'27 hl; ’7262)) € OW(KW)<G)(S7 S)

in a context where the premise provides

(60 (hl’ hl ’ 7161) (hQ’ hgv ’726/2)) € OW<KW)(G)(S’ S)
Using the side condition, we are done by Lemma [I3] [ ]
4) Beta Law.

Theorem 73.
AT, z0' ey ~eg:o AT Fop ~vg o

AT H (Ax.eq) vy ~eafva/z] i o

Proof: From the premises and Theorem we know A;T b ej[vy/x] ~ esfve/x] : 0. Thus the conclusion holds by
Theorem [721 [
5) Awkward Example.

7 = (unit — unit) — int

v = A f ()1

ey = letx=refOin
Moz =1;f (O lz

We show ;- vy ~ ey : 7. So let N be given. The proof splits conceptually into three parts:

1) Constructing a local world @ with @.N C N, stable(w), and inhabited (w?).
2) Showing consistent(@w?). This is the meat of the proof.
3) Showing that v; and ey are related by Eg4.

Constructing the world.. First, we define w € LWorld as follows:

w.N = 0

w.S := Loc x {0,1}

w. = w.dpwp

w 3y = (1), (6,0)) | £ € Loc}*

w.L = As, (4,n), R. {((unit — unit) — int,vy, (A f.£:=1; f ();10))}
w.H = Asyg, (6,n), R {(0, [6—n])}

Now let w = G(AN.w)(N). By definition of G we have W.N C N. Furthermore, by Lemmas [69] and [70] we know
stable(w) and inhabited (wW7).

Showing consistency.. In order to show consistent(w?), it suffices by Lemma |69] to just show consistent(w?).
e So suppose (S, (¢,n)) € wt.S and (v],v}) € G(s¢t, (¢, 1)) (unit — unit).

o We need to show:
((’Ui <>’ 1)? (E =1 ’Ué <>’ 'Z)) € EwT(G)((Srfu (& n))? (Srf7 (€>n)))(|nt)
So suppose defined(h; W hY) and defined(hy W hY) as well as

(h1,h2) € wh.H(s, (6,1))(G(set, (6,m))).

o Then there are (hi°f, h3et) € Wier H(s:t)(G(set, (¢,m))) such that hy = At and hy = hif W [6n).
o Therefore we know:

ho W R, (€:= Livh ()10) = BT [61] W RS, (vh ();10)

« By definition of E,, it suffices to find s’ 3 (¢,n) such that:
D) (R, h5" W [01]) € whH(sie, s') (G518, "))
) (v’l,vé) € G(syf, 8")(unit — unit)
3) (0, () € Gls, s') (unit)
4) V( Syfr S ) pub (Srf7 8/)'VG/ 2G. ((.; 1), (.; '@) € KwT(G/)((srf7 (67 n))7 (S;fﬂ SH))(unit7 int)
o We pick s’ = (¢,1) 3 (¢,n).
« (1) follows from monotonicity and (@, [¢—1]) € w.H(s")(G(s)), which holds by construction.
e As (2) holds by monotonicity, and (3) is immediate, it remains to show (4).
« So suppose (si;, s ’) Tpub (S, 8') and G’ D G.
o Then necessarily s” = s'.
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« We must show (((); 1), ((510)) € Euy(G")((sur, (£,m)), (515, 5")) ().

So suppose defined (k) & AY') and defined(h} W h5") as well as (b}, hy) € wh.H(se, s") (G (sls, 8")).
o Then there are At hfef such that b} = h°f and h}y = Wit w [6—1].

o Therefore we know:

KywhE (0310) >* hywhE 1

o Of course we also know:
Rywht (0;1) —=* n, wht’ 1

o Since (sis,8"”) Jpub (se, (£, 1)), it suffices by definition of E,4 to show (1,1) € G(sl;, s”)(int), which is immediate.
Proving the programs related.. It remains to show (v1,e2) € Egt(G)((Sxf, 5), (Srf, 8))(7) for any G, s.¢, s.
o So suppose (hi,he) € WT.H(st, 8)(G(sef, 8)) as well as defined(hy W hY) and defined(hg W hY).
o Then there are P
(R, h5T) € Wier H(ss)(G(sur, 8)) and (fy, ho) € @.H(s:5)(8) (G (se, 9))

with by = hief W h1 and hy = hief W hg
« Hence we have hy WhY, ey < hr6f () hg W [0—0] W hY, vo, where vy = Af. £ :=1; f (); ¢ and ¢ is fresh.
¢ We are done if we can ﬁnd s’ —pub s such that:
1) (B @ by, it W hy W [00]) € @1.H(ser, 8) (G (sut, 87))
2) (v1,v2) € G(8us,8")(T)
o We pick s' = (s,(£,0)) Jpub S-
To show (1), it suffices by monotomclty to show (hl7 ha W [6—0]) € W.H(sy)(s")(G(spt,8")).
« By monotonicity and construction of @ it then suffices to show (0, [¢—0]) € w.H(sy)(¢,0)(G (s, s")), which holds
by construction of w.
To show (2) it suffices by definition of GK to show (v, v2) € W1.L(sys, 8" ) (G (s, ")) (7).
« By construction of @ it then suffices to show (v1,v2) € w.L(¢,0)(G(s:t, s"))(7), which also holds by construction of
w.

6) Well-Bracketed State Change.

7 := (unit — unit) — int
vr o= AL f (51
es = letx=refOin

AMox:=0f (rz:=1f ()l
We show ;- F vy ~ ey : 7. So let N be given. The proof splits conceptually into three parts:

1) Constructing a local world @ with @w.N C N, stable(w), and inhabited(w?).
2) Showing consistent(w?). This is the meat of the proof.
3) Showing that v; and ey are related by Egy.

Constructing the world.. First, we define w € LWorld as follows:

w.N = 0

w.S := Loc x {0,1}

w. = w.dpuwp U {(( 70)7( )) I te LOC}

w- Tpup = {((£,1),(£,0)) | £ € Loc}*

w.L = Asyt, (6,n), R. {((unit — unit) — int,v;, Af L:=0;f ();0:=1;f ();10))}
w.H = Ase, (6, n), R {(0, [6—n))}

Now let @ = G(MN.w)(N). By definition of G we have w.N C N. Furthermore, by Lemmas [69] and [70] we know
stable(w) and inhabited (w1).

Showing consistency.. In order to show consistent(w?), it suffices by Lemma (69 to just show consistent(w?).

o So suppose (s, (¢,n)) € wt.S and (v],v}) € G(sit, (¢, 1)) (unit — unit).
« We need to show:

(Wi Q51 (031), (€:= 0305 ()5 € := 1305 ();10)) € By (G)((sur, (6,1)), (8¢, (¢,m))) (int)
o So suppose defined(h; & hi') and defined(hy W hY) as well as

(h1,he) € w.H(swe, (€, n))(G (55, (£,m))).
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o Then there are (h5°f, h3et) € Wier H(s:£)(G(set, (¢,m))) such that hy = At and hy = hEF W [6sn).
o Therefore we know:
ha @ Ry, (£:= 0505 ()3 €:= 1505 ()310) < RET 0 [6=0] W hy, (v ()3 £ = 1505 (); 1)

By definition of E,, it suffices to find " J (¢,n) such that:

D) (B b5t W [6-0]) € wiH(sy, 8")(G (551, 8"))

2) (vi,vh) € G(syt,s")(unit — unit)

3) (0, )).€ Glsws, &)(unit)

4) V(sl¢,8") Dpub (Sif,8").VG D G. N
(0305 (1), (03 £ = 150 {):10)) € Kot (G') (st (£, m)), (lg, 7)) (unit int)
o We pick s’ = (£,0) 3 (4, n).
« (1) follows from monotonicity and (@, [(—1]) € w.H(sy)(s")(G(sye, ")), which holds by construction.
o As (2) holds by monotonicity, and (3) is immediate, it remains to show (4).
« So suppose (sl¢, s") Jpub (Sir, ") and G’ 2 G.
o We need to show:

Q301 03 1), (03 = 1505 (0:10)) € Bup(G') (521, (£,m)), (sl, 8')) (int)
« So suppose defined(h} W hE') and defined(h), & hE’) as well as
(1, hy) € whH(slg, ') (G (s, ).
o Then there are (h}°f, hie") € Wier.H(s)(G' (4, s')) such that b = RJef and kb = hyef @ [f—sn/].
o Therefore we know:
PR (0 (51) = AT (0] (51)
Ry WhE  (();0:= 1305 (0:10) < hgfw [61] W hE, (v) ():16)

By definition of E,, it suffices to find s” 3 s such that:

D) (W Bt [151]) € wh H(sly, 87) (G (sl )

2) (v],v5) € G'(sls,8")(unit — unit)

3) (0, () € G'(syp, 8”) (unit) N

4) V(s 8") Tpub (836, 57).VG" 2 G ((#51), (e;10)) € Kot (G”)((s1s, (£,m)), (575, ")) (unit, int)
o We pick s” = (¢,1) J 5.
« (1) follows from monotonicity and (@, [6—1]) € w.H(s)(s')(G’(s")), which holds by construction.
o As (2) holds by monotonicity, and (3) is immediate, it remains to show (4).
o So suppose (3¢, 5”) Jpub (554,8”) and G” 2 G
o Then necessarily s” = s”.
« We must show (({); 1), ((10)) € Eur (G")((set, (£,1)), (sl5, ")) int).
« So suppose defined(h? W hF") and defined(hy & hE") as well as (hY/,hY) € wt.H(s, s") (G (s, s")).
o Then there are h{™f h™! such that by = h{™" and hY = kit w [(—1].
o Therefore we know: . "

By W RE”, (();10) = Y w hE" 1
o Of course we also know: " Y
h{ WhY™, (();1) =" h Whi 1
o Since (s%,5"”) Jpub (se, (£, 1)), it suffices by definition of E,4 to show (1,1) € G(s’%, s”)(int), which is immediate.
Proving the programs related.. It remains to show (v1,e2) € Egt(G)((Sxt, 8), (Srf,8))(7) for any G, sy, s.
o So suppose (h1, hs) € WT.H(st, 5)(G(set, 5)) as well as defined(hy W hY) and defined(hq W RY).
o Then there are o
(R, hECY) € Wier.H(s:6) (G (555, 5)) and (hy, ho) € @.H(s:5)(5)(G (528, 5))

with by = hif Why and hy = R W hy.
o Hence we have hy & hY, ea < hif W ho W [6—0] W b va, where vg = Af. £ :=0; f ();£:=1; f ();!¢ and ¢ is fresh.
o We are done if we can find s’ Jpy1, s such that:

1) (R @ Ay, e W hy W [00]) € @1.H(ser, 8) (G (sut, 87))

2) (v1,v2) € G(sy,8")(7)

43



We pick s’ = (s, (£,0)) Dpub S-

To show (1), it suffices by monotonicity to show (a,ﬁ; W [6—0]) € W.H(syt)(s") (G (s, 8")).

By monotonicity and construction of @ it then suffices to show (0, [(—0]) € w.H(sy)(¢,0)(G (s, s")), which holds
by construction of w.

To show (2) it suffices by definition of GK to show (v1,v2) € W1.L(sy, 8")(G(Set, ")) (7).

By construction of @ it then suffices to show (v1,v2) € w.L(s:t)(¢,0)(G (s, 8"))(7), which also holds by construction
of w.

7) Twin Abstraction.

7 = Fa.3B. (unit — ) x (unit = B) x (a x  — bool)

e1 := letxz =ref 0in pack (int, pack (int, \_.z :=lz + 1; !z,
Axz:=lx+1;lx,
Ap.p.1 =p.2))

es = letxz =ref 0in pack (int,pack (int,A\_.z =z + 1;!z,
Ax=le+ 1,
Ap. ff))

We show ;- F ey ~ es: 7. So let A be given. The proof splits conceptually into three parts:

1y
2)
3)

Constructing a world w with w.N C N, stable(w), and inhabited (wt).
Showing consistent(w?). This is the meat of the proof.
Showing that e; and ey are related by E,,¢.

Constructing the world.. First, we define V¥V € NLWorld as follows:

WN).N = {N'(1),N'(2)}

W(N/)S = {(51,€2,51,52) € Loc x Loc x P(N>0) X P(N>0) | S1 n SQ = @}

WD = W) Dpu

WY Dpus = {((0h, 0, S1..S3), (01,02, 51, S2) | £ = 6 A by = & A Sy C Sj A Sy € b}

WN).L = A(l1,09,51,8), R. {(N"(1),n,n) | n € S} W {N"(2),n,n) | n € So} &
{((unit — Nl(l)), ()\_ fl = '21 + 1; !(1)7 ()\_ 61 = 'fl + 1; 'Zl))} )
{((unit — N(2)), (AL £y 1= 10 + 13105), (A_. £y := 105 + 1;105))}
{((NV'(1) x N'(2) — bool), (Ap.p-1 = p.2), (Ap.fF))}

W(N/)H = )\(61762, Sl, SQ), R. {([61’—)71], [(2*—)71}) | n = max({O} ] Sl (] 52)}

where A/'(1) and N’(2) denote two distinct elements of A.
Now let w = G(W)(N). By definition of G we have w.N C A. Furthermore, by Lemmas [69] and [70| we know stable(w)

and

inhabited (wt).

Showing consistency.. In order to show consistent(w?), it suffices by Lemma [69] to just show consistent(W(N’)1) for

any
1y
2)
3)
For

N’. This decomposes into the following subgoals (for any G, s,¢, s = (£1, f2, S1,S2)):

(01 =10 4+ 1;10), (01 := 1y + 1;141)) € Eyyary1 (G) (£, 5), (508, 8) ) (N (1))
(b2 := 1o + 1;1Uy), (by := Wy + 1;13)) € Eyynr)1 (G)((5et, 5), (528, 8)) (N (2))

V(v],vh) € G(seg, s)(N'(1) x N'(2)). (v].1 = v].2,ff) € Eyyar)4(G)((set, 8), (set, 5)) (bool)
(1) (part (2) is analogously):
Suppose (h1,ha) € W(N")T.H(sst, ) (G (svt, 5)) as well as defined(h; W hY) and defined(ho W AY).
Then there are
(R hECT) € Wier H(set) (G (511, 5)) and (hS, hS) € W(N').H(5:¢)(5)(G (515, 5))
with hy = h}*f W hS and hy = hif W AS.
By construction of W(N”) we know hS = [¢1—n] and h§ = [fa—+n]| where n = max({0} W S W Sy}
Hence hy W Ay, (£y := Wy + 1;101) —* Wit W [(y=n + 1] W h{,n 4+ 1
and hq W hg, (62 = + 1; '52) ¥ had (] wgl—)n + 1] (] hg,n + 1.
By definition of Eyy a4 it suffices to find s’ Jpub s such that:
a) (Mt [fr—n + 1], B W [losn + 1)) € WN')TH(sit, ') (G (508, 8'))
b) (n+1,n+1) € G(syt,8")(N'(1))
We pick s’ = (41752, S {n + 1}, SQ)
Note that n + 1 ¢ S; U Sy and thus (S1 W {n+1})NSe =0, so s is well-formed.
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e Since n+1 = max {0} W S; W {n + 1} WSy, (a) follows from ([{1—n+1], [la—n+1]) € WN').H(st)(s") (G (s, 8))
by construction of W(A”).
o To show (b) it suffices, by definition of GK, to show

(n+1,n+1) € WN")T.L(ss, 8') (G515, 8)) (N (1)),

e This follows from

(n41,n41) € WN").L(s:) () (G515, 8))(N'(1)),

which in turns holds by construction of W(N”).
For (3):
» Suppose (v}, v3) € G(sir, 5 G(sut, 5) (N (1) x N(2)).
o Then v} = (v7,01) and vh = (03, U2) with (01, 03) € G (s, )(N’( )) and (vl,vg) € G(s:1,8)(N'(2)).
o By definition of GK and construction of W(N”’) we know 01 = 75 € S; and 07 = 05 € So.
o Now suppose (hi,ha) € W(N')T.H(s:t, s)(G(s:,5)) as well as defined(h; W hY) and defined(ho W hY).
« Since S, N Sy = 0, we get by WA, 0).1 = v}.2 —* hy WY, ff and hy & hE, ff <—* hy & B fF.
« Since (ff, ff) € G(syt, s)(bool), we are done.
Proving the programs related.. It remains to show (e1,e2) € Eyt(G)((srt, 5), (8it, 5))(7) for any G, sy, s.
o So suppose (hi,hs) € w.H(sy,s)(G (s, 8)) as well as defined(hy & h') and defined(hy W AY).
o Then there are N
(R RET) € Wier.H(s16) (G515, 8)) and (hy, ha) € w.H(se)(8) (G501, 8))

with hy = Al W hy and hy = R W Ry,
« Hence we have
hi W hf, e; — hff &JEI W [¢1—0] W hf, pack pack vy and ho W hg,eg — h;ef ) E; W [lo—0] W hg, pack pack vg
where /1 and /5 are fresh and vq,vo are what you think they are.
o We are done if we can find s’ J,y1, s such that:
1) (hief & g @ [0150], hEF W g ) [0250]) € whH(s., 8') (G (s, 87))
2) (v1,v2) € G(8¢t,8')(T)
o We pick " = (s, (¢1,02,0,0)) Jpup s
o To show (1), it suffices by monotonicity to show (h1 W [¢1—0], ha W [l2—0]) € w.H(s:t)(s") (G (8xt, 87)).
« By monotonicity and construction of w it then suffices to show
([610], [€2—0]) € W(N').H(sc5) (b1, £2,0,0)(G(s¢, ")) (for any A7), which holds by construction of W.
« To show (2), we pick the witness types A, (1) and N, (2), where n := |s/|.
« It thus suffices to show:

(v1,v2) € G(seg, ") ((unit — Ny (1)) x (unit = N, (2)) x (N (1) x N,,(2) — bool))
o This in turn reduces to showing the following:
= ((unit = N, (1)), (AL by := 0 + 1;1q), (A by == + 1514)) € G(srf, 2]
= ((unit = N, (2)), (AL by := 1o + 1;Us), (A_. by := s + 1;45)) € G(syt,8")
- (Wn(1) x Nyu(2) = bool), (Ap. p.1 = p.2), (Ap.ff)) € G(syt, 8")
» By definition of GK and construction of w, it suffices to show that these triples are in
W(Nn).L(fl,fg, (Z), @)(G(Sm S/))

o This is true by construction of W.
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E. Weak Isomorphism Theorem

1) Weak Isomorphisms.

Definition 12. Assuming Wi, Wy € World, then a function ¢ € W1.S — P(W5.S) is a weak morphism from Wy to W,
written ¢ : W, — Wh, if:

1) Wi.N = Wy.N

2) Vs1,8). 51 C 8] = Vsa € ¢(s1),85 € d(s]). s2 C sh

3) Vs1,87. 51 Cpub 87 = Vs2 € ¢(s1), 55 € 4(5]). s2 Cpub 55

4) VSLVSQ S ¢(81). WlL(Sl) = WQ.L(SQ)

5) V81VG S GK(Wl) WlH(Sl)(G(Sl)) Q U52€¢(51) WQ.H(SQ)(G(Sl))
Definition 13. The identity weak morphism idy, on W is defined as idy (s) = { s }. It is obvious that idy, forms a weak
morphism.

Definition 14. The composition of weak morphisms 1 o ¢ is defined as (¢ © ¢)(s) = Uy g5 ¥ (s'). We will show that
1 o ¢ forms a weak morphism in Lemma [30]
Definition 15. Between two weak morphisms ¢, ¢2 : Wi — Wy, we define the following preorders C and Tyt

(151 | qf)g iff Vs.Vs; € ¢1(8) Vso € QSQ(S) S1 4 So

¢51 qub ¢2 iff Vs.Vs; € ¢1(8) Vsqy € ¢2(S) S1 qub So

Definition 16. A pair of weak morphisms ¢ : W1 — Ws, ¢ : Wy — W is a weak isomorphism, written ¢ : W1 = Wy : ),
if ¥ o ¢ dpup id and ¢ o ¢ Ty, id.

2) Global Knowledge Constructions. Recall that for a monotone function F' € VRelF — VRelF and R € VRelF, we
write [F']}, for the least fixpoint of the monotone function F'(—) U R.
Definition 17. Given ¢ : W7 — W5 and G € GK(Ws), we define @ € W1.S — VRelF as follows.
<_‘
Go(s1) = [W1.L(s1)]

(Us’lgslAs/QEQb(s/l)G(le))
—
Definition 18. Given ¢ : W; — W5 and G € GK (W), we define Gj)l € W5.S — VRelF for s; € W7.S as follows.
st
Gy (s2) = [Wa.L(s2)]

Uy oy nog ey oty G(51))
Lemma 74. Given ¢ : W, — W5 and G € GK(W>), we have Vsy € ¢(s1). a(sl) = G(s2).
Proof:

o Suppose sa € ¢(s1).

o We first show G(s2) = Us’lgsl/\s’26¢(s/1)G(sl2):

- G(SQ) g U51231A5/2€¢(53)G(8/2) iS ObViOU.S.

— To see the other inclusion, note that whenever s, € ¢(s}) and s} C s1, then s, C so and thus G(s5) C G(s2).
« Consequently we know y(s1) = [Wi.L(s1)]5,,) = Wi-L(s)(WiL(s1)]5.,)) U Gls2) 2 G(so).
To show [W1.L(s1)](,,) € G(s2), it suffices by induction to show Wi.L(s1)(G(s2)) U G(s2) € G(s2).
This follows from W7i.L(s1)(G(s2)) = Wa.L(s2)(G(s2)) C G(s2).

Lemma 75. If ¢ : W1 — Wa and G € GK(W2), then &y € GK(W7).
Proof:

. 254) is monotone by definition because [W1.L(s1)]{_, is monotone.
— — &
o We have G(s1) = Wi.L(s1)(G(51)) UlUy oy nsyens) G(52) 2 WiL(s1)(Go(s1))-
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« Moreover, for any 7 € CType we have g( 1)(ref 1) = Wi.L(s )(@(sﬂ)(ref T) because:
Ust Cornsyea(s) G(s2)(ref 7)

= Us’lgsl/\s2€¢(sl (Sé)(G(SIQ))(ref T) (G € GK(W2))
= Us/lgsl/\s’2€¢>(s’1)Wl'L(Sll)(G(Sé))(ref ) (Wi — W)
= Usconseony Wi L) (Go(s))(ef ) (Lemma[13)
€ Usconneotey Wi-L(s) (@als1)) (ref )

H
= Wi.L(s1)(Gg(s1))(ref 7)
« Using an analogous argument, for any n € W7.N = W5.N, we have @(sl)(n) = Wl.L(sl)(@(sl))(n).

—
G‘?

Lemma 76. Given ¢ : Wi — W and G € GK(W1), we have Vsy € ¢(s1). G (s2) = G(s1).

Proof:

o Suppose s3 € ¢(s1).
o We first show G(s1) = Uy o, nsyCosnsyears;) G(51):

- G(s1) C US'1Esl/_\s;Esz_/\s26¢(s1)G(51) is obvious.
— To see the other inclusion, note that whenever s| C s1, then G(s}) C G(s1).

—
Consequently we know G (s2) = [Wa.L(s2)]5y(,) = Wa-L(s2)([Wa.L(s2)]5y(,)) U G(s1) 2 G(s1).
To show [Wg.L(Sg)]’é(Sl) C G(s1), it suffices by induction to show W2 L(s2)(G(s1)) UG(s1) C G(s1).
o This follows from Wa.L(s2)(G(s1)) = W1.L(s1)(G(s1)) € G(s1).

—
Lemma 77. If ¢ : W; — W5 and G € GK(W), then sz € GK(W>) for any s; € W3.S.
Proof:

o We have the following monotonicity by definition because [WQ.L(SQ)}’(“_) is monotone:

— —
V51 D 8. V5 J 8. G3(5) 2 G5 (5)

— —
o We have G (s2) = WaL(52)(G3 (52)) U Uy cosnes conmosente )Gg WL (52) (G (52)).
» Moreover, for any 7 € CType we have G (32)(ref 7') = Wa.L(s2)(GY (s2))(ref 7) because:

LJs/lgﬁll\s’2 EszAs’QE(i)(s’l)G(Sll)(ref T)

Usg;smsg gsz/\séeqﬁ(sa)Wl.L(s’l)(G(s’l))(ref T7) (G € GK(Wh))
= Us’lEsl/\s’QEsz/\s’26¢(s’l)WQ'L(S/Q)(G(S/l))(ref T)  (p: Wy — W)
—
= Us/lgsl/\ség@/\sé€¢(s’l)W2‘L(S/2)(G 1(8/2))(ref T) (Lemmam)
st .
S UsicsinsyCoansyeos; Wa-L(s2) (GG (s2))(ref 7)  (Monotonicity)

—
= Wa.L(s2)(G} (s2))(ref 7)
— —
« Using an analogous argument, for any n € W2.N = W1.N, we have G (s2)(n) = Wa.L(s2)(G} (s2))(n).
3) Category of Worlds.
Lemma 78. If ¢ : W1 — Wa, then ¢ oidw, = ¢ = idw, o ¢.
Proof: Obvious.

Lemma 79. If ¢ : Wy — Wao, o : Wy — W3, x : W3 — Wy, then x o (Y o) = (x o)) o ¢.
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Proof:
s1 € (xo(Yog))(s)

< ds3. 84 € x(83) A sz € (Yod)(sy)
<> sz, 52. 54 € X(83) A sz € 1(s2) A sz € P(s1)
<  dsg. 84 € (xo)(s2) A s2 € @(s1)
= s1€((xov)oo)(s1)
|
Lemma 80. If ¢ : W; — W5 and ¢ : Wy — W3, then ¢ o ¢ forms a weak morphism.
Proof: Conditions (1) through (4) hold vacuously. Condition (5) follows from Lemmas (76 and [ |

Proposition 81. Worlds with weak morphisms form a category.

Proof: 1t follows from Lemmas [78] [79] and [ |
4) Isomorphism Theorem.

Definition 19. Given ¢ : W1 — W5, we define [—[, € P(W1.5) — P(WW1.5) as follows:
S|y ={s1€5[o(s1) #0}
When ¢ is clear from context, we often just write |\S].
Lemma 82. If ¢ : W; 2 W5 : ¢ and G € GK(W>), then:
et Nsy sy BEwa (Ga)(s9, 51) € By, (G) (53, 52)
et Neneoen Kws (Go) (2. 51) € K, (G) (53, 52)

Proof: We define:

Sl

E@VQ(G)(SQ»%): sge|w(sg)\ﬂslew(52)|EW1( )(s%,51)
K| Z(G)(Sg,@): sgew(sg)\msle\w(sQ”KWl( )(s%,51)

We prove Ej;, , € Ew, and Ky , € Kw, by coinduction. Concretely, we have to show:

Sl

1) Vel,eg,G,SQ,SQ, T.
(e1,€2) € Ejy, (G)(s5, 52)(1) =
V(hl, hg) S WQH(SQ)(G(SQ))V}LI;, hg
((hla hlf’ 61)7 (h27 hgv 62)) € OW2 (KQ/VQ)(GXSg? 52)(7)
2) VK1, K3, G, 89, 50,7, 7.
(K1, K») € Ky (G)(89,82) (7', 7) =
V(v1,02) € Cls) (). (Kafoa], Kaloa]) € Ely, (G)(s5, 52)(7)
Part (1):
o Suppose (e1,ez) € Ejy, (G)(s9,52)(7), and thus (eq,e2) € sy (s Ewa (@)(51751)(7) for some sy € [¢(s9)].
o Further suppose (h1, h2) € Wa.H(s2)(G(s2)), and thus (h1, ha) € Uy, cyps,) W1-H(51)(G(s2)).
o Thus there exists s1 € ¥(s2) such @)t (h1,h2) € Wl.H(Sl)(G@).
By Lemma [76( we know G/(s2) = G (s1) and thus Wi.H(s1)(G77(s1)) # 0.
— —
« Since Wi.H(s1)(G}; (s1)) € U, sco(s) We- H(s3)(Gy (sl)) there also exists sh € @(s1).
« Since s}, € (¢ o w)(SQ) and ¢ o w Tpub id, we have that s Jpub S2.
« Hence (h1, ha) € Wy H(s1)(G(sh)), which means (hy, hs) € Wi H(s1)(Gy(s1)) by Lemma|[74]
o For h!" and hY with defined(h;WhY') and defined(hoWhY) we then get three cases from (eq,e2) € Eyy, (G¢)(sl, s1)(7):
a) hy Uh1,61 ¥ /\h2Uh2,e2 ¥
We are done.
b) hiW hlf,el —* h/l (] hllz‘/l)l A hy W hg,eg —* h/2 (] hg,UQ
with 8§ 3 [50, 1] A (k. By) € Wi H(sy)(Ga(51)) A (1, 02) € Gols)(7)
— Since Wi-H(51)(@(51) € Uspeore WoH5)(@o(sh)). there exists s € (sh) such that (hf,hb) €
Wa.H(s4)(G(s4)) by Lemma [74]
— Also by Lemma [74| we have (vq,v2) € G(s5)(7).
— It remains to show sj 3 [s9, so].
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From s} € ¢(s}) and s}, € ¢(s1) we get 4 3 sh 3 so.
From 51 € [v(s9)] we know there is sy € ¢(31)
From s e B(s}) and s5 € ¢(s7) we get s5 Jpup 5.
Since sy € (¢ o1)(s9) we also get s Ty, s9 and thus s Ty, 9.
c) hh ¥ hl,el —* h/l H hl 7K1[el] A\ hgg‘hQ,eQ " hIQ S hg’lgl[eé] -
with s 351 A (B h:;ie Wi H(s))(Gy(sh)) A (e, e5) € S(Gy(s)), Ge(s)))(7') and
Vs1 Jpup 81 VG 2 Gy. (K1, K) € Kw, (G')(s1, s1)(7',7)
- Since W;.H (sl)(G¢(sl)) C US/2/€¢(S/1)W2.H(Sg)(&b(sa)), there exists s € ¢(s}) such that (hi,hb) €
Wa.H(s4)(G(sY)) by Lemma [74]
- Also by Lemma [74) we have (€}, e}) € S(G( ) G(s9)) ().
— From s4 € ¢(s}) and s € ng(sl) we get s§ J sh J so.
— It remains to show: Vs5" Ty s4. VG' 2 G. (K1, K3) € Ky, (G')(89, s5") (7', 7)
— So suppose s5" Jpup s4 and G’ 2 G.
- By definition of K, it suffices to show (K1, K>) € KW1 (G;)(sl,s’l”)(r 7) for any st e |U(sy')|.
— Since (h}, h}) € Wg H( 5)(G(s5)) €Uy vepsn Wi H(s7)(G(sY)), there exists s} € 1(sy).
— First, note that 6@ D) C<YT
- Second from s{’ € |1/J( 5| and s5’ Jpup sh and s € ¢(sy) we get s’ Jpup s7, which in turn yields
st Jpup 8 because s{ € (¢ o gb)(sl) -
— The claim then follows from Vs{ Jpup, s1. VG’ 2 Gy. (K1, K2) € Kw, (G')(sY, s{) (7, 7).

Part (2):

Suppose (K1, K>) € Ky, (G)(s3,52)(7',7), ice., (K1,K2) € nsle|w(s2)\KW1<&;)(5(1)’31)(7/97) for some s{ €
[¥(s9)]- -

Further suppose (v, v2) € G(s2)(7'). -

By definition of E’W2 it suffices to show (K [vl] Ks[vs]) € Ew, (Gy)(8Y,51)(7) for any s1 € [h(s2)].

Pick s, € ¢(s1), s0 sh € (¢ ot)(s2) and thus s Jpup So.

Hence (v1,v2) € G(s2)(7") € G(s5)(7") = Gy(s1)(7') by Lemma

The claim then follows from (K7, K3) € Ky, (Eﬁ)(s?, s))(7', 7).

|
Corollary 83. If ¢ : > W, : ¢ and G € GK(W>), then:
%
Vsa. (Vsl € [h(s2)]- (1, €1,€2) € By, (Gg)(s1,51)) = (7, €1, €2) € By, (G)(s2, 52)
Proof:
e‘
o Suppose Vs1 € [¢(s2)|. (T,€1,€2) € Ew, (Gy)(s1,51).
o We need to show (7, e1,e2) € Ew, (G)(s2, s2).
o Now suppose Wa.H(s2)(G(s2)) # 0 (otherwise there is nothing to show).
o From W5.H(s2)(G(s2)) C Uslew(%Wl.H(sl)(G(SQ)) we get ti? P(s2) with W1.H(s9)(G(s2)) # 0.
« By Lemma we know G(sz) = G (s7) and thus Wi.H(s?)(G}; (s?)) # 0.
— —
« Since also W;.H (51)(G52 (s9)) C Us seo(s0) W2-H(s3) (G (s9)), we have ¢(s)) # 0 and thus s§ € |1)(s2)].
« By Lemma it suffices to show (7, e1,€e2) € EWl(@)(s?, s1) for any s; € |9)(s2)].
o Since s, 5(1) € 1Y(s2) and thus s1 Jpup 3(1), this follows from the assumption by Lemma
|

Theorem 84 (Weak isomorphisms preserve equivalence). If ¢ : Wy =2 Wy : ), then: VA T, 7, €1, €3.

AT Fep ~wyea:7 <= AjT'Fep ~w,ea 7

Proof: By symmetry, it is enough to show A;I' ey ~w, ea: 7 = A;T'F ey ~yy, ez : 7. From the premise we know:

1y
2)
3)

a)

inhabited (W)

consistent(W7)

VG € GK(W1).Vs1.V¥d € TyEnv(A).V(y1,72) € Env(dT, G(s1)). (11€1,72e2) € Ew, (G)(s1, $1)(0T)
We prove inhabited (Ws).
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o Suppose G € GK(W5).

o From (1) we knoxv‘there is s1 such that (0,0) € Ié/‘l H(sl)(G¢(sl)) -
o From Wi.H(s1)(Gy(51)) € Uy, ea(sr) S1 Wa.H(s2)(Gy(s1)) we get so € ¢(s1) with (0,0) € Wa.H(s2)(Gg(s1)).
« By Lemma [74] we have (0,0) € W2.H(s2)(G(s2)).

b) We prove consistent(Ws).
o Let G € GK(W3) and (e}, eh) € S(Wa.L(s2)(G(s2)), G(s2))(T).
o We need to show (beta(e}), beta(eh)) € Ew,(G)(s2, s2)(77). -
« By Corollary , it suffices to show (beta(e}), beta(es)) € Ew, (Gy)(s1,s1)(7') for any s1 € |¢(s2)].
o Since ¢(s1) # 0, we have s5, € ¢(s1) and thus Gy (s1) = G(s5) by Lemma
o Since s5 € (¢ 01)(s2), we have sy Jpup S2 and thus »(s1) 2 G(s2).
« Thus we have S(Wa.L(s2)(G(s2)), G(s2)) C S(Wa.L E;j ), Go(s1)) € SWi.L(51)(Ga(s1)), Gg(s1)).
« Consequently, the claim follows from (2).
¢) We prove VG € GK(W3).Vs2.Vd € TyEnv(A).V(y1,72) € Env(dT, G(s2)). (y1€1,72e2) € Ew, (G)(s2, $2)(07).
o Let G € GK(Ws), § € TyEnv(A), (71,72) € Env(dl', G(s2)).
By Corollary it suffices to show (y1e1,7v2e2) € Ew, (Gy)(s1,51)(07) for any s1 € |1(s2)|.
Since ¢(s1) # 0, we have s5 € ¢(s1) and thus G4(s1) = G(s5) by Lemma
Since s5 € (¢ 0 1)(s2), we have sh Jpup, s2 and thus Gg(s1) 2 G(s2).
)

« Thus we have (71,72) € Env(0T, G(s2)) C Env(dT, Gy (s1)).
o Consequently, the claim follows from (3).

5) Examples.
Erased World.. For W € World, we define its erasure |WW| € World as follows.

IWI|.N = WN

WIS = {seWS|3GeQKW). WH(s)(G(s) £ 0}
[W|.3 = W.O

|W\.qub = ngub

WL = WL

IW|.H = WH

Note that erasing preserves inhabitance and consistency.
Theorem 85. 3¢, 1. ¢ : W = |W|: ¢
Proof: We define ¢, as follows:
os) = {
e(s) = |
It is easy to check all the properties of a weak isomorphism.
Flattened World.. For W € World, we define its flattening Flat(W) € World as follows.

Flat(W).S = W.S x Heap x Heap

Flat(W). 3 = {((s,h],h%),(s,h1,he)) | 8" D s}
Flat(W) =pub = { ((S/, h/la h/2)a (S hq, h2)) I s' pub S}
Flat(W).L(s, h1, ha) = WL(s)

Flat(W).H(s, h1, h2)(R) := {(h1,h2) } NW.H(s)(R)

Note that flattening preserves inhabitance and consistency.
Theorem 86. 3¢, 1. ¢ : W = Flat(W) : ¢

Proof: We define ¢, as follows:

o(s) := {(s,h1,ha) | h1,hs € Heap }
¢(8a hlahQ) = {S}

It easy to check all the properties of a weak isomorphism.
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F. Transitivity
Suppose A;T'F ey ~eg:0 and A;T F eg ~ e3: 0. The goal of this section is to prove A;T'Fe; ~e3: 0.
To this end, suppose we are given N. We may assume N = N; & Ny W A3 with names(T, o) N N3 = . Then there are
W1, wy, Wy, wse such that:
o Wi=w;T
o stable(w;)
e I'Fel~w,ea:cand ' ey ~yy, e3: 0
1) Constructing a Full World That Relates e, and es.
Type Decomposition.

Definition 20. We mutually inductively define 01 =~ g5 and o1 ~ o5 for o1,02 € Type as follows:
n~n if n¢AN;3
aR o
Thase ~ Thase
01X 0] RogXxah if oy ~oyANo]~db
o1+oy~oy+oy if o ~oyANo]~a)
o1 =0y Ry —oh if o) ~og Aol ~ )

L. 01 R Q. O if o1~ o9
Va.o1 ~ Va.og if o1~ 09
da. o] =~ Ja. 09 if o1~ 09
ref01 refch if g1 ~ 02
with
o1 ~ 09 if 01,00 € CTypeV o =~ 09

Definition 21. Since CType and N3 are countably infinite sets, there exists a bijective function
A € {(r1,72) € CType x CType | 1 # 72} = N3 .

Definition 22. Given o € Type, we define 0(;), 0(2) € Type recursively as follows:

A . 7; if n = A(m,72) for some 71,75
D) '_ n otherwise, i.e., n ¢ N3
i) =@

Thase (1) ‘= Thase
o xoa') = o) X o),
(1) ()
(0 + 0’) = owtog,
o—=0d)s = ou =0y
(1) (i)
(Vau. U)( ) = VYa.oq
(Fa.o)y) = Ja.og
(poo)uy == poog
(ref o) (s = refoy

Lemma 87. For o € Type,
o) € CType Ao(g) € CType <= o € CType

Proof: By straightforward induction on o. [ ]

Lemma 88. For o € Type,

(1) ~ o2
Proof: By straightforward induction on o. [ ]

Lemma 89. For o € Type,
0(1) ~ 0(2) = O ¢N;|

Proof: Straightfoward to show by case analysis on ¢ using Lemma [ ]
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Lemma 90 (Injectivity of Type Decomposition). For 01,05 € Type,

O1(1) = 02(1) NO1(2) = O2(2) = 01 = 02

Proof: Easy to show by induction on o1. We just show the following representative cases.

when o1 = A(7y,72) € N3:

- We have o, € N5 by Lemma [89]

— Thus we have 07 = A(71,72) = 02 since A is bijective.

when o1 =n ¢ N3:

— By case analysis on o5, we have g9 € TyNam.

- By Lemma[89] we have o2 ¢ N3.

— Thus we have 0o = n = o7.

when o1 = o] — o}

— By Lemmas and we have oo ¢ N3.

— By case analysis on o2, we have oo = 0} — o for some 04,04 € Type.
— Then we have o/ ;) = 0 ;) and o7 ;) = 03 ;) for i =1,2.

— Thus by induction hypothesis we have o} = o A o) = o, which yields o1 = 0.
when o7 = Ja. o

By Lemmas [88] and [89] we have oo ¢ N5.

By case analysis on o2, we have oo = Jav. 5 for some o) € Type.

Then we have oy ;) = 05 ;) for i =1,2.

Thus by induction hypothesis we have o] = o}, which yields o1 = 0.

|
Lemma 91. For 01,092 € Type,
o] ~ 0y =—> do. o) =01 N0 =02
Proof: Easy to show by induction on o;. We just show the following representative cases.
If 01 # o9, then 01,02 € CType and we are done for 0 = A(oy, 03). Otherwise we proceed as follows:
e« when 01 = n € TyNam:
— From o7 = 09, we have 05 =n ¢ N3
— Thus we are done by letting o = n.
e when o0 = o] — o
— From oy = 09, we have o9 = 0 — o such that o} ~ o} and o} ~ o¥.
— By induction hypothesis, we have ¢’ and ¢” such that O’Ei) = o} and O’E,i) =0} fori=1,2.
— Thus we are done by letting 0 = ¢’ — o”.
e when o7 = Ja. of:
— From o1 = 09, we have oy = Ja. ¢} such that o] ~ 5.
— By induction hypothesis, we have ¢’ such that O’Ei) =o, fori=1,2.
— Thus we are done by letting o = Ja. o”'.
|

Corollary 92 (Surjectivity of Type Decomposition). For 71, 75 € CType, we have 7 € CType such that 7(;) = 71 AT(2) = To.

Proof: Since 71 ~ T2 by definition, we have o € Type such that o(;) = 71 A o(2) = 72 by Lemma @ Hence o € CType

by Lemma u
World Construction.

Definition 23. Since CType and CVal are countable sets, there exists an injective function

I € CType x CVal x CVal -+ N .

Definition 24. Given R € VRelF, we define Ry}, Risy € VRelF as follows:

Rgy = {(rq),v1,I(1,v1,v3)) | 7 € CTypeF \ (N U {ref 7" € CType}) A (1,v1,v3) € R}
{(7(2),X(1,v1,v3),v3) | 7 € CTypeF \ (N U {ref 7" € CType}) A (1,v1,v3) € R}

Rygy
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Definition 25. For X, X5 € VRel, we define X; ¢ X5 € VRel as follows:
(Xl.XQ)(T) = Xl(T(l))OXQ(T(g))
Note that this is well-defined due to Lemma [87]

Recall that for a monotone function F' € VRelF — VRelF and R € VRelF, we write [F]}, for the least fixpoint of the
monotone function F'(—) U R.

Definition 26. We define W € World as follows:

W.N =N

wW.S = W1.S x WL.S

w.C ={(p.p)|plCp.1AP2Cp .2}

w. Epub = { (pap/) | pl Epub p/~1 A p2 Epub P/-Q }

W.L(s1,$2)(R) = {(r,v1,v3) € Wl.L(sl)([Wl.L(sl)}*R{l}) ) Wg.L(Sg)([Wg.L(Sg)]Em) | 7 € CTypeF \ N3} &
{(n,01,03) € [W1.L(s1)]R,,, ® [WaL(s2)]},,, I € N3}
W.H(s1,s2)(R) = Wl.H(sl)([Wl.L(sl)]}‘g{l}) o WQ.H(SQ)([WQ.L(SQ)]}}{Q})
It is easy to check that W is well-defined.

Transitivity of Value Equivalence.

Definition 27. Given G € GK(W) and (s1,s2) € W.S = W1.S x W3.S, we define G} € W1.S — VRelF and G(;, €
W5.S — VRelF as follows: ;

Ggf)(s) p— [W1 L(S)}G(s 52){1}

G = Lo n

Lemma 93.
1) VG € CK(W).Vsy € Wa.S. G2, € GK(W))

Proof: We only show part (1) since part (2) is analogous. Monotonicity of G‘zf) is easy to show by induction, using that G
and (—)¢y and Wy.L are monotone.
It remains to show G‘Zf)(sl) >WIN W L(s) ) (G 1)(31)) for any s;. For 7 € CTypeF we know:

—ref )
Gy (s1)(7)
- [ ( )]E 51 52){1}(7—)
= W1 L(s1)([W ]G(sl,SQ){l})(T) U G(s1,82)(13(7)
= Wil(s )(Gfi)( 1))(7) U G(s1,82)(13(7)
The claim follows from this and the fact that by construction G(s1,s2)(13(n) = 0 = G(s1,52)1}(ref 7') for any n €
Wi.NCN and 7. ]
Lemma 94. VR € VRelF. V7 € CTypeF \ (M U {ref 7’ € CType}).
Vs1, Ry. Wl.L(Sl)(Rl)(T(l))OR{Q}(T(Q ) A
VSQ, RQ. R{l}(T(l)) o WQL(SQ)(RQ)(T(Q)) (Z)
Proof: We only show the former part since the other part holds analogously.

o When 7 € TyNam \ V: holds vacuously since W;.L(s;)(R;)(7(;)) = 0.

o When 7 = 7/ — 7”: holds vacuously since vo € FunVal for any (v1,v2) € Wi.L(s1)(R1)(71y) but I(7,v1,v3) ¢
FunVal for any 7, vy, vs.

o When 7 = Va. o: holds vacuously since vy € GenVal for any (vi,v2) € W1.L(s1)(R1)(7(1y) but I(7,v1,v3) ¢ GenVal
for any 7,v1,v3.

]
Lemma 95. VR € VRelF. V7 € CTypeF \ (M U {ref 7’ € CType}).
Ry (1)) © Ryzy (72)) = R(7)
Proof: By construction of Ry and Rygy, the injectivity of I, and Lemma [ ]
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Lemma 96.

V1 € CTypeF. VG € GK(W). V(s1,s2) € W.S. (G’?f)(sl) o Gfé)(SQ)) (1) = G(s1, 82)(T)

Proof: By case analysis on 7.

e when 7 =n € N5:

G ) () 0 G, (52) ()
= W.L(s, 82)(G(817 $2))(n) (construction of W.L)
= G(s1,82)(n) (G € GK(W))

e when 7 =ref 7’/ or 7 € N7 WANG:

G (51) (1)) 0 Gy (52)(7(2))

G (s1)(1(1)) © G (3 (52)(7(2))

(W1.L(s1)(G (3 (51))(7(1)) U G(51, 82) 13 (7(1))) © (W2 L(52) (G5 (52)) (7(2)) U G (51, 82) 12} (T(2)))
GS

(fixpoint)
Wi.L(s1)( (1)( 1))(ty) © WQ.L(SQ)(GE)(SQ))(T(Q)) (construction of (—);})
W.L(s1,52)(G(s1,52))(T) (construction of W.L(s1, $2))
G(s1,82)(T)

(G € GK(W))

e when 7 € CTypeF \ (N U {ref 7' € CType}):

G (s0)(r) © G (52) ()
Gty (s1) () OG(Q)(S2)( T(2))
(W1.L(81)(G?%)(81))(7'(1)) U G(s1,82) 3 (m(1))) © (W2~L(52)(G?§)(82))(7'(2)) UG(s1, 52) 2 (72))

(fixpoint)

(W1.L(s1)(G3) (51)) (1)) © Wa.L(52)(G (3 (52)) (7(2))) U (G (51, 82) (13 (1)) © G (51, 82) 12 (T(2)))
(Lemma [94)
W.L(s1,52)(G(s1,52))(7) U (G(51,52) 11} (T(1)) © G(81, 82) {2} (T(2))) (construction of W.L(s1, $2))
W.L(s1,52)(G(s1,52))(T) UG(s1,82)(T) (Lemma [93)
G(s1,2)(7) (G € GK(W))

Recall that R is the least fixpoint of the monotone function F : VRel — VRel given as follows:

FR<X)(Tbase) = IDTb

FR(X)(n x73) = {((Uhvl) (v2,05)) | (v1,v2) € X(71) A (v], 5) € X(72) }

Fr(X)(r+m2) = {(inj vi,inj' v2) | (v1,v2) € X(71) } U {(inj* vy, inj* v2) | (v1,2) € X(72) }
Fr(X)(3a.o) := {(pack v, pack ve) | 37" € CType. (v1,v2) € X(o[7'/a]) }

Fr(X)(pa.o) = {(roll vy, roll va) | (v1,v2) € X(co[ua.c/al)}

FR(X)(T1—>T2) = R(T1—>T2)

Fr(X)(Va.o) = R(Va.o)

Fa(X)n) = R(n)

Fr(X)(refT)  := R(refr)

Lemma 97.

V1 € CType \ CTypeF. (Fg,(X1) e

Fr,(X2))(7) = Fr(X1 e X3)(7)
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Proof: Easy to check by case analysis of 7. We show the only interesting case, 7 = Ja. o:
(v1,v3) € (Fr, (X1) @ P, (X3))(Fev. )

<= Jui,vh,v5. v = pack v] A vg = pack vj A (pack vl, pack vy) € Fr, (X1)(3Fa. o(1)) A
(pack vy, pack v3) € Fg,(X2)(3a.o(z))
<= v, vy, vs. 311,79 € CType. vy = pack v] A vz = pack v5 A (vy,v5) € Xi(oy[r]/a]) A
(v3,v3) € Xa(0(9)[72/al)

< i, vh, v I’ € CType. v; = pack v] A vz = pack v A (v, v4) € X1(a(1)[7'(1)/a])

(vh,v4) € XQ(O'(Q)[T(2 /a])  (Corollary 02)
<= Jvj,vy,v3. 37" € CType. v1 = pack v] A vz = pack vy A (v}, vy) € Xq(o[r" /1)) A

(vh. %) € Xa(o[r' /)
< Joi,vh,vh. 37" € CType. v; = pack v] Awvg = pack v§ A (v],v5) € (X1 @ Xa)(o[r'/a])
<~ (v1,v3) € Fr(X; @ X2)(3a.0)

Lemma 98 (Generalized Fixed-Point Induction). For a monotone function F' € VRelF — VRelF and R € VRelF,
F(RN[F];)CR = [F]; CR

[F]- Thus we have

Proof: Suppose F'(R N [F ]8) C R. By monotonicity of F, we have F(R N [F]; F([F)5) =
CR. [

) *
F(RN[F];) € (RN[F];), i.e, RN[F]; is a prefixpoint of F'. Thus we have [F]j; C (Rﬁ [F];,?)

Lemma 99 (Transitivity of Value Equivalence).
VG € GK(W). V(s1, s2) € W.S. G?f)(sl) ° G?é)(SQ) = G(s1, 52)

Proof: First part (C): It suffices to show G(l)(sl) C S, where:

S = {(r,v1,v2) | V7', 05. T = (1) A (7(2), v2,03) € Gy (s2) = (7", v1,v%) € G(s1,82) }
We prove it using Lemma|9_8|, i.e., it suffices to show FG§12>(51)(S’ )C SforS"=5Sn GSz ( 1), which is equivalent to show
FG;Q)(&)(S ) @ G1 (s9) € G(s1,52) by definition of S.

(2

o 7 ¢ CTypeF:
(FGSZ‘ (51)(5) (2)(52))( 7)
= (Forzen(5) # By (1) (@) (52))(7)
= Fg(sy,s) (S ® G‘a)( 2))(7) (Lemma [97)
C Fg(sy,0)(G(s1,52))(7)
= G(s1,52)(7)
o 7 € CTypeF:

(Forg () (8') # Gy (52)) () € (G2 (52) # G2y (52)) () = Gl 52)(7) = Glor,a)(r)  (Lemma 08)
Second part (2): By induction it suffices to show Fi(s, s,)(G(7)(51) @ G(5(s2)) C G(7)(s1) @ G5 (s2).
o 7 ¢ CTypeF:

F(s1.52) (G (51) @ G5 (52))(7)
= (Fazz o (G (1) @ Fay (0 (G3) (s2))(7) - (Lemma B7)

= (G (1) 0 Gy (52))(7)

o 7 € CTypeF:

Fetor o (@01 » Ty (52)) (1)
G(s1,82)(T)
(G1)(s1) @ G5 (s2))(7) (Lemma [96)
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Transitivity of Term Equivalence.

Lemma 100 (Transitivity of Term Equivalence). If G € GK(W) and (sY,s3), (s1, s2) € W.S, then:
1) Ew, (G{}))(s, 51)(11)) © Bw, (G(5)) (53, 52)(7(2)) € Ew (G)((s7,55), (s1,52))(7)
2) KW1 (G(1))(317 81)(7_(1)7 71—(1)) o KWz (G(z))(sgﬂ 82)(7—(2)7 7T(2)) c KW(G)((S% 88)7 (817 82))(7', 77)
Proof: Let
Ejy (G)((3, 89), (51, 52))(7) = Ew, (G22)) (5%, 51) (7)) © B (G23)) (53, 52)(i2))
Kiy (G)((sY,59), (s1,52))(7,7) = Kw, (G{})) (51, 51) (T1), m(1)) © Ky (G3)) (53, 52) (T2, 7(2))
Now it suffices to show that E{;,, K{;, forms a post-fixpoint.

We first consider K7{;,. We suppose

. (7’(1), T(1)s Ky, KQ) S KW1 (fo))(sl, 31)

. (T(z), T(2)5 Ko, K3) S I(V[/2 (G?Q))(SQ, 82)

. (T, U1, 1}3) S G(Sl, 82)
and must show (7, K1[v1], K3[vs]) € Ejy,(G)((sY,53), (s1, s2)). By Lemmathere is v2 such that (7(1),v1,v2) € G(})(s1)
and (7(),v2,v3) € G‘(g)( 2). Hence we get:

o (m(), Kilv1], Ka[vo]) € Ew, (G(7))(s1, 51)

o (T(2); Ka[va], K3[vs]) € EWz(G(g))(Sg,Sz)

By definition of E};, we are done.

We now consider Ey;,. Suppose (7(1), €1,¢€2) € Ew, (GS2 )(sY, s1) and (7(2), €2, €3) € Eyy, (GS )(52, $2). Further suppose
(h1,h3) € W.H(s1,52)(G(s1,52)) and hY, kY € Heap such that hy WA hs WA defined. By construction of W.H, we
have hy such that (hq,hs) € Wi.H(s )(Gs"’)) and (hg,hs) € Wa.H(s )(Gsl) By Lemma [29 . from consistent(Wi),
(T(1), €1, €2) € By, (Gfl))(sl,sl) and G?’f) Wi. (Gs2 ) U G(s1,52){1}, We get three cases by letting h§ = (). For each
of these, again by Lemma [29| and letting h5 = (), we get another three subcases from consistent(Ws) and (7(2), €2, €3) €
Ew, (G(z))(sg, s2). So there are nine cases in total.

1) (1) hy WAE, e <% A ha, €5 ¥

(1) ha,ea =¥ A hgWhE eg —¢

We are done because hy & hi' e; —“ AhsWhE, ez v,

2) (1) hy WhY eg < A hg,eq —¢

(2) ha,eq —* hby, v A h3 W hE e3 —* hi, v3

This is a contradiction by determinacy.

3) (1) hy WhAY ep <% A hg,eg ¢

(3) ha,e2 —* hby, Koleh] A ha W hE, es —* by, Ks[es] with (77, €, €}) € S(G(s1,85) 23, Gy (82))

Since ey = I(7, f1, f3) v2 or €5 = I(7, f1, f3)[] for some 7, f1, f3,v2, we know by determinacy that es eventually gets

stuck. This is a contradiction.

4) 2) hy W hl eq —* By WAl v) A hg,es <* hb vy with 8§ 3 [s9,51] and (h},h)) € WlH(s’l)(G‘(sf)(s’l)) and

(7‘(1), U1, ’UQ) S sz)(s’l)

(2) ha,ea —* hY,vh A hg W hY e3 —* hiw hi vz with s 3 [s9,s0] and (hY,h}) € Wa.H(s5)(G(5,(s3)) and

(T(2), V3, v3) € G, (sh)

By determinacy we have hy, = hf and vy = v}. Since fo)
(t,v1,v3) € G(s},s)) by Lemma . Similarly, (h},h5) € W.H(s
(s1,55) 3 1(s9,59), (s1,52)], we are done.

5) (2) hy WhY eq —=* Wi WAl v A hg,ea —* Ry, vy

(3) ha,eq —* hY, Kyleh] A hg W hE ez —* by W hE | Kjles] with (77, ¢eh,e4) € S(G(s1,53) {2y, G(3)(53))

Since ey = I(7, f1, f3) ve or e, = I(T, f1, f3)[] for some T, f1, f3, v2, we know by determinacy that e; eventually gets

stuck. This is a contradiction.

6) (3) hi WhAY 1 —* I WhE, K1 [eh] A ha,ea 5™ I, Kaley] with 8| 3 sy and (R, hb) € Wi.H(s! V(G (s1) and
(7',¢e},¢€h) € S(G(s’l,SQ){l},G‘Ef)(s’l)) and Vs{ Jpup $1.VG' D fo). (', Ty Kl,Kz) € K, (G')(s9, s )
(3) ha,ea —* hY, Kh[e§] A ha W hi es —* by whi, Ksle] with sh 3 so and (hY,h%) € Wa.H (s5)(G{3)(s5)) and

(7", e5) € S(G(s1, 8’2){2},G?§)(3'2)) and Vs Jpup s5.YG D Gg) (7", 7(2), K2, K3) € Ky, (G’)(sg,sg)

(1) (2)(s5) S G?ﬁ)(S'Q), we have

(51) C G (sh) and Gy
1,85)(G (s}, s5)) by construction of W.H. Since
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By definition of S, G(s}, s2){1} and G(s1, s5)(2}. there are four possibilities.
a) We have for some 7,7, f1, f3,v1, V2,
o ¢y = fiviand ey = I(T — 7, f1, f3) vo and 7/ = T(y)
o (T—7,f1,f3) € G(s1,52) € G(s1,53) and (T(1),v1,v2) € G(l)( 1) C G(l)( )
and for some 7,77, f], f§, v}, vs,
o ey =17 =7, fi, f3) v and e5 = f3 v and 77 =7,
o (7" =7, f1, f35) € G(s1,85) C G(sh,85) and (7(,),v3,v3) € G 2)( 5 C G 2)(52)
Since both €}, and el are stuck, we know by determinacy:
e hy=h{and Ko = K5 and I(7 — 7, f1, f3) = X(7 — 77, f{, f4) and va = v}
Since I is injective, we also have:
e 7=7and T=7"and f; = f{ and f3 = f}.
Since e = f3 vz A (f1, f3) € G(s1,85)(T = T) A (v1,v3) € G(s}, $5)(T) by Lemma we have
o (T,eh,e3) € S(G(s1,55), G (51, 55))-
Since (1,15) € WiHGDGH (1) € WiHE)GH () and (405) € WaHE)(GR ()
Wo.H(st )(G(Q)(sz)), we have
o (81,85) 3 (s1,82) and (K}, h5) € W.H(s), s5)(G(s], s5)) by construction of W.H.
It remains to show that V(51,82) Tpun (81, 85).VG' 2 G. (7,7, K1, K3) € Ky, (G)((s9, 89), (s, s5)).

157 s1
Since G(1) D) G and G(Q) D) G(Q), we have

(T 71y K1, Ko) € K (G73)(s1,87) A (7, 7(2), Ko, Ka) € K, (G3)) (59, 55)
Note that 7/ = 7(1) and 7" = 7(9).
Thus, by definition of K};,, we have (7,7, K1, K3) € K/, (G")((s9, 59), (s7, s4)).
b) We have for some o, 71, f1, f3,
o ¢y = f1]] and €5 = I(Va. 0, f1, f3)[] and 7" = o(1)[T1 /]
® (VOK g, f17 f3) € G(S/la 32) C G(8/17 8/2)
and for some o', 73, f1, fi,
o e5 =I(Va.o', fi, f3)[] and e5 = f3[] and 7" = o(,[72/0]
o (Va.o', f1, f3) € G(31752) C G(s1, )
Since both e}, and ef are stuck, we know by determinacy:
e Wl =hY and Ky = K} and I(Va. o, f1, f3) = I(Va. o', f1, f4).
Since I is injective, we also have:
e oc=0c"and f1 = f] and f5 = fi.
Since e = f3[] A (f1, f3) € G(s], s5) (Vo o), we have
o (o[T/al,el,e3) € S(G(s1,55),G(s,53)) for some T with 7(1) = 71 A T(9) = T2 by Corollary
Since (1,15) € WiHGD(GH () € WiHE)GH ) ad (1) € WaH(E)(GR(h)
Wo.H(st )(G(z)(SQ)), we have
o (81,85) 3 (s1,82) and (K}, h5) € W.H(s), s5)(G(s], s5)) by construction of W.H.
It remains to show that V(51,82) Tpub (81, 85).VG' 2 G. (0[7/a], 7, K1, K3) € Ky, (G')((s9, 83), (s1, s5)).

/S
Since G(1) G and G(Q) D) G(Q), we have

(T » T(1)» K17 KQ) € KWI (G/(ié)(s(fv 8/1/) A (71/77—(2)7 K27 K3) € KW2 (Gl(zl))(sgv 5/2/)

Note that 7" = 01\ [T1/a] = o[T/a]) and 77 = o(9)[Ta/a] = o[T/a](2).
Thus, by definition of K};,, we have (¢[7/a], 7, K1, K3) € K}, (G')((s?, 59), (3’1’, s5)).
¢) Proceeding as in the previous two cases, we get e;, = I(T — 7, f1, f3) ve and e = I(Va. 7', f1, f4)[] and later then
e, = el), which is a contradiction.
d) Similar to the previous case.
7) The remaining three cases (2)(1), (3)(1) and (3)(2) are symmetric to (1)(2), (1)(3) and (2)(3), respectively.
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Transitivity w.r.t. the Full World.

Lemma 101.

A;TkHey~wez:o

Proof:
We show inhabited(W).

o By Lemma [13| we have [W;] € GK(W;) forz =1,2.
o From inhabited(W;) for i = 1,2, we have s such that (0,0) € Wi H(sO) ([W3](s9)).
o Thus, for any G € GK(W), we have
(0,0) € WiH(s )([Wg](s?)) o Wa.H(s2)([W2](s3))
C Wh.H(s )(G 2 (s9)) o Ws. (s%)(G@)(sg)) (Lemmas [93] and [T3)
= W.H(sY, 8)(G(8(1), M) (construction of W.H)

—

We show consistent(W).

o Suppose G € GK(W) and (e}, e5) € S(W.L(s1, s2)(G(s1, $2)), G(51, 52)) (7).
o We need to show (beta(e]), beta(eh)) € Ew (G)((s1,52), (s1,52))(77).
« By definition of S and W.L, and by Lemma there is e}, such that

(¢} €5) € S(Wi.L(s1)(G2 (1)), G2 (51)(77) and

(e2,€3) € S(Wa.L(s2)(G (5 (s52)), G ( 2))(7(3))-

o From consistent(W7) and conszstent(Wg) we get
(7(1), beta(e}), beta(es)) € EW1( H)(s1,81) A (7(2), beta(es), beta(es)) € EWQ(GE;é))(SQ, E

« By Lemma [T00] we are done.

We show VG € GK(W).Vs1,52.¥0 € TyEnv(A).¥(y1,73) € Env(oT', G(s1, s2)).
(60,71€1,73€3) € Ew (G)((51, 82), (51, 82)) -
By Lemma [99] there exists - such that
(71,72) € Env((T) (1), G3)(51)) A (72,73) € Env((0T)(2), G5 (52))-
o Since names(I') N N3 = ), we have (0T)¢;y = d(;)T.
o From A;T'F ey ~yw, e2: 0 and A;T' - eg ~ywy, e3 : 0 we thus get:
(010, me1,72e2) € Bw, (G(7)) (51, 51) A (6(2)0,72€2,73€3) € Ew, (G(3)) (52, 52)

Since names(o) N N3 = 0, we have 00 = (d0) ;).
Thus, by Lemma [100} we have (0o, v1e1,7vse3) € Ew (G)((s1, $2), (51, $2)).

2) Constructing an Isomorphic Lifted World. We now come to the second part of the proof. Recall that the goal is to
show A;T'  e; ~ e3 : o and that, to this end, we already assumed a set of names N to be given. Hence we must find
w € LWorld such that:

) wNCN
2) stable(w)
3) AsTFep ~yreg: T

We will now construct such a w. However, instead of showing (3) directly, we will rely on Theorem @ and Lemma |'H_T1'|
and just show that w7 is isomorphic to W.

Definition 28. For s.¢,s); € Wiet.S, we define sy£\[1750¢, 5cf\ 25 € Wiet.S as follows:

sef\pysee = (7,01, 02) € sop | VT U (T, 00, 0) & sl }
srf\ms]’rf = {(1,01,02) € sp | VT 0. (T, 0 4s) ¢ sls }
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Definition 29. We construct w € LWorld as follows (recall that W; = w;?).

w.N = W.N

w.S = WS

w. J = W.3

w. ;pub = W ;pub

w'L(SFf)(sgﬁsllmsff’ Slzc)(R) = {(T ’U1,U3) € WL( Sif> Slc’ rf’Slc)( ) ‘ vr'.oT # I’efT,}
w'H(Srf)(S%faSllcvsgf’sfc)(R) = {(hlvh?)) | i = Srf.srf A 3T, by, hs g, ha s hay, gy, b3, h3.

ha = B W R A B 6 RIS = RS 6 RIS A g = b AL A
dom(hlgca) N dompy(sk) = 0 A dom(hk) N dom[l]( rf) =0A
(15,152 € W HOsk\upsee) (V2L (sh )T ) A

(I ) € wr H(s3 ) (5L (W2 L (sl 5t ) A
(hgmhg) € Wrcf-H( rf\[Z]srf)([W2 ( ?fﬂslzc)]}i{z}) A
(1l 1) € w3 H(2) (52 (W L% 52 T ) )

F
Definition 30. For G € GK(w?), we define G € W.S — VRelF as follows:
P
G (S%fa Sllc’ S?f’ 312c) = G(‘S}f ® ng) S%f’ Sllc’ Sffv 512c) :

Lemma 102.

I‘f’ rfEWrefS — Sf.SfEWrefS

Proof:

e Since s}f and sff are finite by assumption, s}f ° sff is finite, too.

o Now suppose (7,01,03), (77,01, 05) € sl o s%.

o Then there is {3 such that (7(1), (1, {3) € sk and (7(2), {2, l3) € s%.

» Also there is £ such that (7(;), 61, 65) € s, and (7(y), 05, 03) € 3.

o Now further suppose ¢; = ¢} (the reasoning for ¢35 = ¢5 is analogous).
o From the assumption we get 7(1) = T(’l) and (o = 0}.

o From the latter and the assumption we get 7(2) = T(’Q) and (5 = (5.

o It thus remains to show 7 = 7/, which follows by Lemma

|
Lemma 103.
1) If 8% 3 sl and 8% 3 s%, then 3 o §2f 3 slf o s%.
2) If 8 Jpub sip and 8% Jpup s%, then §); @ 5% Ty, sk @ 2.
Proof: Easy to check. [ ]

Lemma 104. For G € GK(wt), we have G € GK(W).
Proof: We know from Lemma and G € GK(w?) that @ is monotone. It thus remains to show Vs. E(s) >W.N
W.L(s)(G(s)):

o Suppose s = (sk, s, s%, s%.) and T are given.

« From G € GK(w?) we know G (s)(7) >¥N wt.L(s, e sff,s)(%_}’(s))(T)
« Note that w.N = W.N.

o If 7 is not of the form ref 7/, then we have:

whL(siy o 555 (G () (7)
= w.L(sy :_s?f)(s)(G(s))(T)
=W.L(s)(G(s))(7)
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e If 7 = ref 7/, then we have:
whL(sly o 5%, 9)(G(s))(7)
— Wiet.L(slk 0 s2)(G(9))(7)
= (Sif hd Sff)(T/)

= S%f(T(ll)) ° Sff(T(/z))
= Wrer-L(s30) (W1 L(sys, 51c) o) (W) ° rer L(sT) (W2 L (s, st o) T2)

}
= WiL(sep, si) (W-Lisiessicll ) ) 0) @ WaeL s, si) (We L(sie sl ) ) (7o)

£
G

— (Wi Lske sk (W1 Lsie sty ) o Wl (s s (W (st st )l ) )(7)
<_
= W.L(s)(G(s))(T)
|
Lemma 105. w.N C N/
Proof: By construction. [ ]

Stability.

Definition 31. Lemma (99| gives rise to a choice function mediate that, given G € GK(W) and (7,v1,v3) € G(s1,52),
returns a value vy = mediate(G, 51, 52,7, v1,v3) such that (7(1),v1,v2) € fo)(sl) and (7(2),v2,v3) € GE)(SQ). We usually
leave out some arguments of mediate that are clear from context.

Lemma 106 (Stability of w). stable(w)

Proof:
o Suppose G € GK(w?), s = (sk, sk, s%, s2), (h1, h3) € w.H(s:t)(s)(G(sst,5)) and 8¢ I sy
« Further suppose (73, h3) € WierH(5:¢)(G(354, 5)) and defined(hy @ h?) and defined(hs & h3).
o We must find § = (8%, 8L, 8%, 82) Dpup s such that (h, hs) € w.H(3:)(8)(G (5, 3)).
o From (hy,h3) € w.H(s:)(s)(G(s:t,5)) we know that there are h$, hi¢, hS,, hi,, hS,, b, hS, b such that:
1) hy = hy WA A RS, WhY, = hg, WhiS A hy = h3 WhAY
2) dom(hk,) Ndompy(sk) =0 A dom(hIQCb) N domyy (s%) =0
3) (hy,h3 )e Wiet- H( rf\[1]Srf)(G1)
4) (b IC hs,) € wiH(sk)(s1.)(G1)
5) (hgb’ho) € Wher. ( rf\ srf)(GQ)
&) (hfy. hiF) € wnH(s)(52)(C)
where G; is short for [W L(s rf7slc)}G(srf_’s)m.
o We know §,¢ = s,¢ Ws* for some s?.
o For each (7,01,(3) € s* we pick a fresh location €(, ¢, s,).
o Now let 8% = sl W { (1), €1, {(r 0, 05)) | (7.01,03) € s7) }.
o And let 8% = 536 { (7(2), Urpiny £3) | (7.0, ) € %) .
o Using s,f, sk, 8%, 8¢ € Wier.S and s, = sl @ s%, it is easy to see that 31 @ 8% = 3.
o We show 8, 8% € Wyet.S:
We do only one part, the other is symmetric.
Suppose (77, 41,02) € sk and (7,01,03) € s*, i.e., (7,01,03) € éut \ Sut-
We derive a contradiction.
Since ¢1 € dom(h$) and defined(hy ¥ h?), we get £1 ¢ dom(hy) D dom(hS).
From (3) we learn ¢; ¢ domyy)(sf; \(1) $:¢), and hence £1 € dompj(sye).
Consequently there is 7"/, ¢4 such that (77, 1,05) € s;¢ C Syt.
Since (7, /01,43) € s* C 4,4, we learn 7 = 7" and (3 = ¢4.
This contradicts (7,01,03) & sqs.
o 8. 05! ¢¢ holds by construction.
o From (h$,h3) € Wier.-H(5:t) (G (3us, s, 51, 5%, s2.)) we know by monotonicity that
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(iLI,iLS) € Wrcf H(5, )( (315 Sie» 572 51.))-
« Note that G € GK(W) by Lemma |104
« We define:
7) B = he W he "
8) h. = {Zszediate(G,T, h;(£1)7 hg(ﬁg)) ‘ (T(l),él,gz) S §%f A\ (T(Q),Eg,ég) S §ff}
9) hif, = hgw h3,
10) hgfb = h$ W h,
1) By = hgw h3
o It is easy to check that:
- dom(h}") = domy(5}) A dom(h%,) = domjg (5})
- dom(h%}) = domyy)(5%) A dom(hs) = domyy(5%)
o Since G(syt,8) = E( ) we know from (3-6) by monotonicity:
12) (k. h54) € Weee H(sle\ysoe) (G ;’Sl%sif,sﬁ;))

13) (hlF,hk,) € wy H(s! ><slc><G§igf7Sk (s 5%))

1) (15,15) € W MG\ ) (G 5 52)
15) (hk;, hls) € ws.H(s? ><slc><GE;3f’“° (5% 52))
« Using (6-11), (13), and (A3, hS) € Wref.H(grf)(E( rf,slc, §%,s%)), it is easy to check that:

~ (3%, lc
= V(71,01,42) € 84 (1, W (6h), hE, (62)) € G( rf (81> 51e)

),h
= V(12, b2, £3) € 8% (1o, hi (£2), 3 (63)) € G“rf’*c’(éff,s?)

lc

« Consequently we have:
16) (Wi, h,) € Woer H(3H) (G (55 (5L, 5L))
fe)

(8l st
17) (b, i) € Wier. H(3 rf><GEQ;* ENS)

o From (1-2), (7-11), (16-17), defined(hy W izl) and defined(hs W h;) it is easy to see that:
18) defined(h¥ W htt) A defined(hk, w hE)
19) defined(hk W hil) /\deﬁned(h1C hrf)
o From (13), (16), (18), and stable(wl) we get 8}, Jpup st such that
<— 82
(hllc7h ) € wy. H( rf)(sllc)( ri ) ( rf7slc))
« From (15), (17), (19), and stable( o) we get 82 Jpup st such that
(1, 1) € o H(S2) (82) (GG (3, 52)).
« Thus by monotonicity we g((ai Y
(hle,Bk,) € wi. H<:f><st%c><Gﬁiy’%)(s%pslc>> and
(Bl ) € wa H(32)(32) (G 55 (82, 82).
a2 a2
« From (12) we get by monotonicity (h,h3,) € Wrer.H(8%\ 1) )(Egigf’slc)(s%f,sllc))
because 8%\(1)8r¢ = sip\[1] 5t
« From (14) we get by monotonicity (h3,, h3) € Wiyer.H($ Tf\[Q]srf)(EE 5 1C)(sff,§lzc))
because srf\ 18rf = Srf\[g]srf.
« Hence (hl,hg) € w.H(8:) (8L, 51, 8%, 82) (G (541, 8L, 81, 8%, 82.)) by construction of w.

Isomorphism.
Lemma 107 (Isomorphism between W and w?). J¢,¢. ¢ : W Z wt : )
Proof: We define ¢ € W.S — P(wt.S) and ¢ € wt.S — P(W.S) as follows.

¢(53f’811ca8?f’312c) = { (ng .Sffvsgﬁsllc?s?f’sfc) }
1 1 2 2 : ol 2
1/’(5 ¢ 31 81 82 82 ) — { (Srf7 Sler St Slc) } if Srf = Spp @ Sif
Py Pler Prfr Ple S 0 otherwise
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It is easy to see that ¢ 09 Jpyp id and 1) o ¢ Jp,up, id. So it remains to show that ¢ and 1) are world morphisms:

1) To show: ¢ : W — wt
a) To show: W.N = w1.N
o WIIN = Wir.NWw.N=w.N=TW.N.
b) To show: Vsy, ). s1 C ) = Vsa € ¢(s1), 55 € ¢(s)). s2 C sh
« This boils down to the fact that s!. e s% C 3l e 5% if sl, C 5!, and s% C 52.
¢) To show: Vs1,s). s1 Cpub 8] = Vsa2 € @(s1), 55 € ¢(s]). s2 Cpub Sh
e See (1b).
d) Vs1.Vsy € ¢(s1). W.L(s1) = wt.L(s2)
o In fact, we show Vsl si, s%, s2. W.L(sk, sk, %, s2) = w.L(s) @ s%, sk, si., s%, s.).
For non-reference types this is immediate:
W.L(s rf7511m sip, Ste) (1)(7)

= w.l(s! it @ sff)(sﬂf, st 8%, sE)(R)(T) (construction of w)
= whL(sk es%, sk, sk, s%,s2)(R)(t)  (construction of Wier)

For reference types we have:

W.L(s rf’slc’sgfvslc)(R)(refT)
= Wi.L(s),s5)(Ry)(ref (1)) o Wa.L(sZ%, si,) (R2) (ref 7(2)) (construction of W)

- Wrcf'L(S%f)(Rl)(refT(l)) o Wrcf.L(Sff)(RQ)(l’efT(g)) (Wz — wi’[‘)
= s}f(T(l)) o 5% (7 ) (construction of Wier)
= (s ® Srf)

= Wiet.L(s); @ 52 )(R)(ref T) (construction of Wyer)

= whl(sye S?f’ Sits Slor it Sie) (1) (ref 7)
where R; is short for [W;.L(s rf,slc)]R{i}.
e) Vs.VG € GK(W). W.H(s)(G(s)) € Ugeg(s) wT-H()G(s))
o Let s = (sk, s, 5%, s%) and G be given and suppose (h1, h3) € W.H(s)(G(s)).
o Let s = sy ® 535, Sy, Sies Sy, Sic)> 50 8" € ().
o We will show (h1, hs) € w.H(s')(G(s)).
o We know by construction of W that there is ho such that
(h1,ha) € Wi.H(s), 51.)(G1) and o
(ha,hs) € Wa.H(s%, s2.)(G2), where G; is short for [W;.L(s ﬁf,sfc)]g(s)m.
o Hence there are hif, Alc, hif BL RiE Rl R RIS such that:
i) hy = R whle
i) hy = B W RS
iii) ho = hif WAL
iv) hs = hi W h¥
V) (P, hy,) € Wier. H( )(G1)
vi) (hllcV hlZCa € wl'H(s )(slc)(Gl)
vil) (hif, hi) € Wier. H( ) (Ga)
viid) (Al h18) € wnH(s2) (52 (Ga)
o Let 57 = sp \[i) (55 @ 53¢)-
o Let s? =5\ s5.
o Note that s’y = s? W s5.
« Hence by (v), (vii) and construction of W there are hY, h, h3,, h,, h3y, ho,, h3, h3 such that:
ix) hif = hewhS
x) hy, = h3, W h3,
xi) hglz = h3, W hg,
xii) hi = S W he
xiii) (h3,hs,) € Weer.H(s3)(G1)
xiv) (h{,h3,) € Wier.H(s3)(G1)
XV) (h2b7h3) € Wrer-H(s3)(G2)

——
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xvi) (h$y, h3) € Wiet.H(s9)(G2)
o Also, from (ii-iii), (v), (vii) We know dom(hs;,) N domypy(sy;) = @ A dom(hl;) N domypy)(s2) = 0.
o We show (A, h8) € Wier.H(s); @ s%)(G(s)):
— Suppose (7, (1, 03) € sl o s%.
We must show (7, h$ (1), h3(l3)) € G(s).
Observe that s$ e s3 = s e s2.
So there is £ such that (7(;),¢1,/2) € 57 and (7(2), l2,{3) € s5.
From (xiii) we know (7(1), h 2(61), h3,(L2)) € Gy.
From (xv) we know (7(3), h3;(¢2), h3(¢3)) € Ga.
Since h3,, h3, C ha, we have h$,(f2) = h3,(f2) and thus (7, h$(¢1), h3(¢3)) € G(s) by Lemma
o Since hy \ h{ = h§ WA and h3 \ h§ = h3 W AY, we know by construction of w that
(h1 \ b3, hg \ h3) € w.H(s; @ s%)(s)(G(s)).
« Hence (h1, h3) € wi.H(s")(G(s)).
2) To show: ¢ : wt — W
a) To show: w1.N = W.N
e See (la).
b) To show: Vs, s). s1 C §f = Vsa € 9(s1),55 € ¥(s)). s2 C sh
« Easy to see.
¢) To show: Vs1, ). s1 Cpub 87 = Vs2 € ¥(s1), sh € ¥(s]). s2 Cpup S5
o See (2b).
d) Vs;.Vsy € w<81) wTL(s1) = VV.L(SQ)
e See (lc).
e) Vs.VG € GK(w?). wiH(s)(G(s)) € Uy ey (s W-H(S)(G(s))
o Let s = (i1, Sk 81, 8%, s&.) and G be given and suppose (hi, h3) € wi.H(s)(G(s)).
« This implies s,f = s); ® s% and s’ € Y(s) for s’ = (sl si., s%, s.).
o We will show (hy, h3) € W.H(s")(G(9)).
o We know there are h3, k], h3, hf such that:
i) hy = RS W,
i) hy = hS W h,
iii) (h,h3) € Wit H( it @ 57¢) (G(5))
iv) (R, hy) € wH(sy @ s%)(s)(G(s)).
« From (iv) we further know there are h$, hi¢, hs,, hi,, hSy, hiS, hS, hY such that:
v) By = hS Wl
vi) hg, W hls, = h, W R,
vii) hy = hg W hY
viii) dom(hk,) N dom[g](sﬂf) =0A dom(hlfb) N dompy)(s%) =0
ix) (P, ) € WrerH(s Seg \p1) (53¢ @ 575))(G1)
x) (h, hi,) € wiH(s; )(S]c)(Gl)
xi) (hy,, h3) € Wrcf~H( St \[2] (sk @ s%))(G2)
xii) (R, hif) € wa.H(s%)(si)(G2)
where G; 1s short for [W;.L(s rf,slc)]G( Dy

o We have G( ") = G(s). Thus by Lemmas and. we have G; @ Gy = G(5s).

o Thus, for each (7,1, 03) € sl o5, we know from (iii) that there is v(;.¢, ¢,) such that (7(1y, h$ (1), V(re, 04)) €
G1 and (7‘(2),1}(7,(1753),h3(€3)) € Gs.

o Let h; = {f'—>v(7.7g17g3) | (T(l),fl,ﬁ) S S;f A (7’(2)757 63) S sff}.

o Let s7 = sip \[jj (sk @ s%).

o Let s? = s\ s5.

o Then we have (h$,hs) € Wyer.H(s3)(G1) and (hS, hy) € Wyer H(s3)(G2).

o Observe that s W s? = st

« Consequently, (h§ WA, h3, W hS) € Wier.H(sk)(G1) and (hg, W hS, hg W hS) € Wier.H(s%)(Ga).
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« From (viii), (x) and (xii) we get (h§ Wh$ WRIS, h3, WhS WRY,) € Wi.H(sk, sL)(G1) and (hS, W hS W bl h W
h§ W hY) € Wa.H(s%, s7.)(Ga).
« By construction of W, this means (h1, h3) = (h§ & h$ WA, hS W hS W hY) € WH(s')(G(s)).

Transitivity.
Theorem 108 (Transitivity). A;T'Fe; ~e3: 0

Proof: We have A;T' F e~y €3 : 7 by Lemmas [T01] and and Theorem [84] The result then follows from Lemma [T06]
|
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